WO2021022884A1 - 一种超材料、雷达罩及飞行器 - Google Patents

一种超材料、雷达罩及飞行器 Download PDF

Info

Publication number
WO2021022884A1
WO2021022884A1 PCT/CN2020/093974 CN2020093974W WO2021022884A1 WO 2021022884 A1 WO2021022884 A1 WO 2021022884A1 CN 2020093974 W CN2020093974 W CN 2020093974W WO 2021022884 A1 WO2021022884 A1 WO 2021022884A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metamaterial
metal sheet
sheet layer
metal
Prior art date
Application number
PCT/CN2020/093974
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
田华
安迪
Original Assignee
深圳光启高端装备技术研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910716083.7A external-priority patent/CN110401003A/zh
Priority claimed from CN201921251792.4U external-priority patent/CN210956948U/zh
Application filed by 深圳光启高端装备技术研发有限公司 filed Critical 深圳光启高端装备技术研发有限公司
Publication of WO2021022884A1 publication Critical patent/WO2021022884A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices

Definitions

  • the invention relates to the field of materials, and more specifically, to a metamaterial, a radome and an aircraft.
  • the freezing of air vehicles during flight is a widespread physical phenomenon and one of the major hidden dangers that cause flight safety accidents.
  • the supercooled water droplets in the atmosphere hit the surface of the aircraft and are prone to protruding parts of the fuselage, such as the leading edge of the wing, the leading edge of the rotor, the leading edge of the tail rotor, and the engine intake , Airspeed tube, aircraft windshield glass and radome and other components surface sublimation to form ice.
  • the icing of the aircraft will not only increase the weight, but also destroy the aerodynamic shape of the aircraft, change the flow field around it, destroy the aerodynamic performance, cause the maximum lift of the aircraft to decrease, increase the flight resistance, and reduce the flight performance.
  • the existing deicing methods mainly include: hot gas deicing, mechanical deicing, microwave deicing, and electric deicing.
  • the hot air deicing method using engine bleed air requires the design of a complicated air supply pipeline to distribute the hot air drawn from the engine compressor to the parts that need to be deiced, and will affect the power and work efficiency of the engine; use airbags and expansion tubes to shrink
  • the mechanical deicing method that breaks the ice with expansion will destroy the aerodynamic shape of the aircraft, and the deicing will not be complete
  • microwave deicing is easy to be captured by radar;
  • traditional electric deicing generally uses metal foil, metal wire, and conductive metal film , Resistance wires, etc. are used as electric heating units, which are not suitable for parts that require electromagnetic transmission.
  • the present invention provides a metamaterial, wherein the metamaterial includes a base material layer and a metal sheet layer superimposed on the base material layer, and the metal sheet layer is provided with periodic gaps in a single direction.
  • the base material layer and the metal sheet layer together form a whole, and the ends of the whole in a single direction are connected with connecting terminals, and the connecting terminals are connected to an external power source to form a conductive path Electric heating takes advantage of the characteristics of metal electric heating.
  • the metamaterial further includes a first prepreg layer, and the first prepreg layer is bonded to the metal sheet layer through a layer of adhesive.
  • the metamaterial further includes a second prepreg layer, and the second prepreg layer is bonded to the base material layer through a layer of adhesive.
  • the metamaterial further includes a sandwich layer, and the sandwich layer is bonded to the second prepreg layer through a layer of glue film.
  • the metamaterial further includes a third prepreg layer, and the third prepreg layer is bonded to the sandwich layer through a layer of glue film.
  • the gap penetrates the entire metal sheet layer, the multiple gaps are parallel to each other, and each gap is linear.
  • the gap penetrates the entire metal sheet layer, the multiple gaps are parallel to each other, each gap includes a plurality of V-shaped gaps connected in sequence, and the opening angle of the V-shaped gap is greater than 0 degrees and less than or Equal to 180 degrees.
  • the gap penetrates the entire metal sheet layer, the plurality of gaps are parallel to each other, and each gap includes a plurality of sine wave gaps connected in sequence.
  • the present invention also provides a deicing device, wherein the deicing device includes any of the above metamaterials.
  • the present invention also provides a radome, wherein the radome includes any of the above metamaterials.
  • the present invention also provides an aircraft, wherein the aircraft includes any of the above metamaterials.
  • the technical solution provided by the present invention solves the problem that the existing electrothermal deicing method cannot realize the electromagnetic signal transmission due to the shielding of the electromagnetic signal by the metal layer through the design of the conductive metal path and the specific design of the metal path, and can suppress the internal electromagnetic
  • the interference of external electromagnetic signals outside the working frequency band of the transceiver device makes it possible to arrange electromagnetic transceiver devices such as microwave and millimeter wave antennas in places with a good electromagnetic transmission field of view. This will lead to the trend of multi-sensing integration and full-airspace sensing for aircraft. Lay the foundation for development and further improve the complete information chain of high-end aviation equipment.
  • FIG. 1 is a schematic cross-sectional view of a multi-layered structure included in the metamaterial in the first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of another multi-layer structure included in the metamaterial in the second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a two-dimensional cross-sectional view of another multi-layer stack included in the metamaterial in the second embodiment of the present invention.
  • FIG. 4 is a schematic structural view of the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention with periodic slits in the horizontal direction;
  • FIG. 5 is a schematic diagram of the S21 curve of the metamaterial in the second embodiment of the present invention under TE polarization as a function of the incident angle theta;
  • FIG. 6 is a schematic diagram of the S21 curve of the metamaterial in the second embodiment of the present invention under TM polarization as a function of the incident angle theta;
  • FIG. 7 is a schematic structural view of the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention with periodic slits in the vertical direction;
  • FIG. 8 is a schematic diagram of the S21 curve of the metamaterial in FIG. 7 under TE polarization as a function of the incident angle theta in the second embodiment of the present invention
  • FIG. 9 is a schematic diagram of the S21 curve of the metamaterial in FIG. 7 under TM polarization as a function of the incident angle theta in the second embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the first V-shaped gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the S21 curve of the metamaterial in FIG. 10 under TE polarization as a function of the incident angle theta in the second embodiment of the present invention
  • FIG. 12 is a schematic diagram of the S21 curve of the metamaterial in FIG. 10 under TM polarization as a function of the incident angle theta in the second embodiment of the present invention
  • FIG. 13 is a schematic diagram of a second V-shaped gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • 16 is a schematic diagram of a third V-shaped gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • FIG. 19 is a schematic diagram of the sinusoidal waveform gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a multi-layer structure included in a metamaterial in an embodiment of the present invention.
  • the metamaterial of the present invention adopts a multi-layer structure design.
  • the metamaterial includes a base material layer 1 and a metal sheet layer 2 superimposed on the base material layer 1.
  • the metal sheet layer 2 is opened in the horizontal direction.
  • the terminal 3 is connected with an external power source to form a conductive path, and the feature of metal electric heating can be used to electrically heat the icy parts.
  • the base material layer 1 can be either a flexible base material layer or a rigid base material layer. The specific requirements depend on actual application scenarios.
  • a flexible base material layer is required. If it is flat, either a rigid base material layer or a flexible base material layer can be selected.
  • the base material layer 1 has the characteristics of excellent insulation performance, high and low temperature resistance, and good mechanical properties such as stretching.
  • the whole formed by the base material layer 1 and the metal sheet layer 2 is called a soft metal plate.
  • the end of the board in the horizontal direction is connected to the terminal 3, and the terminal 3 can be connected to the metal on the sheet metal layer 2 by welding, or other connection methods, as long as it meets the requirements of the metal on the terminal 3 and the sheet metal layer 2. Electrical connection is acceptable.
  • the two terminals 3 are respectively connected to the positive and negative poles of the external power supply through the power cord, so that the metal on the metal sheet layer 2, the two terminals 3, the power cord, and the external power supply will form a conductive path structure ,
  • the external power source uses this electrical path structure to use the energized heating characteristics of the metal sheet layer 2 for electrical heating.
  • the metal on the base material layer 1 (ie, the metal sheet layer 2) is etched through an etching process, so that a period is set on a complete metal sheet in the horizontal direction.
  • Sexual gap the gap runs through the entire metal sheet, and multiple gaps are parallel to each other, and each gap is linear; or the gap penetrates the entire metal sheet, and multiple gaps are parallel to each other, and each gap includes multiple sequences.
  • Connected V-shaped gaps the opening angle of the V-shaped gap is greater than 0 degrees and less than or equal to 180 degrees; or the gap runs through the entire metal sheet layer, and multiple gaps are parallel to each other, and each gap includes a number of sequentially connected sinusoids Wave gap.
  • the area of the metal sheet layer 2 that has not been etched away retains metal, and the remaining metal in the metal sheet layer 2 forms a metal conductive connection structure in the horizontal direction, which has a periodic structure. Sexually arranged horizontally connected structure.
  • the metamaterial also includes a first prepreg layer 4 and a second prepreg layer 5, which are respectively adhered to the front and back surfaces of the metal soft board by two layers of adhesives 6.
  • the first prepreg layer 4 is bonded to the front surface of the metal sheet layer 2 through a layer of adhesive 6.
  • the reverse side of the metal sheet layer 2 is superimposed on the front surface of the base material layer 1, and the second prepreg layer 5 passes through another
  • the layer adhesive 6 is bonded to the opposite surface of the base material layer 1.
  • the respective prepregs in the first prepreg layer 4 and the second prepreg layer 5 are fiber prepregs such as glass or quartz, which play the role of insulation and strength support.
  • the two layers of adhesive 6 The function is to better bond the first prepreg layer 4 and the second prepreg layer 5 on the front and back surfaces of the metal soft board.
  • the metal sheet layer 2 has a horizontally arranged metal conductive connection structure periodically.
  • the preparation of this periodically arranged horizontally connected structure is to remove the base material in the metal soft board through an etching process.
  • the metal on layer 1 is etched, so that a complete metal sheet is provided with periodic gaps in the horizontal direction.
  • this connected metal structure pattern can be regarded as a unidirectional gap type metal structure pattern.
  • the unidirectional slot metal structure pattern can be regarded as the slot unit in which some metal units are etched away in a certain arrangement on the surface of a complete metal layer.
  • the electrons generated by this type of slot metal structure pattern can flow unrestricted under the irradiation of electromagnetic waves. From the perspective of frequency response characteristics, the slot type metal structure pattern has a single polarization wide cutoff, orthogonal polarization low pass and fast cutoff electromagnetic Modulation, specifically, the mechanism of this electromagnetic modulation is shown in:
  • the low-frequency electromagnetic wave has a long period and the electric field direction changes slowly.
  • the unidirectional slit will be in the same charged state for a long time and cannot form a radiation loop until the direction of the electric field changes. Therefore, the electrons at the edge of the unidirectional slot only absorb a small part of the energy, and the electromagnetic wave transmission ability is strong.
  • the situation of high-frequency incident waves is just the opposite. Due to the short period of high-frequency electromagnetic waves, the direction of the electric field changes faster, causing the electrons in the metal to oscillate constantly, absorbing most of the energy, weakening the transmission ability, and lowering the transmission coefficient, showing low-frequency transmission.
  • the surface of the slot-type metal structure pattern can be freely combined with slot-non-connected ring-shaped metal surface micro-elements and patch-type metal surface micro-elements to achieve the required electromagnetic modulation characteristics.
  • the invention combines the electromagnetic response characteristics, structure and strength requirements of the electromagnetic transceiver device, selects materials for the composite layer containing electric heating and electromagnetic modulation functions, and performs integrated design of thickness, metal structure pattern, etc., to achieve structure, strength and composite electric heating Integrated part with electromagnetic modulation function.
  • the metamaterial can further add a new composite dielectric layer, as shown in FIG. 2.
  • FIG. 2 is a schematic cross-sectional view of another multi-layer structure included in the metamaterial in an embodiment of the present invention.
  • the dashed frame A represents the metamaterial in Fig. 1
  • the dashed frame B represents the newly added composite dielectric layer.
  • the metamaterial in FIG. 2 also includes a sandwich layer 87 and a third prepreg layer 98, wherein one side of the sandwich layer 87 passes through a layer of adhesive film 109 and the first The two prepreg layers 65 are bonded, and the third prepreg layer 98 is bonded to the other side of the sandwich layer 87 through another adhesive film 109.
  • the present invention can also be embedded in the sandwich layer 87 or the third prepreg layer 98 separately as shown in FIG.
  • the soft metal plate that is, a whole formed by the base material layer 1 and the metal sheet layer 2 is used as an electromagnetic modulation layer.
  • FIG. 3 is a schematic diagram of a two-dimensional cross-sectional view of another multi-layer stack included in the metamaterial in the second embodiment of the present invention.
  • the structure diagram shown in Figure 3 is a two-dimensional cross-sectional schematic diagram of pressing the multi-layered structure in Figure 2 together to form a multi-layered metamaterial.
  • the metamaterial structure shown in Figure 3 is a kind of integrated deicing ,
  • the thickness of the metal soft board (including the base material layer 1 and the metal sheet layer 2) is d 3
  • the thickness of the other layer of adhesive 6 is d 4
  • the thickness of the second prepreg layer 5 is d 5
  • the thickness of one layer of adhesive film 9 is d 6
  • the thickness of the sandwich layer 7 is d 7
  • the thickness of the other layer of adhesive film 9 is d 8
  • the thickness of the third prepreg layer 8 is d 9 .
  • the prepregs of the first prepreg layer 4, the second prepreg layer 5, and the third prepreg layer 8 are all low-dielectric, low-loss quartz fiber cyanate ester prepregs. High permeability and bearing effect.
  • the first prepreg layer 4, the second prepreg layer 5, and the third prepreg layer 8 are all a good skin material.
  • the first prepreg layer 4, The second prepreg layer 5 can be used as the outer skin material, and the third prepreg layer 8 can be used as the inner skin material. Both layers of adhesive 6 can be glued to achieve bonding, and the metal soft board is used as the electrical
  • the heating layer is mainly composed of heating material and insulating material.
  • the metal sheet layer 2 in the present invention is the heating material, which is made of metal copper with high resistivity and high conductivity.
  • the base material layer 1 in the present invention is an insulating material. It is mainly a polyimide (PI) film with excellent comprehensive performance, and the sandwich layer 7 is used as a honeycomb layer to achieve electromagnetic performance optimization and bearing functions.
  • PI polyimide
  • the thickness of the metal layer in the metal sheet layer 2 is determined according to the actual required resistance. The thicker the metal layer, the smaller the resistance, while the thinner metal layer will produce the larger resistance. In this embodiment, the thickness of the metal layer in the metal sheet layer 2 is 18 ⁇ m, and the thickness of the base material layer 1 (ie PI film) is 25 ⁇ m. Therefore, the metal soft board composed of the two in the present invention has flexibility as an electric heating layer , It is easy to paste on curved parts, and the metal copper can be designed into different topological structure hollow patterns to achieve frequency-selected electromagnetic modulation function.
  • the metal sheet layer 2 is a connected structure to ensure that the metal in the metal sheet layer 2 is powered on A conductive path can be formed to realize the function of energized heating and deicing. To realize the frequency selection function of different polarizations and frequency bands, the metal sheet layer 2 also needs to have a periodic arrangement structure and a horizontal connection structure.
  • the adhesive film is used to achieve adhesion between the layers of the present invention.
  • the dielectric constant of the skin material is 3.15
  • the loss tangent value is 0.006
  • the dielectric constant of the film material is 2.7
  • the loss tangent value is 0.0065
  • the dielectric constant of the PI film material is 3.2
  • the loss tangent value is 0.002
  • the dielectric constant of the honeycomb material is 1.11
  • the loss tangent value is 0.006.
  • FIG. 4 is a schematic structural diagram of the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention with periodic slits in the horizontal direction.
  • the metal sheet layer 2 is provided with a structure with periodic gaps in the horizontal direction.
  • the black part in the unsealing method 1 in Figure (a) represents the metal sheet, and the white part between two adjacent metal sheets represents the metal
  • the widths of the linear slits are all ww
  • the widths of the individual metal sheets separated by the slits on the metal sheet layer 2 are all p
  • the distance between two adjacent metal sheets is ww.
  • Figure (b) The second method of slitting,
  • the periodic arrangement of the structure on the metal sheet layer 2 shown in FIG. 4(a) is applied to the laminated structure shown in FIG. 3, and the main structure size design is shown in Table 1 below :
  • the TE polarization exhibits high transmission characteristics at 0-0.4GHz ultra-low frequency, the transmission is greater than -1.2dB, and the frequency is greater than 3GHz.
  • the metal sheet continuous in the horizontal direction is equivalent to the wideband cut-off in the TM direction and low-pass and fast cut-off in the TE direction.
  • the frequency-selective high-pass structure can realize relatively independent modulation of TM waves.
  • the metal sheets that are continuous in the vertical direction at this time are equivalent to the frequency-selected high-pass structure of wide-band cut-off in the TE direction and low-pass and fast cut-off in the TM direction.
  • the concrete size is shown in Table 1.
  • FIG. 8 is a schematic diagram of the S21 curve of the metamaterial in FIG. 7 under TE polarization as a function of the incident angle theta in the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the S21 curve of the metamaterial in FIG. 7 under TM polarization as a function of the incident angle theta in the second embodiment of the present invention.
  • this linear horizontal connection structure composed of a single-directional continuous metal sheet can compound the electromagnetic modulation function on the basis of realizing electric heating and deicing, and can realize the above-mentioned electromagnetic modulation function.
  • the metal sheet layer 2 is provided with a structure with periodic slits in a single direction, and each slit is linear, which can realize the function of electric heating and deicing and electromagnetic modulation.
  • the straight slit structure is bent (such as V-shaped) or transformed into an arbitrary polygonal periodic boundary (such as rectangular waveform), and the bent slit structure can form a connected structure as long as it satisfies a single direction through the entire metal sheet layer.
  • the conductive path can realize the deicing function when the electric heating layer is energized, and the main structure size in the laminated structure can be designed to have the electromagnetic modulation function.
  • FIG. 10 is a schematic diagram of the first V-shaped gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • the gap runs through the entire metal sheet layer 2, and multiple gaps are parallel to each other.
  • Each gap includes multiple V-shaped gaps connected in sequence.
  • the opening angle of the V-shaped gap is greater than 0 degrees and less than or equal to 180.
  • the opening angle of each V-shaped slit is 120 degrees.
  • the topological structure is a gap arranged along two sides of a regular hexagonal metal sheet with a period P and an angle of 120°.
  • the gap period is N (N ⁇ 2, and N is an integer).
  • the width is ww.
  • N represents the number of regular hexagonal metal sheets with a period P between adjacent metal sheets in the Y direction.
  • the bending TM gap corresponds to a period of 2, that is, the adjacent bending gaps are separated by 2 periods.
  • the regular hexagonal metal sheet of P, that is, the gap has a different period from that of the metal sheet and the dielectric laminate.
  • the periodic arrangement of the metal sheet layer 2 shown in FIG. 10 is applied to the laminated structure shown in FIG. 3, and the main structure size design is shown in Table 2 below:
  • FIG. 11 is a schematic diagram of the S21 curve of the metamaterial in FIG. 10 under TE polarization as a function of the incident angle theta in the second embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the S21 curve of the metamaterial in FIG. 10 under TM polarization as a function of the incident angle theta in the second embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a second V-shaped gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • the gap runs through the entire metal sheet layer 2, and multiple gaps are parallel to each other.
  • Each gap includes multiple V-shaped gaps connected in sequence.
  • the opening angle of the V-shaped gap is greater than 0 degrees and less than or equal to 180.
  • the opening angle of each V-shaped slit is 60 degrees.
  • the periodic arrangement of the metal sheet layer 2 shown in FIG. 13 is applied to the laminated structure shown in FIG. 3, and the main structure size design is shown in Table 3 below:
  • 16 is a schematic diagram of the third V-shaped gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • the gap runs through the entire metal sheet layer 2, and multiple gaps are parallel to each other.
  • Each gap includes a number of V-shaped gaps connected in sequence.
  • the opening angle of the V-shaped gap is greater than 0 degrees and less than or equal to 180. In this embodiment, the opening angle of each V-shaped slit is 90 degrees.
  • the periodic arrangement of the metal sheet layer 2 shown in FIG. 16 is applied to the laminated structure shown in FIG. 3, and the main structure size design is shown in Table 4 below:
  • FIG. 19 is a schematic diagram of the sinusoidal waveform gap structure on the metal sheet layer 2 included in the metamaterial in the second embodiment of the present invention.
  • the gap runs through the entire metal sheet layer 2, and the multiple gaps are parallel to each other.
  • Each gap includes multiple sine wave gaps connected in sequence.
  • the periodic arrangement of the metal sheet layer 2 shown in FIG. 19 is applied to the laminated structure shown in FIG. 3, and the main structure size design is shown in Table 5 below:
  • the periodic arrangement of the curvilinear single-direction connected structure in the present invention can also realize the electric heating deicing function and the electromagnetic modulation function.
  • a conductive path can be formed, and then it can be used as electricity when energized
  • the heating layer achieves the deicing function, and the main structure size in the laminated structure can also be designed to have the electromagnetic modulation function.
  • the linear and curvilinear single-directional communication structure can realize the electric heating and deicing function under the periodic arrangement, and as long as the single-directional continuous arrangement is satisfied, a conductive path can be formed, and then it can be used as an electric
  • the heating layer is energized, the deicing function can be realized, and the main structure size in the laminated structure can be designed to have the electromagnetic modulation function.
  • the electric heating layer that realizes the deicing function ie, the metal soft board
  • the electric heating layer that realizes the deicing function also needs to connect the metal on the electric heating layer to the power line through solder joints to form a terminal.
  • the terminal uses a power line Connected to the onboard power supply on the aircraft, the heat generated by the electric heating layer melts into a thin layer between the ice layer and the outer skin, reducing the adhesion between the ice layer and the outer skin, so that the aerodynamic or centrifugal force The ice is easily blown off under the action of
  • the present invention also provides a deicing device, wherein the deicing device includes any of the above metamaterials.
  • the present invention also provides a radome, wherein the radome includes any of the above metamaterials.
  • the present invention also provides an aircraft, wherein the aircraft includes any of the above metamaterials.
  • the technical solution provided by the present invention combines the electromagnetic modulation function on the basis of satisfying the deicing function.
  • the existing deicing method can not be guaranteed due to the shielding of electromagnetic signals by the metal layer
  • the problem of electromagnetic signal transmission can also suppress the interference of external electromagnetic signals outside the working frequency band of the electromagnetic transceiver device inside the component, so that it is possible to arrange electromagnetic transceiver devices, such as microwaves, millimeter wave antennas, etc., in places with good electromagnetic transmission vision.
  • electromagnetic transceiver devices such as microwaves, millimeter wave antennas, etc.

Abstract

本发明提供了一种超材料,包括基底材料层以及叠加在基底材料层上的金属片层,金属片层在单一方向开设有周期性缝隙,其中,基底材料层与金属片层共同形成一个整体,且整体在单方向上的端部连接有接线端子,并通过接线端子与外部电源接通,形成导电通路以利用金属通电加热的特性进行电加热。此外,本发明还提供一种雷达罩和飞行器。本发明提供的技术方案将金属片层进行特定结构设计,使其既作为电加热单元,具备电加热除冰功能,又作为电磁调制结构,允许电磁收发器件工作频段范围内的电磁信号传输,但屏蔽工作频段范围外的电磁波,抑制杂波信号的干扰。

Description

一种超材料、雷达罩及飞行器 技术领域
本发明涉及材料领域,更具体地,涉及一种超材料、雷达罩及飞行器。
背景技术
航空飞行器在飞行过程中结冰是广泛存在的一种物理现象,是造成飞行安全事故的重大隐患之一。当飞行器在在低于结冰气象条件下飞行时,大气中的过冷水滴撞击到飞行器表面,容易在机身的突出部位,如机翼前缘、旋翼、尾桨前缘、发动机进气口、空速管、飞机风挡玻璃以及天线罩等部件表面凝华形成结冰。飞行器结冰不仅会增加重量,而且会破坏飞行器外表的气动外形,改变绕流流场,破坏气动性能,造成飞行器最大升力下降,飞行阻力增加,飞行性能降低,严重情况下,会对飞行安全造成致命威胁。此外,对于军用飞机来说,如无人机、运输机等,结冰将直接限制其飞行区域,极大的影响其作战能力。因此对于易结冰的关键部位必须进行除冰防护。
现有的除冰方法主要包括:热气除冰、机械除冰、微波除冰、电热除冰。但是,采用发动机引气的热气除冰方法需设计复杂的供气管路,将发动机压气机引出的热气分配到需要除冰的部位,且会影响发动机的功率及工作效率;采用气囊、膨胀管收缩与膨胀使冰层破碎的机械除冰方法会破坏飞行器气动外形,除冰也不彻底;微波除冰又易被雷达捕获;另外,传统的电热除冰一般采用金属箔、金属丝、导电金属膜、电阻丝等作为电加热单元,其不适用于需电磁传输功能的部件。
因此,在航空飞行器上如何实现既能除冰,又能具备电磁调制功能,保障电磁信号的传输,已成为业界亟需解决的痛点问题。
发明内容
针对以上问题,本发明提供了一种超材料,其中,所述超材料包括基底材料层以及叠加在所述基底材料层上的金属片层,所述金属片层在单一方向开设有周期性缝隙,其中,所述基底材料层与所述金属片层共同形成一个整体,且所述整体在单一方向上的端部连接有接线端子,并通过所述接线端子与外部电源接通,形成导电通路以利用金属通电加热的特性进行电加热。
优选的,所述超材料还包括第一预浸料层,所述第一预浸料层通过一层粘接剂与所述金属片层进行粘接。
优选的,所述超材料还包括第二预浸料层,所述第二预浸料层通过一层粘接剂与所述基底材料层进行粘接。
优选的,所述超材料还包括夹芯层,所述夹芯层通过一层胶膜与所述第二预浸料层进行粘接。
优选的,所述超材料还包括第三预浸料层,所述第三预浸料层通过一层胶膜与所述夹芯层进行粘接。
优选的,所述缝隙贯穿整个金属片层,所述多条缝隙之间相互平行,每一条缝隙均呈直线型。
优选的,所述缝隙贯穿整个金属片层,所述多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的V形缝隙,所述V形缝隙的开口角度大于0度且小于或等于180度。
优选的,所述缝隙贯穿整个金属片层,所述多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的正弦波形缝隙。
另外,本发明还提供了一种除冰装置,其中,所述除冰装置包括以上任一项所述的超材料。
另外,本发明还提供了一种雷达罩,其中,所述雷达罩包括以上任一项所述的超材料。
此外,本发明还提供了一种飞行器,其中,所述飞行器包括以上任一项所述的超材料。
本发明提供的技术方案通过设计导通的金属通路以及对金属通路的特定设计,解决现有电热除冰方式因金属层对电磁信号屏蔽而无法实现电磁 信号传输的难题,同时可抑制部件内部电磁收发器件工作频段之外的外来电磁信号的干扰,从而使得在具备良好电磁传输视野的部位布局电磁收发器件如微波毫米波天线等成为可能,进而为飞机朝多传感集成、全空域感知等趋势发展奠定基础,进一步提升高端航空装备的全信息链贯通。
附图说明
图1为本发明第一实施例中超材料所包括一种多叠层结构的截面示意图;
图2为本发明第二实施例中超材料所包括另一种多叠层结构的截面示意图;
图3为本发明第二实施例中超材料所包括另一种多叠层的二维剖面示意图;
图4为本发明第二实施例中超材料所包括的金属片层2上在水平方向开设有周期性缝隙的结构示意图;
图5为本发明第二实施例中的超材料在TE极化下的S21曲线随入射角度theta的变化示意图;
图6为本发明第二实施例中的超材料在TM极化下的S21曲线随入射角度theta的变化示意图;
图7为本发明第二实施例中超材料所包括的金属片层2上在垂直方向开设有周期性缝隙的结构示意图;
图8为本发明第二实施例中的图7的超材料在TE极化下的S21曲线随入射角度theta的变化示意图;
图9为本发明第二实施例中的图7的超材料在TM极化下的S21曲线随入射角度theta的变化示意图;
图10为本发明第二实施例中超材料所包括的金属片层2上的第一种V形缝隙结构的示意图;
图11为本发明第二实施例中的图10的超材料在TE极化下的S21曲线随入射角度theta的变化示意图;
图12为本发明第二实施例中的图10的超材料在TM极化下的S21曲 线随入射角度theta的变化示意图;
图13为本发明第二实施例中超材料所包括的金属片层2上的第二种V形缝隙结构的示意图;
图14为本发明第二实施例中的图13的超材料在TE极化下的S21曲线在入射角度theta=0°时的变化示意图;
图15为本发明第二实施例中的图13的超材料在TM极化下的S21曲线在入射角度theta=0°时的变化示意图;
图16为本发明第二实施例中超材料所包括的金属片层2上的第三种V形缝隙结构的示意图;
图17为本发明第二实施例中的图16的超材料在TE极化下的S21曲线在入射角度theta=0°时的变化示意图;
图18为本发明第二实施例中的图16的超材料在TM极化下的S21曲线在入射角度theta=0°时的变化示意图;
图19为本发明第二实施例中超材料所包括的金属片层2上的正弦波形缝隙结构的示意图;
图20为本发明第二实施例中的图19的超材料在TE极化下的S21曲线在入射角度theta=0°时的变化示意图;
图21为本发明第二实施例中的图19的超材料在TM极化下的S21曲线在入射角度theta=0°时的变化示意图。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
图1为本发明实施例中超材料所包括多叠层结构的截面示意图。
如图1所示,本发明的超材料采用多叠层结构设计,具体的,超材料包括基底材料层1以及叠加在基底材料层1上的金属片层2,金属片层2在水平方向开设有周期性缝隙,具有水平方向的金属导电连通结构,其中,基底材料层1与金属片层2共同形成一个整体,且整体在水平方向上的端部连接有接线端子3,并通过两个接线端子3与外部电源接通,形成导电 通路,利用金属通电加热的特性可对易结冰部位进行电加热。其中,基底材料层1既可以是柔性基底材料层,也可以是硬性基底材料层,具体需要根据实际的应用场景而定,例如如果是将该超材料应用到曲面则需要柔性基底材料层,应用到平面的话可以选择硬性基底材料层也可以选择柔性基底材料层。其中,基底材料层1具有绝缘性能优异、耐高低温、拉伸等机械性能良好的特性,将基底材料层1与金属片层2共同形成的一个整体称之为金属软板,将该金属软板在水平方向上的端部连接有接线端子3,接线端子3可以通过焊接方式与金属片层2上的金属连接,或者其它的连接方式,只要满足接线端子3与金属片层2上的金属电连接均可,两个接线端子3分别通过电源线连接外部电源的正负两极,使金属片层2上的金属、两个接线端子3、电源线、外部电源之间就会形成导电通路结构,外部电源通过这个电通路结构,利用金属片层2通电加热的特性进行电加热。
如图1所示,在金属软板中,通过刻蚀工艺将基底材料层1上的金属(即金属片层2)进行刻蚀,使得在一张完整的金属片上且在水平方向开设有周期性缝隙,缝隙贯穿整个金属片层,多条缝隙之间相互平行,每一条缝隙均呈直线型;或者缝隙贯穿整个金属片层,多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的V形缝隙,V形缝隙的开口角度大于0度且小于或等于180度;亦或者缝隙贯穿整个金属片层,多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的正弦波形缝隙。
在基底材料层1上,金属片层2中没有被蚀刻掉的区域就保留金属,金属片层2中被保留下来的金属形成一个在水平方向上的金属导电连通结构,该连通结构为具有周期性排布的水平方向连通结构。
如图1所示,超材料还包括第一预浸料层4和第二预浸料层5,分别通过两层粘接剂6粘接在金属软板的正反两个表面,具体的,第一预浸料层4通过一层粘接剂6与金属片层2的正面进行粘接,金属片层2的反面与基底材料层1的正面叠加,第二预浸料层5通过另一层粘接剂6与所述基底材料层1的反面进行粘接。其中,第一预浸料层4和第二预浸料层5中各自的预浸料均为玻璃或石英等纤维预浸料,起到绝缘、强度支撑等作用,两层粘接剂6的作用是用于将第一预浸料层4和第二预浸料层5更好 的粘接在金属软板的正反两个表面。
在本实施方式中,金属片层2具有周期性排布的水平方向的金属导电连通结构,这种周期性排布的水平方向连通结构的制备是在金属软板中通过刻蚀工艺将基底材料层1上的金属进行刻蚀,使得在一张完整的金属片上且在水平方向开设有周期性缝隙,具体的,这种连通型金属结构图形可视为单向缝隙型金属结构图形,从外部物理特征而言,单向缝隙型金属结构图形可看做在一块完整的金属层表面上按照一定的排布形式刻蚀掉一些金属单元的缝隙单元。这种缝隙型金属结构图形在电磁波照射下产生的电子可不受限制地流动,从频率响应特性上看,缝隙型金属结构图形具备单极化宽截止、正交极化低通且快速截止的电磁调制作用,具体的,这种电磁调制作用的机理表现在:
a)当电场方向平行于单向缝隙的低频电磁波照射在这种缝隙型金属结构图形的表面时,将激发大量的电子沿金属片方向自由移动,使得电子吸收了大部分能量,而沿缝隙周围的感应电流很小电磁波传输能力弱,导致透射系数比较小很低,截止强。此外,由于金属片很宽,在很宽的频率范围内,电子都能在金属片上自由移动,所以表现出很宽频截止的特性;
b)当时电场方向垂直于单向缝隙的电磁波照射时,低频电磁波周期长,电场方向变化较慢,单向缝隙会在较长时间内处于同一带电状态,无法构成辐射回路,直到电场方向发生改变,因而,单向缝隙边沿的电子只吸收很少一部分能量,电磁波传输能力较强。高频入射波情况恰好相反,由于高频电磁波周期较短,电场方向改变加快,导致金属中的电子不停振荡,吸收了大部分能量,传输能力变弱,透射系数变低,表现出低频透波且快速截止的特性。此外,由于缝隙很窄,仅很低频的情况下,单向缝隙会维持稳定的带电状态,随频率变高,缝隙周围的电子快速振荡,传输能力快速下降,表现出低频透波且高频快速截止的特性。
在本实施方式中,这种缝隙型金属结构图形的表面还可自由组合缝隙非连通环形型金属表面微元、贴片型金属表面微元,进而实现需要的电磁调制特性。本发明结合电磁收发器件的电磁响应特性和结构、强度要求,对含电加热及电磁调制功能的复合层进行选材,并进行厚度、金属结构图 案等一体化设计,实现结构、强度与复合电加热与电磁调制功能的一体化部件。
在本实施方式中,根据结构强度、电磁调控性能等需要,该超材料可进一步增加新的组合介质层,如图2所示。
图2为本发明实施例中超材料所包括另一种多叠层结构的截面示意图。
如图2所示,虚线框A所表示的是图1中的超材料,虚线框B所表示的是新增的组合介质层。在图1所示的超材料结构的基础上,图2中的超材料还包括夹芯层87和第三预浸料层98,其中,夹芯层87的一面通过一层胶膜109与第二预浸料层65进行粘接,第三预浸料层98通过另一层胶膜109与夹芯层87的另一面进行粘接。在本实施方式中,对于新增的组合介质层来说,为了实现更优异的电磁调制性能,本发明还可以在夹芯层87或第三预浸料层98中单独嵌入图1所示的金属软板(即基底材料层1与金属片层2共同形成的一个整体)来作为电磁调制层。
图3为本发明第二实施例中超材料所包括另一种多叠层的二维剖面示意图。
图3所示的结构图即为将图2中的多叠层结构压合在一起形成一个多叠层的超材料的二维剖面示意图,图3所示的超材料结构是一种集除冰、电磁调制的功能与结构承载功能于一体的夹层结构,一共包括9层,具体的,从上到下,第一预浸料层4的厚度为d 1,一层粘接剂6的厚度为d 2,金属软板(包括基底材料层1和金属片层2)的厚度为d 3,另一层粘接剂6的厚度为d 4,第二预浸料层5的厚度为d 5,一层胶膜9的厚度为d 6,夹芯层7的厚度为d 7,另一层胶膜9的厚度为d 8,第三预浸料层8的厚度为d 9
其中,第一预浸料层4、第二预浸料层5、第三预浸料层8中各自的预浸料均是低介电、低损耗的石英纤维氰酸酯预浸料,具备高透波及承载作用,同时,第一预浸料层4、第二预浸料层5、第三预浸料层8都是一种很好的蒙皮材料,第一预浸料层4、第二预浸料层5可以用作外蒙皮材料,第三预浸料层8可以用作内蒙皮材料,两层粘接剂6均可以用胶膜来实现粘接,金属软板作为电加热层主要由加热材料与绝缘材料组成,本发明中的金属片层2就是加热材料,其采用电阻率高、导电率高的金属铜来制作, 本发明中的基底材料层1就是绝缘材料,其主要为综合性能优异的聚酰亚胺(PI)薄膜,夹芯层7作为蜂窝层来实现电磁性能优化及承载功能。
其中,金属片层2中的金属层厚度根据实际需要电阻大小来确定,金属层越厚产生的电阻越小,而薄的金属层则产生的电阻大。在本实施方式中,金属片层2中的金属层厚度为18μm,基底材料层1(即PI薄膜)的厚度为25μm,因此本发明中的二者组成的金属软板作为电加热层具有柔性,易于在曲面件贴覆,而且金属铜可被设计成不同拓扑结构镂空图案实现频选的电磁调制功能,同时,金属片层2是连通结构,保证金属片层2中的金属在加电后可以形成导电通路,实现通电加热除冰功能,为实现不同极化和频段的频选功能,金属片层2还需要具有周期性排布结构以及水平方向连通结构。本发明的各层之间通过用胶膜来实现粘接。以上使用的材料中,作为蒙皮材料的介电常数为3.15、损耗角正切值为0.006,胶膜材料的介电常数为2.7、损耗角正切值为0.0065,PI薄膜材料的介电常数为3.2、损耗角正切值为0.002,蜂窝材料的介电常数为1.11、损耗角正切值为0.006。
图4为本发明第二实施例中超材料所包括的金属片层2上在水平方向开设有周期性缝隙的结构示意图。
如图4所示,金属片层2上在水平方向开设有周期性缝隙的结构,图(a)开封方式一中黑色部分表示金属片,相邻两个金属片之间的白色部分表示将金属蚀刻掉而形成的缝隙结构,具体的,缝隙贯穿整个金属片层,多条缝隙之间相互平行,每一条缝隙均呈直线型。如图4所示,直线型缝隙的宽度均为ww,金属片层2上被缝隙所间隔的单个金属片的宽度均为p,相邻的两个金属片之间相距ww。图(b)开缝方式二中,
在本实施方式中,将图4(a)所示的金属片层2上的结构的周期性排布应用到图3所示的叠层结构中,其中主要的结构尺寸设计如下表1所示:
表1 主要结构尺寸
参数 数值(mm)
d 1 0.3
d 2 0.1
d 3 0.043
d 4 0.1
d 5 0.3
d 6 0.2
d 7 5.6
d 8 0.2
d 9 0.3
ww 0.2
p 5
phi
然后根据上述表格中的尺寸对图3中的超材料进行仿真,结果如图5和图6所示。
从图5和图6中可以看出,在入射角度theta=0~60°时,TE极化在0-0.4GHz超低频表现出高透波特性,透波大于-1.2dB,频率大于3GHz,透波均小于-10dB,表现出超宽带截止特性;theta=0~60°,TM极化在0-18GHz表现出全频段截止特性,透波均小于-70dB。
从以上仿真结果中可以看出,当phi=0°(phi表示入射电磁波与z轴的夹角)时,沿水平方向连续的金属片相当于TM方向宽频的截止及TE方向低通、快速截止的频选高通结构,可实现对TM波相对独立的调制。类似地,通过改变金属片沿垂直方向连续周期排布,如图7所示,此时沿垂直方向连续的金属片相当于TE方向宽频截止及TM方向低通、快速截止的频选高通结构,可实现对TE波相对独立的调制,具体尺寸如表1所示。
然后根据上述表格中的尺寸对图7中的超材料进行仿真,结果如图8和图9所示。
图8为本发明第二实施例中的图7的超材料在TE极化下的S21曲线随入射角度theta的变化示意图。
图9为本发明第二实施例中的图7的超材料在TM极化下的S21曲线随入射角度theta的变化示意图。
从图8和图9中可以看出,在入射角度theta=0~60°时,TE极化在0-20GHz表现出全频段截止特性,透波均小于-70dB;theta=0~50°,TM极化在0-1GHz超低频表现出高透波特性,透波大于-1.3dB,频率大于3GHz时透波均小于-8dB,表现出超宽带截止特性。
因此,从图5、图6、图8和图9的仿真结果来看,本发明中的超材料 实现了单极化宽频截止且另一正交极化方向低通、快速截止的电磁调制功能,这种由单一向连续的金属片所构成的呈直线型的水平方向连通结构均可在实现电加热除冰的基础上复合电磁调制功能,能实现上述电磁调制功能。
此外,本发明中不仅仅在金属片层2上且在单一方向开设有周期性缝隙的结构,每一条缝隙均呈直线型能实现电加热除冰功能和电磁调制功能,其它类的缝隙结构,例如对直线型缝隙结构进行弯折处理(如V形)或变换为任意多边形周期边界(如矩形波形),且弯折的缝隙结构只要满足单一方向贯穿整个金属片层,均可形成连通结构实现导电通路,进而在作为电加热层通电时能够实现除冰功能,而且通过设计叠层结构中的主要结构尺寸还能使其具备电磁调制功能。
图10为本发明第二实施例中超材料所包括的金属片层2上的第一种V形缝隙结构的示意图。
如图10所示,缝隙贯穿整个金属片层2,多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的V形缝隙,V形缝隙的开口角度大于0度且小于或等于180度,本实施例中,每一个V形缝隙的开口角度为120度。如图10所示,该拓扑结构为沿周期为P的正六边形金属片的夹角为120°的两条边排布的缝隙,缝隙周期N(N≥2,且N为整数),缝隙宽度为ww。其中N表示相邻金属片在Y方向间隔的周期为P的正六边形金属片个数,本实施例中,弯折TM缝隙对应周期为2,即相邻弯折缝隙间隔了2个周期为P的正六边形金属片,即缝隙具有与金属片和介质叠层不同的周期。
在本实施方式中,将图10所示的金属片层2周期性排布应用到图3所示的叠层结构中,其中主要的结构尺寸设计如下表2所示:
表2 主要结构尺寸
参数 数值(mm)
d 1 0.3
d 2 0.1
d 3 0.043
d 4 0.1
d 5 0.3
d 6 0.2
d 7 5.6
d 8 0.2
d 9 0.3
ww 0.2
p 4
phi
V形缝隙的开口角度 120°
然后根据上述表格中的尺寸对图3中的超材料进行仿真,结果如图11和图12所示。
图11为本发明第二实施例中的图10的超材料在TE极化下的S21曲线随入射角度theta的变化示意图。
图12为本发明第二实施例中的图10的超材料在TM极化下的S21曲线随入射角度theta的变化示意图。
从图11和图12中可以看出,在入射角度theta=0~60°时,TE极化在0-0.4GHz超低频表现出透波特性,透波大于-2dB,高频表现出截止特性;theta=0~60°,TM极化在0-14GHz表现出全频段截止特性,透波均小于-30dB。
图13为本发明第二实施例中超材料所包括的金属片层2上的第二种V形缝隙结构的示意图。
如图13所示,缝隙贯穿整个金属片层2,多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的V形缝隙,V形缝隙的开口角度大于0度且小于或等于180度,本实施例中,每一个V形缝隙的开口角度为60度。V形缝隙的边长为a,缝隙周期为p(p=N*a(N为正整数)),缝隙宽度为ww。
在本实施方式中,将图13所示的金属片层2周期性排布应用到图3所示的叠层结构中,其中主要的结构尺寸设计如下表3所示:
表3 主要结构尺寸
参数 数值(mm)
d 1 0.3
d 2 0.1
d 3 0.043
d 4 0.1
d 5 0.3
d 6 0.2
d 7 5.6
d 8 0.2
d 9 0.3
ww 0.2
p N*a
a 8.66
V形缝隙的开口角度 60°
然后根据上述表格中的尺寸对图13中的超材料进行仿真,结果如图14和图15所示。
图14为本发明第二实施例中的图13的超材料在TE极化下的S21曲线在入射角度theta=0°时的变化示意图。
图15为本发明第二实施例中的图13的超材料在TM极化下的S21曲线在入射角度theta=0°时的变化示意图。
从图14和图15中可以看出,在入射角度theta=0°,N=2时,TE极化在0-0.7GHz超低频表现出透波特性,透波大于-1dB,高频表现出截止特性;TM极化在0-16GHz表现出低频段截止特性,透波均小于-10dB。
图16为本发明第二实施例中超材料所包括的金属片层2上的第三种V形缝隙结构的示意图。
如图16所示,缝隙贯穿整个金属片层2,多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的V形缝隙,V形缝隙的开口角度大于0度且小于或等于180度,本实施例中,每一个V形缝隙的开口角度为90度。V形缝隙的边长为a,缝隙周期为p(p=N*a(N为正整数)),缝隙宽度为ww。
在本实施方式中,将图16所示的金属片层2周期性排布应用到图3所示的叠层结构中,其中主要的结构尺寸设计如下表4所示:
表4 主要结构尺寸
参数 数值(mm)
d 1 0.3
d 2 0.1
d 3 0.043
d 4 0.1
d 5 0.3
d 6 0.2
d 7 5.6
d 8 0.2
d 9 0.3
ww 0.2
p 8
a 4
V形缝隙的开口角度 90°
然后根据上述表格中的尺寸对图16中的超材料进行仿真,结果如图17和图18所示。
图17为本发明第二实施例中的图16的超材料在TE极化下的S21曲线在入射角度theta=0°时的变化示意图。
图18为本发明第二实施例中的图16的超材料在TM极化下的S21曲线在入射角度theta=0°时的变化示意图。
从图17和图18中可以看出,在入射角度theta=0°时,TE极化在0-1.4GHz超低频表现出透波特性,透波大于-1dB,高频表现出截止特性;TM极化在0-16GHz表现出低频段截止特性,透波均小于-10dB。
另外,本发明中不仅仅直线型缝隙、V形缝隙等具有水平方向连通结构的周期性排布能实现电加热除冰功能和电磁调制功能,而且曲线型的单一方向连通结构的周期性排布也能实现电加热除冰功能和电磁调制功能。
图19为本发明第二实施例中超材料所包括的金属片层2上的正弦波形缝隙结构的示意图。
如图19所示,缝隙贯穿整个金属片层2,多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的正弦波形缝隙,正弦波曲线的周期为a,缝隙周期为p(p=N*a(N为正整数)),缝隙宽度为ww。
在本实施方式中,将图19所示的金属片层2周期性排布应用到图3所示的叠层结构中,其中主要的结构尺寸设计如下表5所示:
表5 主要结构尺寸
参数 数值(mm)
d 1 0.3
d 2 0.1
d 3 0.043
d 4 0.1
d 5 0.3
d 6 0.2
d 7 5.6
d 8 0.2
d 9 0.3
ww 0.2
p N*a
a 4
然后根据上述表格中的尺寸对图19中的超材料进行仿真,结果如图20和图21所示。
图20为本发明第二实施例中的图19的超材料在TE极化下的S21曲线在入射角度theta=0°时的变化示意图。
图21为本发明第二实施例中的图19的超材料在TM极化下的S21曲线在入射角度theta=0°时的变化示意图。
从图20和图21中可以看出,在入射角度theta=0°时,TE极化在0-1.3GHz超低频表现出透波特性,透波大于-1dB,高频表现出截止特性;TM极化在0-20GHz表现出低频段截止特性,透波均小于-18dB。
因此,本发明中曲线型的单一方向连通结构的周期性排布也能实现电加热除冰功能和电磁调制功能,只要满足单一方向连续排布,均可形成导电通路,进而在通电时作为电加热层实现除冰功能,而且通过设计叠层结构中的主要结构尺寸还能使其具备电磁调制功能。
由此可知,本发明中直线型、曲线型的单一方向连通结构在周期性排布下均能实现电加热除冰功能,而且只要满足单一方向连续排布,均可形成导电通路,进而在作为电加热层通电时能够实现除冰功能,而且通过设计叠层结构中的主要结构尺寸还能使其具备电磁调制功能。实现除冰功能的电加热层(即金属软板)除了保证金属层为连通结构以外,还需要将电加热层上的金属通过焊点与电源线相连接以形成接线端子,接线端子利用电源线连接至飞行器上的机载电源上,电加热层产生的热量在冰层和外蒙皮之间溶化出一个薄层,降低冰层和外蒙皮之间的附着力,这样在气动力 或离心力的作用下冰层很容易被吹落。
另外,本发明还提供了一种除冰装置,其中,所述除冰装置包括以上任一项所述的超材料。
另外,本发明还提供了一种雷达罩,其中,所述雷达罩包括以上任一项所述的超材料。
此外,本发明还提供了一种飞行器,其中,所述飞行器包括以上任一项所述的超材料。
本发明提供的技术方案在满足除冰功能的基础上复合电磁调制功能,通过设计导通的金属通路以及对金属通路的特定设计,解决现有除冰方式因金属层对电磁信号屏蔽而无法保证电磁信号传输的难题,同时可抑制部件内部电磁收发器件工作频段之外的外来电磁信号的干扰,从而使得在具备良好电磁传输视野的部位布局电磁收发器件,如微波、毫米波天线等成为可能,同时为飞机朝多传感集成、全空域感知等趋势发展奠定基础,这也将更进一步提升高端航空装备的全信息链贯通。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (11)

  1. 一种超材料,其特征在于,所述超材料包括基底材料层以及叠加在所述基底材料层上的金属片层,所述金属片层单一方向开设有周期性缝隙,其中,所述基底材料层与所述金属片层共同形成一个整体,且所述整体在单一方向上的端部连接有接线端子,并通过所述接线端子与外部电源接通,形成导电通路以利用金属通电加热的特性进行电加热。
  2. 根据权利要求1所述的超材料,其特征在于,所述超材料还包括第一预浸料层,所述第一预浸料层通过一层粘接剂与所述金属片层进行粘接。
  3. 根据权利要求2所述的超材料,其特征在于,所述超材料还包括第二预浸料层,所述第二预浸料层通过一层粘接剂与所述基底材料层进行粘接。
  4. 根据权利要求3所述的超材料,其特征在于,所述超材料还包括夹芯层,所述夹芯层通过一层胶膜与所述第二预浸料层进行粘接。
  5. 根据权利要求4所述的超材料,其特征在于,所述超材料还包括第三预浸料层,所述第三预浸料层通过一层胶膜与所述夹芯层进行粘接。
  6. 根据权利要求1所述的超材料,其特征在于,所述缝隙贯穿整个金属片层,所述多条缝隙之间相互平行,每一条缝隙均呈直线型。
  7. 根据权利要求1所述的超材料,其特征在于,所述缝隙贯穿整个金属片层,所述多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的V形缝隙,所述V形缝隙的开口角度大于0度且小于或等于180度。
  8. 根据权利要求1所述的超材料,其特征在于,所述缝隙贯穿整个金属片层,所述多条缝隙之间相互平行,每一条缝隙包括多个顺序依次连接的正弦波形缝隙。
  9. 一种除冰装置,其特征在于,所述除冰装置包括权利要求1-8任一项所述的超材料。
  10. 一种雷达罩,其特征在于,所述雷达罩包括权利要求1-8任一项所述的超材料。
  11. 一种飞行器,其特征在于,所述飞行器包括权利要求1-8任一项所述的超材料。
PCT/CN2020/093974 2019-08-05 2020-06-02 一种超材料、雷达罩及飞行器 WO2021022884A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910716083.7A CN110401003A (zh) 2019-08-05 2019-08-05 一种超材料、雷达罩及飞行器
CN201921251792.4U CN210956948U (zh) 2019-08-05 2019-08-05 一种超材料、除冰装置、雷达罩及飞行器
CN201921251792.4 2019-08-05
CN201910716083.7 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021022884A1 true WO2021022884A1 (zh) 2021-02-11

Family

ID=74503247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093974 WO2021022884A1 (zh) 2019-08-05 2020-06-02 一种超材料、雷达罩及飞行器

Country Status (1)

Country Link
WO (1) WO2021022884A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674392B1 (en) * 1999-12-24 2004-01-06 Robert Bosch Gmbh Automotive radar system
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
CN103296437A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 超材料板材的制造方法、超材料天线罩及其制造方法
CN107271964A (zh) * 2016-03-30 2017-10-20 德尔福国际业务卢森堡公司 检测系统及其控制方法
CN107834152A (zh) * 2017-11-16 2018-03-23 西安电子科技大学 一种利用fss和微型热管实现阵面散热的共形承载天线
US20180269559A1 (en) * 2015-09-11 2018-09-20 Commissariat à l'énergie atomique et aux énergies alternatives Radome provided with a resistive heating system formed from strips of metal nanoelements
CN108574132A (zh) * 2018-04-04 2018-09-25 中国电子科技集团公司第五十四研究所 一种天线罩及其金属图案层设计方法
CN207938810U (zh) * 2018-04-04 2018-10-02 中国电子科技集团公司第五十四研究所 一种天线罩
CN110401003A (zh) * 2019-08-05 2019-11-01 深圳光启高端装备技术研发有限公司 一种超材料、雷达罩及飞行器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674392B1 (en) * 1999-12-24 2004-01-06 Robert Bosch Gmbh Automotive radar system
CN103296437A (zh) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 超材料板材的制造方法、超材料天线罩及其制造方法
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
US20180269559A1 (en) * 2015-09-11 2018-09-20 Commissariat à l'énergie atomique et aux énergies alternatives Radome provided with a resistive heating system formed from strips of metal nanoelements
CN107271964A (zh) * 2016-03-30 2017-10-20 德尔福国际业务卢森堡公司 检测系统及其控制方法
CN107834152A (zh) * 2017-11-16 2018-03-23 西安电子科技大学 一种利用fss和微型热管实现阵面散热的共形承载天线
CN108574132A (zh) * 2018-04-04 2018-09-25 中国电子科技集团公司第五十四研究所 一种天线罩及其金属图案层设计方法
CN207938810U (zh) * 2018-04-04 2018-10-02 中国电子科技集团公司第五十四研究所 一种天线罩
CN110401003A (zh) * 2019-08-05 2019-11-01 深圳光启高端装备技术研发有限公司 一种超材料、雷达罩及飞行器

Similar Documents

Publication Publication Date Title
KR102524713B1 (ko) 무지향성 안테나 시스템
EP3252871B1 (en) Frequency-selective surface composite structure
CN102868021B (zh) 一种高性能频率选择雷达罩
US9422914B2 (en) Radar absorbing material compatible with lightning protection systems
KR102414000B1 (ko) 컨포멀 복합재 안테나 어셈블리
US20150083863A1 (en) Deicing of a surface of structures in general such as wind turbine blades, aircraft wings using induction or radiation
CN103943968B (zh) 利用次波长谐振单元及有源电路构成的完美匹配吸波层
KR101901094B1 (ko) 초고온용 전파흡수 복합시트 및 이를 포함하는 제품
CN106058482A (zh) 基于双层导电薄膜的透明宽带电磁吸波器
WO2021022883A1 (zh) 一种超材料、除冰装置及飞行器
JPH02136232A (ja) 電流の印加により加熱され得る導電性構造複合物
CN210326083U (zh) 一种超材料、雷达罩及飞行器
CN103296409B (zh) 宽频带超材料天线罩及天线系统
KR20130006401U (ko) 비행체 복합재를 위한 열 관리
CN110707410A (zh) 一种超材料、雷达罩及飞行器
Baum et al. Investigations of a load-bearing composite electrically small Egyptian axe dipole antenna
CN102856653B (zh) 频率选择复合材料及由其制成的频率选择天线罩和天线系统
CN210956948U (zh) 一种超材料、除冰装置、雷达罩及飞行器
WO2021022884A1 (zh) 一种超材料、雷达罩及飞行器
US20120218154A1 (en) Slot antenna in a solar-reflective glazing
WO2021022885A1 (zh) 一种超材料、雷达罩及飞行器
CN110481794A (zh) 一种超材料、除冰装置及飞行器
CN110401003A (zh) 一种超材料、雷达罩及飞行器
CN214084793U (zh) 一种超材料结构、除冰装置及飞行器
JP2004193460A (ja) 電波吸収体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849536

Country of ref document: EP

Kind code of ref document: A1