WO2021022866A1 - 一种大行程高精度微纳运动伺服进给系统及控制方法 - Google Patents

一种大行程高精度微纳运动伺服进给系统及控制方法 Download PDF

Info

Publication number
WO2021022866A1
WO2021022866A1 PCT/CN2020/091125 CN2020091125W WO2021022866A1 WO 2021022866 A1 WO2021022866 A1 WO 2021022866A1 CN 2020091125 W CN2020091125 W CN 2020091125W WO 2021022866 A1 WO2021022866 A1 WO 2021022866A1
Authority
WO
WIPO (PCT)
Prior art keywords
comparator
controller
servo
hydrostatic
nut
Prior art date
Application number
PCT/CN2020/091125
Other languages
English (en)
French (fr)
Inventor
冯显英
李沛刚
孙德鹏
杜付鑫
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2021022866A1 publication Critical patent/WO2021022866A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34083Interpolation general

Definitions

  • the invention relates to the field of micro-nano technology, belongs to the field of ultra-precision CNC machine tools and high-end electromechanical equipment ultra-precision motion control technology, and specifically relates to a high-resolution micro-nano motion servo feed system suitable for large-stroke, high-precision CNC machine tools and the same Control Method.
  • Precision and ultra-precision processing technology has become the technical support for the development of national defense and high-tech. With the upgrading of products, many high-tech products require higher and higher processing accuracy of parts and components, so the performance of precision and ultra-precision machine tools The index requirements are gradually increasing.
  • one of the key technical bottlenecks of this kind of high-precision motion control is how to accurately, stably and reliably realize the micro-nano-resolution micro-feed control during the machining process. Due to the effect of low-speed crawling phenomenon, the conventional electromechanical transmission system is no longer applicable.
  • micro-nano-level displacement is mainly based on the physical properties of smart materials, such as magnetostriction, electrostriction, thermostriction and mechanical force trace The principle of deformation and so on obtains micro-nano displacement.
  • the present invention provides a large-stroke, high-precision micro-nano motion control servo feed system and its implementation method based on a novel hydrostatic screw nut pair, which achieves ultra-precision and high-precision Precise micro-displacement control in processing. It can be widely used in various high-end precision numerical control equipment and precise positioning, tracking and inspection fields under high-precision motion control.
  • a large-stroke high-precision micro-nano motion control servo feed system including a first servo motor, a second servo motor, a hydrostatic screw pair, a hydraulic control system, a pressure detection device, a displacement detection device, a position feedback module, and a CNC Motion controller and PC;
  • the hydrostatic screw pair includes a screw and a hydrostatic nut assembly that cooperate with each other;
  • the first servo motor drives the hydrostatic screw to make a rotary motion
  • the second servo motor hydrostatic nut assembly makes a rotary motion
  • the two servo motors are each driven by a set of servo drive systems
  • the hydrostatic nut The worktable is fixed on the assembly to drive the worktable to move linearly; one end of the displacement detection device that senses the displacement of the worktable is connected to the worktable, and the other end is connected to the position feedback module, and the measured displacement information of the worktable is fed back to the position feedback module ;
  • the position feedback module feeds the signal back to the CNC motion controller; the CNC motion controller assigns instructions to the two servo drive systems according to a certain algorithm according to the given motion requirements, so that the two servo motors move through the liquid static
  • the differential synthesis of the screw drive pair of the pressure screw can obtain precise micro-nano-level high-resolution motion displacement;
  • the pressure detection device is fixed inside the workbench, measures the working pressure of the hydraulic oil of the hydrostatic screw pair, and transmits the oil pressure to the hydraulic control system.
  • the hydraulic control system adjusts the oil supply of the hydraulic station according to the oil pressure;
  • the combination of the two rotary motions of the hydrostatic screw and the nut realizes the micro-nano feed control of the worktable.
  • the nut assembly includes a hydrostatic nut, a hydrostatic bearing and a nut bearing mount;
  • the hydrostatic nut is used as the inner ring of the hydrostatic nut bearing, the hydrostatic nut bearing is installed on the nut bearing mounting seat; the hydrostatic nut bearing is provided with a first oil inlet hole, The said hydrostatic nut is provided with a second oil inlet hole, the first oil inlet hole and the second oil inlet hole are connected;
  • the second servo motor adopts a hollow direct drive motor
  • the rotor of the hollow direct drive motor is connected with a hydrostatic nut
  • the stator of the hollow direct drive motor is connected with the motor mount.
  • both ends of the hydrostatic screw are supported by hydrostatic bearings.
  • the servo drive system of the first servo motor includes a first position loop controller, a first speed loop controller, a first current loop controller, a first comparator, a second comparator, and a third comparator
  • the positive phase input of the first comparator is connected to the CNC motion controller, the negative phase input is connected to the displacement sensor, and the first comparator output is connected to the first position loop controller;
  • the first position The output terminal of the loop controller is connected to the non-inverting input terminal of the second comparator, the inverting input terminal is connected to the speed sensor, and the output terminal of the second comparator is connected to the speed loop controller;
  • the output terminal is connected to the non-inverting input terminal of the third comparator, the inverting input terminal is connected to the current sensor, and the output terminal of the third comparator is connected to the first current loop controller; the output terminal of the first current loop controller controls the first The servo motor is connected.
  • the servo drive system of the second servo motor includes a second position loop controller, a second speed loop controller, a second current loop controller, a fourth comparator, a fifth comparator, and a sixth comparator 7.
  • the seventh comparator and the eighth comparator; the two input terminals of the seventh comparator are both connected to the output terminal of the CNC motion controller, and the output terminal of the seventh comparator is connected to the positive phase input of the eighth comparator
  • the other positive input terminal of the eighth comparator is connected with a displacement detection device for detecting the displacement of the worktable, and the output terminal of the eighth comparator is connected with the positive input terminal of the fourth comparator;
  • the inverting input terminal of the fourth comparator is connected with the CNC motion controller; the output terminal of the fourth comparator is connected with the second position loop controller;
  • the output terminal of the second position loop controller is connected with the non-inverting input terminal of the fifth comparator, the inverting input terminal is connected with the speed sensor, and the output terminal of the fifth comparator is connected with the second speed loop controller;
  • the output terminal of the second speed loop controller is connected to the non-inverting input terminal of the sixth comparator, the inverting input terminal is connected to the current sensor, and the output terminal of the sixth comparator is connected to the second current loop controller; the second current loop
  • the output terminal of the controller controls the second servo motor to be connected.
  • the hydraulic control system includes a throttle, a hydraulic controller, a hydraulic station, a ninth comparator and a tenth comparator;
  • the pressure detection device is connected to the inverting input terminal of the ninth comparator, the hydraulic controller is connected to the positive phase input terminal of the ninth comparator, and the output terminal of the ninth comparator is connected to the negative phase input terminal of the tenth comparator.
  • the positive phase input end of the tenth comparator is connected to the hydraulic controller; the output end of the tenth comparator is connected to the hydraulic station, and the hydraulic station is connected to the throttle. The output end is connected with the oil inlet of the hydrostatic screw pair.
  • the present invention also provides a control method, including the following steps:
  • Step 1 According to the specific structure and inherent properties of the first servo motor and the second servo motor, construct a mathematical model of the full closed-loop control of the screw drive and nut drive system;
  • Step 2 Perform servo drive simulation based on the constructed mathematical model, adjust and tune to obtain the PID parameters of each link of position, speed, and current;
  • Step 3 According to the structural characteristics of the hydraulic system, construct a mathematical model of the full closed-loop control of the hydraulic system;
  • Step 4 performs simulation based on the constructed mathematical model to obtain relevant parameters.
  • Step 5 According to the respective control command interpolation distribution of the motion controller to the screw motor and the nut motor, the interpolation distribution command is sent to the servo system of the servo motor through the parameter settings of the PC, and the motion controller adjusts the parameters online in real time , Make the entire control system speed and acceleration/deceleration change curve continuously and accurately synthesized by the motion of the screw drive pair, and the worktable can obtain micro-nano high-resolution feed.
  • control method of the large-stroke high-precision micro-nano motion control servo feed system has multiple working modes such as single screw drive and single nut drive under the joint control of the CNC motion controller and the hydraulic system controller. . Different driving modes have different working performance to meet the working requirements of different occasions.
  • the present invention further improves the low-speed feed accuracy, and meets the motion requirements of large stroke, high-precision micro-nano step feed.
  • the invention can be widely used in high-end cutting-edge electromechanical equipment and numerical control machine tools in various industries such as ultra-precision, high-precision processing, positioning, tracking, and detection, and can greatly improve the overall dynamic performance index.
  • the invention makes the two motors that drive the hydrostatic screw and nut avoid the low-speed working area that is prone to "creeping" determined by the inherent properties of the material, and work at two higher speeds with almost the same rotation speed and the same steering Speed zone.
  • the feeding system of the present invention hardly produces "creeping" crawling, and can achieve micro-nano high precision.
  • the invention patent can form a single-axis and dual-axis high-precision motion control platform, which can be widely used in high-end CNC electromechanical equipment in various industries with high-precision processing, positioning, tracking and testing.
  • Figure 1 is a schematic diagram of a large-stroke high-precision micro-nano motion control servo feed system and its implementation method provided by the present invention
  • Figure 2 is a structural diagram of the dual-drive micro-nano feed servo system provided by the present invention.
  • Figure 3 is a full cross-sectional view of the top view angle of the structure diagram of the dual-drive micro-nano feed servo system provided by the present invention
  • “Large stroke” in the present invention means that the overall stroke of the ball screw is greater than 100mm and can be extended to about 1.5-2m. "High precision” means that the displacement resolution is about 0.01 ⁇ m-1nm.
  • this application proposes a large-stroke high-precision micro-nano motion control servo feed system and control method. Due to the fluid lubrication between the screw and the nut, the hydrostatic screw nut pair has the advantages of high rigidity, low friction, and good damping characteristics, which can make up for the lack of damping in the direction of movement of the hydrostatic guide. At present, there is no hydrostatic screw nut pair in which the nut and the screw can be used as the main drive at the same time at home and abroad and its application in the field of ultra-high-precision processing machine tools. The present invention just fills this technical gap.
  • Figure 1 shows a schematic diagram of a large-stroke high-precision micro-nano motion control servo feed system and its implementation method, including PC 1, CNC motion controller 2, servo drive system 3, servo drive system 4, hydraulic control System 5. Differential dual-drive workbench 6;
  • the differential dual-drive workbench 6 includes a screw motor 601, a coupling 602, a hydrostatic bearing 603, a nut motor 604 (hollow shaft direct drive motor), a hydrostatic nut 605, a hydrostatic nut bearing 606, and a screw 607, hydrostatic bearing 608, nut bearing mounting seat 609, hydrostatic guide rail 610, position detection device 611, worktable 612, motor seat 613, and base 614.
  • the hydrostatic nut 605, the hydrostatic nut bearing 606, and the nut bearing mounting seat 609 constitute a hydrostatic nut assembly.
  • the hydrostatic nut assembly and the lead screw 607 constitute a complete dual-drive type hydrostatic lead screw nut pair.
  • the spiral surface of the inner ring of the hydrostatic nut 605 is matched with the spiral surface of the screw 607.
  • the thread surface of the nut has a full length of four buckles. There are 3 oil chambers on the same side of each buckle. All effective buckles have the same side on the same circumference. The oil chambers in the position share a throttle control.
  • the hydrostatic nut 605 is used as the inner ring of the hydrostatic nut bearing 606, and the hydrostatic nut bearing 606 is installed on the nut bearing mounting seat 609; the hydrostatic nut bearing 606 is provided with a first oil inlet hole, A second oil inlet hole is provided on the hydrostatic nut 605. The first oil inlet hole is communicated with the second oil inlet hole;
  • the nut motor 604 adopts a hollow shaft direct drive motor.
  • the mover of the hollow shaft direct drive motor is connected to the hydrostatic nut 605 through respective end flanges.
  • the stator is connected to the motor base 613, and the motor base 613 is connected to the worktable 612. ,
  • the table 612 moves along the guide rail 610.
  • the motor base 613 and the nut bearing mounting base 609 can be integratedly designed and fixedly connected to the workbench.
  • Both ends of the screw 607 are supported by axial hydrostatic bearings 603 and 608.
  • the screw motor 601 is connected to the screw 607 via a coupling 602.
  • the screw motor 601 drives the screw to rotate, and the nut motor 604 drives the hydrostatic nut to rotate; the two servo motors are each driven by a set of servo drive systems; the hydrostatic nut assembly is fixed on the worktable, and the One end of the displacement detection device for the displacement of the worktable is connected with the worktable, and the other end is connected with the position feedback module to feed back the measured worktable displacement information to the position feedback module; the position feedback module feeds back the signal to the CNC motion control In the device; the CNC motion controller, according to the given motion requirements of the PC, distributes instructions to the two servo drive systems according to a certain algorithm;
  • the pressure detection device is fixed inside the workbench, measures the working pressure of the hydraulic oil of the hydrostatic screw pair, and transmits it to the hydraulic control system, which adjusts the oil supply of the hydraulic station according to the oil pressure;
  • the "differential" combination of the two rotary motions of the screw and nut realizes precise micro-nano-scale feed motion control of the worktable.
  • the servo drive system of the first servo motor includes a first position loop controller, a first speed loop controller, a first current loop controller, a first comparator, a second comparator, and a third comparator; the first The non-inverting input terminal of the comparator is connected to the CNC controller, the inverting input terminal is connected to the displacement sensor, and the first comparator output terminal is connected to the first position loop controller; the output terminal of the first position loop controller is connected to The non-inverting input of the second comparator is connected, the inverting input is connected to the speed sensor, and the output of the second comparator is connected to the speed loop controller; the output of the first speed loop controller is connected to the third comparator The non-inverting input terminal is connected to the current sensor, the output terminal of the third comparator is connected to the first current loop controller; the output terminal of the first current loop controller is connected to the first servo motor.
  • the servo drive system of the second servo motor includes a second position loop controller, a second speed loop controller, a second current loop controller, a fourth comparator, a fifth comparator, and a sixth comparator 7.
  • the seventh comparator and the eighth comparator the two input ends of the seventh comparator are both connected to the output end of the CNC controller, and the output end of the seventh comparator is connected to the positive phase input end of the eighth comparator Connected, the other non-inverting input terminal of the eighth comparator is connected with a displacement detection device for detecting the displacement of the worktable, and the output terminal of the eighth comparator is connected with the non-inverting input terminal of the fourth comparator;
  • the inverting input terminal of the fourth comparator is connected to the CNC controller; the output terminal of the fourth comparator is connected to the second position loop controller;
  • the output terminal of the second position loop controller is connected with the non-inverting input terminal of the fifth comparator, the inverting input terminal is connected with the speed sensor, and the output terminal of the fifth comparator is connected with the second speed loop controller;
  • the output terminal of the second speed loop controller is connected to the non-inverting input terminal of the sixth comparator, the inverting input terminal is connected to the current sensor, and the output terminal of the sixth comparator is connected to the second current loop controller; the second current loop
  • the output terminal of the controller controls the second servo motor to be connected.
  • the hydraulic control system includes a throttle, a hydraulic controller, a hydraulic station, a pressure detection, a ninth comparator, and a tenth comparator;
  • the pressure detection device is connected to the inverting input terminal of the ninth comparator, the hydraulic controller is connected to the positive phase input terminal of the ninth comparator, and the output terminal of the ninth comparator is connected to the negative phase input terminal of the tenth comparator.
  • the positive phase input end of the tenth comparator is connected to the hydraulic controller; the output end of the tenth comparator is connected to the hydraulic station, and the hydraulic station is connected to the throttle. The output end is connected with the oil inlet of the hydrostatic screw pair.
  • Figures 1 and 2 show a specific embodiment of a large-stroke high-precision micro-nano motion control servo feed system and its implementation method
  • the transmission system includes a hydrostatic screw transmission pair and a hollow shaft direct drive motor transmission.
  • the said hydrostatic screw pair is different from the conventional hydrostatic screw pair in that the hydrostatic nut also serves as the inner ring of the hydrostatic nut bearing 606.
  • the screw motor 601 is connected to the screw 607 through a coupling 602.
  • the hollow shaft of another nut motor 604 passes through the lead screw 607, and the rotor 6041 of the motor is directly connected with the hydrostatic nut 605 to drive the nut to rotate.
  • the stator 6042 of the motor is installed on the motor base 613, and the motor base is fixed on the worktable 612. Below, move with the workbench.
  • one end of the displacement detection sensor 611 is connected to the worktable, and one end is connected to the differential position comparator.
  • the servo drive system includes a screw motor servo drive system and a nut motor servo drive system, which are used to generate signals using PID algorithms to drive the servo motors respectively according to the received control signals and respective feedback signals. .
  • the motion generated by the rotation of the lead screw and the nut is superimposed and synthesized to drive the movement of the worktable.
  • the PC 1 is connected to the CNC motion controller 2 and the hydraulic controller 51 respectively. According to actual work requirements, the PC 1 sends instructions to the CNC motion controller 2 and the hydraulic control cabinet 3 respectively.
  • the CNC motion controller 2 distributes the motion commands of the servo motor 601 and the hollow shaft servo motor 604 according to the actual work accuracy requirements according to a certain algorithm.
  • the two servo motor drive systems both include a position control circuit, a speed control circuit, a current control circuit and their corresponding comparators.
  • the inner surface of the nut 605 is constituted by the hydraulic oil medium and the screw 607 to form a screw nut screw transmission pair; the end surface of the nut is provided with a screw for fixing the nut motor mover (rotor) to the nut Uniformly distributed screw holes.
  • the end of the nut bearing seat is provided with a flange, and the end of the flange is evenly arranged with screw holes for matching with the support seat of the working table to fix the working table, and the double-drive hydrostatic bar nut
  • the auxiliary screw drive realizes the linear movement of the worktable.
  • the screw 607 adopts a "fixed-support" installation method, and the end close to the servo motor 602 is restrained and positioned by the screw fixing seat, and a pair of angular contact ball bearings are installed in the screw fixing seat away from the servo motor.
  • One end of the bearing seat is equipped with a radial ball bearing 608 for radial positioning and free axial direction.
  • the ultra-precision micro-feed servo drive system structure can construct a single-axis micro-nano-level resolution ultra-precision servo table, a dual-axis linkage ultra-precision servo table, and a multi-axis linkage ultra-precision Servo workbench.
  • the servo drive system includes a lead screw motor servo drive system (3), a nut motor servo drive system (4), and a hydraulic oil control system (5).
  • Differential position comparator and position feedback module include speed control (32, 42), position control (31, 41), current control (33, 43) and their respective corresponding comparators.
  • the hydraulic control system includes a pressure feedback module 54 and a pressure comparator.
  • one end of the position comparator is connected to the CNC motion controller 1; the other end is connected to the speed, position, and current detectors.
  • the position comparator compares the position information with the position of the screw motor and outputs the information to the position control circuit.
  • the position comparators of the hydrostatic nut 605 and the lead screw 607 are connected with a differential comparator.
  • the lead screw position signal is different from the position signal detected by the workbench position detector, and the position error is compensated by changing the motion of the lead screw motor or the nut motor to obtain the ideal position.
  • the pressure sensor 54 compares the pressure between the screw and nut with the pressure set by the PC through a pressure comparator, and the hydraulic control system 51 controls the hydraulic station 52 to change the fuel supply volume and then through the joint
  • the flow device 53 adjusts the hydraulic oil pressure between the screw nuts.
  • control method of the large-stroke high-precision micro-nano motion control servo feed system is characterized in that it includes the following steps:
  • Step 1 According to the specific structure and inherent properties of the dual-drive servo system, construct a mathematical model of the full closed-loop control of the screw 3 drive and nut 4 drive system;
  • Step 2 Perform servo drive simulation based on the constructed mathematical model, adjust and tune to obtain the PID parameters of each link of position, speed, and current;
  • Step 3 According to the structural characteristics of the hydraulic system, construct a mathematical model of the full closed-loop control of the hydraulic system;
  • Step 4 performs simulation based on the constructed mathematical model to obtain relevant parameters.
  • Step 5 According to the motion controller 2’s respective control commands for the screw motor 601 and the nut motor 604, the interpolation distribution commands are sent to the servo system of the servo motor by setting the parameters of the PC, and the motion controller is online Real-time adjustment of parameters makes the speed and acceleration/deceleration curve of the entire control system continuously and accurately synthesized by the motion of the screw drive pair, and the worktable can obtain high-resolution micro-feeds.
  • control method of the large-stroke high-precision micro-nano motion control servo feed system is characterized in that under the PC control CNC motion controller 2 and the hydraulic system controller 51, there are multiple Work mode, namely single screw drive, single nut drive, double screw and nut drive. Different driving modes have different working performances to meet the working requirements of different occasions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transmission Devices (AREA)

Abstract

一种大行程高精度微纳运动控制伺服进给系统,包括第一伺服电机(601)、第二伺服电机(604)、液体静压丝杠副、液压控制系统(51)、压力检测装置(54)、位移检测装置(611)、位置反馈模块、运动控制器(2)和PC机(1);液体静压丝杠副包括相互配合的丝杠和液体静压螺母组件;第一伺服电机(601)驱动丝杠(607)做旋转运动,第二伺服电机(604)驱动液体静压螺母(605)做旋转运动;两个伺服电机(601,604)通过各自伺服驱动系统驱动;液体静压螺母组件带动工作台(612)实现直线运动。位移检测装置(611)一端与工作台(612)相连,另一端和位置反馈模块相连,将测得的工作台(612)位移信息反馈到位置反馈模块;位置反馈模块将信号反馈到运动控制器(2)中;通过液体静压丝杠(607)和螺母(605)两个旋转运动的合成,实现工作台(612)的精确的闭环进给控制。

Description

一种大行程高精度微纳运动伺服进给系统及控制方法 技术领域
本发明涉及微纳技术领域,属于超精密数控机床及高端机电装备超精密运动控制领域技术,具体涉及一种适用于大行程、高精度数控机床的高分辨率微纳运动伺服进给系统及其控制方法。
背景技术
精密与超精密加工技术已经成为了国防与高新技术发展的技术支撑,随着产品的更新换代,许多高科技产品对零部件的加工精度要求越来越高,因此对精密和超精密机床的性能指标要求也在逐渐提高。然而,这种高精度运动控制的关键技术瓶颈之一是如何在加工过程中使工具或工件得到准确、稳定可靠地实现微纳级分辨率的微量进给控制。由于低速爬行现象的影响,常规的机电传动系统已经不再适用,当前实现微纳级位移的策略主要是依据智能材料的物理属性,如磁致伸缩、电致伸缩、热致伸缩以及机械力微量变形等原理获得微纳级位移的。
但是发明人发现智能材料的应用存在成本高、行程范围小、刚性低、非线性、控制复杂等缺陷,限制了其应用范围。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种基于新型液体静压丝杠螺母副的大行程、高精度微纳运动控制伺服进给系统及其实现方法,实现超精密、高精度加工中的精确微位移控制。可广泛用于各种高端精密数控装备和高精度运动控制下的精确定位、跟踪及检测等场。
本发明采用的技术方案如下:
一种大行程高精度微纳运动控制伺服进给系统,包括第一伺服电机、第二伺服电机、液体静压丝杠副、液压控制系统、压力检测装置、位移检测装置、位置反馈模块、CNC运动控制器和PC机;
所述的液体静压丝杠副包括相互配合的丝杠和液体静压螺母组件;
所述的第一伺服电机驱动液体静压丝杠做旋转运动,第二伺服电机液体静压螺母组件做旋转运动;两个伺服电机各自通过一套伺服驱动系统驱动;所述的液体静压螺母组件上固定工作台,带动工作台做直线运动;感应工作台位移的位移检测装置一端与工作台相连,另一端和位置反馈模块相连,将测得的工作台位移信息反馈到所述位置反馈模块;
所述的位置反馈模块将信号反馈到CNC运动控制器中;所述CNC运动控制器,根据给定运动要求按照一定的算法分配指令给两个伺服驱动系统,使两个伺服电机运动通过液体静压丝杠螺旋传动副差动合成,获得精准的微纳级高分辨率运动位移;
所述的压力检测装置固定在工作台内部,测量液体静压丝杠副的液压油的工作压力,将油压传给液压控制系统,液压控制系统根据油压调节液压站供油;通过所述液体静压丝杠和螺母两个旋转运动的合成,实现工作台的微纳量级进给控制。
作为进一步的技术方案,所述的螺母组件包括液体静压螺母、液体静压轴承和螺母轴承安装座;
所述的液体静压螺母作为液体静压螺母轴承的内圈,液体静压螺母轴承安装在螺母轴承安装座上;在所述的液体静压螺母轴承上设有第一进油孔,在所述的液体静压螺母上设有第二进油孔,第一进油孔和第二进油孔相连通;
作为进一步的技术方案,所述的第二伺服电机采用空心直驱电机,所述的空心直驱电机的转子与液体静压螺母相连,空心直驱电机的定子与电机安装座相连。
作为进一步的技术方案,所述的液体静压丝杠的两端通过液体静压轴承支撑。
作为进一步的技术方案,第一伺服电机的伺服驱动系统包括第一位置环控制器、第一速度环控制器、第一电流环控制器、第一比较器、第二比较器和第三比较器;所述的第一比较器的正相输入端与CNC运动控制器相连,反相输入端与位移传感器相连,第一比较器输出端与第一位置环控制器相连;所述的第一位置环控制器的输出端与第二比较器的正相输入端相连,反相输入端与速度传感器相连,第二比较器输出端与速度环控制器相连;所述的第一速度环控制器的输出端与第三比较器的正相输入端相连,反相输入端与电流传感器相连,第三比较器输出端 与第一电流环控制器相连;第一电流环控制器的输出端控制第一伺服电机相连。
作为进一步的技术方案,第二伺服电机的伺服驱动系统包括第二位置环控制器、第二速度环控制器、第二电流环控制器、第四比较器、第五比较器、第六比较器、第七比较器和第八比较器;所述的第七比较器的两个输入端均与CNC运动控制器的输出端相连,第七比较器的输出端与第八比较器的正相输入端相连,所述的第八比较器的另正相输入端与用于检测工作台位移的位移检测装置相连,所述的第八比较器输出端与第四比较器的正相输入端相连;所述的第四比较器的反相输入端与CNC运动控制器相连;第四比较器输出端与第二位置环控制器相连;
所述的第二位置环控制器的输出端与第五比较器的正相输入端相连,反相输入端与速度传感器相连,第五比较器输出端与第二速度环控制器相连;所述的第二速度环控制器的输出端与第六比较器的正相输入端相连,反相输入端与电流传感器相连,第六比较器输出端与第二电流环控制器相连;第二电流环控制器的输出端控制第二伺服电机相连。
作为进一步的技术方案,所述的液压控制系统包括节流器、液压控制器、液压站、第九比较器和第十比较器;
所述的压力检测装置与第九比较器的反相输入端相连,液压控制器与第九比较器的正相输入端相连,第九比较器的输出端与第十比较器的负相输入端相连,所述的第十比较器的正相输入端与液压控制器相连;所述的第十比较器的输出端与液压站相连,所述的液压站与节流器相连,节流器的输出端与液体静压丝杠副的进油口相连。
基于上面的系统,本发明还提供了一种控制方法,包含如下步骤:
步骤1依据第一伺服电机、第二伺服电机具体结构及固有属性,构建丝杠驱动和螺母驱动系统全闭环控制的数学模型;
步骤2依据构建的数学模型进行伺服驱动仿真,调节并整定获取位置、速度、电流各环节PID参数;
步骤3依据液压系统的结构特点,构建液压系统的全闭环控制的数学模型;
步骤4依据构建的数学模型进行仿真,得到相关参数。
步骤5依据所述运动控制器对丝杠电机和螺母电机的各自控指令插补分配, 通过PC机各参数设置,分别向伺服电机的伺服系统发送插补分配指令,运动控制器在线实时调整参数,使整个控制系统速度和加减速度变化曲线连续精确通过丝杠螺旋传动副机械的运动合成,工作台便获得微纳级的高分辨率进给。
进一步的,所述的大行程高精度微纳运动控制伺服进给系统的控制方法,在CNC运动控制器和液压系统控制器联合控制下,具有丝杠单驱动、螺母单驱动等多种工作方式。不同的驱动方式下具有不同的工作性能,满足不同场合的工作要求。
本发明的有益效果如下:
本发明在原有丝杠驱动型液体静压丝杠螺母传动副的基础上,进一步改善了其低速进给精度,满足大行程、高精度微纳级进给的运动需求。本发明可广泛用于超精密、高精度加工、定位、跟踪、检测等各行业高档尖端机电装备和数控机床上,可使其整体动态性能指标得到大幅提升。
本发明使驱动液体静压丝杠和螺母的两个电机都避开因材质固有属性决定的易于产生“蠕动”爬行的低速工作区,工作在转速几近相等、转向相同的两个较高的转速区。本发明和目前常用的丝杠驱动型滚珠丝杠副和液体静压丝杠副相比,进给系统几乎不会产生“蠕动”爬行,可以达到微纳米级高精度。本发明专利可构成单轴、双轴高精度运动控制平台,可广泛用于各行业各类高精度加工、定位、跟踪及检测场合的高端数控机电装备。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明提供的一种大行程高精度微纳运动控制伺服进给系统及其实现方法原理图;
图2为本发明提供的双驱动微纳进给伺服系统结构图;
图3为本发明提供的双驱动微纳进给伺服系统结构图的俯视角度的全剖视
图中:1—PC机;2—CNC运动控制器;3—丝杠电机控制电路;31—丝杠电机位置换控制器;32—丝杠电机速度环控制器;33—丝杠电机电流环控制器;4—螺母电机控制电路;41—螺母电机位置换控制器;42—螺母电机速度环控制器; 43—螺母电机电流环控制器;5—液压控回路;51—液压控制器;52—液压站;53—节流器;54—压力检测装置;6—液压差速双驱动工作台;601—丝杠电机;602—联轴器;603—液体静压轴承;604—螺母电机;6041—空心电机转子;6042—空心电机定子;605—液体静压螺母;;606—液体静压螺母轴承;607—液体静压丝杠;608—液体静压轴承;609—螺母轴承安装座;610—液体静压导轨;611—位置检测装置;612—工作台;613—电机座;614—底座。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
为了方便叙述,本发明中如果出现“上”、“下”、“左”“右”字样,仅表示与附图本身的上、下、左、右方向一致,并不对结构起限定作用,仅仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语解释部分:本发明中的“大行程”是指滚珠丝杠整体行程大于100mm,可以扩展到1.5-2m左右。“高精度”是指位移分辨率在0.01μm-1nm左右。
正如背景技术所介绍的,现有技术中存在的不足,为了解决如上的技术问题,本申请提出了一种大行程高精度微纳运动控制伺服进给系统及控制方法。液体静压丝杠螺母副由于丝杠和螺母之间采用流体润滑,具有高刚度、低摩擦、阻尼特性好等优点,可以弥补液体静压导轨运动方向阻尼不足的缺陷。目前国内外没有实现螺母和丝杠可同时作主驱动的液体静压丝杠螺母副及其应用于超高精密加工机床领域中,本发明恰恰填补这这项技术空白。
为使本发明更加清晰明了,如附图1、2、3所示,以下结合附图对本发明做 进一步详细说明和解释,但并不限定本发明。
如图1所示为一种大行程高精度微纳运动控制伺服进给系统及其实现方法原理图,包括PC机1、CNC运动控制器2、伺服驱动系统3、伺服驱动系统4、液压控制系统5、差速双驱动工作台6;
差速双驱动工作台6包括丝杠电机601、联轴器602、液体静压轴承603、螺母电机604(空心轴直驱电机)、液体静压螺母605、液体静压螺母轴承606、丝杠607、液体静压轴承608、螺母轴承安装座609、液体静压导轨610、位置检测装置611、工作台612、电机座613、底座614。
液体静压螺母605、液体静压螺母轴承606、螺母轴承安装座609构成了液体静压螺母组件。液体静压螺母组件和丝杠607构成完整的双驱动型液体静压丝杠螺母副。液体静压螺母605的内圈螺旋面与丝杠607螺旋面配合,螺母螺纹面全长四扣,每个牙扣同侧圆周分布有3个油腔,全部有效牙扣上的同侧同圆周位置上的油腔共用一个节流器控制。
液体静压螺母605作为液体静压螺母轴承606的内环,液体静压螺母轴承606安装在螺母轴承安装座609上;在所述的液体静压螺母轴承606上设有第一进油孔,在所述的液体静压螺母605上设有第二进油孔。第一进油孔和第二进油孔相连通;
螺母电机604采用空心轴直驱电机,空心轴直驱电机的动子通过各自端部法兰与液体静压螺母605相连,定子与电机座613相连,所述的电机座613与工作台612相连,工作台612沿着导轨610移动。所述电机座613和螺母轴承安装座609可一体化设计并固联于工作台。
丝杠607的两端通过轴向液体静压轴承603和608支撑。
丝杠电机601通过联轴器602与丝杠607相连。
丝杠电机601驱动丝杠做旋转运动,螺母电机604驱动液体静压螺母做旋转运动;两个伺服电机各自通过一套伺服驱动系统驱动;所述的液体静压螺母组件上固定工作台,感应工作台位移的位移检测装置一端与工作台相连,另一端和位置反馈模块相连,将测得的工作台位移信息反馈到所述位置反馈模块;所述的位置反馈模块将信号反馈到CNC运动控制器中;所述CNC运动控制器,根据PC机 给定运动要求,按照一定的算法分配指令给两个伺服驱动系统;
所述的压力检测装置固定在工作台内部,测量液体静压丝杠副的液压油的工作压力,并传给液压控制系统,液压控制系统根据油压调节液压站供油;通过所述液体静压丝杠和螺母两个旋转运动的“差动”合成,实现工作台的精确微纳量级进给运动控制。
第一伺服电机的伺服驱动系统包括第一位置环控制器、第一速度环控制器、第一电流环控制器、第一比较器、第二比较器和第三比较器;所述的第一比较器的正相输入端与CNC控制器相连,反相输入端与位移传感器相连,第一比较器输出端与第一位置环控制器相连;所述的第一位置环控制器的输出端与第二比较器的正相输入端相连,反相输入端与速度传感器相连,第二比较器输出端与速度环控制器相连;所述的第一速度环控制器的输出端与第三比较器的正相输入端相连,反相输入端与电流传感器相连,第三比较器输出端与第一电流环控制器相连;第一电流环控制器的输出端控制第一伺服电机相连。
作为进一步的技术方案,第二伺服电机的伺服驱动系统包括第二位置环控制器、第二速度环控制器、第二电流环控制器、第四比较器、第五比较器、第六比较器、第七比较器和第八比较器;所述的第七比较器的两个输入端均与CNC控制器的输出端相连,第七比较器的输出端与第八比较器的正相输入端相连,所述的第八比较器的另正相输入端与用于检测工作台位移的位移检测装置相连,所述的第八比较器输出端与第四比较器的正相输入端相连;所述的第四比较器的反相输入端与CNC控制器相连;第四比较器输出端与第二位置环控制器相连;
所述的第二位置环控制器的输出端与第五比较器的正相输入端相连,反相输入端与速度传感器相连,第五比较器输出端与第二速度环控制器相连;所述的第二速度环控制器的输出端与第六比较器的正相输入端相连,反相输入端与电流传感器相连,第六比较器输出端与第二电流环控制器相连;第二电流环控制器的输出端控制第二伺服电机相连。
作为进一步的技术方案,所述的液压控制系统包括节流器、液压控制器、液压站、压力检测、第九比较器和第十比较器;
所述的压力检测装置与第九比较器的反相输入端相连,液压控制器与第九比 较器的正相输入端相连,第九比较器的输出端与第十比较器的负相输入端相连,所述的第十比较器的正相输入端与液压控制器相连;所述的第十比较器的输出端与液压站相连,所述的液压站与节流器相连,节流器的输出端与液体静压丝杠副的进油口相连。
如图1、2给出了一种大行程高精度微纳运动控制伺服进给系统及其实现方法的具体实施例;
与上述实施例相结合,所述传动系统包括液体静压丝杠传动副和空心轴直驱电机传动。所述的液体静压丝杠副不同于常规的液体静压丝杠副,液体静压螺母还作为液体静压螺母轴承606的内圈。
其中丝杠电机601通过联轴器602与丝杠607连接。另一个螺母电机604的空心轴穿过丝杠607,其电机的转子6041直接与液体静压螺母605相连,带动螺母旋转,电机的定子6042安装在电机座613上,电机座固定在工作台612下方,随工作台一起运动。
与上述实施例相结合,所述的位移检测传感器611的一端与工作台相连接,一端与差动位置比较器相连接。
与上述实施例相结合,所述的伺服驱动系统包括丝杠电机伺服驱动系统和螺母电机伺服驱动系统,用于根据各自接收的控制信号和各自的反馈信号,采用PID算法产生信号分别驱动伺服电机。由丝杠和螺母旋转产生的运动叠加合成,带动工作台运动。
与上述实施例相结合,所述PC机1分别与CNC运动控制器2与液压控制器51相连接。根据实际工作要求PC机1分别向CNC运动控制器2和液压控制柜3发送指令。
与上述实施例向结合,所述的CNC运动控制器2,根据实际工作精度要求,按照一定的算法分配给伺服电机601和空心轴伺服电机604运动指令。
与上述实施例相结合,所述两个伺服电机驱动系统中均包含位置控制电路、速度控制电路、电流控制电路以及其相对应的比较器。
与上述实施例相结合,所述螺母605内表面,通过液压油介质和丝杠607构成丝杠螺母螺旋传动副;螺母的端面设有用于将螺母电机动子(转子)固连在螺 母上的均布的螺孔。
与上述实施例相结合,所述螺母轴承座端部设有法兰,法兰端面均布设有用于和工作台支承座相配固联工作台的螺孔,通过所述双驱液体静压杠螺母副螺旋传动,实现所述工作台的直线移动。
与上述实施例相结合,所述丝杠607采用“固定一支承”的安装方式,靠近伺服电机602的一端由丝杠固定座约束定位,丝杠固定座内装有一对角接触球轴承远离伺服电机的一端的支承座内装有用来径向定位,而轴向自由的向心球轴承608。
与上述实施例相结合,所述超精密微量进给伺服驱动系统结构能构建单轴的微纳米级分辨率的超精密伺服工作台、双轴联动超精密伺服工作台以及多轴联动的超精密伺服工作台。
与上述实施例相结合,所述伺服驱动系统包括丝杠电机伺服驱动系统(3)、螺母电机伺服驱动系统(4)、液压油控制系统(5)。差动位置比较器和位置反馈模块。所述两个电机伺服驱动系统中均包含速度控制(32、42)、位置控制(31、41)、电流控制(33、43)和其分别对应的比较器。液压控制系统中包含压力反馈模块54和压力比较器。
与上述实施例相结合,所述位置较器的一端与CNC运动控制器1相连接;另一端与速度、位置、电流检测器相连。位置比较器把位置信息和丝杠电机的位置比较后,将信息输出到位置控制电路。
与上述实施例相结合,所述的液体静压螺母605和丝杠607的位置比较器与差动比较器相连。丝杠位置信号与工作台位置检测器检测到的位置信号做差,通过改变丝杠电机或螺母电机的运动来弥补位置误差,即得到理想位置。
与上述实施例相结合,所述的压力传感器54将丝杠螺母之间的压力与PC机设置的压力通过压力比较器进行比较,通过液压控制系统51控制液压站52改变供油量进而通过节流器53调节丝杠螺母之间的液压油压力。
与上述实施例相结合,所述的大行程高精度微纳运动控制伺服进给系统的控制方法,其特征在于,包含如下步骤:
步骤1依据所述双驱动伺服系统具体结构及固有属性,构建丝杠3驱动和螺 母4驱动系统全闭环控制的数学模型;
步骤2依据构建的数学模型进行伺服驱动仿真,调节并整定获取位置、速度、电流各环节PID参数;
步骤3依据液压系统的结构特点,构建液压系统的全闭环控制的数学模型;
步骤4依据构建的数学模型进行仿真,得到相关参数。
步骤5依据所述运动控制器2对丝杠电机601和螺母电机604的各自控指令插补分配,通过PC机各参数设置,分别向伺服电机的伺服系统发送插补分配指令,运动控制器在线实时调整参数,使整个控制系统速度和加减速度变化曲线连续精确通过丝杠螺旋传动副机械的运动合成,工作台便获得高分辨率的微量进给。
与上述实施例相结合,所述的大行程高精度微纳运动控制伺服进给系统的控制方法,其特征在于,在PC机控制CNC运动控制器2和液压系统控制器51下,具有多种工作方式,即丝杠单驱动、螺母单驱动、丝杠和螺母双驱动。不同的驱动方式下具有不同的工作性能,满足不同场合的工作要求。

Claims (9)

  1. 一种大行程高精度微纳运动控制伺服进给系统,其特征在于,包括第一伺服电机、第二伺服电机、液体静压丝杠副、液压控制系统、压力检测装置、位移检测装置、位置反馈模块、CNC运动控制器和PC机;
    所述的液体静压丝杠副包括相互配合的丝杠和液体静压螺母组件;
    所述的第一伺服电机驱动丝杠做旋转运动,第二伺服电机驱动液体静压螺母组件做旋转运动;两个伺服电机通过各自伺服驱动系统驱动;所述的液体静压螺母组件固定于工作台并带动工作台实现直线运动;
    感应工作台位移的位移检测装置一端与工作台相连,另一端和位置反馈模块相连,将测得的工作台位移信息反馈到所述位置反馈模块;所述的位置反馈模块将信号反馈到CNC运动控制器中;所述的压力检测装置固定在工作台内部,测量液体静压丝杠副的液压油的工作压力,将油压传给液压控制系统,液压控制系统根据油压调节液压站供油;通过所述丝杠和液体静压螺母组件两个旋转运动的合成,实现工作台的精确的闭环进给控制;
    所述的CNC运动控制器、液压控制系统与PC机相连。
  2. 如权利要求1所述的大行程、高精度微纳运动控制伺服进给系统,其特征在于,所述的螺母组件包括液体静压螺母、液体静压轴承和螺母轴承安装座;
    所述的液体静压螺母作为液体静压螺母轴承的内圈,液体静压螺母轴承安装在螺母轴承安装座上;在所述的液体静压螺母轴承上设有第一进油孔,在所述的液体静压螺母上设有第二进油孔,第一进油孔和第二进油孔相连通。
  3. 如权利要求1所述的大行程高精度微纳运动控制伺服进给系统,其特征在于,所述的第二伺服电机采用空心直驱电机,所述的空心直驱电机的转子与液体静压螺母相连,空心直驱电机的定子与电机安装座相连。
  4. 如权利要求2所述的大行程高精度微纳运动控制伺服进给系统,其特征在于,所述的液体静压丝杠副的两端通过液体静压轴承支撑。
  5. 如权利要求1所述的大行程高精度微纳运动控制伺服进给系统,其特征在于,第一伺服电机的伺服驱动系统包括第一位置环控制器、第一速度环控制器、第一电流环控制器、第一比较器、第二比较器和第三比较器;所述的第一比较器 的正相输入端与CNC运动控制器相连,反相输入端与位移传感器相连,第一比较器输出端与第一位置环控制器相连;所述的第一位置环控制器的输出端与第二比较器的正相输入端相连,反相输入端与速度传感器相连,第二比较器输出端与速度环控制器相连;所述的第一速度环控制器的输出端与第三比较器的正相输入端相连,反相输入端与电流传感器相连,第三比较器输出端与第一电流环控制器相连;第一电流环控制器的输出端控制第一伺服电机相连。
  6. 如权利要求1所述的大行程高精度微纳运动控制伺服进给系统,其特征在于,第二伺服电机的伺服驱动系统包括第二位置环控制器、第二速度环控制器、第二电流环控制器、第四比较器、第五比较器、第六比较器、第七比较器和第八比较器;所述的第七比较器的两个输入端均与CNC运动控制器的输出端相连,第七比较器的输出端与第八比较器的正相输入端相连,所述的第八比较器的另正相输入端与用于检测工作台位移的位移检测装置相连,所述的第八比较器输出端与第四比较器的正相输入端相连;所述的第四比较器的反相输入端与CNC运动控制器相连;第四比较器输出端与第二位置环控制器相连;
    所述的第二位置环控制器的输出端与第五比较器的正相输入端相连,反相输入端与速度传感器相连,第五比较器输出端与第二速度环控制器相连;所述的第二速度环控制器的输出端与第六比较器的正相输入端相连,反相输入端与电流传感器相连,第六比较器输出端与第二电流环控制器相连;第二电流环控制器的输出端控制第二伺服电机相连。
  7. 如权利要求1所述的大行程高精度微纳运动控制伺服进给系统,其特征在于,所述的液压控制系统包括节流器、液压控制器、液压站、第九比较器和第十比较器;
    所述的压力检测装置与第九比较器的反相输入端相连,液压控制器与第九比较器的正相输入端相连,第九比较器的输出端与第十比较器的负相输入端相连,所述的第十比较器的正相输入端与液压控制器相连;所述的第十比较器的输出端与液压站相连,所述的液压站与节流器相连,节流器的输出端与液体静压丝杠副的进油口相连。
  8. 如权利要求1-7任一所述的大行程高精度微纳运动控制伺服进给系统的控制方法,其特征在于,包含如下步骤:
    步骤1依据第一伺服电机、第二伺服电机伺服系统的具体结构及固有属性,构建丝杠驱动和螺母驱动系统全闭环控制的数学模型;
    步骤2依据构建的数学模型进行伺服驱动仿真,调节并整定获取位置、速度、电流各环节PID参数;
    步骤3依据液压系统的结构特点,构建液压系统的全闭环控制的数学模型;
    步骤4依据构建的数学模型进行仿真,得到相关参数;
    步骤5依据所述运动控制器对丝杠电机和螺母电机的各自控指令插补分配,通过PC机各参数设置,分别向两个伺服电机的伺服系统发送插补分配指令;当需要微纳级超高精密运动控制时,由CNC运动控制器分配给两个伺服电机“旋转方向相同、速度准相等”的运动的指令给两个伺服驱动系统,通过液体静压丝杠副的双驱宏宏“差动”合成,获得工作台均匀极低速微纳量级运动;同时,运动控制器在线实时闭环调整参数,使整个系统速度和加减速度变化曲线连续精确通过丝杠螺旋传动副机械的宏宏“差动”运动合成,工作台便获得高分辨率的微纳量进给。
  9. 如权利要求8所述的控制方法,其特征在于,在PC机控制CNC运动控制器和液压系统控制器下,具有多种工作方式,即丝杠单驱动、螺母单驱动、丝杠和螺母双驱动。
PCT/CN2020/091125 2019-08-07 2020-05-20 一种大行程高精度微纳运动伺服进给系统及控制方法 WO2021022866A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910726948.8 2019-08-07
CN201910726948.8A CN110554659B (zh) 2019-08-07 2019-08-07 一种大行程高精度微纳运动伺服进给系统

Publications (1)

Publication Number Publication Date
WO2021022866A1 true WO2021022866A1 (zh) 2021-02-11

Family

ID=68737125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091125 WO2021022866A1 (zh) 2019-08-07 2020-05-20 一种大行程高精度微纳运动伺服进给系统及控制方法

Country Status (2)

Country Link
CN (1) CN110554659B (zh)
WO (1) WO2021022866A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113103161A (zh) * 2021-04-13 2021-07-13 江苏徽创新智能科技有限公司 一种方便调节的电机丝杠行程限位装置
CN113352236A (zh) * 2021-06-28 2021-09-07 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种压力控制装置及压力控制方法
CN113911652A (zh) * 2021-11-04 2022-01-11 常州均先机械有限公司 一种圆形仓螺旋供料装置
CN114195037A (zh) * 2022-02-17 2022-03-18 西安华欧精密机械有限责任公司 一种双层滚珠丝杠电动缸
CN115319519A (zh) * 2022-09-15 2022-11-11 上海诺倬力机电科技有限公司 一种精密机床直线轴运动机构

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554659B (zh) * 2019-08-07 2021-08-31 山东大学 一种大行程高精度微纳运动伺服进给系统
CN111360555A (zh) * 2020-04-22 2020-07-03 机械科学研究总院海西(福建)分院有限公司 一种适用于大尺寸工件的超精密机床的自动补偿机构
CN111805109A (zh) * 2020-06-23 2020-10-23 贵州民族大学 一种点焊系统
CN112077638B (zh) * 2020-07-29 2021-05-11 山东大学 一种集成液体静压螺母主驱动型丝杠副直线进给单元
CN112379612B (zh) * 2020-09-27 2022-06-03 北京卫星制造厂有限公司 一种多轴耦合协同运动的液相泵系统集成控制系统及方法
CN113110286B (zh) * 2021-03-30 2022-12-30 中国科学院光电技术研究所 一种基于压力反馈的精密间隙控制系统与方法
CN113579823B (zh) * 2021-08-13 2022-07-15 珠海格力电器股份有限公司 机床进给系统和数控机床
CN113894594B (zh) * 2021-12-08 2022-04-01 山东大学 组合式螺母驱动型液体静压丝杠副、伺服进给系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956106A (zh) * 2006-08-18 2007-05-02 许宏 一种大行程精密工件台装置与驱动方法
CN102001016A (zh) * 2010-11-04 2011-04-06 路文忠 电液伺服泵控制的数字式超精多功能静压丝杠
JP2014013554A (ja) * 2012-06-04 2014-01-23 Fanuc Ltd ボールネジの伸縮量を補正する機能を備えたサーボ制御装置
CN104714485A (zh) * 2015-02-12 2015-06-17 山东大学 一种新型高精度微量进给伺服系统及控制方法
CN108788878A (zh) * 2018-05-04 2018-11-13 青岛科技大学 一种螺母驱动型静压丝杠副
CN110554659A (zh) * 2019-08-07 2019-12-10 山东大学 一种大行程高精度微纳运动伺服进给系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956106A (zh) * 2006-08-18 2007-05-02 许宏 一种大行程精密工件台装置与驱动方法
CN102001016A (zh) * 2010-11-04 2011-04-06 路文忠 电液伺服泵控制的数字式超精多功能静压丝杠
JP2014013554A (ja) * 2012-06-04 2014-01-23 Fanuc Ltd ボールネジの伸縮量を補正する機能を備えたサーボ制御装置
CN104714485A (zh) * 2015-02-12 2015-06-17 山东大学 一种新型高精度微量进给伺服系统及控制方法
CN108788878A (zh) * 2018-05-04 2018-11-13 青岛科技大学 一种螺母驱动型静压丝杠副
CN110554659A (zh) * 2019-08-07 2019-12-10 山东大学 一种大行程高精度微纳运动伺服进给系统及控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113103161A (zh) * 2021-04-13 2021-07-13 江苏徽创新智能科技有限公司 一种方便调节的电机丝杠行程限位装置
CN113352236A (zh) * 2021-06-28 2021-09-07 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种压力控制装置及压力控制方法
CN113352236B (zh) * 2021-06-28 2023-06-23 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 一种压力控制装置及压力控制方法
CN113911652A (zh) * 2021-11-04 2022-01-11 常州均先机械有限公司 一种圆形仓螺旋供料装置
CN114195037A (zh) * 2022-02-17 2022-03-18 西安华欧精密机械有限责任公司 一种双层滚珠丝杠电动缸
CN115319519A (zh) * 2022-09-15 2022-11-11 上海诺倬力机电科技有限公司 一种精密机床直线轴运动机构

Also Published As

Publication number Publication date
CN110554659B (zh) 2021-08-31
CN110554659A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021022866A1 (zh) 一种大行程高精度微纳运动伺服进给系统及控制方法
CN103934723B (zh) 一种滚珠丝杠预紧力和预拉伸量可控调节和测量装置
CN203317051U (zh) 一种超精密气体静压回转工作台
CN110554662A (zh) 一种大行程高精度微量控制伺服进给系统及控制方法
CN101673118B (zh) 组合式传动可变角度微位移调节装置
CN110549151B (zh) 一种履带导轨驱动微量进给伺服系统及同步控制方法
CN107329231B (zh) 可调节反射镜Bipod柔性支撑结构、支撑装置及其装调方法
CN107738268B (zh) 一种基于杠杆机构的可变刚度柔性关节
CN105690111A (zh) 大型回转工作台自适应调节静压支撑装置和油膜厚度控制系统及方法
CN102062942B (zh) 偏摆光楔扫描装置
CN115194737B (zh) 差动式六自由度并联微动平台
CN110133820A (zh) 大型拼接镜面光学望远镜的纳米级精密位移促动器
CN104759929A (zh) 一种精密重载智能调节大型回转工作台
CN102980724A (zh) 回转体动平衡仪
CN110594379B (zh) 一种螺母驱动型液体静压丝杠螺旋传动副及机床
CN204892558U (zh) 一种精密型材四辊组合孔型轧机调整装置
Fujita et al. Dynamic characteristics and dual control of a ball screw drive with integrated piezoelectric actuator
CN211981651U (zh) 一种主体可调式复合执行器
CN102411372B (zh) 组合驱动微位移调节装置
CN108873741A (zh) 一种针对空气静压导轨止推轴承振动的主动控制系统
CN102820839A (zh) 一种齿隙传动中电机伺服系统精确定位的方法
CN113894594B (zh) 组合式螺母驱动型液体静压丝杠副、伺服进给系统及方法
CN106438972B (zh) 一种可调节齿轮间隙的关节
CN111610753B (zh) 一种双直线电机差动微进给伺服系统及控制方法
CN114061618A (zh) 一种光纤陀螺批量测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850501

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)