WO2021022691A1 - 对温度变化不敏感的宽带光参量啁啾脉冲放大器 - Google Patents

对温度变化不敏感的宽带光参量啁啾脉冲放大器 Download PDF

Info

Publication number
WO2021022691A1
WO2021022691A1 PCT/CN2019/115561 CN2019115561W WO2021022691A1 WO 2021022691 A1 WO2021022691 A1 WO 2021022691A1 CN 2019115561 W CN2019115561 W CN 2019115561W WO 2021022691 A1 WO2021022691 A1 WO 2021022691A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical parametric
light
signal light
pulse amplifier
chirped pulse
Prior art date
Application number
PCT/CN2019/115561
Other languages
English (en)
French (fr)
Inventor
钟亥哲
戴达华
梁成川
梁兆星
王博天
李瑛�
范滇元
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US16/849,993 priority Critical patent/US11217959B2/en
Publication of WO2021022691A1 publication Critical patent/WO2021022691A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification

Definitions

  • the invention relates to the field of laser technology, in particular to a broadband optical parametric chirped pulse amplifier that is insensitive to temperature changes.
  • Optical parametric amplification refers to that a beam of high-frequency light and a beam of low-frequency light enter the nonlinear medium at the same time, and the low-frequency light in the outgoing light is amplified due to the difference frequency effect. This phenomenon is called optical parametric amplification. .
  • OPA optical parametric amplification
  • Optical parametric amplifiers have been widely used in scientific research, medicine, industry and other fields to obtain higher power laser output.
  • OPA-based Optical Parametric Chirp Pulse Amplifiers OCPA
  • the amplified low-energy femtosecond broadband signal light is broadened in the time domain by introducing chirp dispersion (the stretched pulse laser appears as a chirped pulse laser in the time domain), and then let the broadened chirped signal light And another high-energy narrow-band pump light (typical pulse width is about tens of picoseconds) are parametrically amplified in the nonlinear crystal; in this process, the energy is transferred from the pump light to the signal light, and the signal light is amplified At the same time, idle frequency light is generated; the amplified signal light is recompressed into femtosecond pulse laser by the method of chirp dispersion compensation.
  • Phase matching (hereinafter referred to as PM) is the fundamental requirement of optical parametric amplification.
  • meeting phase matching facilitates the continuous transfer of energy from pump light to signal light, thereby greatly improving the conversion of pump light effectiveness.
  • the phase matching condition is sensitive to wavelength and temperature, and the deviation of wavelength or temperature will destroy the original phase matching, resulting in a reduction in the conversion efficiency of the optical parametric amplifier.
  • the gain bandwidth is a key indicator to measure the shortest pulse laser that can be output.
  • the absorption of laser energy by the nonlinear crystal will become more and more serious as the pump light power increases, causing the local temperature of the nonlinear crystal to rise and the uneven distribution of the refractive index of the crystal, making the phase matching impossible in the whole crystal It is always satisfied in the area.
  • This thermally-induced phase mismatch seriously affects the conversion efficiency of optical parametric amplification (requires insensitivity to temperature changes). Therefore, for a high average power optical parametric chirped pulse amplifier, it needs to be insensitive to wavelength and temperature changes at the same time.
  • the gain bandwidth, or temperature bandwidth, of the optical parametric chirped pulse amplifier can be significantly improved by using a non-collinear phase matching method and a suitable non-collinear angle.
  • non-collinear phase matching structures that are not sensitive to wavelength and temperature changes have different requirements for non-collinear angles. Therefore, it is generally impossible to achieve phase matching in the same non-collinear phase matching structure at the same time.
  • the conditions are not sensitive to wavelength and temperature changes, which leads to the reduction of the conversion efficiency of the high average power broadband optical parametric chirped pulse amplifier and the narrowing of the gain bandwidth.
  • the main purpose of the present invention is to provide a broadband optical parametric chirped pulse amplifier that is insensitive to temperature changes, and aims to solve the inability to achieve phase matching conditions in the same non-collinear phase matching structure in the prior art.
  • a broadband optical parametric chirped pulse amplifier that is not sensitive to temperature changes, including a first pulse laser, a second pulse laser, a stretcher, and a periodically polarized crystal.
  • the signal light generated by the first pulse laser passes through the stretch
  • the pump light generated by the second pulse laser is coupled in the periodically polarized crystal.
  • the energy is transferred from the pump light to the signal light so that the signal light is amplified and idle frequency is generated.
  • the periodic domain reversal structure of the periodically polarized crystal has such that k s (T 0 ), k p (T 0 ), k i (T 0 ), and k g
  • the k s (T 0 ) represents the wave vector of the center wavelength of the signal light at the phase matching temperature T 0
  • the k p (T 0 ) represents the phase matching temperature T 0
  • the wave vector of the center wavelength of the pump light the k i (T 0 ) represents the wave vector of the center wavelength of the idle frequency light at the phase matching temperature T 0
  • the k g 2 ⁇ / ⁇ , which represents the The reciprocal lat
  • v i denotes idler light group velocity
  • v s denotes the group velocity of the signal light
  • represents the angle between the transmission direction of the pump light and the signal light
  • represents the angle between the transmission direction of the signal light and the idle frequency light
  • k p (T) represents the The wave vector of the pump light
  • k s (T) represents the wave vector of the signal light
  • k i (T) represents the wave vector of the idle frequency light
  • T 0 represents the phase matching temperature of the periodically polarized crystal
  • T represents the operating temperature of the periodically polarized crystal.
  • the tilt angle of the periodically polarized crystal can be adjusted.
  • the broadband optical parametric chirped pulse amplifier that is not sensitive to temperature changes further includes a reflector, and the pump light generated by the second pulse laser passes through the reflector and the signal light after passing through the stretcher is in the Coupling is performed in the periodically polarized crystal.
  • the broadband optical parametric chirped pulse amplifier that is not sensitive to temperature changes further includes a compressor, and the amplified signal light is compressed by the compressor.
  • the periodically polarized crystal is a periodically polarized lithium niobate crystal that meets Type 0 quasi-phase matching, wherein the periodically polarized lithium niobate crystal contains 5% magnesium oxide.
  • the first pulsed laser is a femtosecond pulsed laser.
  • the first pulse laser is a mid-infrared femtosecond pulse laser or a Ti:Sapphire femtosecond pulse laser.
  • the second pulsed laser is a picosecond pulsed laser.
  • the above-mentioned broadband optical parametric chirped pulse amplifier that is not sensitive to temperature changes, by making the non-collinear angles between the signal light, pump light, and idle frequency light simultaneously meet the required angle relationship insensitive to wavelength and temperature changes, So that the optical parametric chirped pulse amplifier can not only achieve wide bandwidth signal light amplification (insensitive to wavelength changes), but also can effectively alleviate the phase mismatch caused by the local temperature of the nonlinear crystal (insensitive to temperature changes) ).
  • the periodic domain inversion structure of the periodically polarized crystal has the ability to make the four-way wave vectors k p (T 0 ), k s (T 0 ), k i (T 0 ) and k g form a wave vector quadrilateral, so that the
  • the optical parametric chirped pulse amplifier can meet the requirements of phase matching. Since the phase matching condition of the optical parametric chirped pulse amplifier is insensitive to wavelength and temperature changes, it can increase the peak power and average power of the output pulse laser.
  • Fig. 1 is a schematic diagram of a broadband optical parametric chirped pulse amplifier that is insensitive to temperature changes according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the variation of the polarization period ⁇ with the non-collinear angle ⁇ between the pump light and the signal light according to an embodiment of the present invention.
  • Figures 3a-3c are two-dimensional light spots and spectrograms of an optical parametric chirped pulse amplifier based on three different phase matching structures at a preset phase matching temperature according to an embodiment of the present invention, where the inset is the initial signal light Two-dimensional spot and spectrogram.
  • Figures 3d-3f are two-dimensional light spots and spectrograms of an optical parametric chirped pulse amplifier based on three different phase matching structures at a deviation from a preset phase matching temperature according to an embodiment of the present invention, wherein the inset is the initial signal light The two-dimensional light spot and spectrogram.
  • FIGS. 4a-4b are graphs of the gain spectrum and temperature bandwidth curve of a broadband optical parametric chirped pulse amplifier that is not sensitive to temperature changes according to an embodiment of the present invention when the polarization period ⁇ 'has an error relative to the preset value ⁇ .
  • 4c-4d are broadband optical parametric chirped pulse amplifiers that are not sensitive to temperature changes according to an embodiment of the present invention, when the polarization period ⁇ 'has an error relative to the preset value ⁇ , adjust the tilt of the periodically polarized crystal Angle, obtained gain spectrum and temperature bandwidth graph.
  • FIG. 5 is a schematic diagram of adjusting the tilt angle of the periodically polarized crystal in the horizontal dimension according to an embodiment of the present invention.
  • Broadband optical parametric chirped pulse amplifier that is not sensitive to temperature changes; 1. First pulse laser; 2. Second pulse laser; 3. Stretcher; 4. Periodically polarized crystal; 5. Mirror; 6. Compressor; 7, signal light; 8, pump light; 9, idle frequency light.
  • Fig. 1 is a schematic diagram of a broadband optical parametric chirped pulse amplifier that is insensitive to temperature changes according to an embodiment of the present invention.
  • the broadband optical parametric chirped pulse amplifier 10 that is not sensitive to temperature changes has a first pulse laser 1, a second pulse laser 2, a stretcher 3, and a periodic polarization crystal 4.
  • the first pulse laser The signal light generated by 1 passes through the stretcher 3 and is coupled with the pump light generated by the second pulse laser 2 in the periodically polarized crystal 4. During the coupling process, the energy is transferred from the pump light to the signal light to make the signal light Amplify and generate idle frequency light at the same time.
  • the signal light 7, pump light 8 and idle frequency light 9 passing through the periodically polarized crystal 4 are non-collinear, and the non-collinear angles between each other can satisfy the The wavelength and the angle relationship required to be insensitive to temperature changes
  • the periodic domain inversion structure of the periodically polarized crystal 4 has the following characteristics: k s (T 0 ), k p (T 0 ), k i (T 0 ), and k g
  • the ability of four wave vectors to form a wave vector quadrilateral, k s (T 0 ) represents the wave vector of the center wavelength of the signal light 7 at the phase matching temperature T 0
  • k p (T 0 ) represents the pump light at the phase matching temperature T 0 8
  • the wave vector of the center wavelength, k i (T 0 ) represents the wave vector of the center wavelength of the idle frequency light 9 at the phase matching temperature T 0
  • k g 2 ⁇ / ⁇ , which represents the reciprocal lattice vector of the periodically
  • the non-collinear angles between the signal light 7, the pump light 8 and the idle frequency light 9 simultaneously satisfy the angle relationship required for being insensitive to wavelength and temperature changes, so that the light parametric chirp
  • the chirped pulse amplifier 10 can not only achieve wide bandwidth signal light amplification (insensitive to wavelength changes), but also can effectively alleviate the phase mismatch (insensitive to temperature changes) of the periodically polarized crystal 4 caused by excessive local temperature.
  • the periodic domain inversion structure of the periodically polarized crystal 4 has the ability to make the four-way wave vectors k p (T 0 ), k s (T 0 ), k i (T 0 ) and k g form a wave vector quadrilateral, so that
  • the optical parametric chirped pulse amplifier 10 can meet the requirements of phase matching. Since the phase matching condition of the optical parametric chirped pulse amplifier 10 is insensitive to wavelength and temperature changes, the peak power and average power of the output pulse laser can be increased.
  • v i denotes idler light group velocity
  • v s denotes the group velocity of the signal light
  • represents the angle between the transmission direction of the pump light 8 and the signal light 7
  • represents the angle between the transmission direction of the signal light 7 and the idle frequency light
  • T 0 represents the phase matching of the periodically polarized crystal 4
  • T represents the operating temperature of the periodically polarized crystal 4
  • k s (T) represents the wave vector of the signal light 7
  • k p (T) represents the wave vector of the pump light 8
  • k i (T) represents the idle frequency light Wave vector of 9.
  • the optical parametric chirped pulse amplifier 10 may have a mirror 5, and the pump light generated by the second pulse laser 2 in the vertical direction is reflected by the mirror 5.
  • the signal light generated by the first pulse laser 1 in the horizontal direction is stretched by the stretcher 3.
  • the pump light passing through the mirror 5 and the signal light passing through the stretcher 3 are coupled in the periodically polarized crystal 4.
  • the optical parametric chirped pulse amplifier 10 may have a compressor 6, and the amplified signal light is compressed by the compressor 6 into ultrashort pulse laser with high peak power.
  • the first pulse laser 1 selects a 3.4 ⁇ m mid-infrared femtosecond pulse laser with a pulse width of 35 fs, and the output 3.4 ⁇ m signal light is stretched by the stretcher 3 to a chirped pulse laser with a width of -10 ps.
  • the second pulse laser 2 selects a 1064nm picosecond pulse laser with a pulse width of ⁇ 15ps, and the output pump light of 1064nm is reflected by the mirror 5.
  • the periodically polarized crystal 4 is a periodically polarized lithium niobate crystal (PPLN) that meets Class 0 quasi-phase matching, wherein the periodically polarized lithium niobate crystal includes 5 % Magnesium oxide (MgO).
  • an optical parametric chirped pulse amplifier 10 that can satisfy both wavelength and temperature insensitivity can be constructed.
  • the angle ⁇ between the pump light 8 and the signal light 7 in the transmission direction is 1.5°
  • the angle ⁇ between the signal light 7 and the idle frequency light 9 in the transmission direction is 9.3°
  • the angle ⁇ between the periodic domain inversion direction of the periodic polarization crystal 4 and the transmission direction of the signal light 7 is 79.7°
  • the polarization period ⁇ is 3.6 ⁇ m.
  • the expanded 3.4 ⁇ m chirped pulse laser has a spot diameter of 1mm in the non-collinear transmission dimension, and the length of the periodically polarized crystal 4 is 5mm.
  • the light intensity of the pump light is ⁇ 450MW/cm 2
  • the initial light intensity of the 3.4 ⁇ m chirped pulse laser is 1 ⁇ of the pump light.
  • the operation of the optical parametric chirped pulse amplifier 10 is numerically simulated.
  • the initial bandwidth of the signal light is ⁇ 420nm.
  • the optical parametric chirped pulse amplifier ( Figure 3b) and the optical parametric chirped pulse amplifier 10 of this embodiment ( Figure 3c) both satisfy the wide bandwidth due to being insensitive to wavelength Therefore, the two have similar conversion efficiencies (42% and 40% respectively).
  • the bandwidth of the output signal light 7 is ⁇ 390nm and ⁇ 380nm, which basically retains the original spectral characteristics; Since the temperature-insensitive optical parametric chirped pulse amplifier ( Figure 3a) does not meet the wide bandwidth phase matching condition, the temperature-insensitive optical parametric chirped pulse amplifier has severe gain narrowing, and the conversion efficiency is only ⁇ 20.6%, and the spectral bandwidth of the output signal light 7 is only ⁇ 185nm.
  • the polarization period ⁇ 'of the polarized crystal 4 deviates from the preset value ⁇ , which causes the gain spectrum and temperature bandwidth of the optical parametric chirped pulse amplifier 10 to become significantly worse, and the error becomes more serious as the error increases.
  • the polarization direction ⁇ of the periodically polarized crystal 4 is changed, which can reduce the polarization period error and the performance of the optical parametric chirped pulse amplifier 10 influences.
  • the tilt angle of the horizontal dimension of the periodically polarized crystal 4 as shown in Fig. 5
  • the gain spectrum and temperature bandwidth of the original distortion are both obvious improve.
  • the above results indicate that by adjusting the tilt angle of the periodically polarized crystal 4, at least the performance degradation caused by the 5% polarization period error of the periodically polarized crystal 4 can be compensated.
  • the first pulsed laser 1 selects an 800nm Ti:Sapphire femtosecond pulsed laser.
  • the second pulse laser 2 selects a 532nm picosecond pulse laser.
  • the angle ⁇ between the pump light 8 and the signal light 7 in the transmission direction is 7.2°
  • the angle ⁇ between the signal light 7 and the idle frequency light 9 in the transmission direction is 15.4°.
  • the angle ⁇ between the direction of the periodic domain inversion of the periodically polarized crystal 4 and the transmission direction of the signal light 7 is 80.6°
  • the polarization period ⁇ is 1.2 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种对温度变化不敏感的宽带光参量啁啾脉冲放大器(10),包括第一脉冲激光器(1)、第二脉冲激光器(2)、展宽器(3)以及周期性极化晶体(4)。通过使信号光(7)、泵浦光(8)以及闲频光(9)之间的非共线角同时满足对波长、对温度变化不敏感所需的角度关系,从而使光参量啁啾脉冲放大器(10)既能够实现宽带宽的信号光(7)放大(对波长变化不敏感),又能够有效缓解非线性晶体因局部温度过高而导致的相位失配(对温度变化不敏感)。周期性极化晶体(4)的周期性畴反转结构具有使k p(T 0)、k s(T 0)、k i(T 0)和k g四路波矢构成波矢四边形的能力,使得光参量啁啾脉冲放大器(10)能够满足相位匹配的要求,从而提高光参量啁啾脉冲放大器(10)高平均功率模式下的转换效率。

Description

对温度变化不敏感的宽带光参量啁啾脉冲放大器 技术领域
本发明涉及激光技术领域,尤其涉及一种对温度变化不敏感的宽带光参量啁啾脉冲放大器。
背景技术
在现有技术中,由于缺乏合适的激光增益介质(是指用来实现粒子数反转并产生光的受激辐射放大的物质体系),只有极少数特定波长的激光能够由受激辐射的激光介质直接产生。光参量放大(是指一束高频率的光和一束低频率的光同时进入非线性介质中,出来的光当中低频率的光由于差频效应而得到放大,这种现象称为光参量放大。以下简称为OPA),可用于将频率为ω p的泵浦光的能量转移到频率为ω s的信号光上(ω ps),与此同时,还会得到第三种频率为ω ip=ω si)的激光(称为闲频光)。光参量放大器已广泛应用于科研、医学、工业等领域,以获取更高功率的激光输出。作为目前产生超短超强脉冲激光的一种有效手段,以OPA为基础的光参量啁啾脉冲放大器(Optical Parametric Chirp Pulse Amplifiers,OPCPA)在众多领域有着广泛的应用,其基本原理为:将欲放大的一束低能量飞秒宽带信号光通过引入啁啾色散的方法在时域上展宽(展宽后的脉冲激光在时域上表现为啁啾脉冲激光),然后让展宽后的啁啾信号光和另一束高能量的窄带泵浦光(典型脉宽约为几十皮秒)在非线性晶体中进行参量放大;在此过程中能量由泵浦光转移到信号光,信号光得到放大的同时产生闲频光;放大后的信号光通过啁啾色散补偿的方法被重新压缩成飞秒脉冲激光。
相位匹配(Phase Matching,以下简称为PM)是光参量放大的根本要求,在光参量放大过程中,满足相位匹配有利于能量由泵浦光向信号光持续转移, 从而大大提高泵浦光的转化效率。但一般情况下,相位匹配条件对波长、对温度敏感,波长或者温度的偏离都会破坏原有的相位匹配,导致光参量放大器转换效率的降低。
对OPCPA而言,一方面,增益带宽是衡量其可输出最短脉冲激光的关键指标,信号光的脉宽越短,带宽越宽,对OPCPA增益带宽的要求也就越高(要求对波长变化不敏感)。另一方面,非线性晶体对激光能量的吸收会随着泵浦光功率的提高愈发严重,造成非线性晶体局部温度的升高以及晶体折射率的不均匀分布,使得相位匹配无法在全晶体区域内始终被满足,这种热诱导的相位失配,严重影响了光参量放大的转换效率(要求对温度变化不敏感)。所以,对高平均功率的光参量啁啾脉冲放大器而言,需要能够同时对波长、对温度变化不敏感。
发明人发现,在现有技术中,以非共线的相位匹配方式,并且借助合适的非共线角,可以显著提高光参量啁啾脉冲放大器的增益带宽,或者,温度带宽。然而,在现有技术中,对波长、对温度变化不敏感的非共线相位匹配结构对非共线角有着不同的要求,因此,一般无法在同一非共线相位匹配结构中同时实现相位匹配条件对波长、对温度变化不敏感,从而导致高平均功率宽带光参量啁啾脉冲放大器转换效率的降低以及增益带宽的窄化。
发明内容
本发明的主要目的在于提供一种对温度变化不敏感的宽带光参量啁啾脉冲放大器,旨在解决现有技术中无法在同一非共线相位匹配结构中同时实现相位匹配条件对波长、对温度变化不敏感的技术问题。
为了解决上述技术问题,本发明提供的技术方案为:
一种对温度变化不敏感的宽带光参量啁啾脉冲放大器,包括第一脉冲激光器、第二脉冲激光器、展宽器以及周期性极化晶体,所述第一脉冲激光器产生的信号光经过所述展宽器后与所述第二脉冲激光器产生的泵浦光在所述周期性 极化晶体中进行耦合,耦合的过程中能量从泵浦光转移到信号光上从而使信号光放大,同时产生闲频光,其中,经过所述周期性极化晶体的所述信号光、所述泵浦光以及所述闲频光之间非共线,并且相互之间的非共线角能够同时满足对波长、对温度变化不敏感所需的角度关系,所述周期性极化晶体的周期性畴反转结构具有使k s(T 0)、k p(T 0)、k i(T 0)和k g四路波矢构成波矢四边形的能力,所述k s(T 0)表示相位匹配温度T 0下所述信号光中心波长的波矢、所述k p(T 0)表示相位匹配温度T 0下所述泵浦光中心波长的波矢、所述k i(T 0)表示相位匹配温度T 0下所述闲频光中心波长的波矢,所述k g=2π/Λ,表示所述周期性极化晶体的倒格矢,Λ表示周期性极化晶体的极化周期。
其中,所述对波长变化不敏感所需要的角度关系为:
v icosβ=v s
其中,v i表示闲频光群速度,v s表示信号光群速度。
所述对温度变化不敏感所需要的角度关系为:
Figure PCTCN2019115561-appb-000001
其中,α表示所述泵浦光与所述信号光的传输方向上的夹角,β表示所述信号光与所述闲频光的传输方向上的夹角,k p(T)表示所述泵浦光的波矢,k s(T)表示所述信号光的波矢,k i(T)表示所述闲频光的波矢,T 0表示所述周期性极化晶体的相位匹配温度,T表示所述周期性极化晶体的工作温度。
其中,所述周期性极化晶体的倾斜角度可调节。
其中,所述对温度变化不敏感的宽带光参量啁啾脉冲放大器还包括反射镜,所述第二脉冲激光器产生的泵浦光经过反射镜后与经过所述展宽器后的信号光在所述周期性极化晶体中进行耦合。
其中,所述对温度变化不敏感的宽带光参量啁啾脉冲放大器还包括压缩器,放大后的信号光经过所述压缩器进行压缩。
其中,所述周期性极化晶体为满足0类准相位匹配的周期性极化铌酸锂晶体,其中,所述周期性极化铌酸锂晶体包含5%的氧化镁。
其中,所述第一脉冲激光器为飞秒脉冲激光器。
其中,所述第一脉冲激光器为中红外飞秒脉冲激光器或者钛宝石飞秒脉冲激光器。
其中,所述第二脉冲激光器为皮秒脉冲激光器。
上述对温度变化不敏感的宽带光参量啁啾脉冲放大器,通过使信号光、泵浦光以及闲频光之间的非共线角同时满足对波长、对温度变化不敏感所需的角度关系,从而使该光参量啁啾脉冲放大器既能够实现宽带宽的信号光放大(对波长变化不敏感),又能够有效缓解非线性晶体因局部温度过高而导致的相位失配(对温度变化不敏感)。周期性极化晶体的周期性畴反转结构具有使k p(T 0)、k s(T 0)、k i(T 0)和k g四路波矢构成波矢四边形的能力,使得该光参量啁啾脉冲放大器能够满足相位匹配的要求。由于该光参量啁啾脉冲放大器的相位匹配条件对波长、对温度变化不敏感,因此,能够提高其输出脉冲激光的峰值功率和平均功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明的一个实施例的对温度变化不敏感的宽带光参量啁啾脉冲放大器的示意图。
图2是根据本发明的一个实施例的极化周期Λ随泵浦光和信号光之间的非共线角α的变化曲线图。
图3a-3c是根据本发明的一个实施例的基于三种不同相位匹配结构的光参 量啁啾脉冲放大器在预设相位匹配温度下的二维光斑和频谱图,其中,插图为初始信号光的二维光斑和频谱图。
图3d-3f是根据本发明的一个实施例的基于三种不同相位匹配结构的光参量啁啾脉冲放大器在偏离预设相位匹配温度下的二维光斑和频谱图,其中,插图为初始信号光的二维光斑和频谱图。
图4a-4b是根据本发明的一个实施例的对温度变化不敏感的宽带光参量啁啾脉冲放大器在极化周期Λ'相对于预设值Λ存在误差时的增益谱和温度带宽曲线图。
图4c-4d是根据本发明的一个实施例的对温度变化不敏感的宽带光参量啁啾脉冲放大器在极化周期Λ'相对于预设值Λ存在误差时,调整周期性极化晶体的倾斜角度,得到的增益谱和温度带宽曲线图。
图5是根据本发明的一个实施例的周期性极化晶体在水平维度作倾斜角度调整的示意图。
10、对温度变化不敏感的宽带光参量啁啾脉冲放大器;1、第一脉冲激光器;2、第二脉冲激光器;3、展宽器;4、周期性极化晶体;5、反射镜;6、压缩器;7、信号光;8、泵浦光;9、闲频光。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是根据本发明的一个实施例的对温度变化不敏感的宽带光参量啁啾脉冲放大器的示意图。
从图中可以看出,该对温度变化不敏感的宽带光参量啁啾脉冲放大器10 具有第一脉冲激光器1、第二脉冲激光器2、展宽器3以及周期性极化晶体4,第一脉冲激光器1产生的信号光经过展宽器3后与第二脉冲激光器2产生的泵浦光在周期性极化晶体4中进行耦合,耦合的过程中能量从泵浦光转移到信号光上从而使信号光放大,同时产生闲频光,其中,经过周期性极化晶体4的信号光7、泵浦光8以及闲频光9之间非共线,并且相互之间的非共线角能够同时满足对波长、对温度变化不敏感所需的角度关系,周期性极化晶体4的周期性畴反转结构具有使k s(T 0)、k p(T 0)、k i(T 0)和k g四路波矢构成波矢四边形的能力,k s(T 0)表示相位匹配温度T 0下信号光7中心波长的波矢、k p(T 0)表示相位匹配温度T 0下泵浦光8中心波长的波矢、k i(T 0)表示相位匹配温度T 0下闲频光9中心波长的波矢,k g=2π/Λ,表示周期性极化晶体4的倒格矢,Λ表示周期性极化晶体4的极化周期。
在本实施例中,通过使信号光7、泵浦光8以及闲频光9之间的非共线角同时满足对波长、对温度变化不敏感所需的角度关系,从而使该光参量啁啾脉冲放大器10既能够实现宽带宽的信号光放大(对波长变化不敏感),又能够有效缓解周期性极化晶体4因局部温度过高而导致的相位失配(对温度变化不敏感)。周期性极化晶体4的周期性畴反转结构具有使k p(T 0)、k s(T 0)、k i(T 0)和k g四路波矢构成波矢四边形的能力,使得该光参量啁啾脉冲放大器10能够满足相位匹配的要求。由于该光参量啁啾脉冲放大器10的相位匹配条件对波长、对温度变化不敏感,因此,能够提高其输出脉冲激光的峰值功率和平均功率。
在本实例中,对波长变化不敏感所需要的角度关系为:
v icosβ=v s
其中,v i表示闲频光群速度,v s表示信号光群速度。
对温度变化不敏感所需要的角度关系为:
Figure PCTCN2019115561-appb-000002
其中,α表示泵浦光8与信号光7的传输方向上的夹角,β表示信号光7与闲频光9的传输方向上的夹角,T 0表示周期性极化晶体4的相位匹配温度,T表示周期性极化晶体4的工作温度,k s(T)表示信号光7的波矢,k p(T)表示泵浦光8的波矢,k i(T)表示闲频光9的波矢。
在本实施例中,光参量啁啾脉冲放大器10可以具有反射镜5,第二脉冲激光器2在垂直方向上产生的泵浦光经过反射镜5进行反射。第一脉冲激光器1在水平方向上产生的信号光经过展宽器3进行展宽。经过反射镜5的泵浦光和经过展宽器3的信号光在周期性极化晶体4中进行耦合。
在本实施例中,光参量啁啾脉冲放大器10可以具有压缩器6,放大后的信号光经过压缩器6被压缩成高峰值功率的超短脉冲激光。
在本实例中,第一脉冲激光器1选用脉宽为35fs的3.4μm中红外飞秒脉冲激光器,其输出的3.4μm信号光经过展宽器3展宽为~10ps的啁啾脉冲激光。第二脉冲激光器2选用脉宽为~15ps的1064nm皮秒脉冲激光器,其输出的1064nm泵浦光经过反射镜5反射。
如图2所示,在本实施例中,周期性极化晶体4为满足0类准相位匹配的周期性极化铌酸锂晶体(PPLN),其中,周期性极化铌酸锂晶体包含5%的氧化镁(MgO)。在预设的24.5℃工作温度下,以3.4μm脉冲激光为信号光,以1064nm脉冲激光为泵浦光,以5%MgO掺杂PPLN晶体为周期性极化晶体4,在分别满足对波长、对温度变化不敏感所需要的角度关系的前提下,随着非共线角α的不同,对波长不敏感光参量啁啾脉冲放大器,或者,对温度不敏感光参量啁啾脉冲放大器,均存在与之一一对应的极化周期Λ,并且两条极化周期的变化曲线会在特定的非共线角(α≈1.5°)下交汇。也就是说,以该交汇点对应的非共线角α和极化周期Λ,可以构造出能够同时满足对波长、对温度不敏感的光参量啁啾脉冲放大器10。具体的,此时的泵浦光8和信号光7在传输方向上的夹角α为1.5°,信号光7与闲频光9在传输方向上的夹角β为9.3°, 相应的,为了满足0类准相位匹配,周期性极化晶体4的周期性畴反转方向和信号光7在传输方向上的夹角τ为79.7°,极化周期Λ为3.6μm。
为了验证本实施例的光参量啁啾脉冲放大器10的性能表现,假设展宽后的3.4μm啁啾脉冲激光在非共线传输维度下的光斑直径为1mm,周期性极化晶体4的长度为5mm,泵浦光的光强为~450MW/cm 2,3.4μm啁啾脉冲激光的初始光强为泵浦光的1‰。根据周期性极化晶体4的折射率公式,对光参量啁啾脉冲放大器10的运行情况进行了数值仿真。为了进一步证明其优越性,分别与对温度不敏感光参量啁啾脉冲放大器(对应图2中的B点,夹角τ为83.6°,极化周期Λ为3.4μm,α为4.5°,β为5.5°),以及,对波长不敏感光参量啁啾脉冲放大器(对应图2中的A点,夹角τ为83.3°,极化周期Λ为2.6μm,α为4.5°,β为9.3°)的仿真数值进行对比。
如图3a-3c所示,信号光的初始带宽为~420nm。在预设的相位匹配温度下(ΔT=0℃),由于对波长不敏感光参量啁啾脉冲放大器(图3b)和本实施例的光参量啁啾脉冲放大器10(图3c)都满足宽带宽的相位匹配条件,因此,两者有着相似的转换效率(分别为42%和40%),相应的,输出信号光7的带宽分别为~390nm和~380nm,基本保留了原有的光谱特征;由于对温度不敏感光参量啁啾脉冲放大器(图3a)不满足宽带宽的相位匹配条件,因此,该对温度不敏感光参量啁啾脉冲放大器出现了严重的增益窄化,转换效率仅为~20.6%,并且输出信号光7的光谱带宽仅为~185nm。
在高平均功率的工作模式下,周期性极化晶体4对激光能量的吸收会造成其实际的工作温度偏离预设的工作温度。如图3d-3f所示,当温度升高至62.5℃(ΔT=40℃),相比在室温的相位匹配条件下,对温度不敏感光参量啁啾脉冲放大器(图3d)和本实施例的光参量啁啾脉冲放大器10(图3f)的转换效率和输出信号光7的光谱均未出现明显的变化,而对波长不敏感光参量啁啾脉冲放大器(图3e)的转换效率则由原来的~42%降到~12%,并且输出信号光7的 光谱带宽也由原来的~390nm降到~210nm,表明其对温度的变化非常敏感,无法适应高平均功率光参量啁啾脉冲放大器的应用需求。
发明人发现,在实际情况下,生产的周期性极化晶体的畴结构与需要的畴结构之间会存在一定的误差,从而影响光参量啁啾脉冲放大器的性能。下面介绍周期性极化晶体4在极化周期Λ上的误差对光参量啁啾脉冲放大器10造成的影响。假定周期性极化晶体4在极化方向τ上无误差,假定泵浦光8与信号光7的夹角α不变,如图4(a)-图4(b)所示,由于周期性极化晶体4的极化周期Λ'偏离预设值Λ,导致光参量啁啾脉冲放大器10的增益谱和温度带宽均明显变差,并且随着误差的增大愈加严重。在本实施例中,通过调整周期性极化晶体4的倾斜角度,使周期性极化晶体4的极化方向τ发生改变,可以降低极化周期的误差对光参量啁啾脉冲放大器10性能的影响。如图4(c)-4(d)所示,通过适当调整周期性极化晶体4的水平维度的倾斜角度(如图5所示),原先出现畸变的增益谱和温度带宽都得到了明显改善。上述结果表明,通过调整周期性极化晶体4的倾斜角度,至少可以补偿周期性极化晶体4的5%的极化周期误差所导致的性能退化。
在可选的实施例中,第一脉冲激光器1选用800nm的钛宝石飞秒脉冲激光器。第二脉冲激光器2选用532nm的皮秒脉冲激光器。具体的,此时的泵浦光8和信号光7在传输方向上的夹角α为7.2°、信号光7和闲频光9在传输方向上的夹角β为15.4°。相应的,为了满足0类准相位匹配,周期性极化晶体4的周期性畴反转的方向和信号光7在传输方向上的夹角τ为80.6°,极化周期Λ为1.2μm。
以上为对本发明所提供的一种对温度变化不敏感的宽带光参量啁啾脉冲放大器的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,包括第一脉冲激光器、第二脉冲激光器、展宽器以及周期性极化晶体,所述第一脉冲激光器产生的信号光经过所述展宽器后与所述第二脉冲激光器产生的泵浦光在所述周期性极化晶体中进行耦合,耦合的过程中能量从泵浦光转移到信号光上从而使信号光放大,同时产生闲频光,其中,经过所述周期性极化晶体的所述信号光、所述泵浦光以及所述闲频光之间非共线,并且相互之间的非共线角能够同时满足对波长、对温度变化不敏感所需的角度关系,所述周期性极化晶体的周期性畴反转结构具有使k s(T 0)、k p(T 0)、k i(T 0)和k g四路波矢构成波矢四边形的能力,所述k s(T 0)表示相位匹配温度T 0下所述信号光中心波长的波矢、所述k p(T 0)表示相位匹配温度T 0下所述泵浦光中心波长的波矢、所述k i(T 0)表示相位匹配温度T 0下所述闲频光中心波长的波矢,所述k g=2π/Λ,表示所述周期性极化晶体的倒格矢,Λ表示周期性极化晶体的极化周期。
  2. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述对波长变化不敏感所需要的角度关系为:
    v icosβ=v s
    其中,v i表示闲频光群速度,v s表示信号光群速度。
    所述对温度变化不敏感所需要的角度关系为:
    Figure PCTCN2019115561-appb-100001
    其中,α表示所述泵浦光与所述信号光的传输方向上的夹角,β表示所述信号光与所述闲频光的传输方向上的夹角,k p(T)表示所述泵浦光的波矢,k s(T)表示所述信号光的波矢,k i(T)表示所述闲频光的波矢,T 0表示所述周期性极化晶体的相位匹配温度,T表示所述周期性极化晶体的工作温度。
  3. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大 器,其特征在于,所述周期性极化晶体的倾斜角度可调节。
  4. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述光参量啁啾脉冲放大器还包括反射镜,所述第二脉冲激光器产生的泵浦光经过反射镜后与经过所述展宽器后的信号光在所述周期性极化晶体中进行耦合。
  5. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述光参量啁啾脉冲放大器还包括压缩器,放大后的信号光经过所述压缩器进行压缩。
  6. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述周期性极化晶体为满足0类准相位匹配的周期性极化铌酸锂晶体,其中,所述周期性极化铌酸锂晶体包含5%的氧化镁。
  7. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述第一脉冲激光器为飞秒脉冲激光器。
  8. 根据权利要求7所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述第一脉冲激光器为中红外飞秒脉冲激光器或者钛宝石飞秒脉冲激光器。
  9. 根据权利要求1所述的对温度变化不敏感的宽带光参量啁啾脉冲放大器,其特征在于,所述第二脉冲激光器为皮秒脉冲激光器。
PCT/CN2019/115561 2019-08-06 2019-11-05 对温度变化不敏感的宽带光参量啁啾脉冲放大器 WO2021022691A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/849,993 US11217959B2 (en) 2019-08-06 2020-04-16 Broadband optical parametric chirped pulse amplifier insensitive to temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910721527.6 2019-08-06
CN201910721527.6A CN110336178B (zh) 2019-08-06 2019-08-06 对温度变化不敏感的宽带光参量啁啾脉冲放大器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/849,993 Continuation US11217959B2 (en) 2019-08-06 2020-04-16 Broadband optical parametric chirped pulse amplifier insensitive to temperature

Publications (1)

Publication Number Publication Date
WO2021022691A1 true WO2021022691A1 (zh) 2021-02-11

Family

ID=68148599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115561 WO2021022691A1 (zh) 2019-08-06 2019-11-05 对温度变化不敏感的宽带光参量啁啾脉冲放大器

Country Status (2)

Country Link
CN (1) CN110336178B (zh)
WO (1) WO2021022691A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336178B (zh) * 2019-08-06 2020-06-30 深圳大学 对温度变化不敏感的宽带光参量啁啾脉冲放大器
CN113189824B (zh) * 2021-04-21 2022-08-09 中国科学院上海光学精密机械研究所 一种基于双非线性光学过程的宽带光参量放大装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2051137A1 (en) * 2007-10-16 2009-04-22 Stichting voor Fundamenteel Onderzoek der Materie Laser system and method for generating and amplifying optical pulses with a tunable output wavelength between approximately 0.75 and 2.5 µm
CN106410577A (zh) * 2016-10-19 2017-02-15 上海交通大学 温度和波长不敏感光参量啁啾脉冲放大器
CN106911056A (zh) * 2017-05-08 2017-06-30 深圳大学 一种宽带光参量啁啾脉冲放大器
CN108155554A (zh) * 2018-01-31 2018-06-12 深圳大学 一种光参量激光放大器制备方法及光参量激光放大器
CN108281877A (zh) * 2018-03-14 2018-07-13 成都师范学院 基于光谱角色散的啁啾激光脉冲频谱整形系统
CN108649419A (zh) * 2018-03-02 2018-10-12 上海交通大学 超高平均功率光参量啁啾脉冲放大器
CN110336178A (zh) * 2019-08-06 2019-10-15 深圳大学 对温度变化不敏感的宽带光参量啁啾脉冲放大器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765050B2 (ja) * 2015-12-24 2020-10-07 澁谷工業株式会社 電磁波発生装置
CN108075356A (zh) * 2016-11-16 2018-05-25 苏州旭创科技有限公司 基于soi结构的热不敏感激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2051137A1 (en) * 2007-10-16 2009-04-22 Stichting voor Fundamenteel Onderzoek der Materie Laser system and method for generating and amplifying optical pulses with a tunable output wavelength between approximately 0.75 and 2.5 µm
CN106410577A (zh) * 2016-10-19 2017-02-15 上海交通大学 温度和波长不敏感光参量啁啾脉冲放大器
CN106911056A (zh) * 2017-05-08 2017-06-30 深圳大学 一种宽带光参量啁啾脉冲放大器
CN108155554A (zh) * 2018-01-31 2018-06-12 深圳大学 一种光参量激光放大器制备方法及光参量激光放大器
CN108649419A (zh) * 2018-03-02 2018-10-12 上海交通大学 超高平均功率光参量啁啾脉冲放大器
CN108281877A (zh) * 2018-03-14 2018-07-13 成都师范学院 基于光谱角色散的啁啾激光脉冲频谱整形系统
CN110336178A (zh) * 2019-08-06 2019-10-15 深圳大学 对温度变化不敏感的宽带光参量啁啾脉冲放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG DAOLONG, MA JINGUI, WANG JING, ZHOU BINGJIE, XIE GUOQIANG, YUAN PENG, ZHU HEYUAN, QIAN LIEJIA: "Temperature- and wavelength-insensitive parametric amplification enabled by noncollinear achromatic phase-matching", SCIENTIFIC REPORTS, vol. 6, no. 1, 1 December 2016 (2016-12-01), XP055778811, DOI: 10.1038/srep36059 *

Also Published As

Publication number Publication date
CN110336178B (zh) 2020-06-30
CN110336178A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
Cerullo et al. Ultrafast optical parametric amplifiers
JP5269764B2 (ja) パルス動作uv及び可視ラマンレーザシステム
CN107247380B (zh) 一种双啁啾频谱光参量放大器及放大方法
Rothhardt et al. High Average Power Near‐Infrared Few‐Cycle Lasers
WO2021068300A1 (zh) 一种可调谐宽带中红外激光系统
CN106329302A (zh) 宽带激光泵浦的双啁啾光参量放大方法及装置
WO2021022691A1 (zh) 对温度变化不敏感的宽带光参量啁啾脉冲放大器
US11009773B2 (en) Dual-chirped spectral optical parametric amplifier and amplification method
WO2018112752A1 (zh) 一种可调谐双波长超快光参量振荡器
US10642127B1 (en) Single Crystal optical parametric amplifier
Chen et al. 3.8 μm mid-infrared optical parametric amplifier based on MgO: PPLN crystal
Vengelis et al. Characteristics of optical parametric oscillators synchronously pumped by second harmonic of femtosecond Yb: KGW laser
CN103401135A (zh) 采用拉曼频率变换将激光放大的方法及其装置
Wang et al. Theoretical and experimental investigation of an efficient pulsed barium tungstate Raman amplifier at 1180 nm
US11217959B2 (en) Broadband optical parametric chirped pulse amplifier insensitive to temperature
US20100020387A1 (en) Chirped-pulse quadratic nonlinearity-based high-energy pulse compressor
WO2022110284A1 (zh) 一种调控213nm激光输出功率的方法及其装置
Haus et al. Boosting quantum efficiency using multi-stage parametric amplification
Zhu et al. The analysis and optimization of broadband fiber optical parametric amplifiers pumped by chirped pulses
Cerullo et al. Solid-state ultrafast optical parametric amplifiers
Lang et al. Efficient tunable UV pulse generation from a green pumped fs-OPCPA
Cheng et al. Efficient two-stage dual-beam noncollinear optical parametric amplifier
US20160103384A1 (en) Method and system for linearizing non-linear optics
Adachi et al. Spectral-phase characterization and adapted compensation of strongly chirped pulses from a tapered fiber
Wang et al. Direct ultrafast parametric amplification pumped by a picosecond thin-disk laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940446

Country of ref document: EP

Kind code of ref document: A1