WO2021022484A1 - 一种天线及基站 - Google Patents

一种天线及基站 Download PDF

Info

Publication number
WO2021022484A1
WO2021022484A1 PCT/CN2019/099471 CN2019099471W WO2021022484A1 WO 2021022484 A1 WO2021022484 A1 WO 2021022484A1 CN 2019099471 W CN2019099471 W CN 2019099471W WO 2021022484 A1 WO2021022484 A1 WO 2021022484A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antenna
dielectric
feeding
radiation
Prior art date
Application number
PCT/CN2019/099471
Other languages
English (en)
French (fr)
Inventor
邓长顺
黄涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/099471 priority Critical patent/WO2021022484A1/zh
Publication of WO2021022484A1 publication Critical patent/WO2021022484A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • This application relates to the technical field of communication equipment, and in particular to an antenna and a base station.
  • GNSS Global Navigation Satellite System
  • the base station mainly uses its timing function to obtain standard time signals from the global navigation satellite system for clock synchronization.
  • the signal received by the receiver is very weak, equivalent to the light emitted by a 25W bulb 1,000 miles away, and the signal is very susceptible to interference, especially human interference.
  • the GPS antenna of the base station is usually placed on a tall building, and the beam is directed to the sky to obtain at least 4 satellite signals.
  • the interference source generally comes from the horizontal or below the horizontal. This requires reducing the antenna gain in the low-elevation area and reducing the interference signal Interference-to-noise ratio, usually using antennas with lower gain and better front and rear at the horizontal plane and below the horizontal plane can effectively suppress interference signals.
  • the choke coil is used to suppress plane waves. It spreads in the horizontal plane to achieve the purpose of anti-interference.
  • the size of the choke coil is generally larger (the diameter of the choke coil is 340mm and the height is 60mm), which in turn leads to a larger height size of the entire antenna, which is not conducive to product miniaturization design.
  • the antenna shown in Figure 1 can also guarantee a maximum gain of 7.7dBic, the horizontal gain is only -10.3dBic, and the cross-polarization gain of the backlobe is -18.3dBic, which has strong anti-interference ability.
  • the feeder network 001 is set under the floor 004 and the antenna 003 is set up above the floor 004, the feeder network 001 is connected to the antenna 003 located in the radome 005 through the feeder probe 002, because the feeder network 001 cannot Bare, in order to protect the feeding network 001, a shielding box 006 needs to be set under the floor 004, so that the feeding network 001 is set in the shielding cavity of the shielding box 006. This results in a larger height dimension of the entire antenna, which is also not conducive to product miniaturization design.
  • the embodiments of the present application provide an antenna and a base station.
  • the main purpose is to set the feed network layer and the radiation layer on the same side of the reference ground layer, eliminate the shielding box used to protect and shield the feed network layer, and reduce the entire antenna
  • the height dimension of the whole antenna can meet the miniaturization design requirements.
  • the present application provides an antenna, the antenna is used to receive GPS signals, and the antenna includes:
  • the radiating layer and the feeding network layer are located on the same side of the reference stratum, and the radiating layer is located between the reference stratum and the feeding network layer;
  • the feeding network layer is connected to the reference formation through a feeding structure, and the radiation layer and the reference formation are coupled through an electromagnetic field.
  • the radiating layer receives GPS signals and generates an induced current, and then an electromagnetic field is formed between the radiating layer and the reference stratum, and the reference stratum generates a corresponding coupling current, which is finally transmitted to the feeding network through the feeding structure Floor. Since the radiating layer and the feeding network layer are located on the same side of the reference stratum, compared with the prior art, the shielding box for shielding and protecting the feeding network layer can be omitted, and only one radome can be used for the radiation layer and the feeding network layer. The electrical network layer is protected at the same time, which not only reduces the number of parts and simplifies the structure of the antenna, but also reduces the height of the entire antenna, so that the structure of the entire antenna is more compact and meets the design requirements of product miniaturization.
  • the first aspect further includes a first dielectric layer and a second dielectric layer, the feed network layer and the radiation layer are located on opposite sides of the first dielectric layer, and the radiation layer The reference formation is located on two opposite sides of the second dielectric layer.
  • the first medium layer is a first medium plate
  • the second medium layer is a second medium plate or an air layer.
  • the first dielectric plate is used as the carrier of the radiating layer and the feeding network layer.
  • the second dielectric layer can be a dielectric plate or an air layer.
  • the air layer simplifies the structure of the entire antenna compared to the dielectric plate and reduces the manufacturing cost.
  • the feed structure includes a feed probe, one end of the feed probe is connected to the feed network layer, and the other end passes through the first dielectric layer, The radiation layer and the second dielectric layer are connected to the reference formation, and the feeding probe is not in contact with the radiation layer.
  • the feed network layer is integrated on a directional coupler chip, the directional coupler chip is carried on a circuit board, and the circuit board is arranged on the first dielectric board, And the directional coupler chip is connected with the feeding probe through a radio frequency cable. Integrating the feed network layer into the directional coupler chip can reduce the manufacturing cost and correspondingly reduce the size of the entire antenna.
  • the power feeding structure includes a The dielectric board and the second dielectric board are connected with a first metallized via, and the feed network layer and the reference ground layer are connected through the first metallized via.
  • the first dielectric layer is a first dielectric plate and the second dielectric layer is an air layer
  • an insulating support is provided between the radiation layer and the reference formation. Pieces to connect. If the air layer is used as the second dielectric layer, the insulating support member supports the radiation layer and the reference ground layer to strengthen and stabilize the entire antenna, so as to improve the antenna connection strength.
  • a resonance frequency adjustment structure is further included, and the resonance frequency adjustment structure is used to adjust the resonance frequency of the antenna.
  • the resonant frequency adjustment structure improves the radio frequency link matching of the entire antenna, thereby improving the transmission efficiency of the antenna.
  • the resonant frequency adjustment structure includes a metal connecting column arranged between the radiation layer and the reference ground layer.
  • the metal connecting column is used as the resonance frequency adjustment structure, which is simple in structure and small in space, which makes the structure of the entire antenna more compact and meets the requirements of miniaturization.
  • the resonance frequency adjustment structure in a case where the first dielectric layer is a first dielectric plate and the second dielectric layer is a second dielectric plate, the resonance frequency adjustment structure includes an Two second metallized vias on the dielectric board, and the radiation layer and the reference ground layer are connected through the second metallized vias.
  • the second metallized via as the resonance frequency adjustment structure can reduce the difficulty of the assembly process, while occupying a small space and meeting the requirements of miniaturization.
  • the reference formation includes a floor, and an outer edge of the floor is formed with a sawtooth structure.
  • the floor with a saw-tooth structure on the outer edge can suppress the propagation of waves whose propagation direction is parallel to the horizontal plane and diffract at the edge of the floor, reduce the side radiation and back radiation of the antenna, and improve the anti-interference ability of the antenna.
  • the radiation layer includes a ring patch.
  • the ring patch can suppress the generation of surface waves, so that the gain of the antenna in the low elevation angle area is small, thereby reducing the interference signal in the horizontal plane and the direction below the horizontal plane and the antenna, so as to increase the anti-interference ability of the antenna.
  • a radome is further included, and the radiation layer and the feeding network layer are located in a cavity formed by the radome.
  • the radiation layer and the feeding network layer are protected at the same time, and there is no need to separately set a shielding box for protecting the feeding network layer.
  • the first aspect further includes an electrically connected filter and a low-noise amplifier.
  • the signal is processed by the filter and low noise amplifier to improve the working performance of the antenna.
  • this application also provides a base station, including:
  • the antenna is used to receive GPS signals
  • the receiver is used for receiving and processing the GPS signal transmitted by the antenna.
  • the base station provided in the embodiment of the present application, because the base station includes the antenna described in any of the above technical solutions, because the radiating layer and the feeding network layer in the antenna are located on the same side of the reference ground, only one radome is required for specific installation. The radiation layer and the feed network layer can be protected at the same time. Compared with the prior art, there is no need to separately set a shielding box to shield the feed network layer, which reduces the shielding box and correspondingly reduces the height of the entire antenna. , In order to make the structure of the antenna more compact and miniaturized.
  • Fig. 1 is a schematic structural diagram of an antenna in the prior art
  • FIG. 2 is a schematic structural diagram of an antenna according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of the antenna according to the embodiment of the application after the radome is removed;
  • Figure 4 is a top view of Figure 3;
  • FIG. 5 is a schematic structural diagram of the antenna according to the embodiment of the application after the radome is removed;
  • FIG. 6 is a schematic structural diagram of the antenna according to the embodiment of the application after the radome is removed;
  • FIG. 7 is a schematic structural diagram of the antenna according to the embodiment of the application after the radome is removed;
  • FIG. 8 is a schematic structural diagram of the antenna according to the embodiment of the application after the radome is removed;
  • Figure 9 is a top view of Figure 8.
  • Fig. 10 is a vertical plane pattern of the antenna according to the embodiment of the application.
  • an embodiment of the present application provides an antenna for receiving GPS signals.
  • the antenna includes: a reference ground layer 1, a radiation layer 2, and a feeding network layer 3, and a radiation layer 2 and a feeding network layer. 3 is located on the same side of the reference stratum 1, and the radiation layer 2 is located between the reference stratum 1 and the feeding network layer 3; the feeding network layer 3 is connected to the reference stratum 1 through the feeding structure 4, and the radiation layer 2 is connected to the reference stratum 1. They are coupled by electromagnetic fields.
  • the working process of the antenna is as follows: for specific use, referring to FIG. 4, the signal input terminal 10 is connected to the radiation layer 2, and the electrical signal is transmitted from the signal input terminal 10 to the radiation layer 2, and the radiation layer 2 receives the GPS The signal generates an induced current, and then an electromagnetic field is formed between the radiation layer 2 and the reference layer 1.
  • the reference layer 1 generates a corresponding coupling current, which is finally transmitted to the feeding network layer 3 through the feeding structure 4 to realize GPS signal reception .
  • the radiating layer 2 and the feeding network layer 3 are located on the same side of the reference stratum 1, not on opposite sides of the reference stratum 1, in order to protect the radiating layer 2 and the feeding network layer 3, only one
  • the radome 5 can be realized, that is, the radiating layer 2 and the feeding network layer 3 are arranged in the cavity formed by the radome 5.
  • the antenna provided by the embodiment of the present application not only removes the shielding cover, but also simplifies the structure of the entire antenna, so that the structure of the entire antenna is more compact, especially the height direction of the entire antenna is reduced.
  • the upper size reduces the space occupied by the antenna and meets the requirements for product miniaturization.
  • the size in the height direction P of the antenna refers to the size along the stacking direction of the reference stratum 1, the radiating layer 2 and the feeding network layer 3.
  • the radiating layer 2 can be a ring patch, because the ring patch can suppress the generation of surface waves, so the antenna low-elevation area has a small gain, which can reduce the interference in the horizontal plane and the direction below the horizontal plane.
  • the signal goes to the antenna to improve the anti-interference ability of the antenna.
  • the radiation layer 2 can also adopt other structures. The application does not limit the specific structure of the radiation layer 2, and any structure falls within the protection scope of the application.
  • the reference stratum 1 can be a floor, and the floor is used as the reference stratum, which has a simple structure and is easy to implement.
  • a sawtooth structure 101 is formed on the outer edge of the floor.
  • the zigzag structure 101 can suppress the wave propagation and the wave diffraction at the edge of the floor, thereby reducing the radiation of the wave on the side of the floor and the back of the floor. Radiation, ultimately improve the anti-interference ability of the antenna.
  • the teeth of the zigzag structure 101 on the outer edge of the floor can be triangular, quadrilateral, or other shapes.
  • the specific structure and size of the zigzag structure 101 are not limited here, and any structure is in this case. Within the scope of protection applied for.
  • the antenna provided by the embodiment of the present application further includes a first dielectric layer and a second dielectric layer.
  • the feed network layer 3 and the radiation layer 2 are located on opposite sides of the first dielectric layer, and the radiation layer 2 and the reference ground layer 1 are located on the second medium. Opposite sides of the layer.
  • the first dielectric layer is the first dielectric plate 6
  • the second dielectric layer is the second dielectric plate 71
  • the feed network layer 3 and the radiation layer 2 are located on the first dielectric plate 6.
  • the radiation layer 2 and the reference ground layer 1 are located on opposite sides of the second dielectric plate 71.
  • the first dielectric board 6 and the second dielectric board 71 serve as the carrier of the feed network layer 3, the radiation layer 2 and the reference ground layer 1, which can make the structure of the entire antenna more stable, the connection strength is better, and the working performance is more stable.
  • the materials of the first dielectric plate 6 and the second dielectric plate 71 are made of insulating materials, for example, microwave composite materials or polytetrafluoroethylene materials are selected.
  • the plates 71 may be connected together by an adhesive layer.
  • the first dielectric layer is the first dielectric plate 6
  • the second dielectric layer is the air layer 72.
  • the entire antenna In order to increase the connection strength between the radiation layer 2 and the reference ground layer 1, the entire antenna For stability, the radiation layer 2 and the reference ground layer 1 are connected by an insulating support 9, that is, the radiation layer 2 and the reference ground layer 1 are supported by the insulating support 9.
  • the air layer 72 is used as the second dielectric layer. Compared with the use of a dielectric plate as the dielectric layer, the technical effect achieved is that the manufacturing cost is reduced.
  • the feed structure 4 has multiple implementation modes.
  • the feed structure includes a feed probe 41.
  • One end of the feed probe 41 is connected to the feed network layer 3, and the other end It passes through the first dielectric plate 6, the radiation layer 2 and the second dielectric plate 71 in sequence to connect to the reference ground layer 1, and the feeding probe 41 does not contact the radiation layer 2.
  • the first dielectric plate 6, the radiation layer 2 and the second dielectric plate 71 may all be provided with through holes for the feed probe 41 to pass through, and the through holes and the feed probe 41 opened on the radiation layer 2 are Gap fit, so that the feeding probe 41 does not contact the radiating layer 2.
  • the feed probe 41 is used as the feed structure to connect the feed network layer and the reference ground.
  • the structure is simple, and the feed probe 41 transmits electrical signals relatively stable.
  • the number of the feeding probes 41 can be one, two or four.
  • the specific number of the feeding probes 41 is not limited here, and it can be determined according to the number of signals distributed by the feeding network layer 3 in specific implementation.
  • the feeding network layer 3 and the radiating layer 2 provided by the embodiment of the present application are located on the same side of the reference stratum 1, and the feeding network layer 3 is located above the radiating layer 2.
  • the feeding probe 41 is used as the feeding structure, the feeding The probe 41 passes through the radiating layer 2 (not in contact with the radiating layer 2) and is connected to the reference stratum 1. Compared with the prior art, the use of this feeding method will reduce the height of the entire antenna.
  • the feed structure includes a first metallized via 42 opened on the first dielectric plate 6 and the second dielectric plate 71 and communicated with each other, the feed network layer 3 and the reference ground layer 1. It is connected through the first metallization via 42.
  • the first metalized via 42 is used for feeding.
  • the number of parts is reduced, and the structure of the entire antenna is improved; the second is that the installation process is reduced. Effectively avoid the phenomenon that the process is complicated when installing and welding the feed probe, the welding quality is difficult to standardize, and even the phenomenon that affects the performance of the entire antenna.
  • the feeding structure includes a feeding probe 41.
  • One end of the feeding probe 41 is connected to the feeding network layer 3, and the other end passes through the first dielectric plate 6 and the radiation layer 2 in sequence.
  • the air layer 72 is connected to the reference stratum 1, and the feeding probe 41 is not in contact with the radiation layer 2.
  • the feeder network layer is integrated on the directional coupler chip 12.
  • the directional coupler chip 12 is carried on the circuit board 11, and the circuit board 11 is arranged on the first medium. On the board 6, and the directional coupler chip 12 is connected to the feed probe 41 through the radio frequency cable 15.
  • the directional coupler chip 12 is carried on the circuit board 11.
  • the circuit board 11 integrated with the directional coupler chip 12 needs to be installed
  • a radio frequency cable 15 is used to connect the port of the directional coupler chip 12 to the feed probe 41, which will reduce the manufacturing cost, further reduce the space occupied by the entire antenna, and also Reduce the difficulty of assembly process and improve assembly efficiency.
  • the directional coupler chip 12 may be a four-output directional coupler chip 12.
  • the antenna provided by the embodiment of the present application further includes a resonance frequency adjustment structure, which is used to adjust the resonance frequency of the antenna to improve the radio frequency link matching of the entire antenna, thereby improving the transmission of the antenna. effectiveness.
  • the resonance frequency adjusting structure includes a metal connecting pillar 81 disposed between the radiation layer 2 and the reference ground layer 1.
  • the metal connecting post 81 is used as the resonance frequency adjustment structure, which has a simple structure and a small space occupation, which makes the structure of the entire antenna more compact and meets the requirements of miniaturization.
  • the second dielectric layer is the second dielectric plate 71
  • the second dielectric plate 71 is provided with a second metalized via 82, that is, the second metalized
  • the hole 82 is used as a resonant frequency adjustment structure. Compared with the metal connecting post 81, it reduces the number of parts and improves the structure compactness of the entire antenna; second, it reduces the installation process, which can effectively avoid the installation and welding of the metal connecting post 81. The process is complicated.
  • the antenna further includes a filter 14 and a low noise amplifier 13 electrically connected.
  • the filter 14 is used to process the signal input from the signal input terminal to separate the useful frequency signal and filter out the useless other frequency signals.
  • the low noise amplifier 13 is amplifying the signal for the feed network layer 3 to process .
  • the radiation on the horizontal plane and the back of the antenna is very small, and the front-to-back ratio of the total power is large, and the front-to-rear ratio of the total power has reached 20dB.
  • the front-to-rear ratio of the total power is obviously improved, thereby improving the anti-interference ability of the antenna.
  • an embodiment of the present application also provides a base station, including a receiver and the antenna provided in the foregoing embodiment.
  • the antenna is used to receive GPS signals
  • the receiver is used to receive and process GPS signals transmitted by the antenna.
  • the radiating layer and the feeding network layer of the antenna are located on the same side of the reference stratum.
  • the radiating layer and the feeding network layer are installed in the cavity of the radome to protect the radiating layer and the feeding network layer at the same time, so that there is no need to set up a radome, but also one for protection
  • the shielding box at the feeding network layer is shielded.
  • the antenna in the base station provided in the embodiment of the present application can omit a shielding box, which will correspondingly simplify the structure of the antenna, reduce the height of the antenna, and make the entire antenna
  • the structure is more compact.
  • the radiation layer and the feed network layer can be maintained at the same time by opening the radome.

Abstract

本申请实施例提供一种天线及基站,涉及通信设备技术领域,天线用于接收GPS信号,天线包括:参考地层、辐射层和馈电网络层;辐射层和馈电网络层位于参考地层的同一侧,且辐射层位于参考地层和馈电网络层之间;馈电网络层通过馈电结构与参考地层连接,辐射层与参考地层之间通过电磁场耦合。由于辐射层和馈电网络层位于参考地层的同一侧,相比现有技术,这样就可省略用于屏蔽和保护馈电网络层的屏蔽盒,仅需一个天线罩就可对辐射层、馈电网络层同时进行保护,这样既减少了零部件数量,简化了天线的结构,也可减少整个天线的高度尺寸,以使整个天线的结构更加紧凑,符合产品小型化设计要求。

Description

一种天线及基站 技术领域
本申请涉及通信设备技术领域,尤其涉及一种天线及基站。
背景技术
全球导航卫星系统(Global Navigation Satellite,GNSS)被广泛运用于导航、定位、测距以及授时等领域,基站主要使用其授时功能,从全球导航卫星系统上获取标准时间信号进行时钟同步。然而由于卫星距离地球20000千米,接收机接收到的信号十分微弱,相当于1000英里外一个25W的灯泡发出的光,信号非常容易受到干扰,特别是人为施放的干扰。
基站的GPS天线通常放置在高楼之上,波束定向指向天空以获取至少4颗卫星信号,其干扰源一般来自水平面或者水平面以下,这就要求减小天线低俯仰角区域的增益,降低干扰信号的干噪比,通常使用水平面以及水平面以下增益较低、前后比较好的天线,可以有效抑制干扰信号。
现有技术中,一种是通过在天线的下方增加扼流圈,这样天线的最大增益就可以达到8dBic,水平面增益为-10dBic,后瓣交叉极化增益为-12dBic,利用扼流圈抑制平面波在水平面传播,达到抗干扰的目的,但是一般扼流圈的尺寸较大(扼流圈的直径为340mm,高度为60mm),进而导致整个天线的高度尺寸较大,不利于产品小型化设计。
如图1所示的天线也可保障最大增益为7.7dBic的情况下,水平面的增益只有-10.3dBic,后瓣的交叉极化增益为-18.3dBic,具有较强的抗干扰能力。但是,由于馈电网络001设置在地板004的下方,天线003设置在地板004的上方,馈电网络001通过馈电探针002与位于天线罩005内的天线003连接,由于馈电网络001不能裸露,为了保护馈电网络001,需要在地板004的下方设置屏蔽盒006,以使馈电网络001设置在屏蔽盒006的屏蔽腔内。这样导致整个天线的高度尺寸也较大,同样不利于产品小型化设计。
发明内容
本申请的实施例提供一种天线及基站,主要目的是将馈电网络层与辐射层设置在参考地层的同一侧,取消用于保护和屏蔽馈电网络层的屏蔽盒,减小了整个天线的高度尺寸,以使整个天线满足小型化设计要求。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请提供了一种天线,所述天线用于接收GPS信号,所述天线包括:
参考地层、辐射层和馈电网络层;
所述辐射层和所述馈电网络层位于所述参考地层的同一侧,且所述辐射层位于所述参考地层和所述馈电网络层之间;
所述馈电网络层通过馈电结构与所述参考地层连接,所述辐射层与所述参考地层之间通过电磁场耦合。
本申请实施例提供的天线,辐射层接收到GPS信号,产生感应电流,进而在辐射层与参考地层之间形成电磁场,参考地层产生相对应的耦合电流,最终通过馈电结构传送至馈电网络层。由于辐射层和馈电网络层位于参考地层的同一侧,相比现有技术,这样就可省略用于屏蔽和保护馈电网络层的屏蔽盒,仅需一个天线罩就可对辐射层、馈电网络层同时进行保护,这样既减少了零部件数量,简化了天线的结构,也可减少整个天线的高度尺寸,以使整个天线的结构更加紧凑,符合产品小型化设计要求。
在第一方面可能的实现方式中,还包括第一介质层和第二介质层,所述馈电网络层和所述辐射层位于所述第一介质层的相对的两侧,所述辐射层与所述参考地层位于所述第二介质层的相对的两侧。通过第一介质层和第二介质层对馈电网络层、辐射层和参考地层的承载,可使整个天线的结构更加稳定,使用性能更优。
在第一方面可能的实现方式中,所述第一介质层为第一介质板,所述第二介质层为第二介质板或空气层。采用第一介质板作为辐射层和馈电网络层的载体,第二介质层可以选用介质板,也可以选用空气层,空气层相比介质板简化了整个天线的结构,降低制造成本。
在第一方面可能的实现方式中,所述馈电结构包括馈电探针,所述馈电探针的一端与所述馈电网络层连接,另一端依次穿过所述第一介质层、所述辐射层和所述第二介质层与所述参考地层连接,且所述馈电探针与所述辐射层不接触。
在第一方面可能的实现方式中,所述馈电网络层集成于定向耦合器芯片上,所述定向耦合器芯片承载在线路板上,所述线路板设置在所述第一介质板上,且定向耦合器芯片通过射频线缆与所述馈电探针连接。将馈电网络层集成于定向耦合器芯片,这样可降低制造成本,相对应的也会减小整个天线的尺寸。
在第一方面可能的实现方式中,在所述第一介质层为第一介质板,所述第二介质层为第二介质板的情况下,所述馈电结构包括开设在所述第一介质板和所述第二介质板上且相连通的第一金属化过孔,所述馈电网络层和所述参考地层通过所述第一金属化过孔连接。采用第一金属化过孔进行馈电,相比采用馈电探针的馈电方式,可避免安装和焊接馈电探针时工艺复杂,焊接质量很难标准化的现象,进而可能会对整个天线性能造成影响的现象。
在第一方面可能的实现方式中,在所述第一介质层为第一介质板,所述第二介质层为空气层的情况下,所述辐射层与所述参考地层之间通过绝缘支撑件连接。若采用空气层作为第二介质层时,通过绝缘支撑件对辐射层和参考地层之间进行支撑,起到加固、稳定整个天线,以提高天线连接强度的作用。
在第一方面可能的实现方式中,还包括谐振频率调节结构,所述谐振频率调节结构用于调节所述天线的谐振频率。通过谐振频率调节结构提高整个天线的射频链路匹配性,进而提高天线的发送效率。
在第一方面可能的实现方式中,所述谐振频率调节结构包括设置在所述辐射层与所述参考地层之间的金属连接柱。采用金属连接柱作为谐振频率调节结构,结构简单,占用空间小,使整个天线的结构更加紧凑,满足小型化设计要求。
在第一方面可能的实现方式中,在所述第一介质层为第一介质板,所述第二介质层为第二介质板的情况下,所述谐振频率调节结构包括开设在所述第二介质板上的第 二金属化过孔,所述辐射层和所述参考地层通过所述第二金属化过孔连接。采用第二金属化过孔作为谐振频率调节结构,可降低装配工艺难度,同时占用空间小,满足小型化设计要求。
在第一方面可能的实现方式中,所述参考地层包括地板,所述地板的外缘形成有锯齿状结构。外缘具有锯齿状结构的地板可抑制传播方向平行于水平面的波的传播以及在地板的边缘绕射,减小了天线的侧面辐射和背向辐射,提高天线的抗干扰能力。
在第一方面可能的实现方式中,所述辐射层包括圆环贴片。圆环贴片能抑制表面波的产生,以使天线低俯仰角区域的增益很小,进而减小水平面以及水平面以下方向的干扰信号进而天线,达到增加天线抗干扰的能力。
在第一方面可能的实现方式中,还包括天线罩,所述辐射层和所述馈电网络层位于所述天线罩形成的腔体内。通过将辐射层和馈电网络层位于天线罩形成的腔体内,以对辐射层和馈电网络层同时进行保护,无需单独设置用于保护馈电网络层的屏蔽盒。
在第一方面可能的实现方式中,还包括电连接的滤波器和低噪音放大器。通过滤波器和低噪音放大器对信号的处理,以提高天线的工作性能。
第二方面,本申请还提供了一种基站,包括:
接收机,上述第一方面可能的实现方式中的天线;
所述天线用于接收GPS信号;
所述接收机用于接收所述天线传送的所述GPS信号并进行处理。
本申请实施例提供的基站,由于该基站包括上述任一技术方案所述的天线,因为天线中的辐射层和馈电网络层位于参考地层的同一侧,具体安装时,仅需一个天线罩就可同时对辐射层和馈电网络层进行保护,相比现有技术,无需再单独设置屏蔽盒屏蔽保护馈电网络层,减少了屏蔽盒,也相对应的就会减小整个天线的高度尺寸,以使天线的结构更加紧凑,更加小型化。
附图说明
图1为现有技术中一种天线的结构示意图;
图2为本申请实施例天线的结构示意图;
图3为本申请实施例天线去掉天线罩后的结构示意图;
图4为图3的俯视图;
图5为本申请实施例天线去掉天线罩后的结构示意图;
图6为本申请实施例天线去掉天线罩后的结构示意图;
图7为本申请实施例天线去掉天线罩后的结构示意图;
图8为本申请实施例天线去掉天线罩后的结构示意图;
图9为图8的俯视图;
图10为本申请实施例天线的铅垂面方向图。
具体实施方式
本申请实施例涉及天线及基站,下面结合附图对天线及基站进行详细描述。
一方面,本申请实施例提供一种天线,该天线用于接收GPS信号,参照图2、该天线包括:参考地层1、辐射层2和馈电网络层3,辐射层2和馈电网络层3位于参考地层1的同一侧,且辐射层2位于参考地层1和馈电网络层3之间;馈电网络层3通 过馈电结构4与参考地层1连接,辐射层2与参考地层1之间通过电磁场耦合。
本申请实施例提供的天线的工作过程为:具体使用时,参照图4,将信号输入端10与辐射层2连接,电信号由信号输入端10传送至辐射层2,辐射层2接收到GPS信号,产生感应电流,进而在辐射层2与参考地层1之间形成电磁场,参考地层1产生相对应的耦合电流,最终通过馈电结构4传送至馈电网络层3,以实现GPS信号的接收。
参照图2,由于辐射层2和馈电网络层3位于参考地层1的同一侧,并非位于参考地层1的相对的两侧,为了对辐射层2和馈电网络层3进行保护,仅需一个天线罩5就可以实现,即将辐射层2和馈电网络层3设置在天线罩5形成的腔体内,相比现有技术,无需设置一个天线罩对辐射层2进行保护,同时设置一个屏蔽罩对馈电网络层3进行保护,所以,本申请实施例提供的天线不仅去掉了屏蔽罩,简化了整个天线的结构,以使整个天线的结构更加紧凑,尤其是减小了整个天线的高度方向上的尺寸,减少了天线所占用的空间,满足对产品小型化设计的要求。
需要说明的是:参照图2,天线的高度方向P上的尺寸指沿参考地层1、辐射层2和馈电网络层3的层叠方向上的尺寸。
在一些实施方式中,辐射层2可以采用圆环贴片,因为圆环贴片能够抑制表面波的产生,所以天线低俯仰角区域的增益很小,这样能够减小水平面以及水平面以下方向的干扰信号进而天线,以提高天线的抗干扰能力。当然,辐射层2也可以采用其他结构。本申请对辐射层2的具体结构不做限定,任何结构均在本申请的保护范围之内。
参考地层1可以为地板,采用地板作为参考地层,结构简单,便于实施。
为了进一步提高天线的抗干扰能力,参照图4,地板的外缘形成有锯齿状结构101。当平行于水平面的波沿着地板传播时,锯齿状结构101就可抑制波的传播以及波在地板的边缘绕射,进而会减小波在地板的侧面的辐射,以及在地板的背向的辐射,最终提高天线的抗干扰能力。
示例的,地板的外缘的锯齿状结构101的齿可以是三角形,也可以是四边形,也可以是其他形状,在此对锯齿状结构101的具体结构、尺寸不做限定,任何结构均在本申请的保护范围之内。
本申请实施例提供的天线还包括第一介质层和第二介质层,馈电网络层3和辐射层2位于第一介质层的相对的两侧,辐射层2与参考地层1位于第二介质层的相对的两侧。在一些实施方式中,参照图3和图5,第一介质层为第一介质板6,第二介质层为第二介质板71,馈电网络层3和辐射层2位于第一介质板6的相对的两侧,辐射层2与参考地层1位于第二介质板71的相对的两侧。第一介质板6和第二介质板71作为馈电网路层3、辐射层2和参考地层1的载体,可使整个天线的结构更加稳定,连接强度更好,工作性能更加稳定。具体实施时,第一介质板6和第二介质板71的材料选用绝缘材料制成,例如,选择微波复合材料制成、或聚四氟乙烯材料制成,第一介质板6和第二介质板71可以通过粘结层连接在一起。在另外一些实施方式中,参照图6,第一介质层为第一介质板6,第二介质层为空气层72,为了增加辐射层2与参考地层1之间的连接强度,保障整个天线的稳固性,辐射层2与参考地层1之间通过绝缘支撑件9连接,即采用绝缘支撑件9将辐射层2与参考地层1进行支撑。本实施方式 采用空气层72作为第二介质层,相比采用介质板作为介质层,所达到的技术效果为降低了制造成本。
馈电结构4具有多种实现方式,在一些实施方式中,参照图3和图4,馈电结构包括馈电探针41,馈电探41针的一端与馈电网络层3连接,另一端依次穿过第一介质板6、辐射层2和第二介质板71与参考地层1连接,且馈电探针41与辐射层2不接触。具体实施时,可在第一介质板6、辐射层2和第二介质板71上均开设供馈电探针41穿过的穿孔,且辐射层2上开设的穿孔与馈电探针41为间隙配合,以使馈电探针41与辐射层2不接触,馈电探针41穿过第一介质板6、辐射层2和第二介质板71上开设的穿孔后,其一端与馈电网络层3焊接,另一端与参考地层1焊接。采用馈电探针41作为馈电结构,以连接馈电网络层和参考地层,结构简单,且馈电探针41传送电信号比较稳定。馈电探针41的数量可以为一个、两个或四个,在此对馈电探针41的具体数量不做限定,具体实施时可根据馈电网路层3分配的信号的路数决定。
本申请实施例提供的馈电网络层3和辐射层2位于参考地层1的同侧,且馈电网络层3位于辐射层2的上方,采用馈电探针41作为馈电结构时,馈电探针41穿过辐射层2(与辐射层2不接触)与参考地层1连接,相比现有技术,采用这种馈电方式,会使整个天线的高度尺寸减小。
在另外一些实施方式中,参照图5,馈电结构包括开设在第一介质板6和第二介质板71上且相连通的第一金属化过孔42,馈电网络层3和参考地层1通过第一金属化过孔42连接。采用第一金属化过孔42进行馈电,相比采用馈电探针41的馈电方式,一是减少了零部件数量,提高了整个天线的结构紧凑性;二是降低了安装工艺,可有效避免安装和焊接馈电探针时工艺复杂,焊接质量很难标准化的现象,甚至会对整个天线性能造成影响的现象。
在另外一些实施方式中,参照图6,馈电结构包括馈电探针41,馈电探41针的一端与馈电网络层3连接,另一端依次穿过第一介质板6、辐射层2和空气层72与参考地层1连接,且馈电探针41与辐射层2不接触。为了降低安装工艺难度,提高装配效率,参照图8和图9,馈电网络层集成于定向耦合器芯片12上,定向耦合器芯片12承载在线路板11上,线路板11设置在第一介质板6上,且定向耦合器芯片12通过射频线缆15与馈电探针41连接。也就是说,通过将馈电网络层集成在定向耦合器芯片12上,定向耦合器芯片12承载在线路板11上,具体安装时,仅需将集成有定向耦合器芯片12的线路板11安装在第一介质板6上,再采用射频线缆15将定向耦合器芯片12的端口与馈电探针41连接,这样就会降低制造成本,进一步减小整个天线所占用的空间,且也会降低装配工艺难度,提高装配效率。定向耦合器芯片12可以为四输出口定向耦合器芯片12。
为了提高天线的发送效率,本申请实施例提供的天线还包括谐振频率调节结构,该谐振频率调节结构用于调节天线的谐振频率,以提高整个天线的射频链路匹配性,进而提高天线的发送效率。
示例的,参照图3、图5和图6,谐振频率调节结构包括设置在辐射层2与参考地层1之间的金属连接柱81。采用金属连接柱81作为谐振频率调节结构,结构简单,占用空间小,使整个天线的结构更加紧凑,满足小型化设计要求。
在第二介质层为第二介质板71的情况下,为了进一步简化结构,降低安装工艺,参照图7,第二介质板71上开设有第二金属化过孔82,即第二金属化过孔82作为谐振频率调节结构,相比金属连接柱81,一是减少了零部件数量,提高了整个天线的结构紧凑性;二是降低了安装工艺,可有效避免安装和焊接金属连接柱81时工艺复杂的现象。
为了进一步提高天线的工作性能,参照图8和图9,该天线还包括电连接的滤波器14和低噪音放大器13。滤波器14用于将信号输入端输入的信号进行处理,以将有用的频率信号分离出来而滤除无用的其他频率信号,低噪音放大器13在对信号进行放大,以便馈电网络层3进行处理。
参照图10,从本申请实施例提供的天线的铅垂面方向图可以看出,该天线的水平面和背面的辐射很小,且总功率前后比很大,总功率前后比已经达到20dB,相比现有技术中总功率前后比为9dB左右的天线,明显提高了总功率前后比,进而提高了天线的抗干扰能力。
另一方面,本申请实施例还提供了一种基站,包括接收机和上述实施例提供的天线,天线用于接收GPS信号,接收机用于接收天线传送的GPS信号并进行处理。
由于该基站包括上述实施例提供的天线,天线的辐射层和馈电网络层位于参考地层的同一侧,在具体安装时,只需在参考地层的设置有辐射层和馈电网络层的一侧设置天线罩,辐射层和馈电网络层均安装在天线罩的腔体内,以对辐射层和馈电网络层同时进行保护,这样就不用设置一个天线罩的情况下,还设置一个用于保护屏蔽馈电网络层的屏蔽盒,所以,本申请实施例提供的基站中的天线可省略一个屏蔽盒,这样就会相对应的简化天线的结构,且减小天线的高度尺寸,并且使整个天线的结构更加紧凑,具体维护时,只需打开天线罩就可对辐射层和馈电网络层同时进行维护。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种天线,所述天线用于接收GPS信号,其特征在于,包括:
    参考地层、辐射层和馈电网络层;
    所述辐射层和所述馈电网络层位于所述参考地层的同一侧,且所述辐射层位于所述参考地层和所述馈电网络层之间;
    所述馈电网络层通过馈电结构与所述参考地层连接,所述辐射层与所述参考地层之间通过电磁场耦合。
  2. 根据权利要求1所述的天线,其特征在于,还包括第一介质层和第二介质层,所述馈电网络层和所述辐射层位于所述第一介质层的相对的两侧,所述辐射层与所述参考地层位于所述第二介质层的相对的两侧。
  3. 根据权利要求2所述的天线,其特征在于,所述第一介质层为第一介质板,所述第二介质层为第二介质板或空气层。
  4. 根据权利要求3所述的天线,其特征在于,所述馈电结构包括馈电探针,所述馈电探针的一端与所述馈电网络层连接,另一端依次穿过所述第一介质层、所述辐射层和所述第二介质层与所述参考地层连接,且所述馈电探针与所述辐射层不接触。
  5. 根据权利要求4所述的天线,其特征在于,所述馈电网络层集成于定向耦合器芯片上,所述定向耦合器芯片承载在线路板上,所述线路板设置在所述第一介质板上,且定向耦合器芯片通过射频线缆与所述馈电探针连接。
  6. 根据权利要求3所述的天线,其特征在于,在所述第一介质层为第一介质板,所述第二介质层为第二介质板的情况下,所述馈电结构包括开设在所述第一介质板和所述第二介质板上且相连通的第一金属化过孔,所述馈电网络层和所述参考地层通过所述第一金属化过孔连接。
  7. 根据权利要求3-6中任一项所述的天线,其特征在于,在所述第一介质层为第一介质板,所述第二介质层为空气层的情况下,所述辐射层与所述参考地层之间通过绝缘支撑件连接。
  8. 根据权利要求3-7中任一项所述的天线,其特征在于,还包括谐振频率调节结构,所述谐振频率调节结构用于调节所述天线的谐振频率。
  9. 根据权利要求8所述的天线,其特征在于,所述谐振频率调节结构包括设置在所述辐射层与所述参考地层之间的金属连接柱。
  10. 根据权利要求8所述的天线,其特征在于,在所述第一介质层为第一介质板,所述第二介质层为第二介质板的情况下,所述谐振频率调节结构包括开设在所述第二介质板上的第二金属化过孔,所述辐射层和所述参考地层通过所述第二金属化过孔连接。
  11. 根据权利要求1-10中任一项所述的天线,其特征在于,所述参考地层包括地板,所述地板的外缘形成有锯齿状结构。
  12. 根据权利要求1-11中任一项所述的天线,其特征在于,还包括天线罩,所述辐射层和所述馈电网络层位于所述天线罩形成的腔体内。
  13. 一种基站,其特征在于,包括:
    接收机,如权利要求1~12中任一项所述的天线;
    所述天线用于接收GPS信号;
    所述接收机用于接收所述天线传送的所述GPS信号并进行处理。
PCT/CN2019/099471 2019-08-06 2019-08-06 一种天线及基站 WO2021022484A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099471 WO2021022484A1 (zh) 2019-08-06 2019-08-06 一种天线及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099471 WO2021022484A1 (zh) 2019-08-06 2019-08-06 一种天线及基站

Publications (1)

Publication Number Publication Date
WO2021022484A1 true WO2021022484A1 (zh) 2021-02-11

Family

ID=74503285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099471 WO2021022484A1 (zh) 2019-08-06 2019-08-06 一种天线及基站

Country Status (1)

Country Link
WO (1) WO2021022484A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039202A (zh) * 2021-11-03 2022-02-11 北京万集科技股份有限公司 一种天线
CN114824772A (zh) * 2022-05-06 2022-07-29 嘉兴金领电子有限公司 轻质圆极化天线及其安装方法
CN114865292A (zh) * 2022-04-26 2022-08-05 西安矩阵无线科技有限公司 一种uhf小型化低剖面天线
WO2023226758A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 辐射单元、基站天线及基站天馈系统
CN114039202B (zh) * 2021-11-03 2024-05-14 北京万集科技股份有限公司 一种天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167129B1 (en) * 2004-10-12 2007-01-23 Sandia Corporation Reproducible, high performance patch antenna array apparatus and method of fabrication
US20130207867A1 (en) * 2012-02-10 2013-08-15 Honeywell International, Inc. Antenna with effective and electromagnetic bandgap (ebg) media and related system and method
CN103337696A (zh) * 2013-04-08 2013-10-02 中国人民解放军空军工程大学 变极化平板天线单元
CN103474766A (zh) * 2013-09-23 2013-12-25 深圳市华信天线技术有限公司 一种天线装置及接收系统
CN104505577A (zh) * 2014-12-26 2015-04-08 刘良骥 一种宽带高增益叉车天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7167129B1 (en) * 2004-10-12 2007-01-23 Sandia Corporation Reproducible, high performance patch antenna array apparatus and method of fabrication
US20130207867A1 (en) * 2012-02-10 2013-08-15 Honeywell International, Inc. Antenna with effective and electromagnetic bandgap (ebg) media and related system and method
CN103337696A (zh) * 2013-04-08 2013-10-02 中国人民解放军空军工程大学 变极化平板天线单元
CN103474766A (zh) * 2013-09-23 2013-12-25 深圳市华信天线技术有限公司 一种天线装置及接收系统
CN104505577A (zh) * 2014-12-26 2015-04-08 刘良骥 一种宽带高增益叉车天线

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039202A (zh) * 2021-11-03 2022-02-11 北京万集科技股份有限公司 一种天线
CN114039202B (zh) * 2021-11-03 2024-05-14 北京万集科技股份有限公司 一种天线
CN114865292A (zh) * 2022-04-26 2022-08-05 西安矩阵无线科技有限公司 一种uhf小型化低剖面天线
CN114865292B (zh) * 2022-04-26 2024-04-05 西安矩阵无线科技有限公司 一种uhf小型化低剖面天线
CN114824772A (zh) * 2022-05-06 2022-07-29 嘉兴金领电子有限公司 轻质圆极化天线及其安装方法
CN114824772B (zh) * 2022-05-06 2024-03-26 嘉兴金领电子有限公司 轻质圆极化天线及其安装方法
WO2023226758A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 辐射单元、基站天线及基站天馈系统

Similar Documents

Publication Publication Date Title
US6646618B2 (en) Low-profile slot antenna for vehicular communications and methods of making and designing same
US9112270B2 (en) Planar array feed for satellite communications
WO2021022484A1 (zh) 一种天线及基站
US6697019B1 (en) Low-profile dual-antenna system
US8044862B2 (en) Antenna system having electromagnetic bandgap
US9258884B2 (en) Suppression of current component using EBG structure
WO2001041257A1 (en) Antenna device with transceiver circuitry
US11201394B2 (en) Antenna device and electronic device
US20230223709A1 (en) Antenna device, array of antenna devices, and base station with antenna device
US20230335902A1 (en) Multi-band antenna and communication device
US5945950A (en) Stacked microstrip antenna for wireless communication
US20150214613A1 (en) Antenna assembly with shielding structure
WO2023092469A1 (zh) 一种天线装置
US20080252537A1 (en) Through-glass antenna system
CN208955200U (zh) 一种小型集成天线
CN111200181B (zh) 兼容全向通信和卫星导航的应答组合天线
JP2005286794A (ja) アンテナユニット
KR100962321B1 (ko) 마이크로스트립 패치 타입의 안테나
KR20160091846A (ko) 저주파 송신 안테나
CN110364830A (zh) 一种gnss与罗兰c组合一体化接收天线
US11011836B2 (en) Adjacent antenna interference mitigation
US20020103002A1 (en) Method for locating a GPS receiver in a wireless handset to minimize interference
JP2009278356A (ja) アンテナ
KR20040009635A (ko) 마이크로웨이브 중계기용 고 전후방비 개선 안테나
US11843184B1 (en) Dual band, singular form factor, transmit and receive GNSS antenna with passively shaped antenna pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940359

Country of ref document: EP

Kind code of ref document: A1