WO2021021552A1 - Synthesis of pro-resolving analogs and compositions therefor - Google Patents
Synthesis of pro-resolving analogs and compositions therefor Download PDFInfo
- Publication number
- WO2021021552A1 WO2021021552A1 PCT/US2020/043243 US2020043243W WO2021021552A1 WO 2021021552 A1 WO2021021552 A1 WO 2021021552A1 US 2020043243 W US2020043243 W US 2020043243W WO 2021021552 A1 WO2021021552 A1 WO 2021021552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optionally substituted
- compound
- formula
- unsaturated
- saturated
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 134
- 230000015572 biosynthetic process Effects 0.000 title description 25
- 238000003786 synthesis reaction Methods 0.000 title description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 223
- 238000000034 method Methods 0.000 claims abstract description 59
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 33
- -1 heteroalkyl halide Chemical class 0.000 claims description 148
- 229920006395 saturated elastomer Polymers 0.000 claims description 75
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 64
- 239000001257 hydrogen Substances 0.000 claims description 64
- 229910052739 hydrogen Inorganic materials 0.000 claims description 64
- 125000006701 (C1-C7) alkyl group Chemical group 0.000 claims description 63
- 238000006243 chemical reaction Methods 0.000 claims description 45
- 229910052736 halogen Inorganic materials 0.000 claims description 41
- 150000002367 halogens Chemical group 0.000 claims description 41
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 35
- 229930195733 hydrocarbon Natural products 0.000 claims description 34
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 33
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 33
- 239000004215 Carbon black (E152) Substances 0.000 claims description 29
- 150000002430 hydrocarbons Chemical class 0.000 claims description 26
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 25
- 239000002168 alkylating agent Substances 0.000 claims description 23
- 229940100198 alkylating agent Drugs 0.000 claims description 23
- 238000011282 treatment Methods 0.000 claims description 23
- 125000003545 alkoxy group Chemical group 0.000 claims description 22
- 125000006239 protecting group Chemical group 0.000 claims description 21
- 239000002585 base Substances 0.000 claims description 20
- 201000001245 periodontitis Diseases 0.000 claims description 20
- 239000003054 catalyst Substances 0.000 claims description 18
- 125000002947 alkylene group Chemical group 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 208000028169 periodontal disease Diseases 0.000 claims description 15
- 210000000988 bone and bone Anatomy 0.000 claims description 13
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- 230000000699 topical effect Effects 0.000 claims description 12
- 208000025157 Oral disease Diseases 0.000 claims description 11
- 208000030194 mouth disease Diseases 0.000 claims description 11
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 10
- 150000001350 alkyl halides Chemical class 0.000 claims description 9
- 208000007565 gingivitis Diseases 0.000 claims description 9
- 230000004968 inflammatory condition Effects 0.000 claims description 9
- 238000011321 prophylaxis Methods 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 8
- 239000002324 mouth wash Substances 0.000 claims description 8
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 8
- 206010065687 Bone loss Diseases 0.000 claims description 7
- 239000002775 capsule Substances 0.000 claims description 7
- 239000003085 diluting agent Substances 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 7
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 7
- 239000003826 tablet Substances 0.000 claims description 7
- 210000004261 periodontium Anatomy 0.000 claims description 6
- 239000000606 toothpaste Substances 0.000 claims description 6
- 229940034610 toothpaste Drugs 0.000 claims description 6
- 208000010266 Aggressive Periodontitis Diseases 0.000 claims description 5
- 239000000551 dentifrice Substances 0.000 claims description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 5
- 208000029725 Metabolic bone disease Diseases 0.000 claims description 4
- 206010049088 Osteopenia Diseases 0.000 claims description 4
- 208000001132 Osteoporosis Diseases 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 4
- 229940112822 chewing gum Drugs 0.000 claims description 4
- 235000015218 chewing gum Nutrition 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 230000007774 longterm Effects 0.000 claims description 4
- 239000007937 lozenge Substances 0.000 claims description 4
- 201000008482 osteoarthritis Diseases 0.000 claims description 4
- 208000002679 Alveolar Bone Loss Diseases 0.000 claims description 3
- 208000010392 Bone Fractures Diseases 0.000 claims description 3
- 208000003076 Osteolysis Diseases 0.000 claims description 3
- 206010000269 abscess Diseases 0.000 claims description 3
- 206010003246 arthritis Diseases 0.000 claims description 3
- 235000013373 food additive Nutrition 0.000 claims description 3
- 239000002778 food additive Substances 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 3
- 208000029791 lytic metastatic bone lesion Diseases 0.000 claims description 3
- 230000002956 necrotizing effect Effects 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 230000002980 postoperative effect Effects 0.000 claims description 3
- 238000002271 resection Methods 0.000 claims description 3
- 206010018785 Gingival infections Diseases 0.000 claims description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 2
- 208000001277 chronic periodontitis Diseases 0.000 claims description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 2
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 18
- 229930184725 Lipoxin Natural products 0.000 abstract description 60
- 150000002639 lipoxins Chemical class 0.000 abstract description 59
- IXAQOQZEOGMIQS-SSQFXEBMSA-M lipoxin A4(1-) Chemical compound CCCCC[C@H](O)\C=C\C=C/C=C/C=C/[C@@H](O)[C@@H](O)CCCC([O-])=O IXAQOQZEOGMIQS-SSQFXEBMSA-M 0.000 abstract description 10
- UXVRTOKOJOMENI-WLPVFMORSA-N lipoxin B4 Chemical compound CCCCC[C@H](O)[C@H](O)\C=C\C=C\C=C/C=C/[C@@H](O)CCCC(O)=O UXVRTOKOJOMENI-WLPVFMORSA-N 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 47
- 235000002639 sodium chloride Nutrition 0.000 description 38
- 125000000217 alkyl group Chemical group 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 21
- CHUQDPKHYXGMEB-IQOAYPBESA-N methyl (e,5s,6r)-5,6-dihydroxy-8-[2-[(e,3r)-3-hydroxyoct-1-enyl]phenyl]oct-7-enoate Chemical compound CCCCC[C@@H](O)\C=C\C1=CC=CC=C1\C=C\[C@@H](O)[C@@H](O)CCCC(=O)OC CHUQDPKHYXGMEB-IQOAYPBESA-N 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 18
- 150000003839 salts Chemical class 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 14
- 125000005842 heteroatom Chemical group 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 13
- 239000003513 alkali Substances 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 235000019441 ethanol Nutrition 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 11
- 239000000796 flavoring agent Substances 0.000 description 11
- 125000004474 heteroalkylene group Chemical group 0.000 description 11
- 229940068196 placebo Drugs 0.000 description 11
- 239000000902 placebo Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 206010061218 Inflammation Diseases 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 10
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 10
- 235000019797 dipotassium phosphate Nutrition 0.000 description 10
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 230000004054 inflammatory process Effects 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 210000000214 mouth Anatomy 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 9
- 125000003342 alkenyl group Chemical group 0.000 description 9
- 239000006172 buffering agent Substances 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000003814 drug Substances 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 9
- 229910052794 bromium Inorganic materials 0.000 description 8
- 235000019634 flavors Nutrition 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 229940051866 mouthwash Drugs 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 7
- 239000003086 colorant Substances 0.000 description 7
- 238000010511 deprotection reaction Methods 0.000 description 7
- 150000002148 esters Chemical group 0.000 description 7
- 239000012429 reaction media Substances 0.000 description 7
- 210000003491 skin Anatomy 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000003765 sweetening agent Substances 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 7
- 235000019798 tripotassium phosphate Nutrition 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 229910000397 disodium phosphate Inorganic materials 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 235000003599 food sweetener Nutrition 0.000 description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 6
- 235000019796 monopotassium phosphate Nutrition 0.000 description 6
- 239000002674 ointment Substances 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 6
- 239000000651 prodrug Substances 0.000 description 6
- 229940002612 prodrug Drugs 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000001488 sodium phosphate Substances 0.000 description 6
- 0 *C(*)C=CB1Oc2ccccc2O1 Chemical compound *C(*)C=CB1Oc2ccccc2O1 0.000 description 5
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 5
- 125000001188 haloalkyl group Chemical group 0.000 description 5
- 239000003906 humectant Substances 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 125000000304 alkynyl group Chemical group 0.000 description 4
- 230000003110 anti-inflammatory effect Effects 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 4
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical compound C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 4
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 235000019800 disodium phosphate Nutrition 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 208000024693 gingival disease Diseases 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 150000002940 palladium Chemical class 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 150000003057 platinum Chemical class 0.000 description 4
- 235000015497 potassium bicarbonate Nutrition 0.000 description 4
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 4
- 239000011736 potassium bicarbonate Substances 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- 235000019832 sodium triphosphate Nutrition 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 125000005309 thioalkoxy group Chemical group 0.000 description 4
- HEDVTGFTYROYFE-RREUNBNVSA-N (e,5s,6r)-5,6-dihydroxy-8-[2-[(e,3r)-3-hydroxyoct-1-enyl]phenyl]oct-7-enoic acid Chemical compound CCCCC[C@@H](O)\C=C\C1=CC=CC=C1\C=C\[C@@H](O)[C@@H](O)CCCC(O)=O HEDVTGFTYROYFE-RREUNBNVSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- 201000004624 Dermatitis Diseases 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000006069 Suzuki reaction reaction Methods 0.000 description 3
- 208000008312 Tooth Loss Diseases 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 239000000783 alginic acid Substances 0.000 description 3
- 229960001126 alginic acid Drugs 0.000 description 3
- 150000004781 alginic acids Chemical class 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 125000004438 haloalkoxy group Chemical group 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- KTATYORPMBCCBA-WIYRKDKZSA-N methyl (E,5S)-7-[2-[(E,3S,4R)-3,4-dihydroxynon-1-enyl]phenyl]-5-hydroxyhept-6-enoate Chemical compound O[C@@H](/C=C/C1=C(C=CC=C1)/C=C/[C@H](CCCC(=O)OC)O)[C@@H](CCCCC)O KTATYORPMBCCBA-WIYRKDKZSA-N 0.000 description 3
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 150000007530 organic bases Chemical class 0.000 description 3
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 3
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 3
- 230000003239 periodontal effect Effects 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 150000003180 prostaglandins Chemical class 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- 239000006208 topical dosage form Substances 0.000 description 3
- 229940001496 tribasic sodium phosphate Drugs 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- XHXUANMFYXWVNG-ADEWGFFLSA-N (-)-Menthyl acetate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(C)=O XHXUANMFYXWVNG-ADEWGFFLSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- AJNZWRKTWQLAJK-KLHDSHLOSA-N (2r,5r)-1-[2-[(2r,5r)-2,5-dimethylphospholan-1-yl]phenyl]-2,5-dimethylphospholane Chemical compound C[C@@H]1CC[C@@H](C)P1C1=CC=CC=C1P1[C@H](C)CC[C@H]1C AJNZWRKTWQLAJK-KLHDSHLOSA-N 0.000 description 2
- AJNZWRKTWQLAJK-VGWMRTNUSA-N (2s,5s)-1-[2-[(2s,5s)-2,5-dimethylphospholan-1-yl]phenyl]-2,5-dimethylphospholane Chemical compound C[C@H]1CC[C@H](C)P1C1=CC=CC=C1P1[C@@H](C)CC[C@@H]1C AJNZWRKTWQLAJK-VGWMRTNUSA-N 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 2
- 125000006652 (C3-C12) cycloalkyl group Chemical group 0.000 description 2
- 125000006654 (C3-C12) heteroaryl group Chemical group 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 2
- LVEYOSJUKRVCCF-UHFFFAOYSA-N 1,3-Bis(diphenylphosphino)propane Substances C=1C=CC=CC=1P(C=1C=CC=CC=1)CCCP(C=1C=CC=CC=1)C1=CC=CC=C1 LVEYOSJUKRVCCF-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- BCJVBDBJSMFBRW-UHFFFAOYSA-N 4-diphenylphosphanylbutyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCCCP(C=1C=CC=CC=1)C1=CC=CC=C1 BCJVBDBJSMFBRW-UHFFFAOYSA-N 0.000 description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 2
- JOOXCMJARBKPKM-UHFFFAOYSA-M 4-oxopentanoate Chemical compound CC(=O)CCC([O-])=O JOOXCMJARBKPKM-UHFFFAOYSA-M 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 208000002874 Acne Vulgaris Diseases 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- 206010006326 Breath odour Diseases 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 2
- 208000002064 Dental Plaque Diseases 0.000 description 2
- 206010012442 Dermatitis contact Diseases 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 208000032139 Halitosis Diseases 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- 240000007472 Leucaena leucocephala Species 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- 244000070406 Malus silvestris Species 0.000 description 2
- 239000004909 Moisturizer Substances 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 208000005888 Periodontal Pocket Diseases 0.000 description 2
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 2
- 229920001100 Polydextrose Polymers 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 206010042674 Swelling Diseases 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 206010000496 acne Diseases 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- LGVUAXNPXVXCCW-UHFFFAOYSA-M cesium;2,2-dimethylpropanoate Chemical compound [Cs+].CC(C)(C)C([O-])=O LGVUAXNPXVXCCW-UHFFFAOYSA-M 0.000 description 2
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 235000011180 diphosphates Nutrition 0.000 description 2
- KDQPSPMLNJTZAL-UHFFFAOYSA-L disodium hydrogenphosphate dihydrate Chemical compound O.O.[Na+].[Na+].OP([O-])([O-])=O KDQPSPMLNJTZAL-UHFFFAOYSA-L 0.000 description 2
- CNXMDTWQWLGCPE-UHFFFAOYSA-N ditert-butyl-(2-phenylphenyl)phosphane Chemical group CC(C)(C)P(C(C)(C)C)C1=CC=CC=C1C1=CC=CC=C1 CNXMDTWQWLGCPE-UHFFFAOYSA-N 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 150000002066 eicosanoids Chemical class 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 239000010642 eucalyptus oil Substances 0.000 description 2
- 229940044949 eucalyptus oil Drugs 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 235000013355 food flavoring agent Nutrition 0.000 description 2
- FTSSQIKWUOOEGC-RULYVFMPSA-N fructooligosaccharide Chemical compound OC[C@H]1O[C@@](CO)(OC[C@@]2(OC[C@@]3(OC[C@@]4(OC[C@@]5(OC[C@@]6(OC[C@@]7(OC[C@@]8(OC[C@@]9(OC[C@@]%10(OC[C@@]%11(O[C@H]%12O[C@H](CO)[C@@H](O)[C@H](O)[C@H]%12O)O[C@H](CO)[C@@H](O)[C@@H]%11O)O[C@H](CO)[C@@H](O)[C@@H]%10O)O[C@H](CO)[C@@H](O)[C@@H]9O)O[C@H](CO)[C@@H](O)[C@@H]8O)O[C@H](CO)[C@@H](O)[C@@H]7O)O[C@H](CO)[C@@H](O)[C@@H]6O)O[C@H](CO)[C@@H](O)[C@@H]5O)O[C@H](CO)[C@@H](O)[C@@H]4O)O[C@H](CO)[C@@H](O)[C@@H]3O)O[C@H](CO)[C@@H](O)[C@@H]2O)[C@@H](O)[C@@H]1O FTSSQIKWUOOEGC-RULYVFMPSA-N 0.000 description 2
- 229940107187 fructooligosaccharide Drugs 0.000 description 2
- 229960002737 fructose Drugs 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 210000004195 gingiva Anatomy 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000011194 good manufacturing practice Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002617 leukotrienes Chemical class 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 210000003622 mature neutrocyte Anatomy 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229940041616 menthol Drugs 0.000 description 2
- ABCGFHPGHXSVKI-UHFFFAOYSA-O meso-tetrakis(n-methyl-4-pyridyl)porphine(4+) Chemical compound C1=C[N+](C)=CC=C1C(C1=CC=C(N1)C(C=1C=C[N+](C)=CC=1)=C1C=CC(=N1)C(C=1C=C[N+](C)=CC=1)=C1C=CC(N1)=C1C=2C=C[N+](C)=CC=2)=C2N=C1C=C2 ABCGFHPGHXSVKI-UHFFFAOYSA-O 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000001333 moisturizer Effects 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- TXXHDPDFNKHHGW-UHFFFAOYSA-N muconic acid Chemical compound OC(=O)C=CC=CC(O)=O TXXHDPDFNKHHGW-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 150000003003 phosphines Chemical class 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229920001983 poloxamer Polymers 0.000 description 2
- 235000013856 polydextrose Nutrition 0.000 description 2
- 239000001259 polydextrose Substances 0.000 description 2
- 229940035035 polydextrose Drugs 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000015320 potassium carbonate Nutrition 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 159000000001 potassium salts Chemical class 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 150000003222 pyridines Chemical group 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 235000019204 saccharin Nutrition 0.000 description 2
- 229940081974 saccharin Drugs 0.000 description 2
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000008247 solid mixture Substances 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 2
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 2
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 2
- JQKHNBQZGUKYPX-UHFFFAOYSA-N tris(2,4,6-trimethoxyphenyl)phosphane Chemical compound COC1=CC(OC)=CC(OC)=C1P(C=1C(=CC(OC)=CC=1OC)OC)C1=C(OC)C=C(OC)C=C1OC JQKHNBQZGUKYPX-UHFFFAOYSA-N 0.000 description 2
- CMLWFCUAXGSMBB-UHFFFAOYSA-N tris(2,6-dimethoxyphenyl)phosphane Chemical compound COC1=CC=CC(OC)=C1P(C=1C(=CC=CC=1OC)OC)C1=C(OC)C=CC=C1OC CMLWFCUAXGSMBB-UHFFFAOYSA-N 0.000 description 2
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 2
- 229940038773 trisodium citrate Drugs 0.000 description 2
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- PLVCYMZAEQRYHJ-UHFFFAOYSA-N (2-bromophenyl)boronic acid Chemical compound OB(O)C1=CC=CC=C1Br PLVCYMZAEQRYHJ-UHFFFAOYSA-N 0.000 description 1
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- SODPIMGUZLOIPE-UHFFFAOYSA-N (4-chlorophenoxy)acetic acid Chemical compound OC(=O)COC1=CC=C(Cl)C=C1 SODPIMGUZLOIPE-UHFFFAOYSA-N 0.000 description 1
- 239000001605 (5-methyl-2-propan-2-ylcyclohexyl) acetate Substances 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ZOJKRWXDNYZASL-NSCUHMNNSA-N (e)-4-methoxybut-2-enoic acid Chemical compound COC\C=C\C(O)=O ZOJKRWXDNYZASL-NSCUHMNNSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- MNCMBBIFTVWHIP-UHFFFAOYSA-N 1-anthracen-9-yl-2,2,2-trifluoroethanone Chemical group C1=CC=C2C(C(=O)C(F)(F)F)=C(C=CC=C3)C3=CC2=C1 MNCMBBIFTVWHIP-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- UXVRTOKOJOMENI-SKYGSKSRSA-N 15-epi-lipoxin B4 Chemical compound CCCCC[C@@H](O)[C@H](O)\C=C\C=C\C=C/C=C/[C@@H](O)CCCC(O)=O UXVRTOKOJOMENI-SKYGSKSRSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 1
- FFFIRKXTFQCCKJ-UHFFFAOYSA-M 2,4,6-trimethylbenzoate Chemical compound CC1=CC(C)=C(C([O-])=O)C(C)=C1 FFFIRKXTFQCCKJ-UHFFFAOYSA-M 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- YURLCYGZYWDCHL-UHFFFAOYSA-N 2-(2,6-dichloro-4-methylphenoxy)acetic acid Chemical compound CC1=CC(Cl)=C(OCC(O)=O)C(Cl)=C1 YURLCYGZYWDCHL-UHFFFAOYSA-N 0.000 description 1
- TYYAMZMDZWXHHA-UHFFFAOYSA-N 2-(dibromomethyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(Br)Br TYYAMZMDZWXHHA-UHFFFAOYSA-N 0.000 description 1
- JGYNXZIYXGSEJH-UHFFFAOYSA-N 2-(methylsulfanylmethoxymethyl)benzoic acid Chemical compound CSCOCC1=CC=CC=C1C(O)=O JGYNXZIYXGSEJH-UHFFFAOYSA-N 0.000 description 1
- LRYZPFWEZHSTHD-HEFFAWAOSA-O 2-[[(e,2s,3r)-2-formamido-3-hydroxyoctadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium Chemical class CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](NC=O)COP(O)(=O)OCC[N+](C)(C)C LRYZPFWEZHSTHD-HEFFAWAOSA-O 0.000 description 1
- UJRMHFPTLFNSTA-UHFFFAOYSA-N 2-chloro-2,2-diphenylacetic acid Chemical compound C=1C=CC=CC=1C(Cl)(C(=O)O)C1=CC=CC=C1 UJRMHFPTLFNSTA-UHFFFAOYSA-N 0.000 description 1
- SHHKMWMIKILKQW-UHFFFAOYSA-N 2-formylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=O SHHKMWMIKILKQW-UHFFFAOYSA-N 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- CJNZAXGUTKBIHP-UHFFFAOYSA-M 2-iodobenzoate Chemical compound [O-]C(=O)C1=CC=CC=C1I CJNZAXGUTKBIHP-UHFFFAOYSA-M 0.000 description 1
- LDZNCSVWVMBVST-UHFFFAOYSA-N 2-trimethylsilylethyl hydrogen carbonate Chemical compound C[Si](C)(C)CCOC(O)=O LDZNCSVWVMBVST-UHFFFAOYSA-N 0.000 description 1
- GPVOTFQILZVCFP-UHFFFAOYSA-N 2-trityloxyacetic acid Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(OCC(=O)O)C1=CC=CC=C1 GPVOTFQILZVCFP-UHFFFAOYSA-N 0.000 description 1
- 125000002774 3,4-dimethoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C(OC([H])([H])[H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-M 3-phenylpropionate Chemical compound [O-]C(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-M 0.000 description 1
- NDRAHSMAGKWWFZ-UHFFFAOYSA-N 4-(methylsulfanylmethoxy)butanoic acid Chemical compound CSCOCCCC(O)=O NDRAHSMAGKWWFZ-UHFFFAOYSA-N 0.000 description 1
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 1
- WAGMYTXJRVPMGW-UHFFFAOYSA-N 4-azidobutanoic acid Chemical compound OC(=O)CCCN=[N+]=[N-] WAGMYTXJRVPMGW-UHFFFAOYSA-N 0.000 description 1
- KHKJLJHJTQRHSA-UHFFFAOYSA-N 4-methyl-4-nitropentanoic acid Chemical compound [O-][N+](=O)C(C)(C)CCC(O)=O KHKJLJHJTQRHSA-UHFFFAOYSA-N 0.000 description 1
- NNJMFJSKMRYHSR-UHFFFAOYSA-M 4-phenylbenzoate Chemical compound C1=CC(C(=O)[O-])=CC=C1C1=CC=CC=C1 NNJMFJSKMRYHSR-UHFFFAOYSA-M 0.000 description 1
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 1
- 206010000748 Acute febrile neutrophilic dermatosis Diseases 0.000 description 1
- 102100031260 Acyl-coenzyme A thioesterase THEM4 Human genes 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 239000001904 Arabinogalactan Substances 0.000 description 1
- 229920000189 Arabinogalactan Polymers 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 241000532370 Atla Species 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010049047 Chapped lips Diseases 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 235000016795 Cola Nutrition 0.000 description 1
- 241001634499 Cola Species 0.000 description 1
- 235000011824 Cola pachycarpa Nutrition 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- XHXUANMFYXWVNG-UHFFFAOYSA-N D-menthyl acetate Natural products CC(C)C1CCC(C)CC1OC(C)=O XHXUANMFYXWVNG-UHFFFAOYSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 208000006558 Dental Calculus Diseases 0.000 description 1
- 239000000253 Denture Cleanser Substances 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 206010012441 Dermatitis bullous Diseases 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- 206010014190 Eczema asteatotic Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010053177 Epidermolysis Diseases 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000628997 Flos Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000638510 Homo sapiens Acyl-coenzyme A thioesterase THEM4 Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 229920001908 Hydrogenated starch hydrolysate Polymers 0.000 description 1
- 206010021197 Ichthyoses Diseases 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 229930183419 Irisone Natural products 0.000 description 1
- 229910021135 KPF6 Inorganic materials 0.000 description 1
- 238000003109 Karl Fischer titration Methods 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 229910013594 LiOAc Inorganic materials 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 241000218378 Magnolia Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- TXXHDPDFNKHHGW-CCAGOZQPSA-N Muconic acid Natural products OC(=O)\C=C/C=C\C(O)=O TXXHDPDFNKHHGW-CCAGOZQPSA-N 0.000 description 1
- 206010028116 Mucosal inflammation Diseases 0.000 description 1
- 201000010927 Mucositis Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- RWAXQWRDVUOOGG-UHFFFAOYSA-N N,2,3-Trimethyl-2-(1-methylethyl)butanamide Chemical compound CNC(=O)C(C)(C(C)C)C(C)C RWAXQWRDVUOOGG-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010052437 Nasal discomfort Diseases 0.000 description 1
- 239000004384 Neotame Substances 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 208000007117 Oral Ulcer Diseases 0.000 description 1
- 235000011203 Origanum Nutrition 0.000 description 1
- 240000000783 Origanum majorana Species 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 206010072574 Periodontal inflammation Diseases 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000605862 Porphyromonas gingivalis Species 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 229910019032 PtCl2 Inorganic materials 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 206010039705 Scleritis Diseases 0.000 description 1
- 206010039793 Seborrhoeic dermatitis Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 206010041955 Stasis dermatitis Diseases 0.000 description 1
- 206010042342 Subcorneal pustular dermatosis Diseases 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000033809 Suppuration Diseases 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 208000010265 Sweet syndrome Diseases 0.000 description 1
- 238000006859 Swern oxidation reaction Methods 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000025371 Taste disease Diseases 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 239000005844 Thymol Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- 208000009596 Tooth Mobility Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 208000014926 Vesiculobullous Skin disease Diseases 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- UJNOLBSYLSYIBM-WISYIIOYSA-N [(1r,2s,5r)-5-methyl-2-propan-2-ylcyclohexyl] (2r)-2-hydroxypropanoate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)[C@@H](C)O UJNOLBSYLSYIBM-WISYIIOYSA-N 0.000 description 1
- HRCUQPVVDWDWTH-UHFFFAOYSA-N [2,4-bis(2-methylbutan-2-yl)phenyl] ethaneperoxoate Chemical compound CCC(C)(C)C1=CC=C(OOC(C)=O)C(C(C)(C)CC)=C1 HRCUQPVVDWDWTH-UHFFFAOYSA-N 0.000 description 1
- WCJIPYKODRSMPZ-UHFFFAOYSA-N [2,6-dichloro-4-(2,4,4-trimethylpentan-2-yl)phenyl] ethaneperoxoate Chemical compound CC(=O)OOC1=C(Cl)C=C(C(C)(C)CC(C)(C)C)C=C1Cl WCJIPYKODRSMPZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000010398 acute inflammatory response Effects 0.000 description 1
- 125000005585 adamantoate group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 125000004948 alkyl aryl alkyl group Chemical group 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 208000002029 allergic contact dermatitis Diseases 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940011037 anethole Drugs 0.000 description 1
- 239000010617 anise oil Substances 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000002272 anti-calculus Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000019312 arabinogalactan Nutrition 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- ILZWGESBVHGTRX-UHFFFAOYSA-O azanium;iron(2+);iron(3+);hexacyanide Chemical compound [NH4+].[Fe+2].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] ILZWGESBVHGTRX-UHFFFAOYSA-O 0.000 description 1
- UHHXUPJJDHEMGX-UHFFFAOYSA-K azanium;manganese(3+);phosphonato phosphate Chemical compound [NH4+].[Mn+3].[O-]P([O-])(=O)OP([O-])([O-])=O UHHXUPJJDHEMGX-UHFFFAOYSA-K 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 239000010620 bay oil Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N beta-phenylpropanoic acid Natural products OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- 229940073609 bismuth oxychloride Drugs 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- ZOAIGCHJWKDIPJ-UHFFFAOYSA-M caesium acetate Chemical compound [Cs+].CC([O-])=O ZOAIGCHJWKDIPJ-UHFFFAOYSA-M 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004075 cariostatic agent Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 208000007287 cheilitis Diseases 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 229940089960 chloroacetate Drugs 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-M chloroacetate Chemical compound [O-]C(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-M 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960005233 cineole Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- 239000010630 cinnamon oil Substances 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000010634 clove oil Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229940125890 compound Ia Drugs 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000001517 counterregulatory effect Effects 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-M crotonate Chemical compound C\C=C\C([O-])=O LDHQCZJRKDOVOX-NSCUHMNNSA-M 0.000 description 1
- 125000004966 cyanoalkyl group Chemical group 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 210000003074 dental pulp Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940120124 dichloroacetate Drugs 0.000 description 1
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 201000004799 erythema elevatum diutinum Diseases 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000030533 eye disease Diseases 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- FGIVSGPRGVABAB-UHFFFAOYSA-N fluoren-9-ylmethyl hydrogen carbonate Chemical compound C1=CC=C2C(COC(=O)O)C3=CC=CC=C3C2=C1 FGIVSGPRGVABAB-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 201000005562 gingival recession Diseases 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 235000021059 hard food Nutrition 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 1
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 230000009215 host defense mechanism Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 206010021198 ichthyosis Diseases 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 229960004903 invert sugar Drugs 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229940058352 levulinate Drugs 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 239000001683 mentha spicata herb oil Substances 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 235000019656 metallic taste Nutrition 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-M methoxyacetate Chemical compound COCC([O-])=O RMIODHQZRUFFFF-UHFFFAOYSA-M 0.000 description 1
- HKEVQHSKMYDZJN-IUEZVESZSA-N methyl (e,5s,6r)-5,6-bis[[tert-butyl(dimethyl)silyl]oxy]-8-[2-[(e,3r)-3-[tert-butyl(dimethyl)silyl]oxyoct-1-enyl]phenyl]oct-7-enoate Chemical compound CCCCC[C@@H](O[Si](C)(C)C(C)(C)C)\C=C\C1=CC=CC=C1\C=C\[C@@H](O[Si](C)(C)C(C)(C)C)[C@H](CCCC(=O)OC)O[Si](C)(C)C(C)(C)C HKEVQHSKMYDZJN-IUEZVESZSA-N 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- NYEBKUUITGFJAK-UHFFFAOYSA-N methylsulfanylmethanethioic s-acid Chemical compound CSC(O)=S NYEBKUUITGFJAK-UHFFFAOYSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 235000019412 neotame Nutrition 0.000 description 1
- HLIAVLHNDJUHFG-HOTGVXAUSA-N neotame Chemical compound CC(C)(C)CCN[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 HLIAVLHNDJUHFG-HOTGVXAUSA-N 0.000 description 1
- 108010070257 neotame Proteins 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000013615 non-nutritive sweetener Nutrition 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940041672 oral gel Drugs 0.000 description 1
- 239000007935 oral tablet Substances 0.000 description 1
- 229940096978 oral tablet Drugs 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 125000006505 p-cyanobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C#N)C([H])([H])* 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000010663 parsley oil Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 210000002379 periodontal ligament Anatomy 0.000 description 1
- 206010034674 peritonitis Diseases 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical compound OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 208000002440 photoallergic dermatitis Diseases 0.000 description 1
- 208000007578 phototoxic dermatitis Diseases 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000005547 pivalate group Chemical group 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- XAFJSPPHVXDRIE-UHFFFAOYSA-L platinum(2+);triphenylphosphane;dichloride Chemical compound [Cl-].[Cl-].[Pt+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 XAFJSPPHVXDRIE-UHFFFAOYSA-L 0.000 description 1
- SYKXNRFLNZUGAJ-UHFFFAOYSA-N platinum;triphenylphosphane Chemical compound [Pt].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 SYKXNRFLNZUGAJ-UHFFFAOYSA-N 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229940113116 polyethylene glycol 1000 Drugs 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 208000009954 pyoderma gangrenosum Diseases 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 208000006934 radiodermatitis Diseases 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000002020 sage Nutrition 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 208000008742 seborrheic dermatitis Diseases 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 235000019721 spearmint oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 150000005672 tetraenes Chemical class 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 229960000790 thymol Drugs 0.000 description 1
- UIERETOOQGIECD-ONEGZZNKSA-N tiglic acid Chemical compound C\C=C(/C)C(O)=O UIERETOOQGIECD-ONEGZZNKSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 229940066528 trichloroacetate Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- RLMUBIZOFHUHBI-UHFFFAOYSA-N trifluoromethyl hypochlorite Chemical group FC(F)(F)OCl RLMUBIZOFHUHBI-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 238000002562 urinalysis Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-M valerate Chemical compound CCCCC([O-])=O NQPDZGIKBAWPEJ-UHFFFAOYSA-M 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 208000010484 vulvovaginitis Diseases 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000009637 wintergreen oil Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/202—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/09—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/10—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
- C07C67/11—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond being mineral ester groups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- Oral health disorders such as gum disease and periodontitis
- gum disease and periodontitis are widespread among modern human populations.
- U.S. it is estimated that nearly 1 out of 2 American adults— aged 30 and older— have mild to severe periodontitis.
- the severity of such conditions increases when they are not treated and can lead not only to local oral problems, such as bone and early tooth loss, but also systemic disorders, such as heart disease.
- periodontitis is a local inflammation that occurs as a result of host response against specific microorganisms and eventually leads to the tissue destruction and systemic complications.
- the cascade of inflammatory events includes an amplified loop until the infection is contained and injury is confined.
- the early actions of the host response are later replaced by more specific mechanisms and eventually become redundant.
- it is important, as in other biologic processes, to limit the response and to allow the inflammation to resolve. While it has been shown that many molecules participate in the initiation and development of the host defense mechanisms, a recent paradigm in periodontal disease pathogenesis emphasizes the importance of counterregulatory molecules in the resolution of inflammatory response to control its magnitude and duration.
- some anti-inflammatory therapeutics utilize inhibitory pathways related to biosynthesis and actions of pro-inflammatory mediators, such as the prostaglandins and leukotrienes.
- An alternative methodology for therapeutics is based on mimicking the actions the endogenous anti-inflammatory and pro-resolution lipid mediators rather than interfering with the biosynthesis and actions of the pro-inflammatory prostaglandins and leukotrienes.
- lipoxins which feature a trihydroxy- tetraene structure such as lipoxin A4 that carries specific tetraene double bond geometry of E,E,Z,E- and is biosynthesized from arachidonic acid, a polyunsaturated fatty acid present in the phospholipids of membranes of cells.
- Lipoxins e.g ., Lipoxin A4, Lipoxin B4, etc.
- lipoxins are often rapidly inactivated in vivo via a metabolic enzyme system comprising 15-prostaglandin dehydrogenase and eicosanoid oxido- reductase.
- a metabolic enzyme system comprising 15-prostaglandin dehydrogenase and eicosanoid oxido- reductase.
- isomers of lipoxin including:
- lipoxin mimetics have been shown to have increased half-life as compared to lipoxin and mimic the action of naturally occurring lipoxins to potently reduce inflammation upon binding to a G-protein-coupled receptor known to play a key role in modulating inflammation.
- Structure-function studies of various lipoxin analogs have shown that the most active and longer acting lipoxin analogs have certain structural features.
- the chemical syntheses of these compounds often rely on many synthetic steps that individually and/or collectively may result in low product yields.
- the developed synthetic schema for these compounds result in various product issues such as impurities. Such problems run counter to good manufacturing practices (GMP) established for such treatment modalities.
- GMP good manufacturing practices
- the present disclosure provides methods of making pro-resolving analogs such as lipoxin analogs (e.g ., A4 lipoxin mimetics, etc.), and pharmaceutical compositions comprising such compositions.
- the pharmaceutical compositions may be used for the treatment or prophylaxis of certain diseases, disorders, or conditions, such as periodontal disease or inflammatory conditions.
- an aspect of this disclosure includes pharmaceutical compositions with increased stability of the lipoxin analog (e.g., lipoxin mimetic, etc.).
- the pharmaceutical composition may comprise a lipoxin A4 mimetic or a lipoxin 15-epi-A4 mimetic.
- the lipoxin mimetic comprises a phenyl moiety (e.g., a benzo lipoxin mimetic, etc.).
- the lipoxin A4 mimetic may have the structure:
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R4 is independently selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, lower alkylene such as methylene, ethylene, propylene, etc.) optionally substituted one or more times.
- R4 is not hydrogen.
- the lipoxin A4 mimetic has the structure:
- each R3 may be hydrogen.
- R2 is methyl, ethyl, propyl, butyl, or pentyl.
- R4 may be methyl.
- the lipoxin A4 mimetic may have the structure:
- the methods for synthesis of the pro-resolving active analogs may comprise:
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently an oxygen protecting group (e.g ., trityl type protecting group, silyl type protecting group, etc.); and
- X is a halogen (e.g., bromine, etc.).
- the compound of Formula (III) is produced with a molar yield of more than 50% (e.g., more than 60%, more than 70%, etc.) with respect to the compound of Formula (I).
- the method may comprise:
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently a protecting group (e.g., trityl protecting group, silyl protecting group, etc.).
- a protecting group e.g., trityl protecting group, silyl protecting group, etc.
- the method may comprise:
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently a protecting group (e.g ., trityl protecting group, silyl protecting group, etc.).
- a protecting group e.g ., trityl protecting group, silyl protecting group, etc.
- the synthesis of the pro-resolving active analogs may comprise: contacting a compound having the structure of Formula (VI):
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently an oxygen protecting group (e.g ., trityl type protecting group, silyl type protecting group, etc.); and
- X is a halogen (e.g., bromine, etc.).
- the compound of Formula (VIII) is produced with a molar yield of more than 50% (e.g., more than 60%, more than 70%, etc.) with respect to the compound of Formula (VI).
- the method may comprise:
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently a protecting group (e.g ., trityl protecting group, silyl protecting group, etc.).
- Reaction intermediates are also provided.
- the reaction intermediate is a compound having the structure of formula (I)-(IV) or a compound having the structure of formula (VI)-(IX).
- the lipoxin analog e.g ., lipoxin mimetic, etc.
- the compounds having the structure of formula (IV) or the structure of formula (V) or the structure of formula (IX) or the structure of formula (X) may be formulated into pharmaceutical compositions.
- the lipoxin analogs e.g., lipoxin mimetics such as (5S,6R,E)-5,6-dihydroxy- 8-(2-((R,E)-3-hydroxyoct-l-en-l-yl)phenyl)oct-7-enoic acid, etc.
- lipoxin analogs e.g., lipoxin mimetics such as (5S,6R,E)-5,6-dihydroxy- 8-(2-((R,E)-3-hydroxyoct-l-en-l-yl)phenyl)oct-7-enoic acid, etc.
- formulated in these pharmaceutical compositions may be synthesized by the methods described herein or by other methods known in the art
- compositions with acidic pH promote the degradation of various lipoxin analogsln certain embodiments, the pharmaceutical composition has a pH greater than 7.
- the pharmaceutical composition may comprise one or more pharmaceutically acceptable carriers, excipients, and/or diluents and a compound having the structure of Formula (V) or (X):
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; Its is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times; and the pH of said composition is greater than 7 ( e.g ., greater than 7.1, greater than 7.2, from 7-12, from 7-10, from 7.1-10 from 7.2-10, etc.).
- the compositions comprise no carboxylate salt or less than 5% carboxylate salt (e.g., less than 1% carboxylate salt, less than 0.1% carboxylate salt, less than 0.01%, etc.) by weight of the composition.
- the composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound (e.g. free acid form wherein R.4 is hydrogen, etc.) by weight of the composition after more than three days of room temperature conditions (40° ⁇ 2°C/70% ⁇ 5% RH) and/or accelerated aging conditions (40°C/75%RH).
- the composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound (e.g. free acid form wherein R4 is hydrogen, etc.) by weight of the composition after more than one month of long term storage conditions (e.g., -20° ⁇ 4°C).
- the composition comprises less than 5% carboxylate salt (e.g., less than 1% carboxylate salt, less than 0.1% carboxylate salt, less than 0.01%, etc.) by weight of the composition following 7 days of storage at 25°C/60% RH or 40°C/75%RH.
- the composition comprises less than 5% carboxylate salt (e.g., less than 1% carboxylate salt, less than 0.1% carboxylate salt, less than 0.01%, etc.) by weight of the composition following 7 days of storage following 3 months, or six months or twelve months, or 18 months, or 24 months or 36 months or 48 months or 60 months of storage at -20°C.
- the pH of the composition may be from, example, 7-8 or from 7-7.5 or from 7.2-8 or from 7.1-7.4.
- These compositions may be formulated as an oral care composition, for example, as a mouth rinse, tooth paste, ointment, gel, hydrogel, salve, dentifrice, buccal patch, dental fiber, dental tape, chewing gum, food additive, lozenge, tablet, or chewable capsule.
- the compositions may be formulated for topical delivery of the lipoxin mimetic to the skin or delivery of the lipoxin mimetic to the eye.
- the composition may be a cream, ointment, or a controlled-release patch or spray applied to the skin.
- the compound may have the structure of formula (Va) or (Xa):
- compositions may be used for the treatment or the prophylaxis of a disorder such as an oral disorder, a skin disorder, or an eye disorder.
- the methods may comprise administration of the pharmaceutical compositions disclosed herein to a patient in need thereof.
- the pharmaceutical compositions may be administered daily, twice daily, every other day, or weekly.
- FIG. 1 is a schematic illustrating the change in gingival index of clinical groups as measured by Marginal Gingival Index (MGI) for treatment groups administered Compound (Vb) (BLXA4), a placebo rinse, and no rinse measured at Days 14 and 28 of administration. In each group, Day 14 is the topmost column, and Day 28 is the bottommost column.
- MMI Marginal Gingival Index
- “a” or“an” shall mean one or more. As used herein when used in conjunction with the word“comprising,” the words“a” or“an” mean one or more than one. As used herein“another” means at least a second or more.
- numeric values include the endpoints and all possible values disclosed between the disclosed values.
- the exact values of all half integral numeric values are also contemplated as specifically disclosed and as limits for all subsets of the disclosed range.
- a range of from 0.1% to 3% specifically discloses a percentage of 0.1%, 1%, 1.5%, 2.0%, 2.5%, and 3%.
- a range of 0.1 to 3% includes subsets of the original range including from 0.5% to 2.5%, from 1% to 3%, from 0.1% to 2.5%, etc. It will be understood that the sum of all weight % of individual components will not exceed 100%.
- % by weight or“% wt.” or“w/w” refers to the weight percent of a component in relation to the total weight of the composition unless otherwise stated. Every reference to percentage or % herein is given on a % by weight basis, unless stated otherwise. It will be understood that the sum of all weight % of individual components within a composition or within indicated component will not exceed 100%.
- ingredients include only the listed components along with the normal impurities present in commercial materials and with any other additives present at levels which do not affect the operation of the invention, for instance at levels less than 5% by weight or less than 1% or even 0.5% by weight.
- A“patient in need thereof,” as used herein, refers to a human individual, male or female, who would benefit from administration of therapeutically effective doses of the lipid compositions.
- an individual in need thereof is suffering from a disorder such as periodontal disease.
- a patient in need or an individual in need or subject in need are used interchangeably herein.
- the phrase“pharmaceutically acceptable” generally safe for ingestion or contact with biologic tissues at the levels employed. Pharmaceutically acceptable is used interchangeably with physiologically compatible. It will be understood that the pharmaceutical compositions of the invention include topical care compositions including topical oral care compositions ( e.g ., mouthwash, etc.) and topical skin care compositions.
- pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The pharmaceutically acceptable carrier or excipient does not destroy the pharmacological activity of the disclosed compound and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.
- Non-limiting examples of pharmaceutically acceptable carriers and excipients include sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its analogs such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as polyethylene glycol and propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; isot
- a therapeutically effective amount or “pharmaceutically effective amount” as used herein, means an amount necessary to provide the indicated therapeutic benefit (e.g ., the treatment or prophylaxis of a disease (e.g., gum disease, periodontitis), anti inflammatory benefit, etc.).
- an“effective amount” is the amount required to confer a therapeutic effect on the treated patient.
- the effective amount is determined based on physical parameters such as age, surface area, weight, height, and condition of the patient.
- a therapeutically effective amount may be from 0.01 mg to 10 g administered once (q.d.) or twice (b.i.d.) daily.
- the therapeutically effective amount may be administered less than once daily (e.g ., every other day, weekly, etc.).
- an effective amount is an amount that reduces inflammation associated with gum disease or periodontitis.
- the term“pharmaceutically acceptable salt” refers to a salt of active agents (e.g., compounds having the structure of Formula (V), etc.) contemplated within the disclosure, including inorganic acids, organic acids, inorganic bases, organic bases, solvates, hydrates, or clathrates thereof.
- the pharmaceutically acceptable salt may be a carboxylate salt of compounds having the structure of Formula (V).
- the term salt embraces addition salts of free acids or free bases that are compounds described herein.
- an acid addition salt may be salt of a compound of the invention prepared by reaction of a compound of the invention with a mineral or organic acid.
- any of the lipoxin analogs of the present disclosure may be in the form of pharmaceutically acceptable salts (e.g., carboxylate salts thereof, etc.).
- these salts that are physiologically compatible, as defined herein, and that possess the desired pharmacological activity of the parent compound.
- Such salts include: acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, benzenesulfonic acid, benzoic acid, camphorsulfonic acid, citric acid, ethanesulfonic acid, fumaric acid, glucoheptonic acid, gluconic acid, glutamic acid, glycolic acid, hydroxynaphtoic acid, 2- hydroxyethanesulfonic acid, lactic acid, maleic acid, malic acid, malonic acid, mandelic acid, methane sulfonic acid, muconic acid, 2-naphthalenesulfonic acid, propionic acid, salicylic acid, succinic acid, tartaric acid, p-toluenesulfonic acid, trimethylacetic acid, and the like; or salts formed when an acidic proton present in the parent compound either
- Acceptable organic bases include diethanolamine, ethanolamine, N-methylglucamine, triethanolamine, tromethamine, and the like.
- Acceptable inorganic bases include aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, and sodium hydroxide.
- compositions of the invention can be formed by the reaction of a compound of the invention with an equimolar or excess amount of acid.
- hemi-salts can be formed by the reaction of a compound of the invention with the desired acid in a 2: 1 ratio, compound to acid.
- the reactants are generally combined in a mutual solvent such as diethyl ether, tetrahydrofuran, methanol, ethanol, Ao-propanol, benzene, or the like.
- the salts normally precipitate out of solution within, e.g. , one hour to ten days and can be isolated by filtration or other conventional methods.
- Prodrugs are intended to include any covalently bonded carriers that release an active parent drug (compound) of the present invention in vivo when such prodrug is administered to a subject.
- Prodrugs are prepared, for example, by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo , to the parent compound.
- a prodrug has improved physical and/or delivery properties over the parent compound.
- Prodrugs increase the bioavailability of the active compound when administered to a subject (e.g, by permitting enhanced absorption into the blood following oral administration) or which enhance delivery to a biological compartment of interest (e.g, the brain or lymphatic system) relative to the parent compound.
- Exemplary prodrugs include analogs of a disclosed compound with enhanced aqueous solubility or active transport through the gut membrane, relative to the parent compound.
- structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational), etc.) forms of the depicted structure. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the presently disclosed compounds (e.g., diacylated sphingomyelin analogs, phosphatidylcholines, sphingomyelins, etc.) are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds may be used as well.
- the named or depicted stereoisomer may be present as a mixture of stereoisomers comprising more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by weight of the indicated stereoisomer relative to the other stereoisomers.
- the depicted or named enantiomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by weight optically pure.
- the depicted or named diastereomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by weight pure.
- Percent optical purity is the ratio of the weight of the enantiomer or over the weight of the enantiomer plus the weight of its optical isomer.
- Diastereomeric purity by weight is the ratio of the weight of one diastereomer or over the weight of all the diastereomers.
- the named or depicted stereoisomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by mole fraction pure relative to the other stereoisomers.
- the depicted or named enantiomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by mole fraction pure.
- the depicted or named diastereomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by mole fraction pure.
- Percent purity by mole fraction is the ratio of the moles of the enantiomer or over the moles of the enantiomer plus the moles of its optical isomer.
- percent purity by moles fraction is the ratio of the moles of the diastereomer or over the moles of the diastereomer plus the moles of its isomer.
- hydrocarbon groups referenced herein typically refer to a radical (e.g., monovalent, divalent, etc.) or group containing carbon and hydrogen atoms.
- hydrocarbon radicals include, without limitation, alkyl, alkenyl, alkynyl, aryl, aryl-alkyl, alkyl- aryl, and any combination thereof (e.g, alkyl-aryl-alkyl, etc.).
- hydrocarbons may be monovalent or multivalent (e.g, divalent, trivalent, etc) hydrocarbon radicals.
- a radical of the form -(CH2)n- (i.e., those with repeat methylene units), including a methylene radical, i.e., -CH2-, is regarded as an alkyl radical if it does not have unsaturated bonds between carbon atoms.
- all hydrocarbon radicals may have from 1-35 carbon atoms.
- hydrocarbons will have from 1-20 or from 1-12 or from 1-8 or from 1-7 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
- Hydrocarbons may have from 2 to 70 atoms or from 3 to 40 atoms or from 4 to 20 atoms.
- Hydrocarbons may be substituted or unsubstituted.
- Substituted hydrocarbons may have as a substituent one or more unsubstituted hydrocarbon radicals, substituted hydrocarbon radicals, may comprise one or more heteroatoms ( e.g ., heteroalkyl, etc.), or combinations thereof.
- Any hydrocarbon substituents disclosed herein may optionally include from 1-20 (e.g., 1-10, 1-5, etc.) heteroatoms.
- substituted hydrocarbon radicals include, without limitation, heterocycles, such as heteroaryls.
- a hydrocarbon substituted with one or more heteroatoms will comprise from 1-20 heteroatoms (e.g., N, O, S, P, F, Cl, Br, etc.).
- a hydrocarbon substituted with one or more heteroatoms will comprise from 1-12 or from 1-8 or from 1-6 or from 1-4 or from 1-3 or from 1-2 heteroatoms.
- heteroatoms include, but are not limited to, oxygen, nitrogen, sulfur, phosphorous, halogen (F, Cl, Br, I, etc.), boron, silicon, etc.
- heteroatoms will be selected from the group consisting of oxygen, nitrogen, sulfur, phosphorous, and halogen (e.g., F, Cl, Br, I, etc.).
- the heteroatoms may be selected from O, N, or S.
- a heteroatom or group may substitute a hydrogen.
- a substituted hydrocarbon may comprise one or more heteroatoms in the backbone or chain of the molecule (e.g., interposed between two carbon atoms, as in“oxa”).
- a substituted hydrocarbon may comprise one or more heteroatoms pendant from the backbone or chain of the molecule (e.g, covalently bound to a carbon atom in the chain or backbone, as in“oxo”).
- hydrocarbon such as an alkyl or heteroaryl group
- a specified group such as an unsubstituted C1-C20 alkyl, or unsubstituted 2 to 20 membered heteroalkyl
- the hydrocarbon may contain one or more unsubstituted C1-C20 alkyls, and/or one or more unsubstituted 2 to 20 membered heteroalkyls.
- Substituents typically refer to a group substituted on, for example, an alkyl, haloalkyl, cycloalkyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group, replacing one or more hydrogen atoms therein.
- the substituent(s) on a group are independently any one single, or any combination of two or more of the permissible atoms or groups of atoms delineated for that substituent.
- a substituent may itself be substituted with any one of the above substituents.
- optionally substituted indicates that specified hydrocarbon may be unsubstituted (e.g, substituted with an H, etc.) or substituted. It is understood that substitution at a given atom is limited by valency. Common substituents include halo (e.g, F, etc.), Ci-12 straight chain or branched chain alkyl, C2-12 alkenyl, C2-12 alkynyl, C3-12 cycloalkyl, C6-12 aryl, C3-12 heteroaryl, C3-12 heterocyclyl, Ci-12 alkylsulfonyl, nitro, cyano, -COOR, -C(0)NRR’, -OR, -SR, -NRR’, and oxo, such as mono- or di- or tri substitutions with moieties such as trifluoromethoxy, chlorine, bromine, fluorine, methyl, methoxy, pyridyl, furyl, triazyl, piperazinyl, pyrazoyl, imi
- R, R’, and R may be independently at each occurrence hydrogen, Ci-12 alkyl, Ci-12 haloalkyl, C2- 12 alkenyl, C2-12 alkynyl, C3-12 cycloalkyl, C4-24 cycloalkylalkyl, C6-12 aryl, C7-24 aralkyl, C3-12 heterocyclyl, C3-24 heterocyclylalkyl, C3-12 heteroaryl, or C4-24 heteroarylalkyl.
- all groups described herein optionally contain one or more common substituents, to the extent permitted by valency.
- substituent (radical) prefix names such as alkyl without the modifier“optionally substituted” or“substituted” is understood to mean that the particular substituent is unsubstituted.
- haloalkyl without the modifier“optionally substituted” or“substituted” is still understood to mean an alkyl group, in which at least one hydrogen atom is replaced by halo.
- the alkyl groups referenced herein may refer to a saturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms.
- C1-C7 alkyl indicates that the group may have from 1 to 7 (inclusive) carbon atoms in it. Any atom can be optionally substituted, e.g., by one or more substituents.
- alkyl groups include without limitation methyl, ethyl, «-propyl, isopropyl, and /er/-butyl.
- Any alkyl group referenced herein e.g., R, R’, R”, Ri, R2, R3, R4, Rs, etc.
- alkyl groups will have from 1-20 or from 1-12 or from 1-8 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
- An unsaturated alkyl group may have one or more double bonds.
- unsaturated alkyl includes alkenyl.
- Any alkenyl group may be a straight or branched hydrocarbon chain containing the indicated number of carbon atoms and having one or more carbon-carbon double bonds. Any atom can be optionally substituted, e.g., by one or more substituents.
- Alkenyl groups can include, e.g., vinyl, allyl, 1-butenyl, and 2-hexenyl.
- One of the double bond carbons can optionally be the point of attachment of the alkenyl substituent.
- alkenyl group referenced herein may have from 1-35 carbon atoms.
- alkenyl groups will have from 1-20 or from 1-12 or from 1-8 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
- Heteroalkyl groups typically have one or more carbon atoms substituted with one or more heteroatoms (e.g ., N, O, P, S, Si, etc.).
- Heteroalkyls include alkoxy and thioalkoxy.
- alkoxy is an example of a heteroalkyl group with a carbon substituted with an oxygen (i.e., alkoxy may be represented by the formula -O(alkyl), etc.
- Alkoxy can be, for example, methoxy (-OCH3), ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 2- pentoxy, 3-pentoxy, or hexyloxy.
- Thioalkoxy groups may be represented by formula -S(alkyl), and haloalkoxy and halothioalkoxy refer to -O(haloalkyl) and -S(haloalkyl), respectively.
- alkoxy, thioalkoxy, or haloalkoxy group referenced herein may have from 1-35 carbon atoms.
- alkoxy, thioalkoxy, or haloalkoxy groups will have from 1-20 or from 1-12 or from 1-8 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
- the methods for synthesis of the lipoxin analogs may comprise: contacting a compound having the structure of Formula (I):
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently an oxygen protecting group (e.g., trityl type protecting group, silyl type protecting group, etc.); and
- X is a halogen (e.g., bromine, etc.).
- the compound of Formula (III) is produced with a molar yield of more than 50% (e.g., more than 60%, more than 70%, etc.) with respect to the compound of Formula (I).
- the compound of Formula (III) has the structure:
- the environment suitable to form a compound having the structure of Formula (III) is an aqueous environment.
- the reaction mixture may comprise a base (e.g ., K2CO3, etc.), a palladium catalyst (e.g., Pd(PPh 3 )4, etc.), and combinations thereof.
- the reaction parameters (including starting materials, reaction medium, etc.) may be set such that Ri is C1-C7 alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, etc.).
- m and n are each 1.
- p is 0.
- the linking moiety R L may be C1-C7 alkylene (e.g., linear alkylene, branched alkylene, - (CH2)I-5-, -(CH2)2-4-, -(CH2) 3- , etc.).
- R2 may be C1-C7 alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, etc.).
- the compound of Formula (III) may be methyl (5S,6R,E)-5,6-bis((tert-butyldimethylsilyl)oxy)-8-(2-((R,E)-3- ((tert-butyldimethylsilyl)oxy)oct-l-en-l-yl)phenyl)oct-7-enoate having the structure:
- the method further comprises the step of deprotecting the compound of Formula (III) to produce a compound having the structure of Formula (IV):
- the compound may be an A4 lipoxin mimetic such as (5S,6R,E)-5,6-dihydroxy- 8-(2-((R,E)-3-hydroxyoct-l-en-l-yl)phenyl)oct-7-enoic acid which is Compound (IVa):
- A4 lipoxin mimetic such as (5S,6R,E)-5,6-dihydroxy- 8-(2-((R,E)-3-hydroxyoct-l-en-l-yl)phenyl)oct-7-enoic acid which is Compound (IVa):
- reaction media suitable for the deprotection allow for deprotection of all oxygen atoms with a protecting group attached thereto.
- the deprotection may occur in one or more steps.
- the deprotecting step occurs in a first environment comprising an organic solvent (e.g ., tetrahydrofuran, etc.) comprising a quaternary ammonium salt (e.g., /c/ra-n -b uty 1 a on i u fluoride, etc.) and a second environment (e.g., aqueous environment, such as FbO, mixtures of FhO and lower alcohols including methanol and ethanol, organic environment, such as tetrahydrofuran, etc.) comprising a base such as an alkali metal hydroxide (e.g., LiOH, etc.).
- an organic solvent e.g ., tetrahydrofuran, etc.
- a quaternary ammonium salt e.g
- the method may further comprise the step of reacting said compound having the structure of Formula (IV) with an alkylating agent (e.g., halide, alkyl halide, heteroalkyl halide, arylalkyl halide such as benzyl halide, etc.) to form a compound having the structure of Formula (V):
- an alkylating agent e.g., halide, alkyl halide, heteroalkyl halide, arylalkyl halide such as benzyl halide, etc.
- R.4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; or carboxylate salts thereof.
- R.4 is methyl, ethyl, propyl, or isopropyl.
- the compound may be methyl (5S,6R,E)-5,6-dihydroxy-8-(2-((R,E)-3- hydroxyoct-l-en-l-yl)phenyl)oct-7-enoate (Compound Vb) having the structure:
- the compound may be methyl (S,E)-7-(2-((3S,4R,E)-3,4-dihydroxynon- l-en-l-yl)phenyl)-5-hydroxyhept-6-enoate (Compound Xb) having the structure:
- the method may any one or more of the reaction steps for synthesis of the pro resolving analog (e.g ., lipoxin mimetic such as lipoxin A4 mimetics, etc.).
- the reaction steps e.g ., lipoxin mimetic such as lipoxin A4 mimetics, etc.
- at least one of the reaction steps occurs in a reaction medium with a basic pH.
- each of the reaction steps occurs in a reaction medium with a basic pH (e.g ., a pH greater than 7) or in a reaction medium with an apparent pH greater than 7.
- the method may comprise:
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; Its is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently a protecting group (e.g ., trityl protecting group, silyl protecting group, etc.).
- a protecting group e.g ., trityl protecting group, silyl protecting group, etc.
- the method may comprise: a) contacting a compound having the structure of Formula (I):
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
- P1-P3 are each independently a protecting group (e.g ., trityl protecting group, silyl protecting group, etc.);
- X is a halogen (e.g., bromine, etc.).
- Methods for the synthesis of compounds having the structure of formula (I) are also provided within the disclosure.
- compounds having the structure of Formula (I) may be useful starting materials.
- These method for the compound (I) synthesis may comprise using L-deoxyribose as a starting material and reducing L-deoxyribose to form a suitable intermediate.
- the method may comprise saturating (e.g., with Fh and Pd/C, etc.) a triol as shown in Synthesis Route B below.
- the triol may have have the structure:
- triol having the structure:
- the method may comprise protecting each hydroxyl group of the triol to form a compound having the structure:
- P4-P6 are independently oxygen protecting groups.
- the method may comprise deprotection of one of these protecting groups to form a compound with a single hydroxyl group.
- the oxygen attached to P6 is deprotected at this step to form the structure:
- the method may comprise conversion of the single hydroxyl group compound to an aldehyde or a ketone (e.g., via Swern oxidation, etc.).
- the method may comprise the formation of the aldehyde having the structure:
- the method may comprise halogenating the aldehydes or ketones to form a halogenated intermediate via a process such as Takai olefmation.
- the halogenated product may have the structure:
- the method may comprise coupling the halogenated product to a halogenated phenyl moiety (present in embodiments of lipoxin analogs described herein) to form the compounds having the structure of formula (I).
- the method may comprise coupling the halogenated product via a Suzuki reagent.
- a particular Suzuki reagent useful is bromophenyl boronic acid.
- the Suzuki reaction may occur with one or more catalysts (e.g ., the transition metal catalysts of palladium or nickel such as PdCb, Pd(OAc)2, Pd2(dba)3, Ni (OAc)2 Ni/C, etc.), and or an alkali (e.g., sodium tert-butoxide, potassium tert-butoxide, potassium carbonate, cesium carbonate and tripotassium phosphate, etc.).
- the Suzuki reaction may occur in an aprotic solvent.
- the Suzuki reaction may occur in an aqueous environment.
- the method for the synthesis of compounds having the structure of Formula (I) may comprise one or more (e.g., one, two, three, four, five, six, etc.) reaction steps described above.
- the compounds described herein may have one or more oxygen protecting groups (e.g., Pi, P2, P3, P4, P5, Rd, etc.) which are sometimes referred to as hydroxyl protecting group.
- two R groups may together form a ring ( e .g ., fused ring, spiro ring, etc.).
- Oxygen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, incorporated herein by reference in its entirety.
- P1-P3 are each silyl protecting groups.
- P1-P3 may each be fe/V-butyl di ethyl silyl .
- oxygen protecting groups include, but are not limited to, methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p- methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-
- the reaction to form the lipoxin analogs described herein may use one or more catalysts.
- the reaction to form compounds having the structure of Formula (III) may take place in the presence of a catalyst.
- the catalyst may be a Groups 8 metal catalyst such as those described in in Chemical and Engineering News, 63(5), 27, 1985, hereby incorporated by reference in its entirety. Examples of such metals include Ni, Pt and Pd.
- the catalyst is a palladium catalyst.
- Suitable palladium catalysts include but are not limited to Pd3(dba)3, PdCb, Pd(OAc)2, PdCl2(dppf)CH2Cl2, Pd(PPh3)4 and related catalysts which are complexes of phosphine ligands, (such as (Ph 2 P(CH 2 )nPPh2) where n is 2 to 5, P(o-tolyl)3, P(i-Pr)3, P(cyclohexyl)3, P(o- MeOPh)3, P(p-MeOPh) 3 , dppp, dppb, TDMPP, TTMPP, TMPP, TMSPP, 2-(di-t- butylphosphino)biphenyl, (R,R)-Me-DUPHOS, (S,S)-Me-DUPHOS, (R)-BINAP, (S)-BINAP, and related water soluble phosphines), related ligands
- Suitable ligands including those containing P and/or N atoms for coordinating to the palladium atoms, (such as for example pyridine, alkyl and aryl substituted pyridines, 2,2'-bipyridyl, alkyl substituted 2,2'-bipyridyl and bulky secondary or tertiary amines), and other simple palladium salts either in the presence or absence of ligands.
- the palladium catalysts include palladium and palladium complexes supported or tethered on solid supports, such as palladium on carbon, as well as palladium black, palladium clusters and palladium clusters containing other metals and palladium in porous glass as described in J. Li, A. W-H. Mau and C. R. Strauss, Chemical Communications, 1997, p 1275.
- the same or different Group 8 metal catalysts may be used to catalyze different steps in the process.
- platinum catalysts include but are not limited to Pt(dba)2, Pt(PPh3)2Cl2, PtCb, Pt(OAc)2, PtCl2(dppf)CH2Cl2, Pt(PPh3)4 and related catalysts which are complexes of phosphine ligands, (such as (Ph2P(CH2)nPPh2) where n is 2 to 5, P(o- tolyl)3, P(i-Pr)3, P(cyclohexyl)3, P(o-MeOPh)3, P(p-MeOPh)3, dppp, dppb, TDMPP, TTMPP, TMPP, TMSPP, 2-(di-t-butylphosphino)biphenyl, (R,R)-Me-DUPHOS, (S,S)-Me-DUPHOS, (R)-
- the platinum catalysts include platinum and platinum complexes supported or tethered on solid supports, such as platinum on carbon, as well as platinum black, platinum clusters and platinum clusters containing other metals.
- Increased basicity may lead to increased stability and increased yields in any of the reaction steps.
- one or more reaction steps may proceed in an environment with a basic pH or a basic apparent pH (e.g ., a reaction environment with a pH greater than 7, a reaction environment with a pH greater than 7.2, etc.).
- the reaction medium may include one or more buffers or pH adjusters including phosphates of alkali metals, such as monosodium phosphate, di sodium phosphate, potassium phosphates, and tripolyphosphates; sodium hydroxide; sulfuric acid; perchlorate; and combinations thereof.
- any reaction step described herein may use one or more bases.
- some reaction steps may be performed in an environment comprising one or a mixture of two or more bases selected from the group consisting of potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic dihydrate (Na2HP04.2H20), sodium phosphate dibasic (Na2HP04), sodium carbonate (Na2CCb), sodium phosphate monobasic (NaftPCri), lithium acetate (LiOAc), lithium carbonate (L12CO3), sodium acetate (NaOAc), potassium phosphate dibasic (K2HPO4), potassium phosphate tribasic (K3PO4), potassium carbonate (K2CO3), cesium fluoride (CsF), potassium bicarbonate (KHCO3), potassium hydroxide (KOH), potassium fluoride (KF), potassium hexafluorophosphate (KPF6), potassium acetate (KOAc), sodium fluoride (NaF), cesium acetate (CsOAc), cesium pivalate (KH
- NaOAc, K2HPO4, or KOAc may be used as the base.
- the reaction to form compounds having the structure of Formula (III) and/or the alkylation reaction involves the use of base such as an alkali carbonate (e.g., potassium carbonate, etc.).
- any reaction step may comprise an alkali carbonate selected from the group consisting of Na2C03, K2CO3, CS2CO3, and L12CO3.
- compounds may be deprotected in the presence of well.
- compounds having the structure of Formula (III) e.g., compounds having the structure of Formula (Ilia), etc.
- a base such as LiOH.
- a reaction step may have a molar ratio of compounds having the structure of Formula (I) to alkali carbonate is from 10: 1 to 1 : 10 (e.g., from 5: 1 to 1 :5, from 3 : 1 to 1 :3, from 10: 1 to 1 : 1, from 1 : 1 to 1 : 10, from 5: 1 to 1 : 1, from 3 : 1 to 1 : 1, from 1 : 1 to 1 :5, from 1 : 1 to 1 :3, from 2: 1 to 1 :2, from 2: 1 to 1 : 1, from 1 : 1 to 1 :2, etc.).
- the reaction has a molar ratio of compounds having the structure of Formula (II) to alkali carbonate is from 10: 1 to 1 : 10 (e.g., from 5: 1 to 1 :5, from 3 : 1 to 1 :3, from 10: 1 to 1 : 1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.).
- 10: 1 to 1 : 10 e.g., from 5: 1 to 1 :5, from 3 : 1 to 1 :3, from 10: 1 to 1 : 1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.
- the reaction has a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
- alkylation of compounds having the structure of Formula (IV) occurs using one or more alkylating agents.
- alkylating agents include alkyl halides and benzyl halides.
- the alkylating agent may be selected from methyl iodide (CFEI), ethyl iodide (C2H5I), and benzyl bromide (BnBr).
- the reaction may have a molar ratio of compounds having the structure of Formula (IV) to alkylating agent is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.).
- a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate base is from 2:1 to 1:2 and a molar ratio of the compound to alkylating agent is from 3:1 to 1:3.
- the compound may be alkylated prior to deprotection.
- the reaction may have a molar ratio of compounds having the structure of Formula (III) to alkylating agent is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
- the molar ratio of compounds having the structure of Formula (III) to alkali carbonate base is from 2: 1 to 1 :2 and the molar ratio of the compound to alkylating agent is from 3:1 to 1:3.
- a reaction step may have a molar ratio of compounds having the structure of Formula (VI) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
- the reaction has a molar ratio of compounds having the structure of Formula (II) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1 :2, from 2: 1 to 1 : 1, from 1 : 1 to 1 :2, etc.).
- the reaction has a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
- alkylation of compounds having the structure of Formula (IX) occurs using one or more alkylating agents.
- alkylating agents include alkyl halides and benzyl halides.
- the alkylating agent may be selected from methyl iodide (CFEI), ethyl iodide (C2H5I), and benzyl bromide (BnBr).
- the reaction may have a molar ratio of compounds having the structure of Formula (IV) to alkylating agent is from 10:1 to 1:10 ( e.g ., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.).
- a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate base is from 2:1 to 1:2 and a molar ratio of the compound to alkylating agent is from 3:1 to 1:3.
- the compound may be alkylated prior to deprotection.
- the reaction may have a molar ratio of compounds having the structure of Formula (III) to alkylating agent is from 10:1 to 1:10 (e.g., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
- the molar ratio of compounds having the structure of Formula (III) to alkali carbonate base is from 2: 1 to 1 :2 and the molar ratio of the compound to alkylating agent is from 3:1 to 1:3.
- the reaction steps disclosed herein occur in solvent suitable to promote the reaction step (e.g., reduction, hydrogenation, oxidation, coupling, etc.).
- the reaction environment is aqueous.
- the reaction environment is non-aqueous.
- the reaction comprising an organic solvent such as an aliphatic or cyclic ether solvent.
- any of the reaction steps described herein may include an aprotic or protic solvent such as dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), and acetonitrile (CFECN).
- the solvent is tetrahydrofuran (THF).
- the medium for any reaction step is performed in an environment with a basic pH or a basic apparent pH.
- the lipoxin analogs (e.g., lipoxin mimetics) described herein are useful for the treatment of a disorder, such as an oral disorder or an inflammatory condition.
- Oral disorders may be a disorder, disease, or condition which is caused or characterized by an abnormally low or insufficient level of oral bone (e.g., bone in the oral cavity, etc.).
- Exemplary oral bones include alveolar bone and basal bone.
- Some oral disorders which may be treated or prevented by increasing bone mass or bone growth through administration described herein include periodontal disease, alveolar bone loss, gingivitis, osteoporosis, osteopenia, oral bone resection, oral bone fracture, arthritis, osteoarthritis, osteotomy bone loss, childhood idiopathic bone loss, and the like.
- Destructive oral bone disorders that can be treated according to the disclosure include osteoporosis, osteopenia, osteoarthritis and osteolytic lesions such as those caused by neoplastic disease, radiotherapy, or chemotherapy. Also contemplated by the present invention is the regeneration of other oral tissues including soft tissues, epithelium, and connective tissues, such as collagen and blood vessels.
- periodontal diseases can be treated or prevented by using lipoxin analogs to increase osteogenesis.
- a periodontium is a tissue which is present around teeth and plays a role in supporting teeth. The periodontium is composed of at least gingiva, alveolar bone, periodontal ligament (periodontal membrane), cementum, and dental pulp.
- gingivitis an inflammation confined to the gum
- periodontitis A general term of these inflammations is periodontal disease.
- Periodontal diseases may also encompass a larger set of inflammatory diseases affecting the periodontium.
- such diseases include dental plaque-induced gingival diseases; chronic (previously adult) periodontitis; aggressive periodontitis (formerly early-onset, prepubertal, juvenile or rapidly progressive periodontitis); necrotizing periodontal diseases; abscesses of the periodontium; and post-operative bacterial infections (in particular those which are caused, transmitted and/or exacerbated by P. gingivalis).
- Periodontitis involves progressive loss of the alveolar bone around the teeth, and, if left untreated, can lead to the loosening and subsequent loss of teeth. Periodontitis is caused by microorganisms that adhere to and grow on the tooth's surfaces, along with an overly aggressive immune response, against these microorganisms. Diagnosis of periodontal disease in general or periodontitis specifically is usually performed by measurement of a periodontal pocket, attachment level, X-ray image diagnosis, or the like. Periodontitis manifests as painful, red, swollen gums, with abundant plaque.
- Symptoms may include redness or bleeding of gums while brushing teeth, using dental floss, or biting into hard food (e.g., apples); recurrent swelling of the gum; halitosis and a persistent metallic taste in the mouth; gingival recession resulting in apparent lengthening of teeth; deep pockets between the teeth and the gums (pockets are sites where the attachment has been gradually destroyed by collagenases); and loose teeth.
- associated symptoms which may be treated according to the present invention include mouth ulcers, dental pain, discomfort, inflammation, bleeding, pus secretion, halitosis, tooth mobility, tooth loss, swelling or inflammation caused by any of the foregoing.
- inflammatory conditions are those disease states characterized by inflammatory tissues (for example, infiltrates of cells such as leukocyctes, neutrophils, macrophages, eosinophils, mast cells, basophils, dendritic cells, etc.). These disease states may provoke or contribute to the abnormal clinical and histological characteristics of a disease state.
- Inflammatory conditions which may be treated with the compositions described herein include inflammatory conditions of the skin or inflammatory conditions of the eye, or sepsis-associated conditions.
- compositions described herein may be useful for the treatment of prophylaxis of an inflammation of the skin such as Sweet’s syndrome, pyoderma gangrenosum, subcorneal pustular dermatosis, erythema elevatum diutinum, Bechet’s disease or acute generalized exanthematous pulstulosis, bullous disorder, psoriasis, a condition resulting in pustular lesions, acne, acne vulgaris, dermatitis ( e.g ., contact dermatitis, atopic dermatitis, seborrheic dermatitis, eczematous dermatitis, photoallergic dermatitis, phototoxic dermatitis, phytophotodermatitis, radiation dermatitis, stasis dermatitis, allergic contact dermatitis, etc.), ezema such as histotic eczema, ulcers and erosions resulting from trauma, bums, ischemia of the skin or mu
- compositions may also be useful for the treatment of inflammatory conditions of the eye such as dry eye syndrome, uveitis (including crizis), conjunctivitis, scleritis, and keratoconjunctivits sicca.
- inflammatory conditions of the eye such as dry eye syndrome, uveitis (including crizis), conjunctivitis, scleritis, and keratoconjunctivits sicca.
- the treatment or prophylaxis of these conditions may occur by administration of topical anti-inflammatory compositions as described herein may be applied to areas affected by such conditions.
- the method for the treatment or prophylaxis of a disorder in a subject in need thereof comprise administration of a pharmaceutical composition comprising one or more compounds having the structure of formula (IV) or formula (V), or formula (IX) or formula (X), or carboxylate salts thereof.
- compound Va may be administered.
- the disorder may be selected from periodontitis, alveolar bone loss, gingivitis, osteoporosis, osteopenia, oral bone resection, oral bone fracture, arthritis, osteoarthritis, osteotomy bone loss, osteolytic lesions, idiopathic bone loss ( e.g ., childhood idiopathic bone loss, etc.).
- the oral disorder is a periodontal disease (e.g., from periodontitis, gingivitis, chronic periodontitis, aggressive periodontitis, necrotizing periodontal disease, aggressive periodontitis, periodontium abscesses, post-operative gingival infections, etc.).
- a periodontal disease e.g., from periodontitis, gingivitis, chronic periodontitis, aggressive periodontitis, necrotizing periodontal disease, aggressive periodontitis, periodontium abscesses, post-operative gingival infections, etc.
- compositions typically comprise one or more pharmaceutically acceptable carriers, excipients, and/or diluents and a compound having the structure of Formula (V) or (X):
- p is an integer from 0-4;
- Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
- R L is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times; and the pH of said composition is greater than 7. In some embodiments, the pH is greater than 7.2.
- the composition may comprise the compound having the structure of Formula (V) in an amount from 0.01% to 50% ( e .g ., from 0.01% to 0.1%, from 0.1% to 1%, from 1% to 10%, from 1% to 50%, from 10% to 20% from 20% to 30% from 30% to 40%, from 40% to 50%, etc.) by weight of the composition.
- the pharmaceutical composition comprising one or more pH adjusting agents and/or buffers such as magnesium hydroxide; sodium hydroxide; aluminum hydroxide; alginic acid; isotonic saline; Ringer's solution; ethyl alcohol; or phosphate buffer solution.
- the composition is formulated for topical administration of the compound.
- the composition may be formulated as a mouth rinse, tooth paste, dentifrice, buccal patch, dental fiber, dental tape, chewing gum, food additive, lozenge, tablet, or chewable capsule.
- composition may comprise a compound having the structure:
- the composition comprises a compound having the structure:
- the composition comprises a compound having the structure:
- one or more reaction steps may proceed in an environment with a basic pH or a basic apparent pH (e.g., a pH (or apparent pH) greater than 7, a pH (or apparent pH) greater than 7.2, etc.).
- the reaction medium may include one or more buffers or pH adjusters including phosphates of alkali metals, such as monosodium phosphate, di sodium phosphate, potassium phosphates, and tripolyphosphates; sodium hydroxide; sulfuric acid; perchlorate; and combinations thereof.
- any reaction step described herein may use one or more bases.
- some reaction steps may be performed in an environment comprising one or a mixture of two or more bases selected from the group consisting of potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic dihydrate (Na2HP04.2H20), sodium phosphate dibasic (Na2HP04), sodium carbonate (Na2CCb), sodium phosphate monobasic (NaftPCri), sodium acetate (NaOAc), potassium phosphate dibasic (K2HPO4), potassium phosphate tribasic (K3PO4), potassium carbonate (K2CO3), potassium bicarbonate (KHCO3), potassium hydroxide (KOH), potassium fluoride (KF), ppotassium acetate (KOAc), and sodium fluoride (NaF).
- KH2PO4 potassium phosphate monobasic
- Na2HP04.2H20 sodium phosphate dibasic dihydrate
- Na2HP04 sodium phosphate dibasic
- Na2CCb sodium phosphate monobasic
- the composition may include buffers selected from anhydrous carbonates such as sodium carbonate, sesquicarbonates, bicarbonates such as sodium bicarbonate, silicates, bisulfates, phosphates (e.g, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, disodium phosphate, tribasic sodium phosphate, sodium tripolyphosphate, phosphoric acid), citrates (e.g, citric acid, trisodium citrate dehydrate), pyrophosphates (sodium and potassium salts) and combinations thereof.
- anhydrous carbonates such as sodium carbonate, sesquicarbonates, bicarbonates such as sodium bicarbonate, silicates, bisulfates
- phosphates e.g, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, disodium phosphate, tribasic sodium phosphate, sodium tripolyphosphate, phosphoric acid
- citrates e.g, citric
- the amount of buffering agent is sufficient to provide a pH of greater than 7 (e.g., greater than 7.2, from 7 to 8, from 7.2 to 8 from 7.2 to 7.5, etc.) in aqueous or liquid based compositional forms (e.g. oral rinses, etc.).
- Typical amounts of buffering agent are about 5% to about 35%, in one embodiment about 10% to about 30%, in another embodiment about 15% to about 25%, by weight of the total composition.
- An exemplary composition includes from 50% to 90% solvent (e.g., water, lower alcohols such as ethanol, propylene glycol etc.) by weight of the composition, additional agreements such as sweeteners, flavoring agents humectants, and surfactants (e.g., from 0.1 to 20%, etc.) by weight of the composition, one or more buffering agents to maintain a pH of greater than 7 (e.g., in an amount of from 1% to 40%, from 5% to 35%, from 10% to 30%, from 15% to 25% by weight of the composition, etc.) and a concentration of lipoxin mimetic (e.g., lipoxin- A4 mimetic, lipoxin-B4 mimetic, compounds having the structure of formula (V), compounds having the structure of formula (X), Compound (Vb), Compound (Xb), etc.).
- solvent e.g., water, lower alcohols such as ethanol, propylene glycol etc.
- additional agreements such as sweeteners, flavoring agents humectants
- the lipoxin mimetic may be present in an amount of from 0.1 mM to 100 mM (e.g., from 0.1 pM to 10 pM, from 10 pM to 100 pM, etc.).
- the composition comprises a phosphate buffer (e.g., dipotassium phosphate, tripotassium phosphate, disodium phosphate, tribasic sodium phosphate, etc.).
- the lipoxin mimetic may be administered to a subject topically.
- the active compound may be formulated in topical dosage forms such as creams, lotions, ointments, gels, shampoos, sprays, aerosols, solutions, or emulsions. See, e.g, Remington: The Science and Practice of Pharmacy, 21 st Ed., Lippincott, Williams, and Wilkins, Philadelphia Pa. (2005); and Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 9 th Ed., Lippincott, Williams, and Wilkins, Philadelphia, Pa. (201 1) each hereby incorporated by reference in their entirety.
- viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity preferably greater than water are typically employed.
- suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g, preservatives, stabilizers, wetting agents, buffers, salts, etc.) for influencing various properties, such as, for example, osmotic pressure.
- Suitable topical dosage forms include sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g, a gaseous propellant such as Freon, etc.), or in a squeeze bottle.
- a pressurized volatile e.g, a gaseous propellant such as Freon, etc.
- Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired.
- the lipoxin analogs described herein may be formulated with a physiologically compatible carrier medium.
- a physiologically compatible carrier medium can be of any simple type, for example, a pharmaceutically acceptable carrier such as fructo-oligo-saccharide (FOS) medium, or other soluble fiber, sugar, nutrient or base material for the composition, with which the lipoxin analog can be formulated.
- the lipoxin analog may be formulated in an orally administrable form.
- Other non-limiting, exemplary carrier media include mannitol, inulin (a polysaccharide), polydextrose, arabinogalactan, polyolslactulose, lactitol, etc.
- the carrier medium when present, can be mixed or blended with lipoxin analogs in any suitable amounts to form a pharmaceutical composition, such as an amount of from 5% to 95% by weight of the composition.
- the amount of carrier medium can be in a range having a lower limit of any of 5%, 10%, 12%, 15%, 20%, 25%, 28%, 30%, 40%, 50%, 60%, 70% or 75%, and an upper limit, higher than the lower limit, of any of 20%, 22%, 25%, 28%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, and 95%.
- the amount of carrier medium in a specific embodiment may be determined based on considerations of the specific dose form, relative amounts of lipoxin analogs, the total weight of the composition including the carrier medium and the bacterial species, and the physical and chemical properties of the carrier medium, and other factors.
- the compounds described herein may be formulated for oral administration.
- the oral administration is targeted for application to the oral cavity, such as by applying the compositions and active ingredients contained therein to surfaces of the oral cavity, including but not limited to salivary glands, saliva, gingiva, dental plaque, teeth, tongue, cheek tissue, and the like.
- the formulation is intended to adhere or otherwise contact the surgical wound area during periodontal flap surgery.
- orally acceptable carriers are those which are composed of one or more safe solid or liquid diluents or encapsulating substances compatible with the compounds described herein and are suitable for topical oral administration.
- Non-exclusive examples of such orally acceptable carriers include distilled or deionized water, calcium carbonate, calcium citrate, bentonite, and montmorillonite.
- compositions comprising the active compounds (e.g ., compounds having the structure of Formula (V), Compound (Vb), etc.) described herein include any composition suitable for topical administration (e.g., to the oral cavity, to the skin, to the eye, etc.) of a human or animal subject for enhancing the health, hygiene or appearance of the subject.
- the pharmaceutical composition may provide such benefits as: the prevention or treatment of a condition or disorder of the teeth, gums, mucosa or other hard or soft tissue of the oral cavity; the prevention or treatment of an oral disorder that would benefit from increased oral osteogenesis; and combinations thereof.
- an oral care composition is not intentionally swallowed for purposes of systemic administration of components of the composition, but is rather retained in the oral cavity for a time sufficient to contact substantially all of oral tissues for purposes of oral activity.
- the pharmaceutical composition of the present invention may be in the form of a capsule, cachets, pills, lozenge, granules, toothpaste, tooth gel, subgingival gel, dentifrice, tooth powder, mouth rinse, denture product, mouth spray, oral tablet, oral device, chewing gum, oil-in-water emulsion, water-in- oil emulsion, elixir, syrup, or pastille using an inert base, such as gelatin and glycerin, or sucrose and acacia), or encapsulated in resorbable carrier nanoparticles of biologic or synthetic origin.
- Particles containing at least one component of a cellular-derived microparticle are described in (published online Apr. 1, 2011) and in WO 2012/135032, both of which are incorporated herein in their entirety by reference.
- the lipoxin mimetics described herein may be formulated in a cellular derived microparticle or nanoparticle generated during the initiation phase of an acute inflammatory response.
- Such particles are described in US 2014/0079631 hereby incorporated by reference in its entirety and specifically in relation to its microparticle and nanoparticle delivery vehicles.
- the particle can be of a size from about 1 nm to about 1.5 pm in diameter. In some embodiments, the particle can be of a size from about 10 nm to about 1 pm in diameter.
- the particle can be of a size from about 100 nm to about 1 pm in diameter. In some embodiments, the particle can be of a size from about 100 nm to about 0.5 pm in diameter. In some embodiments, the particle can be of a size from about 150 nm to about 250 nm in diameter. In some embodiments, the particle can be of a size from about 450 nm to about 550 nm in diameter. In some embodiments, the particle can be of a size of about 200 nm in diameter. In some embodiments, the particle can be of a size of about 500 nm in diameter. In some embodiments, the particle can be of a size of about 1100 nm in diameter. The particle size may be measured by dynamic light scattering.
- an oral care composition may comprise any of the lipoxin analogs described herein.
- the oral care composition may be any of the following selected from the group consisting of: a toothpaste or a dentifrice, a mouthwash or a mouth rinse, a topical oral gel and a denture cleanser.
- the oral care composition further comprises one or more agents selected from diluents, bicarbonate salts, pH modifying agents, surfactants, foam modulators, additional thickening agents, humectants, sweeteners, flavorants, pigments, antibacterial agents, anticaries agents, fluoride ion sources, anticalculus or tartar control agents, and mixtures thereof.
- Oral compositions disclosed herein may also be incorporated onto strips or films for the application or attachment to oral surfaces.
- implants can be used, such as a chip for insertion into a periodontal pocket; a dental filling, bridge or cap; and a denture.
- the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acet
- compositions may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared using binder (e.g , gelatin, hydroxypropylmethyl cellulose, etc.), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate or cross-linked sodium carboxymethyl cellulose, etc.), surface-active or dispersing agent.
- Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent
- Tablets, and other solid dosage forms may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres.
- compositions may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
- These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
- embedding compositions which can be used include polymeric substances and waxes.
- the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof
- Suspensions in addition to the active agent, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- the pharmaceutical composition may optionally include other materials, such as for example, cleaning agents, flavouring agents, sweetening agents, adhesion agents, surfactants, foam modulators, abrasives, pH modifying agents, humectants, moisturizers, mouth feel agents, colorants, abrasives, preservatives, fluoride ion source, saliva stimulating agents, emollients, viscosity modifiers, diluents, emulsifiers, nutrients and combinations thereof.
- other materials such as for example, cleaning agents, flavouring agents, sweetening agents, adhesion agents, surfactants, foam modulators, abrasives, pH modifying agents, humectants, moisturizers, mouth feel agents, colorants, abrasives, preservatives, fluoride ion source, saliva stimulating agents, emollients, viscosity modifiers, diluents, emulsifiers, nutrients and combinations thereof.
- a sweetening agent such as saccharin, or sodium saccharin
- alcohols such as ethanol
- fluoride ion sources such as sodium fluoride
- glycerine such as sodium fluoride
- sorbitol polyethylene glycols.
- Poloxamer polymers such as POLOXOMER.RTM. 407, PLURONIC.RTM. FI 08, (both available from BASF Corporation), alkyl polyglycoside (APG), polysorbate, PEG40, castor oil, menthol, and the like.
- APG alkyl polyglycoside
- PEG40 castor oil
- menthol castor oil
- carrier materials are selected for compatibility with the active ingredients found in magnolia extract or synthetic analogues thereof, as well as with other ingredients of the composition.
- Flavorants among those useful herein include any material or mixture of materials operable to enhance the taste of the composition. Any orally acceptable natural or synthetic flavorant can be used, such as flavoring oils, flavoring aldehydes, esters, alcohols, similar materials, and combinations thereof.
- Flavorants include vanillin, sage, marjoram, parsley oil, spearmint oil, cinnamon oil, oil of wintergreen (methylsalicylate) peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil, citrus oils, fruit oils and essences including those derived from lemon, orange, lime, grapefruit, apricot, banana, grape, apple, strawberry, cherry, pineapple, etc., bean- and nut-derived flavors such as coffee, cocoa, cola, peanut, almond, etc., adsorbed and encapsulated flavorants, and mixtures thereof. Also encompassed within flavorants herein are ingredients that provide fragrance and/or other sensory effect in the mouth, including cooling or warming effects.
- Such ingredients include menthol, menthyl acetate, menthyl lactate, camphor, eucalyptus oil, eucalyptol, anethole, eugenol, cassia, oxanone, [alpha]- irisone, propenyl guaiethol, thymol, linalool, benzaldehyde, cinnamaldehyde, N-ethyl-p- menthan-3-carboxamine, N,2,3-trimethyl-2-isopropylbutanamide, 3-l-menthoxypropane-l,2- diol, cinnamaldehyde glycerol acetal (CGA), methane glycerol acetal (MGA) and mixtures thereof.
- One or more flavorants are optionally present in a total amount of 0.01% to 5%, optionally in various embodiments from 0.05 to 2%, from 0.1% to 2.5%, and
- the composition may comprise one or more sweetening agents.
- Sweetening agents among those useful herein include dextrose, poly dextrose, sucrose, maltose, dextrin, dried invert sugar, mannose, xylose, ribose, fructose, levulose galactose, corn syrup, partially hydrolyzed starch, hydrogenated starch hydrolysate, sorbitol, mannitol, xylitol, maltitol, isomalt, aspartame, neotame, saccharin and salts thereof, sucralose, dipeptide-based intense sweeteners, cyclamates, dihydrochalcones, and mixtures thereof.
- Mouth-feel agents include materials imparting a desirable texture or other feeling during use of the composition of the present disclosure.
- Colorants among those useful to the compositions disclosed herein include pigments, dyes, lakes and agents imparting a particular luster or reflectivity such as pearling agents.
- colorants are operable to provide a white or light-colored coating on a dental surface, to act as an indicator of locations on a dental surface that have been effectively contacted by the composition, and/or to modify appearance, in particular color and/or opacity, of the composition to enhance attractiveness to the consumer.
- Any orally acceptable colorant can be used, including FD&C dyes and pigments, talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, magnesium aluminum silicate, silica, titanium dioxide, zinc oxide, red, yellow, brown and black iron oxides, ferric ammonium ferrocyanide, manganese violet, ultramarine, titaniated mica, bismuth oxychloride, and mixtures thereof.
- One or more colorants are optionally present in a total amount of 0.001% to 20%, for example 0.01% to 10% or 0.1% to 5%.
- the compositions of the present disclosure contain a buffering agent.
- buffering agents include anhydrous carbonates such as sodium carbonate, sesquicarbonates, bicarbonates such as sodium bicarbonate, silicates, bisulfates, phosphates (e.g., monopotassium phosphate, dipotassium phosphate, tribasic sodium phosphate, sodium tripolyphosphate, phosphoric acid), citrates (e.g. citric acid, trisodium citrate dehydrate), pyrophosphates (sodium and potassium salts) and combinations thereof.
- anhydrous carbonates such as sodium carbonate, sesquicarbonates, bicarbonates such as sodium bicarbonate, silicates, bisulfates, phosphates (e.g., monopotassium phosphate, dipotassium phosphate, tribasic sodium phosphate, sodium tripolyphosphate, phosphoric acid), citrates (e.g. citric acid, trisodium citrate dehydrate), pyrophosphates (so
- the amount of buffering agent is sufficient to provide a pH of 5 to 9, preferable 6 to 8, and more preferable 7, when the composition is dissolved in water, a mouth rinse base, or a toothpaste base.
- Typical amounts of buffering agent are 5% to 35%, in one embodiment 10% to 30%, in another embodiment 15% to 25%, by weight of the total composition.
- Stability measurements may be performed on compositions comprising the lipoxin analogs disclosed herein.
- Compound Vb may be incorporated into several aqueous solutions at a variety of pHs. These compositions may be subjected to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) measurements on stability such as Q1A-Q1F.
- ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
- the compositions may be subjected to ICH conditions including long term conditions (-20° ⁇ 4°C) and accelerated conditions of simulated room temperature (40° ⁇ 2°C/70% ⁇ 5% RH).
- the composition may undergo a physical examination, identification of the components (via thin layer chromatography), identity and purity measurements (via liquid chromatography/mass spectrometry) and water content (via Karl Fischer titration).
- Stability measurements may be measured with a stability protocol as outlined in Table 1 to determine those compositions with increased stability over time.
- Table 1,“A” indicates time points of the protocol where the stability measurements may occur following formulation. It will be understood that stability measurements may be performed at any time point listed in Table 1.
- compositions comprising lipoxin analogs may be created.
- the composition may have the components as shown in Table 2
- the lipoxin mimetic may be formulated in the composition at various pH ranges. It is believed that compositions with a pH of greater than 7 (and specifically greater than 7.2) will be able to solvate and maintain stability of alkyl ester forms of compounds having the structure of Formula (V) (e.g ., R.4 is methyl, etc.) and carboxylate salts thereof. At normal conditions, long term conditions, and accelerated aging conditions, compositions with basic pH (e.g., pH greater than 7.2) will maintain the ester form of lipoxin analogs (e.g., Compound (Vb), Compound (Xb), etc.). As shown below, compositions without basic pH result in degradation of the ester form of the lipoxin analog.
- pH of greater than 7 and specifically greater than 7.2
- the pH may be set and monitored during experimental protocol, thus preventing acid induced hydrolysis of the ester forms of lipoxin analogs (e.g., Compound (Vb), Compound (Xb), etc.).
- Compounds suitable for formulation and synthesized in the manners described herein should meet certain known parameters. For example, the compounds should meet the specifications as identified in Table 3.
- Example 3 Clinical Study of Treatment with Compound Vb
- a clinical study comprised of 3 groups in a randomized, placebo-controlled, double-blind design with an additional group that received no treatment was performed to evaluate the use of Compound (Vb) on the treatment of gingivitis.
- Subjects were healthy adults, aged 18 through 65 years, with gingivitis as defined by Marginal Gingival Index (MGI) > 2.0.
- the treatment group Compound (Vb) oral rinse
- the placebo rinse group consisted of 50 subjects each.
- the no-rinse control group consisted of 27 subjects. These group sizes were planned to allow for a 20% dropout rate.
- control oral rinse was formulated as shown in Table 4, which was formulated with at pH stabilizing agent such as a buffer.
- the pH of this solution was 7 or less.
- the Compound (Vb) oral rinse group received the active agent at a concentration of 1.0 mM in the oral rinse applied once daily (after morning teeth brushing) for 28 days.
- TEAEs treatment emergent adverse effects
- a total of 10 subjects (7.9% of the Safety population) reported at least 1 TEAE considered related to study drug. Study drug-related TEAEs were reported in 6 subjects in the Compound (Vb) group and 4 subjects in the placebo group.
- MGI Modified Gingival Index
- BOP BOP
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
This disclosure relates to methods of synthesizing certain lipoxin analogs (e.g., lipoxin mimetics, etc.) and pharmaceutical compositions comprising these pro-resolving compounds. Methods of administering the lipoxin mimetics (e.g., lipoxin A4 mimetics, lipoxin B4 mimetics, etc.) to patients in need thereof are also provided.
Description
SYNTHESIS OF PRO-RESOLVING ANALOGS AND COMPOSITIONS THEREFOR
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present application claims priority to U.S. App. No. 62/878,937, filed July 26, 2019, which is hereby incorporated by reference in its entirety.
BACKGROUND
[0002] Oral health disorders, such as gum disease and periodontitis, are widespread among modern human populations. For example, in the U.S. it is estimated that nearly 1 out of 2 American adults— aged 30 and older— have mild to severe periodontitis. The severity of such conditions increases when they are not treated and can lead not only to local oral problems, such as bone and early tooth loss, but also systemic disorders, such as heart disease.
[0003] In particular, periodontitis is a local inflammation that occurs as a result of host response against specific microorganisms and eventually leads to the tissue destruction and systemic complications. Once periodontal inflammation is initiated, the cascade of inflammatory events includes an amplified loop until the infection is contained and injury is confined. The early actions of the host response are later replaced by more specific mechanisms and eventually become redundant. Thus, it is important, as in other biologic processes, to limit the response and to allow the inflammation to resolve. While it has been shown that many molecules participate in the initiation and development of the host defense mechanisms, a recent paradigm in periodontal disease pathogenesis emphasizes the importance of counterregulatory molecules in the resolution of inflammatory response to control its magnitude and duration. Specifically, some anti-inflammatory therapeutics utilize inhibitory pathways related to biosynthesis and actions of pro-inflammatory mediators, such as the prostaglandins and leukotrienes. An alternative methodology for therapeutics is based on mimicking the actions the endogenous anti-inflammatory and pro-resolution lipid mediators rather than interfering with the biosynthesis and actions of the pro-inflammatory prostaglandins and leukotrienes.
[0004] One such pro-resolution type of active agent are the lipoxins, which feature a trihydroxy- tetraene structure such as lipoxin A4 that carries specific tetraene double bond geometry of E,E,Z,E- and is biosynthesized from arachidonic acid, a polyunsaturated fatty acid present in the phospholipids of membranes of cells. Lipoxins ( e.g ., Lipoxin A4, Lipoxin B4, etc.) can be biosynthesized via lipoxygenase-mediated transcellular biosynthesis and via single
cell types such as macrophages. In general, lipoxins are often rapidly inactivated in vivo via a metabolic enzyme system comprising 15-prostaglandin dehydrogenase and eicosanoid oxido- reductase. There are several isomers of lipoxin including:
5S,6R,15R-trihydroxy-7E,9E,l lZ,13E-eicosatetraenoic acid
5 S , 14R, 15R-trihydroxy-6E, 8Z, 10E, 12E-eicosatetraenoic acid
Certain lipoxin mimetics have been shown to have increased half-life as compared to lipoxin and mimic the action of naturally occurring lipoxins to potently reduce inflammation upon binding to a G-protein-coupled receptor known to play a key role in modulating inflammation. Structure-function studies of various lipoxin analogs have shown that the most active and longer acting lipoxin analogs have certain structural features. However, the chemical syntheses of these compounds often rely on many synthetic steps that individually and/or collectively may result in low product yields. Furthermore, the developed synthetic schema for these compounds result in various product issues such as impurities. Such problems run counter to good manufacturing practices (GMP) established for such treatment modalities. Furthermore, stabilizing the lipoxin analogs in pharmaceutical compositions has proven costly as well, limiting the utility and cost of goods associated with the lipoxin analogs.
[0005] It is therefore an object of the disclosure to provide methods of synthesis of pro resolving analogs such as lipoxin A4 mimetics which overcome these issues including providing cost efficient synthesis of these compounds. Furthermore, it is an object of the disclosure to provide compositions which are able to stabilize the compounds described herein. Typically, these compositions are suitable for the treatment or prevention of periodontal disease or inflammatory conditions.
SUMMARY
[0006] In accordance with the foregoing objectives and others, the present disclosure provides methods of making pro-resolving analogs such as lipoxin analogs ( e.g ., A4 lipoxin mimetics, etc.), and pharmaceutical compositions comprising such compositions. The pharmaceutical compositions may be used for the treatment or prophylaxis of certain diseases, disorders, or conditions, such as periodontal disease or inflammatory conditions. Furthermore, an aspect of this disclosure includes pharmaceutical compositions with increased stability of the lipoxin analog (e.g., lipoxin mimetic, etc.). Without wishing to be bound by theory, it has been found that lipoxin analogs (and reactants used to produce lipoxin analogs) have increased stability in basic pH environments (e.g., pH > 7, pH > 7.2, etc.). The pharmaceutical composition may comprise a lipoxin A4 mimetic or a lipoxin 15-epi-A4 mimetic. In most embodiments, the lipoxin mimetic comprises a phenyl moiety (e.g., a benzo lipoxin mimetic, etc.). For example, the lipoxin A4 mimetic may have the structure:
wherein Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or
unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R4 is independently selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; and
RL is absent or a C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, lower alkylene such as methylene, ethylene, propylene, etc.) optionally substituted one or more times. In most embodiments, R4 is not hydrogen. In certain embodiments, the lipoxin A4 mimetic has the structure:
In various implementations, each R3 may be hydrogen. In certain embodiments, R2 is methyl, ethyl, propyl, butyl, or pentyl. In some embodiments, R4 may be methyl. For example, the lipoxin A4 mimetic may have the structure:
[0007] The methods for synthesis of the pro-resolving active analogs (e.g., lipoxin mimetic, etc.) may comprise:
contacting a compound having the structure of Formula (I):
with a compound having the structure of Formula (II):
under in an environment suitable to form a compound having the structure of Formula
(III):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
P1-P3 are each independently an oxygen protecting group ( e.g ., trityl type protecting group, silyl type protecting group, etc.); and
X is a halogen (e.g., bromine, etc.). In certain implementations, the compound of Formula (III) is produced with a molar yield of more than 50% (e.g., more than 60%, more than 70%, etc.) with respect to the compound of Formula (I).
[0008] In some embodiments, the method may comprise:
a) deprotecting a compound of Formula (III):
to produce a compound having the structure of Formula (IV):
b) contacting the compound having the structure of Formula (IV) with an alkylating agent ( e.g ., alkyl halide, heteroalkyl halide, etc.) to form a compound having the structure of Formula (V):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
P1-P3 are each independently a protecting group (e.g., trityl protecting group, silyl protecting group, etc.).
[0009] In some embodiments, the method may comprise:
a) deprotecting a compound of Formula (III):
b) contacting the compound having the structure of Formula (IV) with an alkylating agent ( e.g ., alkyl halide, heteroalkyl halide, etc.) to form a compound having the structure of Formula (V):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
[0010] P1-P3 are each independently a protecting group ( e.g ., trityl protecting group, silyl protecting group, etc.).
[0011] In some embodiments, the synthesis of the pro-resolving active analogs (e.g., B4 lipoxin mimetic, etc.) may comprise: contacting a compound having the structure of Formula (VI):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
P1-P3 are each independently an oxygen protecting group ( e.g ., trityl type protecting group, silyl type protecting group, etc.); and
X is a halogen (e.g., bromine, etc.). In certain implementations, the compound of Formula (VIII) is produced with a molar yield of more than 50% (e.g., more than 60%, more than 70%, etc.) with respect to the compound of Formula (VI).
[0012] In some embodiments, the method may comprise:
a) deprotecting a compound of Formula (VIII):
to produce a compound having the structure of Formula (IX):
b) contacting the compound having the structure of Formula (IX) with an alkylating agent (e.g., alkyl halide, heteroalkyl halide, etc.) to form a compound having the structure of Formula (X):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
[0013] P1-P3 are each independently a protecting group ( e.g ., trityl protecting group, silyl protecting group, etc.).
[0014] Reaction intermediates are also provided. In most embodiments, the reaction intermediate is a compound having the structure of formula (I)-(IV) or a compound having the structure of formula (VI)-(IX).
[0015] The lipoxin analog ( e.g ., lipoxin mimetic, etc.) such as the compounds having the structure of formula (IV) or the structure of formula (V) or the structure of formula (IX) or the structure of formula (X) may be formulated into pharmaceutical compositions. It will be understood that the lipoxin analogs (e.g., lipoxin mimetics such as (5S,6R,E)-5,6-dihydroxy- 8-(2-((R,E)-3-hydroxyoct-l-en-l-yl)phenyl)oct-7-enoic acid, etc.) formulated in these pharmaceutical compositions may be synthesized by the methods described herein or by other methods known in the art. Without wishing to be bound by theory, compositions with acidic pH promote the degradation of various lipoxin analogsln certain embodiments, the pharmaceutical composition has a pH greater than 7. For example, the pharmaceutical composition may comprise one or more pharmaceutically acceptable carriers, excipients, and/or diluents and a compound having the structure of Formula (V) or (X):
wherein p is an integer from 0-4;
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
Its is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times; and the pH of said composition is greater than 7 ( e.g ., greater than 7.1, greater than 7.2, from 7-12, from 7-10, from 7.1-10 from 7.2-10, etc.). Without wishing to be bound by theory, it is believed that pH’s above 7 result in decreased degradation of the ester form of these compounds. Accordingly, in certain embodiments, the compositions comprise no carboxylate salt or less than 5% carboxylate salt (e.g., less than 1% carboxylate salt, less than 0.1% carboxylate salt, less than 0.01%, etc.) by weight of the composition. In some embodiments, the composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound (e.g. free acid form wherein R.4 is hydrogen, etc.) by weight of the composition after more than three days of room temperature conditions (40° ± 2°C/70% ± 5% RH) and/or accelerated aging conditions (40°C/75%RH). In certain implementations, the composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound (e.g. free acid form wherein R4 is hydrogen, etc.) by weight of the composition after more than one month of long term storage conditions (e.g., -20° ± 4°C). In various implementations, the composition comprises less than 5% carboxylate salt (e.g., less than 1% carboxylate salt, less than 0.1% carboxylate salt, less than 0.01%, etc.) by weight of the composition following 7 days of storage at 25°C/60% RH or 40°C/75%RH. In certain implementations, the composition comprises less than 5% carboxylate salt (e.g., less than 1% carboxylate salt, less than 0.1% carboxylate salt, less than 0.01%, etc.) by weight of the composition following 7 days of storage following 3 months, or six months or twelve months, or 18 months, or 24 months or 36 months or 48 months or 60 months of storage at -20°C. To achieved, these stabilities, the pH of the composition may be from, example, 7-8 or from 7-7.5 or from 7.2-8 or from 7.1-7.4. These compositions may be formulated as an oral care composition, for example, as a mouth rinse, tooth paste, ointment, gel, hydrogel, salve, dentifrice, buccal patch, dental fiber, dental tape, chewing gum, food additive, lozenge, tablet, or chewable capsule. In certain embodiments, the compositions may be formulated for topical delivery of the lipoxin mimetic to the skin or delivery of the lipoxin mimetic to the eye. In some implementations, the composition may be a cream,
ointment, or a controlled-release patch or spray applied to the skin. In certain embodiments, the compound may have the structure of formula (Va) or (Xa):
[0016] Methods for the treatment or prophylaxis of a disorder, disease, or condition using these pharmaceutical compositions are also provided. In certain embodiments, the compositions may be used for the treatment or the prophylaxis of a disorder such as an oral disorder, a skin disorder, or an eye disorder. In certain implementations, the methods may comprise administration of the pharmaceutical compositions disclosed herein to a patient in need thereof. For example, the pharmaceutical compositions may be administered daily, twice daily, every other day, or weekly.
BRIEF DESCRIPTION OF THE FIGURE
[0017] FIG. 1 is a schematic illustrating the change in gingival index of clinical groups as measured by Marginal Gingival Index (MGI) for treatment groups administered Compound (Vb) (BLXA4), a placebo rinse, and no rinse measured at Days 14 and 28 of administration. In each group, Day 14 is the topmost column, and Day 28 is the bottommost column.
PET ATT /ED DESCRIPTION
[0018] Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the invention that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments of the invention is intended to be illustrative, and not restrictive.
[0019] All terms used herein are intended to have their ordinary meaning in the art unless otherwise provided. All concentrations are in terms of percentage by weight of the specified component relative to the entire weight of the topical composition, unless otherwise defined.
[0020] As used herein,“a” or“an” shall mean one or more. As used herein when used in conjunction with the word“comprising,” the words“a” or“an” mean one or more than one. As used herein“another” means at least a second or more.
[0021] As used herein, all ranges of numeric values include the endpoints and all possible values disclosed between the disclosed values. The exact values of all half integral numeric values are also contemplated as specifically disclosed and as limits for all subsets of the disclosed range. For example, a range of from 0.1% to 3% specifically discloses a percentage of 0.1%, 1%, 1.5%, 2.0%, 2.5%, and 3%. Additionally, a range of 0.1 to 3% includes subsets of the original range including from 0.5% to 2.5%, from 1% to 3%, from 0.1% to 2.5%, etc. It will be understood that the sum of all weight % of individual components will not exceed 100%. As used herein,“% by weight” or“% wt.” or“w/w” refers to the weight percent of a component in relation to the total weight of the composition unless otherwise stated. Every reference to percentage or % herein is given on a % by weight basis, unless stated otherwise. It will be understood that the sum of all weight % of individual components within a composition or within indicated component will not exceed 100%.
[0022] By“consist essentially” it is meant that the ingredients include only the listed components along with the normal impurities present in commercial materials and with any other additives present at levels which do not affect the operation of the invention, for instance at levels less than 5% by weight or less than 1% or even 0.5% by weight.
[0023] A“patient in need thereof,” as used herein, refers to a human individual, male or female, who would benefit from administration of therapeutically effective doses of the lipid compositions. As described herein, in some embodiments, an individual in need thereof is suffering from a disorder such as periodontal disease. A patient in need or an individual in need or subject in need are used interchangeably herein.
[0024] As used herein, the phrase“pharmaceutically acceptable” generally safe for ingestion or contact with biologic tissues at the levels employed. Pharmaceutically acceptable is used interchangeably with physiologically compatible. It will be understood that the pharmaceutical compositions of the invention include topical care compositions including topical oral care compositions ( e.g ., mouthwash, etc.) and topical skin care compositions.
[0025] As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The pharmaceutically acceptable carrier or excipient does not destroy the pharmacological activity of the disclosed compound and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions as disclosed herein is contemplated. Non-limiting examples of pharmaceutically acceptable carriers and excipients include sugars such as lactose, glucose and sucrose; starches such as corn starch and potato starch; cellulose and its analogs such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as polyethylene glycol and propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; isotonic saline; Ringer's solution; ethyl alcohol; phosphate buffer solutions; non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate; coloring agents; releasing agents; coating agents; sweetening, flavoring and perfuming agents; preservatives; antioxidants; ion exchangers; alumina; aluminum stearate; lecithin; self-emulsifying drug delivery systems (SEDDS) such as d-atocopherol poly ethyleneglycol 1000 succinate; surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices; serum proteins such as human serum albumin; glycine; sorbic acid; potassium sorbate; partial glyceride mixtures of saturated vegetable fatty acids; water, salts or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, and zinc salts; colloidal silica; magnesium trisilicate; polyvinyl pyrrolidone; cellulose-based substances; polyacrylates; waxes; and polyethylene-polyoxypropylene-block polymers.
[0026] The phrase “therapeutically effective amount” or “pharmaceutically effective amount” as used herein, means an amount necessary to provide the indicated therapeutic benefit ( e.g ., the treatment or prophylaxis of a disease (e.g., gum disease, periodontitis), anti inflammatory benefit, etc.). As used herein, an“effective amount” is the amount required to confer a therapeutic effect on the treated patient. Typically, the effective amount is determined based on physical parameters such as age, surface area, weight, height, and condition of the
patient. For example, a therapeutically effective amount may be from 0.01 mg to 10 g administered once (q.d.) or twice (b.i.d.) daily. In certain embodiments, the therapeutically effective amount may be administered less than once daily ( e.g ., every other day, weekly, etc.). In one embodiment, an effective amount is an amount that reduces inflammation associated with gum disease or periodontitis.
[0027] It will be understood that the description of compounds herein is limited by principles of chemical bonding known to those skilled in the art. Accordingly, where a group may be substituted by one or more of a number of substituents, such substitutions are selected so as to comply with principles of chemical bonding with regard to valences, etc., and to give compounds which are not inherently unstable. For example, any carbon atom will be bonded to two, three, or four other atoms, consistent with the four valence electrons of carbon.
[0028] As used herein, the term“pharmaceutically acceptable salt” refers to a salt of active agents (e.g., compounds having the structure of Formula (V), etc.) contemplated within the disclosure, including inorganic acids, organic acids, inorganic bases, organic bases, solvates, hydrates, or clathrates thereof. The pharmaceutically acceptable salt may be a carboxylate salt of compounds having the structure of Formula (V). The term salt embraces addition salts of free acids or free bases that are compounds described herein. Typically, an acid addition salt may be salt of a compound of the invention prepared by reaction of a compound of the invention with a mineral or organic acid. For exemplification of pharmaceutically acceptable acid addition salts, see, e.g. , Berge, S.M., Bighley, L.D., and Monkhouse, D.C., J. Pharm. Sci., 66: 1, 1977, which is hereby incorporated by reference in its entirety. Any of the lipoxin analogs of the present disclosure (e.g, compounds having the structure of Formula (V), etc.) may be in the form of pharmaceutically acceptable salts (e.g., carboxylate salts thereof, etc.). Typically, these salts that are physiologically compatible, as defined herein, and that possess the desired pharmacological activity of the parent compound. Such salts include: acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid, benzenesulfonic acid, benzoic acid, camphorsulfonic acid, citric acid, ethanesulfonic acid, fumaric acid, glucoheptonic acid, gluconic acid, glutamic acid, glycolic acid, hydroxynaphtoic acid, 2- hydroxyethanesulfonic acid, lactic acid, maleic acid, malic acid, malonic acid, mandelic acid, methane sulfonic acid, muconic acid, 2-naphthalenesulfonic acid, propionic acid, salicylic acid, succinic acid, tartaric acid, p-toluenesulfonic acid, trimethylacetic acid, and the like; or salts formed when an acidic proton present in the parent compound either is replaced by a metal ion,
e.g, an alkali metal ion, an alkaline earth ion, or an aluminum ion; or coordinates with an organic or inorganic base. Acceptable organic bases include diethanolamine, ethanolamine, N-methylglucamine, triethanolamine, tromethamine, and the like. Acceptable inorganic bases include aluminum hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, and sodium hydroxide.
[0029] Pharmaceutically acceptable acid addition salts of the invention can be formed by the reaction of a compound of the invention with an equimolar or excess amount of acid. Alternatively, hemi-salts can be formed by the reaction of a compound of the invention with the desired acid in a 2: 1 ratio, compound to acid. The reactants are generally combined in a mutual solvent such as diethyl ether, tetrahydrofuran, methanol, ethanol, Ao-propanol, benzene, or the like. The salts normally precipitate out of solution within, e.g. , one hour to ten days and can be isolated by filtration or other conventional methods.
[0030] Prodrugs are intended to include any covalently bonded carriers that release an active parent drug (compound) of the present invention in vivo when such prodrug is administered to a subject. Prodrugs are prepared, for example, by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo , to the parent compound. In certain cases, a prodrug has improved physical and/or delivery properties over the parent compound. Prodrugs increase the bioavailability of the active compound when administered to a subject (e.g, by permitting enhanced absorption into the blood following oral administration) or which enhance delivery to a biological compartment of interest (e.g, the brain or lymphatic system) relative to the parent compound. Exemplary prodrugs include analogs of a disclosed compound with enhanced aqueous solubility or active transport through the gut membrane, relative to the parent compound.
[0031] Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e.g., enantiomeric, diastereomeric, and geometric (or conformational), etc.) forms of the depicted structure. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, and geometric (or conformational) mixtures of the presently disclosed compounds (e.g., diacylated sphingomyelin analogs, phosphatidylcholines, sphingomyelins, etc.) are within the scope of the invention. Unless otherwise stated, all tautomeric forms of the compounds may be used as well.
[0032] When the stereochemistry of a disclosed compound is named or depicted by structure, the named or depicted stereoisomer may be present as a mixture of stereoisomers comprising
more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by weight of the indicated stereoisomer relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by weight optically pure. When a single diastereomer is named or depicted by structure, the depicted or named diastereomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by weight pure. Percent optical purity is the ratio of the weight of the enantiomer or over the weight of the enantiomer plus the weight of its optical isomer. Diastereomeric purity by weight is the ratio of the weight of one diastereomer or over the weight of all the diastereomers. When the stereochemistry of a disclosed compound is named or depicted by structure, the named or depicted stereoisomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by mole fraction pure relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or named enantiomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by mole fraction pure. When a single diastereomer is named or depicted by structure, the depicted or named diastereomer may be more than 50% (e.g., at least 60%, 70%, 80%, 90%, 99%, or 99.9%) by mole fraction pure. Percent purity by mole fraction is the ratio of the moles of the enantiomer or over the moles of the enantiomer plus the moles of its optical isomer. Similarly, percent purity by moles fraction is the ratio of the moles of the diastereomer or over the moles of the diastereomer plus the moles of its isomer.
[0033] The hydrocarbon groups referenced herein typically refer to a radical (e.g., monovalent, divalent, etc.) or group containing carbon and hydrogen atoms. Examples of hydrocarbon radicals include, without limitation, alkyl, alkenyl, alkynyl, aryl, aryl-alkyl, alkyl- aryl, and any combination thereof (e.g, alkyl-aryl-alkyl, etc.). As used herein, unless otherwise indicated, hydrocarbons may be monovalent or multivalent (e.g, divalent, trivalent, etc) hydrocarbon radicals. A radical of the form -(CH2)n- (i.e., those with repeat methylene units), including a methylene radical, i.e., -CH2-, is regarded as an alkyl radical if it does not have unsaturated bonds between carbon atoms. Unless otherwise specified, all hydrocarbon radicals (including substituted and unsubstituted alkyl, alkenyl, alkynyl, aryl, aryl-alkyl, alkyl-aryl, etc.) may have from 1-35 carbon atoms. In other embodiments, hydrocarbons will have from 1-20 or from 1-12 or from 1-8 or from 1-7 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms. Hydrocarbons may have from 2 to 70 atoms or from 3 to 40 atoms or from 4 to 20 atoms.
[0034] Hydrocarbons may be substituted or unsubstituted. Substituted hydrocarbons may have as a substituent one or more unsubstituted hydrocarbon radicals, substituted hydrocarbon radicals, may comprise one or more heteroatoms ( e.g ., heteroalkyl, etc.), or combinations thereof. Any hydrocarbon substituents disclosed herein may optionally include from 1-20 (e.g., 1-10, 1-5, etc.) heteroatoms. Examples of substituted hydrocarbon radicals include, without limitation, heterocycles, such as heteroaryls. Unless otherwise specified, a hydrocarbon substituted with one or more heteroatoms will comprise from 1-20 heteroatoms (e.g., N, O, S, P, F, Cl, Br, etc.). In other embodiments, a hydrocarbon substituted with one or more heteroatoms will comprise from 1-12 or from 1-8 or from 1-6 or from 1-4 or from 1-3 or from 1-2 heteroatoms. Examples of heteroatoms include, but are not limited to, oxygen, nitrogen, sulfur, phosphorous, halogen (F, Cl, Br, I, etc.), boron, silicon, etc. In some embodiments, heteroatoms will be selected from the group consisting of oxygen, nitrogen, sulfur, phosphorous, and halogen (e.g., F, Cl, Br, I, etc.). In certain implementations, the heteroatoms may be selected from O, N, or S. In some embodiments, a heteroatom or group may substitute a hydrogen. In some embodiments, a substituted hydrocarbon may comprise one or more heteroatoms in the backbone or chain of the molecule (e.g., interposed between two carbon atoms, as in“oxa”). In some embodiments, a substituted hydrocarbon may comprise one or more heteroatoms pendant from the backbone or chain of the molecule (e.g, covalently bound to a carbon atom in the chain or backbone, as in“oxo”).
[0035] Where a hydrocarbon, such as an alkyl or heteroaryl group, is substituted with a specified group such as an unsubstituted C1-C20 alkyl, or unsubstituted 2 to 20 membered heteroalkyl, the hydrocarbon may contain one or more unsubstituted C1-C20 alkyls, and/or one or more unsubstituted 2 to 20 membered heteroalkyls. Substituents typically refer to a group substituted on, for example, an alkyl, haloalkyl, cycloalkyl, heterocyclyl, heterocycloalkenyl, cycloalkenyl, aryl, or heteroaryl group at any atom of that group, replacing one or more hydrogen atoms therein. In one aspect, the substituent(s) on a group are independently any one single, or any combination of two or more of the permissible atoms or groups of atoms delineated for that substituent. In another aspect, a substituent may itself be substituted with any one of the above substituents. Further, optionally substituted indicates that specified hydrocarbon may be unsubstituted (e.g, substituted with an H, etc.) or substituted. It is understood that substitution at a given atom is limited by valency. Common substituents include halo (e.g, F, etc.), Ci-12 straight chain or branched chain alkyl, C2-12 alkenyl, C2-12 alkynyl, C3-12 cycloalkyl, C6-12 aryl, C3-12 heteroaryl, C3-12 heterocyclyl, Ci-12 alkylsulfonyl,
nitro, cyano, -COOR, -C(0)NRR’, -OR, -SR, -NRR’, and oxo, such as mono- or di- or tri substitutions with moieties such as trifluoromethoxy, chlorine, bromine, fluorine, methyl, methoxy, pyridyl, furyl, triazyl, piperazinyl, pyrazoyl, imidazoyl, and the like, each optionally containing one or more heteroatoms such as halo, N, O, S, and P. In certain embodiments, R, R’, and R” may be independently at each occurrence hydrogen, Ci-12 alkyl, Ci-12 haloalkyl, C2- 12 alkenyl, C2-12 alkynyl, C3-12 cycloalkyl, C4-24 cycloalkylalkyl, C6-12 aryl, C7-24 aralkyl, C3-12 heterocyclyl, C3-24 heterocyclylalkyl, C3-12 heteroaryl, or C4-24 heteroarylalkyl. Unless otherwise noted, all groups described herein optionally contain one or more common substituents, to the extent permitted by valency. Typically, the use of a substituent (radical) prefix names such as alkyl without the modifier“optionally substituted” or“substituted” is understood to mean that the particular substituent is unsubstituted. However, the use of “haloalkyl” without the modifier“optionally substituted” or“substituted” is still understood to mean an alkyl group, in which at least one hydrogen atom is replaced by halo.
[0036] The alkyl groups referenced herein may refer to a saturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C1-C7 alkyl indicates that the group may have from 1 to 7 (inclusive) carbon atoms in it. Any atom can be optionally substituted, e.g., by one or more substituents. Examples of alkyl groups include without limitation methyl, ethyl, «-propyl, isopropyl, and /er/-butyl. Any alkyl group referenced herein (e.g., R, R’, R”, Ri, R2, R3, R4, Rs, etc.) may have from 1- 35 carbon atoms. In other embodiments, alkyl groups will have from 1-20 or from 1-12 or from 1-8 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
[0037] An unsaturated alkyl group may have one or more double bonds. For example, unsaturated alkyl includes alkenyl. Any alkenyl group may be a straight or branched hydrocarbon chain containing the indicated number of carbon atoms and having one or more carbon-carbon double bonds. Any atom can be optionally substituted, e.g., by one or more substituents. Alkenyl groups can include, e.g., vinyl, allyl, 1-butenyl, and 2-hexenyl. One of the double bond carbons can optionally be the point of attachment of the alkenyl substituent. Any alkenyl group referenced herein (e.g, R, R’, R”, Ri, R2, R3, R4, Rs, etc.) may have from 1-35 carbon atoms. In other embodiments, alkenyl groups will have from 1-20 or from 1-12 or from 1-8 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
[0038] Heteroalkyl groups typically have one or more carbon atoms substituted with one or more heteroatoms ( e.g ., N, O, P, S, Si, etc.). Heteroalkyls include alkoxy and thioalkoxy. For example, alkoxy is an example of a heteroalkyl group with a carbon substituted with an oxygen (i.e., alkoxy may be represented by the formula -O(alkyl), etc. Alkoxy can be, for example, methoxy (-OCH3), ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, sec-butoxy, pentoxy, 2- pentoxy, 3-pentoxy, or hexyloxy. Thioalkoxy groups may be represented by formula -S(alkyl), and haloalkoxy and halothioalkoxy refer to -O(haloalkyl) and -S(haloalkyl), respectively. Any alkoxy, thioalkoxy, or haloalkoxy group referenced herein (e.g., R, R’, R”, Ri, R2, R3, R4, Rs, etc.) may have from 1-35 carbon atoms. In other embodiments, alkoxy, thioalkoxy, or haloalkoxy groups will have from 1-20 or from 1-12 or from 1-8 or from 1-6 or from 1-3 carbon atoms, including for example, embodiments having one, two, three, four, five, six, seven, eight, nine, or ten carbon atoms.
[0039] The methods for synthesis of the lipoxin analogs may comprise: contacting a compound having the structure of Formula (I):
(III):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
P1-P3 are each independently an oxygen protecting group (e.g., trityl type protecting group, silyl type protecting group, etc.); and
X is a halogen (e.g., bromine, etc.). In certain implementations, the compound of Formula (III) is produced with a molar yield of more than 50% (e.g., more than 60%, more than 70%, etc.) with respect to the compound of Formula (I). In certain implementations, the compound of Formula (III) has the structure:
In certain embodiments, the environment suitable to form a compound having the structure of Formula (III) is an aqueous environment. The reaction mixture may comprise a base ( e.g ., K2CO3, etc.), a palladium catalyst (e.g., Pd(PPh3)4, etc.), and combinations thereof. In various implementations, the reaction parameters (including starting materials, reaction medium, etc.) may be set such that Ri is C1-C7 alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, etc.). In some embodiments, m and n are each 1. In particular implementations, p is 0. The linking moiety RL may be C1-C7 alkylene (e.g., linear alkylene, branched alkylene, - (CH2)I-5-, -(CH2)2-4-, -(CH2)3-, etc.). In certain embodiments, R2 may be C1-C7 alkyl (e.g.,
methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, etc.). For example, the compound of Formula (III) may be methyl (5S,6R,E)-5,6-bis((tert-butyldimethylsilyl)oxy)-8-(2-((R,E)-3- ((tert-butyldimethylsilyl)oxy)oct-l-en-l-yl)phenyl)oct-7-enoate having the structure:
[0040] In some embodiments, the method further comprises the step of deprotecting the compound of Formula (III) to produce a compound having the structure of Formula (IV):
For example, the compound may be an A4 lipoxin mimetic such as (5S,6R,E)-5,6-dihydroxy- 8-(2-((R,E)-3-hydroxyoct-l-en-l-yl)phenyl)oct-7-enoic acid which is Compound (IVa):
[0041] Typically, reaction media suitable for the deprotection allow for deprotection of all oxygen atoms with a protecting group attached thereto. Moreover, the deprotection may occur in one or more steps. For example, the deprotecting step occurs in a first environment comprising an organic solvent ( e.g ., tetrahydrofuran, etc.) comprising a quaternary ammonium salt (e.g., /c/ra-n -b uty 1 a on i u fluoride, etc.) and a second environment (e.g., aqueous environment, such as FbO, mixtures of FhO and lower alcohols including methanol and ethanol, organic environment, such as tetrahydrofuran, etc.) comprising a base such as an alkali metal hydroxide (e.g., LiOH, etc.).
[0042] Following deprotection, the method may further comprise the step of reacting said compound having the structure of Formula (IV) with an alkylating agent (e.g., halide, alkyl halide, heteroalkyl halide, arylalkyl halide such as benzyl halide, etc.) to form a compound having the structure of Formula (V):
wherein R.4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; or carboxylate salts thereof. In specific implementations, R.4 is methyl, ethyl, propyl, or isopropyl. For example, the compound may be methyl (5S,6R,E)-5,6-dihydroxy-8-(2-((R,E)-3- hydroxyoct-l-en-l-yl)phenyl)oct-7-enoate (Compound Vb) having the structure:
In some embodiments, the compound may be methyl (S,E)-7-(2-((3S,4R,E)-3,4-dihydroxynon- l-en-l-yl)phenyl)-5-hydroxyhept-6-enoate (Compound Xb) having the structure:
[0043] The method may any one or more of the reaction steps for synthesis of the pro resolving analog ( e.g ., lipoxin mimetic such as lipoxin A4 mimetics, etc.). Typically, at least one of the reaction steps occurs in a reaction medium with a basic pH. In some embodiments,
each of the reaction steps occurs in a reaction medium with a basic pH ( e.g ., a pH greater than 7) or in a reaction medium with an apparent pH greater than 7. For example, in some embodiments, the method may comprise:
a) deprotecting a compound of Formula (III):
b) contacting the compound having the structure of Formula (IV) with an alkylating agent (e.g., alkyl halide, heteroalkyl halide, etc.) to form a compound having the structure of Formula (V):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
Its is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
P1-P3 are each independently a protecting group ( e.g ., trityl protecting group, silyl protecting group, etc.).
[0044] In certain implementations, the method may comprise: a) contacting a compound having the structure of Formula (I):
under in an environment suitable to form a compound having the structure of Formula (III) (e.g., a reaction environment with a pH greater than 7, a reaction environment with a pH greater than 7.2, etc.):
b) deprotecting said compound of Formula (III) to produce a compound having the structure of Formula (IV):
c) contacting said compound having the structure of Formula (IV) with an alkylating agent ( e.g ., halide, alkyl halide, heteroalkyl halide, arylalkyl halide such as benzyl halide, etc.) to form a compound having the structure of Formula (V):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times;
P1-P3 are each independently a protecting group ( e.g ., trityl protecting group, silyl protecting group, etc.); and
X is a halogen (e.g., bromine, etc.).
[0045] Methods for the synthesis of compounds having the structure of formula (I) are also provided within the disclosure. For some embodiments of the synthesis of lipoxin analogs, compounds having the structure of Formula (I) may be useful starting materials. These method for the compound (I) synthesis may comprise using L-deoxyribose as a starting material and reducing L-deoxyribose to form a suitable intermediate. In some embodiments, the method may comprise saturating (e.g., with Fh and Pd/C, etc.) a triol as shown in Synthesis Route B below. For example, the triol may have have the structure:
The method may comprise protecting each hydroxyl group of the triol to form a compound having the structure:
wherein P4-P6 are independently oxygen protecting groups. In certain embodiments, the method may comprise deprotection of one of these protecting groups to form a compound with a single hydroxyl group. In some implementations, the oxygen attached to P6 is deprotected at this step to form the structure:
The method may comprise conversion of the single hydroxyl group compound to an aldehyde or a ketone (e.g., via Swern oxidation, etc.). For example, the method may comprise the formation of the aldehyde having the structure:
using oxalyl chloride in DMSO solvent. Furthermore, the method may comprise halogenating the aldehydes or ketones to form a halogenated intermediate via a process such as Takai olefmation. The halogenated product may have the structure:
In various implementations, the method may comprise coupling the halogenated product to a halogenated phenyl moiety (present in embodiments of lipoxin analogs described herein) to form the compounds having the structure of formula (I). For example, the method may comprise coupling the halogenated product via a Suzuki reagent. A particular Suzuki reagent useful is bromophenyl boronic acid. Typically, the Suzuki reaction may occur with one or more catalysts ( e.g ., the transition metal catalysts of palladium or nickel such as PdCb, Pd(OAc)2, Pd2(dba)3, Ni (OAc)2 Ni/C, etc.), and or an alkali (e.g., sodium tert-butoxide, potassium tert-butoxide, potassium carbonate, cesium carbonate and tripotassium phosphate, etc.). The Suzuki reaction may occur in an aprotic solvent. In certain embodiments, The Suzuki reaction may occur in an aqueous environment. In some embodiments, the method for the synthesis of compounds having the structure of Formula (I) may comprise one or more (e.g., one, two, three, four, five, six, etc.) reaction steps described above.
[0046] In certain embodiments, the compounds described herein may have one or more oxygen protecting groups (e.g., Pi, P2, P3, P4, P5, Rd, etc.) which are sometimes referred to as
hydroxyl protecting group. Oxygen protecting groups include, but are not limited to, -R, - N(R)R\ -C(=0)SR, -C(=0)R, -CO2R, -C(=0)N(R)R\ -C(=NR)R\ -C(=NR)OR\ - C(=NR)N(R)R\ -S(=0)R, -SO2R, -Si(R)R’R”, -P(R)R\ -P(R)R’R”, -P(=0)2R, - P(=0)(R)R’, -P(=0)(0R)(0R’ ), -P(=0)2N(R)R\ and -P(=0)(NR)NR\ wherein R, R’, and R” may be independently selected at each occurrence. In some embodiments, two R groups may together form a ring ( e .g ., fused ring, spiro ring, etc.). Oxygen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, incorporated herein by reference in its entirety. In specific embodiments, P1-P3 are each silyl protecting groups. For example, P1-P3 may each be fe/V-butyl di ethyl silyl .
[0047] Various reaction steps of the disclosure require compounds with oxygen protecting groups. Exemplary oxygen protecting groups include, but are not limited to, methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p- methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-
(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxy cyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4- methoxytetrahydrothiopyranyl, 4-methoxytetrahydrothiopyranyl S,S-di oxide, l-[(2-chloro-4- methyl)phenyl]-4-methoxypiperidin-4-yl (CTMP), l,4-dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a,4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2- yl, 1 -ethoxy ethyl, l-(2-chloroethoxy)ethyl, 1 -methyl- 1-methoxy ethyl, 1 -methyl- 1- benzyloxy ethyl, 1 -methyl- l-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2- trimethylsilylethyl, 2-(phenylselenyl)ethyl, t-butyl, allyl, p-chlorophenyl, p-methoxyphenyl, 2,4-dinitrophenyl, benzyl (Bn), p-methoxybenzyl, 3,4-dimethoxybenzyl, o-nitrobenzyl, p- nitrobenzyl, p-halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl, p-phenylbenzyl, 2-picolyl, 4- picolyl, 3-methyl-2-picolyl N-oxido, diphenylmethyl, p,p'-dinitrobenzhydryl, 5- dibenzosuberyl, triphenylmethyl, . alpha -naphthyldiphenylmethyl, p- methoxyphenyldiphenylmethyl, di(p-methoxyphenyl)phenylmethyl, tri(p- methoxyphenyl)methyl, 4-(4'-bromophenacyloxyphenyl)diphenylmethyl, 4,4',4"-tris(4,5- dichlorophthalimidophenyl)methyl, 4,4',4"-tris(levulinoyloxyphenyl)methyl, 4,4',4"- tris(benzoyloxyphenyl)methyl, 3-(imidazol-l-yl)bis(4',4"-dimethoxyphenyl)methyl, 1, l-bis(4-
methoxyphenyl)-l'-pyrenylmethyl, 9-anthryl, 9-(9-phenyl)xanthenyl, 9-(9-phenyl-10- oxo)anthryl, l,3-benzodisulfuran-2-yl, benzisothiazolyl S,S-dioxido, trimethylsilyl (TMS), triethylsilyl (TES), triisopropyl silyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl (DEIPS), dimethylthexylsilyl, t-butyldimethylsilyl (TBS or TBDMS), t- butyldiphenylsilyl (TBDPS), tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethyl silyl (DPMS), t-butylmethoxyphenyl silyl (TBMPS), formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, p-chlorophenoxyacetate, 3-phenylpropionate, 4- oxopentanoate (levulinate), 4,4-(ethylenedithio)pentanoate (levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4-methoxycrotonate, benzoate, p-phenylbenzoate, 2,4,6- trimethylbenzoate (mesitoate), alkyl methyl carbonate, 9-fluorenylmethyl carbonate (Fmoc), alkyl ethyl carbonate, alkyl 2,2,2-trichloroethyl carbonate (Troc), 2-(trimethylsilyl)ethyl carbonate (TMSEC), 2-(phenylsulfonyl) ethyl carbonate (Psec), 2-(triphenylphosphonio) ethyl carbonate (Peoc), alkyl isobutyl carbonate, alkyl vinyl carbonate alkyl allyl carbonate, alkyl p- nitrophenyl carbonate, alkyl benzyl carbonate, alkyl p-methoxybenzyl carbonate, alkyl 3,4- dimethoxybenzyl carbonate, alkyl o-nitrobenzyl carbonate, alkyl p-nitrobenzyl carbonate, alkyl S-benzyl thiocarbonate, 4-ethoxy- 1-napththyl carbonate, methyl dithiocarbonate, 2- iodobenzoate, 4-azidobutyrate, 4-nitro-4-methylpentanoate, o-(dibromomethyl)benzoate, 2- formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-(methylthiomethoxy)butyrate, 2- (methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4- (1,1, 3 ,3 -tetramethylbutyl)phenoxy acetate, 2,4-bi s( 1 , 1 -dimethylpropyl)phenoxy acetate, chlorodiphenylacetate, isobutyrate, monosuccinoate, (E)-2-methyl-2-butenoate, o- (methoxyacyl)benzoate, . alpha. -naphthoate, nitrate, alkyl N,N,N',N'- tetramethylphosphorodiamidate, t-butyloxycarbonyl (BOC or Boc), alkyl N-phenylcarbamate, borate, dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsulfenate, sulfate, methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts).
[0048] The reaction to form the lipoxin analogs described herein may use one or more catalysts. For example, the reaction to form compounds having the structure of Formula (III) may take place in the presence of a catalyst. In certain embodiments, the catalyst may be a Groups 8 metal catalyst such as those described in in Chemical and Engineering News, 63(5), 27, 1985, hereby incorporated by reference in its entirety. Examples of such metals include Ni, Pt and Pd. In particular embodiments, the catalyst is a palladium catalyst. Examples of suitable palladium catalysts include but are not limited to Pd3(dba)3, PdCb, Pd(OAc)2,
PdCl2(dppf)CH2Cl2, Pd(PPh3)4 and related catalysts which are complexes of phosphine ligands, (such as (Ph2P(CH2)nPPh2) where n is 2 to 5, P(o-tolyl)3, P(i-Pr)3, P(cyclohexyl)3, P(o- MeOPh)3, P(p-MeOPh)3, dppp, dppb, TDMPP, TTMPP, TMPP, TMSPP, 2-(di-t- butylphosphino)biphenyl, (R,R)-Me-DUPHOS, (S,S)-Me-DUPHOS, (R)-BINAP, (S)-BINAP, and related water soluble phosphines), related ligands (such as triarylarsine, triarylantimony, triarylbismuth), phosphite ligands (such as P(OEt)3, P(0-p-tolyl)3, P(0-o-tolyl)3, P(0-iPr)3, tris(2,4-di-t-butylphenyl)phosphite and other examples described in the STREM Catalogue No. 18 (Chemicals for Research: metals, inorganics and organometallics 1999 2001)) and other suitable ligands including those containing P and/or N atoms for coordinating to the palladium atoms, (such as for example pyridine, alkyl and aryl substituted pyridines, 2,2'-bipyridyl, alkyl substituted 2,2'-bipyridyl and bulky secondary or tertiary amines), and other simple palladium salts either in the presence or absence of ligands. The palladium catalysts include palladium and palladium complexes supported or tethered on solid supports, such as palladium on carbon, as well as palladium black, palladium clusters and palladium clusters containing other metals and palladium in porous glass as described in J. Li, A. W-H. Mau and C. R. Strauss, Chemical Communications, 1997, p 1275. The same or different Group 8 metal catalysts may be used to catalyze different steps in the process.
[0049] In certain embodiments, one or more reaction steps take place in the presence of a platinum catalyst. Examples of suitable platinum catalysts include but are not limited to Pt(dba)2, Pt(PPh3)2Cl2, PtCb, Pt(OAc)2, PtCl2(dppf)CH2Cl2, Pt(PPh3)4 and related catalysts which are complexes of phosphine ligands, (such as (Ph2P(CH2)nPPh2) where n is 2 to 5, P(o- tolyl)3, P(i-Pr)3, P(cyclohexyl)3, P(o-MeOPh)3, P(p-MeOPh)3, dppp, dppb, TDMPP, TTMPP, TMPP, TMSPP, 2-(di-t-butylphosphino)biphenyl, (R,R)-Me-DUPHOS, (S,S)-Me-DUPHOS, (R)-BINAP, (S)-BINAP and related water soluble phosphines), related ligands (such as triarylarsine, triarylantimony, triarylbismuth), phosphite ligands (such as P(OEt)3, P(0-p- tolyl)3, P(0-o-tolyl)3, P(0-iPr)3, tris(2,4-di-t-butylphenyl)phosphite and other suitable ligands including those containing P and/or N atoms for coordinating to the platinum atoms, (such as for example pyridine, alkyl and aryl substituted pyridines, 2,2'-bipyridyl, alkyl substituted 2,2'- bipyridyl and bulky secondary or tertiary amines), and other simple platinum salts either in the presence or absence of ligands. The platinum catalysts include platinum and platinum complexes supported or tethered on solid supports, such as platinum on carbon, as well as platinum black, platinum clusters and platinum clusters containing other metals.
[0050] Increased basicity may lead to increased stability and increased yields in any of the reaction steps. For example, in certain embodiments, one or more reaction steps may proceed in an environment with a basic pH or a basic apparent pH ( e.g ., a reaction environment with a pH greater than 7, a reaction environment with a pH greater than 7.2, etc.). In certain implementations, the reaction medium may include one or more buffers or pH adjusters including phosphates of alkali metals, such as monosodium phosphate, di sodium phosphate, potassium phosphates, and tripolyphosphates; sodium hydroxide; sulfuric acid; perchlorate; and combinations thereof. In certain implementations, any reaction step described herein may use one or more bases. For example, some reaction steps may be performed in an environment comprising one or a mixture of two or more bases selected from the group consisting of potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic dihydrate (Na2HP04.2H20), sodium phosphate dibasic (Na2HP04), sodium carbonate (Na2CCb), sodium phosphate monobasic (NaftPCri), lithium acetate (LiOAc), lithium carbonate (L12CO3), sodium acetate (NaOAc), potassium phosphate dibasic (K2HPO4), potassium phosphate tribasic (K3PO4), potassium carbonate (K2CO3), cesium fluoride (CsF), potassium bicarbonate (KHCO3), potassium hydroxide (KOH), potassium fluoride (KF), potassium hexafluorophosphate (KPF6), potassium acetate (KOAc), sodium fluoride (NaF), cesium acetate (CsOAc), cesium pivalate (CsOPiv), lithium hexafluorophosphate (LiPFr,), lithium phosphate (L13PO4), lithium fluoride (LiF), and lithium iodide (Lil). In particular embodiments, NaOAc, K2HPO4, or KOAc may be used as the base. In certain implementations the reaction to form compounds having the structure of Formula (III) and/or the alkylation reaction involves the use of base such as an alkali carbonate (e.g., potassium carbonate, etc.). In some embodiments, any reaction step may comprise an alkali carbonate selected from the group consisting of Na2C03, K2CO3, CS2CO3, and L12CO3. In various implementations, compounds may be deprotected in the presence of well. In specific embodiments, compounds having the structure of Formula (III) (e.g., compounds having the structure of Formula (Ilia), etc.) may be deprotected with a base such as LiOH.
[0051] In some embodiments, a reaction step may have a molar ratio of compounds having the structure of Formula (I) to alkali carbonate is from 10: 1 to 1 : 10 (e.g., from 5: 1 to 1 :5, from 3 : 1 to 1 :3, from 10: 1 to 1 : 1, from 1 : 1 to 1 : 10, from 5: 1 to 1 : 1, from 3 : 1 to 1 : 1, from 1 : 1 to 1 :5, from 1 : 1 to 1 :3, from 2: 1 to 1 :2, from 2: 1 to 1 : 1, from 1 : 1 to 1 :2, etc.). In some embodiments, the reaction has a molar ratio of compounds having the structure of Formula (II) to alkali carbonate is from 10: 1 to 1 : 10 (e.g., from 5: 1 to 1 :5, from 3 : 1 to 1 :3, from 10: 1 to 1 : 1, from
1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.). In some embodiments, the reaction has a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
[0052] The alkylation of compounds having the structure of Formula (IV) occurs using one or more alkylating agents. Exemplary alkylating agents include alkyl halides and benzyl halides. In certain implementations, the alkylating agent may be selected from methyl iodide (CFEI), ethyl iodide (C2H5I), and benzyl bromide (BnBr). In certain embodiments, the reaction may have a molar ratio of compounds having the structure of Formula (IV) to alkylating agent is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.). In an even more particular embodiment, a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate base is from 2:1 to 1:2 and a molar ratio of the compound to alkylating agent is from 3:1 to 1:3. In other embodiments, the compound may be alkylated prior to deprotection. For example, in some embodiments, the reaction may have a molar ratio of compounds having the structure of Formula (III) to alkylating agent is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.). In certain implementations, the molar ratio of compounds having the structure of Formula (III) to alkali carbonate base is from 2: 1 to 1 :2 and the molar ratio of the compound to alkylating agent is from 3:1 to 1:3.
[0053] In some embodiments, a reaction step may have a molar ratio of compounds having the structure of Formula (VI) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.). In some embodiments, the reaction has a molar ratio of compounds having the structure of Formula (II) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1 :2, from 2: 1 to 1 : 1, from 1 : 1 to 1 :2, etc.). In some embodiments, the reaction has a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate is from 10:1 to 1:10 (eg., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from
3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.).
[0054] The alkylation of compounds having the structure of Formula (IX) occurs using one or more alkylating agents. Exemplary alkylating agents include alkyl halides and benzyl halides. In certain implementations, the alkylating agent may be selected from methyl iodide (CFEI), ethyl iodide (C2H5I), and benzyl bromide (BnBr). In certain embodiments, the reaction may have a molar ratio of compounds having the structure of Formula (IV) to alkylating agent is from 10:1 to 1:10 ( e.g ., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1 : 1 to 1 :2, etc.). In an even more particular embodiment, a molar ratio of compounds having the structure of Formula (IV) to alkali carbonate base is from 2:1 to 1:2 and a molar ratio of the compound to alkylating agent is from 3:1 to 1:3. In other embodiments, the compound may be alkylated prior to deprotection. For example, in some embodiments, the reaction may have a molar ratio of compounds having the structure of Formula (III) to alkylating agent is from 10:1 to 1:10 (e.g., from 5:1 to 1:5, from 3:1 to 1:3, from 10:1 to 1:1, from 1:1 to 1:10, from 5:1 to 1:1, from 3:1 to 1:1, from 1:1 to 1:5, from 1:1 to 1:3, from 2:1 to 1:2, from 2:1 to 1:1, from 1:1 to 1:2, etc.). In certain implementations, the molar ratio of compounds having the structure of Formula (III) to alkali carbonate base is from 2: 1 to 1 :2 and the molar ratio of the compound to alkylating agent is from 3:1 to 1:3.
[0055] Typically, the reaction steps disclosed herein occur in solvent suitable to promote the reaction step (e.g., reduction, hydrogenation, oxidation, coupling, etc.). In certain embodiments, the reaction environment is aqueous. In some embodiments, the reaction environment is non-aqueous. In certain implementations, the reaction comprising an organic solvent such as an aliphatic or cyclic ether solvent. In some embodiments, any of the reaction steps described herein may include an aprotic or protic solvent such as dimethylformamide (DMF), dimethylsulfoxide (DMSO), dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), and acetonitrile (CFECN). In particular embodiments, the solvent is tetrahydrofuran (THF). In some embodiments, the medium for any reaction step is performed in an environment with a basic pH or a basic apparent pH.
[0056] The lipoxin analogs (e.g., lipoxin mimetics) described herein are useful for the treatment of a disorder, such as an oral disorder or an inflammatory condition. Oral disorders may be a disorder, disease, or condition which is caused or characterized by an abnormally low or insufficient level of oral bone (e.g., bone in the oral cavity, etc.). Exemplary oral bones
include alveolar bone and basal bone. Some oral disorders which may be treated or prevented by increasing bone mass or bone growth through administration described herein include periodontal disease, alveolar bone loss, gingivitis, osteoporosis, osteopenia, oral bone resection, oral bone fracture, arthritis, osteoarthritis, osteotomy bone loss, childhood idiopathic bone loss, and the like. Destructive oral bone disorders that can be treated according to the disclosure include osteoporosis, osteopenia, osteoarthritis and osteolytic lesions such as those caused by neoplastic disease, radiotherapy, or chemotherapy. Also contemplated by the present invention is the regeneration of other oral tissues including soft tissues, epithelium, and connective tissues, such as collagen and blood vessels.
[0057] In some embodiments, periodontal diseases can be treated or prevented by using lipoxin analogs to increase osteogenesis. A periodontium is a tissue which is present around teeth and plays a role in supporting teeth. The periodontium is composed of at least gingiva, alveolar bone, periodontal ligament (periodontal membrane), cementum, and dental pulp. Among periodontium inflammations, an inflammation confined to the gum is referred to as gingivitis, while the case where inflammation sites extend beyond the gum to include damage and/or breakage of the periodontal membrane and/or alveolar bone is referred to as periodontitis. A general term of these inflammations is periodontal disease. Periodontal diseases may also encompass a larger set of inflammatory diseases affecting the periodontium. For example, such diseases include dental plaque-induced gingival diseases; chronic (previously adult) periodontitis; aggressive periodontitis (formerly early-onset, prepubertal, juvenile or rapidly progressive periodontitis); necrotizing periodontal diseases; abscesses of the periodontium; and post-operative bacterial infections (in particular those which are caused, transmitted and/or exacerbated by P. gingivalis).
[0058] Periodontitis involves progressive loss of the alveolar bone around the teeth, and, if left untreated, can lead to the loosening and subsequent loss of teeth. Periodontitis is caused by microorganisms that adhere to and grow on the tooth's surfaces, along with an overly aggressive immune response, against these microorganisms. Diagnosis of periodontal disease in general or periodontitis specifically is usually performed by measurement of a periodontal pocket, attachment level, X-ray image diagnosis, or the like. Periodontitis manifests as painful, red, swollen gums, with abundant plaque. Symptoms may include redness or bleeding of gums while brushing teeth, using dental floss, or biting into hard food (e.g., apples); recurrent swelling of the gum; halitosis and a persistent metallic taste in the mouth; gingival recession resulting in apparent lengthening of teeth; deep pockets between the teeth and the gums
(pockets are sites where the attachment has been gradually destroyed by collagenases); and loose teeth. Thus, associated symptoms which may be treated according to the present invention include mouth ulcers, dental pain, discomfort, inflammation, bleeding, pus secretion, halitosis, tooth mobility, tooth loss, swelling or inflammation caused by any of the foregoing.
[0059] Typically, inflammatory conditions are those disease states characterized by inflammatory tissues (for example, infiltrates of cells such as leukocyctes, neutrophils, macrophages, eosinophils, mast cells, basophils, dendritic cells, etc.). These disease states may provoke or contribute to the abnormal clinical and histological characteristics of a disease state. Inflammatory conditions which may be treated with the compositions described herein include inflammatory conditions of the skin or inflammatory conditions of the eye, or sepsis-associated conditions. For example, the compositions described herein may be useful for the treatment of prophylaxis of an inflammation of the skin such as Sweet’s syndrome, pyoderma gangrenosum, subcorneal pustular dermatosis, erythema elevatum diutinum, Bechet’s disease or acute generalized exanthematous pulstulosis, bullous disorder, psoriasis, a condition resulting in pustular lesions, acne, acne vulgaris, dermatitis ( e.g ., contact dermatitis, atopic dermatitis, seborrheic dermatitis, eczematous dermatitis, photoallergic dermatitis, phototoxic dermatitis, phytophotodermatitis, radiation dermatitis, stasis dermatitis, allergic contact dermatitis, etc.), ezema such as asteatotic eczema, ulcers and erosions resulting from trauma, bums, ischemia of the skin or mucous membranes, ichthyoses, epidermolysis bullosae, hypertrophic scars, keloids, cutaneous changes from aging, photaging, frictional blistering caused by mechanical shearing of the skin, cutaneous atrophy resulting from the topical use of corticosteroids, cheilitis, chapped lips, nasal irritation, mucositis, and vulvovaginitis. The compositions may also be useful for the treatment of inflammatory conditions of the eye such as dry eye syndrome, uveitis (including iritis), conjunctivitis, scleritis, and keratoconjunctivits sicca. In certain implementations, the treatment or prophylaxis of these conditions may occur by administration of topical anti-inflammatory compositions as described herein may be applied to areas affected by such conditions.
[0060] Typically, the method for the treatment or prophylaxis of a disorder in a subject in need thereof comprise administration of a pharmaceutical composition comprising one or more compounds having the structure of formula (IV) or formula (V), or formula (IX) or formula (X), or carboxylate salts thereof. In certain embodiments, compound Va may be administered. The disorder may be selected from periodontitis, alveolar bone loss, gingivitis, osteoporosis, osteopenia, oral bone resection, oral bone fracture, arthritis, osteoarthritis, osteotomy bone loss,
osteolytic lesions, idiopathic bone loss ( e.g ., childhood idiopathic bone loss, etc.). In specific embodiments, the oral disorder is a periodontal disease (e.g., from periodontitis, gingivitis, chronic periodontitis, aggressive periodontitis, necrotizing periodontal disease, aggressive periodontitis, periodontium abscesses, post-operative gingival infections, etc.).
[0061] The pharmaceutical compositions (e.g., oral care compositions, etc.) typically comprise one or more pharmaceutically acceptable carriers, excipients, and/or diluents and a compound having the structure of Formula (V) or (X):
wherein p is an integer from 0-4;
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon (e.g., alkylene, heteroalkylene, etc.) optionally substituted one or more times; and
the pH of said composition is greater than 7. In some embodiments, the pH is greater than 7.2. The composition may comprise the compound having the structure of Formula (V) in an amount from 0.01% to 50% ( e .g ., from 0.01% to 0.1%, from 0.1% to 1%, from 1% to 10%, from 1% to 50%, from 10% to 20% from 20% to 30% from 30% to 40%, from 40% to 50%, etc.) by weight of the composition. In certain implementations, the pharmaceutical composition comprising one or more pH adjusting agents and/or buffers such as magnesium hydroxide; sodium hydroxide; aluminum hydroxide; alginic acid; isotonic saline; Ringer's solution; ethyl alcohol; or phosphate buffer solution. In specific embodiments, the composition is formulated for topical administration of the compound. For example, the composition may be formulated as a mouth rinse, tooth paste, dentifrice, buccal patch, dental fiber, dental tape, chewing gum, food additive, lozenge, tablet, or chewable capsule.
[0062] The composition may comprise a compound having the structure:
In some embodiments, the composition comprises a compound having the structure:
In specific implementations, the composition comprises a compound having the structure:
[0063] Increased basicity may lead to increased of the ester form of these compounds and therefore increased stability during formulations. For example, in certain embodiments, one
or more reaction steps may proceed in an environment with a basic pH or a basic apparent pH (e.g., a pH (or apparent pH) greater than 7, a pH (or apparent pH) greater than 7.2, etc.). In certain implementations, the reaction medium may include one or more buffers or pH adjusters including phosphates of alkali metals, such as monosodium phosphate, di sodium phosphate, potassium phosphates, and tripolyphosphates; sodium hydroxide; sulfuric acid; perchlorate; and combinations thereof. In certain implementations, any reaction step described herein may use one or more bases. For example, some reaction steps may be performed in an environment comprising one or a mixture of two or more bases selected from the group consisting of potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic dihydrate (Na2HP04.2H20), sodium phosphate dibasic (Na2HP04), sodium carbonate (Na2CCb), sodium phosphate monobasic (NaftPCri), sodium acetate (NaOAc), potassium phosphate dibasic (K2HPO4), potassium phosphate tribasic (K3PO4), potassium carbonate (K2CO3), potassium bicarbonate (KHCO3), potassium hydroxide (KOH), potassium fluoride (KF), ppotassium acetate (KOAc), and sodium fluoride (NaF). In particular embodiments, NaOAc, K2HPO4, or KOAc may be used as the base.
In certain implementations, the composition may include buffers selected from anhydrous carbonates such as sodium carbonate, sesquicarbonates, bicarbonates such as sodium bicarbonate, silicates, bisulfates, phosphates (e.g, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, disodium phosphate, tribasic sodium phosphate, sodium tripolyphosphate, phosphoric acid), citrates (e.g, citric acid, trisodium citrate dehydrate), pyrophosphates (sodium and potassium salts) and combinations thereof. The amount of buffering agent is sufficient to provide a pH of greater than 7 (e.g., greater than 7.2, from 7 to 8, from 7.2 to 8 from 7.2 to 7.5, etc.) in aqueous or liquid based compositional forms (e.g. oral rinses, etc.). Typical amounts of buffering agent are about 5% to about 35%, in one embodiment about 10% to about 30%, in another embodiment about 15% to about 25%, by weight of the total composition.
[0064] An exemplary composition includes from 50% to 90% solvent (e.g., water, lower alcohols such as ethanol, propylene glycol etc.) by weight of the composition, additional agreements such as sweeteners, flavoring agents humectants, and surfactants (e.g., from 0.1 to 20%, etc.) by weight of the composition, one or more buffering agents to maintain a pH of greater than 7 (e.g., in an amount of from 1% to 40%, from 5% to 35%, from 10% to 30%, from 15% to 25% by weight of the composition, etc.) and a concentration of lipoxin mimetic (e.g., lipoxin- A4 mimetic, lipoxin-B4 mimetic, compounds having the structure of formula (V),
compounds having the structure of formula (X), Compound (Vb), Compound (Xb), etc.). The lipoxin mimetic may be present in an amount of from 0.1 mM to 100 mM (e.g., from 0.1 pM to 10 pM, from 10 pM to 100 pM, etc.). In certain embodiments, the composition comprises a phosphate buffer (e.g., dipotassium phosphate, tripotassium phosphate, disodium phosphate, tribasic sodium phosphate, etc.).
[0065] In some embodiments, the lipoxin mimetic may be administered to a subject topically. In some embodiments, the active compound may be formulated in topical dosage forms such as creams, lotions, ointments, gels, shampoos, sprays, aerosols, solutions, or emulsions. See, e.g, Remington: The Science and Practice of Pharmacy, 21 st Ed., Lippincott, Williams, and Wilkins, Philadelphia Pa. (2005); and Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 9th Ed., Lippincott, Williams, and Wilkins, Philadelphia, Pa. (201 1) each hereby incorporated by reference in their entirety. For non-sprayable topical dosage forms, viscous to semi-solid or solid forms comprising a carrier or one or more excipients compatible with topical application and having a dynamic viscosity preferably greater than water are typically employed. Suitable formulations include, without limitation, solutions, suspensions, emulsions, creams, ointments, powders, liniments, salves, and the like, which are, if desired, sterilized or mixed with auxiliary agents (e.g, preservatives, stabilizers, wetting agents, buffers, salts, etc.) for influencing various properties, such as, for example, osmotic pressure. Other suitable topical dosage forms include sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier, is packaged in a mixture with a pressurized volatile (e.g, a gaseous propellant such as Freon, etc.), or in a squeeze bottle. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired.
[0066] In some embodiments, the lipoxin analogs described herein may be formulated with a physiologically compatible carrier medium. Such media can be of any simple type, for example, a pharmaceutically acceptable carrier such as fructo-oligo-saccharide (FOS) medium, or other soluble fiber, sugar, nutrient or base material for the composition, with which the lipoxin analog can be formulated. In certain embodiments, the lipoxin analog may be formulated in an orally administrable form. Other non-limiting, exemplary carrier media include mannitol, inulin (a polysaccharide), polydextrose, arabinogalactan, polyolslactulose, lactitol, etc.
[0067] The carrier medium, when present, can be mixed or blended with lipoxin analogs in any suitable amounts to form a pharmaceutical composition, such as an amount of from 5% to
95% by weight of the composition. In some embodiments, the amount of carrier medium can be in a range having a lower limit of any of 5%, 10%, 12%, 15%, 20%, 25%, 28%, 30%, 40%, 50%, 60%, 70% or 75%, and an upper limit, higher than the lower limit, of any of 20%, 22%, 25%, 28%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, and 95%. The amount of carrier medium in a specific embodiment may be determined based on considerations of the specific dose form, relative amounts of lipoxin analogs, the total weight of the composition including the carrier medium and the bacterial species, and the physical and chemical properties of the carrier medium, and other factors.
[0068] In certain implementations, the compounds described herein may be formulated for oral administration. In some embodiments, the oral administration is targeted for application to the oral cavity, such as by applying the compositions and active ingredients contained therein to surfaces of the oral cavity, including but not limited to salivary glands, saliva, gingiva, dental plaque, teeth, tongue, cheek tissue, and the like. In some embodiments, the formulation is intended to adhere or otherwise contact the surgical wound area during periodontal flap surgery. Typically, orally acceptable carriers are those which are composed of one or more safe solid or liquid diluents or encapsulating substances compatible with the compounds described herein and are suitable for topical oral administration. These compatible substances may be mixed with the active compounds described herein without interaction in a manner which would substantially reduce the stability and/or efficacy of the active compound. Non-exclusive examples of such orally acceptable carriers include distilled or deionized water, calcium carbonate, calcium citrate, bentonite, and montmorillonite.
[0069] Pharmaceutical compositions comprising the active compounds ( e.g ., compounds having the structure of Formula (V), Compound (Vb), etc.) described herein include any composition suitable for topical administration (e.g., to the oral cavity, to the skin, to the eye, etc.) of a human or animal subject for enhancing the health, hygiene or appearance of the subject. In certain embodiments, the pharmaceutical composition may provide such benefits as: the prevention or treatment of a condition or disorder of the teeth, gums, mucosa or other hard or soft tissue of the oral cavity; the prevention or treatment of an oral disorder that would benefit from increased oral osteogenesis; and combinations thereof. In various embodiments, an oral care composition is not intentionally swallowed for purposes of systemic administration of components of the composition, but is rather retained in the oral cavity for a time sufficient to contact substantially all of oral tissues for purposes of oral activity. The pharmaceutical composition of the present invention may be in the form of a capsule, cachets, pills, lozenge,
granules, toothpaste, tooth gel, subgingival gel, dentifrice, tooth powder, mouth rinse, denture product, mouth spray, oral tablet, oral device, chewing gum, oil-in-water emulsion, water-in- oil emulsion, elixir, syrup, or pastille using an inert base, such as gelatin and glycerin, or sucrose and acacia), or encapsulated in resorbable carrier nanoparticles of biologic or synthetic origin. Particles containing at least one component of a cellular-derived microparticle are described in (published online Apr. 1, 2011) and in WO 2012/135032, both of which are incorporated herein in their entirety by reference. In certain embodiments, the lipoxin mimetics described herein may be formulated in a cellular derived microparticle or nanoparticle generated during the initiation phase of an acute inflammatory response. Such particles are described in US 2014/0079631 hereby incorporated by reference in its entirety and specifically in relation to its microparticle and nanoparticle delivery vehicles. In some embodiments, the particle can be of a size from about 1 nm to about 1.5 pm in diameter. In some embodiments, the particle can be of a size from about 10 nm to about 1 pm in diameter. In some embodiments, the particle can be of a size from about 100 nm to about 1 pm in diameter. In some embodiments, the particle can be of a size from about 100 nm to about 0.5 pm in diameter. In some embodiments, the particle can be of a size from about 150 nm to about 250 nm in diameter. In some embodiments, the particle can be of a size from about 450 nm to about 550 nm in diameter. In some embodiments, the particle can be of a size of about 200 nm in diameter. In some embodiments, the particle can be of a size of about 500 nm in diameter. In some embodiments, the particle can be of a size of about 1100 nm in diameter. The particle size may be measured by dynamic light scattering.
[0070] In certain embodiments, an oral care composition is disclosed. The oral care composition may comprise any of the lipoxin analogs described herein. In certain embodiments, the oral care composition may be any of the following selected from the group consisting of: a toothpaste or a dentifrice, a mouthwash or a mouth rinse, a topical oral gel and a denture cleanser. In certain embodiments, the oral care composition further comprises one or more agents selected from diluents, bicarbonate salts, pH modifying agents, surfactants, foam modulators, additional thickening agents, humectants, sweeteners, flavorants, pigments, antibacterial agents, anticaries agents, fluoride ion sources, anticalculus or tartar control agents, and mixtures thereof. Oral compositions disclosed herein may also be incorporated onto strips or films for the application or attachment to oral surfaces. In certain embodiments, implants can be used, such as a chip for insertion into a periodontal pocket; a dental filling, bridge or cap; and a denture. In solid dosage forms for oral administration (capsules, tablets, pills,
dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
[0071] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder ( e.g , gelatin, hydroxypropylmethyl cellulose, etc.), lubricant, inert diluent, preservative, disintegrant (e.g., sodium starch glycolate or cross-linked sodium carboxymethyl cellulose, etc.), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent
[0072] Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions, which can be used include polymeric
substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
[0073] Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof
[0074] Suspensions, in addition to the active agent, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
[0075] The pharmaceutical composition may optionally include other materials, such as for example, cleaning agents, flavouring agents, sweetening agents, adhesion agents, surfactants, foam modulators, abrasives, pH modifying agents, humectants, moisturizers, mouth feel agents, colorants, abrasives, preservatives, fluoride ion source, saliva stimulating agents, emollients, viscosity modifiers, diluents, emulsifiers, nutrients and combinations thereof. Various components that may be added to the oral composition include, for example, a sweetening agent such as saccharin, or sodium saccharin, alcohols such as ethanol, fluoride ion sources such as sodium fluoride, as well as glycerine, sorbitol, polyethylene glycols. Poloxamer polymers such as POLOXOMER.RTM. 407, PLURONIC.RTM. FI 08, (both available from BASF Corporation), alkyl polyglycoside (APG), polysorbate, PEG40, castor oil, menthol, and the like. It is understood that while general attributes of each of the above categories of materials may differ, there may be some common attributes and any given material may serve multiple purposes within two or more of such categories of materials. Preferably, such carrier materials are selected for compatibility with the active ingredients found in magnolia extract or synthetic analogues thereof, as well as with other ingredients of the composition.
[0076] Flavorants among those useful herein include any material or mixture of materials operable to enhance the taste of the composition. Any orally acceptable natural or synthetic flavorant can be used, such as flavoring oils, flavoring aldehydes, esters, alcohols, similar
materials, and combinations thereof. Flavorants include vanillin, sage, marjoram, parsley oil, spearmint oil, cinnamon oil, oil of wintergreen (methylsalicylate) peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil, citrus oils, fruit oils and essences including those derived from lemon, orange, lime, grapefruit, apricot, banana, grape, apple, strawberry, cherry, pineapple, etc., bean- and nut-derived flavors such as coffee, cocoa, cola, peanut, almond, etc., adsorbed and encapsulated flavorants, and mixtures thereof. Also encompassed within flavorants herein are ingredients that provide fragrance and/or other sensory effect in the mouth, including cooling or warming effects. Such ingredients include menthol, menthyl acetate, menthyl lactate, camphor, eucalyptus oil, eucalyptol, anethole, eugenol, cassia, oxanone, [alpha]- irisone, propenyl guaiethol, thymol, linalool, benzaldehyde, cinnamaldehyde, N-ethyl-p- menthan-3-carboxamine, N,2,3-trimethyl-2-isopropylbutanamide, 3-l-menthoxypropane-l,2- diol, cinnamaldehyde glycerol acetal (CGA), methane glycerol acetal (MGA) and mixtures thereof. One or more flavorants are optionally present in a total amount of 0.01% to 5%, optionally in various embodiments from 0.05 to 2%, from 0.1% to 2.5%, and from 0.1 to 0.5%.
[0077] In certain implementations the composition may comprise one or more sweetening agents. Sweetening agents among those useful herein include dextrose, poly dextrose, sucrose, maltose, dextrin, dried invert sugar, mannose, xylose, ribose, fructose, levulose galactose, corn syrup, partially hydrolyzed starch, hydrogenated starch hydrolysate, sorbitol, mannitol, xylitol, maltitol, isomalt, aspartame, neotame, saccharin and salts thereof, sucralose, dipeptide-based intense sweeteners, cyclamates, dihydrochalcones, and mixtures thereof.
[0078] Mouth-feel agents include materials imparting a desirable texture or other feeling during use of the composition of the present disclosure.
[0079] Colorants among those useful to the compositions disclosed herein include pigments, dyes, lakes and agents imparting a particular luster or reflectivity such as pearling agents. In various embodiments, colorants are operable to provide a white or light-colored coating on a dental surface, to act as an indicator of locations on a dental surface that have been effectively contacted by the composition, and/or to modify appearance, in particular color and/or opacity, of the composition to enhance attractiveness to the consumer. Any orally acceptable colorant can be used, including FD&C dyes and pigments, talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, magnesium aluminum silicate, silica, titanium dioxide, zinc oxide, red, yellow, brown and black iron oxides, ferric ammonium ferrocyanide, manganese violet, ultramarine, titaniated mica, bismuth oxychloride, and mixtures thereof. One or more
colorants are optionally present in a total amount of 0.001% to 20%, for example 0.01% to 10% or 0.1% to 5%.
[0080] In some embodiments, the compositions of the present disclosure contain a buffering agent. Examples of buffering agents include anhydrous carbonates such as sodium carbonate, sesquicarbonates, bicarbonates such as sodium bicarbonate, silicates, bisulfates, phosphates (e.g., monopotassium phosphate, dipotassium phosphate, tribasic sodium phosphate, sodium tripolyphosphate, phosphoric acid), citrates (e.g. citric acid, trisodium citrate dehydrate), pyrophosphates (sodium and potassium salts) and combinations thereof. The amount of buffering agent is sufficient to provide a pH of 5 to 9, preferable 6 to 8, and more preferable 7, when the composition is dissolved in water, a mouth rinse base, or a toothpaste base. Typical amounts of buffering agent are 5% to 35%, in one embodiment 10% to 30%, in another embodiment 15% to 25%, by weight of the total composition.
EXAMPLES
[0081] The following examples illustrate specific aspects of the instant description. The examples should not be construed as limiting, as the example merely provides specific understanding and practice of the embodiments and its various aspects. The synthetic examples below are not particularly limiting, and other methodologies to synthesize the compounds of the present invention are well known to persons of skill in the art.
[0082] Example 1 : Synthesis of Lipoxin Analogs
[0083] Compounds having a Formula (II)-(V) (e.g., Compound Ila, Compound Ilia, Compound IVa, and Compound Va, etc.) were synthesized using Synthesis Route A.
C14H28OSi C20H33BO3S1
Compound IVa Compound Va
Synthesis Route A
[0084] Compounds having the formula of Formula (I) ( e.g Compound IA) were synthesized using Synthesis Route B starting from L-deoxyribose.
C27H47Br04Si2
Compound la
Synthesis Route B
[0085] O-protected cyano alkyls used as starting materials were synthesized as shown in Synthesis Route C.
Synthesis Route C
[0086] These synthesis methods may be analyzed with several known protocols. For example, proton NMR and/or mass spectroscopy ( e.g ., positive mode MS, etc.) may be used to determine the structure of the compounds.
[0087] Example 2: Stability Measurements
[0088] Stability measurements may be performed on compositions comprising the lipoxin analogs disclosed herein. For example, Compound Vb may be incorporated into several aqueous solutions at a variety of pHs. These compositions may be subjected to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) measurements on stability such as Q1A-Q1F. For example, the compositions may be subjected to ICH conditions including long term conditions (-20° ± 4°C) and accelerated conditions of simulated room temperature (40° ± 2°C/70% ± 5% RH). At each time interval, the composition may undergo a physical examination, identification of the components (via thin layer chromatography), identity and purity measurements (via liquid chromatography/mass spectrometry) and water content (via Karl Fischer titration). Stability measurements may be measured with a stability protocol as outlined in Table 1 to determine those compositions with increased stability over time. In Table 1,“A” indicates time points of the protocol where the stability measurements may occur following formulation. It will be understood that stability measurements may be performed at any time point listed in Table 1.
Table 1
[0089] Several compositions comprising lipoxin analogs may be created. For example, the composition may have the components as shown in Table 2
Table 2
[0090] The lipoxin mimetic may be formulated in the composition at various pH ranges. It is believed that compositions with a pH of greater than 7 (and specifically greater than 7.2) will be able to solvate and maintain stability of alkyl ester forms of compounds having the structure of Formula (V) ( e.g ., R.4 is methyl, etc.) and carboxylate salts thereof. At normal conditions, long term conditions, and accelerated aging conditions, compositions with basic pH (e.g., pH greater than 7.2) will maintain the ester form of lipoxin analogs (e.g., Compound (Vb), Compound (Xb), etc.). As shown below, compositions without basic pH result in degradation of the ester form of the lipoxin analog. In the stability testing, the pH may be set and monitored during experimental protocol, thus preventing acid induced hydrolysis of the ester forms of lipoxin analogs (e.g., Compound (Vb), Compound (Xb), etc.).
[0091] Compounds suitable for formulation and synthesized in the manners described herein should meet certain known parameters. For example, the compounds should meet the specifications as identified in Table 3.
Table 3
[0092] Example 3 : Clinical Study of Treatment with Compound Vb
[0093] A series of chemically and metabolically stable benzo-lipoxin analogs were produced as disclosed in Petasis, N., et al., Bioorg Med Chem Lett 18(4): 13821387, hereby incorporated by reference in its entirety. As described herein, these analogs featured a modification of the tetraene portion of lipoxin via substitution of a benzo-fused ring system while retaining the biological activity of the lipid chain moieties. These compounds were found to have longer half-life in vitro and ease of synthesis through iterative palladium-mediated coupling methods. In comparison with native lipoxin A4, Compound Vb and related analogs were not readily converted to inactive forms in an in vitro stability assay system containing eicosanoid oxido- reductase. This particular analog was most effective at inhibiting polymorphonuclear neutrophil infiltration in a murine peritonitis model (approximately 32% inhibition [n = 5-10, p < 0.005 compared with the vehicle control]). In the same model system, the benchmark compound, ATLa, gave 40% inhibition of polymorphonuclear neutrophil infiltration (p < 0.05)
as disclosed in Sun, et al., Prostaglandins Leukot Essent Fatty Acids 81(5-6): 357366, hereby incorporated by reference in its entirety.
[0094] A clinical study comprised of 3 groups in a randomized, placebo-controlled, double-blind design with an additional group that received no treatment was performed to evaluate the use of Compound (Vb) on the treatment of gingivitis. Subjects were healthy adults, aged 18 through 65 years, with gingivitis as defined by Marginal Gingival Index (MGI) > 2.0. The treatment group (Compound (Vb) oral rinse) and the placebo rinse group consisted of 50 subjects each. The no-rinse control group consisted of 27 subjects. These group sizes were planned to allow for a 20% dropout rate.
[0095] The control oral rinse was formulated as shown in Table 4, which was formulated with at pH stabilizing agent such as a buffer. The pH of this solution was 7 or less.
Table 4
The Compound (Vb) oral rinse group received the active agent at a concentration of 1.0 mM in the oral rinse applied once daily (after morning teeth brushing) for 28 days.
[0096] Thirty-two subjects reported a total of 56 treatment emergent adverse effects (TEAEs), with the greatest percentage of subjects reporting at least 1 TEAE in the Compound (Vb) group (38.0%) followed by the placebo group (20.0%) and the no-rinse control group (11.1%). Overall, 10 subjects reported at least 1 TEAE considered related to study drug, and 5 subjects reported at least one TEAE related to study procedures. No TEAEs led to study drug discontinuation.
[0097] A total of 10 subjects (7.9% of the Safety population) reported at least 1 TEAE considered related to study drug. Study drug-related TEAEs were reported in 6 subjects in the Compound (Vb) group and 4 subjects in the placebo group.
[0098] Four subj ects in the Compound (Vb) group reported oral TEAEs that were considered possibly related to study drug (3 subjects reported dry mouth and 1 subject reported an oral disorder). All oral TEAEs were mild in severity and resolved without action.
[0099] No clinically meaningful shifts in blood chemistry, hematology, urinalysis, ulceration or erythema were observed over time or among groups. In addition, no pregnancies were reported during the course of the study.
[0100] In conclusion, treatment with Compound (Vb) was generally safe and well tolerated in this study. No safety signals beyond mild oral irritation were identified.
[0101] The primary outcome of this study was safety, and therefore, all efficacy analyses were considered secondary outcomes. The key secondary efficacy outcomes in this study were Modified Gingival Index (MGI) and BOP. As shown in FIG. 1, treatment resulted in a clinically important decrease in mean MGI at Day 14 and 28 relative to placebo.
[0102] Treatment with Compound (Vb) did not result in meaningful differences between Compound (Vb) and placebo with respect to BOP at Day 28 (p = 0.876 for Compound (Vb) versus placebo).
[0103] The pocket depth reduction was most pronounced in sites with pockets > 6 mm, with a reduction of -1.23 + 0.406 mm (SD) in the Compound (Vb) group versus -0.71 + 0.343 mm in the placebo and -0.46 ^0.405 mm in the no rinse control group. The differences indicate a clinically meaningful trend.
[0104] In this study, Compound (Vb) reduced the extent of clinical gingivitis when compared with the placebo group suggesting that further studies should be conducted to characterize the dose response of Compound (Vb), and determine the dose to be used in a phase 3 study and evaluate if Compound (Vb) is superior to a placebo oral rinse in reducing pocket depth in patients with periodontitis. As this was an early phase study primarily focused on safety, a single dose predicted to be safe in humans was used.
[0105] However, over the course of the study, the formulation was found to result in an increase in the free acid form of Compound (Vb) as a result of the neutral pH of the formulation inducing hydrolysis of the methyl ester. Without wishing to be bound by theory, it is believed
that increasing the pH of the oral rinse formulation increases the stability of the methyl ester forms of these benzo4ipoxin analogs and mimetics, therefore allowing for more efficient delivery of the active compounds ( e.g ., Compound (Vb), etc.) in these formulations.
[0106] As various changes can be made in the above-described subject matter without departing from the scope and spirit of the present invention, it is intended that all subject matter contained in the above description, or defined in the appended claims, be interpreted as descriptive and illustrative of the present invention. Many modifications and variations of the present invention are possible in light of the above teachings. Accordingly, the present description is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Claims
1. A method comprising:
contacting a compound having the structure of Formula (I):
in a reaction environment having a pH greater than 7; to form a compound having the structure of Formula (III):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon optionally substituted one or more times;
P1-P3 are each independently an oxygen protecting group; and
X is a halogen.
2. The method according to claim 1, wherein said compound of Formula (III) has the structure:
3. The method according to claim 1 , wherein said environment is an aqueous environment comprising a base, a palladium catalyst, and combinations thereof.
4. The method according to any one of claims 1-3, wherein Ri is C1-C7 alkyl.
5. The method according to any one of claims 1-4, wherein P1-P3 are each silyl protecting groups.
6. The method according to any one of claims 1-4, wherein P1-P3 are each tert- butyldimethyl silyl .
7. The method according to any one of claims 1-6, wherein m and n are each 1.
8. The method according to any one of claims 1-7, wherein p is 0.
9. The method according to any one of claims 1-8, wherein RL is C1-C7 alkylene.
10. The method according to any one of claims 1-9, wherein R2 is C1-C7 alkyl.
11. The method according to any one of claims 1-10, wherein said compound of Formula (III) has the structure of Formula (Ilia):
12. The method according to any one of claims 1-11, further comprising the step of deprotecting said compound of Formula (III) to produce a compound having the structure of Formula (IV):
13. The method according to claim 12, wherein the deprotecting step occurs in a first environment comprising an organic solvent comprising a quaternary ammonium salt and a second aqueous environment comprising an alkali metal hydroxide; wherein said second aqueous environment has a pH greater than 7.
14. The method according to 12 or 13 further comprising the step of reacting said compound having the structure of Formula (IV) with an alkylating agent ( e.g ., halide, alkyl halide, heteroalkyl halide, arylalkyl halide such as benzyl halide, etc.) to form a compound having the structure of Formula (V):
15. The method according to claim 14, wherein R4 is methyl, ethyl, propyl, or isopropyl.
16. A method comprising: a) deprotecting a compound of Formula (III):
b) contacting said compound having the structure of Formula (IV) with an alkylating agent to form a compound having the structure of Formula (V):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or
unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R.4 is selected from saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon optionally substituted one or more times;
P1-P3 are each independently a protecting group; and
said deprotecting step occurs in a reaction environment with a pH greater than 7.
17. A method comprising:
a) contacting a compound having the structure of Formula (I):
with a compound having the structure of Formula (II):
in an environment with a pH greater than 7; to form a compound having the structure of Formula (III):
b) deprotecting said compound of Formula (III) to produce a compound having the structure of Formula (IV):
c) contacting said compound having the structure of Formula (IV) with an alkylating agent to form a compound having the structure of Formula (V):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times; wherein R4 is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon optionally substituted one or more times;
P1-P3 are each independently a protecting group; and
X is a halogen.
18. A pharmaceutical composition comprising one or more pharmaceutically acceptable carriers, excipients, and/or diluents and a compound having the structure of Formula (V) or Formula (X):
wherein p is an integer from 0-4
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R3 is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon optionally substituted one or more times; and the pH of said composition is greater than 7.
19. The pharmaceutical composition according to claim 18, wherein said pH is greater than 7.2.
20. The pharmaceutical composition according to claim 18 or 19, wherein said composition comprises an amount of said compound having the structure of Formula (V) from 0.01% to 50% by weight of the composition.
21. The pharmaceutical composition according to any one of claims 18-20, wherein said composition is formulated for topical oral or topical skin administration of said compound.
22. The pharmaceutical composition according to any one of claims 18-20, wherein said composition is formulated as a mouth rinse, tooth paste, dentifrice, buccal patch, dental fiber, dental tape, chewing gum, food additive, lozenge, tablet, or chewable capsule.
23. The pharmaceutical composition according to any one of claims 18-22, wherein said composition does not comprise a carboxylate salt of the compound of formula (V).
24. The pharmaceutical composition according to any one of claims 18-23, wherein said composition comprises a compound having the structure:
25. The composition according to claim 24, wherein said composition comprises a compound having the structure:
26. The composition according to claim 25, wherein said composition comprises a compound having the structure:
27. The composition according to any one of claims 18-26, wherein said composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound by weight of the composition.
28. The composition according to any one of claims 18-26, wherein said composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound ( e.g . free acid form wherein R.4 is hydrogen, etc.) by weight of the composition after more than three days of room temperature conditions (40° ± 2°C/70% ± 5% RH) and/or accelerated aging conditions (40°C/75%RH).
29. The composition according to any one of claims 18-26, wherein said composition comprises less than 5% of said carboxylate salt or hydrolyzed form of said compound (e.g. free acid form wherein R.4 is hydrogen, etc.) by weight of the composition after more than one month of long term storage conditions (e.g., -20° ± 4°C).
30. A method for the treatment or prophylaxis of an oral disorder in a subject in need thereof comprising administration of the pharmaceutical composition according to any one of claims 18-29 to a subject in need thereof.
31. The method according to claim 30, wherein said oral disorder is selected from periodontitis, alveolar bone loss, gingivitis, osteoporosis, osteopenia, oral bone resection, oral bone fracture, arthritis, osteoarthritis, osteotomy bone loss, osteolytic lesions, idiopathic bone loss.
32. The method according to claim 30 wherein said oral disorder is a periodontal disease.
33. The method according to claim 30, wherein said oral disorder is a periodontal disease selected from periodontitis, gingivitis, chronic periodontitis, aggressive periodontitis,
necrotizing periodontal disease, aggressive periodontitis, periodontium abscesses, and post operative gingival infections.
34. A method for the treatment or prophylaxis of an inflammatory condition in a subject in need thereof comprising administration of the pharmaceutical composition according to any one of claims 18-22 to a subject in need thereof.
35. A method comprising:
contacting a compound having the structure of Formula (VI):
under in an environment suitable with a pH greater than 7 to form a compound having the structure of Formula (VIII):
Ri is selected from hydrogen, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
R2 is selected from hydrogen, halogen, hydroxy, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
Its is independently selected at each occurrence from hydrogen, hydroxy, halogen, cyano, nitro, saturated or unsaturated C1-C7 alkyl optionally substituted one or more times, saturated or unsaturated C1-C7 alkoxy optionally substituted one or more times, and C1-C7 heteroalkyl optionally substituted one or more times;
RL is absent or a divalent C1-C7 hydrocarbon optionally substituted one or more times;
P1-P3 are each independently an oxygen protecting group; and
X is a halogen.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3147897A CA3147897A1 (en) | 2019-07-26 | 2020-07-23 | Synthesis of pro-resolving analogs and compositions therefor |
EP20846132.7A EP4003062A4 (en) | 2019-07-26 | 2020-07-23 | Synthesis of pro-resolving analogs and compositions therefor |
US17/629,939 US20220288005A1 (en) | 2019-07-26 | 2020-07-23 | Synthesis of pro-resolving analogs and compositions therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962878937P | 2019-07-26 | 2019-07-26 | |
US62/878,937 | 2019-07-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021021552A1 true WO2021021552A1 (en) | 2021-02-04 |
Family
ID=74230098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2020/043243 WO2021021552A1 (en) | 2019-07-26 | 2020-07-23 | Synthesis of pro-resolving analogs and compositions therefor |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220288005A1 (en) |
EP (1) | EP4003062A4 (en) |
CA (1) | CA3147897A1 (en) |
WO (1) | WO2021021552A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022178249A1 (en) * | 2021-02-19 | 2022-08-25 | Nocendrda, Inc. | Method for treating dysgeusia and other symptoms associated with covid-19 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012135032A2 (en) | 2011-03-25 | 2012-10-04 | The Brigham And Women's Hospital, Inc. | Anti-inflammatory particles |
US10322102B2 (en) * | 2003-09-10 | 2019-06-18 | University Of Southern California | Benzo lipoxin analogues |
-
2020
- 2020-07-23 EP EP20846132.7A patent/EP4003062A4/en active Pending
- 2020-07-23 US US17/629,939 patent/US20220288005A1/en active Pending
- 2020-07-23 WO PCT/US2020/043243 patent/WO2021021552A1/en unknown
- 2020-07-23 CA CA3147897A patent/CA3147897A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10322102B2 (en) * | 2003-09-10 | 2019-06-18 | University Of Southern California | Benzo lipoxin analogues |
WO2012135032A2 (en) | 2011-03-25 | 2012-10-04 | The Brigham And Women's Hospital, Inc. | Anti-inflammatory particles |
US20140079631A1 (en) | 2011-03-25 | 2014-03-20 | The Brigham And Women's Hospital, Inc. | Anti-inflammatory particles |
Non-Patent Citations (12)
Title |
---|
"Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems", 2011, LIPPINCOTT, WILLIAMS, AND WILKINS |
"Remington: The Science and Practice of Pharmacy", 2005, LIPPINCOTT, WILLIAMS, AND WILKINS |
BERGE, S.M.BIGHLEY, L.D.MONKHOUSE, D.C., J. PHARM. SCI., vol. 66, no. 1, pages 1977 |
CHEMICAL AND ENGINEERING NEWS, vol. 63, no. 5, 1985, pages 27 |
DATABASE PubChem compound 18 December 2015 (2015-12-18), "5-Hydroxy-7-[2-[3,4-bis(tert-butyldimethylsiloxy)-1-nonenyl]phenyl]-6-heptenoic acid ethyl ester", XP055791341, retrieved from NCBI Database accession no. 101937878 * |
J. LIA. W-H. MAUC. R. STRAUSS, CHEMICAL COMMUNICATIONS, 1997, pages 1275 |
PETASIS ET AL.: "Design and synthesis of benzo-lipoxin A4 analogs with enhanced stability and potent anti-inflammatory properties", BIOORG. MED. CHEM. LETT., vol. 18, no. 4, 2008, pages 1382 - 1387, XP022479337, DOI: 10.1016/j.jfluchem.2003.11.029 * |
PETASIS, N. ET AL., BIOORGMED CHEM LETT, vol. 18, no. 4, pages 13821387 |
See also references of EP4003062A4 |
SUN ET AL., PROSTAGLANDINS LEUKOT ESSENT FATTY ACIDS, vol. 81, no. 5-6, pages 357366 |
SUN ET AL.: "Anti-inflammatory and pro-resolving properties of benzo-lipoxin A4 analogs", PROSTAGLANDINS LEUKOT ESSENT FATTY ACIDS, vol. 81, no. 5-6, 2009, pages 357 - 366, XP026775023, DOI: 10.1016/j.plefa.2009.09.004 * |
T. W. GREENEP. G. M. WUTS: "Protecting Groups in Organic Synthesis", 1999, JOHN WILEY & SONS |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022178249A1 (en) * | 2021-02-19 | 2022-08-25 | Nocendrda, Inc. | Method for treating dysgeusia and other symptoms associated with covid-19 |
Also Published As
Publication number | Publication date |
---|---|
US20220288005A1 (en) | 2022-09-15 |
EP4003062A1 (en) | 2022-06-01 |
EP4003062A4 (en) | 2023-08-23 |
CA3147897A1 (en) | 2021-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5451401A (en) | Diphosphonic acid esters as tartar control agents | |
KR100612398B1 (en) | Complexes of phosphate derivatives | |
JP2015212274A (en) | Oral care composition | |
JP2010241818A (en) | Formula containing electronic transferring agent phosphate derivative | |
AU2009344336B2 (en) | Menthol-derivative compounds and use thereof as oral and systemic active agents | |
EP3128998A1 (en) | Oral care compositions | |
TWI448305B (en) | Oral care compositions | |
US20220288005A1 (en) | Synthesis of pro-resolving analogs and compositions therefor | |
FR2796383A1 (en) | TITANIUM-DERIVED COMPOUNDS, THEIR PREPARATION AND USE | |
EP0719128A1 (en) | Composition containing phosphate derivatives | |
EP0443956B1 (en) | Lactic acid acylates, their salts, process of preparation and compositions containing them | |
EP0946516B1 (en) | New histidine derivatives, preparation process, and their use as free antiradical agents | |
CA2171530A1 (en) | Pyrophosphate diesters for tartar control | |
JP4879344B1 (en) | Antioxidant polyhydroxybenzene derivative and anti-inflammatory skin external preparation | |
JPH09502998A (en) | Substantially antibacterial phosphate | |
JPH11209221A (en) | Preparation for external use for skin | |
JP2000229823A (en) | Composition for oral cavity | |
JP2001302476A (en) | Dentifrice composition | |
JP4845949B2 (en) | Topical skin preparation | |
RU2636218C2 (en) | Oral care composition | |
JP2024091125A (en) | Vitamin derivative-containing composition | |
JP2001206831A (en) | Composition for oral cavity | |
JP2006232769A (en) | Ceramide synthesis promoter | |
FR2847463A1 (en) | COMPOSITION | |
JP2002173419A (en) | Composition for oral cavity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20846132 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3147897 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020846132 Country of ref document: EP Effective date: 20220228 |