WO2021020638A1 - Integrated inverter-charger device and control method for controlling same - Google Patents

Integrated inverter-charger device and control method for controlling same Download PDF

Info

Publication number
WO2021020638A1
WO2021020638A1 PCT/KR2019/011115 KR2019011115W WO2021020638A1 WO 2021020638 A1 WO2021020638 A1 WO 2021020638A1 KR 2019011115 W KR2019011115 W KR 2019011115W WO 2021020638 A1 WO2021020638 A1 WO 2021020638A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
switch
transformer
inverter
phase
Prior art date
Application number
PCT/KR2019/011115
Other languages
French (fr)
Korean (ko)
Inventor
최경진
권오준
강찬호
Original Assignee
주식회사 이지트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이지트로닉스 filed Critical 주식회사 이지트로닉스
Publication of WO2021020638A1 publication Critical patent/WO2021020638A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/24Personal mobility vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/44Current source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an inverter-charger integrated device used for micro-mobility.
  • Ultra-miniature mobility is a means of transportation that uses the electric power of less than a bicycle or less than a light vehicle, and can be understood as a small personal transportation means of one or two passengers, such as electric kickboards and electric wheels, electric bicycles, and microcars.
  • micro electric vehicles generally include a drive motor, a battery, a battery charger, and an inverter.
  • the battery charger includes an EMI filter unit 11, a diode rectification unit 12, a PFC (Power Factor Correction) conversion unit 13, a DC-AC conversion unit 14, a transformer 15, a diode rectification unit 16, It is composed of an LC filter unit 17 (see Fig.
  • an EMI filter unit 11' using a synchronous rectification technique a diode rectification unit 12', a PFC conversion unit 13', a DC-AC conversion unit ( 14'), a transformer (15'), a MOSFET rectifier unit (16'), an LC filter unit (17'), or an EMI filter unit (11 ⁇ ) applying the LLC technique, or a diode rectifier unit ( 12''), PFC converter (13''), DC-AC converter (14''), inductor (L), transformer (15 ⁇ ), MOSFET rectifier (19'') (see Fig. 1c) ) Became.
  • the micro electric vehicle includes an inverter with a built-in MOSFET for converting power to a driving motor separately from the battery charger. Since the charger serves to store energy into the battery and the inverter serves to consume energy from the battery, these two configurations do not work at the same time. That is, the inverter does not operate when the charger operates, and the charger does not operate when the inverter operates.
  • the secondary side of the charger and the entire bridge switching part of the inverter are directly connected to the battery, and have a similar structure.If you use them in common, you can reduce the number of parts and space as well as reduce the cost. It has an advantage and can further contribute to improving fuel economy or extending a mileage by reducing the weight.
  • the present invention can be developed and described from the principle for common use of the secondary side of the charger and the entire bridge switching unit of the inverter.
  • Embodiments of the present invention have been proposed to solve the above problems, and to provide an inverter-charger integrated device capable of efficiently using components by mounting an inverter and a battery charger for driving ultra-small mobility in one device. do.
  • inverter-charger integrated device capable of performing a battery charging function and a driving function of a three-phase motor as one device.
  • inverter-charger integrated device with improved charging efficiency and inverter efficiency.
  • one end is connected to the power input unit for supplying AC power, and the other end is provided as a transformer that is insulated from the primary side and the secondary side;
  • a converter converting AC power provided from the charging unit into DC power for charging a battery in a charging mode, and converting DC power provided from the battery to power for driving a three-phase electric motor in a driving mode;
  • a changeover switch part including at least one changeover switch which is switched to selectively form a closed circuit with one of the secondary side of the transformer and the three-phase motor;
  • the inverter-charger integrated device includes a control unit for controlling the switching of the switching switch so that the three-phase motor and the conversion unit are formed as a closed circuit. Can be provided.
  • the conversion unit includes a first switch module that can be connected to one phase of the three-phase electric motor through a first conductor; A second switch module capable of being connected to another phase of the three-phase electric motor through a second conductor; It includes a third switch module that can be connected to another phase of the three-phase electric motor through a third wire, the first output end of the transformer forms an open end, and the second output end of the transformer is a contact with the second conductor line.
  • the changeover switch unit is disposed on the first conductor to connect the open end of the first output terminal of the transformer and the first switch module, or selectively connect the three-phase motor and the first switch module.
  • An inverter-charger integrated device comprising a first changeover switch that is switched so as to be switched may be provided.
  • first output terminal and the second output terminal of the transformer form an open end
  • An inverter-charger integrated device comprising a seventh changeover switch disposed on a fifth conductor forming a contact with the second conductor and connecting or opening the open end of the second output terminal of the transformer and the second switch module may be provided. .
  • the conversion unit may include a plurality of switches, a diode is embedded in the switch, and an inverter-charger integrated device in which the switch of the conversion unit is not switched in a charging mode may be provided.
  • an inverter-charger integrated device may be provided that is provided on at least one side of the conversion unit and further includes a first heat dissipation housing capable of absorbing heat generated by the conversion unit.
  • the charging unit includes an input filter for filtering an AC signal supplied from an AC power source; A rectifier rectifying the AC power filtered by the input filter; A PFC boost converter compensating for a power factor of the power output from the rectifier; An inverter-charger integrated device including a DC-AC inverter that converts DC power obtained from the PFC boost converter into AC power and outputs it to the transformer side may be provided.
  • a charging unit provided with a transformer
  • the control method of the inverter-charger integrated device comprising a conversion unit connected to one side to the battery and the other side to form a closed circuit selectively with one of the charging unit and the three-phase driver, the charging mode or three-phase for charging the battery Selecting one of driving modes for driving the electric motor;
  • the charging mode is selected, switching the switching switch so that the secondary side of the transformer and the conversion unit form a closed circuit;
  • a control method of an inverter-charger integrated device comprising the step of switching a switching switch such that the three-phase motor and the conversion unit form a closed circuit may be provided.
  • the inverter-charger integrated device can efficiently use components by mounting an inverter and a battery charger for driving ultra-miniature mobility in one device.
  • a battery charging function and a driving function of a three-phase electric motor may be performed as one device.
  • an inexpensive inverter-charger integrated device can be provided.
  • FIG. 1A, 1B, and 1C are views schematically illustrating a charger disposed in a conventional micro-mobility.
  • FIG. 2 is a diagram schematically showing an inverter-charger integrated device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing an inverter-charger integrated device according to a second embodiment of the present invention.
  • FIG. 4 is a view schematically showing an inverter-charger integrated device according to a third embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an inverter-charger integrated device according to a first embodiment of the present invention.
  • an inverter-charger integrated device 1 includes a charging unit 100; Conversion unit 200; A changeover switch unit 300; It may include a control unit 400.
  • the inverter-charger integrated device 1 is connected between the AC power supply 10 and the battery 20 and the three-phase electric motor 30 to convert the power supplied from the AC power supply 10 to convert the battery ( 20) may be charged (charging mode), or the three-phase electric motor 30 may be operated (operation mode) by converting DC power supplied from the battery 20.
  • the inverter-charger integrated device 1 operates as a charger in the charging mode and operates as an inverter in the driving mode.
  • the charging mode and the driving mode may be selected by switching of the switching switch unit 300 by the control unit 400 to be described later, and a detailed description thereof will be described later.
  • the charging unit 100 may include an input filter 112, a rectifying unit 114, a PFC boost converter 116, a DC-AC inverter 118, and a transformer 119.
  • the input filter 112 may filter an AC signal (eg, an AC voltage) supplied from the AC power supply 10 and output the filtered result to the rectifier 114.
  • the input filter 112 may be an Electro-Magnetic Interference (EMI) filter.
  • EMI Electro-Magnetic Interference
  • the rectifier 114 may rectify the single-phase AC power filtered by the input filter 112 and output the rectified result to the PFC boost converter 116.
  • the rectifying unit 114 may be implemented by including a diode and a capacitor Cin.
  • the PFC boost converter 116 may compensate the power factor of DC power output from the rectifier 114 and output the power factor compensated power to the DC-AC inverter 118.
  • the PFC boost converter 116 may perform a role of compensating the power factor of the power supply and at the same time perform boosting to increase a voltage as necessary.
  • the power factor compensation is required to stabilize the power of the system.
  • the DC-AC inverter 118 may convert the DC power obtained from the PFC boost converter 116 into AC power and output it to the transformer 119.
  • the DC-AC inverter 118 may be implemented as a full bridge or half bridge circuit.
  • the DC-AC inverter 118 may be synchronously switched with the conversion unit 200 to be described later.
  • the transformer 119 is configured to transform the AC voltage obtained from the DC-AC inverter 118 into a voltage level required for battery charging, and provides insulation between the primary side 110 and the secondary side 120 of the transformer 119. Can be secured.
  • the primary side 110 may be understood as an input side of the transformer 119 and the secondary side 120 may be understood as an output side of the transformer 119.
  • the conversion unit 200 can be insulated from the primary side of the transformer 119.
  • the first output terminal 121 and the second output terminal 122 of the secondary side 120 form a contact with one of the first, second, and third conductors 31, 32, and 33 to be described later, and the conversion unit 200 ) Can be connected.
  • the first output terminal 121 may form an open end and a closed circuit may be formed by switching of the first switching switch 310 to be described later, and the second output terminal 122 is a second conductor ( 32) can be connected to the conversion unit 200 by forming a contact point.
  • the transformer 119 may be configured to include an inductor L, and the inductor L may function as a leakage reactor.
  • the conversion unit 200 may be selectively connected to the charging unit 100 and the three-phase electric motor 30 by a switching switching unit 300 to be described later.
  • the conversion unit 200 converts AC power provided from the charging unit 100 in the charging mode to DC power for charging the battery 20, and converts the DC power provided from the battery 20 in the operation mode to a three-phase electric motor ( 30) can be converted to power to drive.
  • the conversion unit 200 may be an inverter.
  • the charging mode may be understood as an operation in which the battery 20 is charged from the power of the AC power supply 10
  • the operation mode may be understood as an operation in which the three-phase motor 30 is driven from the power of the battery 20. I can.
  • One side of the conversion unit 200 may be connected to the battery 20, and the other side of the conversion unit 200 may be connected to one of the charging unit 100 and the three-phase motor 30 to selectively form a closed circuit.
  • the conversion unit 200 includes a first switch (S1), a second switch (S2), a third switch (S3), a fourth switch (S4), a fifth switch (S5), and a sixth switch (S6). And may include a capacitor (C) connected to them in parallel.
  • first switch S1 and one end of the fourth switch S4 are connected in series with each other, and the first switch S1 and the fourth switch S4 may be understood as forming a first switch module. have.
  • one end of the second switch S2 and one end of the fifth switch S5 are connected in series with each other, and the second switch S2 and the fifth switch S5 may be understood as forming a second switch module. have. In this case, switches belonging to the second switch module are connected in parallel with switches belonging to the first switch module.
  • one end of the third switch S3 and one end of the sixth switch S6 are connected in series, and it will be understood that the third switch S3 and the sixth switch S6 form a third switch module. I can. At this time, switches belonging to the third switch module are connected in parallel with switches belonging to the first and second switch modules.
  • the first switch (S1) may include a first inverter diode (D1)
  • the second switch (S2) may include a second inverter diode (D2)
  • the third switch (S3) 3 may include an inverter diode (D3)
  • the fourth switch (S4) may include a fourth inverter diode (D4)
  • the fifth switch (S5) may include a fifth inverter diode (D5)
  • the sixth switch S6 may include a sixth inverter diode D6.
  • each inverter diode (D1, D2, D3, D4, D5, D6) is built into each switch (S1. S2, S3, S4, S5, S6).
  • the battery 20 can be charged through the inverter diode without switching operation of each switch in the charging mode.
  • the battery 20 can be charged through a diode built into each switch, a structure that does not require a separate inductor at the output terminal can be provided.
  • the LC filter units 17 and 17' on the secondary side of the transformers 15 and 15' ) Is located, and the LC filter units 17 and 17' include inductors. Since the inductor is designed with a small capacity in the charger, a large current cannot flow during the operation of the inverter, so that the charger and the inverter cannot be integrated.
  • a single-phase full bridge MOSFET and C filter including four switching elements are connected to the battery without an inductor (L) on the output side.
  • a general inverter connects a three-phase full bridge MOSFET and C filter including six switching elements to the battery.
  • the LLC technique is applied (excluding the inductor), but the leakage reactor 117 is positioned on the primary side (or secondary side) of the transformer 119, and six switches S1, S2, S3, and By configuring the four switches (S1, S2, S4, S5) of S4, S5, S6) to be used for charging, the inverter and the charger can be integrated.
  • an IGBT may be applied instead of a MOSFET in the conversion unit 200.
  • the capacity of the diode (body diode) built into the MOSFET or IGBT is large, it can be used instead of the diode rectifier of the charger.
  • the three-phase electric motor 30 may provide power to drive micro-mobility.
  • One of the three conductors connected to each phase (U, W, V) of the three-phase electric motor 30 is connected to the first switch module, the other conductor is connected to the second switch module, and The other conducting wire may be connected to the third switch module.
  • the first conductor 31 connected to the three-phase electric motor 30 may be connected between the first switch S1 and the fourth switch S4, and a second conductor connected to the three-phase electric motor 30 32 may be connected between the second switch S2 and the fifth switch S5, and the third conductor 33 connected to the three-phase electric motor 30 is the third switch S3 and the sixth switch ( S6) can be connected between.
  • each switch may be a switch such as a relay switch, a changeover switch, a non-contact switch, or a semiconductor switch.
  • a changeover switch to be described later may be disposed on at least one of the first conductor 31, the second conductor 32, and the third conductor 33.
  • the three-phase electric motor 30 and the conversion unit 200 are connected through the three lead wires 31, 32, and 33, and the changeover switch is arranged on at least one of the three lead wires 31, 32, 33.
  • the stator winding of the motor can be formed in a structure not used as an inductor. Accordingly, the inverter-charger integrated device 1 of the present embodiment can be applied irrespective of the type of the driver (most of the conventional integrated structures apply a motor with the neutral point of the motor exposed, so that the midpoint and the stator winding are connected to the inductor. Structure used as).
  • the changeover switch unit 300 may include at least one changeover switch that is switched so that the conversion unit 200 selectively forms a closed circuit with one of the secondary side 120 and the three-phase motor 30 of the transformer 119. have.
  • one changeover switch (first changeover switch 310) is disposed at one end of the first conductor 31, and the other end of the first conductor 31 and the first output end 121 of the transformer 119 ), it will be described as an example.
  • the second output terminal 122 of the transformer 119 forms a contact with the second conductor 32.
  • the first changeover switch 310 is switched to connect the three-phase motor 30 and the first switch modules S1 and S4, so that the three-phase motor 30 and the conversion unit 200 form a closed circuit. I can.
  • the three-phase electric motor 30 and the conversion unit 200 form a closed circuit
  • the three-phase electric motor 30 may be operated by receiving power from the battery 20.
  • the first switching switch 310 is switched so that the secondary side 120 and the first conductor 31 of the transformer 119 are opened, and the charging unit 100 side is open to apply an abnormal voltage to the transformer 119 There is no effect.
  • the first switching switch 310 is switched to connect the first output terminal 121 of the transformer 119 and the first switch module, and the secondary side 120 and the conversion unit 200 of the transformer 119 Can form a closed loop.
  • the battery 20 may be charged by receiving power from the AC power supply 10.
  • the first switching switch 310 is switched so that the first conductors 31 are opened, there is an effect that no current flows through the stator windings of the three-phase electric motor 30.
  • the first switching switch 310 is disposed at one end of the first conductor line 31 to be switched between the other end of the first conductor line 31 and the first output terminal 121 of the transformer 119.
  • the first switching switch 310 is not limited thereto, and the first switching switch 310 is disposed at one end of the second conductor 32, and the other end of the second conductor 32 and the second output terminal 122 of the transformer 119 It may also include switching between.
  • the control unit 400 is configured such that the secondary side 120 and the conversion unit 200 of the transformer 119 are formed in a closed circuit in the charging mode, and the three-phase motor 30 and the conversion unit 200 are formed in a closed circuit in the operation mode. Switching of the first switching switch 310 may be controlled.
  • the controller 400 may determine and display that the charging mode has been entered.
  • control unit 400 may control each configuration of the inverter-charger integrated device 1 of the embodiment of the present invention.
  • the inverter-charger integrated device 1 may include a first heat dissipation housing 510 capable of absorbing heat generated by the conversion unit 200.
  • the first heat dissipation housing 510 may be provided on at least one side of the conversion unit 200.
  • the first heat dissipation housing 510 may be provided to surround the outer circumference of the conversion unit 200, and may be provided to surround at least a portion of the conversion unit 200.
  • the inverter-charger integrated device 1 incorporates a diode in the conversion unit 200 and arranges the first heat dissipation housing 510 on one side of the conversion unit 200 to reduce heat generated from the diode of the charging unit. It can be shared by the first heat dissipation housing 510.
  • the inverter-charger integrated device 1 may further include a second heat dissipation housing 520 provided on at least one side of the charging unit 100 so as to absorb heat generated by the charging unit 100.
  • One of the charging mode and the driving mode may be selected by an operation switch (not shown) provided in the inverter-charger integrated device 1 (S101).
  • the operation switch may be a relay or magnet contactor that is opened and closed by a command of the control unit 400, and a manual switch may be applied.
  • the controller 400 determines that the charging mode is required and may be displayed to the user.
  • the first switching switch 310 is switched to the first output terminal 121 of the transformer 119 by the control unit 400.
  • the power of the AC power supply 10 is charged in the battery 20 through the charging unit 100 and the conversion unit 200.
  • each switch (S1, S2, S3, S4, S5, S6) of the conversion unit 200 is not switched, and the diode (D1) built in each switch (S1, S2, S3, S4, S5, S6) , D2, D3, D4, D5, D6) can be charged by the battery 20.
  • the second switching switch 320 is switched to connect the first conductors 31 by the control unit 400.
  • the power of the battery 20 is transmitted to the three-phase electric motor 30 through the conversion unit 200, and the three-phase electric motor 30 may be driven.
  • an inverter-charger integrated device 1' according to a second embodiment of the present invention will be described with reference to FIG. 3.
  • the second embodiment is different in the changeover switch unit 300 compared to the first embodiment described above, the differences will be mainly described, and the description and reference numerals of the above-described embodiment are used for the same parts.
  • a second changeover switch 320 ′ is disposed on the first conductor 31 to connect or cut off the three-phase electric motor 30 and the first switch modules S1 and S4. );
  • the third switch is arranged on the fourth conductor 34 that makes contact with the first conductor 31 and connects or blocks the open end of the first output terminal 121 of the transformer 119 and the first switch modules S1 and S4.
  • a switch 330 may be included.
  • control unit 400 switches the second switching switch 320 to connect the three-phase electric motor 30 and the first switch modules S1 and S4 in the operation mode, and the transformer 119 and the first switch module
  • the third changeover switch 330 is switched to open (S1, S4).
  • control unit 400 switches the second switching switch 320 so that the three-phase electric motor 30 and the first switch modules S1 and S4 are opened in the charging mode, and the transformer 119 and the first switch module ( The third changeover switch 330 is switched so that S1 and S4 are connected.
  • an inverter-charger integrated device 1 ′′ according to a third embodiment of the present invention will be described with reference to FIG. 4.
  • the third embodiment is different in the changeover switch unit 300 compared to the first embodiment described above, the differences will be mainly described, and the description and reference numerals of the above-described embodiment are used for the same parts.
  • the changeover switch unit 300'' is disposed on the first conductor 31 to connect or open the three-phase motor 30 and the first switch modules S1 and S4.
  • a fifth changeover switch 350 disposed on the second conductor 32 to connect or open the three-phase electric motor 30 and the second switch modules S2 and S5; 6th switching to connect or open the open end of the first output terminal 121 of the transformer 119 and the first switch modules S1 and S4 by being arranged on the fourth conductor 34 making contact with the first conductor 31 Switch 360;
  • the seventh changeover switch 370 is disposed on the fifth conductor 35 that makes contact with the second conductor 32 and connects or opens the open end of the second output terminal 122 of the transformer 119 and the second switch module. Can include.
  • control unit 400 is a fourth so that the three-phase electric motor 30 and the first switch module (S1, S4), three-phase electric motor 30 and the second switch module (S2, S5) are respectively connected in the operation mode.
  • the changeover switch 340 and the fifth changeover switch 350 are switched.
  • control unit 400 includes the sixth changeover switch 360 so that the transformer 119, the first switch modules S1 and S4, the transformer 119 and the second switch modules S2 and S5 are opened in the driving mode.
  • the seventh changeover switch 370 is switched.
  • control unit 400 switches the fourth so that the three-phase electric motor 30, the first switch module (S1, S4), the three-phase electric motor 30, and the second switch module (S2, S5) are opened respectively in the charging mode.
  • the switch 340 and the fifth changeover switch 350 are switched.
  • control unit 400 includes the sixth changeover switch 360 so that the transformer 119 and the first switch modules S1 and S4, and the transformer 119 and the second switch modules S2 and S5 are connected in the driving mode.
  • the seventh changeover switch 370 is switched.
  • inverter-charger integrated device has been described as a specific embodiment, but this is only an example, and the present invention is not limited thereto, and has the widest scope according to the basic idea disclosed in the present specification. It must be interpreted. A person skilled in the art may combine and replace the disclosed embodiments to implement a pattern of a shape not indicated, but this also does not depart from the scope of the present invention. In addition, those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, and it is clear that such changes or modifications also belong to the scope of the present invention.
  • the present invention can be used in the ultra-small mobility industry.

Abstract

The present invention relates to an integrated inverter-charger device. According to one aspect of the present invention, an integrated inverter-charger device may be provided which comprises: a charging unit of which one end is connected to a power input unit for supplying alternating current power, and the other end is provided to a transformer which is isolated into a primary side and a secondary side; a conversion unit which, in a charging mode, converts the alternating current power provided from the charging unit into direct current power for charging a battery, and in an operation mode, converts direct current power provided from the battery into power for driving a three-phase electric motor; a transfer switch unit which comprises at least one transfer switch which is switched so that the conversion unit selectively forms a closed circuit with one between the secondary side of the transformer and the three-phase electric motor; and a control unit which controls the switching of the transfer switch so that in the charging mode, the secondary side of the transformer and the conversion unit form a closed circuit, and in the operation mode, the three-phase electric motor and the conversion unit form a closed circuit.

Description

인버터-충전기 통합 장치 및 이를 제어하는 제어방법Inverter-charger integrated device and control method for controlling it
본 발명은 초소형 모빌리티에 사용되는 인버터-충전기 통합 장치에 관한 것이다.The present invention relates to an inverter-charger integrated device used for micro-mobility.
최근 저출산, 고령화의 진전, 1인 가구 증가, 도심 집중화 등의 사회적 이슈와 온실가스 저감, 미세먼지 등의 환경적 이슈로 초소형 모빌리티가 대두되고 있다. 초소형 모빌리티는 자전거 이상 경자동차 미만의 전동력을 이용한 이동수단으로 전동킥보드, 전동휠에서부터 전기자전거, 초소형 자동차 등의 1~2인승 개념의 소형 개인이동수단으로 이해될 수 있다. Recently, micro-mobility has emerged due to social issues such as low birthrate, progress in aging, increase in single-person households, centralization of urban areas, and environmental issues such as greenhouse gas reduction and fine dust. Ultra-miniature mobility is a means of transportation that uses the electric power of less than a bicycle or less than a light vehicle, and can be understood as a small personal transportation means of one or two passengers, such as electric kickboards and electric wheels, electric bicycles, and microcars.
이러한, 초소형 모빌리티 중 초소형 전기차는 일반적으로 구동 모터, 배터리, 배터리 충전기, 인버터를 포함하고 있다. 여기서, 배터리 충전기는 EMI 필터부(11), 다이오드 정류부(12), PFC(Power Factor Correction) 변환부(13), DC-AC 변환부(14), 트랜스포머(15), 다이오드 정류부(16), LC 필터부(17)로 구성되거나(도 1a 참조), 또는 동기정류기법을 이용한 EMI 필터부(11'), 다이오드 정류부(12'), PFC 변환부(13'), DC-AC 변환부(14'), 트랜스포머(15'), MOSFET 정류부(16'), LC 필터부(17')로 구성되거나(도 1b 참조), 또는 LLC기법을 적용한 EMI 필터부(11''), 다이오드 정류부(12''), PFC 변환부(13''), DC-AC 변환부(14''), 인덕터(L), 트랜스포머(15''), MOSFET 정류부(19'')로 구성(도 1c 참조)되었다. Among such micro-mobility, micro electric vehicles generally include a drive motor, a battery, a battery charger, and an inverter. Here, the battery charger includes an EMI filter unit 11, a diode rectification unit 12, a PFC (Power Factor Correction) conversion unit 13, a DC-AC conversion unit 14, a transformer 15, a diode rectification unit 16, It is composed of an LC filter unit 17 (see Fig. 1A), or an EMI filter unit 11' using a synchronous rectification technique, a diode rectification unit 12', a PFC conversion unit 13', a DC-AC conversion unit ( 14'), a transformer (15'), a MOSFET rectifier unit (16'), an LC filter unit (17'), or an EMI filter unit (11 ``) applying the LLC technique, or a diode rectifier unit ( 12''), PFC converter (13''), DC-AC converter (14''), inductor (L), transformer (15``), MOSFET rectifier (19'') (see Fig. 1c) ) Became.
또한, 초소형 전기차는 이러한 배터리 충전기와 별도로 구동 모터로 전력을 변환하기 위한 MOSFET을 내장한 인버터를 포함하고 있다. 충전기는 배터리로 에너지를 저장하는 역할을 하고, 인버터는 배터리로부터 에너지를 소비하는 역할을 하므로, 이 두 구성은 동시에 동작하지 않는다. 즉, 충전기가 동작할 때 인버터는 동작하지 않고, 인버터가 동작할 때 충전기는 동작하지 않는다.In addition, the micro electric vehicle includes an inverter with a built-in MOSFET for converting power to a driving motor separately from the battery charger. Since the charger serves to store energy into the battery and the inverter serves to consume energy from the battery, these two configurations do not work at the same time. That is, the inverter does not operate when the charger operates, and the charger does not operate when the inverter operates.
한편, 충전기의 2차측과 인버터의 전브리지 스위칭부가 직접적으로 배터리에 연결되어 있고, 유사한 구조를 가지고 있는바, 이를 공용화하여 사용할 경우 부품의 수를 줄이고 공간을 축소시킬 뿐 아니라 원가를 절감할 수 있는 이점을 가지게 되며 나아가 중량을 저감하여 연비개선 혹은 주행거리 연장에도 기여할 수 있는바, 본 발명은 충전기의 2차측과 인버터의 전브리지 스위칭부를 공용화하기 위한 원리로부터 발전되어 기술될 수 있다. On the other hand, the secondary side of the charger and the entire bridge switching part of the inverter are directly connected to the battery, and have a similar structure.If you use them in common, you can reduce the number of parts and space as well as reduce the cost. It has an advantage and can further contribute to improving fuel economy or extending a mileage by reducing the weight. The present invention can be developed and described from the principle for common use of the secondary side of the charger and the entire bridge switching unit of the inverter.
본 발명의 실시예들은 상기와 같은 문제를 해결하기 위해 제안된 것으로서, 초소형 모빌리티를 구동하기 위한 인버터와 배터리 충전기를 하나의 장치에 탑재시킴으로써 부품을 효율적으로 사용할 수 있는 인버터-충전기 통합 장치를 제공하고자 한다. Embodiments of the present invention have been proposed to solve the above problems, and to provide an inverter-charger integrated device capable of efficiently using components by mounting an inverter and a battery charger for driving ultra-small mobility in one device. do.
또한, 하나의 장치로서 배터리 충전 기능과 3상 전동기의 구동 기능을 수행할 수 있는 인버터-충전기 통합 장치를 제공하고자 한다. In addition, it is intended to provide an inverter-charger integrated device capable of performing a battery charging function and a driving function of a three-phase motor as one device.
또한, 가격이 저렴한 인버터-충전기 통합 장치를 제공하고자 한다. In addition, it is intended to provide an inexpensive inverter-charger integrated device.
또한, 충전 효율과 인버터 효율이 향상된 인버터-충전기 통합 장치를 제공하고자 한다.In addition, it is intended to provide an inverter-charger integrated device with improved charging efficiency and inverter efficiency.
본 발명의 일 실시예에 따르면, 일단이 교류 전원을 공급하는 전원 입력부와 연결되고, 타단이 1차측과 2차측으로 절연되는 트랜스포머로 제공되는 충전부; 충전 모드 시 상기 충전부로부터 제공되는 교류 전력을 배터리를 충전 시키기 위한 직류 전력으로 변환하고, 운전 모드 시 상기 배터리로부터 제공되는 직류 전력을 3상 전동기를 구동시키기 위한 전력으로 변환하는 변환부; 상기 변환부가 상기 트랜스포머의 2차측과 상기 3상 전동기 중 하나와 선택적으로 폐회로를 형성하도록 스위칭되는 절환스위치를 적어도 하나 이상 포함하는 절환스위치부; 충전 모드 시 상기 트랜스포머의 2차측과 상기 변환부가 폐회로로 형성되고, 운전 모드 시 상기 3상 전동기와 상기 변환부가 폐회로로 형성되도록 상기 절환스위치의 스위칭을 제어하는 제어부를 포함하는 인버터-충전기 통합 장치가 제공될 수 있다. According to an embodiment of the present invention, one end is connected to the power input unit for supplying AC power, and the other end is provided as a transformer that is insulated from the primary side and the secondary side; A converter converting AC power provided from the charging unit into DC power for charging a battery in a charging mode, and converting DC power provided from the battery to power for driving a three-phase electric motor in a driving mode; A changeover switch part including at least one changeover switch which is switched to selectively form a closed circuit with one of the secondary side of the transformer and the three-phase motor; In the charging mode, the secondary side of the transformer and the conversion unit are formed in a closed circuit, and in the driving mode, the inverter-charger integrated device includes a control unit for controlling the switching of the switching switch so that the three-phase motor and the conversion unit are formed as a closed circuit. Can be provided.
또한, 상기 변환부는 제1 도선을 통해 3상 전동기의 한 상과 연결될 수 있는 제1 스위치 모듈; 제2 도선을 통해 3상 전동기의 다른 한상과 연결될 수 있는 제2 스위치 모듈; 제3 도선을 통해 3상 전동기의 또 다른 한상과 연결될 수 있는 제3 스위치 모듈을 포함하고, 상기 트랜스포머의 제1 출력단은 개방단을 형성하고, 상기 트랜스포머의 제2 출력단은 상기 제2 도선과 접점을 형성하고, 상기 절환스위치부는 상기 제1 도선에 배치되어 상기 트랜스포머의 제1 출력단의 개방단과 상기 제1 스위치 모듈을 연결시키거나, 또는 상기 3상 전동기와 상기 제1 스위치 모듈을 선택적으로 연결시키도록 스위칭되는 제1 절환스위치를 포함하는 인버터-충전기 통합 장치가 제공될 수 있다. In addition, the conversion unit includes a first switch module that can be connected to one phase of the three-phase electric motor through a first conductor; A second switch module capable of being connected to another phase of the three-phase electric motor through a second conductor; It includes a third switch module that can be connected to another phase of the three-phase electric motor through a third wire, the first output end of the transformer forms an open end, and the second output end of the transformer is a contact with the second conductor line. And the changeover switch unit is disposed on the first conductor to connect the open end of the first output terminal of the transformer and the first switch module, or selectively connect the three-phase motor and the first switch module. An inverter-charger integrated device comprising a first changeover switch that is switched so as to be switched may be provided.
또한, 상기 트랜스포머의 제1 출력단은 개방단을 형성하고, 상기 트랜스포머의 제2 출력단은 상기 제2 도선과 접점을 형성하고, 상기 절환스위치부는 상기 제1 도선에 배치되어 상기 3상 전동기와 상기 제1 스위치 모듈을 연결하거나 개방하는 제2 절환스위치; 상기 제1 도선과 접점을 이루는 제4 도선에 배치되어 상기 트랜스포머의 제1 출력단의 개방단과 상기 제1 스위치 모듈을 연결하거나 개방하는 제3 절환스위치를 포함하는 인버터-충전기 통합 장치가 제공될 수 있다. In addition, the first output end of the transformer forms an open end, the second output end of the transformer forms a contact with the second conductor, and the changeover switch part is disposed on the first conductor to form an open end. A second switching switch for connecting or opening a switch module; An inverter-charger integrated device comprising a third switching switch disposed on a fourth conductor forming a contact with the first conductor and connecting or opening an open end of the first output terminal of the transformer and the first switch module may be provided. .
또한, 상기 트랜스포머의 제1 출력단과 제2 출력단은 개방단을 형성하고, In addition, the first output terminal and the second output terminal of the transformer form an open end,
상기 절환스위치부는 상기 제1 도선에 배치되어 상기 3상 전동기와 상기 제1 스위치 모듈을 연결하거나 개방하는 제4 절환스위치; 상기 제2 도선에 배치되어 상기 3상 전동기와 상기 제2 스위치 모듈을 연결하거나 개방하는 제5 절환스위치; 상기 제1 도선과 접점을 이루는 제4 도선에 배치되어 상기 트랜스포머의 제1 출력단의 개방단과 상기 제1 스위치 모듈을 연결하거나 개방하는 제6 절환스위치; 상기 제2 도선과 접점을 이루는 제5 도선에 배치되어 상기 트랜스포머의 제2 출력단의 개방단과 상기 제2 스위치 모듈을 연결하거나 개방하는 제7 절환스위치를 포함하는 인버터-충전기 통합 장치가 제공될 수 있다. A fourth switching switch disposed on the first conductor to connect or open the three-phase electric motor and the first switch module; A fifth changeover switch disposed on the second conductor to connect or open the three-phase electric motor and the second switch module; A sixth changeover switch disposed on a fourth conductor making contact with the first conductor and connecting or opening the open end of the first output terminal of the transformer and the first switch module; An inverter-charger integrated device comprising a seventh changeover switch disposed on a fifth conductor forming a contact with the second conductor and connecting or opening the open end of the second output terminal of the transformer and the second switch module may be provided. .
또한, 상기 변환부는 복수 개의 스위치를 포함하고, 상기 스위치에는 다이오드가 내장되고, 충전 모드 시 상기 변환부의 상기 스위치는 스위칭 되지 않는 인버터-충전기 통합 장치가 제공될 수 있다. In addition, the conversion unit may include a plurality of switches, a diode is embedded in the switch, and an inverter-charger integrated device in which the switch of the conversion unit is not switched in a charging mode may be provided.
또한, 상기 변환부의 적어도 일 측에 제공되고, 상기 변환부에서 발열되는 열을 흡수 할 수 있는 제1 방열하우징을 더 포함하는 인버터-충전기 통합 장치가 제공될 수 있다. In addition, an inverter-charger integrated device may be provided that is provided on at least one side of the conversion unit and further includes a first heat dissipation housing capable of absorbing heat generated by the conversion unit.
또한, 상기 충전부는 교류 전원으로부터 공급되는 교류 신호를 필터링 하는 입력 필터; 상기 입력 필터에서 필터링된 교류 전력을 정류하는 정류부; 상기 정류부로부터 출력되는 전력의 역률을 보상하는 PFC 부스트 컨버터; 상기 PFC 부스트 컨버터에서 얻어진 직류 전력을 교류 전력으로 변환하여 상기 트랜스포머 측으로 출력하는 DC-AC 인버터를 포함하는 인버터-충전기 통합 장치가 제공될 수 있다. In addition, the charging unit includes an input filter for filtering an AC signal supplied from an AC power source; A rectifier rectifying the AC power filtered by the input filter; A PFC boost converter compensating for a power factor of the power output from the rectifier; An inverter-charger integrated device including a DC-AC inverter that converts DC power obtained from the PFC boost converter into AC power and outputs it to the transformer side may be provided.
또한, 본 발명의 다른 실시예에 따르면 트랜스포머가 제공되는 충전부; 일측이 배터리와 연결되고, 타측이 상기 충전부와 3상 구동기 중 하나와 선택적으로 폐회로를 이루도록 연결되는 변환부를 포함하는 인버터-충전기 통합장치의 제어 방법에 있어서, 배터리를 충전하기 위한 충전 모드 또는 3상 전동기를 구동하기 위한 운전 모드 중 하나가 선택되는 단계; 충전 모드로 선택되는 경우, 상기 트랜스포머의 2차측과 상기 변환부가 폐회로를 이루도록 절환스위치가 스위칭되는 단계; 운전 모드로 선택되는 경우, 상기 3상 전동기와 상기 변환부가 폐회로를 이루도록 절환스위치가 스위칭되는 단계를 포함하는 인버터-충전기 통합장치의 제어 방법가 제공될 수 있다. In addition, according to another embodiment of the present invention, a charging unit provided with a transformer; In the control method of the inverter-charger integrated device comprising a conversion unit connected to one side to the battery and the other side to form a closed circuit selectively with one of the charging unit and the three-phase driver, the charging mode or three-phase for charging the battery Selecting one of driving modes for driving the electric motor; When the charging mode is selected, switching the switching switch so that the secondary side of the transformer and the conversion unit form a closed circuit; When the operation mode is selected, a control method of an inverter-charger integrated device comprising the step of switching a switching switch such that the three-phase motor and the conversion unit form a closed circuit may be provided.
본 발명의 실시 예들에 따른 인버터-충전기 통합 장치는 초소형 모빌리티를 구동하기 위한 인버터와 배터리 충전기를 하나의 장치에 탑재시킴으로써 부품을 효율적으로 사용할 수 있다. The inverter-charger integrated device according to embodiments of the present invention can efficiently use components by mounting an inverter and a battery charger for driving ultra-miniature mobility in one device.
또한, 하나의 장치로서 배터리 충전 기능과 3상 전동기의 구동 기능을 수행할 수 있다. In addition, a battery charging function and a driving function of a three-phase electric motor may be performed as one device.
또한, 가격이 저렴한 인버터-충전기 통합 장치를 제공할 수 있다. In addition, an inexpensive inverter-charger integrated device can be provided.
또한, 충전 효율과 인버터 효율이 향상된 인버터-충전기 통합 장치를 제공할 수 있다. In addition, it is possible to provide an inverter-charger integrated device with improved charging efficiency and inverter efficiency.
도 1a, 도 1b, 도 1c는 종래의 초소형 모빌리티에 배치되는 충전기를 개략적으로 나타내는 도면이다. 1A, 1B, and 1C are views schematically illustrating a charger disposed in a conventional micro-mobility.
도 2는 본 발명의 제1 실시예에 따른 인버터-충전기 통합 장치를 개략적으로 나타내는 도면이다. 2 is a diagram schematically showing an inverter-charger integrated device according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시예에 따른 인버터-충전기 통합 장치를 개략적으로 나타내는 도면이다. 3 is a diagram schematically showing an inverter-charger integrated device according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른 인버터-충전기 통합 장치를 개략적으로 나타내는 도면이다. 4 is a view schematically showing an inverter-charger integrated device according to a third embodiment of the present invention.
이하에서는 본 발명의 구체적인 실시 예들에 대하여 도면을 참조하여 상세히 설명한다. 아울러 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. In addition, in describing the present invention, when it is determined that a detailed description of a related known configuration or function may obscure the subject matter of the present invention, a detailed description thereof will be omitted.
도 2는 본 발명의 제1 실시예에 따른 인버터-충전기 통합 장치를 개략적으로 나타내는 도면이다. 2 is a diagram schematically showing an inverter-charger integrated device according to a first embodiment of the present invention.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 인버터-충전기 통합 장치(1)는 충전부(100); 변환부(200); 절환스위치부(300); 제어부(400)를 포함할 수 있다. 2, an inverter-charger integrated device 1 according to a first embodiment of the present invention includes a charging unit 100; Conversion unit 200; A changeover switch unit 300; It may include a control unit 400.
본 실시예에 따른 인버터-충전기 통합 장치(1)는 교류 전원(10)과 배터리(20)와 3상 전동기(30) 사이에 연결되어, 교류 전원(10)으로부터 공급되는 전력을 변환하여 배터리(20)를 충전시키거나(충전 모드), 또는 배터리(20)로부터 공급되는 직류 전력을 변환하여 3상 전동기(30)를 동작(운전 모드)시킬 수 있다. The inverter-charger integrated device 1 according to the present embodiment is connected between the AC power supply 10 and the battery 20 and the three-phase electric motor 30 to convert the power supplied from the AC power supply 10 to convert the battery ( 20) may be charged (charging mode), or the three-phase electric motor 30 may be operated (operation mode) by converting DC power supplied from the battery 20.
즉, 인버터-충전기 통합 장치(1)는 충전 모드 시 충전기로 동작하고, 운전 모드 시 인버터로 동작하는 것으로 이해될 수 있다. 여기서, 충전 모드와 운전 모드는 후술하는 제어부(400)에 의한 절환스위치부(300)의 스위칭에 의해 선택될 수 있으며, 이에 대한 자세한 설명은 후술한다. That is, it can be understood that the inverter-charger integrated device 1 operates as a charger in the charging mode and operates as an inverter in the driving mode. Here, the charging mode and the driving mode may be selected by switching of the switching switch unit 300 by the control unit 400 to be described later, and a detailed description thereof will be described later.
충전부(100)는 입력 필터(112), 정류부(114), PFC 부스트 컨버터(116), DC-AC인버터(118), 트랜스포머(119)를 포함할 수 있다. The charging unit 100 may include an input filter 112, a rectifying unit 114, a PFC boost converter 116, a DC-AC inverter 118, and a transformer 119.
입력 필터(112)는 교류 전원(10)으로부터 공급되는 교류 신호(예를 들어, 교류 전압)를 필터링하고, 필터링된 결과를 정류부(114)로 출력할 수 있다. 여기서, 입력 필터(112)는 EMI(Electro-Magnetic Interference) 필터(Filter)일 수 있다.The input filter 112 may filter an AC signal (eg, an AC voltage) supplied from the AC power supply 10 and output the filtered result to the rectifier 114. Here, the input filter 112 may be an Electro-Magnetic Interference (EMI) filter.
정류부(114)는 입력 필터(112)에서 필터링된 단상 교류 전력을 정류하고, 정류된 결과를 PFC 부스트 컨버터(116)로 출력할 수 있다. 여기서, 정류부(114)는 다이오드(diode) 및 커패시터(Cin)를 포함하여 구현될 수 있다. The rectifier 114 may rectify the single-phase AC power filtered by the input filter 112 and output the rectified result to the PFC boost converter 116. Here, the rectifying unit 114 may be implemented by including a diode and a capacitor Cin.
PFC 부스트 컨버터(116)는 정류부(114)로부터 출력되는 직류 전력의 역률을 보상하고, 역률 보상된 전력을 DC-AC 인버터(118)로 출력할 수 있다. PFC 부스트 컨버터(116)는 전원의 역률을 보상하는 역할을 수행하면서 동시에 필요에 따라 전압을 높이는 부스팅을 수행할 수 있다. 여기서, 역률 보상은 계통의 전력을 안정화하기 위해 필요하다.The PFC boost converter 116 may compensate the power factor of DC power output from the rectifier 114 and output the power factor compensated power to the DC-AC inverter 118. The PFC boost converter 116 may perform a role of compensating the power factor of the power supply and at the same time perform boosting to increase a voltage as necessary. Here, the power factor compensation is required to stabilize the power of the system.
DC-AC 인버터(118)는 PFC 부스트 컨버터(116)에서 얻어진 직류전력을 교류 전력으로 변환하여 트랜스포머(119)로 출력할 수 있다. DC-AC 인버터(118)는 풀 브리지(Full Bridge) 또는 하프 브리지(Half Bridge) 방식의 회로로 구현될 수 있다. 또한, DC-AC인버터(118)는 후술하는 변환부(200)와 동기스위칭될 수 있다. The DC-AC inverter 118 may convert the DC power obtained from the PFC boost converter 116 into AC power and output it to the transformer 119. The DC-AC inverter 118 may be implemented as a full bridge or half bridge circuit. In addition, the DC-AC inverter 118 may be synchronously switched with the conversion unit 200 to be described later.
트랜스포머(119)는 DC-AC인버터(118)로부터의 얻어진 교류전압을 배터리 충전에 필요한 전압 레벨로 변성하는 구성으로, 트랜스포머(119)의 1차측(110)과 2차측(120) 사이의 절연을 확보할 수 있다. 여기서, 1차측(110)은 트랜스포머(119)의 입력 측이고, 2차측(120)은 트랜스포머(119)의 출력 측으로 이해될 수 있다. The transformer 119 is configured to transform the AC voltage obtained from the DC-AC inverter 118 into a voltage level required for battery charging, and provides insulation between the primary side 110 and the secondary side 120 of the transformer 119. Can be secured. Here, the primary side 110 may be understood as an input side of the transformer 119 and the secondary side 120 may be understood as an output side of the transformer 119.
또한, 트랜스포머(119)의 2차측(120)을 후술하는 변환부(200)와 선택적으로 연결시킴으로써, 변환부(200)를 트랜스포머(119)의 1차측과 절연시킬 수 있다. 또한, 2차측(120)의 제1 출력단(121)과 제2 출력단(122)은 후술하는 제1, 2, 3 도선(31, 32, 33) 중 하나와 접점을 형성하여, 변환부(200)와 연결될 수 있다. 예를 들어, 제1 출력단(121)은 개방단(open ended)을 이루고 후술하는 제1 절환스위치(310)의 스위칭에 의해 폐회로를 형성할 수 있고, 제2 출력단(122)은 제2 도선(32)과 접점을 형성하여 변환부(200)와 연결될 수 있다. In addition, by selectively connecting the secondary side 120 of the transformer 119 to the conversion unit 200 to be described later, the conversion unit 200 can be insulated from the primary side of the transformer 119. In addition, the first output terminal 121 and the second output terminal 122 of the secondary side 120 form a contact with one of the first, second, and third conductors 31, 32, and 33 to be described later, and the conversion unit 200 ) Can be connected. For example, the first output terminal 121 may form an open end and a closed circuit may be formed by switching of the first switching switch 310 to be described later, and the second output terminal 122 is a second conductor ( 32) can be connected to the conversion unit 200 by forming a contact point.
또한, 트랜스포머(119) 내부에는 인덕터(L)를 포함하도록 구성될 수 있으며, 인덕터(L)는 누설 리액터로 기능 할 수 있다. In addition, the transformer 119 may be configured to include an inductor L, and the inductor L may function as a leakage reactor.
변환부(200)는 후술하는 절환스위칭부(300)에 의해 충전부(100)와 3상 전동기(30)에 선택적으로 연결될 수 있다. 변환부(200)는 충전 모드 시 충전부(100)로부터 제공되는 교류 전력을 배터리(20)를 충전 시키기 위한 직류 전력으로 변환하고, 운전 모드 시 배터리(20)로부터 제공되는 직류 전력을 3상 전동기(30)를 구동시키기 위한 전력으로 변환할 수 있다. 예를 들어, 변환부(200)는 인버터일 수 있다. The conversion unit 200 may be selectively connected to the charging unit 100 and the three-phase electric motor 30 by a switching switching unit 300 to be described later. The conversion unit 200 converts AC power provided from the charging unit 100 in the charging mode to DC power for charging the battery 20, and converts the DC power provided from the battery 20 in the operation mode to a three-phase electric motor ( 30) can be converted to power to drive. For example, the conversion unit 200 may be an inverter.
여기서, 충전 모드는 교류 전원(10)의 전력으로부터 배터리(20)가 충전되는 동작으로 이해될 수 있고, 운전 모드는 배터리(20)의 전력으로부터 3상 전동기(30)가 구동되는 동작으로 이해될 수 있다. Here, the charging mode may be understood as an operation in which the battery 20 is charged from the power of the AC power supply 10, and the operation mode may be understood as an operation in which the three-phase motor 30 is driven from the power of the battery 20. I can.
변환부(200)의 일측은 배터리(20)와 연결되고, 변환부(200)의 타측은 충전부(100)와 3상 전동기(30) 중 하나와 선택적으로 폐회로를 이루도록 연결될 수 있다. One side of the conversion unit 200 may be connected to the battery 20, and the other side of the conversion unit 200 may be connected to one of the charging unit 100 and the three-phase motor 30 to selectively form a closed circuit.
변환부(200)는 제1 스위치(S1), 제2 스위치(S2), 제3 스위치(S3), 제4 스위치(S4), 제5 스위치(S5), 제6 스위치(S6)를 포함할 수 있으며, 이들과 병렬로 연결된 커패시터(C)를 포함할 수 있다. The conversion unit 200 includes a first switch (S1), a second switch (S2), a third switch (S3), a fourth switch (S4), a fifth switch (S5), and a sixth switch (S6). And may include a capacitor (C) connected to them in parallel.
여기서, 제1 스위치(S1)의 일단과 제4 스위치(S4)의 일단은 상호 직렬 연결되며, 제1 스위치(S1)와 제4 스위치(S4)는 제1 스위치 모듈을 형성하는 것으로 이해될 수 있다. Here, one end of the first switch S1 and one end of the fourth switch S4 are connected in series with each other, and the first switch S1 and the fourth switch S4 may be understood as forming a first switch module. have.
또한, 제2 스위치(S2)의 일단과 제5 스위치(S5)의 일단은 상호 직렬 연결되며, 제2 스위치(S2)와 제5 스위치(S5)는 제2 스위치 모듈을 형성하는 것으로 이해될 수 있다. 이때, 제2 스위치 모듈에 속한 스위치들은 제1 스위치 모듈에 속한 스위치들과 병렬로 연결된다. In addition, one end of the second switch S2 and one end of the fifth switch S5 are connected in series with each other, and the second switch S2 and the fifth switch S5 may be understood as forming a second switch module. have. In this case, switches belonging to the second switch module are connected in parallel with switches belonging to the first switch module.
또한, 제3 스위치(S3)의 일단과 제6 스위치(S6)의 일단은 상호 직렬 연결되어 있으며, 제3 스위치(S3)와 제6 스위치(S6)는 제3 스위치 모듈을 형성하는 것으로 이해될 수 있다. 이 때, 제3 스위치 모듈에 속한 스위치들은 제1, 2 스위치 모듈에 속한 스위치들과 병렬로 연결된다. In addition, one end of the third switch S3 and one end of the sixth switch S6 are connected in series, and it will be understood that the third switch S3 and the sixth switch S6 form a third switch module. I can. At this time, switches belonging to the third switch module are connected in parallel with switches belonging to the first and second switch modules.
또한, 제1 스위치(S1)는 제1 인버터 다이오드(D1)를 포함할 수 있고, 제2 스위치(S2)는 제2 인버터 다이오드(D2)를 포함할 수 있으며, 제3 스위치(S3)는 제3 인버터 다이오드(D3)를 포함할 수 있고, 제4 스위치(S4)는 제4 인버터 다이오드(D4)를 포함할 수 있으며, 제5 스위치(S5)는 제5 인버터 다이오드(D5)를 포함할 수 있고, 제6 스위치(S6)는 제6 인버터 다이오드(D6)를 포함할 수 있다. 여기서, 각 인버터 다이오드(D1, D2, D3, D4, D5, D6)는 각 스위치(S1. S2, S3, S4, S5, S6)에 내장되어 있다. In addition, the first switch (S1) may include a first inverter diode (D1), the second switch (S2) may include a second inverter diode (D2), and the third switch (S3) 3 may include an inverter diode (D3), the fourth switch (S4) may include a fourth inverter diode (D4), and the fifth switch (S5) may include a fifth inverter diode (D5). In addition, the sixth switch S6 may include a sixth inverter diode D6. Here, each inverter diode (D1, D2, D3, D4, D5, D6) is built into each switch (S1. S2, S3, S4, S5, S6).
이와 같이, 각 스위치에 내장된 인버터 다이오드를 배치함으로써, 충전 모드 시 각 스위치의 스위칭 동작 없이 인버터 다이오드를 통해 배터리(20)를 충전할 수 있다. 또한, 각 스위치에 내장된 다이오드를 통해 배터리(20)를 충전할 수 있는바, 출력단에 별도의 인덕터가 필요없는 구조를 제공할 수 있다. In this way, by arranging the inverter diodes built into each switch, the battery 20 can be charged through the inverter diode without switching operation of each switch in the charging mode. In addition, since the battery 20 can be charged through a diode built into each switch, a structure that does not require a separate inductor at the output terminal can be provided.
이에 대해 구체적으로 설명하면, 종래의 ZVS Full Bride 기법을 이용하는 경우 (도 1(a) 및 도 1(b) 참조), 트랜스포머(15, 15')의 2차측에 LC 필터부(17, 17')가 위치하고, LC 필터부(17, 17')는 인덕터를 포함하고 있다. 이러한, 인덕터는 충전기에서 적은 용량으로 설계되므로 인버터 동작 시 큰 전류를 흐르도록 할 수 없어, 충전기와 인버터가 통합될 수 없는 문제점이 있다. Specifically, in the case of using the conventional ZVS Full Bride technique (refer to Figs. 1(a) and 1(b)), the LC filter units 17 and 17' on the secondary side of the transformers 15 and 15' ) Is located, and the LC filter units 17 and 17' include inductors. Since the inductor is designed with a small capacity in the charger, a large current cannot flow during the operation of the inverter, so that the charger and the inverter cannot be integrated.
LLC 기법을 이용하는 경우, 출력측에 인덕터(L) 없이, 4개의 스위칭 소자를 포함하는 단상 Full Bridge의 MOSFET과 C 필터를 배터리에 연결한다. 한편, 일반적인 인버터는 6개의 스위칭 소자를 포함하는 3상 Full Bridge의 MOSFET과 C 필터를 배터리에 연결한다. In the case of using the LLC technique, a single-phase full bridge MOSFET and C filter including four switching elements are connected to the battery without an inductor (L) on the output side. Meanwhile, a general inverter connects a three-phase full bridge MOSFET and C filter including six switching elements to the battery.
본 실시예에서는, LLC 기법을 적용하되(인덕터 제외) 누설리액터(117)를 트랜스포머(119)의 1차측(또는 2차측)에 위치시키고, 인버터에서 사용되는 6개의 스위치(S1, S2, S3, S4, S5, S6) 중 4개의 스위치(S1, S2, S4, S5)를 충전 시 이용하도록 구성함으로써, 인버터와 충전기를 통합할 수 있다. In this embodiment, the LLC technique is applied (excluding the inductor), but the leakage reactor 117 is positioned on the primary side (or secondary side) of the transformer 119, and six switches S1, S2, S3, and By configuring the four switches (S1, S2, S4, S5) of S4, S5, S6) to be used for charging, the inverter and the charger can be integrated.
또한, 본 발명의 실시예에서는 변환부(200)에서 MOSFET 대신 IGBT가 적용될 수 있다. 여기서, MOSFET 또는 IGBT에 내장된 다이오드(바디 다이오드)의 용량이 크기 때문에, 이를 충전기의 다이오드 정류기를 대신하여 사용할 수 있다. In addition, in the embodiment of the present invention, an IGBT may be applied instead of a MOSFET in the conversion unit 200. Here, since the capacity of the diode (body diode) built into the MOSFET or IGBT is large, it can be used instead of the diode rectifier of the charger.
3상 전동기(30)는 초소형 모빌리티를 구동하는 동력을 제공할 수 있다. 3상 전동기(30)의 각 상(U, W, V)과 각각 연결되는 3개의 도선 중 하나의 도선은 제1 스위치 모듈에 연결되고, 다른 하나의 도선은 제2 스위치 모듈에 연결되며, 또 다른 하나의 도선은 제3 스위치 모듈에 연결될 수 있다. The three-phase electric motor 30 may provide power to drive micro-mobility. One of the three conductors connected to each phase (U, W, V) of the three-phase electric motor 30 is connected to the first switch module, the other conductor is connected to the second switch module, and The other conducting wire may be connected to the third switch module.
구체적으로, 3상 전동기(30)와 연결되는 제1 도선(31)은 제1 스위치(S1)와 제4 스위치(S4) 사이에 연결될 수 있고, 3상 전동기(30)와 연결되는 제2 도선(32)은 제2 스위치(S2)와 제5 스위치(S5) 사이에 연결될 수 있으며, 3상 전동기(30)와 연결되는 제3 도선(33)은 제3 스위치(S3)와 제6 스위치(S6) 사이에 연결될 수 있다. 여기서, 각 스위치는 릴레이 스위치, 절환 스위치, 무접점 스위치, 반도체 스위치 등의 스위치가 적용될 수 있다. 이 때, 제1 도선(31), 제2 도선(32) 및 제3 도선(33) 중 적어도 하나에 후술하는 절환스위치가 배치될 수 있다. Specifically, the first conductor 31 connected to the three-phase electric motor 30 may be connected between the first switch S1 and the fourth switch S4, and a second conductor connected to the three-phase electric motor 30 32 may be connected between the second switch S2 and the fifth switch S5, and the third conductor 33 connected to the three-phase electric motor 30 is the third switch S3 and the sixth switch ( S6) can be connected between. Here, each switch may be a switch such as a relay switch, a changeover switch, a non-contact switch, or a semiconductor switch. In this case, a changeover switch to be described later may be disposed on at least one of the first conductor 31, the second conductor 32, and the third conductor 33.
이와 같이, 3개의 도선(31, 32, 33)을 통해 3상 전동기(30)와 변환부(200)를 연결하고, 3개의 도선(31, 32, 33) 중 적어도 하나에 절환스위치를 배치하는 구조에 의해, 모터의 고정자 권선이 인덕터로 사용되지 않는 구조로 형성할 수 있다. 이의 의해, 본 실시예의 인버터-충전기 통합 장치(1)는 구동기의 종류와 무관하게 적용될 수 있다 (종래 기술의 대부분의 통합형 구조는 모터의 중성점이 노출된 모터를 적용하여 중섬점과 고정자 권선을 인덕터로 사용하는 구조).In this way, the three-phase electric motor 30 and the conversion unit 200 are connected through the three lead wires 31, 32, and 33, and the changeover switch is arranged on at least one of the three lead wires 31, 32, 33. Due to the structure, the stator winding of the motor can be formed in a structure not used as an inductor. Accordingly, the inverter-charger integrated device 1 of the present embodiment can be applied irrespective of the type of the driver (most of the conventional integrated structures apply a motor with the neutral point of the motor exposed, so that the midpoint and the stator winding are connected to the inductor. Structure used as).
절환스위치부(300)는 변환부(200)가 트랜스포머(119)의 2차측(120)과 3상 전동기(30) 중 하나와 선택적으로 폐회로를 형성하도록 스위칭되는 절환스위치를 적어도 하나 이상 포함할 수 있다. The changeover switch unit 300 may include at least one changeover switch that is switched so that the conversion unit 200 selectively forms a closed circuit with one of the secondary side 120 and the three-phase motor 30 of the transformer 119. have.
이하의 실시예에서는 하나의 절환스위치(제1 절환스위치(310))가 제1 도선(31)의 일단에 배치되어, 제1 도선(31)의 타단과 트랜스포머(119)의 제1 출력단(121) 사이에서 스위칭 되는 것을 예로 들어 설명한다. 이때, 트랜스포머(119)의 제2 출력단(122)은 제2 도선(32)과 접점을 형성하고 있다. In the following embodiment, one changeover switch (first changeover switch 310) is disposed at one end of the first conductor 31, and the other end of the first conductor 31 and the first output end 121 of the transformer 119 ), it will be described as an example. At this time, the second output terminal 122 of the transformer 119 forms a contact with the second conductor 32.
운전 모드 시 제1 절환스위치(310)는 3상 전동기(30)와 제1 스위치 모듈(S1, S4)을 연결시키도록 스위칭되어, 3상 전동기(30)와 변환부(200)가 폐회로를 이룰 수 있다. 3상 전동기(30)와 변환부(200)가 폐회로를 이루는 경우, 3상 전동기(30)는 배터리(20)로부터 전력을 공급받아 작동될 수 있다. 이때, 제1 절환스위치(310)는 트랜스포머(119)의 2차측(120)과 제1 도선(31)이 개방되도록 스위칭 되는바, 충전부(100)측은 개방되어 트랜스포머(119)에 이상전압이 인가되지 않는 효과가 있다. In the operation mode, the first changeover switch 310 is switched to connect the three-phase motor 30 and the first switch modules S1 and S4, so that the three-phase motor 30 and the conversion unit 200 form a closed circuit. I can. When the three-phase electric motor 30 and the conversion unit 200 form a closed circuit, the three-phase electric motor 30 may be operated by receiving power from the battery 20. At this time, the first switching switch 310 is switched so that the secondary side 120 and the first conductor 31 of the transformer 119 are opened, and the charging unit 100 side is open to apply an abnormal voltage to the transformer 119 There is no effect.
충전 모드 시 제1 절환스위치(310)는 트랜스포머(119)의 제1 출력단(121)과 제1 스위치 모듈을 연결시키도록 스위칭되어, 트랜스포머(119)의 2차측(120)과 변환부(200)가 폐회로를 이룰 수 있다. 트랜스포머(119)의 2차측(120)과 변환부(200)가 폐회로를 이루는 경우, 배터리(20)는 교류 전원(10)으로부터 전력을 공급받아 충전될 수 있다. 이때, 제1 절환스위치(310)는 제1 도선(31) 사이가 개방되도록 스위칭 되는바, 3상 전동기(30)의 고정자 권선에 전류가 흐르지 않는 효과가 있다. In the charging mode, the first switching switch 310 is switched to connect the first output terminal 121 of the transformer 119 and the first switch module, and the secondary side 120 and the conversion unit 200 of the transformer 119 Can form a closed loop. When the secondary side 120 of the transformer 119 and the conversion unit 200 form a closed circuit, the battery 20 may be charged by receiving power from the AC power supply 10. At this time, since the first switching switch 310 is switched so that the first conductors 31 are opened, there is an effect that no current flows through the stator windings of the three-phase electric motor 30.
상술한 실시예에서는 제1 절환스위치(310)가 제1 도선(31)의 일단에 배치되어, 제1 도선(31)의 타단과 트랜스포머(119)의 제1 출력단(121) 사이에서 스위칭 되는 것을 예로 들어 설명했으나, 이에 한정되는 것은 아니며 제1 절환스위치(310)가 제2 도선(32)의 일단에 배치되어, 제2 도선(32)의 타단과 트랜스포머(119)의 제2 출력단(122) 사이에서 스위칭되는 것을 포함할 수도 있다. In the above-described embodiment, the first switching switch 310 is disposed at one end of the first conductor line 31 to be switched between the other end of the first conductor line 31 and the first output terminal 121 of the transformer 119. Although described as an example, the first switching switch 310 is not limited thereto, and the first switching switch 310 is disposed at one end of the second conductor 32, and the other end of the second conductor 32 and the second output terminal 122 of the transformer 119 It may also include switching between.
제어부(400)는 충전 모드 시 트랜스포머(119)의 2차측(120)과 변환부(200)가 폐회로로 형성되고, 운전 모드 시 3상 전동기(30)와 변환부(200)가 폐회로로 형성되도록 제1 절환스위치(310)의 스위칭을 제어할 수 있다.The control unit 400 is configured such that the secondary side 120 and the conversion unit 200 of the transformer 119 are formed in a closed circuit in the charging mode, and the three-phase motor 30 and the conversion unit 200 are formed in a closed circuit in the operation mode. Switching of the first switching switch 310 may be controlled.
또한, 제어부(400)는 배터리(20)가 기 설정된 조건 이하로 떨어지는 경우, 충전 모드가 되었음을 판단하여 표시할 수 있다. In addition, when the battery 20 falls below a preset condition, the controller 400 may determine and display that the charging mode has been entered.
또한, 제어부(400)는 본 발명의 실시예의 인버터-충전기 통합 장치(1)의 각 구성을 제어할 수 있다. In addition, the control unit 400 may control each configuration of the inverter-charger integrated device 1 of the embodiment of the present invention.
또한, 본 발명의 일 실시예에 따르면 인버터-충전기 통합 장치(1)는 변환부(200)에서 발열되는 열을 흡수 할 수 있는 제1 방열하우징(510)을 포함할 수 있다. In addition, according to an embodiment of the present invention, the inverter-charger integrated device 1 may include a first heat dissipation housing 510 capable of absorbing heat generated by the conversion unit 200.
제1 방열하우징(510)은 변환부(200)의 적어도 일 측에 제공될 수 있다. 예를 들어, 제1 방열하우징(510)은 변환부(200)의 외부 둘레를 둘러싸도록 제공될 수 있으며, 변환부(200)의 적어도 일부를 둘러싸도록 제공될 수 있다. The first heat dissipation housing 510 may be provided on at least one side of the conversion unit 200. For example, the first heat dissipation housing 510 may be provided to surround the outer circumference of the conversion unit 200, and may be provided to surround at least a portion of the conversion unit 200.
이와 같이, 인버터-충전기 통합 장치(1)는 변환부(200)에 다이오드를 내장하고, 변환부(200)의 일측에 제1 방열하우징(510)을 배치함으로써, 충전부의 다이오드에서 발생하는 열을 제1 방열하우징(510)에서 분담할 수 있다. In this way, the inverter-charger integrated device 1 incorporates a diode in the conversion unit 200 and arranges the first heat dissipation housing 510 on one side of the conversion unit 200 to reduce heat generated from the diode of the charging unit. It can be shared by the first heat dissipation housing 510.
또한, 인버터-충전기 통합 장치(1)는 충전부(100)에서 발열되는 열을 흡수 할 수 있도록, 충전부(100)의 적어도 일 측에 제공되는 제2 방열하우징(520)을 더 포함할 수도 있다. In addition, the inverter-charger integrated device 1 may further include a second heat dissipation housing 520 provided on at least one side of the charging unit 100 so as to absorb heat generated by the charging unit 100.
이하에서는, 본 발명의 일 실시예에 따른 인버터-충전기 통합 장치(1)의 제어 방법에 대해 설명한다. Hereinafter, a control method of the inverter-charger integrated device 1 according to an embodiment of the present invention will be described.
인버터-충전기 통합 장치(1)에 제공된 조작스위치(도면 미도시)에 의해 충전 모드 및 운전 모드 중 하나가 선택 될 수 있다(S101). 여기서, 조작스위치는 제어부(400)의 명령에 의해 개폐되는 릴레이 또는 Magnet Contactor가 될 수 있고, 수동 스위치가 적용될 수도 있다. One of the charging mode and the driving mode may be selected by an operation switch (not shown) provided in the inverter-charger integrated device 1 (S101). Here, the operation switch may be a relay or magnet contactor that is opened and closed by a command of the control unit 400, and a manual switch may be applied.
배터리(20)가 기 설정된 조건 이하인 경우, 제어부(400)에 의해 충전 모드가 요구되는 상황으로 판단하여, 사용자에게 표시될 수 있다. When the battery 20 is less than or equal to a preset condition, the controller 400 determines that the charging mode is required and may be displayed to the user.
충전 모드로 선택된 경우, 제어부(400)에 의해 제1 절환스위치(310)가 트랜스포머(119)의 제1 출력단(121) 측으로 스위칭된다. 이 경우, 교류 전원(10)의 전력은 충전부(100)와 변환부(200)를 거쳐 배터리(20)에 충전된다. 이 때, 변환부(200)의 각 스위치(S1, S2, S3, S4, S5, S6)는 스위칭되지 않고, 각 스위치(S1, S2, S3, S4, S5, S6)에 내장된 다이오드(D1, D2, D3, D4, D5, D6)에 의해 배터리(20)가 충전될 수 있다. When the charging mode is selected, the first switching switch 310 is switched to the first output terminal 121 of the transformer 119 by the control unit 400. In this case, the power of the AC power supply 10 is charged in the battery 20 through the charging unit 100 and the conversion unit 200. At this time, each switch (S1, S2, S3, S4, S5, S6) of the conversion unit 200 is not switched, and the diode (D1) built in each switch (S1, S2, S3, S4, S5, S6) , D2, D3, D4, D5, D6) can be charged by the battery 20.
운전 모드로 선택된 경우, 제어부(400)에 의해 제2 절환스위치(320)가 제1 도선(31) 사이를 연결하도록 스위칭된다. 이 경우, 배터리(20)의 전력이 변환부(200)를 거쳐 3상 전동기(30)로 전달되어, 3상 전동기(30)가 구동될 수 있다. When the driving mode is selected, the second switching switch 320 is switched to connect the first conductors 31 by the control unit 400. In this case, the power of the battery 20 is transmitted to the three-phase electric motor 30 through the conversion unit 200, and the three-phase electric motor 30 may be driven.
이하에서는 본 발명의 제2 실시예에 따른 인버터-충전기 통합 장치(1')에 대하여 도 3을 참조하여 설명한다. 다만, 제2 실시예는 상술한 제1 실시예와 비교하여 절환스위치부(300)에서 차이가 있으므로, 차이점을 위주로 설명하며 동일한 부분에 대하여는 상술한 실시예의 설명과 도면 부호를 원용한다.Hereinafter, an inverter-charger integrated device 1'according to a second embodiment of the present invention will be described with reference to FIG. 3. However, since the second embodiment is different in the changeover switch unit 300 compared to the first embodiment described above, the differences will be mainly described, and the description and reference numerals of the above-described embodiment are used for the same parts.
도 3을 참조하면, 절환스위치부(300')는 제1 도선(31)에 배치되어 3상 전동기(30)와 제1 스위치 모듈(S1, S4)을 연결하거나 차단하는 제2 절환스위치(320); 제1 도선(31)과 접점을 이루는 제4 도선(34)에 배치되어 트랜스포머(119)의 제1 출력단(121)의 개방단과 제1 스위치 모듈(S1, S4)을 연결하거나 차단하는 제3 절환스위치(330)를 포함할 수 있다. Referring to FIG. 3, a second changeover switch 320 ′ is disposed on the first conductor 31 to connect or cut off the three-phase electric motor 30 and the first switch modules S1 and S4. ); The third switch is arranged on the fourth conductor 34 that makes contact with the first conductor 31 and connects or blocks the open end of the first output terminal 121 of the transformer 119 and the first switch modules S1 and S4. A switch 330 may be included.
이 때, 제어부(400)는 운전 모드 시 3상 전동기(30)와 제1 스위치 모듈(S1, S4)을 연결하도록 제2 절환스위치(320)를 스위칭 시키고, 트랜스포머(119)와 제1 스위치 모듈(S1, S4)이 개방되도록 제3 절환스위치(330)를 스위칭 시킨다. At this time, the control unit 400 switches the second switching switch 320 to connect the three-phase electric motor 30 and the first switch modules S1 and S4 in the operation mode, and the transformer 119 and the first switch module The third changeover switch 330 is switched to open (S1, S4).
또한, 제어부(400)는 충전 모드 시 3상 전동기(30)와 제1 스위치 모듈(S1, S4)이 개방되도록 제2 절환스위치(320)를 스위칭 시키고, 트랜스포머(119)와 제1 스위치 모듈(S1, S4)이 연결되도록 제3 절환스위치(330)를 스위칭 시킨다. In addition, the control unit 400 switches the second switching switch 320 so that the three-phase electric motor 30 and the first switch modules S1 and S4 are opened in the charging mode, and the transformer 119 and the first switch module ( The third changeover switch 330 is switched so that S1 and S4 are connected.
이하에서는 본 발명의 제3 실시예에 따른 인버터-충전기 통합 장치(1'')에 대하여 도 4을 참조하여 설명한다. 다만, 제3 실시예는 상술한 제1 실시예와 비교하여 절환스위치부(300)에서 차이가 있으므로, 차이점을 위주로 설명하며 동일한 부분에 대하여는 상술한 실시예의 설명과 도면 부호를 원용한다.Hereinafter, an inverter-charger integrated device 1 ″ according to a third embodiment of the present invention will be described with reference to FIG. 4. However, since the third embodiment is different in the changeover switch unit 300 compared to the first embodiment described above, the differences will be mainly described, and the description and reference numerals of the above-described embodiment are used for the same parts.
도 4를 참조하면, 절환스위치부(300'')는 제1 도선(31)에 배치되어 3상 전동기(30)와 제1 스위치 모듈(S1, S4)을 연결하거나 개방하는 제4 절환스위치(340); 제2 도선(32)에 배치되어 3상 전동기(30)와 제2 스위치 모듈(S2, S5)을 연결하거나 개방하는 제5 절환스위치(350); 제1 도선(31)과 접점을 이루는 제4 도선(34)에 배치되어 트랜스포머(119)의 제1 출력단(121)의 개방단과 제1 스위치 모듈(S1, S4)을 연결하거나 개방하는 제6 절환스위치(360); 제2 도선(32)과 접점을 이루는 제5 도선(35)에 배치되어 트랜스포머(119)의 제2 출력단(122)의 개방단과 제2 스위치 모듈을 연결하거나 개방하는 제7 절환스위치(370)를 포함할 수 있다. Referring to FIG. 4, the changeover switch unit 300'' is disposed on the first conductor 31 to connect or open the three-phase motor 30 and the first switch modules S1 and S4. 340); A fifth changeover switch 350 disposed on the second conductor 32 to connect or open the three-phase electric motor 30 and the second switch modules S2 and S5; 6th switching to connect or open the open end of the first output terminal 121 of the transformer 119 and the first switch modules S1 and S4 by being arranged on the fourth conductor 34 making contact with the first conductor 31 Switch 360; The seventh changeover switch 370 is disposed on the fifth conductor 35 that makes contact with the second conductor 32 and connects or opens the open end of the second output terminal 122 of the transformer 119 and the second switch module. Can include.
이 때, 제어부(400)는 운전 모드 시 3상 전동기(30)와 제1 스위치 모듈(S1, S4), 3상 전동기(30)와 제2 스위치 모듈(S2, S5)이 각각 연결되도록 제4 절환스위치(340)와 제5 절환스위치(350)를 스위칭시킨다. 또한, 제어부(400)는 운전 모드 시 트랜스포머(119)와 제1 스위치 모듈(S1, S4), 트랜스포머(119)와 제2 스위치 모듈(S2, S5)이 개방되도록 제6 절환스위치(360)와 제7 절환스위치(370)를 스위칭시킨다. At this time, the control unit 400 is a fourth so that the three-phase electric motor 30 and the first switch module (S1, S4), three-phase electric motor 30 and the second switch module (S2, S5) are respectively connected in the operation mode. The changeover switch 340 and the fifth changeover switch 350 are switched. In addition, the control unit 400 includes the sixth changeover switch 360 so that the transformer 119, the first switch modules S1 and S4, the transformer 119 and the second switch modules S2 and S5 are opened in the driving mode. The seventh changeover switch 370 is switched.
또한, 제어부(400)는 충전 모드 시 3상 전동기(30)와 제1 스위치 모듈(S1, S4), 3상 전동기(30)와 제2 스위치 모듈(S2, S5)이 각각 개방되도록 제4 절환스위치(340)와 제5 절환스위치(350)를 스위칭 시킨다. 또한, 제어부(400)는 운전 모드 시 트랜스포머(119)와 제1 스위치 모듈(S1, S4), 트랜스포머(119)와 제2 스위치 모듈(S2, S5)이 연결되도록 제6 절환스위치(360)와 제7 절환스위치(370)를 스위칭 시킨다. In addition, the control unit 400 switches the fourth so that the three-phase electric motor 30, the first switch module (S1, S4), the three-phase electric motor 30, and the second switch module (S2, S5) are opened respectively in the charging mode. The switch 340 and the fifth changeover switch 350 are switched. In addition, the control unit 400 includes the sixth changeover switch 360 so that the transformer 119 and the first switch modules S1 and S4, and the transformer 119 and the second switch modules S2 and S5 are connected in the driving mode. The seventh changeover switch 370 is switched.
이상 본 발명의 실시예에 따른 인버터-충전기 통합 장치를 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합, 치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.The inverter-charger integrated device according to the embodiment of the present invention has been described as a specific embodiment, but this is only an example, and the present invention is not limited thereto, and has the widest scope according to the basic idea disclosed in the present specification. It must be interpreted. A person skilled in the art may combine and replace the disclosed embodiments to implement a pattern of a shape not indicated, but this also does not depart from the scope of the present invention. In addition, those skilled in the art can easily change or modify the disclosed embodiments based on the present specification, and it is clear that such changes or modifications also belong to the scope of the present invention.
본 발명은 초소형 모빌리티 산업 분야에 이용가능하다. The present invention can be used in the ultra-small mobility industry.

Claims (8)

  1. 일단이 교류 전원을 공급하는 전원 입력부와 연결되고, 타단이 1차측과 2차측으로 절연되는 트랜스포머로 제공되는 충전부;A charging unit provided as a transformer having one end connected to a power input unit supplying AC power, and the other end being insulated into a primary side and a secondary side;
    충전 모드 시 상기 충전부로부터 제공되는 교류 전력을 배터리를 충전 시키기 위한 직류 전력으로 변환하고, 운전 모드 시 상기 배터리로부터 제공되는 직류 전력을 3상 전동기를 구동시키기 위한 전력으로 변환하는 변환부; A converter converting AC power provided from the charging unit into DC power for charging a battery in a charging mode, and converting DC power provided from the battery to power for driving a three-phase electric motor in a driving mode;
    상기 변환부가 상기 트랜스포머의 2차측과 상기 3상 전동기 중 하나와 선택적으로 폐회로를 형성하도록 스위칭되는 절환스위치를 적어도 하나 이상 포함하는 절환스위치부;A changeover switch part including at least one changeover switch which is switched to selectively form a closed circuit with one of the secondary side of the transformer and the three-phase motor;
    충전 모드 시 상기 트랜스포머의 2차측과 상기 변환부가 폐회로로 형성되고, 운전 모드 시 상기 3상 전동기와 상기 변환부가 폐회로로 형성되도록 상기 절환스위치의 스위칭을 제어하는 제어부를 포함하는 인버터-충전기 통합 장치. Inverter-charger integrated device comprising a control unit for controlling switching of the changeover switch so that the secondary side of the transformer and the conversion unit are formed in a closed circuit in a charging mode, and in a driving mode, the three-phase motor and the conversion unit are formed in a closed circuit.
  2. 제1 항에 있어서,The method of claim 1,
    상기 변환부는,The conversion unit,
    제1 도선을 통해 3상 전동기의 한 상과 연결될 수 있는 제1 스위치 모듈;A first switch module capable of being connected to one phase of a three-phase electric motor through a first conductor;
    제2 도선을 통해 3상 전동기의 다른 한 상과 연결될 수 있는 제2 스위치 모듈;A second switch module capable of being connected to another phase of the three-phase electric motor through a second conductor;
    제3 도선을 통해 3상 전동기의 또 다른 한 상과 연결될 수 있는 제3 스위치 모듈을 포함하고,Including a third switch module that can be connected to another phase of the three-phase electric motor through a third conductor,
    상기 트랜스포머의 제1 출력단은 개방단을 형성하고, The first output end of the transformer forms an open end,
    상기 트랜스포머의 제2 출력단은 상기 제2 도선과 접점을 형성하고, The second output terminal of the transformer forms a contact with the second conductor,
    상기 절환스위치부는,The changeover switch unit,
    상기 제1 도선에 배치되어 상기 트랜스포머의 제1 출력단의 개방단과 상기 제1 스위치 모듈을 연결시키거나, 또는 상기 3상 전동기와 상기 제1 스위치 모듈을 선택적으로 연결시키록 스위칭되는 제1 절환스위치를 포함하는 인버터-충전기 통합 장치.A first switching switch disposed on the first conductor to connect the open end of the first output end of the transformer and the first switch module, or selectively connect the three-phase motor and the first switch module. Inverter-charger integration device comprising.
  3. 제1 항에 있어서,The method of claim 1,
    상기 변환부는,The conversion unit,
    제1 도선을 통해 3상 전동기의 한 상과 연결될 수 있는 제1 스위치 모듈;A first switch module capable of being connected to one phase of a three-phase electric motor through a first conductor;
    제2 도선을 통해 3상 전동기의 다른 한 상과 연결될 수 있는 제2 스위치 모듈;A second switch module capable of being connected to another phase of the three-phase electric motor through a second conductor;
    제3 도선을 통해 3상 전동기의 또 다른 한 상과 연결될 수 있는 제3 스위치 모듈을 포함하고,Including a third switch module that can be connected to another phase of the three-phase electric motor through a third conductor,
    상기 트랜스포머의 제1 출력단은 개방단을 형성하고, The first output end of the transformer forms an open end,
    상기 트랜스포머의 제2 출력단은 상기 제2 도선과 접점을 형성하고, The second output terminal of the transformer forms a contact with the second conductor,
    상기 절환스위치부는,The changeover switch unit,
    상기 제1 도선에 배치되어 상기 3상 전동기와 상기 제1 스위치 모듈을 연결하거나 개방하는 제2 절환스위치;A second switching switch disposed on the first conductor to connect or open the three-phase electric motor and the first switch module;
    상기 제1 도선과 접점을 이루는 제4 도선에 배치되어 상기 트랜스포머의 제1 출력단의 개방단과 상기 제1 스위치 모듈을 연결하거나 개방하는 제3 절환스위치를 포함하는 인버터-충전기 통합 장치.An inverter-charger integrated device comprising a third changeover switch disposed on a fourth conductor making contact with the first conductor and connecting or opening the open end of the first output terminal of the transformer and the first switch module.
  4. 제1 항에 있어서,The method of claim 1,
    상기 변환부는,The conversion unit,
    제1 도선을 통해 3상 전동기의 한 상과 연결될 수 있는 제1 스위치 모듈;A first switch module capable of being connected to one phase of a three-phase electric motor through a first conductor;
    제2 도선을 통해 3상 전동기의 다른 한상과 연결될 수 있는 제2 스위치 모듈;A second switch module capable of being connected to another phase of the three-phase electric motor through a second conductor;
    제3 도선을 통해 3상 전동기의 또 다른 한상과 연결될 수 있는 제3 스위치 모듈을 포함하고,Including a third switch module that can be connected to another phase of the three-phase electric motor through a third conductor,
    상기 트랜스포머의 제1 출력단과 제2 출력단은 개방단을 형성하고, The first output terminal and the second output terminal of the transformer form an open end,
    상기 절환스위치부는,The changeover switch unit,
    상기 제1 도선에 배치되어 상기 3상 전동기와 상기 제1 스위치 모듈을 연결하거나 개방하는 제4 절환스위치;A fourth switching switch disposed on the first conductor to connect or open the three-phase electric motor and the first switch module;
    상기 제2 도선에 배치되어 상기 3상 전동기와 상기 제2 스위치 모듈을 연결하거나 개방하는 제5 절환스위치;A fifth changeover switch disposed on the second conductor to connect or open the three-phase electric motor and the second switch module;
    상기 제1 도선과 접점을 이루는 제4 도선에 배치되어 상기 트랜스포머의 제1 출력단의 개방단과 상기 제1 스위치 모듈을 연결하거나 개방하는 제6 절환스위치;A sixth changeover switch disposed on a fourth conductor making contact with the first conductor and connecting or opening the open end of the first output terminal of the transformer and the first switch module;
    상기 제2 도선과 접점을 이루는 제5 도선에 배치되어 상기 트랜스포머의 제2 출력단의 개방단과 상기 제2 스위치 모듈을 연결하거나 개방하는 제7 절환스위치를 포함하는 인버터-충전기 통합 장치.Inverter-charger integrated device comprising a seventh changeover switch disposed on a fifth conductor forming a contact with the second conductor and connecting or opening the open end of the second output terminal of the transformer and the second switch module.
  5. 제1 항에 있어서,The method of claim 1,
    상기 변환부는 복수 개의 스위치를 포함하고,The conversion unit includes a plurality of switches,
    상기 스위치에는 다이오드가 내장되고,A diode is built into the switch,
    충전 모드 시 상기 변환부의 상기 스위치는 스위칭 되지 않는 인버터-충전기 통합 장치.In the charging mode, the switch of the conversion unit is not switched inverter-charger integrated device.
  6. 제1 항에 있어서,The method of claim 1,
    상기 변환부의 적어도 일 측에 제공되고, 상기 변환부에서 발열되는 열을 흡수 할 수 있는 제1 방열하우징을 더 포함하는 인버터-충전기 통합 장치. An inverter-charger integrated device further comprising a first heat dissipation housing provided on at least one side of the conversion unit and capable of absorbing heat generated by the conversion unit.
  7. 제1 항에 있어서,The method of claim 1,
    상기 충전부는,The charging unit,
    교류 전원으로부터 공급되는 교류 신호를 필터링 하는 입력 필터;An input filter for filtering an AC signal supplied from an AC power source;
    상기 입력 필터에서 필터링된 교류 전력을 정류하는 정류부;A rectifier rectifying the AC power filtered by the input filter;
    상기 정류부로부터 출력되는 전력의 열률을 보상하는 PFC 부스트 컨버터;A PFC boost converter compensating for a heat factor of power output from the rectifier;
    상기 PFC 부스트 컨버터에서 얻어진 직류 전력을 교류 전력으로 변환하여 상기 트랜스포머 측으로 출력하는 DC-AC인버터를 포함하는 인버터-충전기 통합 장치.Inverter-charger integrated device comprising a DC-AC inverter for converting the direct current power obtained from the PFC boost converter into AC power and outputting it to the transformer side.
  8. 트랜스포머가 제공되는 충전부; 일측이 배터리와 연결되고, 타측이 상기 충전부와 3상 구동기 중 하나와 선택적으로 폐회로를 이루도록 연결되는 변환부를 포함하는 인버터-충전기 통합장치의 제어 방법에 있어서, A charging unit provided with a transformer; In the control method of the inverter-charger integrated device comprising a conversion unit connected to one side to the battery and the other side to form a closed circuit selectively with one of the charging unit and the three-phase driver,
    배터리를 충전하기 위한 충전 모드 또는 3상 전동기를 구동하기 위한 운전 모드 중 하나가 선택되는 단계;Selecting one of a charging mode for charging the battery or a driving mode for driving a three-phase electric motor;
    충전 모드로 선택되는 경우, 상기 트랜스포머의 2차측과 상기 변환부가 폐회로를 이루도록 절환스위치가 스위칭되는 단계;When the charging mode is selected, switching the switching switch so that the secondary side of the transformer and the conversion unit form a closed circuit;
    운전 모드로 선택되는 경우, 상기 3상 전동기와 상기 변환부가 폐회로를 이루도록 절환스위치가 스위칭되는 단계를 포함하는 인버터-충전기 통합장치의 제어 방법.When the operation mode is selected, the control method of the inverter-charger integrated device comprising the step of switching the switching switch so that the three-phase motor and the conversion unit form a closed circuit.
PCT/KR2019/011115 2019-07-31 2019-08-30 Integrated inverter-charger device and control method for controlling same WO2021020638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190093424A KR102111092B1 (en) 2019-07-31 2019-07-31 Inverter-charger combined device and controlling method thereof
KR10-2019-0093424 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020638A1 true WO2021020638A1 (en) 2021-02-04

Family

ID=70678801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011115 WO2021020638A1 (en) 2019-07-31 2019-08-30 Integrated inverter-charger device and control method for controlling same

Country Status (2)

Country Link
KR (1) KR102111092B1 (en)
WO (1) WO2021020638A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628357B1 (en) * 2021-11-29 2024-01-25 주식회사 고이버 Integrated inverter for small electric vehicle with the neutral point of the charing motor removed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205908A (en) * 1998-01-15 1999-07-30 Nippon Yusoki Co Ltd Charging device for motor vehicle
US20040008530A1 (en) * 2002-06-05 2004-01-15 Kabushiki Kaisha Toshiba Inverter control device and electric vehicle thereof
KR101463784B1 (en) * 2013-07-19 2014-11-21 주식회사 이지트로닉스 Inverter for Range-Extended Electric Vehicle
KR20170137490A (en) * 2016-06-03 2017-12-13 현대자동차주식회사 Integrated Module of OBC and Inverter and the Controlling Method thereof
US20180290545A1 (en) * 2017-04-05 2018-10-11 Ford Global Technologies, Llc On-board and wireless vehicle charging systems with shared components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369052B1 (en) 2012-05-21 2014-03-04 엘에스산전 주식회사 Inverter-charger combined device for electric vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205908A (en) * 1998-01-15 1999-07-30 Nippon Yusoki Co Ltd Charging device for motor vehicle
US20040008530A1 (en) * 2002-06-05 2004-01-15 Kabushiki Kaisha Toshiba Inverter control device and electric vehicle thereof
KR101463784B1 (en) * 2013-07-19 2014-11-21 주식회사 이지트로닉스 Inverter for Range-Extended Electric Vehicle
KR20170137490A (en) * 2016-06-03 2017-12-13 현대자동차주식회사 Integrated Module of OBC and Inverter and the Controlling Method thereof
US20180290545A1 (en) * 2017-04-05 2018-10-11 Ford Global Technologies, Llc On-board and wireless vehicle charging systems with shared components

Also Published As

Publication number Publication date
KR102111092B1 (en) 2020-05-15

Similar Documents

Publication Publication Date Title
US5633577A (en) Battery charging system for electric vehicles
WO2013100559A1 (en) Electric vehicle charging device
US10020658B2 (en) Power transmission arrangement
WO2021241831A1 (en) Obc- and ldc-combination-integrated power converting circuit for electric vehicle
WO2013094871A1 (en) Battery charging device for an electric vehicle
CN102687384A (en) Ac/dc converter circuit
WO2018110787A1 (en) Single-stage interleaved soft switching converter
WO2021251583A1 (en) Unitary charging device for low and high voltages
JP2020043729A (en) Vehicle power supply device
CN101304180B (en) Composition energy-saving non power brake system and bidirectional transducer module as well as power transferring method
WO2021010570A1 (en) Dc-dc converter of power conversion system
WO2019235670A1 (en) Non-contact power feeding device for electric vehicle
WO2021020638A1 (en) Integrated inverter-charger device and control method for controlling same
WO2010126220A2 (en) Direct current uninterruptible power supply device having serial compensation rectifier
WO2020004820A1 (en) Circulation charging system for electric vehicle
WO2012161393A1 (en) Device for recovering power in a wound-rotor induction motor
CN106655229A (en) Topology applicable to low-voltage distribution network energy router
WO2013027949A2 (en) Power conversion device
WO2012128441A1 (en) Power supply apparatus for rapid charging
WO2018074861A1 (en) Magnetic induction power supply device
JP2023518581A (en) Bidirectional DC-DC converter
WO2014069743A1 (en) Bidirectionally operable battery charging device for electric vehicle
WO2021107480A1 (en) Dc-dc converter
CN208401607U (en) Electric car charging and driving integrated system based on the double converters of SiC three-phase
WO2022114575A1 (en) Dc-to-dc converter for charging/discharging battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19939702

Country of ref document: EP

Kind code of ref document: A1