WO2021020615A1 - Heat treatment apparatus - Google Patents

Heat treatment apparatus Download PDF

Info

Publication number
WO2021020615A1
WO2021020615A1 PCT/KR2019/009458 KR2019009458W WO2021020615A1 WO 2021020615 A1 WO2021020615 A1 WO 2021020615A1 KR 2019009458 W KR2019009458 W KR 2019009458W WO 2021020615 A1 WO2021020615 A1 WO 2021020615A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source unit
reflective member
disposed
Prior art date
Application number
PCT/KR2019/009458
Other languages
French (fr)
Korean (ko)
Inventor
전용준
Original Assignee
(주)에이치아이티오토모티브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이치아이티오토모티브 filed Critical (주)에이치아이티오토모티브
Priority to PCT/KR2019/009458 priority Critical patent/WO2021020615A1/en
Priority to KR1020217001401A priority patent/KR102446159B1/en
Publication of WO2021020615A1 publication Critical patent/WO2021020615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • the present invention relates to a heat treatment apparatus using a light source.
  • HPDL high power diode laser
  • High-power diode lasers are KW (Kilo Watt) class lasers with reliability and stability required in industrial sites, and square or line laser-beams output from a laser source are especially heat cured and cladding ( It is suitable for fields such as cladding).
  • the laser used in the heat treatment field is output from a laser source and reaches the object to be processed through a process of being focused by a lens array.
  • the energy density of the laser-beam increases, but the energy area is reduced.
  • the energy region of the laser-beam output from the laser source must be enlarged or several laser sources must be used.
  • the amount of heat generated by the laser-beam is also increased, and an additional configuration is required to control the increase in the amount of heat generated.
  • each of the laser beams output from each of the multiple laser sources can be combined to form a uniform and continuous energy region on the surface of the object to be processed.
  • a precise design is required.
  • arrangement of laser sources in consideration of space utilization is required.
  • An object of the present invention is to provide an improved heat treatment apparatus capable of forming a uniform and continuous energy region on the surface of an object to be treated.
  • thermo treatment apparatus with improved space utilization so that two or more light sources may be disposed inside the heat treatment apparatus.
  • a heat treatment apparatus for solving the above problem includes at least two light source units; A reflective member disposed between the at least two light source units; And at least one lens disposed on a path of light emitted from the at least two light source units. And the reflective member and the at least one lens are aligned so that light that has passed through the reflective member and the at least one lens forms one continuous energy region.
  • the at least two light source units include a first light source unit that emits light in a first direction toward the reflective member, and a second light source unit that emits light toward the reflective member in a second direction different from the first direction. It may include.
  • the first light source unit includes a first housing, and a plurality of first laser diodes disposed inside the first housing to generate light
  • the second light source unit includes a second housing, A plurality of second laser diodes disposed inside the second housing to generate light, wherein the first housing and the second housing are formed in a third direction perpendicular to the first direction and the second direction. It may be arranged to overlap in at least some sections along the direction.
  • the first light source unit includes a first cooler disposed inside the first housing to cool the plurality of first laser diodes, and the second light source unit includes an interior of the second housing. And a second cooler that is disposed in and cools the plurality of second laser diodes, wherein the first cooler is disposed to overlap with the second housing along the third direction, and the second cooler is It may be disposed to overlap with the first housing along the third direction.
  • the reflective member may be configured to change a path of light emitted from the first light source unit and the second light source unit into the first direction, the second direction, and a fourth direction perpendicular to the third direction.
  • a heat treatment apparatus includes a first light source unit that emits light in a first direction; A second light source unit emitting light in a second direction different from the first direction; And a light guide array configured to guide light emitted from the first light source unit and the second light source unit. Including, the light guide array, by switching a path of light passing through the light guide array, the light passing through the light guide array may be configured to form one continuous energy region.
  • the light guide array includes a first reflective member for switching a traveling path of light emitted from the first light source unit, and a second reflecting member for switching a traveling path of light emitted from the second light source unit, and the second
  • the first reflective member and the second reflective member may be disposed to have different inclination angles.
  • the first reflective member may be disposed parallel to the second reflective member.
  • the first reflective member and the second reflective member may be disposed to contact each other.
  • the light guide array may include a plurality of lenses arranged to change the density of light passing through the first reflective member and the second reflective member.
  • a heat treatment apparatus includes: a first light source unit including a first non-emission area and a first light emission area; A second light source unit including a second non-emission area and a second light emission area; And a light guide array through which light emitted from at least one of the first light source unit and the second light source unit passes.
  • the light guide array is configured to change a path of light passing through the light guide array, so that the light passing through the light guide array forms one continuous energy region, and the first non-emission The region is disposed to overlap the second emission region in at least a partial section, and the second non-emission region is arranged to overlap the first emission region in at least a partial section.
  • a plurality of laser diodes configured to emit light may be disposed in the first emission region, and a cooler for cooling the plurality of laser diodes may be disposed in the first non-emission region.
  • the light guide array includes a reflective member for switching a traveling path of light emitted from the first light source unit and the second light source unit, and at least one lens configured to change a density of light passing through the reflective member. can do.
  • the heat treatment quality is improved.
  • the space utilization of the heat treatment device is improved, it is possible to downsize the heat treatment device including two or more light sources.
  • the energy region formed on the surface of the object to be treated can be easily adjusted.
  • FIG. 1 is a perspective view schematically showing the configuration of a heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of light source units.
  • FIG. 3 is a front view of FIG. 1.
  • Figure 4 is a side view of Figure 1;
  • FIG. 5 is a plan view of FIG. 1.
  • FIG. 6 is a diagram illustrating a path of light emitted from light source units in FIG. 3.
  • FIG. 7 is a diagram illustrating a path of light emitted from light source units in FIG. 4.
  • FIG. 8 is a diagram showing an energy region formed by a heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 9 is a perspective view schematically showing the configuration of a heat treatment apparatus according to another embodiment of the present invention.
  • FIG. 10 is a view showing an energy region enlarged and formed by a heat treatment apparatus according to another embodiment of the present invention.
  • a certain constituent element is formed “on” another constituent element
  • the case where another constituent element is present between the certain constituent element and the other constituent element is not excluded. That is, the certain component may be formed in direct contact with the other component, or another component may be interposed between the certain component and the other component.
  • a "module” or “unit” for a component used in the present specification performs at least one function or operation.
  • the "module” or “unit” may perform a function or operation by hardware, software, or a combination of hardware and software.
  • a plurality of “modules” or a plurality of “units” excluding “module” or “unit” to be performed in specific hardware or performed by at least one processor may be integrated into at least one module.
  • Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • FIG. 1 is a perspective view schematically showing a configuration of a heat treatment apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view of light source units.
  • 3 is a front view of FIG. 1
  • FIG. 4 is a side view of FIG. 1
  • FIG. 5 is a plan view of FIG. 1.
  • the heat treatment apparatus 100 is configured to guide light emitted from a plurality of light source units 110 and a plurality of light source units 110. It includes a light guide array 120.
  • the plurality of light source units 110 includes a first light source unit 110A and a second light source unit 110B.
  • the first light source unit 110A and the second light source unit 110B are disposed to emit light in different directions.
  • the first light source unit 110A and the second light source unit 110B are disposed to overlap each other in at least some sections.
  • the first light source unit 110A is disposed inside the first housing 111, a plurality of first light sources 112 that are disposed inside the first housing 111 to generate light, and the first housing 111 It is configured to include a first cooler 113 configured to cool the plurality of first light sources 112.
  • the first housing 111 has a substantially rectangular parallelepiped shape, and light generated from the plurality of first light sources 112 passes through one side of the first housing 111 and can be emitted to the outside of the first housing 111.
  • the opening 111a is formed so that it is.
  • the plurality of first light sources 112 are arranged in the width direction W1 and the height direction H1 of the first housing 111 along the opening 111a, and form a stack.
  • the plurality of first light sources 112 include a light emitting diode (LED), an organic light emitting diode (OLED), a quantum dot light emitting diode (QDLED), and a laser diode (LD). : Laser Diode), etc., but it is preferable to be composed of the most suitable laser diode (LD) to obtain high output for heat treatment.
  • LED light emitting diode
  • OLED organic light emitting diode
  • QDLED quantum dot light emitting diode
  • LD laser diode
  • the first cooler 113 is disposed on one or both sides of the plurality of first light sources 112 to cool the plurality of first light sources 112.
  • the first cooler 113 is provided in an air-cooled structure including a fan (not shown) and a heat exchange fin (not shown), or a radiator (not shown) and a pump (not shown) configured to circulate cooling water. City) may be provided in a water-cooled structure including.
  • the first housing 111 includes a first accommodating portion 111b in which a plurality of first light sources 112 are disposed and a second accommodating portion 111c in which the first cooler 113 is disposed. ).
  • the second accommodating portions 111c are disposed on both sides of the first accommodating portion 111b, respectively.
  • the second accommodating portion 111c may be disposed only on one side of the first accommodating portion 111b or may be disposed above and below the first accommodating portion 111b according to the position of the first cooler 113.
  • a buffer member (not shown) may be disposed in the second accommodating portion 111c to absorb shocks applied from the inside or outside.
  • electrical equipment such as a substrate for supplying power to the plurality of first light sources 112 may be disposed in the second accommodating portion 111c.
  • the light generated by the plurality of first light sources 112 disposed in the first accommodating part 111b is emitted in a shape corresponding to the opening 111a through the opening 111a, and the first light emitting region L1 is formed.
  • the first light-emitting region L1 has a shape corresponding to one surface of the first receiving portion 111b.
  • a first non-emissive area NL1 from which light is not emitted is positioned on both sides of the first emission area L1, and the first non-emissive area NL1 has a shape corresponding to one surface of the second receiving part 111c. Have.
  • the second light source unit 110B is disposed inside the second housing 116, a plurality of second light sources 117 disposed inside the second housing 116 to generate light, and the second housing 116 And a second cooler 118 configured to cool the plurality of second light sources 117.
  • the second housing 116 has a substantially rectangular parallelepiped shape, and light generated from the plurality of second light sources 117 passes through one side of the second housing 116 and can be emitted to the outside of the second housing 116.
  • the opening 116a is formed so that it is.
  • the plurality of second light sources 117 are arranged in the width direction W2 and the height direction H2 of the second housing 116 along the opening 116a, and form a stack.
  • the plurality of second light sources 117 is a light emitting diode (LED: Light Emitting Diode), an organic light emitting diode (OLED: Organic Light Emitting Diode), a quantum dot light emitting diode (QDLED: Quantum-Dot Light Emitting Diode), a laser diode (LD : Laser Diode), etc., but it is preferable to be composed of the most suitable laser diode (LD) to obtain high output for heat treatment.
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • QDLED Quantum-Dot Light Emitting Diode
  • LD Laser Diode
  • the second cooler 118 is disposed on one or both sides of the plurality of second light sources 117 to cool the plurality of second light sources 117.
  • the second cooler 118 is provided in an air-cooled structure including a fan (not shown) and a heat exchange fin (not shown), or a radiator (not shown) and a pump (not shown) configured to circulate cooling water. City) may be provided in a water-cooled structure including.
  • the second housing 116 includes a first accommodating portion 116b in which a plurality of second light sources 117 are disposed, and a second accommodating portion 116c in which the second cooler 118 is disposed.
  • the second accommodating portions 116c are disposed on both sides of the first accommodating portion 116b, respectively.
  • the second accommodating portion 116c may be disposed only on one side of the first accommodating portion 116b or may be disposed above and below the first accommodating portion 116b according to the position of the second cooler 118.
  • Other components other than the second cooler 118 may be further disposed in the second accommodating part 116c.
  • a buffer member (not shown) for absorbing an impact applied from the inside or outside may be disposed in the second accommodating portion 116c.
  • electrical equipment such as a substrate for supplying power to the plurality of second light sources 117 may be disposed in the second accommodating portion 116c.
  • the light generated by the plurality of second light sources 117 disposed in the first accommodating portion 116b is emitted in a shape corresponding to the opening 116a through the opening 116a, and the second light emitting area L2 is formed.
  • the second light-emitting area L2 has a shape corresponding to one surface of the first accommodating part 116b.
  • a second non-emission area NL2 from which light is not emitted is positioned on both sides of the second emission area L2, and the second non-emission area NL2 has a shape corresponding to one surface of the second receiving part 116c. Have.
  • the first light source unit 110A is disposed to emit light in the first direction D1
  • the second light source unit 110B is disposed to emit light in the second direction D2. do.
  • the second direction D2 is a direction different from the first direction D1, and the drawing shows an example in which the second direction D2 is perpendicular to the first direction D1.
  • the first light source unit 110A and the second light source unit 110B have at least some sections along a third direction D3 different from the first direction D1 and the second direction D2. They are arranged to overlap each other in (S1). 5 illustrates an example in which the third direction D3 is perpendicular to both the first direction D1 and the second direction D2, but the third direction D3 is the first direction D1 and the second direction ( D2) may be in an oblique direction instead of being perpendicular to each other, and even if the third direction (D3) is not perpendicular to the first direction (D1) and the second direction (D2), adjustment of the arrangement position of the reflective member 122 to be described later, etc. Through this, the traveling path of light can be controlled to a set point.
  • the first light source unit 110A and the second light source unit 110B are disposed to overlap each other in at least a partial section S1.
  • the first non-emissive area NL1 is disposed to overlap the second light-emitting area L2, and the second non-emissive area NL2 is disposed to overlap the first light-emitting area L1.
  • the first cooler 113 accommodated in the second accommodating portion 111c corresponding to the first non-emission area NL1 is a first accommodating portion 116b corresponding to the second emitting area L2 of the second housing 116.
  • the second cooler 118 accommodated in the second accommodating portion 116c corresponding to the second non-emission area NL2 corresponds to the first light emitting area L1 of the first housing 111 It is disposed so as to overlap with the first accommodating portion 111b.
  • the width of the first non-emitting area NL1 or the width of the second non-emissive area NL2 is substantially the same as the width of the section S1 where the first light source unit 110A and the second light source unit 110B overlap. can do.
  • the light guide array 120 includes a reflective member 122 configured to reflect light emitted from the first light source unit 110A and the second light source unit 110B, and a path of light reflected by the reflective member 122 And a lens assembly 124 disposed thereon and configured to change the intensity of light passing through the reflective member 122.
  • the reflective member 122 is disposed between the first light source unit 110A and the second light source unit 110B.
  • the reflective member 122 includes a first reflective member 122a that switches a path of light emitted from the first light source unit 110A and a second reflective member that switches a path of light emitted from the second light source unit 110B. It includes a member 122b.
  • the first reflective member 122a is directed toward the first light source unit 110A so that the light emitted from the first light source unit 110A is reflected by the first reflective member 122a and proceeds toward the lens assembly 124. It is formed obliquely.
  • the second reflective member 122b is directed toward the second light source unit 110B so that the light emitted from the second light source unit 110B is reflected by the second reflective member 122b and proceeds toward the lens assembly 124. It is formed obliquely. That is, the first reflective member 122a and the second reflective member 122b are disposed to have different inclination angles ⁇ and ⁇ , respectively.
  • the first reflective member 122a and the second reflective member 122b are arranged side by side in a line along the third direction D3, and the first reflective member 122a and the second reflective member 122b may contact each other. have.
  • the first reflective member 122a and the second reflective member 122b may be integrally formed.
  • At least one of the first reflective member 122a and the second reflective member 122b may be replaced with a refractive member. That is, the light emitted from the first light source unit 110A or the second light source unit 110B may be refracted while passing through the refracting member to proceed to the lens assembly 124 to be described later.
  • the lens assembly 124 includes a first lens assembly 124a and a second lens assembly 124b spaced apart from each other along a path through which light reflected by the first and second reflective members 122a and 122b travels. ) Can be included.
  • Each of the first lens assembly 124a and the second lens assembly 124b includes at least one concave lens, a convex lens, a flat mirror, a concave mirror, a convex mirror, a refractive lens, a diffractive lens, a Fresnel lens, and a gradient index. It may be composed of a lens (Gradient Index Lens) or a combination thereof.
  • the first lens assembly 124a changes the width (Lw, see FIG. 7) of the light (Lr, see FIG. 6) reflected by the first and second reflective members 122a and 122b to reduce the energy of light.
  • the density is adjusted and the energy of the light Lr is controlled to have uniformity along the width direction FA of the light.
  • the light (Lu, see FIG. 6) that has passed through the first lens assembly 124a may travel in parallel along a direction SA perpendicular to the width direction FA of the light Lu. It performs a function of collimating the light (Lu).
  • FIG. 6 is a diagram illustrating a path of light emitted from light source units in FIG. 3
  • FIG. 7 is a diagram illustrating a path of light emitted from light source units in FIG. 4.
  • the light emitted from the first light source unit 110A and the second light source unit 110B is reflected by the first reflective member 122a and the second reflective member 122b, respectively.
  • the progress path is switched and proceeds along the fourth direction D4 perpendicular to the third direction D3.
  • the light Lr reflected by the first reflective member 122a and the second reflective member 122b and traveled along the fourth direction D4 changes in width while passing through the first lens assembly 124a. It has a uniform energy along the width direction FA of (Lr).
  • the first non-emissive area NL1 is disposed to overlap the second light-emitting area L2, and the second non-emissive area NL2 is disposed to overlap the first light-emitting area L1. Accordingly, the first emission area L1 and the second emission area L2 are continuously connected along the third direction D3. The light emitted by the successively connected first light-emitting area L1 and second light-emitting area L2 is reflected while passing through the light guide array 120, its density is changed, and after passing through a process of collimating, A uniform and continuous energy region E is formed on the surface of the object to be processed.
  • FIG. 8 is a diagram showing an energy region formed by a heat treatment apparatus according to an embodiment of the present invention.
  • the light emitted from the second light emitting area L2 of the second light source unit 110B is reflected by the second reflective member 122b (see FIGS. 1 to 5), and the lens assembly 124 (see FIGS. 1 to 5) While passing through, a uniform and continuous second energy region E2 having a constant length is formed in the width direction FA and the direction SA perpendicular to the width direction FA of the light.
  • the first light emitting area L1 of the first light source unit 110A and the second light source unit 110B are arranged so that the second light emitting area L2 is continuously connected along the third direction D3.
  • the area of the energy region of light reaching the surface of the treated object can be easily enlarged.
  • the heat treatment apparatus may further include a prism (not shown) configured to change a traveling angle of light passing through the light guide array 120.
  • the prism allows the propagation angle of light passing through the light guide array 120 to be changed within approximately 1 to 10 degrees, so that the light reflected by the object to be processed is transmitted to the plurality of light source units 110 or the light guide array 120 ) To reach and damage it.
  • FIG. 9 is a perspective view schematically showing a configuration of a heat treatment apparatus according to another embodiment of the present invention
  • FIG. 10 is a view showing an energy region enlarged by the heat treatment apparatus according to another embodiment of the present invention.
  • the heat treatment apparatus 200 includes a plurality of light source units 210, and the plurality of light source units 210 includes a first light source unit 210A, a second light source unit 210B, and a third It includes a light source unit (210C).
  • the first light source unit 210A and the second light source unit 210B are disposed to emit light in different directions.
  • the third light source unit 210C is arranged to emit light in the same direction as the first light source unit 210A and to emit light in a different direction from the second light source unit 210B. That is, the first light source unit 210A, the second light source unit 210B, and the third light source unit 210C are sequentially disposed along the third direction D3.
  • the first light source unit 210A and the second light source unit 210B are disposed to overlap each other in at least a partial section S1, and the second light source unit 210B and the third light source unit 210C are at least partially They are arranged to overlap each other in the section S2.
  • the heat treatment apparatus 200 includes a third reflective member 222 that switches a path of light emitted from the second light source unit 210C.
  • the third light source unit 210C by adding the third light source unit 210C, the area E of energy formed by light reaching the surface of the object to be processed is formed by the third light source unit 210C.
  • the energy region E3 formed by the light emitting region L3 may be enlarged.
  • an area of energy formed by light incident on the surface of the object to be processed may be reduced. Therefore, it is possible to easily adjust the energy region of light reaching the surface of the object to be treated.

Abstract

Disclosed is a heat treatment apparatus improved such that a continuous uniform energy region can be formed on the surface of an object to be treated. The heat treatment apparatus comprises: at least two light source units; a reflective member disposed between the at least two light source units; and at least one lens disposed on the travel path of light emitted from the at least two light source units. The reflective member and the at least one lens are arranged such that the light forms one continuous energy region.

Description

열처리 장치Heat treatment device
본 발명은 광원을 이용한 열처리 장치에 관한 것이다.The present invention relates to a heat treatment apparatus using a light source.
피처리물을 열처리하기 위한 광원으로 고출력 다이오드 레이저(High Power Diode Laser, HPDL)가 널리 사용되고 있다.A high power diode laser (HPDL) is widely used as a light source for heat treatment of an object to be processed.
고출력 다이오드 레이저는 산업현장에서 요구되는 신뢰성 및 안정성을 갖춘 KW(Kilo Watt)급 레이저로, 레이저소스로부터 출력되는 사각형 또는 라인형의 레이저-빔(Laser-Beam)은 특히 금속의 열경화, 클래딩(Cladding) 등의 분야에 적합하다.High-power diode lasers are KW (Kilo Watt) class lasers with reliability and stability required in industrial sites, and square or line laser-beams output from a laser source are especially heat cured and cladding ( It is suitable for fields such as cladding).
열처리 분야에 사용되는 레이저는, 레이저소스로부터 출력되고, 렌즈 어레이에 의해 집속되는 과정을 통해 피처리물에 도달하게 된다.The laser used in the heat treatment field is output from a laser source and reaches the object to be processed through a process of being focused by a lens array.
렌즈 어레이에 의해 집속되면서 레이저-빔의 에너지 밀도는 증가하지만, 에너지 영역은 축소된다. As focused by the lens array, the energy density of the laser-beam increases, but the energy area is reduced.
축소된 에너지 영역을 보상하기 위해서는 레이저소스로부터 출력된 레이저-빔의 에너지 영역 자체를 크게 하거나, 여러 개의 레이저소스를 사용해야 한다. In order to compensate for the reduced energy region, the energy region of the laser-beam output from the laser source must be enlarged or several laser sources must be used.
레이저-빔의 에너지 영역을 크게 할 경우, 레이저-빔에 의한 발열량도 증가하여 발열량의 증가를 제어하기 위한 추가적인 구성이 필요하다. When the energy region of the laser-beam is increased, the amount of heat generated by the laser-beam is also increased, and an additional configuration is required to control the increase in the amount of heat generated.
여러 개의 레이저소스를 사용할 경우, 여러 개의 레이저소스 각각에서 출력된 각각의 레이저-빔들이, 서로 합쳐져서 균일하고 연속된 에너지 영역을 피처리물의 표면에 형성할 수 있도록, 레이저-빔들의 경로를 제어하기 위한 정밀한 설계가 요구된다. 또한, 한정된 공간에 여러 개의 레이저소스를 배치해야 하므로, 공간 활용성을 고려한 레이저소스의 배치가 요구된다.When using multiple laser sources, control the path of the laser beams so that each of the laser beams output from each of the multiple laser sources can be combined to form a uniform and continuous energy region on the surface of the object to be processed. A precise design is required. In addition, since several laser sources must be arranged in a limited space, arrangement of laser sources in consideration of space utilization is required.
본 발명의 목적은 피처리물의 표면에 균일하고 연속된 에너지 영역을 형성할 수 있도록 개선된 열처리 장치를 제공한다.An object of the present invention is to provide an improved heat treatment apparatus capable of forming a uniform and continuous energy region on the surface of an object to be treated.
또한, 열처리 장치의 내부에 둘 이상의 광원이 배치될 수 있도록 공간 활용성이 향상된 열처리 장치를 제공한다.In addition, there is provided a heat treatment apparatus with improved space utilization so that two or more light sources may be disposed inside the heat treatment apparatus.
본 발명의 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The subject of the present invention is not limited to the problems mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 열처리 장치는, 적어도 두 개의 광원 유닛; 상기 적어도 두 개의 광원 유닛 사이에 배치되는 반사부재; 및 상기 적어도 두 개의 광원 유닛으로부터 방출되는 광의 진행 경로 상에 배치되는 적어도 하나의 렌즈; 를 포함하고, 상기 반사부재 및 상기 적어도 하나의 렌즈는, 상기 반사부재 및 상기 적어도 하나의 렌즈를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록 정렬된다.A heat treatment apparatus according to an embodiment of the present invention for solving the above problem includes at least two light source units; A reflective member disposed between the at least two light source units; And at least one lens disposed on a path of light emitted from the at least two light source units. And the reflective member and the at least one lens are aligned so that light that has passed through the reflective member and the at least one lens forms one continuous energy region.
상기 적어도 두 개의 광원 유닛은, 상기 반사부재를 향해 제1 방향으로 광을 방출하는 제1 광원 유닛과, 상기 반사부재를 향해 상기 제1 방향과 다른 제2 방향으로 광을 방출하는 제2 광원 유닛을 포함할 수 있다.The at least two light source units include a first light source unit that emits light in a first direction toward the reflective member, and a second light source unit that emits light toward the reflective member in a second direction different from the first direction. It may include.
상기 제1 광원 유닛은, 제1 하우징과, 상기 제1 하우징 내부에 배치되어 광을 생성하는 복수의 제1 레이저 다이오드(Laser Diode)들을 포함하고, 상기 제2 광원 유닛은, 제2 하우징과, 상기 제2 하우징 내부에 배치되어 광을 생성하는 복수의 제2 레이저 다이오드(Laser Diode)들을 포함하며, 상기 제1 하우징과 상기 제2 하우징은 상기 제1 방향 및 상기 제2 방향과 수직한 제3 방향을 따라 적어도 일부 구간에서 중첩되도록 배치될 수 있다.The first light source unit includes a first housing, and a plurality of first laser diodes disposed inside the first housing to generate light, and the second light source unit includes a second housing, A plurality of second laser diodes disposed inside the second housing to generate light, wherein the first housing and the second housing are formed in a third direction perpendicular to the first direction and the second direction. It may be arranged to overlap in at least some sections along the direction.
상기 제1 광원 유닛은, 상기 제1 하우징의 내부에 배치되어 상기 복수의 제1 레이저 다이오드(Laser Diode)들을 냉각하는 제1 쿨러를 포함하고, 상기 제2 광원 유닛은, 상기 제2 하우징의 내부에 배치되어 상기 복수의 제2 레이저 다이오드(Laser Diode)들을 냉각하는 제2 쿨러를 포함하며, 상기 제1 쿨러는 상기 제3 방향을 따라 상기 제2 하우징과 중첩되도록 배치되고, 상기 제2 쿨러는 상기 제3 방향을 따라 상기 제1 하우징과 중첩되도록 배치될 수 있다.The first light source unit includes a first cooler disposed inside the first housing to cool the plurality of first laser diodes, and the second light source unit includes an interior of the second housing. And a second cooler that is disposed in and cools the plurality of second laser diodes, wherein the first cooler is disposed to overlap with the second housing along the third direction, and the second cooler is It may be disposed to overlap with the first housing along the third direction.
상기 반사부재는 상기 제1 광원 유닛 및 상기 제2 광원 유닛으로부터 방출되는 광의 진행 경로를 상기 제1 방향, 상기 제2 방향 및 상기 제3 방향과 수직한 제4 방향으로 전환하도록 구성될 수 있다.The reflective member may be configured to change a path of light emitted from the first light source unit and the second light source unit into the first direction, the second direction, and a fourth direction perpendicular to the third direction.
또한, 본 발명의 일 실시예에 따른 열처리 장치는, 제1 방향으로 광을 방출하는 제1 광원 유닛; 상기 제1 방향과는 다른 제2 방향으로 광을 방출하는 제2 광원 유닛; 및 상기 제1 광원 유닛 및 상기 제2 광원 유닛으로부터 방출된 광을 가이드하는 광 가이드 어레이; 를 포함하고, 상기 광 가이드 어레이는, 상기 광 가이드 어레이를 통과한 광의 진행 경로를 전환시켜, 상기 광 가이드 어레이를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록 구성될 수 있다.In addition, a heat treatment apparatus according to an embodiment of the present invention includes a first light source unit that emits light in a first direction; A second light source unit emitting light in a second direction different from the first direction; And a light guide array configured to guide light emitted from the first light source unit and the second light source unit. Including, the light guide array, by switching a path of light passing through the light guide array, the light passing through the light guide array may be configured to form one continuous energy region.
상기 광 가이드 어레이는, 상기 제1 광원 유닛에서 방출된 광의 진행 경로를 전환하는 제1 반사부재와, 상기 제2 광원 유닛에서 방출된 광의 진행 경로를 전환하는 제2 반사부재를 포함하고, 상기 제1 반사부재와 상기 제2 반사부재는 서로 다른 경사각을 갖도록 배치될 수 있다.The light guide array includes a first reflective member for switching a traveling path of light emitted from the first light source unit, and a second reflecting member for switching a traveling path of light emitted from the second light source unit, and the second The first reflective member and the second reflective member may be disposed to have different inclination angles.
상기 제1 반사부재는 상기 제2 반사부재와 나란히 배치될 수 있다.The first reflective member may be disposed parallel to the second reflective member.
상기 제1 반사부재와 상기 제2 반사부재는 서로 접촉하도록 배치될 수 있다.The first reflective member and the second reflective member may be disposed to contact each other.
상기 광 가이드 어레이는, 상기 제1 반사부재 및 상기 제2 반사부재를 통과한 광의 밀도를 변화시키도록 정렬되는 복수의 렌즈들을 포함할 수 있다.The light guide array may include a plurality of lenses arranged to change the density of light passing through the first reflective member and the second reflective member.
또한, 본 발명의 일 실시예에 따른 열처리 장치는, 제1 비발광 영역과 제1 발광 영역을 포함하는 제1 광원 유닛; 제2 비발광 영역과 제2 발광 영역을 포함하는 제2 광원 유닛; 및 상기 제1 광원 유닛 및 상기 제2 광원 유닛 중 적어도 하나로부터 방출되는 광이 통과하는 광 가이드 어레이; 를 포함하고, 상기 광 가이드 어레이는, 상기 광 가이드 어레이를 통과한 광의 진행 경로를 전환시켜, 상기 광 가이드 어레이를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록 구성되고, 상기 제1 비발광 영역은 상기 제2 발광 영역과 적어도 일부 구간에서 중첩되고, 상기 제2 비발광 영역은 상기 제1 발광 영역과 적어도 일부 구간에서 중첩되도록 배치된다.In addition, a heat treatment apparatus according to an embodiment of the present invention includes: a first light source unit including a first non-emission area and a first light emission area; A second light source unit including a second non-emission area and a second light emission area; And a light guide array through which light emitted from at least one of the first light source unit and the second light source unit passes. Including, wherein the light guide array is configured to change a path of light passing through the light guide array, so that the light passing through the light guide array forms one continuous energy region, and the first non-emission The region is disposed to overlap the second emission region in at least a partial section, and the second non-emission region is arranged to overlap the first emission region in at least a partial section.
상기 제1 발광 영역에는 광을 방출하도록 구성되는 복수의 레이저 다이오드(Laser Diode)들이 배치되고, 상기 제1 비발광 영역에는 상기 복수의 레이저 다이오드(Laser Diode)들을 냉각하기 위한 쿨러가 배치될 수 있다.A plurality of laser diodes configured to emit light may be disposed in the first emission region, and a cooler for cooling the plurality of laser diodes may be disposed in the first non-emission region. .
상기 광 가이드 어레이는, 상기 제1 광원 유닛 및 상기 제2 광원 유닛으로부터 방출된 광의 진행 경로를 전환하는 반사부재와, 상기 반사부재를 통과한 광의 밀도를 변화시키도록 구성되는 적어도 하나의 렌즈를 포함할 수 있다.The light guide array includes a reflective member for switching a traveling path of light emitted from the first light source unit and the second light source unit, and at least one lens configured to change a density of light passing through the reflective member. can do.
본 발명에 따르면, 피처리물의 표면에 균일하고 연속된 에너지 영역이 형성되므로, 열처리 품질이 향상된다.According to the present invention, since a uniform and continuous energy region is formed on the surface of an object to be treated, the heat treatment quality is improved.
또한, 열처리 장치의 공간 활용성이 향상되므로, 둘 이상의 광원을 포함한 열처리 장치의 소형화가 가능하다.In addition, since the space utilization of the heat treatment device is improved, it is possible to downsize the heat treatment device including two or more light sources.
또한, 피처리물의 표면에 형성되는 에너지 영역을 용이하게 조절할 수 있다.In addition, the energy region formed on the surface of the object to be treated can be easily adjusted.
도 1은 본 발명의 일 실시예에 따른 열처리 장치의 구성을 개략적으로 도시한 사시도이다.1 is a perspective view schematically showing the configuration of a heat treatment apparatus according to an embodiment of the present invention.
도 2는 광원 유닛들의 사시도이다.2 is a perspective view of light source units.
도 3은 도 1의 정면도이다.3 is a front view of FIG. 1.
도 4는 도 1의 측면도이다.Figure 4 is a side view of Figure 1;
도 5는 도 1의 평면도이다.5 is a plan view of FIG. 1.
도 6은 도 3에서 광원 유닛들로부터 방출된 광의 진행 경로를 도시한 도면이다.6 is a diagram illustrating a path of light emitted from light source units in FIG. 3.
도 7은 도 4에서 광원 유닛들로부터 방출된 광의 진행 경로를 도시한 도면이다.FIG. 7 is a diagram illustrating a path of light emitted from light source units in FIG. 4.
도 8은 본 발명의 일 실시예에 따른 열처리 장치에 의해 형성된 에너지 영역을 도시한 도면이다.8 is a diagram showing an energy region formed by a heat treatment apparatus according to an embodiment of the present invention.
도 9는 본 발명의 다른 실시예에 따른 열처리 장치의 구성을 개략적으로 도시한 사시도이다.9 is a perspective view schematically showing the configuration of a heat treatment apparatus according to another embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 열처리 장치에 의해 확대 형성된 에너지 영역을 도시한 도면이다.10 is a view showing an energy region enlarged and formed by a heat treatment apparatus according to another embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 다양한 실시 예를 보다 상세하게 설명한다. 본 명세서에 기재된 실시 예는 다양하게 변형될 수 있다. 특정한 실시예가 도면에서 묘사되고 상세한 설명에서 자세하게 설명될 수 있다. 그러나, 첨부된 도면에 개시된 특정한 실시 예는 다양한 실시 예를 쉽게 이해하도록 하기 위한 것일 뿐이다. 따라서, 첨부된 도면에 개시된 특정 실시 예에 의해 기술적 사상이 제한되는 것은 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, various embodiments will be described in more detail with reference to the accompanying drawings. The embodiments described in this specification may be variously modified. Certain embodiments may be depicted in the drawings and described in detail in the detailed description. However, specific embodiments disclosed in the accompanying drawings are only intended to facilitate understanding of various embodiments. Therefore, the technical idea is not limited by the specific embodiments disclosed in the accompanying drawings, and it should be understood to include all equivalents or substitutes included in the spirit and scope of the invention.
본 명세서에서, 어떤 구성 요소가 다른 구성 요소 “상”에 형성되어 있다고 기재된 경우는, 상기 어떤 구성 요소 및 상기 다른 구성 요소 사이에 또 다른 구성 요소가 있는 경우를 배제하지 않는다. 즉, 상기 어떤 구성 요소는 상기 다른 구성 요소와 직접 접촉하여 형성되거나, 또는 상기 어떤 구성 요소 및 상기 다른 구성 요소 사이에 또 다른 구성 요소가 개재될 수 있다.In the present specification, when it is described that a certain constituent element is formed “on” another constituent element, the case where another constituent element is present between the certain constituent element and the other constituent element is not excluded. That is, the certain component may be formed in direct contact with the other component, or another component may be interposed between the certain component and the other component.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이러한 구성요소들은 상술한 용어에 의해 한정되지는 않는다. 상술한 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various elements, but these elements are not limited by the above-described terms. The above-described terms are used only for the purpose of distinguishing one component from other components.
본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.In the present specification, terms such as "comprises" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance. When a component is referred to as being "connected" or "connected" to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in the middle. Should be. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it should be understood that there is no other component in the middle.
한편, 본 명세서에서 사용되는 구성요소에 대한 "모듈" 또는 "부"는 적어도 하나의 기능 또는 동작을 수행한다. 그리고, "모듈" 또는 "부"는 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합에 의해 기능 또는 동작을 수행할 수 있다. 또한, 특정 하드웨어에서 수행되어야 하거나 적어도 하나의 프로세서에서 수행되는 "모듈" 또는 "부"를 제외한 복수의 "모듈들" 또는 복수의 "부들"은 적어도 하나의 모듈로 통합될 수도 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Meanwhile, a "module" or "unit" for a component used in the present specification performs at least one function or operation. And, the "module" or "unit" may perform a function or operation by hardware, software, or a combination of hardware and software. In addition, a plurality of "modules" or a plurality of "units" excluding "module" or "unit" to be performed in specific hardware or performed by at least one processor may be integrated into at least one module. Singular expressions include plural expressions unless the context clearly indicates otherwise.
그 밖에도, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그에 대한 상세한 설명은 축약하거나 생략한다.In addition, in describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be abbreviated or omitted.
도 1은 본 발명의 일 실시예에 따른 열처리 장치의 구성을 개략적으로 도시한 사시도이고, 도 2는 광원 유닛들의 사시도이다. 도 3은 도 1의 정면도이고, 도 4는 도 1의 측면도이며, 도 5는 도 1의 평면도이다.1 is a perspective view schematically showing a configuration of a heat treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view of light source units. 3 is a front view of FIG. 1, FIG. 4 is a side view of FIG. 1, and FIG. 5 is a plan view of FIG. 1.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 열처리 장치(100)는 복수의 광원 유닛들(110)과, 복수의 광원 유닛들(110)로부터 방출되는 광을 가이드하도록 구성되는 광 가이드 어레이(120)를 포함한다.1 to 5, the heat treatment apparatus 100 according to an embodiment of the present invention is configured to guide light emitted from a plurality of light source units 110 and a plurality of light source units 110. It includes a light guide array 120.
복수의 광원 유닛들(110)은 제1 광원 유닛(110A)과 제2 광원 유닛(110B)을 포함한다. 제1 광원 유닛(110A)과 제2 광원 유닛(110B)은 서로 다른 방향으로 광을 방출하도록 배치된다. 제1 광원 유닛(110A)과 제2 광원 유닛(110B)은 적어도 일부 구간에서 서로 중첩(overlap)되도록 배치된다.The plurality of light source units 110 includes a first light source unit 110A and a second light source unit 110B. The first light source unit 110A and the second light source unit 110B are disposed to emit light in different directions. The first light source unit 110A and the second light source unit 110B are disposed to overlap each other in at least some sections.
제1 광원 유닛(110A)은 제1 하우징(111)과, 제1 하우징(111) 내부에 배치되어 광을 생성하는 복수의 제1 광원들(112)과, 제1 하우징(111) 내부에 배치되어 복수의 제1 광원들(112)을 냉각하도록 구성되는 제1 쿨러(113)를 포함하여 구성된다.The first light source unit 110A is disposed inside the first housing 111, a plurality of first light sources 112 that are disposed inside the first housing 111 to generate light, and the first housing 111 It is configured to include a first cooler 113 configured to cool the plurality of first light sources 112.
제1 하우징(111)은 대략 직육면체 형상을 가지며, 제1 하우징(111)의 일측에는 복수의 제1 광원들(112)로부터 생성된 광이 통과하여 제1 하우징(111)의 외부로 방출될 수 있도록 개구(111a)가 형성된다.The first housing 111 has a substantially rectangular parallelepiped shape, and light generated from the plurality of first light sources 112 passes through one side of the first housing 111 and can be emitted to the outside of the first housing 111. The opening 111a is formed so that it is.
복수의 제1 광원들(112)은 개구(111a)를 따라 제1 하우징(111)의 폭 방향(W1) 및 높이 방향(H1)으로 배열되고, 스택(Stack)을 형성한다.The plurality of first light sources 112 are arranged in the width direction W1 and the height direction H1 of the first housing 111 along the opening 111a, and form a stack.
복수의 제1 광원들(112)은 발광 다이오드 (LED: Light Emitting Diode), 유기 발광 다이오드(OLED: Organic Light Emitting Diode), 양자점 발광 다이오드(QDLED: Quantum-Dot Light Emitting Diode), 레이저 다이오드(LD: Laser Diode) 등으로 구성될 수 있으나, 열처리를 위한 고출력을 얻을 수 있는 데 가장 적합한 레이저 다이오드(LD)로 구성되는 것이 바람직하다.The plurality of first light sources 112 include a light emitting diode (LED), an organic light emitting diode (OLED), a quantum dot light emitting diode (QDLED), and a laser diode (LD). : Laser Diode), etc., but it is preferable to be composed of the most suitable laser diode (LD) to obtain high output for heat treatment.
제1 쿨러(113)는 복수의 제1 광원들(112)의 일측 또는 양측에 배치되어 복수의 제1 광원들(112)을 냉각한다. The first cooler 113 is disposed on one or both sides of the plurality of first light sources 112 to cool the plurality of first light sources 112.
제1 쿨러(113)는 팬(Fan, 미도시)과 열교환핀(미도시)을 포함하는 공랭식 구조로 마련되거나, 냉각수를 순환시키도록 구성되는 라디에이터(Radiator, 미도시) 및 펌프(Pump, 미도시)를 포함하는 수냉식 구조로 마련될 수 있다.The first cooler 113 is provided in an air-cooled structure including a fan (not shown) and a heat exchange fin (not shown), or a radiator (not shown) and a pump (not shown) configured to circulate cooling water. City) may be provided in a water-cooled structure including.
도 2에 도시된 바와 같이, 제1 하우징(111)은 복수의 제1 광원들(112)이 배치되는 제1 수용부(111b)와 제1 쿨러(113)가 배치되는 제2 수용부(111c)를 포함한다. 제2 수용부(111c)는 제1 수용부(111b)의 양측에 각각 배치된다. 제2 수용부(111c)는 제1 쿨러(113)의 위치에 따라 제1 수용부(111b)의 일측에만 배치될 수도 있고, 제1 수용부(111b) 상, 하측에 배치될 수도 있다.As shown in FIG. 2, the first housing 111 includes a first accommodating portion 111b in which a plurality of first light sources 112 are disposed and a second accommodating portion 111c in which the first cooler 113 is disposed. ). The second accommodating portions 111c are disposed on both sides of the first accommodating portion 111b, respectively. The second accommodating portion 111c may be disposed only on one side of the first accommodating portion 111b or may be disposed above and below the first accommodating portion 111b according to the position of the first cooler 113.
제2 수용부(111c)에는 제1 쿨러(113) 이외에 다른 구성들이 더 배치될 수 있다. 제2 수용부(111c)에는 내, 외부에서 가해지는 충격을 흡수하기 위한 완충부재(미도시)가 배치될 수 있다. 또, 제2 수용부(111c)에는 복수의 제1 광원들(112)에 전원을 공급하기 위한 기판 등의 전장품(미도시) 등이 배치될 수도 있다.Other components other than the first cooler 113 may be further disposed in the second accommodating part 111c. A buffer member (not shown) may be disposed in the second accommodating portion 111c to absorb shocks applied from the inside or outside. In addition, electrical equipment (not shown) such as a substrate for supplying power to the plurality of first light sources 112 may be disposed in the second accommodating portion 111c.
제1 수용부(111b)에 배치된 복수의 제1 광원들(112)에서 생성된 광은 개구(111a)를 통해 개구(111a)에 대응되는 형상으로 방출되며, 제1 발광 영역(L1)을 형성한다. 제1 발광 영역(L1)은 제1 수용부(111b)의 일면에 대응하는 형상을 가진다.The light generated by the plurality of first light sources 112 disposed in the first accommodating part 111b is emitted in a shape corresponding to the opening 111a through the opening 111a, and the first light emitting region L1 is formed. To form. The first light-emitting region L1 has a shape corresponding to one surface of the first receiving portion 111b.
제1 발광 영역(L1)의 양측에는 광이 방출되지 않는 제1 비발광 영역(NL1)이 위치되며, 제1 비발광 영역(NL1)은 제2 수용부(111c)의 일면에 대응하는 형상을 가진다.A first non-emissive area NL1 from which light is not emitted is positioned on both sides of the first emission area L1, and the first non-emissive area NL1 has a shape corresponding to one surface of the second receiving part 111c. Have.
제2 광원 유닛(110B)은 제2 하우징(116)과, 제2 하우징(116) 내부에 배치되어 광을 생성하는 복수의 제2 광원들(117)과, 제2 하우징(116) 내부에 배치되어 복수의 제2 광원들(117)을 냉각하도록 구성되는 제2 쿨러(118)를 포함하여 구성된다.The second light source unit 110B is disposed inside the second housing 116, a plurality of second light sources 117 disposed inside the second housing 116 to generate light, and the second housing 116 And a second cooler 118 configured to cool the plurality of second light sources 117.
제2 하우징(116)은 대략 직육면체 형상을 가지며, 제2 하우징(116)의 일측에는 복수의 제2 광원들(117)로부터 생성된 광이 통과하여 제2 하우징(116)의 외부로 방출될 수 있도록 개구(116a)가 형성된다.The second housing 116 has a substantially rectangular parallelepiped shape, and light generated from the plurality of second light sources 117 passes through one side of the second housing 116 and can be emitted to the outside of the second housing 116. The opening 116a is formed so that it is.
복수의 제2 광원들(117)은 개구(116a)를 따라 제2 하우징(116)의 폭 방향(W2) 및 높이 방향(H2)으로 배열되고, 스택(Stack)을 형성한다.The plurality of second light sources 117 are arranged in the width direction W2 and the height direction H2 of the second housing 116 along the opening 116a, and form a stack.
복수의 제2 광원들(117)은 발광 다이오드 (LED: Light Emitting Diode), 유기 발광 다이오드(OLED: Organic Light Emitting Diode), 양자점 발광 다이오드(QDLED: Quantum-Dot Light Emitting Diode), 레이저 다이오드(LD: Laser Diode) 등으로 구성될 수 있으나, 열처리를 위한 고출력을 얻을 수 있는 데 가장 적합한 레이저 다이오드(LD)로 구성되는 것이 바람직하다.The plurality of second light sources 117 is a light emitting diode (LED: Light Emitting Diode), an organic light emitting diode (OLED: Organic Light Emitting Diode), a quantum dot light emitting diode (QDLED: Quantum-Dot Light Emitting Diode), a laser diode (LD : Laser Diode), etc., but it is preferable to be composed of the most suitable laser diode (LD) to obtain high output for heat treatment.
제2 쿨러(118)는 복수의 제2 광원들(117)의 일측 또는 양측에 배치되어 복수의 제2 광원들(117)을 냉각한다. The second cooler 118 is disposed on one or both sides of the plurality of second light sources 117 to cool the plurality of second light sources 117.
제2 쿨러(118)는 팬(Fan, 미도시)과 열교환핀(미도시)을 포함하는 공랭식 구조로 마련되거나, 냉각수를 순환시키도록 구성되는 라디에이터(Radiator, 미도시) 및 펌프(Pump, 미도시)를 포함하는 수냉식 구조로 마련될 수 있다.The second cooler 118 is provided in an air-cooled structure including a fan (not shown) and a heat exchange fin (not shown), or a radiator (not shown) and a pump (not shown) configured to circulate cooling water. City) may be provided in a water-cooled structure including.
제2 하우징(116)은 복수의 제2 광원들(117)이 배치되는 제1 수용부(116b)와 제2 쿨러(118)가 배치되는 제2 수용부(116c)를 포함한다. 제2 수용부(116c)는 제1 수용부(116b)의 양측에 각각 배치된다. 제2 수용부(116c)는 제2 쿨러(118)의 위치에 따라 제1 수용부(116b)의 일측에만 배치될 수도 있고, 제1 수용부(116b) 상, 하측에 배치될 수도 있다.The second housing 116 includes a first accommodating portion 116b in which a plurality of second light sources 117 are disposed, and a second accommodating portion 116c in which the second cooler 118 is disposed. The second accommodating portions 116c are disposed on both sides of the first accommodating portion 116b, respectively. The second accommodating portion 116c may be disposed only on one side of the first accommodating portion 116b or may be disposed above and below the first accommodating portion 116b according to the position of the second cooler 118.
제2 수용부(116c)에는 제2 쿨러(118) 이외에 다른 구성들이 더 배치될 수 있다. 제2 수용부(116c)에는 내, 외부에서 가해지는 충격을 흡수하기 위한 완충부재(미도시)가 배치될 수 있다. 또, 제2 수용부(116c)에는 복수의 제2 광원들(117)에 전원을 공급하기 위한 기판 등의 전장품(미도시) 등이 배치될 수도 있다.Other components other than the second cooler 118 may be further disposed in the second accommodating part 116c. A buffer member (not shown) for absorbing an impact applied from the inside or outside may be disposed in the second accommodating portion 116c. In addition, electrical equipment (not shown) such as a substrate for supplying power to the plurality of second light sources 117 may be disposed in the second accommodating portion 116c.
제1 수용부(116b)에 배치된 복수의 제2 광원들(117)에서 생성된 광은 개구(116a)를 통해 개구(116a)에 대응되는 형상으로 방출되며, 제2 발광 영역(L2)을 형성한다. 제2 발광 영역(L2)은 제1 수용부(116b)의 일면에 대응하는 형상을 가진다.The light generated by the plurality of second light sources 117 disposed in the first accommodating portion 116b is emitted in a shape corresponding to the opening 116a through the opening 116a, and the second light emitting area L2 is formed. To form. The second light-emitting area L2 has a shape corresponding to one surface of the first accommodating part 116b.
제2 발광 영역(L2)의 양측에는 광이 방출되지 않는 제2 비발광 영역(NL2)이 위치되며, 제2 비발광 영역(NL2)은 제2 수용부(116c)의 일면에 대응하는 형상을 가진다.A second non-emission area NL2 from which light is not emitted is positioned on both sides of the second emission area L2, and the second non-emission area NL2 has a shape corresponding to one surface of the second receiving part 116c. Have.
열처리 장치(100)의 내부에서 제1 광원 유닛(110A)은 제1 방향(D1)으로 광을 방출하도록 배치되고, 제2 광원 유닛(110B)은 제2 방향(D2)으로 광을 방출하도록 배치된다. 제2 방향(D2)은 제1 방향(D1)과 다른 방향이며, 도면에는 제2 방향(D2)이 제1 방향(D1)과 수직인 예를 도시하였다.Inside the heat treatment apparatus 100, the first light source unit 110A is disposed to emit light in the first direction D1, and the second light source unit 110B is disposed to emit light in the second direction D2. do. The second direction D2 is a direction different from the first direction D1, and the drawing shows an example in which the second direction D2 is perpendicular to the first direction D1.
도 5에 도시된 바와 같이, 제1 광원 유닛(110A)과 제2 광원 유닛(110B)은 제1 방향(D1) 및 제2 방향(D2)과 다른 제3 방향(D3)을 따라 적어도 일부 구간(S1)에서 서로 중첩(overlap)되도록 배치된다. 도 5에서는 제3 방향(D3)이 제1 방향(D1) 및 제2 방향(D2)과 모두 수직한 예를 도시하였으나, 제3 방향(D3)은 제1 방향(D1) 및 제2 방향(D2)과 각각 수직하지 않고 비스듬한 방향일 수도 있으며, 제3 방향(D3)이 제1 방향(D1) 및 제2 방향(D2)과 각각 수직하지 않더라도 후술할 반사부재(122)의 배치 위치 조절 등을 통해 광의 진행 경로를 설정된 포인트로 제어할 수 있다.As shown in FIG. 5, the first light source unit 110A and the second light source unit 110B have at least some sections along a third direction D3 different from the first direction D1 and the second direction D2. They are arranged to overlap each other in (S1). 5 illustrates an example in which the third direction D3 is perpendicular to both the first direction D1 and the second direction D2, but the third direction D3 is the first direction D1 and the second direction ( D2) may be in an oblique direction instead of being perpendicular to each other, and even if the third direction (D3) is not perpendicular to the first direction (D1) and the second direction (D2), adjustment of the arrangement position of the reflective member 122 to be described later, etc. Through this, the traveling path of light can be controlled to a set point.
제1 광원 유닛(110A)과 제2 광원 유닛(110B)에서 방출되어 후술할 반사부재(122)에 의해 반사된 각각의 광이 진행하는 방향을 향해 바라보았을 때, 제1 광원 유닛(110A)과 제2 광원 유닛(110B)은 적어도 일부 구간(S1)에서 서로 중첩(overlap)되도록 배치된다.When each light emitted from the first light source unit 110A and the second light source unit 110B and reflected by the reflective member 122 to be described later is viewed toward the traveling direction, the first light source unit 110A and The second light source units 110B are disposed to overlap each other in at least a partial section S1.
제1 비발광 영역(NL1)은 제2 발광 영역(L2)과 중첩되도록 배치되고, 제2 비발광 영역(NL2)은 제1 발광 영역(L1)과 중첩되도록 배치된다. 제1 비발광 영역(NL1)에 대응되는 제2 수용부(111c)에 수용된 제1 쿨러(113)는 제2 하우징(116)의 제2 발광 영역(L2)에 대응되는 제1 수용부(116b)와 중첩되도록 배치되고, 제2 비발광 영역(NL2)에 대응되는 제2 수용부(116c)에 수용된 제2 쿨러(118)는 제1 하우징(111)의 제1 발광 영역(L1)에 대응되는 제1 수용부(111b)와 중첩되도록 배치된다.The first non-emissive area NL1 is disposed to overlap the second light-emitting area L2, and the second non-emissive area NL2 is disposed to overlap the first light-emitting area L1. The first cooler 113 accommodated in the second accommodating portion 111c corresponding to the first non-emission area NL1 is a first accommodating portion 116b corresponding to the second emitting area L2 of the second housing 116. ) And the second cooler 118 accommodated in the second accommodating portion 116c corresponding to the second non-emission area NL2 corresponds to the first light emitting area L1 of the first housing 111 It is disposed so as to overlap with the first accommodating portion 111b.
따라서 열처리 장치(100)의 내부에서 제3 방향(D3)으로 제1 비발광 영역(NL1)의 폭 또는 제2 비발광 영역(NL2)의 폭만큼 공간이 절약되어 공간 활용성이 향상되고, 열처리 장치(100)를 소형화 하는데 있어 유리하다. Therefore, space is saved within the heat treatment apparatus 100 in the third direction D3 by the width of the first non-emitting area NL1 or the width of the second non-emissive area NL2, improving space utilization, and heat treatment. It is advantageous in miniaturizing the device 100.
제1 비발광 영역(NL1)의 폭 또는 제2 비발광 영역(NL2)의 폭은 제1 광원 유닛(110A)과 제2 광원 유닛(110B)이 중첩되는 구간(S1)의 폭과 실질적으로 동일할 수 있다.The width of the first non-emitting area NL1 or the width of the second non-emissive area NL2 is substantially the same as the width of the section S1 where the first light source unit 110A and the second light source unit 110B overlap. can do.
광 가이드 어레이(120)는 제1 광원 유닛(110A)과 제2 광원 유닛(110B)에서 방출되는 광을 반사하도록 구성되는 반사부재(122)와, 반사부재(122)에 의해 반사된 광의 진행 경로 상에 배치되어 반사부재(122)를 통과한 광의 밀도(intensity)를 변화시키도록 구성되는 렌즈 어셈블리(124)를 포함한다.The light guide array 120 includes a reflective member 122 configured to reflect light emitted from the first light source unit 110A and the second light source unit 110B, and a path of light reflected by the reflective member 122 And a lens assembly 124 disposed thereon and configured to change the intensity of light passing through the reflective member 122.
반사부재(122)는 제1 광원 유닛(110A)과 제2 광원 유닛(110B) 사이에 배치된다.The reflective member 122 is disposed between the first light source unit 110A and the second light source unit 110B.
반사부재(122)는 제1 광원 유닛(110A)에서 방출된 광의 진행 경로를 전환하는 제1 반사부재(122a)와, 제2 광원 유닛(110B)에서 방출된 광의 진행 경로를 전환하는 제2 반사부재(122b)를 포함한다.The reflective member 122 includes a first reflective member 122a that switches a path of light emitted from the first light source unit 110A and a second reflective member that switches a path of light emitted from the second light source unit 110B. It includes a member 122b.
제1 반사부재(122a)는 제1 광원 유닛(110A)에서 방출된 광이 제1 반사부재(122a)에 의해 반사되어 렌즈 어셈블리(124)를 향해 진행될 수 있도록 제1 광원 유닛(110A)을 향해 경사지게 형성된다.The first reflective member 122a is directed toward the first light source unit 110A so that the light emitted from the first light source unit 110A is reflected by the first reflective member 122a and proceeds toward the lens assembly 124. It is formed obliquely.
제2 반사부재(122b)는 제2 광원 유닛(110B)에서 방출된 광이 제2 반사부재(122b)에 의해 반사되어 렌즈 어셈블리(124)를 향해 진행될 수 있도록 제2 광원 유닛(110B)을 향해 경사지게 형성된다. 즉, 제1 반사부재(122a)와 제2 반사부재(122b)는 각각 서로 다른 경사각(α, β)을 갖도록 배치된다.The second reflective member 122b is directed toward the second light source unit 110B so that the light emitted from the second light source unit 110B is reflected by the second reflective member 122b and proceeds toward the lens assembly 124. It is formed obliquely. That is, the first reflective member 122a and the second reflective member 122b are disposed to have different inclination angles α and β, respectively.
제1 반사부재(122a)와 제2 반사부재(122b)는 제3 방향(D3)을 따라 일렬로 나란히 배치되며, 제1 반사부재(122a)와 제2 반사부재(122b)는 서로 접촉될 수 있다.The first reflective member 122a and the second reflective member 122b are arranged side by side in a line along the third direction D3, and the first reflective member 122a and the second reflective member 122b may contact each other. have.
제1 반사부재(122a)와 제2 반사부재(122b)는 일체로 형성될 수 있다.The first reflective member 122a and the second reflective member 122b may be integrally formed.
제1 반사부재(122a)와 제2 반사부재(122b) 중 적어도 하나는 굴절부재로 대체될 수도 있다. 즉, 제1 광원 유닛(110A) 또는 제2 광원 유닛(110B)에서 방출된 광은 굴절부재를 통과하면서 굴절되어 후술할 렌즈 어셈블리(124)로 진행될 수 있다.At least one of the first reflective member 122a and the second reflective member 122b may be replaced with a refractive member. That is, the light emitted from the first light source unit 110A or the second light source unit 110B may be refracted while passing through the refracting member to proceed to the lens assembly 124 to be described later.
렌즈 어셈블리(124)는 제1 반사부재(122a) 및 제2 반사부재(122b)에 의해 반사된 광이 진행하는 경로를 따라 서로 이격 배치되는 제1 렌즈 어셈블리(124a) 및 제2 렌즈 어셈블리(124b)를 포함할 수 있다.The lens assembly 124 includes a first lens assembly 124a and a second lens assembly 124b spaced apart from each other along a path through which light reflected by the first and second reflective members 122a and 122b travels. ) Can be included.
제1 렌즈 어셈블리(124a) 및 제2 렌즈 어셈블리(124b)는 각각 하나 이상의 오목 렌즈, 볼록 렌즈, 평면 거울, 오목 거울, 볼록거울, 굴절 렌즈, 회절 렌즈, 프레넬 렌즈(Fresnel Lens), 그래디언트 인덱스 렌즈(Gradient Index Lens) 또는 이들의 조합으로 구성될 수 있다.Each of the first lens assembly 124a and the second lens assembly 124b includes at least one concave lens, a convex lens, a flat mirror, a concave mirror, a convex mirror, a refractive lens, a diffractive lens, a Fresnel lens, and a gradient index. It may be composed of a lens (Gradient Index Lens) or a combination thereof.
제1 렌즈 어셈블리(124a)는, 제1 반사부재(122a) 및 제2 반사부재(122b)에 의해 반사된 광(Lr, 도 6 참조)의 폭(Lw, 도 7 참조)을 변화시켜 광의 에너지 밀도를 조절하고, 광의 폭 방향(FA)을 따라 광(Lr)의 에너지가 균일성(Uniformity)을 가지도록 제어하는 기능을 수행한다.The first lens assembly 124a changes the width (Lw, see FIG. 7) of the light (Lr, see FIG. 6) reflected by the first and second reflective members 122a and 122b to reduce the energy of light. The density is adjusted and the energy of the light Lr is controlled to have uniformity along the width direction FA of the light.
제2 렌즈 어셈블리(124b)는 제1 렌즈 어셈블리(124a)를 통과한 광(Lu, 도 6 참조)이 광(Lu)의 폭 방향(FA)과 수직한 방향(SA)을 따라 평행하게 진행할 수 있도록 광(Lu)을 콜리메이팅(Collimating)하는 기능을 수행한다.In the second lens assembly 124b, the light (Lu, see FIG. 6) that has passed through the first lens assembly 124a may travel in parallel along a direction SA perpendicular to the width direction FA of the light Lu. It performs a function of collimating the light (Lu).
도 6은 도 3에서 광원 유닛들로부터 방출된 광의 진행 경로를 도시한 도면이고, 도 7은 도 4에서 광원 유닛들로부터 방출된 광의 진행 경로를 도시한 도면이다.6 is a diagram illustrating a path of light emitted from light source units in FIG. 3, and FIG. 7 is a diagram illustrating a path of light emitted from light source units in FIG. 4.
도 6 및 도 7에 도시된 바와 같이, 제1 광원 유닛(110A)과 제2 광원 유닛(110B)에서 방출된 광들은 각각 제1 반사부재(122a)와 제2 반사부재(122b)에 의해 반사되어 그 진행 경로가 전환되고, 제3 방향(D3)과 수직한 제4 방향(D4)을 따라 진행한다.6 and 7, the light emitted from the first light source unit 110A and the second light source unit 110B is reflected by the first reflective member 122a and the second reflective member 122b, respectively. As a result, the progress path is switched and proceeds along the fourth direction D4 perpendicular to the third direction D3.
제1 반사부재(122a)와 제2 반사부재(122b)에 의해 반사되어 제4 방향(D4)을 따라 진행한 광(Lr)은 제1 렌즈 어셈블리(124a)를 통과하면서 그 폭이 변화되고 광(Lr)의 폭 방향(FA)을 따라 균일한 에너지를 가지게 된다.The light Lr reflected by the first reflective member 122a and the second reflective member 122b and traveled along the fourth direction D4 changes in width while passing through the first lens assembly 124a. It has a uniform energy along the width direction FA of (Lr).
제1 렌즈 어셈블리(124a)를 통과한 광(Lu)은 제2 렌즈 어셈블리(124b)를 통과하면서 광(Lu)의 폭 방향(FA)과 수직한 방향(SA)을 따라 평행하게 진행되도록 콜리메이팅된 후, 피처리물의 표면에 입사된다. 제2 렌즈 어셈블리(124b)를 통과하여 피처리물의 표면에 입사되는 광(Li)은 앞서 설명한 과정을 통해 피처리물의 표면에 균일하고 연속된 에너지 영역(E, 도 8 참조)을 형성하게 된다.Collimating so that the light (Lu) passing through the first lens assembly (124a) proceeds in parallel along the direction (SA) perpendicular to the width direction (FA) of the light (Lu) while passing through the second lens assembly 124b. Then, it is incident on the surface of the object to be treated. Light (Li) passing through the second lens assembly 124b and incident on the surface of the object to be processed forms a uniform and continuous energy region (E, see FIG. 8) on the surface of the object through the above-described process.
앞서 설명한 바와 같이, 제1 비발광 영역(NL1)은 제2 발광 영역(L2)과 중첩되도록 배치되고, 제2 비발광 영역(NL2)은 제1 발광 영역(L1)과 중첩되도록 배치된다. 따라서 제3 방향(D3)을 따라 제1 발광 영역(L1)과 제2 발광 영역(L2)이 연속적으로 연결된다. 연속적으로 연결된 제1 발광 영역(L1)과 제2 발광 영역(L2)에 의해 방출된 광은 광 가이드 어레이(120)를 통과하면서 반사되고, 그 밀도가 변화되며, 콜리메이팅되는 과정을 거친 후, 피처리물의 표면에 균일하고 연속된 에너지 영역(E)을 형성하게 된다. As described above, the first non-emissive area NL1 is disposed to overlap the second light-emitting area L2, and the second non-emissive area NL2 is disposed to overlap the first light-emitting area L1. Accordingly, the first emission area L1 and the second emission area L2 are continuously connected along the third direction D3. The light emitted by the successively connected first light-emitting area L1 and second light-emitting area L2 is reflected while passing through the light guide array 120, its density is changed, and after passing through a process of collimating, A uniform and continuous energy region E is formed on the surface of the object to be processed.
도 8은 본 발명의 일 실시예에 따른 열처리 장치에 의해 형성된 에너지 영역을 도시한 도면이다.8 is a diagram showing an energy region formed by a heat treatment apparatus according to an embodiment of the present invention.
도 8에 도시된 바와 같이, 제1 광원 유닛(110A)의 제1 발광 영역(L1)으로부터 방출된 광은 제1 반사부재(122a, 도 1 내지 5 참조)에 의해 반사되고, 렌즈 어셈블리(124, 도 1 내지 5 참조)를 통과하면서 광의 폭 방향(FA) 및 광의 폭 방향(FA)과 수직한 방향(SA)으로 각각 일정한 길이를 가지는 균일하고 연속된 제1 에너지 영역(E1)을 형성한다.As shown in FIG. 8, light emitted from the first light-emitting area L1 of the first light source unit 110A is reflected by the first reflective member 122a (see FIGS. 1 to 5), and the lens assembly 124 1 to 5), forming a uniform and continuous first energy region E1 having a constant length, respectively, in a width direction FA of light and a direction SA perpendicular to the width direction FA of light. .
제2 광원 유닛(110B)의 제2 발광 영역(L2)으로부터 방출된 광은 제2 반사부재(122b, 도 1 내지 5 참조)에 의해 반사되고, 렌즈 어셈블리(124, 도 1 내지 5 참조)를 통과하면서 광의 폭 방향(FA) 및 광의 폭 방향(FA)과 수직한 방향(SA)으로 각각 일정한 길이를 가지는 균일하고 연속된 제2 에너지 영역(E2)을 형성한다. The light emitted from the second light emitting area L2 of the second light source unit 110B is reflected by the second reflective member 122b (see FIGS. 1 to 5), and the lens assembly 124 (see FIGS. 1 to 5) While passing through, a uniform and continuous second energy region E2 having a constant length is formed in the width direction FA and the direction SA perpendicular to the width direction FA of the light.
제1 발광 영역(L1)에 의해 형성되는 제1 에너지 영역(E1)과 제2 발광 영역(L2)에 의해 형성되는 제2 에너지 영역(E2)은 연속적으로 연결되어 하나의 확대된 에너지 영역(E=E1+E2)를 형성한다.The first energy region E1 formed by the first emission region L1 and the second energy region E2 formed by the second emission region L2 are continuously connected to one enlarged energy region E. =E1+E2) is formed.
즉, 제3 방향(D3)을 따라 제1 광원 유닛(110A)의 제1 발광 영역(L1)과 제2 광원 유닛(110B)이 제2 발광 영역(L2)이 연속적으로 연결되도록 배치됨으로써, 피처리물의 표면에 도달하는 광의 에너지 영역의 넓이를 용이하게 확대시킬 수 있다.That is, the first light emitting area L1 of the first light source unit 110A and the second light source unit 110B are arranged so that the second light emitting area L2 is continuously connected along the third direction D3. The area of the energy region of light reaching the surface of the treated object can be easily enlarged.
열처리 장치는 광 가이드 어레이(120)를 통과한 광의 진행각을 변경하도록 구성되는 프리즘(미도시)을 더 포함할 수 있다. 프리즘은 광 가이드 어레이(120)를 통과한 광의 진행각이 대략 1도 내지 10도 이내에서 변경되도록 하여, 피처리물에 의해 반사된 광이 복수의 광원 유닛들(110)이나 광 가이드 어레이(120)에 도달하여 손상시키는 것을 방지한다.The heat treatment apparatus may further include a prism (not shown) configured to change a traveling angle of light passing through the light guide array 120. The prism allows the propagation angle of light passing through the light guide array 120 to be changed within approximately 1 to 10 degrees, so that the light reflected by the object to be processed is transmitted to the plurality of light source units 110 or the light guide array 120 ) To reach and damage it.
도 9는 본 발명의 다른 실시예에 따른 열처리 장치의 구성을 개략적으로 도시한 사시도이고, 도 10은 본 발명의 다른 실시예에 따른 열처리 장치에 의해 확대 형성된 에너지 영역을 도시한 도면이다.9 is a perspective view schematically showing a configuration of a heat treatment apparatus according to another embodiment of the present invention, and FIG. 10 is a view showing an energy region enlarged by the heat treatment apparatus according to another embodiment of the present invention.
앞서 설명한 본 발명의 일 실시예에 따른 열처리 장치(100)와 중복되는 구성에 대해서는 동일한 참조기호를 부여하고 자세한 설명은 생략한다.Components that overlap with the heat treatment apparatus 100 according to an exemplary embodiment described above are given the same reference numerals and detailed descriptions thereof will be omitted.
다른 실시예에 따른 열처리 장치(200)는 복수의 광원 유닛들(210)을 포함하고, 복수의 광원 유닛들(210)은 제1 광원 유닛(210A)과 제2 광원 유닛(210B)과 제3 광원 유닛(210C)을 포함한다. The heat treatment apparatus 200 according to another embodiment includes a plurality of light source units 210, and the plurality of light source units 210 includes a first light source unit 210A, a second light source unit 210B, and a third It includes a light source unit (210C).
제1 광원 유닛(210A)과 제2 광원 유닛(210B)은 서로 다른 방향으로 광을 방출하도록 배치된다. The first light source unit 210A and the second light source unit 210B are disposed to emit light in different directions.
제3 광원 유닛(210C)은 제1 광원 유닛(210A)과 동일한 방향으로 광을 방출하고, 제2 광원 유닛(210B)과 서로 다른 방향으로 광을 방출하도로 배치된다. 즉, 제1 광원 유닛(210A), 제2 광원 유닛(210B) 및 제3 광원 유닛(210C)은 제3 방향(D3)을 따라 순차적으로 배치된다.The third light source unit 210C is arranged to emit light in the same direction as the first light source unit 210A and to emit light in a different direction from the second light source unit 210B. That is, the first light source unit 210A, the second light source unit 210B, and the third light source unit 210C are sequentially disposed along the third direction D3.
제1 광원 유닛(210A)과 제2 광원 유닛(210B)은 적어도 일부 구간(S1)에서 서로 중첩(overlap)되도록 배치되고, 제2 광원 유닛(210B)과 제3 광원 유닛(210C)은 적어도 일부 구간(S2)에서 서로 중첩(overlap)되도록 배치된다.The first light source unit 210A and the second light source unit 210B are disposed to overlap each other in at least a partial section S1, and the second light source unit 210B and the third light source unit 210C are at least partially They are arranged to overlap each other in the section S2.
다른 실시예에 따른 열처리 장치(200)는 제2 광원 유닛(210C)에서 방출된 광의 진행 경로를 전환하는 제3 반사부재(222)를 포함한다.The heat treatment apparatus 200 according to another exemplary embodiment includes a third reflective member 222 that switches a path of light emitted from the second light source unit 210C.
도 10에 도시된 바와 같이, 제3 광원 유닛(210C)이 추가됨으로써, 피처리물의 표면에 도달하는 광이 형성하는 에너지의 영역(E)이, 추가된 제3 광원 유닛(210C)의 제3 발광 영역(L3)에 의해 형성되는 에너지 영역(E3)만큼, 확대될 수 있다. 반대로 제3 광원 유닛(210C)이 제거됨으로써, 피처리물의 표면에 입사되는 광이 형성하는 에너지의 영역이 축소될 수도 있다. 따라서 피처리물의 표면에 도달하는 광의 에너지 영역을 용이하게 조절할 수 있다.As shown in FIG. 10, by adding the third light source unit 210C, the area E of energy formed by light reaching the surface of the object to be processed is formed by the third light source unit 210C. The energy region E3 formed by the light emitting region L3 may be enlarged. Conversely, since the third light source unit 210C is removed, an area of energy formed by light incident on the surface of the object to be processed may be reduced. Therefore, it is possible to easily adjust the energy region of light reaching the surface of the object to be treated.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and is generally used in the technical field to which the present invention belongs without departing from the gist of the present invention claimed in the claims. Various modifications are possible by those skilled in the art of course, and these modifications should not be understood individually from the technical idea or perspective of the present invention.

Claims (14)

  1. 적어도 두 개의 광원 유닛;At least two light source units;
    상기 적어도 두 개의 광원 유닛 사이에 배치되는 반사부재; 및A reflective member disposed between the at least two light source units; And
    상기 적어도 두 개의 광원 유닛으로부터 방출되는 광의 진행 경로 상에 배치되는 적어도 하나의 렌즈; 를 포함하고,At least one lens disposed on a path of light emitted from the at least two light source units; Including,
    상기 반사부재 및 상기 적어도 하나의 렌즈는, 상기 반사부재 및 상기 적어도 하나의 렌즈를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록, 정렬되는 열처리 장치.The reflective member and the at least one lens are arranged so that the light passing through the reflective member and the at least one lens forms one continuous energy region.
  2. 제 1항에 있어서,The method of claim 1,
    상기 적어도 두 개의 광원 유닛은,The at least two light source units,
    상기 반사부재를 향해 제1 방향으로 광을 방출하는 제1 광원 유닛과,A first light source unit emitting light in a first direction toward the reflective member,
    상기 반사부재를 향해 상기 제1 방향과 다른 제2 방향으로 광을 방출하는 제2 광원 유닛을 포함하는 열처리 장치.And a second light source unit that emits light in a second direction different from the first direction toward the reflective member.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제1 광원 유닛은, 제1 하우징과, 상기 제1 하우징 내부에 배치되어 광을 생성하는 복수의 제1 레이저 다이오드(Laser Diode)들을 포함하고,The first light source unit includes a first housing, and a plurality of first laser diodes disposed inside the first housing to generate light,
    상기 제2 광원 유닛은, 제2 하우징과, 상기 제2 하우징 내부에 배치되어 광을 생성하는 복수의 제2 레이저 다이오드(Laser Diode)들을 포함하며,The second light source unit includes a second housing, and a plurality of second laser diodes disposed inside the second housing to generate light,
    상기 제1 하우징과 상기 제2 하우징은 상기 제1 방향 및 상기 제2 방향과 다른 제3 방향을 따라 적어도 일부 구간에서 중첩되도록 배치되는 열처리 장치.The first housing and the second housing are disposed to overlap in at least some sections along the first direction and a third direction different from the second direction.
  4. 제 3항에 있어서,The method of claim 3,
    상기 제1 광원 유닛은, 상기 제1 하우징의 내부에 배치되어 상기 복수의 제1 레이저 다이오드(Laser Diode)들을 냉각하는 제1 쿨러를 포함하고,The first light source unit includes a first cooler disposed inside the first housing to cool the plurality of first laser diodes,
    상기 제2 광원 유닛은, 상기 제2 하우징의 내부에 배치되어 상기 복수의 제2 레이저 다이오드(Laser Diode)들을 냉각하는 제2 쿨러를 포함하며,The second light source unit includes a second cooler disposed inside the second housing to cool the plurality of second laser diodes,
    상기 제1 쿨러는 상기 제3 방향을 따라 상기 제2 하우징과 중첩되도록 배치되고, 상기 제2 쿨러는 상기 제3 방향을 따라 상기 제1 하우징과 중첩되도록 배치되는 열처리 장치.The first cooler is disposed to overlap the second housing along the third direction, and the second cooler is disposed to overlap the first housing along the third direction.
  5. 제 3항에 있어서,The method of claim 3,
    상기 반사부재는 상기 제1 광원 유닛 및 상기 제2 광원 유닛으로부터 방출되는 광의 진행 경로를 상기 제1 방향, 상기 제2 방향 및 상기 제3 방향과 수직한 제4 방향으로 전환하도록 구성되는 열처리 장치.The reflective member is configured to change the traveling path of light emitted from the first light source unit and the second light source unit into the first direction, the second direction, and a fourth direction perpendicular to the third direction.
  6. 제1 방향으로 광을 방출하는 제1 광원 유닛;A first light source unit emitting light in a first direction;
    상기 제1 방향과는 다른 제2 방향으로 광을 방출하는 제2 광원 유닛; 및A second light source unit emitting light in a second direction different from the first direction; And
    상기 제1 광원 유닛 및 상기 제2 광원 유닛으로부터 방출된 광을 가이드하는 광 가이드 어레이; 를 포함하고,A light guide array guiding the light emitted from the first light source unit and the second light source unit; Including,
    상기 광 가이드 어레이는, 상기 광 가이드 어레이를 통과한 광의 진행 경로를 전환시켜, 상기 광 가이드 어레이를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록 구성되는 열처리 장치.The light guide array is configured to change a traveling path of light passing through the light guide array so that the light passing through the light guide array forms one continuous energy region.
  7. 제 6항에 있어서,The method of claim 6,
    상기 광 가이드 어레이는,The light guide array,
    상기 제1 광원 유닛에서 방출된 광의 진행 경로를 전환하는 제1 반사부재와,A first reflective member for switching a traveling path of light emitted from the first light source unit,
    상기 제2 광원 유닛에서 방출된 광의 진행 경로를 전환하는 제2 반사부재를 포함하고,Including a second reflective member for switching a path of light emitted from the second light source unit,
    상기 제1 반사부재와 상기 제2 반사부재는 서로 다른 경사각을 갖도록 배치되는 열처리 장치.The first reflective member and the second reflective member are arranged to have different inclination angles.
  8. 제 7항에 있어서,The method of claim 7,
    상기 제1 반사부재는 상기 제2 반사부재와 나란히 배치되는 열처리 장치.The first reflective member is disposed in parallel with the second reflective member.
  9. 제 7항에 있어서,The method of claim 7,
    상기 제1 반사부재와 상기 제2 반사부재는 서로 접촉하도록 배치되는 열처리 장치.The first reflective member and the second reflective member are disposed to contact each other.
  10. 제 7항에 있어서,The method of claim 7,
    상기 광 가이드 어레이는, 상기 제1 반사부재 및 상기 제2 반사부재를 통과한 광의 밀도를 변화시키도록 정렬되는 복수의 렌즈들을 포함하는 열처리 장치.The light guide array includes a plurality of lenses arranged to change the density of light passing through the first reflective member and the second reflective member.
  11. 제1 비발광 영역과 제1 발광 영역을 포함하는 제1 광원 유닛;A first light source unit including a first non-emission area and a first light emission area;
    제2 비발광 영역과 제2 발광 영역을 포함하는 제2 광원 유닛; 및A second light source unit including a second non-emission area and a second light emission area; And
    상기 제1 광원 유닛 및 상기 제2 광원 유닛 중 적어도 하나로부터 방출되는 광이 통과하는 광 가이드 어레이; 를 포함하고,A light guide array through which light emitted from at least one of the first light source unit and the second light source unit passes; Including,
    상기 광 가이드 어레이는, 상기 광 가이드 어레이를 통과한 광의 진행 경로를 전환시켜, 상기 광 가이드 어레이를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록 구성되고,The light guide array is configured to change a traveling path of light passing through the light guide array, so that the light passing through the light guide array forms one continuous energy region,
    상기 제1 비발광 영역은 상기 제2 발광 영역과 적어도 일부 구간에서 중첩되고, 상기 제2 비발광 영역은 상기 제1 발광 영역과 적어도 일부 구간에서 중첩되도록 배치되는 열처리 장치.The first non-emissive region overlaps the second emission region in at least a partial section, and the second non-emission region overlaps the first emission region in at least a partial section.
  12. 제 11항에 있어서,The method of claim 11,
    상기 제1 발광 영역에는 광을 방출하도록 구성되는 복수의 레이저 다이오드(Laser Diode)들이 배치되고,A plurality of laser diodes configured to emit light are disposed in the first emission region,
    상기 제1 비발광 영역에는 상기 복수의 레이저 다이오드(Laser Diode)들을 냉각하기 위한 쿨러가 배치되는 열처리 장치.A heat treatment apparatus in which a cooler for cooling the plurality of laser diodes is disposed in the first non-emission area.
  13. 제 11항에 있어서,The method of claim 11,
    상기 광 가이드 어레이는,The light guide array,
    상기 제1 광원 유닛 및 상기 제2 광원 유닛으로부터 방출된 광의 진행 경로를 전환하는 반사부재와,A reflective member for switching a traveling path of light emitted from the first light source unit and the second light source unit,
    상기 반사부재를 통과한 광의 밀도를 변화시키도록 구성되는 적어도 하나의 렌즈를 포함하는 열처리 장치.Heat treatment apparatus including at least one lens configured to change the density of light passing through the reflective member.
  14. 적어도 두 개의 광원 유닛;At least two light source units;
    상기 적어도 두 개의 광원 유닛 사이에 배치되는 굴절부재; 및A refractive member disposed between the at least two light source units; And
    상기 적어도 두 개의 광원 유닛으로부터 방출되는 광의 진행 경로 상에 배치되는 적어도 하나의 렌즈; 를 포함하고,At least one lens disposed on a path of light emitted from the at least two light source units; Including,
    상기 굴절부재 및 상기 적어도 하나의 렌즈는, 상기 굴절부재 및 상기 적어도 하나의 렌즈를 통과한 광이 하나의 연속된 에너지 영역을 형성하도록, 정렬되는 열처리 장치.The refracting member and the at least one lens are arranged such that light passing through the refracting member and the at least one lens forms one continuous energy region.
PCT/KR2019/009458 2019-07-30 2019-07-30 Heat treatment apparatus WO2021020615A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2019/009458 WO2021020615A1 (en) 2019-07-30 2019-07-30 Heat treatment apparatus
KR1020217001401A KR102446159B1 (en) 2019-07-30 2019-07-30 heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/009458 WO2021020615A1 (en) 2019-07-30 2019-07-30 Heat treatment apparatus

Publications (1)

Publication Number Publication Date
WO2021020615A1 true WO2021020615A1 (en) 2021-02-04

Family

ID=74228975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009458 WO2021020615A1 (en) 2019-07-30 2019-07-30 Heat treatment apparatus

Country Status (2)

Country Link
KR (1) KR102446159B1 (en)
WO (1) WO2021020615A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069751A1 (en) * 2002-10-07 2004-04-15 Shunpei Yamazaki Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device
KR20090105750A (en) * 2008-04-03 2009-10-07 삼성모바일디스플레이주식회사 Apparatus and method for laser irradiate
WO2013146197A1 (en) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method
US20160252732A1 (en) * 2015-02-27 2016-09-01 Samsung Display Co., Ltd. Laser optical system and laser annealing device including the same
US20190015929A1 (en) * 2015-12-30 2019-01-17 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Laser annealing device and annealing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040069751A1 (en) * 2002-10-07 2004-04-15 Shunpei Yamazaki Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device
KR20090105750A (en) * 2008-04-03 2009-10-07 삼성모바일디스플레이주식회사 Apparatus and method for laser irradiate
WO2013146197A1 (en) * 2012-03-30 2013-10-03 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method
US20160252732A1 (en) * 2015-02-27 2016-09-01 Samsung Display Co., Ltd. Laser optical system and laser annealing device including the same
US20190015929A1 (en) * 2015-12-30 2019-01-17 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Laser annealing device and annealing method therefor

Also Published As

Publication number Publication date
KR102446159B1 (en) 2022-09-22
KR20210016051A (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP4326698B2 (en) Optical emitter array including collimator optics
US20100158060A1 (en) Laser Diode Assemblies
US20110216286A1 (en) Illumination device and projection display device
US10054849B2 (en) Light source device and projector
WO2021020615A1 (en) Heat treatment apparatus
JP2011086905A (en) Laser assembly
CN111258164B (en) Laser projection device
WO2016171301A1 (en) Laser amplification device
JP6004767B2 (en) Light source device
WO2021157977A1 (en) Display apparatus
WO2019132442A1 (en) Line beam forming apparatus
WO2021015433A1 (en) Display apparatus
US20190013650A1 (en) Multiplexed laser light source
WO2019132441A1 (en) Line beam forming apparatus
WO2021162352A1 (en) Variable-pulse-width flat-top laser device and operating method therefor
CN214313860U (en) Stable semiconductor laser
WO2022054975A1 (en) Optical system comprising hybrid light source, and projector device comprising same
WO2020180128A1 (en) Fixture including light guide and aerosol generating device including the fixture
US10746944B2 (en) Laser device
WO2019078431A1 (en) High-power light source device
WO2021185084A1 (en) Laser light source and laser projection apparatus
WO2014163321A1 (en) Led illumination unit for electronic display board
CN219105334U (en) Light source device and lighting system
WO2020153643A1 (en) Vehicle headlamp lens
WO2022234954A1 (en) Display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217001401

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939770

Country of ref document: EP

Kind code of ref document: A1