WO2021020457A1 - Optical layer, solar cell module, outer wall material for construction, and building - Google Patents

Optical layer, solar cell module, outer wall material for construction, and building Download PDF

Info

Publication number
WO2021020457A1
WO2021020457A1 PCT/JP2020/029100 JP2020029100W WO2021020457A1 WO 2021020457 A1 WO2021020457 A1 WO 2021020457A1 JP 2020029100 W JP2020029100 W JP 2020029100W WO 2021020457 A1 WO2021020457 A1 WO 2021020457A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical layer
solar cell
particles
functional layer
Prior art date
Application number
PCT/JP2020/029100
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 智弘
賢枝 金
康夫 菅原
祐 小野崎
雄一 ▲桑▼原
Original Assignee
Agc株式会社
エージーシー グラス ユーロップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, エージーシー グラス ユーロップ filed Critical Agc株式会社
Priority to JP2021535393A priority Critical patent/JPWO2021020457A1/ja
Publication of WO2021020457A1 publication Critical patent/WO2021020457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings

Definitions

  • the present invention relates to an optical layer, a solar cell module, a building exterior wall material, and a building.
  • a solar cell module is required to be able to express various designs.
  • a solar cell module having an excellent concealing property of a solar cell and having a white appearance is required.
  • a method of installing a member colored with a white pigment (for example, titanium oxide) in the solar cell module there is a method of installing a member colored with a white pigment (for example, titanium oxide) in the solar cell module.
  • a white pigment for example, titanium oxide
  • problems such as exhibiting a bluish white color or insufficient concealment of the solar cell.
  • light having a wavelength required for power generation is obtained. May not reach the solar cell, causing problems such as insufficient power generation efficiency of the photovoltaic power generation module.
  • the present invention has been made in view of the above problems, and is an optical layer, a solar cell module, and a building outer wall material capable of forming a solar cell module having excellent concealment property of a solar cell, exhibiting a white appearance, and excellent power generation efficiency. And the provision of buildings is an issue.
  • the present inventors have included zirconia particles having a predetermined average primary particle diameter or hollow particles of an inorganic oxide containing Si atoms having a predetermined average primary particle diameter, and have a predetermined thickness.
  • zirconia particles having a predetermined average primary particle diameter or hollow particles of an inorganic oxide containing Si atoms having a predetermined average primary particle diameter have a predetermined thickness.
  • the optical layer has an average primary particle size of 40 to 500 nm, zirconia particles in which some of the constituent elements may be substituted with elements other than Zr, or an average primary particle size of 120 to 30,000 nm.
  • the optical layer according to [1], wherein the cumulative 50% diameter of the zirconia particles based on the volume is 0.1 to 5 ⁇ m.
  • a solar cell and an optical layer according to any one of [1] to [12] are provided, and the optical layer is located on the incident surface side of sunlight with respect to the solar cell.
  • the solar cell module that is placed.
  • the solar cell module further has a back surface protective layer arranged on the side opposite to the incident surface side of sunlight in the solar cell.
  • an optical layer a solar cell module, a building exterior wall material, and a building capable of forming a solar cell module having excellent concealment of a solar cell, exhibiting a white appearance, and excellent power generation efficiency. it can.
  • the meanings of the terms in the present invention are as follows.
  • the primary particles of zirconia particles and hollow particles are particles observed using a scanning electron microscope.
  • the average primary particle size of the zirconia particles and hollow particles is obtained by taking an SEM photograph of the particles using a scanning electron microscope, measuring 100 major axis diameters of the primary particles in the image, and performing an arithmetic average. Value.
  • S-4800 manufactured by Hitachi High-Technologies Corporation
  • the major axis diameter of the primary particles in the image means the longest line segment of the primary particles in the image when a straight line is drawn from one end to the other.
  • the cumulative 50% diameter of the zirconia particles and the hollow particles based on the volume is obtained by performing ultrasonic treatment on the zirconia particles or the dispersion containing the hollow particles and then measuring using a particle size distribution measuring device. Cumulative 50% diameter (D50), and detailed measurement conditions are as described in Examples.
  • MT3300EXII manufactured by Microtrac Bell
  • the specific surface area of the zirconia particles and the hollow particles is a value obtained by the nitrogen adsorption BET method under degassing conditions at 200 ° C. for 20 minutes using a specific surface area measuring device.
  • HM model-1208 manufactured by Mountech
  • the density of zirconia particles and hollow particles is a value obtained by measuring with a pycnometer.
  • ULTRAPYC 1200e manufactured by Kantachrome
  • the thickness of each layer of the optical layer can be obtained by appropriately using a thickness meter, an eddy current film thickness meter, or the like.
  • the thickness of the functional layer is obtained by using an eddy current type film thickness meter (trade name "EDY-5000", manufactured by Sanko Denshi Co., Ltd.).
  • the visible light average transmittance, visible light average scattering transmittance, near-infrared light average transmittance, and near-infrared light average diffusion transmittance of the optical layer are optical so that light is incident from the normal direction of the surface of the optical layer. It is calculated based on the value measured using a spectrophotometer with a layer installed, and the detailed measurement conditions are as described in the examples.
  • V-670 manufactured by JASCO Corporation
  • the L * , a * , b * and stimulus purity of the optical layer are values obtained by measuring with a spectrocolorimeter.
  • SD6000 manufactured by Nippon Denshoku Kogyo Co., Ltd.
  • (Meta) acrylate is a general term for acrylate and methacrylate
  • (meth) acrylic is a general term for acrylic and methacrylic.
  • the hydrolyzable silyl group is a group that becomes a silanol group by hydrolysis.
  • the acid value and the hydroxyl value are values measured according to the description of JIS K 0070-3 (1992), respectively.
  • the mass of the solid content of the composition or the like is the mass obtained by removing the solvent from the composition when the composition contains a solvent.
  • the mass of the solid content of the composition is determined as the mass remaining after heating 1 g of the composition at 140 ° C. for 20 minutes.
  • the optical layer of the present invention is an optical layer used by being arranged on the incident surface side of sunlight with respect to a solar cell, and the optical layer is one of the constituent elements having an average primary particle diameter of 40 to 500 nm. It has a functional layer containing zirconia particles whose portions may be substituted with elements other than Zr, or hollow particles of an inorganic oxide containing Si atoms having an average primary particle diameter of 120 to 30,000 nm. The thickness of the functional layer is 1 to 1,000 ⁇ m.
  • the zirconia particles having an average primary particle diameter of 40 to 500 nm and in which some of the constituent elements may be replaced with elements other than Zr are also referred to as "specific zirconia particles”.
  • “hollow particles of an inorganic oxide containing a Si atom having an average primary particle diameter of 120 to 30,000 nm” are also referred to as “specific hollow particles”.
  • the specific zirconia particles and the specific hollow particles are collectively referred to as “specific particles”.
  • the optical layer of the present invention By using the optical layer of the present invention, it is possible to form a solar cell module which is excellent in concealment of a solar cell, has a white appearance, and is excellent in power generation efficiency. This is presumed to be due to the following reasons.
  • the reflectance of the optical layer is measured, if the reflectance in the visible light region having a wavelength of 400 to 780 nm is constant, it can be said that the optical layer exhibits an excellent white appearance.
  • the present inventors evaluated a functional layer formed by using nanoparticles of titanium oxide often used as a white pigment the reflectance near a wavelength of 400 nm became high (specifically, the wavelength). (A peak reflectance is observed near 400 nm), and it was found that the appearance of the optical layer is bluish white.
  • FIG. 1 is a schematic cross-sectional view showing an example of the optical layer of the present invention.
  • the optical layer 10 has a base material 110 and a functional layer 120.
  • the first embodiment is an embodiment in which the functional layer contains specific zirconia particles
  • the second embodiment is an embodiment in which the functional layer contains specific hollow particles.
  • the optical layer of the present invention may include both specific zirconia particles and specific hollow particles.
  • the optical layer of the first embodiment is an optical layer used by being arranged on the incident surface side of sunlight with respect to the solar cell, has a functional layer containing specific zirconia particles, and has a thickness of the functional layer. Is 1 to 1,000 ⁇ m.
  • the optical layer of the first embodiment is also referred to as "optical layer A".
  • the optical layer A is arranged and used on the incident surface side of sunlight with respect to the solar cell.
  • the solar cells are not used alone, but a plurality of solar cells are arranged so as to be adjacent to each other, and each is electrically connected in series or in parallel. Therefore, typically, the optical layer A is arranged as a continuous surface with respect to these plurality of solar cells, and is present on the incident surface side of sunlight with respect to the solar cells.
  • the optical layer A typically does not include a sealing layer that seals the solar cell.
  • the optical layer A is preferably laminated on the sealing layer (on the side irradiated with sunlight rather than the sealing layer) from the viewpoint of being superior to the effect of the present invention.
  • the optical layer A may have irregularities on the surface on the air side to the extent that the effects of the present invention are not impaired.
  • Examples of the mode in which the optical layer A has irregularities on the surface on the air side include a mode in which the optical layer A has a functional layer as the outermost layer on the air side and the functional layer contains a matting agent, and an optical layer A.
  • the base material (described later) is provided as the outermost layer on the air side, and the base material is appropriately surface-treated by polishing or the like.
  • the thickness of the optical layer A is preferably 0.7 to 9.7 mm, more preferably 1 to 8 mm, and particularly preferably 2 to 6 mm from the viewpoint of ease of handling of the solar cell module.
  • the L * value, a * value, and b * value in the L * a * b * color system are 30 to 100, -10 to 10, and -15 to 10 in this order. It is preferably 50 to 100, -3 to 3, and -10 to 5 in particular.
  • the L * value, a * value, and b * value of the optical layer A are a combination of the above ranges, the optical layer A becomes close to achromatic color, and thus exhibits a more excellent white color.
  • the optical layer A preferably has a stimulus purity of 0 to 20, more preferably 0 to 15, and particularly preferably 0 to 12 in the XYZ color system.
  • the optical layer A When the stimulation purity of the optical layer A is within the above range, the optical layer A exhibits a more excellent white color.
  • the optical layer A when the L * value, the a * value, and the b * value are a combination of the above ranges and the stimulation purity is in the above range, the optical layer A exhibits a particularly excellent white color.
  • the visible light average transmittance (V1) of the optical layer A is preferably 90% or less, more preferably 85% or less, and particularly preferably 80% or less from the viewpoint of hiding property of the solar cell.
  • the V1 of the optical layer A is preferably 5% or more, more preferably 15% or more, and particularly preferably 24% or more from the viewpoint of power generation efficiency of the solar cell module.
  • the visible light average transmittance (V1) means a value obtained by arithmetically averaging the total light transmittance in increments of 5 nm in the visible light region having a wavelength of 400 to 780 nm.
  • the visible light average scattering transmittance (V2) of the optical layer A is preferably 5% or more, more preferably 10% or more, and more preferably 24% or more from the viewpoint of power generation efficiency of the solar cell module and whiteness of the optical layer A. Is particularly preferable.
  • the upper limit of V2 is usually 100%.
  • the visible light average scattering transmittance (V2) is a value obtained by subtracting the value obtained by subtracting the value obtained by arithmetically averaging the linear transmittance in increments of 5 nm in the visible light region having a wavelength of 400 to 780 nm from the visible light average transmittance (V1). means.
  • the visible light scattering rate (V3) of the optical layer A is preferably 30% or more, more preferably 45% or more, particularly 60% or more, from the viewpoint of power generation efficiency of the solar cell module and whiteness of the optical layer A. preferable.
  • the upper limit of V3 is usually 100%.
  • the visible light scattering rate (V3) means a value [(V2 / V1) ⁇ 100] calculated by dividing the visible light average scattering transmittance (V2) by the visible light average transmittance (V1). ..
  • the near-infrared light average transmittance (N1) of the optical layer A is preferably 20% or more, more preferably 30% or more, and particularly preferably 35% or more from the viewpoint of power generation efficiency of the solar cell module.
  • the upper limit of N1 is usually 100%.
  • the near-infrared light average transmittance (N1) means a value obtained by arithmetically averaging the total light transmittance in increments of 5 nm in the near-infrared light region having a wavelength of 780 to 1,200 nm.
  • the near-infrared light average scattering transmittance (N2) of the optical layer A is preferably 10% or more, more preferably 24% or more, and particularly preferably 35% or more from the viewpoint of power generation efficiency of the solar cell module.
  • the upper limit of N2 is usually 100%.
  • the near-infrared light average scattered transmittance (N2) is calculated from the near-infrared light average transmittance (N1) in a near-infrared light region having a wavelength of 780 to 1,200 nm in increments of 5 nm. It means the value obtained by subtracting the average value.
  • the near-infrared light scattering rate (N3) of the optical layer A is preferably 10% or more, more preferably 20% or more, and particularly preferably 45% or more from the viewpoint of power generation efficiency of the solar cell module.
  • the upper limit of N3 is usually 100%.
  • the near-infrared light scattering rate (N3) is a value calculated by dividing the near-infrared light average scattering transmittance (N2) by the near-infrared light average transmittance (N1) [(N2 / N1). ⁇ 100].
  • V1 to V3 and N1 to N3 in the optical layer A can be adjusted by, for example, the particle size or the amount of the specific zirconia particles added, or the thickness of the optical layer A.
  • the thickness of the functional layer of the optical layer A is 1 to 1,000 ⁇ m, preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the thickness of the functional layer is obtained by arithmetically averaging a value obtained by subtracting the thickness of the base material from the total thickness of the functional layer and the base material measured by a micrometer at any 10 points.
  • the refractive index of the functional layer of the optical layer A is 1.4 to 2.6 because the difference in refractive index from the sealing layer becomes small, the total light transmittance increases, and the power generation efficiency of the solar cell module tends to increase. Is preferable, and 1.4 to 2.0 is particularly preferable.
  • the refractive index of the functional layer is a value measured by a commercially available refractive index measuring device, an ellipsometer, or the like.
  • the functional layer included in the optical layer A contains specific zirconia particles.
  • the shape of the specific zirconia particles is any of spherical, elliptical, needle-shaped, plate-shaped, rod-shaped, cone-shaped, columnar, cubic, rectangular parallelepiped, diamond-shaped, star-shaped, scaly, amorphous, etc. However, a spherical shape is preferable in terms of dispersibility.
  • the specific zirconia particles are solid particles.
  • the average primary particle diameter of the specific zirconia particles is 40 to 500 nm, preferably 45 to 400 nm, more preferably 50 to 300 nm, and particularly preferably 55 to 200 nm.
  • the average primary particle size is 40 nm or more, the concealing property of the solar cell is more excellent.
  • the average primary particle size is 500 nm or less, it is possible to satisfy at least one of the fact that the optical layer A exhibiting a more excellent white appearance can be obtained and that the solar cell module having more excellent power generation efficiency can be obtained. ..
  • the cumulative 50% diameter of the specific zirconia particles based on the volume is preferably 0.1 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m, and particularly preferably 0.1 to 1.0 ⁇ m.
  • the cumulative 50% diameter is 0.1 ⁇ m or more, the concealing property of the solar cell is more excellent.
  • the cumulative 50% diameter is 6.0 ⁇ m or less, at least one of the fact that the optical layer A exhibiting a more excellent white appearance can be obtained and that the solar cell module having more excellent power generation efficiency can be obtained is satisfied. Can be done.
  • the specific surface area of specific zirconia particles is preferably 0.5 ⁇ 100m 2 / g, more preferably from 1 ⁇ 50m 2 / g, particularly preferably 3 ⁇ 30m 2 / g. Within the above range, scattering of near-infrared light by the specific zirconia particles is preferable, and the power generation efficiency of the solar cell module is more excellent.
  • the refractive index of the specific zirconia particles is preferably 1.9 to 2.3, particularly preferably 2.0 to 2.2.
  • the refractive index of the specific zirconia particles means the refractive index of the material constituting the specific zirconia particles (for example, when the material is obtained by pulverization or the like, the material before pulverization), and is usually a literature value of the above-mentioned material.
  • the refractive index of the powder can be directly measured by the JIS K 7142: 2014 B method.
  • the zirconia (zirconium oxide) constituting the specific zirconia particles may have at least a part of the constituent elements substituted with an element other than Zr (hereinafter, also referred to as a specific element), or may not be substituted with the specific element. However, it is preferably substituted with a specific element in that the crystal phase transition can be suppressed and the effect of using the specific zirconia particles is more exerted.
  • the specific element as the substitution element include Y, Al, and Ce, and Y is preferable in that the crystal phase transition can be further suppressed and the effect of using the specific zirconia particles is more exhibited.
  • the content of the specific element is preferably 1 to 30 mol% with respect to Zr in the specific zirconia particles in that the crystal phase transition can be suppressed and the effect of using the specific zirconia particles is more exerted. -8 mol% is particularly preferred.
  • TZ TZ series (manufactured by Tosoh Corporation).
  • the content of the specific zirconia particles is preferably 1 to 80% by mass, more preferably 5 to 65% by mass, and particularly preferably 10 to 50% by mass with respect to the total mass of the functional layer.
  • the concealing property of the solar cell is more excellent. If it is 80% by mass or less, a solar cell module excellent in power generation efficiency can be obtained.
  • the functional layer included in the optical layer A may include a matrix.
  • the matrix plays a role of fixing the specific particles contained in the functional layer in a dispersed state.
  • Specific examples of the matrix include resin, glass obtained by sintering a glass frit composition, silica, and the like.
  • the matrix may be composed of two or more of the above components. Of these, resin is preferable as the matrix.
  • Examples of the glass obtained by sintering the glass frit composition and the silica include the glass obtained by sintering the glass frit composition described in International Publication No. 2019/116859 and silica.
  • the resin When the matrix contains a resin, the resin consists of a cured product of a thermoplastic resin or a curable resin. Crosslinked products of polymers having a crosslinkable group, polycondensated polymers of compounds having a polypolymerizable group, addition polymers of compounds having an addition polymerizable group, etc. are also included in the category of cured products of thermoplastic resins and curable resins. It shall be. Further, the thermoplastic resin having a reactive group such as a hydroxy group may form a matrix without the reactive group reacting.
  • the resin when the matrix contains a resin, specific examples of the resin include alkyd resin, aminoalkyd resin, polyester resin, epoxy resin, urethane resin, epoxy-polyester resin, vinyl acetate resin, acrylic resin, vinyl chloride resin, phenol resin, and modification. Examples thereof include polyester resin, fluororesin, acrylic silicone resin, silicone resin, ethylene-vinyl acetate resin, and polyvinyl butyral resin. Of these, as for the resin that becomes a matrix by curing or cross-linking, the cured product or the cross-linked product becomes a matrix. As the resin contained in the matrix, a fluororesin composed of a fluoropolymer or a crosslinked product of a crosslinkable fluoropolymer is preferable from the viewpoint of weather resistance.
  • the matrix may contain two or more of the resins.
  • the fluorine-containing polymer preferably contains a unit based on a fluoroolefin (hereinafter, also referred to as a unit F).
  • the unit is a general term for an atomic group based on one molecule of the monomer, which is directly formed by polymerizing a monomer, and an atomic group obtained by chemically converting a part of the atomic group.
  • the content (mol%) of each unit with respect to all the units contained in the polymer is determined by analyzing the polymer by a nuclear magnetic resonance spectrum (NMR) method.
  • NMR nuclear magnetic resonance spectrum
  • a fluoroolefin is an olefin in which one or more H atoms are substituted with F atoms.
  • one or more H atoms which are not substituted with F atoms may be substituted with chlorine atoms.
  • CF 2 CFCl is particularly preferred.
  • Two or more kinds of fluoroolefins may be used in combination.
  • the fluorine-containing polymer may contain only the unit F, may contain a unit based on a monomer containing an F atom other than the unit F and the fluoroolefin, and may contain a unit amount free of the unit F and the F atom. It may include body-based units.
  • fluoropolymer containing only the unit F examples include a fluoroolefin homopolymer, two or more copolymers of fluoroolefin, and specific examples thereof include polytetrafluoroethylene and polychlorotrifluoroethylene. Examples thereof include tetrafluoroethylene-hexafluoropropylene copolymer and polyvinylidene fluoride.
  • fluorine-containing polymer containing a unit based on a monomer containing an F atom other than the unit F and a fluoroolefin examples include a fluoroolefin-perfluoro (alkyl vinyl ether) copolymer, and specific examples thereof include tetrafluoroethylene. -Perfluoro (alkyl vinyl ether) copolymers can be mentioned.
  • the fluorine-containing polymer preferably contains units F and units based on a monomer containing no F atom from the viewpoint of dispersibility of specific particles in the matrix.
  • fluoropolymer containing the unit F and a unit based on a monomer containing no F atom include a chlorotrifluoroethylene-vinyl ether copolymer and a chlorotrifluoroethylene-vinyl ether-vinyl ester copolymer. , Chlorotrifluoroethylene-vinyl ester-allyl ether copolymer, tetrafluoroethylene-vinyl ester copolymer, tetrafluoroethylene-vinyl ester-allyl ether copolymer, ethylene-tetrafluoroethylene copolymer.
  • a chlorotrifluoroethylene-vinyl ether copolymer is preferable from the viewpoint of excellent design of the solar cell module.
  • the content of the unit F is preferably 20 to 100 mol%, more preferably 30 to 70 mol%, and more preferably 40 to 60 mol% with respect to all the units contained in the fluorine-containing polymer from the viewpoint of weather resistance of the functional layer. Is particularly preferable.
  • the fluorine-containing polymer contains a crosslinkable fluorine-containing weight containing a unit having a crosslinkable group (hereinafter, also referred to as unit C) as a unit based on a monomer containing no F atom. It is preferably coalesced.
  • the unit C may be a unit based on a monomer having a crosslinkable group (hereinafter, also referred to as a monomer C), and the crosslinkable group of the fluoropolymer containing the unit C may be a different crosslinkable group. It may be a unit obtained by converting to.
  • Such a unit is obtained by reacting a fluorine-containing polymer containing a unit having a hydroxy group with a polycarboxylic acid, an acid anhydride thereof, or the like to convert a part or all of the hydroxy group into a carboxy group.
  • the unit is mentioned.
  • Specific examples of the crosslinkable group include a hydroxy group, a carboxy group, an amino group, an epoxy group and a hydrolyzable silyl group, and a hydroxy group and a carboxy group are preferable from the viewpoint of the strength of the functional layer.
  • the crosslinkable group of the unit C may be crosslinked with a curing agent described later in the matrix, may remain without being crosslinked, and is preferably crosslinked with the curing agent. When the crosslinkable group of the unit C is crosslinked by a curing agent, the durability of the functional layer is more excellent. When the crosslinkable group of the unit C remains without crosslinking, the dispersibility of the specific particles in the matrix is more excellent.
  • Examples of the monomer having a hydroxy group include vinyl ether, vinyl ester, allyl ether, allyl ester, (meth) acrylate, allyl alcohol and the like having a hydroxy group.
  • "-cycloC 6 H 10- " represents a cyclohexylene group, and the binding site of "-cycloC 6 H 10- " is usually 1,4-.
  • the content of the unit C is preferably 0.5 to 35 mol%, more preferably 3 to 25 mol%, still more preferably 5 to 25 mol%, and 5 to 20 with respect to all the units contained in the fluorine-containing polymer. Mol% is particularly preferred.
  • the fluorine-containing polymer may further contain a unit based on a monomer having no crosslinkable group as a unit based on a monomer containing no F atom.
  • a unit based on a monomer having no crosslinkable group one or more monomers selected from the group consisting of alkene, vinyl ether, vinyl ester, allyl ether, allyl ester, and (meth) acrylate (hereinafter,). , Also referred to as monomer D) (hereinafter, also referred to as unit D).
  • the monomer D examples include ethylene, propylene, 1-butene, ethyl vinyl ether, tert-butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether, vinyl acetate, vinyl pivalate, and vinyl neononanonate (manufactured by HEXION). Name "Beova 9” etc.), Vinyl neodecanoate (manufactured by HEXION, trade name "Beova 10" etc.), Vinyl benzoate, tert-butyl Vinyl benzoate, tert-butyl (meth) acrylate, benzyl (meth) acrylate Can be mentioned.
  • the fluorine-containing polymer contains the unit D
  • the content of the unit D is preferably 5 to 60 mol%, particularly preferably 10 to 50 mol%, based on all the units contained in the fluorine-containing polymer.
  • the fluorine-containing polymer may contain 30 to 70 mol% of the unit F, 0.5 to 35 mol% of the unit C, and 5 to 60 mol% of the unit D with respect to all the units contained in the fluorine-containing polymer. preferable.
  • fluorine-containing polymer a commercially available product may be used.
  • specific examples of commercially available products include the "Lumiflon” series (AGC product name), the “Kynar” series (Arkema product name), the “Zeffle” series (Daikin Industries product name), and the “Eterflon” series (Eternal product). Name), "Zendura” series (Honeywell product name).
  • the fluorine-containing polymer is produced by a known method.
  • Specific examples of the method for producing a fluorine-containing polymer include solution polymerization and emulsion polymerization using a radical initiator and the like.
  • a polymerization stabilizer, a polymerization inhibitor, a surfactant and the like may be used during or after the production of the fluorine-containing polymer.
  • the content of the fluororesin in the functional layer is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the functional layer from the viewpoint of weather resistance of the functional layer. Mass% is particularly preferred.
  • the F atom content of the functional layer is preferably 65% by mass or less, more preferably 50% by mass or less, and more preferably 40% by mass, from the viewpoint of dispersibility of specific particles in the matrix.
  • the following is more preferable, 25% by mass or less is particularly preferable, and 20% or less is most preferable.
  • the F atom content of the functional layer is preferably 0.1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more, based on the total mass of the functional layer, from the viewpoint of weather resistance of the functional layer. Is more preferable, and 10% by mass or more is particularly preferable.
  • the F atom content of the functional layer is preferably 0.1 to 25% by mass, particularly preferably 5 to 20% by mass, the specific particles are dispersed particularly well in the functional layer, so that the solar cell module Excellent in design and power generation efficiency.
  • the F atom content in the functional layer means the content (mass%) of F atoms with respect to all the atoms constituting the functional layer.
  • the F atom content in the functional layer is obtained by measuring with the following conditions by an automatic sample combustion device-ion chromatography method (AQF-IC method). ⁇ Analysis conditions> -Automatic sample combustion device: Automatic sample combustion device AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the matrix preferably contains a resin having a crosslinked structure formed by reacting a crosslinkable group of the crosslinkable resin with a curing agent. Further, a crosslinked structure may be formed between the resin constituting the matrix and a layer other than the functional layer.
  • the crosslinkable group of the crosslinkable resin and the reactive group of the layer other than the functional layer may be crosslinked with a curing agent or the like.
  • the reactive group possessed by the layer other than the functional layer the silanol group when the layer other than the functional layer is a base material made of a glass plate, and the layer other than the functional layer are surface-treated with a silane coupling agent or the like.
  • Examples thereof include a hydrolyzable silyl group in the case of a layer.
  • a functional layer is formed on a base material made of a glass plate from a resin containing a curing agent having at least one selected from a hydrolyzable silyl group and a silanol group, the hydrolyzable silyl group of the curing agent and the like (Specifically, the silanol group generated by hydrolysis) reacts with the silanol group existing on the surface of the glass plate to form a crosslinked structure. Therefore, the adhesion of the functional layer to the base material is more excellent.
  • the base material is a layer made of a glass plate surface-treated with a silane coupling agent or the like
  • the silanol group existing on the surface of the glass plate and the hydrolyzable silyl of the silane coupling agent The groups and the like react with the hydrolyzable silyl groups and the like of the curing agent to form a crosslinked structure. Therefore, the adhesion between the base material and the functional layer is improved, and the durability of the optical layer A is excellent.
  • the functional layer of the optical layer A may contain components other than the above. Examples of such a component include additives described later.
  • the functional layer in the first embodiment is formed by using a composition containing at least a polymer (particularly, a fluorine-containing polymer) and specific zirconia particles (hereinafter, referred to as composition (1)). It is a layer to be.
  • the composition (1) may contain two or more kinds of polymers. Further, the composition (1) may contain two or more kinds of specific zirconia particles.
  • the polymer include polymers contained in the resin constituting the above-mentioned matrix, and a fluorine-containing polymer is preferable.
  • the fluorine-containing polymer in the composition (1F) has the following physical characteristics. It is preferable to have.
  • the acid value of the fluorine-containing polymer is preferably 1 to 200 mgKOH / g, more preferably 1 to 150 mgKOH / g, further preferably 3 to 100 mgKOH / g, and particularly preferably 5 to 50 mgKOH / g from the viewpoint of the strength of the functional layer. preferable.
  • the hydroxyl value of the fluorine-containing polymer is preferably 1 to 200 mgKOH / g, more preferably 1 to 150 mgKOH / g, further preferably 3 to 100 mgKOH / g, and particularly preferably 10 to 60 mgKOH / g from the viewpoint of the strength of the functional layer.
  • the fluorine-containing polymer may have either an acid value or a hydroxyl value, or may have both.
  • the F atom content of the fluorine-containing polymer is preferably 70% by mass or less, more preferably 50% by mass or less, further preferably 30% by mass or less, and 28% by mass or less from the viewpoint of dispersibility of specific particles in the matrix. Is particularly preferable.
  • the F atom content of the fluorine-containing polymer is preferably 10% by mass or more, particularly preferably 15% by mass or more, from the viewpoint of weather resistance of the functional layer.
  • the F atom content of the fluorine-containing polymer is preferably 15 to 30% by mass, particularly preferably 15 to 28% by mass, the specific particles are well dispersed in the functional layer, so that the design of the solar cell module Excellent in properties and power generation efficiency.
  • the F atom content of the fluorine-containing polymer means the ratio (mass%) of F atoms to all the atoms constituting the fluorine-containing polymer.
  • the F atom content is determined by analyzing the fluorine-containing polymer by a nuclear magnetic resonance spectroscopy (NMR) method.
  • the content of the fluorine-containing polymer in the composition (1F) is 10 to 90% by mass with respect to the total mass of the composition (1F) from the viewpoint of the dispersibility of specific particles in the composition (1F). It is preferable, and 20 to 40% by mass is particularly preferable.
  • the content of the fluorine-containing polymer in the solid content of the composition (1F) is 10 with respect to the total solid content mass of the composition (1F) from the viewpoint of the dispersibility of specific particles in the composition (1F). It is preferably from 90% by mass, particularly preferably 40 to 70% by mass.
  • the content of the specific particles in the solid content of the composition (1F) is 5 to 80 with respect to the total solid content mass of the composition (1F) from the viewpoint of the dispersibility of the specific particles in the composition (1F). It is preferably by mass, particularly preferably 20 to 50% by mass.
  • the composition (1) may contain components other than the specific zirconia particles and the polymer (hereinafter, also referred to as additives).
  • additives include hardeners, catalysts, fillers (organic fillers such as resin beads), light stabilizers, ultraviolet absorbers, matting agents, dispersants, defoamers, leveling agents, degassing agents, and fillings.
  • examples thereof include agents, heat stabilizers, thickeners, surfactants, antistatic agents, rust preventives, silane coupling agents, antifouling agents, decontamination treatment agents, plasticizers, adhesives and the like.
  • the composition (1) may contain components not included in the functional layer, if necessary. Specific examples of such components include liquid media.
  • Liquid media such as water and organic solvents are components that are removed by evaporation and removal during matrix formation, and are included in the composition (1) when the functional layer is formed by means such as coating.
  • the solid content concentration of the composition (1F) is preferably adjusted to 10 to 90% by mass, preferably 40 to 70% by mass, based on the total mass of the composition (1F) by the above liquid medium. It is especially preferable to have.
  • the composition (1) contains a curable resin or a crosslinkable polymer
  • the polymer in the composition (1) is a crosslinkable polymer
  • the functional layer can be cured by crosslinking with a curing agent.
  • the functional layer has a crosslinked structure of a polymer and a curing agent.
  • the curing agent in the composition (1) has one or more selected from a hydrolyzable silyl group and a silanol group, a curing agent, a glass plate containing silicon oxide as a base material, and depending on the case.
  • the polymer reacts with each other to form a functional layer having a crosslinked structure of the curing agent, the glass plate, and optionally the polymer.
  • the content of the curing agent is preferably 5 to 200 parts by mass and particularly 10 to 150 parts by mass with respect to 100 parts by mass of the polymer in the composition (1). preferable.
  • the curing agent is preferably a compound having two or more isocyanate groups or blocked isocyanate groups in one molecule.
  • the curing agent is preferably a compound having two or more epoxy groups, carbodiimide groups, oxazoline groups or ⁇ -hydroxyalkylamide groups in one molecule.
  • the polymer has both a hydroxy group and a carboxy group, a compound having two or more isocyanate groups or blocked isocyanate groups in one molecule and one epoxy group, carbodiimide group, oxazoline group or ⁇ -hydroxyalkylamide group. It is preferably used in combination with a compound having two or more in the molecule.
  • the curing agent is selected from at least a hydrolyzable silyl group and a silanol group from the viewpoint of further improving the adhesion between the functional layer and the base material.
  • a curing agent having one kind is preferable.
  • the composition (1) preferably contains a dispersant from the viewpoint of dispersibility of specific particles.
  • the dispersant include fatty acid amides, ester salts of acidic polyamides, acrylic resins, polyolefin oxides, and other polymers having an affinity for specific particles.
  • a commercially available product may be used as the dispersant, and specific examples of the commercially available product include the "Disparon” series (trade name of Kusumoto Kasei Co., Ltd.) and the "DISPERBYK” series (trade name of Big Chemie Co., Ltd.).
  • the functional layer When the functional layer is a layer formed by using the composition (1), the functional layer may be produced by molding the composition (1), and the composition (1) may be produced by the optical layer A. It may be produced by coating it on a layer other than the functional layer having it (for example, a base material) and heating and drying it.
  • the functional layer is preferably produced by coating the composition (1) on a layer other than the functional layer of the optical layer A from the viewpoint of the dispersibility of specific particles in the matrix. That is, the composition (1) is preferably a coating material containing a fluorine-containing polymer.
  • the above paint is preferably applied on a base material to manufacture an optical layer A, and the obtained optical layer A is pressure-bonded to a sealing layer described later.
  • the functional layer in the optical layer A is a layer formed by coating a paint
  • the functional layer does not protrude from the end face at the time of pressure bonding with the sealing layer, as compared with the case where the functional layer is a film. But it is preferable.
  • the functional layer is produced by molding the composition (1)
  • examples of the molding method include extrusion molding, injection molding, blow molding and the like. In this case, it may be laminated on a layer other than the functional layer of the optical layer A.
  • composition (1) contains a liquid medium and the solid content of the composition (1) is dispersed or dissolved in the medium (water-based paint, solvent-based paint, etc.)
  • specific examples of the coating method include , Spray coating method, squeegee coating method, flow coating method, bar coating method, spin coating method, dip coating method, screen printing method, gravure printing method, die coating method, inkjet method, curtain coating method, method using brush or spatula.
  • the composition (1) is preferably a solvent-based coating material in which the polymer is dissolved or dispersed in a solvent from the viewpoint that a functional layer having good dispersibility in the matrix can be formed.
  • the coating method include an electrostatic coating method, an electrostatic spraying method, an electrostatic dipping method, a spraying method, and a fluidized dipping method. Examples include the method, spraying method, spraying method, thermal spraying method, and plasma thermal spraying method.
  • the composition (1) is coated on a layer other than the functional layer of the optical layer A to produce a functional layer, after coating, the coating layer formed by coating the composition (1) is heated and dried. It is preferable to form.
  • the heating and drying temperature of the coating layer is usually 0 ° C. to 300 ° C., and the heating and drying time is usually 1 minute to 2 weeks.
  • the optical layer A has a base material and a functional layer directly laminated on at least one surface of the base material, and is a group.
  • the material is preferably a layer made of a surface-treated glass plate. That is, in the above case, at least one surface of the glass plate is surface-treated by a known surface treatment method to obtain a base material, and the composition (1) is placed on at least one surface of the obtained base material. It is preferable to directly paint to form a functional layer to obtain an optical layer A.
  • the surface treatment is the application of a silane coupling agent or the like
  • the —Si—OH groups of the glass plate and the —Si—OH groups of the silane coupling agent on the base material interact with each other and the surface. Since the treated base material and the functional layer are in close contact with each other, the durability of the optical layer A is excellent.
  • the optical layer A may be composed of only the functional layer. Further, the optical layer A may have a layer other than the functional layer as long as the effect of the present invention is not impaired. Specific examples of layers other than the functional layer include a base material, an adhesive layer, and an air layer. Further, the optical layer A may have a plurality of functional layers, or may have a plurality of layers other than the functional layers. Since the optical layer A only needs to have a functional layer, the arrangement order of each layer of the optical layer A can be appropriately selected.
  • the adhesive layer is, for example, a layer for adhering two or more layers of the optical layer A.
  • the air layer is, for example, a layer that maintains the optical layer A in a cushioned state when the optical layer A is a bag-shaped film. At this time, the solar cell may be installed inside the optical layer A.
  • the strength of the optical layer A can be improved.
  • the base material is preferably arranged on the incident surface side of sunlight rather than the functional layer.
  • the average thickness of the base material can be arbitrarily set from the design wind pressure of the building and the like.
  • the average thickness of the base material is preferably 0.7 mm or more, more preferably 1.0 mm or more, and particularly preferably 2.0 mm or more.
  • the average thickness of the base material is preferably 9.7 mm or less, more preferably 8.0 mm or less, and particularly preferably 6.0 mm or less.
  • the average thickness is 0.7 mm or more, the durability is high and the optical layer A is less likely to crack.
  • the optical layer A becomes lightweight, so that the solar cell module is preferably used for the wall surface and the window of the building.
  • the average thickness of the base material is an arithmetic mean value of the thickness measured using a thickness gauge.
  • the base material is preferably made of a material that does not reduce the near-infrared light transmittance of the optical layer A.
  • the base material was defined as the near-infrared light average transmittance calculated by simply averaging the near-infrared light transmittance in increments of 5 nm in the near-infrared light region having a wavelength of 780 to 1,500 nm.
  • the near-infrared light average transmittance is preferably 50% or more, more preferably 85% or more, and particularly preferably 100%.
  • the material constituting the base material include an organic material and an inorganic material.
  • the base material is preferably a glass plate or a resin molded product from the viewpoint of near-infrared light transmittance, and a glass plate is particularly preferable.
  • the glass plate include at least one selected from the group consisting of soda lime silicate glass, quartz glass, crystal glass, non-alkali glass, aluminosilicate glass, borosilicate glass, and barium borosilicate glass.
  • Soda lime silicate glass is preferable because of its high infrared light transmittance.
  • Specific examples of soda lime silicate glass include 60 to 75% by mass of SiO 2 , 0 to 3% by mass of Al 2 O 3 , 0 to 15% by mass or less of CaO, and 0 to 12% by mass in terms of oxide.
  • MgO and include glass having a composition of Na 2 O 5-20% by weight.
  • SiO 2 is the main component of the soda lime silicate glass.
  • Soda-lime silicate glass in addition to the above materials, K 2 O, TiO 2, ZrO 2 and at least one material may further contain a selected from the group consisting of LiO 2.
  • the soda lime silicate glass may further contain a fining agent (for example, SO 3 , SnO 2 , Sb 2 O 3 ).
  • the glass plate may be a tempered glass plate that has been subjected to a strengthening treatment.
  • a tempered glass plate is preferable because it is less likely to break than a glass plate that has not been subjected to the tempering treatment.
  • the tempered glass plate includes, for example, a surface layer having a residual compressive stress, a back surface layer having a residual compressive stress, and an intermediate layer formed between the front surface layer and the back surface layer and having a residual tensile stress. Is used.
  • Specific examples of the strengthening treatment include a chemical strengthening treatment performed by a known ion exchange method and the like, and a physical strengthening treatment performed by a known air cooling strengthening method and the like.
  • the chemically strengthened glass plate has sufficient strength because the value of the residual compressive stress of the front surface layer or the back surface layer can be increased even when the plate thickness is thin.
  • the resin molded product is a resin molded into a plate shape, a film shape, or the like.
  • the resin include fluororesin, alkyd resin, aminoalkyd resin, polyester resin, epoxy resin, urethane resin, epoxy polyester resin, vinyl acetate resin, (meth) acrylic resin, vinyl chloride resin, phenol resin, and modified polyester resin. , Acrylic silicone resin, silicone resin and the like.
  • a fluororesin film is preferable from the viewpoint of weather resistance and near-infrared light transmittance.
  • the base material may be a layer obtained by surface-treating the above material from the viewpoint of adhesion to a layer other than the base material.
  • a surface treatment method a known method can be used. Specifically, activation treatment (plasma method, vapor deposition method, acid treatment, base treatment, etc.), chemical conversion treatment, material surface polishing, sander treatment, pore treatment, etc. Examples include blast treatment and primer treatment.
  • the base material is particularly preferably a layer made of a surface-treated glass plate. In this case, the surface treatment method is preferably primer treatment (particularly, application of a primer agent).
  • the primer agent examples include a silane coupling agent (particularly, alkoxysilane, etc.), a titanium coupling agent, an epoxy resin, a (meth) acrylic resin, and a polyester resin, and when the surface treatment material is a glass plate. , Silane coupling agent or titanium coupling agent is preferable.
  • the optical layer of the second embodiment is an optical layer used by being arranged on the incident surface side of sunlight with respect to the solar cell, has a functional layer containing specific hollow particles, and has a thickness of the functional layer. Is 1 to 1,000 ⁇ m.
  • the optical layer of the second embodiment is also referred to as "optical layer B".
  • the optical layer B is the same as the optical layer A except that it has a functional layer containing specific hollow particles instead of the functional layer containing specific zirconia particles. In the following, the differences from the optical layer A will be mainly described.
  • optical layer B L * value, a * value, b * value, stimulus purity, visible light average transmittance (V1), visible light average scattering transmittance (V2), visible light scattering rate (V3), near red
  • V1 visible light average transmittance
  • V2 visible light average scattering transmittance
  • V3 visible light scattering rate
  • N1 external light average transmittance
  • N2 near-infrared light average scattering transmittance
  • N3 near-infrared light scattering rate
  • refractive light are the same as the physical properties of the optical layer A, respectively. Is.
  • the value of each physical property in the optical layer B can be adjusted by, for example, the particle size or the amount of the specific hollow particles added, or the thickness of the optical layer B.
  • the thickness of the optical layer B and the thickness of the functional layer of the optical layer B are the same as the thickness of the optical layer A and the thickness of the functional layer of the optical layer A, and are measured by the same method as that of the optical layer A.
  • the optics are the same as the thickness of the optical layer A and the thickness of the functional layer of the optical layer A, and are measured by the same method as that of the optical layer A. The optics.
  • the functional layer included in the optical layer B contains specific hollow particles.
  • the specific hollow particles are particles having a shell layer composed of an inorganic oxide containing a Si atom and having voids inside the shell layer. It can be confirmed, for example, by observation with a transmission electron microscope (TEM) that the specific hollow particles have voids inside the shell layer.
  • TEM transmission electron microscope
  • the shape of the hollow particles is preferably spherical, preferably true spherical.
  • the average primary particle diameter of the specific hollow particles is 120 to 30,000 nm, preferably 150 to 20,000 nm, more preferably 200 to 15,000 nm, and particularly preferably 200 to 1,000 nm and 300 to 1,000 nm.
  • the average primary particle size is 120 nm or more, the concealing property of the solar cell is more excellent.
  • the average primary particle size is 30,000 nm or less, at least one of an optical layer B having a better white appearance and a solar cell module having a higher power generation efficiency can be obtained is satisfied. , There is less risk of particles breaking when forming the functional layer.
  • the cumulative 50% diameter of the specific hollow particles based on the volume is preferably 0.2 to 100 ⁇ m, more preferably 0.2 to 20 ⁇ m, and particularly preferably 0.2 to 8 ⁇ m.
  • it is 0.2 ⁇ m or more, the concealing property of the solar cell is more excellent. If it is 100 ⁇ m or less, it is possible to satisfy at least one of the fact that the optical layer B exhibiting a more excellent white appearance can be obtained and that the solar cell module having more excellent power generation efficiency can be obtained.
  • the specific surface area of the specific hollow particles is preferably 0.1 ⁇ 1,000m 2 / g, more preferably 1.0 ⁇ 300m 2 / g, particularly preferably 10 ⁇ 100m 2 / g. If it is within the above range, the shell becomes dense, and there is little possibility that resin or the like invades the inside and the hollow structure is lost.
  • the density of the specific hollow particles is preferably 0.2 to 1.5 g / cm 3 and particularly preferably 0.4 to 1.0 g / cm 3 in terms of dispersibility.
  • the ratio of the average thickness of the shell of the specific hollow particles to the average primary particle diameter of the specific hollow particles is preferably 0.01 to 0.3, more preferably 0.02 to 0.2, and 0.03 to 0. 1 is particularly preferable. If it is 0.01 or more, the strength of the specific hollow particles is excellent. If it is 0.3 or less, the volume of the voids inside the shell layer can be sufficiently secured, so that the characteristics as hollow particles can be exhibited well.
  • the average thickness of the shells is the same as the measurement of the average primary particle size. SEM photographs of the particles are taken using a scanning electron microscope, and the measured values of the thickness of the shells of 100 individual particles are arithmetically averaged. Can be obtained.
  • hollow silica particles hollow particles whose shell layer is made of silica
  • glass particles hollow particles whose shell layer is made of glass
  • hollow silica particles are preferable because it is easy to adjust the primary particle size to an appropriate level.
  • the shell layer of the hollow silica particles is mainly composed of silica, but may contain metal elements such as alkali metal (preferably Na), Ti, and Zr. Among them, the shell layer of hollow silica particles preferably contains an alkali metal because the shell layer becomes dense and hollow silica particles having excellent strength can be obtained.
  • the content of the metal element is preferably 500 mass ppm or more, particularly preferably 1,000 mass ppm or more, based on the total mass of the hollow silica particles.
  • Specific examples of the method for producing the specific hollow silica particles include the method described in International Publication No. 2019/131658.
  • Hollow glass particles may also be referred to as glass balloons.
  • Specific examples of the glass constituting the hollow glass particles include borosilicate glass, aluminosilicate glass, sodalime glass, and zinc phosphate glass, and borosilicate glass is preferable.
  • commercially available products may be used, and examples thereof include "Sphericel (registered trademark)” series (manufactured by Potters Barotini) and Glass Bubbles (manufactured by 3M).
  • the content of the specific hollow particles is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 1 to 15% by mass with respect to the total mass of the functional layer.
  • it is 0.1% by mass or more, the concealing property of the solar cell is more excellent. If it is 30% by mass or less, a solar cell module excellent in power generation efficiency can be obtained.
  • the functional layer of the optical layer B may include a matrix.
  • the matrix is as described with respect to the optical layer A, and the preferred embodiment is also the same, and thus the description thereof will be omitted.
  • the functional layer of the optical layer B may contain components other than the above. Examples of such a component include the additives described in the optical layer A.
  • One form of the functional layer in the second embodiment is a layer formed by using a composition containing at least a polymer (particularly, a fluorine-containing polymer) and specific hollow particles.
  • the composition in the second embodiment is the same as the composition (1) in the first embodiment except that the specific hollow particles are contained instead of the specific zirconia particles, and the preferred embodiments thereof are also the same. Omit.
  • the composition in the second embodiment may contain two or more kinds of polymers, and may contain two or more kinds of specific hollow particles.
  • the method for producing the functional layer using the composition in the second embodiment is the same as the method for producing the functional layer using the composition (1) in the first embodiment, and the preferred embodiment thereof is also the same, and thus the description thereof is omitted. To do.
  • the optical layer B may be composed of only the functional layer. Further, the optical layer B may have a layer other than the functional layer as long as the effect of the present invention is not impaired. Specific examples of layers other than the functional layer include a base material, an adhesive layer, and an air layer. The base material, the adhesive layer, and the air layer are as described in the optical layer A, and the preferred embodiments thereof are also the same, and thus the description thereof will be omitted. Further, the optical layer B may have a plurality of functional layers, or may have a plurality of layers other than the functional layers. Since the optical layer B only needs to have a functional layer, the arrangement order of each layer of the optical layer B can be appropriately selected.
  • the optical layer B has a base material and a functional layer directly laminated on at least one surface of the base material for the same reason as the optical layer A, and is a layer made of a glass plate on which the base material is surface-treated. Is preferable.
  • the solar cell module of the present invention (hereinafter, also referred to as the present solar cell module) has a solar cell and an optical layer, and the optical layer is located on the incident surface side of sunlight with respect to the solar cell. It is arranged.
  • the optical layer included in the solar cell module is the above-mentioned optical layer A or optical layer B.
  • FIG. 2 is a cross-sectional view of one aspect of the solar cell module (hereinafter, also referred to as aspect 1).
  • the solar cell module 20 has an optical layer 10 having a base material 110 and a functional layer 120, a plurality of solar cell cells 14, a sealing layer 16, and a back surface protective layer 18.
  • the optical layer 10 is laminated on the sealing layer 16 and is arranged on the incident surface side of the sunlight 40 with respect to the solar cell 14.
  • Each of the plurality of solar cells 14 is sealed by a sealing layer 16.
  • the base material 110 included in the optical layer 10 is the outermost layer, the texture of the base material 110 can be utilized, and the action of the functional layer 120 included in the optical layer 10 makes the solar cell
  • the cell 14 has a white appearance while being excellent in concealment.
  • the optical layer 10 is used as an optical layer for a solar cell module, and has a design property (specifically, an excellent white appearance and an excellent concealing property of a solar cell) in the solar cell module 20. And weather resistance can be imparted.
  • the matrix contained in the functional layer is particularly preferably a fluororesin.
  • the base material is preferably a glass plate from the viewpoint of durability of the optical layer.
  • the solar cell 14 has a first light receiving surface 14A and a second light receiving surface 14B facing the first light receiving surface 14A.
  • the solar cell 14 has a function of converting the light energy received by the first light receiving surface 14A and the second light receiving surface 14B into electrical energy.
  • the solar cell may have the function only on the first light receiving surface, or may have the function on the first light receiving surface and the second light receiving surface.
  • the solar cell in the present invention is preferably a material having spectral sensitivity in the near infrared region. Specifically, a silicon-based solar cell composed of single crystal silicon or polycrystalline silicon, a compound solar cell composed of GaAs, CIS, CIGS, CdTe, InP, Zn 3 P 2 or Cu 2 S. Can be mentioned.
  • the CIS solar cell and CIGS are excellent in terms of design of this solar cell module because there is no wiring, can be suitably used as an outer wall material, and are excellent in power generation in the near infrared light region.
  • System solar cells are particularly preferred.
  • the wiring is preferably colored, and particularly preferably black, from the viewpoint of the design of the solar cell module.
  • the peak of the spectral sensitivity of the solar cell in the present invention preferably exists in the wavelength range of 780 to 1,200 nm, and particularly preferably exists in the wavelength range of 780 to 1,000 nm.
  • FIG. 3 is a graph showing the solar spectrum (solar energy) on the ground and the spectral sensitivity curve of the single crystal silicon-based solar cell.
  • the single crystal silicon solar cell has a high spectral sensitivity even in a wavelength region longer than the wavelength of 780 nm. That is, by using an optical layer (optical layer A or optical layer B) that exhibits high transmittance in a long wavelength region, the design (specifically, an excellent white appearance can be exhibited, and the solar cell can be used. This means that a solar cell module capable of providing excellent concealment) and power generation efficiency can be obtained.
  • the sealing layer 16 serves to seal the solar cell 14.
  • the material constituting the sealing layer in the present invention include ethylene-vinyl acetate resin, olefin resin, polyvinyl butyral resin, ionomer resin, and silicone resin. Since the sealing layer is required to have adhesion and protective effect to the solar cell, it typically does not contain the specific zirconia particles and the specific hollow particles in the present invention, or if it contains, it is less than 1% by mass with respect to the resin. It is preferable to have.
  • the back surface protective layer 18 is a surface side of the solar cell module 20 facing the incident surface side of the sunlight 40 with respect to the solar cell 14 (that is, a surface opposite to the incident surface side of the sunlight 40 in the solar cell 14). It is arranged on the side).
  • the back surface protective layer in the present invention is preferably a layer that improves the strength and light resistance of the solar cell module.
  • Specific examples of the material constituting the back surface protective layer include the same materials as those constituting the base material described above.
  • the back surface protective layer is preferably black from the viewpoint of the design of the solar cell module.
  • the back surface protective layer is preferably a black glass plate or a glass plate having a black coating.
  • the black color of the back surface protective layer means that the L * value of the back surface protective layer is 0 to 40, preferably 0 to 20, particularly preferably 0 to 10.
  • FIG. 4 is a cross-sectional view of one aspect of the solar cell module (hereinafter, also referred to as aspect 2).
  • Aspect 2 is the same as the aspect 1 except that the optical layer 10 is arranged so that the functional layer 120 is the outermost layer. That is, the functional layer 120 is arranged on the incident surface side of the sunlight 40 with respect to the base material 110. Since the details of each layer in the second aspect are the same as those in the first aspect, the description thereof will be omitted.
  • FIG. 5 is a cross-sectional view of one aspect of the solar cell module (hereinafter, also referred to as aspect 3).
  • the solar cell module 20 includes a first optical layer 10A, a plurality of solar cell cells 14, a first sealing layer 16A, a second sealing layer 16B, and a second optical layer 10B.
  • the first optical layer 10A and the second optical layer 10B may be collectively referred to as the optical layer 10.
  • the first sealing layer 16A and the second sealing layer 16B may be collectively referred to as a sealing layer 16.
  • the optical layer 10 is laminated on the sealing layer 16 and is arranged on the incident surface side of the sunlight 40A and 40B with respect to the solar cell 14.
  • the first optical layer 10A has a first base material 110A and a first functional layer 120A arranged on the first base material 110A.
  • the first optical layer 10A is arranged on the first light receiving surface 14A side of the solar cell 14 and on the incident surface side of sunlight 40A, and is attached on the sealing layer 16A.
  • the second optical layer 10B is arranged on the second light receiving surface 14B side of the solar cell 14, and is attached on the sealing layer 16B.
  • the second optical layer 10B has a second base material 110B and a second functional layer 120B arranged on the second base material 110B.
  • the second base material 110B and the second functional layer 120B are the same as the above-mentioned first base material 110A and the first functional layer 120A, respectively, the description thereof will be omitted.
  • Aspect 3 is preferably used when sunlight is incident from any surface such as a fence. Since the details of each layer in the third aspect are the same as those in the first aspect, the description thereof will be omitted.
  • the solar cell module has been described above with reference to FIGS. 2, 4 and 5.
  • the solar cell module is not limited to the above-described embodiment. That is, the present solar cell module may have at least one kind of arbitrary layer (for example, an adhesive layer, an air layer) within a range which does not impair the effect of the present invention.
  • the optical layer may be arranged on the incident surface side of sunlight with respect to the solar cell, and the stacking order other than that is not limited.
  • the solar cell module may have an arbitrary layer between the optical layer and the sealing layer.
  • the solar cell may not be sealed by the sealing layer.
  • the design of the solar cell module specifically, it exhibits an excellent white appearance and excellent concealment of the solar cell) and sealing.
  • Aspect 1 is particularly preferable from the viewpoint of adhesiveness between the layer and the optical layer.
  • FIG. 6 is a schematic plan view showing an example of a solar cell array configured by the present solar cell module.
  • the solar cell array 30 is configured by arranging a plurality of rectangular solar cell modules 20 in a plane and connecting them in series and parallel.
  • Specific examples of the installation location of the solar cell array of the present invention include the rooftop, roof, and outer wall (for example, wall surface, window) of a building.
  • the solar cell array of the present invention is excellent in design (specifically, exhibiting an excellent white appearance and excellent concealing property of a solar cell) and power generation efficiency. As described above, it is preferable to use it as a building outer wall material (for example, a wall surface of a building, a window) because of its excellent design.
  • FIG. 6 shows an aspect in which the solar cell array of the present invention has a rectangular shape, but the shape of the solar cell array of the present invention is not particularly limited.
  • the building exterior wall material of the present invention has the above-mentioned solar cell module. Therefore, the building exterior wall material of the present invention is excellent in designability (specifically, it exhibits an excellent white appearance and is excellent in concealing the solar cell) and power generation efficiency. Specific examples of exterior wall materials for buildings include curtain walls, wall materials, and windows.
  • the building of the present invention has the above-mentioned building exterior wall material. Therefore, the building of the present invention is excellent in design (specifically, exhibiting an excellent white appearance and excellent concealing property of the solar cell) and power generation efficiency.
  • the building of the present invention may have the optical layer of the present invention on the incident surface side of the sunlight of the building outer wall material having the solar cell module, via an intermediate air layer or the like arbitrarily existing. That is, the building of the present invention is a building having a double skin system, and the optical layer of the present invention may be used as the outer skin.
  • Examples 1 to 12 are examples, and examples 13 to 16 are comparative examples.
  • the blending amount of each component in the table described later indicates a mass standard.
  • Example 1 Polymer solution F (ethyl 3-ethoxypropionate solution of chlorotrifluoroethylene-vinyl ether copolymer, AGC product LF-9716, solid content concentration: 66.8% by mass) (65.3 g), and Table 1.
  • the particles (39.1 g) described in Example 1 of the above were added, and 30 g of zirconia beads having a diameter of 5 mm were further added, and the mixture was stirred at 2,000 rpm for 20 minutes using a kneader (Sinky's product Awatori Kentarou).
  • a curing agent (Asahi Kasei TPA-B80E, solid content concentration: 80% by mass) (39.6 g) is added, and the mixture is further stirred at 2,000 rpm for 1 minute to remove zirconia beads to form a functional layer.
  • the composition for was obtained.
  • the obtained composition was used as a base material on one surface of a soda lime silicate glass plate (AGC product JFL, length 150 mm x width 75 mm, average plate thickness: 3.2 mm) on a screen printing machine (Microtech Co., Ltd.). It was painted using MTVC-320) manufactured by Japan. Then, it is dried by heating in a thermostatic chamber at 160 ° C. for 30 minutes and cured to form a glass plate as a base material, a functional layer (average thickness: 28 ⁇ m, matrix: fluororesin) arranged on the base material. An optical layer composed of was obtained.
  • Examples 2 to 16 The optical layer in each example was obtained in the same manner as in Example 1 except that the type of particles, the concentration in the functional layer, and the thickness of the functional layer were changed as shown in Tables 1 and 2.
  • Example 1 Example 2, Example 6: Zirconia particle 1 (Tosoh product TZ-3Y-E, density: 6.05 g / cm 3 , part of Zr is replaced with Y, 3 mol% with respect to Zr.
  • Example 3 to 5 Example 7: Zirconia particle 2 (Tosoh product TZ-3YS-E, density: 6.05 g / cm 3 , part of Zr is replaced with Y, and 3 mol% with respect to Zr.
  • Examples 8-11 Hollow silica particles 1 (hollow silica produced by the method described in Example 10 of WO 2019/131658, density: 0.6 g / cm 3 , shell average thickness: 20 nm).
  • Example 12 Hollow glass particles 1 (Potters Barotini product 110P8, density: 1.1 g / cm 3 )
  • Example 13 Alumina particles 1 (Aldrich reagent, density: 3.95 g / cm 3 )
  • Example 14 Titania particles 1 (Sakai Chemical Co., Ltd.
  • Example 15 Zirconia particles 3 (Aldrich reagent 544760-25G, density: 5.68 g / cm 3 )
  • Example 16 Hollow silica particles 2 (Nittetsu Mining Co., Ltd. product Sirinax SP-PN (b), density: 0.6 g / cm 3 )
  • particle ⁇ Average primary particle size> Using a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation), SEM photographs of the particles were taken, and 100 major axis diameters of the primary particles in the image were measured. The arithmetic mean value was adopted as the average primary particle size.
  • ⁇ D50> Cumulative volume-based accumulation using a laser diffraction / scattering particle size distribution measuring device (MT3300EXII manufactured by Microtrac Bell) using a dispersion containing particles dispersed in ion-exchanged water so that the scattering intensity falls within the measurement range. The 50% diameter was measured. The average of the cumulative 50% diameters of the three obtained points was adopted as D50.
  • Specific surface area> The specific surface area was measured by the nitrogen adsorption BET method under degassing conditions at 200 ° C. for 20 minutes using a specific surface area measuring device (HM model-1208 manufactured by Mountech).
  • the total light transmittance of the optical layer was measured using a spectrophotometer (V-670 manufactured by JASCO Corporation) in a wavelength range of 200 to 1,200 nm in 5 nm increments at a scanning speed of 1,000 nm / min.
  • the optical layer was installed so as to be in contact with the light receiving portion of the integrating sphere, and was set so that light was incident from the glass substrate side.
  • the light source switching was automatic, the switching wavelength was 340.0 nm, and the diffraction grating switching was 850 nm.
  • a spectrophotometer (V-670 manufactured by JASCO Corporation) is used, and an integrating sphere is used at a scanning speed of 1,000 nm / min in a wavelength range of 200 to 1,500 nm in 5 nm increments. Measured without.
  • V1 Vehicle light average transmittance
  • V2 Vehicle light average scattering transmittance: From the above visible light average transmittance, among the linear transmittances obtained by the above measurement, the linear transmittance in increments of 5 nm is arithmetically averaged in the visible light region having a wavelength of 400 to 780 nm. The visible light average scattering transmittance was calculated by subtracting the obtained value.
  • V3 Vehicle light scattering rate: The ratio of the visible light average diffusion transmittance divided by the visible light average transmittance was calculated.
  • N1 Near Infrared Light Average Transmittance: Of the total light transmittance obtained by the above measurement, the total light transmittance in increments of 5 nm is calculated by arithmetically averaging in the near infrared light region having a wavelength of 780 to 1,200 nm. It was.
  • N2 Near Infrared Light Average Diffuse Transmittance: From the near infrared light average transmittance, among the linear transmittances obtained by the above measurement, the linear transmittance in increments of 5 nm in the near infrared region having a wavelength of 780 to 1200 nm. The near-infrared light average diffuse transmittance was calculated by subtracting the value obtained by arithmetically averaging.
  • N3 Near-infrared light scattering rate: The ratio of the near-infrared light average diffusion transmittance divided by the near-infrared light average transmittance was calculated.
  • the concealing property of the optical layer was evaluated based on the following criteria for the average visible light transmittance. The lower the average visible light transmittance, the better the concealment property. Therefore, it is possible to manufacture a solar cell module having a high design because the solar cell is hard to see. S: Less than 30% A: 30% or more and less than 60% B: 60% or more and less than 80% C: 80% or more
  • Color tone (Color tone) Among the optical characteristics of the optical layer, the color tone of the optical layer was evaluated based on the following criteria for stimulation purity. The lower the stimulation purity, the closer the color tone of the optical layer is to white, so that a solar cell module having a white appearance can be manufactured. S: Less than 4.0 A: 4.0 or more and less than 6.0 B: 6.0 or more and less than 12.0 C: 12.0 or more

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are: an optical layer which has excellent concealing properties of solar battery cells, has a white external appearance, and is capable of forming a solar cell module which has excellent power generation efficiency; a solar cell module; an outer wall material for construction; and a building. This optical layer is used arranged on a solar battery cell on a surface on which sunlight is incident, wherein the optical layer includes a functional layer comprising zirconia particles in which a portion of the constituent elements may be substituted with an element other than Zr, the zirconia particles having an average primary particle size of 40 to 500 nm, or hollow particles of an inorganic oxide having an average primary particle size of 120 to 30,000 nm and containing Si atoms, the functional layer having a thickness of 1 to 1,000 μm.

Description

光学層、太陽電池モジュール、建築用外壁材及び建造物Optical layers, solar cell modules, building exterior walls and structures
 本発明は、光学層、太陽電池モジュール、建築用外壁材及び建造物に関する。 The present invention relates to an optical layer, a solar cell module, a building exterior wall material, and a building.
 電力供給におけるコスト削減及びエネルギーの有効活用の点から、太陽電池モジュールの設置が検討されている。一般的に、太陽電池モジュールは、太陽光の透過性が高い部材を用いることで発電効率を確保している。しかしながらこの場合、太陽電池セルが視認され、外観における周囲との調和を図ることが難しい場合が多い。
 この問題に対し、太陽電池モジュールの部材を部分的に着色して、意匠性を向上させる試みがなされている。
 特許文献1には、太陽電池モジュールに意匠性を付与し、かつこの意匠性を長期に渡って保持するために、耐候性透明樹脂層と、着色されたエチレン-酢酸ビニル樹脂とを積層一体化してなる耐候性調色フィルムに係る発明が開示されている。
Installation of solar cell modules is being considered from the viewpoint of cost reduction in power supply and effective use of energy. In general, the solar cell module secures power generation efficiency by using a member having high sunlight transmission. However, in this case, it is often difficult to visually recognize the solar cell and to harmonize with the surroundings in appearance.
In response to this problem, attempts have been made to improve the design by partially coloring the members of the solar cell module.
In Patent Document 1, in order to impart designability to the solar cell module and maintain this designability for a long period of time, a weather-resistant transparent resin layer and a colored ethylene-vinyl acetate resin are laminated and integrated. The invention relating to the weather resistant toning film is disclosed.
特開2001-047568号公報Japanese Unexamined Patent Publication No. 2001-04758
 近年、太陽電池モジュールは、多様な意匠を表現できることが求められており、例えば、太陽電池セルの隠蔽性に優れつつ、白色の外観を呈する太陽電池モジュールが求められている。このような太陽電池モジュールを得るための方法の一つとしては、白色顔料(例えば、酸化チタン)によって着色した部材を太陽電池モジュールに設置する方法が挙げられる。しかしながら、白色顔料の種類によっては、青みがかった白色を呈する場合や、太陽電池セルの隠蔽性が不十分になる等の問題が生じる場合がある。
 一方で、太陽電池セルの隠蔽性に優れ、かつ、優れた白色の外観を呈する太陽電池モジュールを得ることができた場合であっても、白色顔料の種類によっては、発電に必要な波長の光が太陽電池セルに到達できず、太陽光発電モジュールの発電効率が不十分になる等の問題が生じる場合がある。
In recent years, a solar cell module is required to be able to express various designs. For example, a solar cell module having an excellent concealing property of a solar cell and having a white appearance is required. As one of the methods for obtaining such a solar cell module, there is a method of installing a member colored with a white pigment (for example, titanium oxide) in the solar cell module. However, depending on the type of the white pigment, there may be problems such as exhibiting a bluish white color or insufficient concealment of the solar cell.
On the other hand, even when a solar cell module having excellent concealing properties of a solar cell and exhibiting an excellent white appearance can be obtained, depending on the type of white pigment, light having a wavelength required for power generation is obtained. May not reach the solar cell, causing problems such as insufficient power generation efficiency of the photovoltaic power generation module.
 本発明は、上記問題に鑑みてなされ、太陽電池セルの隠蔽性に優れ、白色の外観を呈し、かつ、発電効率に優れた太陽電池モジュールを形成できる光学層、太陽電池モジュール、建築用外壁材及び建築物の提供を課題とする。 The present invention has been made in view of the above problems, and is an optical layer, a solar cell module, and a building outer wall material capable of forming a solar cell module having excellent concealment property of a solar cell, exhibiting a white appearance, and excellent power generation efficiency. And the provision of buildings is an issue.
 本発明者らは、上記課題について鋭意検討した結果、所定の平均一次粒子径のジルコニアの粒子、又は、所定の平均一次粒子径のSi原子を含む無機酸化物の中空粒子を含み、所定の厚みの機能層を有する光学層を用いれば、所望の効果が得られることを見出し、本発明に至った。 As a result of diligent studies on the above problems, the present inventors have included zirconia particles having a predetermined average primary particle diameter or hollow particles of an inorganic oxide containing Si atoms having a predetermined average primary particle diameter, and have a predetermined thickness. We have found that a desired effect can be obtained by using an optical layer having the above functional layer, and have reached the present invention.
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
[1] 太陽電池セルに対して太陽光の入射面側に配されて用いられる光学層であって、
 前記光学層が、平均一次粒子径が40~500nmである、構成元素の一部がZr以外の元素で置換されていてもよいジルコニアの粒子、又は、平均一次粒子径が120~30,000nmである、Si原子を含む無機酸化物の中空粒子、を含む機能層を有し、
[2] 前記ジルコニアの粒子の体積基準の累積50%径が、0.1~5μmである、[1]に記載の光学層。
[3] 前記ジルコニアの粒子の比表面積が0.5~100m/gである、[1]又は[2]に記載の光学層。
[4] 前記ジルコニアの粒子の含有量が、前記機能層の全質量に対して1~80質量%である、[1]~[3]のいずれか1項に記載の光学層。
[5] 前記ジルコニアにおける構成元素の一部がYで置換されている、[1]~[4]のいずれか1項に記載の光学層。
[6] 前記中空粒子が、シェル層がシリカで構成された中空粒子、及びシェル層がガラスで構成された中空粒子の少なくとも一方である、[1]~[5]のいずれか1項に記載の光学層。
[7] 前記中空粒子の体積基準の累積50%径が、0.2~100μmである、[1]に記載の光学層。
[8] 前記中空粒子の比表面積が、0.1~1,000m/gである、[1]又は[7]に記載の光学層。
[9] 前記中空粒子の含有量が、前記機能層の全質量に対して、0.1~30質量%である、[1]、[7]及び[8]のいずれか1項に記載の光学層。
[10] 前記中空粒子の平均一次粒子径に対する、前記中空粒子のシェル層の平均厚さの比が、0.01~0.3である、[1]及び[7]~[9]のいずれか1項に記載の光学層。
[11] 前記光学層が、更にガラス板からなる基材を有し、該基材は、前記機能層よりも太陽光の入射面側に配置されている、[1]~[10]のいずれか1項に記載の光学層。
[12] 前記機能層が更にフッ素樹脂を含む、[1]~[11]のいずれか1項に記載の光学層。
[13] 太陽電池セルと、[1]~[12]のいずれか1項に記載の光学層と、を有し、前記光学層が、前記太陽電池セルに対して太陽光の入射面側に配置されている、太陽電池モジュール。
[14] 前記太陽電池モジュールが、前記太陽電池セルにおける太陽光の入射面側とは反対面側に配置された裏面保護層を更に有し、
 前記裏面保護層が黒色である、[13]に記載の太陽電池モジュール。
[15] [13]又は[14]に記載の太陽電池モジュールを有する建築用外壁材。
[16] [15]に記載の建築用外壁材を有する建造物。
That is, the present inventors have found that the above problems can be solved by the following configuration.
[1] An optical layer used by being arranged on the incident surface side of sunlight with respect to a solar cell.
The optical layer has an average primary particle size of 40 to 500 nm, zirconia particles in which some of the constituent elements may be substituted with elements other than Zr, or an average primary particle size of 120 to 30,000 nm. Has a functional layer containing hollow particles of an inorganic oxide containing Si atoms,
[2] The optical layer according to [1], wherein the cumulative 50% diameter of the zirconia particles based on the volume is 0.1 to 5 μm.
[3] The optical layer according to [1] or [2], wherein the specific surface area of the zirconia particles is 0.5 to 100 m 2 / g.
[4] The optical layer according to any one of [1] to [3], wherein the content of the zirconia particles is 1 to 80% by mass with respect to the total mass of the functional layer.
[5] The optical layer according to any one of [1] to [4], wherein some of the constituent elements in the zirconia are substituted with Y.
[6] The item according to any one of [1] to [5], wherein the hollow particles are at least one of hollow particles whose shell layer is made of silica and hollow particles whose shell layer is made of glass. Optical layer.
[7] The optical layer according to [1], wherein the volume-based cumulative 50% diameter of the hollow particles is 0.2 to 100 μm.
[8] The optical layer according to [1] or [7], wherein the specific surface area of the hollow particles is 0.1 to 1,000 m 2 / g.
[9] The item according to any one of [1], [7] and [8], wherein the content of the hollow particles is 0.1 to 30% by mass with respect to the total mass of the functional layer. Optical layer.
[10] Any of [1] and [7] to [9], wherein the ratio of the average thickness of the shell layer of the hollow particles to the average primary particle diameter of the hollow particles is 0.01 to 0.3. The optical layer according to item 1.
[11] Any of [1] to [10], wherein the optical layer further has a base material made of a glass plate, and the base material is arranged on the incident surface side of sunlight with respect to the functional layer. The optical layer according to item 1.
[12] The optical layer according to any one of [1] to [11], wherein the functional layer further contains a fluororesin.
[13] A solar cell and an optical layer according to any one of [1] to [12] are provided, and the optical layer is located on the incident surface side of sunlight with respect to the solar cell. The solar cell module that is placed.
[14] The solar cell module further has a back surface protective layer arranged on the side opposite to the incident surface side of sunlight in the solar cell.
The solar cell module according to [13], wherein the back surface protective layer is black.
[15] A building exterior wall material having the solar cell module according to [13] or [14].
[16] A building having the building exterior wall material according to [15].
 本発明によれば、太陽電池セルの隠蔽性に優れ、白色の外観を呈し、かつ、発電効率に優れた太陽電池モジュールを形成できる光学層、太陽電池モジュール、建築用外壁材及び建築物を提供できる。 According to the present invention, there are provided an optical layer, a solar cell module, a building exterior wall material, and a building capable of forming a solar cell module having excellent concealment of a solar cell, exhibiting a white appearance, and excellent power generation efficiency. it can.
本発明の光学層の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the optical layer of this invention. 本発明の太陽電池モジュールの一態様を示す概略断面図である。It is the schematic sectional drawing which shows one aspect of the solar cell module of this invention. 地上での太陽光スペクトルと単結晶シリコンの太陽電池の分光感度曲線を示すグラフである。It is a graph which shows the solar spectrum on the ground, and the spectral sensitivity curve of the solar cell of single crystal silicon. 本発明の太陽電池モジュールの一態様を示す概略断面図である。It is the schematic sectional drawing which shows one aspect of the solar cell module of this invention. 本発明の太陽電池モジュールの一態様を示す概略断面図である。It is the schematic sectional drawing which shows one aspect of the solar cell module of this invention. 本発明の太陽電池モジュールによって構成された太陽電池アレイの一例を示す概略平面図である。It is a schematic plan view which shows an example of the solar cell array constructed by the solar cell module of this invention.
 本発明における用語の意味は以下の通りである。
 ジルコニアの粒子及び中空粒子の一次粒子とは、走査型電子顕微鏡を用いて観察される粒子である。
 ジルコニアの粒子及び中空粒子の平均一次粒子径は、走査型電子顕微鏡を用いて粒子のSEM写真を撮影し、画像中の一次粒子の長軸径を100個測定して、算術平均して得られた値である。なお、実施例においては、走査型電子顕微鏡としてS-4800(日立ハイテクノロジーズ社製)を使用した。なお、画像中の一次粒子の長軸径とは、画像中の一次粒子において端部から端部までの直線を引いた場合の最も長い線分を意味する。
 ジルコニアの粒子及び中空粒子の体積基準の累積50%径は、ジルコニアの粒子又は中空粒子を含む分散液に超音波処理を行ったのち、粒度分布測定装置を用いて測定して得られる、体積基準の累積50%径(D50)であり、詳細な測定条件は、実施例に記載の通りである。なお、実施例においては、粒度分布測定装置としてMT3300EXII(マイクロトラック・ベル社製)を使用した。
 ジルコニアの粒子及び中空粒子の比表面積は、比表面積測定装置を用い、200℃で20分の脱気条件下での窒素吸着BET法により得られる値である。なお、実施例においては、比表面積測定装置としてHM model-1208(マウンテック社製)を使用した。
 ジルコニアの粒子及び中空粒子の密度は、ピクノメーターにより測定して得られる値である。なお、実施例においては、ULTRAPYC 1200e(カンタクローム社製)を使用した。
The meanings of the terms in the present invention are as follows.
The primary particles of zirconia particles and hollow particles are particles observed using a scanning electron microscope.
The average primary particle size of the zirconia particles and hollow particles is obtained by taking an SEM photograph of the particles using a scanning electron microscope, measuring 100 major axis diameters of the primary particles in the image, and performing an arithmetic average. Value. In the examples, S-4800 (manufactured by Hitachi High-Technologies Corporation) was used as the scanning electron microscope. The major axis diameter of the primary particles in the image means the longest line segment of the primary particles in the image when a straight line is drawn from one end to the other.
The cumulative 50% diameter of the zirconia particles and the hollow particles based on the volume is obtained by performing ultrasonic treatment on the zirconia particles or the dispersion containing the hollow particles and then measuring using a particle size distribution measuring device. Cumulative 50% diameter (D50), and detailed measurement conditions are as described in Examples. In the examples, MT3300EXII (manufactured by Microtrac Bell) was used as the particle size distribution measuring device.
The specific surface area of the zirconia particles and the hollow particles is a value obtained by the nitrogen adsorption BET method under degassing conditions at 200 ° C. for 20 minutes using a specific surface area measuring device. In the examples, HM model-1208 (manufactured by Mountech) was used as the specific surface area measuring device.
The density of zirconia particles and hollow particles is a value obtained by measuring with a pycnometer. In the examples, ULTRAPYC 1200e (manufactured by Kantachrome) was used.
 光学層が有する各層の厚さは、厚み計、渦電流式膜厚計等を適宜用いて得られる。本発明において、機能層の厚さは、渦電流式膜厚計(商品名「EDY-5000」、サンコウ電子社製)を用いて得られる。
 光学層の可視光平均透過率、可視光平均散乱透過率、近赤外光平均透過率及び近赤外光平均拡散透過率は、光学層の表面の法線方向から光が入射するように光学層を設置した分光光度計を用いて測定した値に基づいて算出され、詳細な測定条件は、実施例に記載の通りである。なお、実施例においては、V-670(日本分光社製)を使用した。
 光学層のL、a、b及び刺激純度は、分光色彩計により測定して得られる値である。なお、実施例においては、SD6000(日本電色工業社製)を使用した。
The thickness of each layer of the optical layer can be obtained by appropriately using a thickness meter, an eddy current film thickness meter, or the like. In the present invention, the thickness of the functional layer is obtained by using an eddy current type film thickness meter (trade name "EDY-5000", manufactured by Sanko Denshi Co., Ltd.).
The visible light average transmittance, visible light average scattering transmittance, near-infrared light average transmittance, and near-infrared light average diffusion transmittance of the optical layer are optical so that light is incident from the normal direction of the surface of the optical layer. It is calculated based on the value measured using a spectrophotometer with a layer installed, and the detailed measurement conditions are as described in the examples. In the examples, V-670 (manufactured by JASCO Corporation) was used.
The L * , a * , b * and stimulus purity of the optical layer are values obtained by measuring with a spectrocolorimeter. In the examples, SD6000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) was used.
 (メタ)アクリレートとは、アクリレート及びメタクリレートの総称であり、(メタ)アクリルとは、アクリル及びメタクリルの総称である。
 加水分解性シリル基とは、加水分解によってシラノール基となる基である。
 酸価及び水酸基価は、それぞれ、JIS K 0070-3(1992)の記載に準じて測定される値である。
 組成物等の固形分の質量とは、組成物が溶媒を含む場合に、組成物から溶媒を除去した質量である。なお、組成物の固形分の質量は、組成物1gを140℃で20分加熱した後に残存する質量として求められる。
(Meta) acrylate is a general term for acrylate and methacrylate, and (meth) acrylic is a general term for acrylic and methacrylic.
The hydrolyzable silyl group is a group that becomes a silanol group by hydrolysis.
The acid value and the hydroxyl value are values measured according to the description of JIS K 0070-3 (1992), respectively.
The mass of the solid content of the composition or the like is the mass obtained by removing the solvent from the composition when the composition contains a solvent. The mass of the solid content of the composition is determined as the mass remaining after heating 1 g of the composition at 140 ° C. for 20 minutes.
 本発明の光学層は、太陽電池セルに対して太陽光の入射面側に配されて用いられる光学層であって、光学層が、平均一次粒子径が40~500nmである、構成元素の一部がZr以外の元素で置換されていてもよいジルコニアの粒子、又は、平均一次粒子径が120~30,000nmである、Si原子を含む無機酸化物の中空粒子、を含む機能層を有し、上記機能層の厚さが1~1,000μmである。
 本明細書において、「平均一次粒子径が40~500nmである、構成元素の一部がZr以外の元素で置換されていてもよいジルコニアの粒子」を、「特定ジルコニア粒子」ともいう。また、「平均一次粒子径が120~30,000nmである、Si原子を含む無機酸化物の中空粒子」を、「特定中空粒子」ともいう。また、特定ジルコニア粒子及び特定中空粒子をまとめて「特定粒子」ともいう。
The optical layer of the present invention is an optical layer used by being arranged on the incident surface side of sunlight with respect to a solar cell, and the optical layer is one of the constituent elements having an average primary particle diameter of 40 to 500 nm. It has a functional layer containing zirconia particles whose portions may be substituted with elements other than Zr, or hollow particles of an inorganic oxide containing Si atoms having an average primary particle diameter of 120 to 30,000 nm. The thickness of the functional layer is 1 to 1,000 μm.
In the present specification, "the zirconia particles having an average primary particle diameter of 40 to 500 nm and in which some of the constituent elements may be replaced with elements other than Zr" are also referred to as "specific zirconia particles". Further, "hollow particles of an inorganic oxide containing a Si atom having an average primary particle diameter of 120 to 30,000 nm" are also referred to as "specific hollow particles". In addition, the specific zirconia particles and the specific hollow particles are collectively referred to as "specific particles".
 本発明の光学層を用いれば、太陽電池セルの隠蔽性に優れ、白色の外観を呈し、かつ、発電効率に優れた太陽電池モジュールを形成できる。これは、以下の理由によると推測される。
 光学層の反射率を測定したときに、波長400~780nmの可視光領域における反射率が一定であれば、光学層は優れた白色の外観を示すといえる。ここで、本発明者らが、白色顔料としてよく用いられる酸化チタンのナノ粒子を用いて形成された機能層を評価したところ、波長400nm付近での反射率が高くなり(具体的には、波長400nm付近に反射率のピークが観察される)、光学層の外観が青味を帯びた白色を呈することを知見した。
 この問題に対して、特定ジルコニア粒子又は特定中空粒子を用いて機能層を形成したところ、機能層を含む光学層の外観が優れた白色を呈することがわかった。この理由としては、波長400~780nmの可視光領域における反射率が、酸化チタンのナノ粒子を用いた場合と比較して一定であることによると推測される。
 また、平均一次粒子径が所定値範囲内である特定ジルコニア粒子又は特定中空粒子を用いること、及び、機能層の厚さが所定範囲内であることによって、太陽電池セルの優れた隠蔽性と、太陽電池モジュールの優れた発電効率と、が両立できたと推測される。
By using the optical layer of the present invention, it is possible to form a solar cell module which is excellent in concealment of a solar cell, has a white appearance, and is excellent in power generation efficiency. This is presumed to be due to the following reasons.
When the reflectance of the optical layer is measured, if the reflectance in the visible light region having a wavelength of 400 to 780 nm is constant, it can be said that the optical layer exhibits an excellent white appearance. Here, when the present inventors evaluated a functional layer formed by using nanoparticles of titanium oxide often used as a white pigment, the reflectance near a wavelength of 400 nm became high (specifically, the wavelength). (A peak reflectance is observed near 400 nm), and it was found that the appearance of the optical layer is bluish white.
In response to this problem, when a functional layer was formed using specific zirconia particles or specific hollow particles, it was found that the appearance of the optical layer including the functional layer was excellent white. It is presumed that the reason for this is that the reflectance in the visible light region having a wavelength of 400 to 780 nm is constant as compared with the case where the nanoparticles of titanium oxide are used.
Further, by using the specific zirconia particles or the specific hollow particles whose average primary particle diameter is within the predetermined value range, and when the thickness of the functional layer is within the predetermined range, the excellent concealment property of the solar cell and the excellent concealment property of the solar cell are obtained. It is presumed that the excellent power generation efficiency of the solar cell module was compatible with each other.
 図1は、本発明の光学層の一例を示す概略断面図である。図1に示すように、光学層10は、基材110と、機能層120とを有する。 FIG. 1 is a schematic cross-sectional view showing an example of the optical layer of the present invention. As shown in FIG. 1, the optical layer 10 has a base material 110 and a functional layer 120.
 以下において、本発明の光学層について実施態様毎に説明する。第1実施態様は、機能層が特定ジルコニア粒子を含む態様であり、第2実施態様は、機能層が特定中空粒子を含む態様である。
 なお、本発明の光学層は、特定ジルコニア粒子及び特定中空粒子の両方を含む態様であってもよい。
Hereinafter, the optical layer of the present invention will be described for each embodiment. The first embodiment is an embodiment in which the functional layer contains specific zirconia particles, and the second embodiment is an embodiment in which the functional layer contains specific hollow particles.
The optical layer of the present invention may include both specific zirconia particles and specific hollow particles.
<第1実施態様>
 第1実施態様の光学層は、太陽電池セルに対して太陽光の入射面側に配されて用いられる光学層であって、特定ジルコニア粒子を含む機能層を有し、上記機能層の厚さが1~1,000μmである。本明細書において、第1実施形態の光学層を「光学層A」ともいう。
<First Embodiment>
The optical layer of the first embodiment is an optical layer used by being arranged on the incident surface side of sunlight with respect to the solar cell, has a functional layer containing specific zirconia particles, and has a thickness of the functional layer. Is 1 to 1,000 μm. In the present specification, the optical layer of the first embodiment is also referred to as "optical layer A".
 光学層Aは、太陽電池セルに対して太陽光の入射面側に配されて用いられる。通常、太陽電池セルは、一枚単独で用いられることはなく、複数枚の太陽電池セルが隣り合うように並べられ、かつ、各々が直列又は並列に電気接続されて用いられる。したがって、典型的には、光学層Aは、これら複数の太陽電池セルに対して連続的な面として配され、かつ、太陽電池セルに対して太陽光の入射面側に存在する。 The optical layer A is arranged and used on the incident surface side of sunlight with respect to the solar cell. Usually, the solar cells are not used alone, but a plurality of solar cells are arranged so as to be adjacent to each other, and each is electrically connected in series or in parallel. Therefore, typically, the optical layer A is arranged as a continuous surface with respect to these plurality of solar cells, and is present on the incident surface side of sunlight with respect to the solar cells.
 光学層Aは、典型的には、太陽電池セルを封止する封止層は含まない。光学層Aは、本発明の効果により優れる点から、封止層上(封止層よりも太陽光の照射側)に積層されるのが好ましい。 The optical layer A typically does not include a sealing layer that seals the solar cell. The optical layer A is preferably laminated on the sealing layer (on the side irradiated with sunlight rather than the sealing layer) from the viewpoint of being superior to the effect of the present invention.
 光学層Aは、本発明の効果を損なわない程度に、空気側の表面に凹凸を有していてもよい。光学層Aが、空気側の表面に凹凸を有する態様としては、例えば、光学層Aが空気側の最外層として機能層を有し、かつ機能層がつや消し剤を含む態様、及び、光学層Aが空気側の最外層として基材(後述)を有し、かつ基材が研磨等により適当な表面処理がなされている態様等が挙げられる。 The optical layer A may have irregularities on the surface on the air side to the extent that the effects of the present invention are not impaired. Examples of the mode in which the optical layer A has irregularities on the surface on the air side include a mode in which the optical layer A has a functional layer as the outermost layer on the air side and the functional layer contains a matting agent, and an optical layer A. There is an embodiment in which the base material (described later) is provided as the outermost layer on the air side, and the base material is appropriately surface-treated by polishing or the like.
 光学層Aの厚さは、太陽電池モジュールの取り扱い容易性の点から、0.7~9.7mmが好ましく、1~8mmがより好ましく、2~6mmが特に好ましい。 The thickness of the optical layer A is preferably 0.7 to 9.7 mm, more preferably 1 to 8 mm, and particularly preferably 2 to 6 mm from the viewpoint of ease of handling of the solar cell module.
 光学層Aは、L表色系におけるL値、a値、及びb値が、この順に、30~100、-10~10、及び-15~10であるのが好ましく、50~100、-3~3、及び-10~5であるのが特に好ましい。光学層AのL値、a値、及びb値が上記範囲の組み合わせであると、光学層Aが無彩色に近くなるので、より優れた白色を示す。
 光学層Aは、XYZ表色系における刺激純度が、0~20であるのが好ましく、0~15であるのがより好ましく、0~12であるのが特に好ましい。光学層Aの刺激純度が上記範囲内であると、光学層Aがより優れた白色を示す。
 光学層Aは、L値、a値、及びb値が上記範囲の組み合わせであり、かつ、刺激純度が上記範囲であると、光学層Aが特に優れた白色を示す。
In the optical layer A, the L * value, a * value, and b * value in the L * a * b * color system are 30 to 100, -10 to 10, and -15 to 10 in this order. It is preferably 50 to 100, -3 to 3, and -10 to 5 in particular. When the L * value, a * value, and b * value of the optical layer A are a combination of the above ranges, the optical layer A becomes close to achromatic color, and thus exhibits a more excellent white color.
The optical layer A preferably has a stimulus purity of 0 to 20, more preferably 0 to 15, and particularly preferably 0 to 12 in the XYZ color system. When the stimulation purity of the optical layer A is within the above range, the optical layer A exhibits a more excellent white color.
In the optical layer A, when the L * value, the a * value, and the b * value are a combination of the above ranges and the stimulation purity is in the above range, the optical layer A exhibits a particularly excellent white color.
 光学層Aの可視光平均透過率(V1)は、太陽電池セルの隠蔽性の点から、90%以下が好ましく、85%以下がより好ましく、80%以下が特に好ましい。
 光学層AのV1は、太陽電池モジュールの発電効率の点から、5%以上が好ましく、15%以上がより好ましく、24%以上が特に好ましい。
 ここで、可視光平均透過率(V1)とは、波長400~780nmの可視光領域において、5nm刻みの全光透過率を算術平均した値を意味する。
 光学層Aの可視光平均散乱透過率(V2)は、太陽電池モジュールの発電効率の点及び光学層Aの白色性の点から、5%が以上好ましく、10%以上がより好ましく、24%以上が特に好ましい。V2の上限は、通常100%である。
 ここで、可視光平均散乱透過率(V2)は、可視光平均透過率(V1)から、波長400~780nmの可視光領域において、5nm刻みの直線透過率を算術平均した値を差し引いた値を意味する。
 光学層Aの可視光散乱率(V3)は、太陽電池モジュールの発電効率の点及び光学層Aの白色性の点から、30%以上が好ましく、45%以上がより好ましく、60%以上が特に好ましい。V3の上限は、通常100%である。
 ここで、可視光散乱率(V3)は、可視光平均散乱透過率(V2)を可視光平均透過率(V1)で除して算出される値[(V2/V1)×100]を意味する。
The visible light average transmittance (V1) of the optical layer A is preferably 90% or less, more preferably 85% or less, and particularly preferably 80% or less from the viewpoint of hiding property of the solar cell.
The V1 of the optical layer A is preferably 5% or more, more preferably 15% or more, and particularly preferably 24% or more from the viewpoint of power generation efficiency of the solar cell module.
Here, the visible light average transmittance (V1) means a value obtained by arithmetically averaging the total light transmittance in increments of 5 nm in the visible light region having a wavelength of 400 to 780 nm.
The visible light average scattering transmittance (V2) of the optical layer A is preferably 5% or more, more preferably 10% or more, and more preferably 24% or more from the viewpoint of power generation efficiency of the solar cell module and whiteness of the optical layer A. Is particularly preferable. The upper limit of V2 is usually 100%.
Here, the visible light average scattering transmittance (V2) is a value obtained by subtracting the value obtained by subtracting the value obtained by arithmetically averaging the linear transmittance in increments of 5 nm in the visible light region having a wavelength of 400 to 780 nm from the visible light average transmittance (V1). means.
The visible light scattering rate (V3) of the optical layer A is preferably 30% or more, more preferably 45% or more, particularly 60% or more, from the viewpoint of power generation efficiency of the solar cell module and whiteness of the optical layer A. preferable. The upper limit of V3 is usually 100%.
Here, the visible light scattering rate (V3) means a value [(V2 / V1) × 100] calculated by dividing the visible light average scattering transmittance (V2) by the visible light average transmittance (V1). ..
 光学層Aの近赤外光平均透過率(N1)は、太陽電池モジュールの発電効率の点から、20%以上が好ましく、30%以上がより好ましく、35%以上が特に好ましい。N1の上限は、通常100%である。
 ここで、近赤外光平均透過率(N1)とは、波長780~1,200nmの近赤外光領域において、5nm刻みの全光透過率を算術平均した値を意味する。
 光学層Aの近赤外光平均散乱透過率(N2)は、太陽電池モジュールの発電効率の点から、10%以上が好ましく、24%以上がより好ましく、35%以上が特に好ましい。N2の上限は、通常100%である。
 ここで、近赤外光平均散乱透過率(N2)は、近赤外光平均透過率(N1)から、波長780~1,200nmの近赤外光領域において、5nm刻みの直線透過率を算術平均した値を差し引いた値を意味する。
 光学層Aの近赤外光散乱率(N3)は、太陽電池モジュールの発電効率の点から、10%以上が好ましく、20%以上がより好ましく、45%以上が特に好ましい。N3の上限は、通常100%である。
 ここで、近赤外光散乱率(N3)は、近赤外光平均散乱透過率(N2)を近赤外光平均透過率(N1)で除して算出される値[(N2/N1)×100]を意味する。
The near-infrared light average transmittance (N1) of the optical layer A is preferably 20% or more, more preferably 30% or more, and particularly preferably 35% or more from the viewpoint of power generation efficiency of the solar cell module. The upper limit of N1 is usually 100%.
Here, the near-infrared light average transmittance (N1) means a value obtained by arithmetically averaging the total light transmittance in increments of 5 nm in the near-infrared light region having a wavelength of 780 to 1,200 nm.
The near-infrared light average scattering transmittance (N2) of the optical layer A is preferably 10% or more, more preferably 24% or more, and particularly preferably 35% or more from the viewpoint of power generation efficiency of the solar cell module. The upper limit of N2 is usually 100%.
Here, the near-infrared light average scattered transmittance (N2) is calculated from the near-infrared light average transmittance (N1) in a near-infrared light region having a wavelength of 780 to 1,200 nm in increments of 5 nm. It means the value obtained by subtracting the average value.
The near-infrared light scattering rate (N3) of the optical layer A is preferably 10% or more, more preferably 20% or more, and particularly preferably 45% or more from the viewpoint of power generation efficiency of the solar cell module. The upper limit of N3 is usually 100%.
Here, the near-infrared light scattering rate (N3) is a value calculated by dividing the near-infrared light average scattering transmittance (N2) by the near-infrared light average transmittance (N1) [(N2 / N1). × 100].
 光学層AにおけるV1~V3及びN1~N3の値は、例えば、特定ジルコニア粒子の粒子径若しくは添加量、又は、光学層Aの厚さによって調節できる。 The values of V1 to V3 and N1 to N3 in the optical layer A can be adjusted by, for example, the particle size or the amount of the specific zirconia particles added, or the thickness of the optical layer A.
 光学層Aが有する機能層の厚さは、1~1,000μmであり、5~200μmが好ましく、10~100μmがより好ましく、20~60μmが特に好ましい。
 機能層の厚さが1,000μm以下であれば、太陽電池モジュールの発電効率が優れ、コストが低い。機能層の厚さが1μm以上であれば、太陽電池セルの隠蔽性に優れる。
 機能層の厚さは、マイクロメーターにより測定した機能層と基材の合計の厚みから基材の厚みを引いた値を、任意の10点で算術平均して求められる。
The thickness of the functional layer of the optical layer A is 1 to 1,000 μm, preferably 5 to 200 μm, more preferably 10 to 100 μm, and particularly preferably 20 to 60 μm.
When the thickness of the functional layer is 1,000 μm or less, the power generation efficiency of the solar cell module is excellent and the cost is low. When the thickness of the functional layer is 1 μm or more, the concealing property of the solar cell is excellent.
The thickness of the functional layer is obtained by arithmetically averaging a value obtained by subtracting the thickness of the base material from the total thickness of the functional layer and the base material measured by a micrometer at any 10 points.
 光学層Aが有する機能層の屈折率は、封止層との屈折率差が小さくなり全光透過率が上がって太陽電池モジュールの発電効率が高くなりやすいことから、1.4~2.6が好ましく、1.4~2.0が特に好ましい。
 機能層の屈折率は、市販の屈折率測定装置やエリプソエーター等によって測定される値である。
The refractive index of the functional layer of the optical layer A is 1.4 to 2.6 because the difference in refractive index from the sealing layer becomes small, the total light transmittance increases, and the power generation efficiency of the solar cell module tends to increase. Is preferable, and 1.4 to 2.0 is particularly preferable.
The refractive index of the functional layer is a value measured by a commercially available refractive index measuring device, an ellipsometer, or the like.
 光学層Aが有する機能層は、特定ジルコニア粒子を含む。
 特定ジルコニア粒子の形状は、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、鱗片状、不定形状等のいずれの形状であってもよいが、分散性の点で、球状が好ましい。
 特定ジルコニア粒子は、中実の粒子である。
The functional layer included in the optical layer A contains specific zirconia particles.
The shape of the specific zirconia particles is any of spherical, elliptical, needle-shaped, plate-shaped, rod-shaped, cone-shaped, columnar, cubic, rectangular parallelepiped, diamond-shaped, star-shaped, scaly, amorphous, etc. However, a spherical shape is preferable in terms of dispersibility.
The specific zirconia particles are solid particles.
 特定ジルコニア粒子の平均一次粒子径は、40~500nmであり、45~400nmが好ましく、50~300nmがより好ましく、55~200nmが特に好ましい。平均一次粒子径が40nm以上であれば、太陽電池セルの隠蔽性がより優れる。平均一次粒子径が500nm以下であれば、より優れた白色の外観を呈する光学層Aが得られること、及び、発電効率により優れた太陽電池モジュールが得られること、の少なくとも一方を満たすことができる。 The average primary particle diameter of the specific zirconia particles is 40 to 500 nm, preferably 45 to 400 nm, more preferably 50 to 300 nm, and particularly preferably 55 to 200 nm. When the average primary particle size is 40 nm or more, the concealing property of the solar cell is more excellent. When the average primary particle size is 500 nm or less, it is possible to satisfy at least one of the fact that the optical layer A exhibiting a more excellent white appearance can be obtained and that the solar cell module having more excellent power generation efficiency can be obtained. ..
 特定ジルコニア粒子の体積基準の累積50%径は、0.1~5.0μmが好ましく、0.1~2.0μmがより好ましく、0.1~1.0μmが特に好ましい。累積50%径が0.1μm以上であれば、太陽電池セルの隠蔽性がより優れる。累積50%径が6.0μm以下であれば、より優れた白色の外観を呈する光学層Aが得られること、及び、発電効率により優れた太陽電池モジュールが得られること、の少なくとも一方を満たすことができる。 The cumulative 50% diameter of the specific zirconia particles based on the volume is preferably 0.1 to 5.0 μm, more preferably 0.1 to 2.0 μm, and particularly preferably 0.1 to 1.0 μm. When the cumulative 50% diameter is 0.1 μm or more, the concealing property of the solar cell is more excellent. When the cumulative 50% diameter is 6.0 μm or less, at least one of the fact that the optical layer A exhibiting a more excellent white appearance can be obtained and that the solar cell module having more excellent power generation efficiency can be obtained is satisfied. Can be done.
 特定ジルコニア粒子の比表面積は、0.5~100m/gが好ましく、1~50m/gがより好ましく、3~30m/gが特に好ましい。上記範囲内であれば、特定ジルコニア粒子による近赤外光の散乱が好適となり、太陽電池モジュールの発電効率がより優れる。 The specific surface area of specific zirconia particles is preferably 0.5 ~ 100m 2 / g, more preferably from 1 ~ 50m 2 / g, particularly preferably 3 ~ 30m 2 / g. Within the above range, scattering of near-infrared light by the specific zirconia particles is preferable, and the power generation efficiency of the solar cell module is more excellent.
 特定ジルコニア粒子の密度は、分散性の点で、4.5~7.0g/cmが好ましく、5.0~6.5g/cmが特に好ましい。
 特定ジルコニア粒子の屈折率は、1.9~2.3が好ましく、2.0~2.2が特に好ましい。
 特定ジルコニア粒子の屈折率とは、特定ジルコニア粒子を構成する材料(例えば材料を粉砕等によって得る場合には、粉砕前の材料)の屈折率を意味し、通常は上記材料の文献値である。あるいは、JIS K 7142:2014 B法によって粉体の屈折率を直接測定することもできる。
Density of specific zirconia particles, in terms of dispersibility, preferably 4.5 ~ 7.0g / cm 3, particularly preferably 5.0 ~ 6.5g / cm 3.
The refractive index of the specific zirconia particles is preferably 1.9 to 2.3, particularly preferably 2.0 to 2.2.
The refractive index of the specific zirconia particles means the refractive index of the material constituting the specific zirconia particles (for example, when the material is obtained by pulverization or the like, the material before pulverization), and is usually a literature value of the above-mentioned material. Alternatively, the refractive index of the powder can be directly measured by the JIS K 7142: 2014 B method.
 特定ジルコニア粒子を構成するジルコニア(酸化ジルコニウム)は、構成元素の少なくとも一部がZr以外の元素(以下、特定元素ともいう。)で置換されていてもよいし、特定元素で置換されていなくてもよいが、結晶相転移を抑制でき、特定ジルコニア粒子を用いることの効果がより発揮されるという点で、特定元素で置換されているのが好ましい。
 置換元素である特定元素としては、Y、Al、Ce等が挙げられ、結晶相転移をより抑制でき、特定ジルコニア粒子を用いることの効果がより発揮されるという点で、Yが好ましい。
 特定元素の含有量は、結晶相転移を抑制でき、特定ジルコニア粒子を用いることの効果がより発揮されるという点で、特定ジルコニア粒子中のZrに対して、1~30モル%が好ましく、3~8モル%が特に好ましい。
The zirconia (zirconium oxide) constituting the specific zirconia particles may have at least a part of the constituent elements substituted with an element other than Zr (hereinafter, also referred to as a specific element), or may not be substituted with the specific element. However, it is preferably substituted with a specific element in that the crystal phase transition can be suppressed and the effect of using the specific zirconia particles is more exerted.
Examples of the specific element as the substitution element include Y, Al, and Ce, and Y is preferable in that the crystal phase transition can be further suppressed and the effect of using the specific zirconia particles is more exhibited.
The content of the specific element is preferably 1 to 30 mol% with respect to Zr in the specific zirconia particles in that the crystal phase transition can be suppressed and the effect of using the specific zirconia particles is more exerted. -8 mol% is particularly preferred.
 特定ジルコニア粒子は、市販品を用いてもよく、市販品としては、「TZ」シリーズ(東ソー社製)が挙げられる。 As the specific zirconia particles, a commercially available product may be used, and examples of the commercially available product include the "TZ" series (manufactured by Tosoh Corporation).
 特定ジルコニア粒子の含有量は、機能層の全質量に対して、1~80質量%が好ましく、5~65質量%がより好ましく、10~50質量%が特に好ましい。1質量%以上であれば、太陽電池セルの隠蔽性がより優れる。80質量%以下であれば、発電効率により優れた太陽電池モジュールが得られる。 The content of the specific zirconia particles is preferably 1 to 80% by mass, more preferably 5 to 65% by mass, and particularly preferably 10 to 50% by mass with respect to the total mass of the functional layer. When it is 1% by mass or more, the concealing property of the solar cell is more excellent. If it is 80% by mass or less, a solar cell module excellent in power generation efficiency can be obtained.
 光学層Aが有する機能層は、マトリックスを含んでいてもよい。マトリックスは、機能層に含まれる特定粒子を分散している状態で固定する役割を果たす。
 マトリックスの具体例としては、樹脂、ガラスフリット組成物を焼結してなるガラス、シリカ等が挙げられる。マトリックスは、上記成分の2種以上から構成されていてもよい。なかでも、マトリックスとしては、樹脂が好ましい。
The functional layer included in the optical layer A may include a matrix. The matrix plays a role of fixing the specific particles contained in the functional layer in a dispersed state.
Specific examples of the matrix include resin, glass obtained by sintering a glass frit composition, silica, and the like. The matrix may be composed of two or more of the above components. Of these, resin is preferable as the matrix.
 ガラスフリット組成物を焼結してなるガラス、及び、シリカとしては、国際公開第2019/116859号に記載のガラスフリット組成物を焼結してなるガラス、及び、シリカが挙げられる。 Examples of the glass obtained by sintering the glass frit composition and the silica include the glass obtained by sintering the glass frit composition described in International Publication No. 2019/116859 and silica.
 マトリックスが樹脂を含む場合、樹脂は、熱可塑性樹脂や硬化性樹脂の硬化物からなる。架橋性基を有する重合体の架橋物、縮重合性基を有する化合物の縮重合物、付加重合性基を有する化合物の付加重合物等も熱可塑性樹脂や硬化性樹脂の硬化物の範疇に含まれるものとする。また、ヒドロキシ基等の反応性基を有する熱可塑性樹脂が、その反応性基が反応することなくマトリックスとなってもよい。 When the matrix contains a resin, the resin consists of a cured product of a thermoplastic resin or a curable resin. Crosslinked products of polymers having a crosslinkable group, polycondensated polymers of compounds having a polypolymerizable group, addition polymers of compounds having an addition polymerizable group, etc. are also included in the category of cured products of thermoplastic resins and curable resins. It shall be. Further, the thermoplastic resin having a reactive group such as a hydroxy group may form a matrix without the reactive group reacting.
 マトリックスが樹脂を含む場合、樹脂の具体例としては、アルキッド樹脂、アミノアルキッド樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、エポキシ-ポリエステル樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ビニル樹脂、フェノール樹脂、変性ポリエステル樹脂、フッ素樹脂、アクリルシリコーン樹脂、シリコーン樹脂、エチレン-酢酸ビニル樹脂、ポリビニルブチラール樹脂が挙げられる。これらのうち、硬化や架橋によりマトリックスとなる樹脂は、その硬化物や架橋物がマトリックスとなる。マトリックスが含む樹脂としては、耐候性の点から、含フッ素重合体又は架橋性含フッ素重合体の架橋物からなるフッ素樹脂が好ましい。
 マトリックスは、樹脂の2種以上を含んでもよい。
When the matrix contains a resin, specific examples of the resin include alkyd resin, aminoalkyd resin, polyester resin, epoxy resin, urethane resin, epoxy-polyester resin, vinyl acetate resin, acrylic resin, vinyl chloride resin, phenol resin, and modification. Examples thereof include polyester resin, fluororesin, acrylic silicone resin, silicone resin, ethylene-vinyl acetate resin, and polyvinyl butyral resin. Of these, as for the resin that becomes a matrix by curing or cross-linking, the cured product or the cross-linked product becomes a matrix. As the resin contained in the matrix, a fluororesin composed of a fluoropolymer or a crosslinked product of a crosslinkable fluoropolymer is preferable from the viewpoint of weather resistance.
The matrix may contain two or more of the resins.
 含フッ素重合体は、フルオロオレフィンに基づく単位(以下、単位Fともいう。)を含むことが好ましい。
 単位とは、単量体が重合して直接形成された、上記単量体1分子に基づく原子団と、上記原子団の一部を化学変換して得られる原子団との総称である。重合体が含む全単位に対する、それぞれの単位の含有量(モル%)は、重合体を核磁気共鳴スペクトル(NMR)法により分析して求められる。
The fluorine-containing polymer preferably contains a unit based on a fluoroolefin (hereinafter, also referred to as a unit F).
The unit is a general term for an atomic group based on one molecule of the monomer, which is directly formed by polymerizing a monomer, and an atomic group obtained by chemically converting a part of the atomic group. The content (mol%) of each unit with respect to all the units contained in the polymer is determined by analyzing the polymer by a nuclear magnetic resonance spectrum (NMR) method.
 フルオロオレフィンは、H原子の1個以上がF原子で置換されたオレフィンである。フルオロオレフィンは、F原子で置換されていないH原子の1個以上が塩素原子で置換されていてもよい。
 フルオロオレフィンの具体例としては、CF=CF、CF=CFCl、CF=CHF、CH=CF、CF=CFCF、CF=CHCF、CFCH=CHF、CFCF=CH、CH=CX(CFn0(式中、X及びYは、独立にH原子又はF原子であり、n0は2~10の整数である。)で表される単量体が挙げられ、機能層の耐候性に優れる点から、CF=CF、CH=CF、CF=CFCl、CFCH=CHF、CFCF=CHが好ましく、CF=CFClが特に好ましい。フルオロオレフィンは、2種以上が併用されていてもよい。
A fluoroolefin is an olefin in which one or more H atoms are substituted with F atoms. In the fluoroolefin, one or more H atoms which are not substituted with F atoms may be substituted with chlorine atoms.
Specific examples of fluoroolefins include CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CHF, CH 2 = CF 2 , CF 2 = CFCF 3 , CF 2 = CHCF 3 , CF 3 CH = CHF, CF 3 CF = CH 2 , CH 2 = CX 0 (CF 2 ) n0 Y 0 (in the formula, X 0 and Y 0 are independently H or F atoms, and n0 is an integer of 2 to 10). CF 2 = CF 2 , CH 2 = CF 2 , CF 2 = CFCl, CF 3 CH = CHF, CF 3 CF = CH 2 from the viewpoints of the represented monomers and the excellent weather resistance of the functional layer. Preferably, CF 2 = CFCl is particularly preferred. Two or more kinds of fluoroolefins may be used in combination.
 含フッ素重合体は、単位Fのみを含んでいてもよく、単位F及びフルオロオレフィン以外のF原子を含む単量体に基づく単位を含んでいてもよく、単位F及びF原子を含まない単量体に基づく単位を含んでいてもよい。 The fluorine-containing polymer may contain only the unit F, may contain a unit based on a monomer containing an F atom other than the unit F and the fluoroolefin, and may contain a unit amount free of the unit F and the F atom. It may include body-based units.
 単位Fのみを含む含フッ素重合体としては、フルオロオレフィンの単独重合体、フルオロオレフィンの2種以上の共重合体等が挙げられ、具体例としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリビニリデンフルオリドが挙げられる。 Examples of the fluoropolymer containing only the unit F include a fluoroolefin homopolymer, two or more copolymers of fluoroolefin, and specific examples thereof include polytetrafluoroethylene and polychlorotrifluoroethylene. Examples thereof include tetrafluoroethylene-hexafluoropropylene copolymer and polyvinylidene fluoride.
 単位F及びフルオロオレフィン以外のF原子を含む単量体に基づく単位を含む含フッ素重合体としては、フルオロオレフィン-ペルフルオロ(アルキルビニルエーテル)共重合体等が挙げられ、具体例としては、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体が挙げられる。 Examples of the fluorine-containing polymer containing a unit based on a monomer containing an F atom other than the unit F and a fluoroolefin include a fluoroolefin-perfluoro (alkyl vinyl ether) copolymer, and specific examples thereof include tetrafluoroethylene. -Perfluoro (alkyl vinyl ether) copolymers can be mentioned.
 含フッ素重合体は、マトリックス中における特定粒子の分散性の点から、単位F及びF原子を含まない単量体に基づく単位を含むのが好ましい。 The fluorine-containing polymer preferably contains units F and units based on a monomer containing no F atom from the viewpoint of dispersibility of specific particles in the matrix.
 単位Fと、F原子を含まない単量体に基づく単位とを含む含フッ素重合体の具体例としては、クロロトリフルオロエチレン-ビニルエーテル共重合体、クロロトリフルオロエチレン-ビニルエーテル-ビニルエステル共重合体、クロロトリフルオロエチレン-ビニルエステル-アリルエーテル共重合体、テトラフルオロエチレン-ビニルエステル共重合体、テトラフルオロエチレン-ビニルエステル-アリルエーテル共重合体、エチレン-テトラフルオロエチレン共重合体が挙げられる。太陽電池モジュールの意匠性に優れる点から、クロロトリフルオロエチレン-ビニルエーテル共重合体が好ましい。 Specific examples of the fluoropolymer containing the unit F and a unit based on a monomer containing no F atom include a chlorotrifluoroethylene-vinyl ether copolymer and a chlorotrifluoroethylene-vinyl ether-vinyl ester copolymer. , Chlorotrifluoroethylene-vinyl ester-allyl ether copolymer, tetrafluoroethylene-vinyl ester copolymer, tetrafluoroethylene-vinyl ester-allyl ether copolymer, ethylene-tetrafluoroethylene copolymer. A chlorotrifluoroethylene-vinyl ether copolymer is preferable from the viewpoint of excellent design of the solar cell module.
 単位Fの含有量は、機能層の耐候性の点から、含フッ素重合体が含む全単位に対して、20~100モル%が好ましく、30~70モル%がより好ましく、40~60モル%が特に好ましい。 The content of the unit F is preferably 20 to 100 mol%, more preferably 30 to 70 mol%, and more preferably 40 to 60 mol% with respect to all the units contained in the fluorine-containing polymer from the viewpoint of weather resistance of the functional layer. Is particularly preferable.
 含フッ素重合体は、機能層の耐久性の点から、F原子を含まない単量体に基づく単位として、架橋性基を有する単位(以下、単位Cともいう。)を含む架橋性含フッ素重合体であることが好ましい。単位Cは、架橋性基を有する単量体(以下、単量体Cともいう。)に基づく単位であってもよく、単位Cを含む含フッ素重合体の架橋性基を、異なる架橋性基に変換させて得られる単位であってもよい。このような単位としては、ヒドロキシ基を有する単位を含む含フッ素重合体に、ポリカルボン酸やその酸無水物等を反応させて、ヒドロキシ基の一部又は全部をカルボキシ基に変換させて得られる単位が挙げられる。上記架橋性基の具体例としては、ヒドロキシ基、カルボキシ基、アミノ基、エポキシ基、加水分解性シリル基が挙げられ、機能層の強度の点から、ヒドロキシ基及びカルボキシ基が好ましい。
 単位Cが有する架橋性基は、マトリックスにおいて後述する硬化剤によって架橋していてもよく、架橋せず残存していてもよく、硬化剤と架橋しているのが好ましい。単位Cが有する架橋性基が硬化剤によって架橋していると、機能層の耐久性がより優れる。単位Cが有する架橋性基が、架橋せず残存していると、マトリックス中における特定粒子の分散性がより優れる。
From the viewpoint of durability of the functional layer, the fluorine-containing polymer contains a crosslinkable fluorine-containing weight containing a unit having a crosslinkable group (hereinafter, also referred to as unit C) as a unit based on a monomer containing no F atom. It is preferably coalesced. The unit C may be a unit based on a monomer having a crosslinkable group (hereinafter, also referred to as a monomer C), and the crosslinkable group of the fluoropolymer containing the unit C may be a different crosslinkable group. It may be a unit obtained by converting to. Such a unit is obtained by reacting a fluorine-containing polymer containing a unit having a hydroxy group with a polycarboxylic acid, an acid anhydride thereof, or the like to convert a part or all of the hydroxy group into a carboxy group. The unit is mentioned. Specific examples of the crosslinkable group include a hydroxy group, a carboxy group, an amino group, an epoxy group and a hydrolyzable silyl group, and a hydroxy group and a carboxy group are preferable from the viewpoint of the strength of the functional layer.
The crosslinkable group of the unit C may be crosslinked with a curing agent described later in the matrix, may remain without being crosslinked, and is preferably crosslinked with the curing agent. When the crosslinkable group of the unit C is crosslinked by a curing agent, the durability of the functional layer is more excellent. When the crosslinkable group of the unit C remains without crosslinking, the dispersibility of the specific particles in the matrix is more excellent.
 ヒドロキシ基を有する単量体としては、ヒドロキシ基を有する、ビニルエーテル、ビニルエステル、アリルエーテル、アリルエステル、(メタ)アクリレート、アリルアルコール等が挙げられる。
 ヒドロキシ基を有する単量体の具体例としては、CH=CHO-CH-cycloC10-CHOH、CH=CHCHO-CH-cycloC10-CHOH、CH=CHO-CH-cycloC10-CH-(OCHCH15OH、CH=CHOCHCHOH、CH=CHCHOCHCHOH、CH=CHOCHCHCHCHOH、及びCH=CHCHOCHCHCHCHOHが挙げられ、フルオロオレフィンとの共重合性の点から、CH=CHCHOCHCHOH又はCH=CHOCHCHCHCHOHが好ましい。
 なお、「-cycloC10-」はシクロへキシレン基を表し、「-cycloC10-」の結合部位は、通常1,4-である。
Examples of the monomer having a hydroxy group include vinyl ether, vinyl ester, allyl ether, allyl ester, (meth) acrylate, allyl alcohol and the like having a hydroxy group.
Specific examples of the monomer having a hydroxy group include CH 2 = CHO-CH 2- cycloC 6 H 10- CH 2 OH, CH 2 = CHCH 2 O-CH 2- cycloC 6 H 10- CH 2 OH, CH. 2 = CHOCH 2 -cycloC 6 H 10 -CH 2 - (OCH 2 CH 2) 15 OH, CH 2 = CHOCH 2 CH 2 OH, CH 2 = CHCH 2 OCH 2 CH 2 OH, CH 2 = CHOCH 2 CH 2 CH 2 CH 2 OH, and CH 2 = CHCH 2 OCH 2 CH 2 CH 2 CH 2 OH and the like, from the viewpoint of copolymerizability with the fluoroolefin, CH 2 = CHCH 2 OCH 2 CH 2 OH or CH 2 = CHOCH 2 CH 2 CH 2 CH 2 OH is preferable.
In addition, "-cycloC 6 H 10- " represents a cyclohexylene group, and the binding site of "-cycloC 6 H 10- " is usually 1,4-.
 カルボキシ基を有する単量体としては、不飽和カルボン酸、(メタ)アクリル酸、上記ヒドロキシ基を有する単量体のヒドロキシ基にカルボン酸無水物を反応させて得られる単量体等が挙げられる。
 カルボキシ基を有する単量体の具体例としては、CH=CHCOOH、CH(CH)=CHCOOH、CH=C(CH)COOH、HOOCCH=CHCOOH、CH=CH(CHn11COOHで表される単量体(ただし、n11は1~10の整数を示す。)、CH=CHO(CHn12OC(O)CHCHCOOHで表される単量体(ただし、n12は1~10の整数を示す。)が挙げられ、フルオロオレフィンとの共重合性の点から、CH=CH(CHn11COOHで表される単量体又はCH=CHO(CHn12OC(O)CHCHCOOHで表される単量体が好ましい。
Examples of the monomer having a carboxy group include unsaturated carboxylic acid, (meth) acrylic acid, and a monomer obtained by reacting a hydroxy group of the above-mentioned monomer having a hydroxy group with a carboxylic acid anhydride. ..
Specific examples of the monomer having a carboxy group include CH 2 = CHCOOH, CH (CH 3 ) = CHCOOH, CH 2 = C (CH 3 ) COOH, HOOCCH = CHCOOH, CH 2 = CH (CH 2 ) n11 COOH. Monomer represented by (where n11 represents an integer of 1 to 10), CH 2 = CHO (CH 2 ) n12 OC (O) CH 2 CH 2 Monomer represented by COOH (however, where n12 represents an integer of 1 to 10), and from the viewpoint of copolymerizability with a fluoroolefin, a monomer represented by CH 2 = CH (CH 2 ) n11 COOH or CH 2 = CHO (CH). 2 ) A monomer represented by n12 OC (O) CH 2 CH 2 COOH is preferable.
 単量体Cは、2種以上が併用されていてもよい。
 単位Cの含有量は、含フッ素重合体が含む全単位に対して、0.5~35モル%が好ましく、3~25モル%がより好ましく、5~25モル%が更に好ましく、5~20モル%が特に好ましい。
Two or more types of monomer C may be used in combination.
The content of the unit C is preferably 0.5 to 35 mol%, more preferably 3 to 25 mol%, still more preferably 5 to 25 mol%, and 5 to 20 with respect to all the units contained in the fluorine-containing polymer. Mol% is particularly preferred.
 含フッ素重合体は、更に、F原子を含まない単量体に基づく単位として、架橋性基を有さない単量体に基づく単位を含んでよい。架橋性基を有さない単量体に基づく単位としては、アルケン、ビニルエーテル、ビニルエステル、アリルエーテル、アリルエステル、及び(メタ)アクリレートからなる群から選択される1種以上の単量体(以下、単量体Dともいう。)に基づく単位(以下、単位Dともいう。)が挙げられる。 The fluorine-containing polymer may further contain a unit based on a monomer having no crosslinkable group as a unit based on a monomer containing no F atom. As a unit based on a monomer having no crosslinkable group, one or more monomers selected from the group consisting of alkene, vinyl ether, vinyl ester, allyl ether, allyl ester, and (meth) acrylate (hereinafter,). , Also referred to as monomer D) (hereinafter, also referred to as unit D).
 単量体Dの具体例としては、エチレン、プロピレン、1-ブテン、エチルビニルエーテル、tert-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、酢酸ビニル、ピバル酸ビニル、ネオノナン酸ビニル(HEXION社製、商品名「ベオバ9」等)、ネオデカン酸ビニル(HEXION社製、商品名「ベオバ10」等)、安息香酸ビニル、tert-ブチル安息香酸ビニル、tert-ブチル(メタ)アクリレート、ベンジル(メタ)アクリレートが挙げられる。
 単量体Dは、2種以上が併用されていてもよい。
 含フッ素重合体が単位Dを含む場合、単位Dの含有量は、含フッ素重合体が含む全単位に対して、5~60モル%が好ましく、10~50モル%が特に好ましい。
Specific examples of the monomer D include ethylene, propylene, 1-butene, ethyl vinyl ether, tert-butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether, vinyl acetate, vinyl pivalate, and vinyl neononanonate (manufactured by HEXION). Name "Beova 9" etc.), Vinyl neodecanoate (manufactured by HEXION, trade name "Beova 10" etc.), Vinyl benzoate, tert-butyl Vinyl benzoate, tert-butyl (meth) acrylate, benzyl (meth) acrylate Can be mentioned.
Two or more types of monomer D may be used in combination.
When the fluorine-containing polymer contains the unit D, the content of the unit D is preferably 5 to 60 mol%, particularly preferably 10 to 50 mol%, based on all the units contained in the fluorine-containing polymer.
 含フッ素重合体は、含フッ素重合体が含む全単位に対して、単位Fの30~70モル%、単位Cの0.5~35モル%、単位Dの5~60モル%を含むことが好ましい。 The fluorine-containing polymer may contain 30 to 70 mol% of the unit F, 0.5 to 35 mol% of the unit C, and 5 to 60 mol% of the unit D with respect to all the units contained in the fluorine-containing polymer. preferable.
 含フッ素重合体としては、市販品を用いてもよい。市販品の具体例としては、「ルミフロン」シリーズ(AGC社商品名)、「Kynar」シリーズ(アルケマ社商品名)、「ゼッフル」シリーズ(ダイキン工業社商品名)、「Eterflon」シリーズ(エターナル社商品名)、「Zendura」シリーズ(Honeywell社商品名)が挙げられる。 As the fluorine-containing polymer, a commercially available product may be used. Specific examples of commercially available products include the "Lumiflon" series (AGC product name), the "Kynar" series (Arkema product name), the "Zeffle" series (Daikin Industries product name), and the "Eterflon" series (Eternal product). Name), "Zendura" series (Honeywell product name).
 含フッ素重合体は、公知の方法で製造される。含フッ素重合体の製造方法の具体例としては、ラジカル開始剤等を用いた溶液重合、乳化重合が挙げられる。含フッ素重合体の製造時又は製造後に、重合安定剤、重合禁止剤、界面活性剤等が使用されてもよい。 The fluorine-containing polymer is produced by a known method. Specific examples of the method for producing a fluorine-containing polymer include solution polymerization and emulsion polymerization using a radical initiator and the like. A polymerization stabilizer, a polymerization inhibitor, a surfactant and the like may be used during or after the production of the fluorine-containing polymer.
 本発明におけるマトリックスがフッ素樹脂を含む場合、機能層におけるフッ素樹脂の含有量は、機能層の耐候性の点から、機能層の全質量に対して、5~95質量%が好ましく、10~90質量%が特に好ましい。 When the matrix in the present invention contains a fluororesin, the content of the fluororesin in the functional layer is preferably 5 to 95% by mass, preferably 10 to 90% by mass, based on the total mass of the functional layer from the viewpoint of weather resistance of the functional layer. Mass% is particularly preferred.
 本発明におけるマトリックスがフッ素樹脂を含む場合、機能層のF原子含有量は、マトリックス中における特定粒子の分散性の点から、65質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下が更に好ましく、25質量%以下が特に好ましく、20%以下が最も好ましい。また、機能層のF原子含有量は、機能層の耐候性の点から、機能層の全質量に対して、0.1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が更に好ましく、10質量%以上が特に好ましい。
 この場合、機能層のF原子含有量が、好ましくは0.1~25質量%、特に好ましくは5~20質量%であれば、機能層において特定粒子が特に良好に分散するので、太陽電池モジュールの意匠性及び発電効率に優れる。
When the matrix in the present invention contains a fluororesin, the F atom content of the functional layer is preferably 65% by mass or less, more preferably 50% by mass or less, and more preferably 40% by mass, from the viewpoint of dispersibility of specific particles in the matrix. The following is more preferable, 25% by mass or less is particularly preferable, and 20% or less is most preferable. The F atom content of the functional layer is preferably 0.1% by mass or more, more preferably 3% by mass or more, and 5% by mass or more, based on the total mass of the functional layer, from the viewpoint of weather resistance of the functional layer. Is more preferable, and 10% by mass or more is particularly preferable.
In this case, if the F atom content of the functional layer is preferably 0.1 to 25% by mass, particularly preferably 5 to 20% by mass, the specific particles are dispersed particularly well in the functional layer, so that the solar cell module Excellent in design and power generation efficiency.
 機能層中のF原子含有量とは、機能層を構成する全原子に対するF原子の含有量(質量%)を意味する。機能層中のF原子含有量は、自動試料燃焼装置-イオンクロマト法(AQF-IC法)によって、下記条件にて測定して得られる。
<分析条件>
・自動試料燃焼装置
 装置:三菱ケミカルアナリテック社製、自動試料燃焼装置AQF-100
 燃焼条件:固体試料用モード
 試料量:2~20mg
・イオンクロマトグラフ
 装置:Thermo Fisher SCIENTIFIC社製
 カラム:IonpacAG11HC+IonpacAS11HC
 溶離液:KOH10mN(0-9min)、10-16mN(9-11min)、16mN(11-15min)、16-61mN(15-20min)、60mN(20-25min)
 流速:1.0mL/分
 サプレッサ:ASRS
 検出器:電導度検出器
 注入量:5μL
The F atom content in the functional layer means the content (mass%) of F atoms with respect to all the atoms constituting the functional layer. The F atom content in the functional layer is obtained by measuring with the following conditions by an automatic sample combustion device-ion chromatography method (AQF-IC method).
<Analysis conditions>
-Automatic sample combustion device: Automatic sample combustion device AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
Combustion conditions: Solid sample mode Sample amount: 2 to 20 mg
-Ion chromatograph device: Thermo Fisher SCIENTIFIC column: IonpacAG11HC + IonpacAS11HC
Eluent: KOH 10mN (0-9min), 10-16mN (9-11min), 16mN (11-15min), 16-61mN (15-20min), 60mN (20-25min)
Flow velocity: 1.0 mL / min Suppressor: ASRS
Detector: Conductivity detector Injection volume: 5 μL
 マトリックスは、機能層の硬度及び耐久性の点から、架橋性樹脂が有する架橋性基が硬化剤と反応して形成される架橋構造を有する樹脂を含むことが好ましい。
 また、マトリックスを構成する樹脂と機能層以外の層との間に架橋構造が形成されていてもよい。この場合、架橋性樹脂の架橋性基と、機能層以外の層が有する反応性基とが硬化剤等によって架橋していてもよい。
 機能層以外の層が有する反応性基としては、機能層以外の層がガラス板からなる基材である場合のシラノール基、機能層以外の層が、シランカップリング剤等によって表面処理されている層である場合の加水分解性シリル基等が挙げられる。
 例えば、加水分解性シリル基及びシラノール基から選択される1種以上を有する硬化剤を含む樹脂から、ガラス板からなる基材上に機能層を形成する場合、硬化剤の加水分解性シリル基等(具体的には、加水分解により生じたシラノール基)と、ガラス板の表面に存在するシラノール基と、が反応して架橋構造を形成する。そのため、基材に対する機能層の密着性がより優れる。更には、この場合、基材が、シランカップリング剤等によって表面処理されたガラス板からなる層であると、ガラス板の表面に存在するシラノール基と、シランカップリング剤が有する加水分解性シリル基等と、硬化剤の加水分解性シリル基等と、が反応して架橋構造を形成する。そのため、基材と、機能層と、の密着性が向上し、光学層Aの耐久性に優れる。
From the viewpoint of hardness and durability of the functional layer, the matrix preferably contains a resin having a crosslinked structure formed by reacting a crosslinkable group of the crosslinkable resin with a curing agent.
Further, a crosslinked structure may be formed between the resin constituting the matrix and a layer other than the functional layer. In this case, the crosslinkable group of the crosslinkable resin and the reactive group of the layer other than the functional layer may be crosslinked with a curing agent or the like.
As the reactive group possessed by the layer other than the functional layer, the silanol group when the layer other than the functional layer is a base material made of a glass plate, and the layer other than the functional layer are surface-treated with a silane coupling agent or the like. Examples thereof include a hydrolyzable silyl group in the case of a layer.
For example, when a functional layer is formed on a base material made of a glass plate from a resin containing a curing agent having at least one selected from a hydrolyzable silyl group and a silanol group, the hydrolyzable silyl group of the curing agent and the like (Specifically, the silanol group generated by hydrolysis) reacts with the silanol group existing on the surface of the glass plate to form a crosslinked structure. Therefore, the adhesion of the functional layer to the base material is more excellent. Further, in this case, when the base material is a layer made of a glass plate surface-treated with a silane coupling agent or the like, the silanol group existing on the surface of the glass plate and the hydrolyzable silyl of the silane coupling agent The groups and the like react with the hydrolyzable silyl groups and the like of the curing agent to form a crosslinked structure. Therefore, the adhesion between the base material and the functional layer is improved, and the durability of the optical layer A is excellent.
 光学層Aが有する機能層は、上記以外の成分を含んでいてもよい。このような成分としては、後述する添加剤等が挙げられる。 The functional layer of the optical layer A may contain components other than the above. Examples of such a component include additives described later.
 第1実施形態における機能層の一形態としては、重合体(特に、含フッ素重合体)と、特定ジルコニア粒子と、を少なくとも含む組成物(以下、組成物(1)という。)を用いて形成される層である。組成物(1)は、重合体の2種以上を含んでいてよい。また、組成物(1)は、特定ジルコニア粒子の2種以上を含んでいてよい。
 重合体としては、上述したマトリックスを構成する樹脂に含まれる重合体が挙げられ、含フッ素重合体が好ましい。
As one form of the functional layer in the first embodiment, it is formed by using a composition containing at least a polymer (particularly, a fluorine-containing polymer) and specific zirconia particles (hereinafter, referred to as composition (1)). It is a layer to be. The composition (1) may contain two or more kinds of polymers. Further, the composition (1) may contain two or more kinds of specific zirconia particles.
Examples of the polymer include polymers contained in the resin constituting the above-mentioned matrix, and a fluorine-containing polymer is preferable.
 組成物(1)が、重合体として含フッ素重合体を含む組成物(以下、組成物(1F)という。)である場合、組成物(1F)中の含フッ素重合体は、以下の物性を有するのが好ましい。
 含フッ素重合体の酸価は、機能層の強度の点から、1~200mgKOH/gが好ましく、1~150mgKOH/gがより好ましく、3~100mgKOH/gが更に好ましく、5~50mgKOH/gが特に好ましい。
 含フッ素重合体の水酸基価は、機能層の強度の点から、1~200mgKOH/gが好ましく、1~150mgKOH/gがより好ましく、3~100mgKOH/gが更に好ましく、10~60mgKOH/gが特に好ましい。
 含フッ素重合体は、酸価又は水酸基価のどちらか一方のみを有してもよく、両方を有してもよい。
When the composition (1) is a composition containing a fluorine-containing polymer as a polymer (hereinafter referred to as composition (1F)), the fluorine-containing polymer in the composition (1F) has the following physical characteristics. It is preferable to have.
The acid value of the fluorine-containing polymer is preferably 1 to 200 mgKOH / g, more preferably 1 to 150 mgKOH / g, further preferably 3 to 100 mgKOH / g, and particularly preferably 5 to 50 mgKOH / g from the viewpoint of the strength of the functional layer. preferable.
The hydroxyl value of the fluorine-containing polymer is preferably 1 to 200 mgKOH / g, more preferably 1 to 150 mgKOH / g, further preferably 3 to 100 mgKOH / g, and particularly preferably 10 to 60 mgKOH / g from the viewpoint of the strength of the functional layer. preferable.
The fluorine-containing polymer may have either an acid value or a hydroxyl value, or may have both.
 含フッ素重合体のF原子含有量は、マトリックス中における特定粒子の分散性の点から、70質量%以下が好ましく、50質量%以下がより好ましく、30質量%以下が更に好ましく、28質量%以下が特に好ましい。また、含フッ素重合体のF原子含有量は、機能層の耐候性の点から、10質量%以上が好ましく、15質量%以上が特に好ましい。
 特に、含フッ素重合体のF原子含有量が、好ましくは15~30質量%、特に好ましくは15~28質量%であれば、機能層において特定粒子が良好に分散するので、太陽電池モジュールの意匠性及び発電効率に優れる。
 含フッ素重合体のF原子含有量とは、含フッ素重合体を構成する全原子に対するF原子の割合(質量%)を意味する。F原子含有量は、含フッ素重合体を核磁気共鳴スペクトル(NMR)法により分析して求められる。
The F atom content of the fluorine-containing polymer is preferably 70% by mass or less, more preferably 50% by mass or less, further preferably 30% by mass or less, and 28% by mass or less from the viewpoint of dispersibility of specific particles in the matrix. Is particularly preferable. The F atom content of the fluorine-containing polymer is preferably 10% by mass or more, particularly preferably 15% by mass or more, from the viewpoint of weather resistance of the functional layer.
In particular, when the F atom content of the fluorine-containing polymer is preferably 15 to 30% by mass, particularly preferably 15 to 28% by mass, the specific particles are well dispersed in the functional layer, so that the design of the solar cell module Excellent in properties and power generation efficiency.
The F atom content of the fluorine-containing polymer means the ratio (mass%) of F atoms to all the atoms constituting the fluorine-containing polymer. The F atom content is determined by analyzing the fluorine-containing polymer by a nuclear magnetic resonance spectroscopy (NMR) method.
 上記以外に関しては、上述したマトリックスにおける含フッ素重合体と同様であるので、詳細を省略する。 Other than the above, the details are omitted because they are the same as the fluorine-containing polymer in the above-mentioned matrix.
 組成物(1F)中の含フッ素重合体の含有量は、組成物(1F)中における特定粒子の分散性の点から、組成物(1F)の全質量に対して、10~90質量%が好ましく、20~40質量%が特に好ましい。
 組成物(1F)の固形分中の含フッ素重合体の含有量は、組成物(1F)中における特定粒子の分散性の点から、組成物(1F)の全固形分質量に対して、10~90質量%が好ましく、40~70質量%が特に好ましい。
 組成物(1F)の固形分中の特定粒子の含有量は、組成物(1F)中における特定粒子の分散性の点から、組成物(1F)の全固形分質量に対して、5~80質量%が好ましく、20~50質量%が特に好ましい。
The content of the fluorine-containing polymer in the composition (1F) is 10 to 90% by mass with respect to the total mass of the composition (1F) from the viewpoint of the dispersibility of specific particles in the composition (1F). It is preferable, and 20 to 40% by mass is particularly preferable.
The content of the fluorine-containing polymer in the solid content of the composition (1F) is 10 with respect to the total solid content mass of the composition (1F) from the viewpoint of the dispersibility of specific particles in the composition (1F). It is preferably from 90% by mass, particularly preferably 40 to 70% by mass.
The content of the specific particles in the solid content of the composition (1F) is 5 to 80 with respect to the total solid content mass of the composition (1F) from the viewpoint of the dispersibility of the specific particles in the composition (1F). It is preferably by mass, particularly preferably 20 to 50% by mass.
 組成物(1)は、特定ジルコニア粒子及び重合体以外の成分(以下、添加剤ともいう。)を含んでよい。このような添加剤としては、硬化剤、触媒、フィラー(樹脂ビーズ等の有機フィラー等)、光安定剤、紫外線吸収剤、つや消し剤、分散剤、消泡剤、レベリング剤、脱ガス剤、充填剤、熱安定剤、増粘剤、界面活性剤、帯電防止剤、防錆剤、シランカップリング剤、防汚剤、低汚染化処理剤、可塑剤、接着剤等が挙げられる。
 組成物(1)には、機能層に含まれない成分を必要に応じて含んでもよい。そのような成分の具体例としては、液状媒体が挙げられる。水及び有機溶媒等の液状媒体は、マトリックス形成時に蒸発除去等により除去される成分であり、コーティング等の手段で機能層を形成する場合に、組成物(1)に含まれる。
 組成物(1F)の固形分濃度は、上記液状媒体によって、組成物(1F)の全質量に対して10~90質量%に調整されているのが好ましく、40~70質量%に調整されているのが特に好ましい。
The composition (1) may contain components other than the specific zirconia particles and the polymer (hereinafter, also referred to as additives). Examples of such additives include hardeners, catalysts, fillers (organic fillers such as resin beads), light stabilizers, ultraviolet absorbers, matting agents, dispersants, defoamers, leveling agents, degassing agents, and fillings. Examples thereof include agents, heat stabilizers, thickeners, surfactants, antistatic agents, rust preventives, silane coupling agents, antifouling agents, decontamination treatment agents, plasticizers, adhesives and the like.
The composition (1) may contain components not included in the functional layer, if necessary. Specific examples of such components include liquid media. Liquid media such as water and organic solvents are components that are removed by evaporation and removal during matrix formation, and are included in the composition (1) when the functional layer is formed by means such as coating.
The solid content concentration of the composition (1F) is preferably adjusted to 10 to 90% by mass, preferably 40 to 70% by mass, based on the total mass of the composition (1F) by the above liquid medium. It is especially preferable to have.
 組成物(1)に硬化性の樹脂や架橋性の重合体が含まれる場合は、添加剤の中でも、上述した機能層において架橋構造を構成する硬化剤を含むのが特に好ましい。
 組成物(1)中の重合体が架橋性の重合体である場合、硬化剤により架橋させることで、機能層を硬化させることができる。この場合、機能層は、重合体と硬化剤との架橋構造体を有する。
 また、組成物(1)中の硬化剤が加水分解性シリル基及びシラノール基から選択される1種以上を有する場合、硬化剤と、基材として酸化ケイ素を含むガラス板と、場合に応じて重合体と、が反応して、硬化剤と、ガラス板と、場合に応じて重合体と、の架橋構造を有する機能層が形成されると考えられる。
 組成物(1)が硬化剤を含む場合、硬化剤の含有量は、組成物(1)中の重合体100質量部に対して、5~200質量部が好ましく、10~150質量部が特に好ましい。
When the composition (1) contains a curable resin or a crosslinkable polymer, it is particularly preferable to include a curing agent that constitutes a crosslinked structure in the above-mentioned functional layer among the additives.
When the polymer in the composition (1) is a crosslinkable polymer, the functional layer can be cured by crosslinking with a curing agent. In this case, the functional layer has a crosslinked structure of a polymer and a curing agent.
When the curing agent in the composition (1) has one or more selected from a hydrolyzable silyl group and a silanol group, a curing agent, a glass plate containing silicon oxide as a base material, and depending on the case. It is considered that the polymer reacts with each other to form a functional layer having a crosslinked structure of the curing agent, the glass plate, and optionally the polymer.
When the composition (1) contains a curing agent, the content of the curing agent is preferably 5 to 200 parts by mass and particularly 10 to 150 parts by mass with respect to 100 parts by mass of the polymer in the composition (1). preferable.
 重合体がヒドロキシ基を有する場合の硬化剤は、イソシアネート基又はブロック化イソシアネート基を1分子中に2以上有する化合物が好ましい。
 重合体がカルボキシ基を有する場合の硬化剤は、エポキシ基、カルボジイミド基、オキサゾリン基又はβ-ヒドロキシアルキルアミド基を、1分子中に2以上有する化合物が好ましい。
 重合体がヒドロキシ基及びカルボキシ基の両方を有する場合は、イソシアネート基又はブロック化イソシアネート基を1分子中に2以上有する化合物と、エポキシ基、カルボジイミド基、オキサゾリン基又はβ-ヒドロキシアルキルアミド基を1分子中に2以上有する化合物と、の併用が好ましい。
 また、光学層Aがガラス板からなる基材を有する場合は、硬化剤は、機能層と基材との密着性がより向上する点から、加水分解性シリル基及びシラノール基から選択される少なくとも1種を有する硬化剤が好ましい。
When the polymer has a hydroxy group, the curing agent is preferably a compound having two or more isocyanate groups or blocked isocyanate groups in one molecule.
When the polymer has a carboxy group, the curing agent is preferably a compound having two or more epoxy groups, carbodiimide groups, oxazoline groups or β-hydroxyalkylamide groups in one molecule.
When the polymer has both a hydroxy group and a carboxy group, a compound having two or more isocyanate groups or blocked isocyanate groups in one molecule and one epoxy group, carbodiimide group, oxazoline group or β-hydroxyalkylamide group. It is preferably used in combination with a compound having two or more in the molecule.
When the optical layer A has a base material made of a glass plate, the curing agent is selected from at least a hydrolyzable silyl group and a silanol group from the viewpoint of further improving the adhesion between the functional layer and the base material. A curing agent having one kind is preferable.
 組成物(1)は、特定粒子の分散性の点から、分散剤を含むのが好ましい。分散剤の具体例としては、脂肪酸アミド、酸性ポリアミドのエステル塩、アクリル樹脂、酸化ポリオレフィン、その他、特定粒子に親和性のある重合体が挙げられる。分散剤は市販品を用いてもよく、市販品の具体例としては、「ディスパロン」シリーズ(楠本化成社商品名)、「DISPERBYK」シリーズ(ビックケミー社商品名)が挙げられる。 The composition (1) preferably contains a dispersant from the viewpoint of dispersibility of specific particles. Specific examples of the dispersant include fatty acid amides, ester salts of acidic polyamides, acrylic resins, polyolefin oxides, and other polymers having an affinity for specific particles. A commercially available product may be used as the dispersant, and specific examples of the commercially available product include the "Disparon" series (trade name of Kusumoto Kasei Co., Ltd.) and the "DISPERBYK" series (trade name of Big Chemie Co., Ltd.).
 機能層が、組成物(1)を用いて形成される層である場合、機能層は、組成物(1)を成形して製造してもよく、組成物(1)を、光学層Aが有する機能層以外の層(例えば、基材)上に塗装し、加熱乾燥して製造してもよい。機能層は、マトリックス中における特定粒子の分散性の点から、組成物(1)を、光学層Aが有する機能層以外の層上に塗装して製造するのが好ましい。つまり、組成物(1)は、含フッ素重合体を含む塗料であることが好ましい。
 太陽電池モジュールを製造する場合、好ましくは基材上に上記塗料を塗装して光学層Aを製造し、得られた光学層Aを後述する封止層と圧着する。したがって、光学層Aにおける機能層が塗料を塗装して形成される層であれば、機能層がフィルムである場合と比較して、封止層との圧着時に端面において機能層がはみ出さない点でも好ましい。
When the functional layer is a layer formed by using the composition (1), the functional layer may be produced by molding the composition (1), and the composition (1) may be produced by the optical layer A. It may be produced by coating it on a layer other than the functional layer having it (for example, a base material) and heating and drying it. The functional layer is preferably produced by coating the composition (1) on a layer other than the functional layer of the optical layer A from the viewpoint of the dispersibility of specific particles in the matrix. That is, the composition (1) is preferably a coating material containing a fluorine-containing polymer.
When manufacturing a solar cell module, the above paint is preferably applied on a base material to manufacture an optical layer A, and the obtained optical layer A is pressure-bonded to a sealing layer described later. Therefore, if the functional layer in the optical layer A is a layer formed by coating a paint, the functional layer does not protrude from the end face at the time of pressure bonding with the sealing layer, as compared with the case where the functional layer is a film. But it is preferable.
 組成物(1)を成形して機能層を製造する場合、成形方法としては、押出成形、射出成形、ブロー成形等が挙げられる。この場合、光学層Aが有する機能層以外の層上にラミネート成形してもよい。 When the functional layer is produced by molding the composition (1), examples of the molding method include extrusion molding, injection molding, blow molding and the like. In this case, it may be laminated on a layer other than the functional layer of the optical layer A.
 組成物(1)が液状媒体を含み、媒体中に組成物(1)の固形分が分散又は溶解している塗料(水系塗料、溶剤型塗料等)である場合、塗装方法の具体例としては、スプレーコート法、スキージコート法、フローコート法、バーコート法、スピンコート法、ディップコート法、スクリーン印刷法、グラビア印刷法、ダイコート法、インクジェット法、カーテンコート法、はけやへらを用いる方法が挙げられる。組成物(1)は、マトリックス中における分散性が良好である機能層を形成できる点から、重合体が溶剤中に溶解又は分散している溶剤型塗料であることが好ましい。
 組成物(1)が液状媒体を含まない塗料(粉体塗料等)である場合、塗装方法の具体例としては、静電塗装法、静電吹付法、静電浸漬法、噴霧法、流動浸漬法、吹付法、スプレー法、溶射法、プラズマ溶射法が挙げられる。
 組成物(1)を光学層Aが有する機能層以外の層上に塗装して機能層を製造する場合、塗装後は、組成物(1)を塗装してなる塗装層を、加熱乾燥させて形成するのが好ましい。上記塗装層の加熱乾燥温度は、通常0℃~300℃であり、加熱乾燥時間は、通常1分~2週間である。
When the composition (1) contains a liquid medium and the solid content of the composition (1) is dispersed or dissolved in the medium (water-based paint, solvent-based paint, etc.), specific examples of the coating method include , Spray coating method, squeegee coating method, flow coating method, bar coating method, spin coating method, dip coating method, screen printing method, gravure printing method, die coating method, inkjet method, curtain coating method, method using brush or spatula. Can be mentioned. The composition (1) is preferably a solvent-based coating material in which the polymer is dissolved or dispersed in a solvent from the viewpoint that a functional layer having good dispersibility in the matrix can be formed.
When the composition (1) is a paint (powder paint or the like) that does not contain a liquid medium, specific examples of the coating method include an electrostatic coating method, an electrostatic spraying method, an electrostatic dipping method, a spraying method, and a fluidized dipping method. Examples include the method, spraying method, spraying method, thermal spraying method, and plasma thermal spraying method.
When the composition (1) is coated on a layer other than the functional layer of the optical layer A to produce a functional layer, after coating, the coating layer formed by coating the composition (1) is heated and dried. It is preferable to form. The heating and drying temperature of the coating layer is usually 0 ° C. to 300 ° C., and the heating and drying time is usually 1 minute to 2 weeks.
 機能層が、組成物(1)を用いて形成される層である場合、光学層Aは、基材と、基材の少なくとも一方の面上に直接積層された機能層とを有し、基材が表面処理されたガラス板からなる層であるのが好ましい。つまり、上記の場合、ガラス板の少なくとも一方の面上を、公知の表面処理方法によって表面処理して基材を得て、得られた基材の少なくとも一方の面上に組成物(1)を直接塗装して機能層を形成して、光学層Aを得るのが好ましい。特に、上記表面処理がシランカップリング剤の塗布等である場合、基材においてガラス板が有する-Si-OH基と、シランカップリング剤が有する-Si-OH基とが相互作用するとともに、表面処理された基材と機能層とが密着するため、光学層Aの耐久性に優れる。 When the functional layer is a layer formed by using the composition (1), the optical layer A has a base material and a functional layer directly laminated on at least one surface of the base material, and is a group. The material is preferably a layer made of a surface-treated glass plate. That is, in the above case, at least one surface of the glass plate is surface-treated by a known surface treatment method to obtain a base material, and the composition (1) is placed on at least one surface of the obtained base material. It is preferable to directly paint to form a functional layer to obtain an optical layer A. In particular, when the surface treatment is the application of a silane coupling agent or the like, the —Si—OH groups of the glass plate and the —Si—OH groups of the silane coupling agent on the base material interact with each other and the surface. Since the treated base material and the functional layer are in close contact with each other, the durability of the optical layer A is excellent.
 光学層Aは、機能層のみからなっていてよい。また、光学層Aは、本発明の効果を損なわない範囲で、機能層以外の層を有してよい。機能層以外の層の具体例としては、基材、接着層、空気層が挙げられる。
 また、光学層Aは、機能層を複数有していてもよく、機能層以外の層を複数有していてもよい。光学層Aは、機能層を有していればよいため、光学層Aが有する各層の配置順は適宜選択できる。
 接着層は、例えば、光学層Aが有する2以上の層を接着させる層である。
 空気層は、例えば、光学層Aが袋状のフィルムである場合に、光学層Aをクッション状に膨らんだ状態で維持する層である。この際、太陽電池セルは、光学層Aの内部に設置されていてよい。
The optical layer A may be composed of only the functional layer. Further, the optical layer A may have a layer other than the functional layer as long as the effect of the present invention is not impaired. Specific examples of layers other than the functional layer include a base material, an adhesive layer, and an air layer.
Further, the optical layer A may have a plurality of functional layers, or may have a plurality of layers other than the functional layers. Since the optical layer A only needs to have a functional layer, the arrangement order of each layer of the optical layer A can be appropriately selected.
The adhesive layer is, for example, a layer for adhering two or more layers of the optical layer A.
The air layer is, for example, a layer that maintains the optical layer A in a cushioned state when the optical layer A is a bag-shaped film. At this time, the solar cell may be installed inside the optical layer A.
 光学層Aが基材を有する場合は、光学層Aの強度を向上できる。
 基材は、機能層よりも太陽光の入射面側に配置されるのが好ましい。
When the optical layer A has a base material, the strength of the optical layer A can be improved.
The base material is preferably arranged on the incident surface side of sunlight rather than the functional layer.
 基材の平均厚さは、建造物の設計風圧等から任意に設定できる。基材の平均厚さは、0.7mm以上が好ましく、1.0mm以上がより好ましく、2.0mm以上が特に好ましい。基材の平均厚さは、9.7mm以下が好ましく、8.0mm以下がより好ましく、6.0mm以下が特に好ましい。平均厚さが0.7mm以上であれば、耐久性が高く、光学層Aが割れにくくなる。平均厚さが9.7mm以下であれば、光学層Aが軽量になるため、太陽電池モジュールがビルの壁面や窓により好適に用いられる。
 基材の平均厚さは、厚み計を用いて測定される厚さの算術平均値である。
The average thickness of the base material can be arbitrarily set from the design wind pressure of the building and the like. The average thickness of the base material is preferably 0.7 mm or more, more preferably 1.0 mm or more, and particularly preferably 2.0 mm or more. The average thickness of the base material is preferably 9.7 mm or less, more preferably 8.0 mm or less, and particularly preferably 6.0 mm or less. When the average thickness is 0.7 mm or more, the durability is high and the optical layer A is less likely to crack. When the average thickness is 9.7 mm or less, the optical layer A becomes lightweight, so that the solar cell module is preferably used for the wall surface and the window of the building.
The average thickness of the base material is an arithmetic mean value of the thickness measured using a thickness gauge.
 基材は、光学層Aの近赤外光透過率を低下させない材料からなるのが好ましい。基材は、具体的には、波長780~1,500nmの近赤外光領域において、5nm刻みの近赤外光透過率を単純平均して算出した値を近赤外光平均透過率としたときに、近赤外光平均透過率が50%以上であるのが好ましく、85%以上であるのがより好ましく、100%であるのが特に好ましい。
 基材を構成する材料としては、有機材料及び無機材料が挙げられる。基材は、近赤外光透過率の点から、ガラス板又は樹脂成形物が好ましく、ガラス板が特に好ましい。
The base material is preferably made of a material that does not reduce the near-infrared light transmittance of the optical layer A. Specifically, the base material was defined as the near-infrared light average transmittance calculated by simply averaging the near-infrared light transmittance in increments of 5 nm in the near-infrared light region having a wavelength of 780 to 1,500 nm. Occasionally, the near-infrared light average transmittance is preferably 50% or more, more preferably 85% or more, and particularly preferably 100%.
Examples of the material constituting the base material include an organic material and an inorganic material. The base material is preferably a glass plate or a resin molded product from the viewpoint of near-infrared light transmittance, and a glass plate is particularly preferable.
 ガラス板の具体例としては、ソーダライムシリケートガラス、石英ガラス、クリスタルガラス、無アルカリガラス、アルミノシリケートガラス、ホウケイ酸ガラス、又はバリウムホウケイ酸ガラスからなる群から選択される少なくとも一種が挙げられ、近赤外光透過率が高い点から、ソーダライムシリケートガラスが好ましい。
 ソーダライムシリケートガラスの具体例としては、酸化物換算で、60~75質量%のSiO、0~3質量%のAl、0超15質量%以下のCaO、0~12質量%のMgO、及び、5~20質量%のNaOの組成を持つガラスが挙げられる。ここで、SiOは、ソーダライムシリケートガラスの主成分である。
 ソーダライムシリケートガラスは、上記材料の他に、KO、TiO、ZrO及びLiOからなる群より選択される少なくとも1種の材料を更に含んでいてもよい。
 また、ソーダライムシリケートガラスは、清澄剤(例えば、SO、SnO、Sb)を更に含んでいてもよい。
Specific examples of the glass plate include at least one selected from the group consisting of soda lime silicate glass, quartz glass, crystal glass, non-alkali glass, aluminosilicate glass, borosilicate glass, and barium borosilicate glass. Soda lime silicate glass is preferable because of its high infrared light transmittance.
Specific examples of soda lime silicate glass include 60 to 75% by mass of SiO 2 , 0 to 3% by mass of Al 2 O 3 , 0 to 15% by mass or less of CaO, and 0 to 12% by mass in terms of oxide. MgO, and include glass having a composition of Na 2 O 5-20% by weight. Here, SiO 2 is the main component of the soda lime silicate glass.
Soda-lime silicate glass, in addition to the above materials, K 2 O, TiO 2, ZrO 2 and at least one material may further contain a selected from the group consisting of LiO 2.
In addition, the soda lime silicate glass may further contain a fining agent (for example, SO 3 , SnO 2 , Sb 2 O 3 ).
 ガラス板は、強化処理が施された強化ガラス板であってもよい。強化ガラス板は、強化処理が施されていないガラス板と比較して割れ難くなるので好ましい。強化ガラス板には、例えば、残留圧縮応力を有する表面層と、残留圧縮応力を有する裏面層と、表面層と裏面層との間に形成され残留引張応力を有する中間層と、を有するガラス板が用いられる。
 強化処理の具体例としては、公知のイオン交換法等によって行われる化学強化処理、及び、公知の風冷強化法等によって行われる物理強化処理が挙げられる。化学強化処理したガラス板は、板厚が薄い場合であっても、表面層又は裏面層の残留圧縮応力の値を大きくできるので、十分な強度を有する。
The glass plate may be a tempered glass plate that has been subjected to a strengthening treatment. A tempered glass plate is preferable because it is less likely to break than a glass plate that has not been subjected to the tempering treatment. The tempered glass plate includes, for example, a surface layer having a residual compressive stress, a back surface layer having a residual compressive stress, and an intermediate layer formed between the front surface layer and the back surface layer and having a residual tensile stress. Is used.
Specific examples of the strengthening treatment include a chemical strengthening treatment performed by a known ion exchange method and the like, and a physical strengthening treatment performed by a known air cooling strengthening method and the like. The chemically strengthened glass plate has sufficient strength because the value of the residual compressive stress of the front surface layer or the back surface layer can be increased even when the plate thickness is thin.
 樹脂成形物は、板状、フィルム状等に成形された樹脂である。樹脂の具体例としては、フッ素樹脂、アルキッド樹脂、アミノアルキッド樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、エポキシポリエステル樹脂、酢酸ビニル樹脂、(メタ)アクリル樹脂、塩化ビニル樹脂、フェノール樹脂、変性ポリエステル樹脂、アクリルシリコーン樹脂、シリコーン樹脂が挙げられる。樹脂成形物としては、耐候性及び近赤外光透過率の点から、フッ素樹脂フィルムが好ましい。 The resin molded product is a resin molded into a plate shape, a film shape, or the like. Specific examples of the resin include fluororesin, alkyd resin, aminoalkyd resin, polyester resin, epoxy resin, urethane resin, epoxy polyester resin, vinyl acetate resin, (meth) acrylic resin, vinyl chloride resin, phenol resin, and modified polyester resin. , Acrylic silicone resin, silicone resin and the like. As the resin molded product, a fluororesin film is preferable from the viewpoint of weather resistance and near-infrared light transmittance.
 基材は、基材以外の層との密着性の点から、上記材料を表面処理して得られる層であってよい。表面処理方法は、公知の方法を使用でき、具体的には、活性化処理(プラズマ法、蒸着法、酸処理、塩基処理等)、化成処理、材料表面の研磨、サンダー処理、封孔処理、ブラスト処理、プライマー処理が挙げられる。
 基材は、特に、表面処理されたガラス板からなる層であるのが好ましい。この場合の表面処理方法は、プライマー処理(特に、プライマー剤の塗布)が好ましい。
 プライマー剤の具体例としては、シランカップリング剤(特に、アルコキシシラン等)、チタンカップリング剤、エポキシ樹脂、(メタ)アクリル樹脂、ポリエステル樹脂が挙げられ、被表面処理材料がガラス板である場合、シランカップリング剤又はチタンカップリング剤が好ましい。
The base material may be a layer obtained by surface-treating the above material from the viewpoint of adhesion to a layer other than the base material. As a surface treatment method, a known method can be used. Specifically, activation treatment (plasma method, vapor deposition method, acid treatment, base treatment, etc.), chemical conversion treatment, material surface polishing, sander treatment, pore treatment, etc. Examples include blast treatment and primer treatment.
The base material is particularly preferably a layer made of a surface-treated glass plate. In this case, the surface treatment method is preferably primer treatment (particularly, application of a primer agent).
Specific examples of the primer agent include a silane coupling agent (particularly, alkoxysilane, etc.), a titanium coupling agent, an epoxy resin, a (meth) acrylic resin, and a polyester resin, and when the surface treatment material is a glass plate. , Silane coupling agent or titanium coupling agent is preferable.
<第2実施態様>
 第2実施態様の光学層は、太陽電池セルに対して太陽光の入射面側に配されて用いられる光学層であって、特定中空粒子を含む機能層を有し、上記機能層の厚さが1~1,000μmである。本明細書において、第2実施形態の光学層を「光学層B」ともいう。
 光学層Bは、特定ジルコニア粒子を含む機能層の代わりに、特定中空粒子を含む機能層を有する以外は、光学層Aと同様である。以下においては、主に光学層Aとの相違点について説明する。
<Second embodiment>
The optical layer of the second embodiment is an optical layer used by being arranged on the incident surface side of sunlight with respect to the solar cell, has a functional layer containing specific hollow particles, and has a thickness of the functional layer. Is 1 to 1,000 μm. In the present specification, the optical layer of the second embodiment is also referred to as "optical layer B".
The optical layer B is the same as the optical layer A except that it has a functional layer containing specific hollow particles instead of the functional layer containing specific zirconia particles. In the following, the differences from the optical layer A will be mainly described.
 光学層Bの物性(L値、a値、b値、刺激純度、可視光平均透過率(V1)、可視光平均散乱透過率(V2)、可視光散乱率(V3)、近赤外光平均透過率(N1)、近赤外光平均散乱透過率(N2)、近赤外光散乱率(N3)及び屈折率)の定義及び好適値はそれぞれ、光学層Aにおける各物性と同様である。 Physical properties of optical layer B (L * value, a * value, b * value, stimulus purity, visible light average transmittance (V1), visible light average scattering transmittance (V2), visible light scattering rate (V3), near red The definitions and suitable values of the external light average transmittance (N1), the near-infrared light average scattering transmittance (N2), the near-infrared light scattering rate (N3) and the refractive light) are the same as the physical properties of the optical layer A, respectively. Is.
 光学層Bにおける各物性の値は、例えば、特定中空粒子の粒子径若しくは添加量、又は、光学層Bの厚さによって調節できる。 The value of each physical property in the optical layer B can be adjusted by, for example, the particle size or the amount of the specific hollow particles added, or the thickness of the optical layer B.
 光学層Bの厚さ及び光学層Bが有する機能層の厚さは、光学層Aの厚さ及び光学層Aが有する機能層の厚さと同様であり、光学層Aと同様の方法で測定される。 The thickness of the optical layer B and the thickness of the functional layer of the optical layer B are the same as the thickness of the optical layer A and the thickness of the functional layer of the optical layer A, and are measured by the same method as that of the optical layer A. The optics.
 光学層Bが有する機能層は、特定中空粒子を含む。
 特定中空粒子は、Si原子を含む無機酸化物で構成されたシェル層を有し、シェル層の内部に空隙を有する粒子である。
 特定中空粒子がシェル層の内部に空隙を持つことは、例えば、透過型電子顕微鏡(TEM)観察により確認できる。
 中空粒子の形状は、球状が好ましく、真球状が好ましい。
The functional layer included in the optical layer B contains specific hollow particles.
The specific hollow particles are particles having a shell layer composed of an inorganic oxide containing a Si atom and having voids inside the shell layer.
It can be confirmed, for example, by observation with a transmission electron microscope (TEM) that the specific hollow particles have voids inside the shell layer.
The shape of the hollow particles is preferably spherical, preferably true spherical.
 特定中空粒子の平均一次粒子径は、120~30,000nmであり、150~20,000nmが好ましく、200~15,000nmがより好ましく、200~1,000nm、300~1,000nmが特に好ましい。平均一次粒子径が120nm以上であれば、太陽電池セルの隠蔽性がより優れる。平均一次粒子径が30,000nm以下であれば、より優れた白色の外観を呈する光学層Bが得られること、及び、発電効率により優れた太陽電池モジュールが得られること、の少なくとも一方を満たすとともに、機能層を形成する際に粒子が割れる危険が少ない。 The average primary particle diameter of the specific hollow particles is 120 to 30,000 nm, preferably 150 to 20,000 nm, more preferably 200 to 15,000 nm, and particularly preferably 200 to 1,000 nm and 300 to 1,000 nm. When the average primary particle size is 120 nm or more, the concealing property of the solar cell is more excellent. When the average primary particle size is 30,000 nm or less, at least one of an optical layer B having a better white appearance and a solar cell module having a higher power generation efficiency can be obtained is satisfied. , There is less risk of particles breaking when forming the functional layer.
 特定中空粒子の体積基準の累積50%径は、0.2~100μmが好ましく、0.2~20μmがより好ましく、0.2~8μmが特に好ましい。0.2μm以上であれば、太陽電池セルの隠蔽性がより優れる。100μm以下であれば、より優れた白色の外観を呈する光学層Bが得られること、及び、発電効率により優れた太陽電池モジュールが得られること、の少なくとも一方を満たすことができる。 The cumulative 50% diameter of the specific hollow particles based on the volume is preferably 0.2 to 100 μm, more preferably 0.2 to 20 μm, and particularly preferably 0.2 to 8 μm. When it is 0.2 μm or more, the concealing property of the solar cell is more excellent. If it is 100 μm or less, it is possible to satisfy at least one of the fact that the optical layer B exhibiting a more excellent white appearance can be obtained and that the solar cell module having more excellent power generation efficiency can be obtained.
 特定中空粒子の比表面積は、0.1~1,000m/gが好ましく、1.0~300m/gがより好ましく、10~100m/gが特に好ましい。上記範囲内であれば、緻密なシェルとなり、樹脂等が内部に侵入して中空構造ではなくなる恐れが少ない。 The specific surface area of the specific hollow particles is preferably 0.1 ~ 1,000m 2 / g, more preferably 1.0 ~ 300m 2 / g, particularly preferably 10 ~ 100m 2 / g. If it is within the above range, the shell becomes dense, and there is little possibility that resin or the like invades the inside and the hollow structure is lost.
 特定中空粒子の密度は、分散性の点で、0.2~1.5g/cmであるのが好ましく、0.4~1.0g/cmであるのが特に好ましい。 The density of the specific hollow particles is preferably 0.2 to 1.5 g / cm 3 and particularly preferably 0.4 to 1.0 g / cm 3 in terms of dispersibility.
 特定中空粒子の平均一次粒子径に対する、特定中空粒子のシェルの平均厚さの比は、0.01~0.3が好ましく、0.02~0.2がより好ましく、0.03~0.1が特に好ましい。0.01以上であれば、特定中空粒子の強度が優れる。0.3以下であれば、シェル層の内部における空隙の容積が十分に確保できるので、中空粒子としての特性が良好に発揮できる。
 シェルの平均厚さは、平均一次粒子径の測定と同様にして、走査型電子顕微鏡を用いて粒子のSEM写真を撮影し、個々の粒子100個のシェルの厚さの測定値を算術平均して得られる。
The ratio of the average thickness of the shell of the specific hollow particles to the average primary particle diameter of the specific hollow particles is preferably 0.01 to 0.3, more preferably 0.02 to 0.2, and 0.03 to 0. 1 is particularly preferable. If it is 0.01 or more, the strength of the specific hollow particles is excellent. If it is 0.3 or less, the volume of the voids inside the shell layer can be sufficiently secured, so that the characteristics as hollow particles can be exhibited well.
The average thickness of the shells is the same as the measurement of the average primary particle size. SEM photographs of the particles are taken using a scanning electron microscope, and the measured values of the thickness of the shells of 100 individual particles are arithmetically averaged. Can be obtained.
 特定中空粒子としては、シェル層がシリカで構成された中空粒子(以下、「中空シリカ粒子」ともいう。)、及びシェル層がガラスで構成された中空粒子(以下、「中空ガラス粒子」ともいう。)の少なくとも一方が好ましく、適切な一次粒子径に調整しやすい点から、中空シリカ粒子が好ましい。 As the specific hollow particles, hollow particles whose shell layer is made of silica (hereinafter, also referred to as “hollow silica particles”) and hollow particles whose shell layer is made of glass (hereinafter, also referred to as “hollow glass particles”). ) Is preferable, and hollow silica particles are preferable because it is easy to adjust the primary particle size to an appropriate level.
 中空シリカ粒子のシェル層は、主としてシリカで構成されているが、アルカリ金属(好ましくはNa)、Ti、Zr等の金属元素を含んでいてもよい。なかでも、中空シリカ粒子のシェル層は、シェル層が緻密になって強度に優れた中空シリカ粒子が得られる点から、アルカリ金属を含むのが好ましい。
 中空シリカ粒子のシェル層が金属元素を含む場合、金属元素の含有量は、中空シリカ粒子の全質量に対して、500質量ppm以上が好ましく、1,000質量ppm以上が特に好ましい。
The shell layer of the hollow silica particles is mainly composed of silica, but may contain metal elements such as alkali metal (preferably Na), Ti, and Zr. Among them, the shell layer of hollow silica particles preferably contains an alkali metal because the shell layer becomes dense and hollow silica particles having excellent strength can be obtained.
When the shell layer of the hollow silica particles contains a metal element, the content of the metal element is preferably 500 mass ppm or more, particularly preferably 1,000 mass ppm or more, based on the total mass of the hollow silica particles.
 特定中空シリカ粒子の製造方法の具体例としては、国際公開第2019/131658号に記載の方法が挙げられる。 Specific examples of the method for producing the specific hollow silica particles include the method described in International Publication No. 2019/131658.
 中空ガラス粒子は、ガラスバルーンとも称される場合がある。
 中空ガラス粒子を構成するガラスの具体例としては、ホウケイ酸ガラス、アルミノケイ酸ガラス、ソーダライムガラス、及び、リン酸亜鉛ガラスが挙げられ、ホウケイ酸ガラスが好ましい。
 中空ガラス粒子は、市販品を用いてもよく、「Sphericel(登録商標)」シリーズ(ポッターズ・バロティーニ社製)、グラスバブルズ(3M社製)等が挙げられる。
Hollow glass particles may also be referred to as glass balloons.
Specific examples of the glass constituting the hollow glass particles include borosilicate glass, aluminosilicate glass, sodalime glass, and zinc phosphate glass, and borosilicate glass is preferable.
As the hollow glass particles, commercially available products may be used, and examples thereof include "Sphericel (registered trademark)" series (manufactured by Potters Barotini) and Glass Bubbles (manufactured by 3M).
 特定中空粒子の含有量は、機能層の全質量に対して、0.1~30質量%が好ましく、0.5~20質量%がより好ましく、1~15質量%が特に好ましい。0.1質量%以上であれば、太陽電池セルの隠蔽性がより優れる。30質量%以下であれば、発電効率により優れた太陽電池モジュールが得られる。 The content of the specific hollow particles is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, and particularly preferably 1 to 15% by mass with respect to the total mass of the functional layer. When it is 0.1% by mass or more, the concealing property of the solar cell is more excellent. If it is 30% by mass or less, a solar cell module excellent in power generation efficiency can be obtained.
 光学層Bが有する機能層は、マトリックスを含んでいてもよい。マトリックスについては、光学層Aで説明した通りであり、好適態様も同様であるので、その説明を省略する。 The functional layer of the optical layer B may include a matrix. The matrix is as described with respect to the optical layer A, and the preferred embodiment is also the same, and thus the description thereof will be omitted.
 光学層Bが有する機能層は、上記以外の成分を含んでもよい。このような成分としては光学層Aで記載した添加剤が挙げられる。 The functional layer of the optical layer B may contain components other than the above. Examples of such a component include the additives described in the optical layer A.
 第2実施形態における機能層の一形態としては、重合体(特に、含フッ素重合体)と、特定中空粒子と、を少なくとも含む組成物を用いて形成される層である。
 第2実施形態における組成物は、特定ジルコニア粒子の代わりに特定中空粒子を含む以外は、第1実施形態における組成物(1)と同様であり、その好適態様も同様であるので、その説明を省略する。
 第2実施形態における組成物は、重合体の2種以上を含んでいてよく、また、特定中空粒子の2種以上を含んでいてよい。
 第2実施形態における組成物を用いた機能層の製造方法は、第1実施形態における組成物(1)を用いた製造方法と同様であり、その好適態様も同様であるので、その説明を省略する。
One form of the functional layer in the second embodiment is a layer formed by using a composition containing at least a polymer (particularly, a fluorine-containing polymer) and specific hollow particles.
The composition in the second embodiment is the same as the composition (1) in the first embodiment except that the specific hollow particles are contained instead of the specific zirconia particles, and the preferred embodiments thereof are also the same. Omit.
The composition in the second embodiment may contain two or more kinds of polymers, and may contain two or more kinds of specific hollow particles.
The method for producing the functional layer using the composition in the second embodiment is the same as the method for producing the functional layer using the composition (1) in the first embodiment, and the preferred embodiment thereof is also the same, and thus the description thereof is omitted. To do.
 光学層Bは、機能層のみからなっていてよい。また、光学層Bは、本発明の効果を損なわない範囲で、機能層以外の層を有してよい。機能層以外の層の具体例としては、基材、接着層、空気層が挙げられる。基材、接着層及び空気層は、光学層Aで説明した通りであり、その好適態様も同様であるので、その説明を省略する。
 また、光学層Bは、機能層を複数有していてもよく、機能層以外の層を複数有していてもよい。光学層Bは、機能層を有していればよいため、光学層Bが有する各層の配置順は適宜選択できる。
The optical layer B may be composed of only the functional layer. Further, the optical layer B may have a layer other than the functional layer as long as the effect of the present invention is not impaired. Specific examples of layers other than the functional layer include a base material, an adhesive layer, and an air layer. The base material, the adhesive layer, and the air layer are as described in the optical layer A, and the preferred embodiments thereof are also the same, and thus the description thereof will be omitted.
Further, the optical layer B may have a plurality of functional layers, or may have a plurality of layers other than the functional layers. Since the optical layer B only needs to have a functional layer, the arrangement order of each layer of the optical layer B can be appropriately selected.
 光学層Bは、光学層Aと同様の理由から、基材と、基材の少なくとも一方の面上に直接積層された機能層とを有し、基材が表面処理されたガラス板からなる層であるのが好ましい。 The optical layer B has a base material and a functional layer directly laminated on at least one surface of the base material for the same reason as the optical layer A, and is a layer made of a glass plate on which the base material is surface-treated. Is preferable.
 本発明の太陽電池モジュール(以下、本太陽電池モジュールともいう。)は、太陽電池セルと、光学層と、を有し、上記光学層が、太陽電池セルに対して太陽光の入射面側に配されている。本太陽電池モジュールが有する光学層は、上述の光学層A又は光学層Bである。 The solar cell module of the present invention (hereinafter, also referred to as the present solar cell module) has a solar cell and an optical layer, and the optical layer is located on the incident surface side of sunlight with respect to the solar cell. It is arranged. The optical layer included in the solar cell module is the above-mentioned optical layer A or optical layer B.
 図2は、本太陽電池モジュールの一態様(以下、態様1ともいう。)における断面図である。
 図2に示すように、太陽電池モジュール20は、基材110及び機能層120を有する光学層10と、複数の太陽電池セル14と、封止層16と、裏面保護層18と、を有する。光学層10は、封止層16上に積層されており、かつ、太陽電池セル14に対して、太陽光40の入射面側に配されている。複数の太陽電池セル14はいずれも、封止層16によって封止されている。
 太陽電池モジュール20は、光学層10に含まれる基材110が最外層となるため、基材110の質感を生かすことができ、また、光学層10に含まれる機能層120の作用によって、太陽電池セル14の隠蔽性に優れつつ、白色の外観を呈する。
FIG. 2 is a cross-sectional view of one aspect of the solar cell module (hereinafter, also referred to as aspect 1).
As shown in FIG. 2, the solar cell module 20 has an optical layer 10 having a base material 110 and a functional layer 120, a plurality of solar cell cells 14, a sealing layer 16, and a back surface protective layer 18. The optical layer 10 is laminated on the sealing layer 16 and is arranged on the incident surface side of the sunlight 40 with respect to the solar cell 14. Each of the plurality of solar cells 14 is sealed by a sealing layer 16.
In the solar cell module 20, since the base material 110 included in the optical layer 10 is the outermost layer, the texture of the base material 110 can be utilized, and the action of the functional layer 120 included in the optical layer 10 makes the solar cell The cell 14 has a white appearance while being excellent in concealment.
 光学層10は、太陽電池モジュール用の光学層として用いられ、太陽電池モジュール20に意匠性(具体的には、優れた白色の外観を呈すること、及び、太陽電池セルの隠蔽性に優れること)及び耐候性を付与できる。
 態様1において、機能層に含まれるマトリックスは、フッ素樹脂が特に好ましい。
 態様1において、基材は、光学層の耐久性の点から、ガラス板が好ましい。
The optical layer 10 is used as an optical layer for a solar cell module, and has a design property (specifically, an excellent white appearance and an excellent concealing property of a solar cell) in the solar cell module 20. And weather resistance can be imparted.
In the first aspect, the matrix contained in the functional layer is particularly preferably a fluororesin.
In the first aspect, the base material is preferably a glass plate from the viewpoint of durability of the optical layer.
 太陽電池セル14は、第1受光面14Aと、第1受光面14Aと対向する第2受光面14Bと、を有する。太陽電池セル14は、第1受光面14A及び第2受光面14Bで受光した光エネルギーを電気エネルギーに変換する機能を持つ。太陽電池セルは、第1受光面のみに該機能を有してもよく、第1受光面及び第2受光面に有してもよい。
 本発明における太陽電池セルは、近赤外領域に分光感度を有する材料であることが好ましい。具体的には、単結晶シリコンもしくは多結晶シリコン等により構成されるシリコン系太陽電池セル、GaAs、CIS、CIGS、CdTe、InP、ZnもしくはCuSにより構成される化合物系太陽電池セルが挙げられる。太陽電池セルとしては、配線がないために本太陽電池モジュールの意匠性により優れ、外壁材として好適に使用できる点、及び近赤外光領域における発電により優れる点から、CIS系太陽電池セル及びCIGS系太陽電池セルが特に好ましい。また、太陽電池セルが配線を有する場合は、本太陽電池モジュールの意匠性の点から、配線は着色されていることが好ましく、黒色に着色されていることが特に好ましい。
The solar cell 14 has a first light receiving surface 14A and a second light receiving surface 14B facing the first light receiving surface 14A. The solar cell 14 has a function of converting the light energy received by the first light receiving surface 14A and the second light receiving surface 14B into electrical energy. The solar cell may have the function only on the first light receiving surface, or may have the function on the first light receiving surface and the second light receiving surface.
The solar cell in the present invention is preferably a material having spectral sensitivity in the near infrared region. Specifically, a silicon-based solar cell composed of single crystal silicon or polycrystalline silicon, a compound solar cell composed of GaAs, CIS, CIGS, CdTe, InP, Zn 3 P 2 or Cu 2 S. Can be mentioned. As a solar cell, the CIS solar cell and CIGS are excellent in terms of design of this solar cell module because there is no wiring, can be suitably used as an outer wall material, and are excellent in power generation in the near infrared light region. System solar cells are particularly preferred. When the solar cell has wiring, the wiring is preferably colored, and particularly preferably black, from the viewpoint of the design of the solar cell module.
 本発明における太陽電池セルの分光感度のピークは、波長780~1,200nmの範囲内に存在するのが好ましく、波長780~1,000nmの範囲内に存在するのが特に好ましい。 The peak of the spectral sensitivity of the solar cell in the present invention preferably exists in the wavelength range of 780 to 1,200 nm, and particularly preferably exists in the wavelength range of 780 to 1,000 nm.
 ここで、図3は、地上での太陽光スペクトル(日射エネルギー)と単結晶シリコン系太陽電池の分光感度曲線を示すグラフである。
 図3に示す通り、単結晶シリコン系太陽電池は波長780nmよりも長波長領域にも高い分光感度を有する。つまり、長波長領域で高い透過率を示す光学層(光学層A又は光学層B)を用いることで、意匠性(具体的には、優れた白色の外観を呈すること、及び、太陽電池セルの隠蔽性に優れること)と発電効率を具備できる太陽電池モジュールが得られることを意味する。
Here, FIG. 3 is a graph showing the solar spectrum (solar energy) on the ground and the spectral sensitivity curve of the single crystal silicon-based solar cell.
As shown in FIG. 3, the single crystal silicon solar cell has a high spectral sensitivity even in a wavelength region longer than the wavelength of 780 nm. That is, by using an optical layer (optical layer A or optical layer B) that exhibits high transmittance in a long wavelength region, the design (specifically, an excellent white appearance can be exhibited, and the solar cell can be used. This means that a solar cell module capable of providing excellent concealment) and power generation efficiency can be obtained.
 封止層16は、太陽電池セル14を封止する役割を果たす。
 本発明における封止層を構成する材料の具体例としては、エチレン-酢酸ビニル樹脂、オレフィン樹脂、ポリビニルブチラール樹脂、アイオノマー樹脂、シリコーン樹脂が挙げられる。封止層は、太陽電池セルに対する密着性及び保護効果が求められるため、典型的には、本発明における特定ジルコニア粒子及び特定中空粒子を含まないか、含む場合は樹脂に対し1質量%未満であることが好ましい。
The sealing layer 16 serves to seal the solar cell 14.
Specific examples of the material constituting the sealing layer in the present invention include ethylene-vinyl acetate resin, olefin resin, polyvinyl butyral resin, ionomer resin, and silicone resin. Since the sealing layer is required to have adhesion and protective effect to the solar cell, it typically does not contain the specific zirconia particles and the specific hollow particles in the present invention, or if it contains, it is less than 1% by mass with respect to the resin. It is preferable to have.
 裏面保護層18は、太陽電池モジュール20において、太陽電池セル14に対して太陽光40の入射面側と対向する面側(すなわち、太陽電池セル14における太陽光40の入射面側とは反対面側)に配されている。
 本発明における裏面保護層は、太陽電池モジュールに強度及び耐光性を向上させる層であるのが好ましい。裏面保護層を構成する材料の具体例としては、上述した基材を構成する材料と同様の材料が挙げられる。
 裏面保護層は、本太陽電池モジュールの意匠性の点から、黒色であることが好ましい。具体的には、裏面保護層は、黒色のガラス板又は黒色のコーティングが施されたガラス板が好ましい。
 裏面保護層が黒色であるとは、裏面保護層のL値が0~40、好ましくは0~20、特に好ましくは0~10であることを意味する。
The back surface protective layer 18 is a surface side of the solar cell module 20 facing the incident surface side of the sunlight 40 with respect to the solar cell 14 (that is, a surface opposite to the incident surface side of the sunlight 40 in the solar cell 14). It is arranged on the side).
The back surface protective layer in the present invention is preferably a layer that improves the strength and light resistance of the solar cell module. Specific examples of the material constituting the back surface protective layer include the same materials as those constituting the base material described above.
The back surface protective layer is preferably black from the viewpoint of the design of the solar cell module. Specifically, the back surface protective layer is preferably a black glass plate or a glass plate having a black coating.
The black color of the back surface protective layer means that the L * value of the back surface protective layer is 0 to 40, preferably 0 to 20, particularly preferably 0 to 10.
 図4は、本太陽電池モジュールの一態様(以下、態様2ともいう。)における断面図である。態様2は、機能層120が最外層となるように光学層10が配置されている以外は、態様1と同様である。すなわち、機能層120は、基材110よりも太陽光40の入射面側に配されている。
 態様2における各層の詳細は、態様1と同様であるので、その説明を省略する。
FIG. 4 is a cross-sectional view of one aspect of the solar cell module (hereinafter, also referred to as aspect 2). Aspect 2 is the same as the aspect 1 except that the optical layer 10 is arranged so that the functional layer 120 is the outermost layer. That is, the functional layer 120 is arranged on the incident surface side of the sunlight 40 with respect to the base material 110.
Since the details of each layer in the second aspect are the same as those in the first aspect, the description thereof will be omitted.
 図5は、本太陽電池モジュールの一態様(以下、態様3ともいう。)における断面図である。
 図5に示すように、太陽電池モジュール20は、第1光学層10Aと、複数の太陽電池セル14と、第1封止層16Aと、第2封止層16Bと、第2光学層10Bと、を有する。以下の説明において、第1光学層10A及び第2光学層10Bを総称して、光学層10という場合がある。また、第1封止層16A及び第2封止層16Bを総称して、封止層16という場合がある。光学層10は、封止層16上に積層されており、かつ、太陽電池セル14に対して、太陽光40A及び40Bの入射面側に配されている。複数の太陽電池セル14はいずれも、封止層16A及び16Bによって封止されている。
 第1光学層10Aは、第1基材110Aと、第1基材110A上に配された第1機能層120Aと、を有する。
 第1光学層10Aは、太陽電池セル14の第1受光面14A側かつ太陽光40Aの入射面側に配され、封止層16A上に貼着されている。また、第2光学層10Bは、太陽電池セル14の第2受光面14B側に配され、封止層16B上に貼着されている。
 第2光学層10Bは、第2基材110Bと、第2基材110B上に配された第2機能層120Bと、を有する。第2基材110B及び第2機能層120Bはそれぞれ、上述の第1基材110A及び第1機能層120Aと同様であるので、その説明を省略する。
 態様3は、例えばフェンス等の、いずれの面からも太陽光が入射する場合において好適に用いられる。
 態様3における各層の詳細は、態様1と同様であるので、その説明を省略する。
FIG. 5 is a cross-sectional view of one aspect of the solar cell module (hereinafter, also referred to as aspect 3).
As shown in FIG. 5, the solar cell module 20 includes a first optical layer 10A, a plurality of solar cell cells 14, a first sealing layer 16A, a second sealing layer 16B, and a second optical layer 10B. Have. In the following description, the first optical layer 10A and the second optical layer 10B may be collectively referred to as the optical layer 10. Further, the first sealing layer 16A and the second sealing layer 16B may be collectively referred to as a sealing layer 16. The optical layer 10 is laminated on the sealing layer 16 and is arranged on the incident surface side of the sunlight 40A and 40B with respect to the solar cell 14. Each of the plurality of solar cells 14 is sealed by the sealing layers 16A and 16B.
The first optical layer 10A has a first base material 110A and a first functional layer 120A arranged on the first base material 110A.
The first optical layer 10A is arranged on the first light receiving surface 14A side of the solar cell 14 and on the incident surface side of sunlight 40A, and is attached on the sealing layer 16A. Further, the second optical layer 10B is arranged on the second light receiving surface 14B side of the solar cell 14, and is attached on the sealing layer 16B.
The second optical layer 10B has a second base material 110B and a second functional layer 120B arranged on the second base material 110B. Since the second base material 110B and the second functional layer 120B are the same as the above-mentioned first base material 110A and the first functional layer 120A, respectively, the description thereof will be omitted.
Aspect 3 is preferably used when sunlight is incident from any surface such as a fence.
Since the details of each layer in the third aspect are the same as those in the first aspect, the description thereof will be omitted.
 以上、図2、図4及び図5に従って、本太陽電池モジュールを説明した。本太陽電池モジュールは、上述の態様に限定されない。つまり、本太陽電池モジュールは、本発明の効果を損なわない範囲内で、任意の層(例えば、接着層、空気層)の少なくとも1種を有してよい。また、本太陽電池モジュールは、光学層が、太陽電池セルに対して太陽光の入射面側に配されていればよく、それ以外の積層順は制限されない。
 例えば、本太陽電池モジュールは、光学層と封止層との間に任意の層を有することができる。また、本太陽電池モジュールは、太陽電池セルが封止層によって封止されていなくてもよい。
 基材としてガラス板を用いる場合は、本太陽電池モジュールの意匠性(具体的には、優れた白色の外観を呈すること、及び、太陽電池セルの隠蔽性に優れること)の点、及び封止層と光学層との接着性の点から、態様1が特に好ましい。
The solar cell module has been described above with reference to FIGS. 2, 4 and 5. The solar cell module is not limited to the above-described embodiment. That is, the present solar cell module may have at least one kind of arbitrary layer (for example, an adhesive layer, an air layer) within a range which does not impair the effect of the present invention. Further, in the present solar cell module, the optical layer may be arranged on the incident surface side of sunlight with respect to the solar cell, and the stacking order other than that is not limited.
For example, the solar cell module may have an arbitrary layer between the optical layer and the sealing layer. Further, in the present solar cell module, the solar cell may not be sealed by the sealing layer.
When a glass plate is used as the base material, the design of the solar cell module (specifically, it exhibits an excellent white appearance and excellent concealment of the solar cell) and sealing. Aspect 1 is particularly preferable from the viewpoint of adhesiveness between the layer and the optical layer.
 図6は、本太陽電池モジュールによって構成された太陽電池アレイの一例を示す概略平面図である。
 図6に示すように、太陽電池アレイ30は、複数枚の矩形状の太陽電池モジュール20を平面的に配列し、直並列に接続して構成される。
 本発明の太陽電池アレイの設置場所の具体例としては、ビルの屋上、屋根、外壁(例えば、壁面、窓)が挙げられる。
 本発明の太陽電池アレイは、意匠性(具体的には、優れた白色の外観を呈すること、及び、太陽電池セルの隠蔽性に優れること)及び発電効率に優れる。このように、意匠性に優れる点で、建築用外壁材(例えば、ビルの壁面、窓)に用いるのが好ましい。
 図6では、本発明の太陽電池アレイが矩形状である態様を示したが、本発明の太陽電池アレイの形状は、特に制限されない。
FIG. 6 is a schematic plan view showing an example of a solar cell array configured by the present solar cell module.
As shown in FIG. 6, the solar cell array 30 is configured by arranging a plurality of rectangular solar cell modules 20 in a plane and connecting them in series and parallel.
Specific examples of the installation location of the solar cell array of the present invention include the rooftop, roof, and outer wall (for example, wall surface, window) of a building.
The solar cell array of the present invention is excellent in design (specifically, exhibiting an excellent white appearance and excellent concealing property of a solar cell) and power generation efficiency. As described above, it is preferable to use it as a building outer wall material (for example, a wall surface of a building, a window) because of its excellent design.
FIG. 6 shows an aspect in which the solar cell array of the present invention has a rectangular shape, but the shape of the solar cell array of the present invention is not particularly limited.
 本発明の建築用外壁材は、上述した本太陽電池モジュールを有する。したがって、本発明の建築用外壁材は、意匠性(具体的には、優れた白色の外観を呈すること、及び、太陽電池セルの隠蔽性に優れること)及び発電効率に優れる。建築用外壁材の具体例としては、カーテンウォール、壁材、窓が挙げられる。 The building exterior wall material of the present invention has the above-mentioned solar cell module. Therefore, the building exterior wall material of the present invention is excellent in designability (specifically, it exhibits an excellent white appearance and is excellent in concealing the solar cell) and power generation efficiency. Specific examples of exterior wall materials for buildings include curtain walls, wall materials, and windows.
 本発明の建造物は、上述した建築用外壁材を有する。したがって、本発明の建造物は、意匠性(具体的には、優れた白色の外観を呈すること、及び、太陽電池セルの隠蔽性に優れること)及び発電効率に優れる。 The building of the present invention has the above-mentioned building exterior wall material. Therefore, the building of the present invention is excellent in design (specifically, exhibiting an excellent white appearance and excellent concealing property of the solar cell) and power generation efficiency.
 本発明の建造物は、太陽電池モジュールを有する建築用外壁材の太陽光の入射面側に、任意に存在する中間気層等を介して本発明の光学層を有していてもよい。つまり、本発明の建造物は、ダブルスキンシステムを有する建造物であって、アウタースキンとして本発明の光学層が用いられてもよい。 The building of the present invention may have the optical layer of the present invention on the incident surface side of the sunlight of the building outer wall material having the solar cell module, via an intermediate air layer or the like arbitrarily existing. That is, the building of the present invention is a building having a double skin system, and the optical layer of the present invention may be used as the outer skin.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の例に限定されない。例1~12は実施例であり、例13~16は比較例である。なお、後述する表中における各成分の配合量は、質量基準を示す。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to the following examples. Examples 1 to 12 are examples, and examples 13 to 16 are comparative examples. The blending amount of each component in the table described later indicates a mass standard.
[例1]
 重合体溶液F(クロロトリフルオロエチレン-ビニルエーテル共重合体の3-エトキシプロピオン酸エチル溶液、AGC社商品 LF-9716、固形分濃度:66.8質量%)(65.3g)、及び、表1の例1に記載の粒子(39.1g)を加え、更に直径5mmのジルコニアビーズ30gを加えて、混練機(シンキー社商品 あわとり練太郎)を用いて、2,000rpmで20分間攪拌した。その後、硬化剤(旭化成社商品 TPA-B80E、固形分濃度:80質量%)(39.6g)を加えて、更に2,000rpmで1分間攪拌し、ジルコニアビーズを取り除いて、機能層を形成するための組成物を得た。
 得られた組成物を、基材としてソーダライムシリケートガラス板(AGC社商品 JFL、縦150mm×横75mm、平均板厚:3.2mm)の一方の面上に、スクリーン印刷機(マイクロ・テック社製 MTVC-320)を用いて塗装した。その後、160℃の恒温室中で30分加熱乾燥して硬化させて、基材であるガラス板と、基材上に配置された機能層(平均厚さ:28μm、マトリックス:フッ素樹脂)と、からなる光学層を得た。
[Example 1]
Polymer solution F (ethyl 3-ethoxypropionate solution of chlorotrifluoroethylene-vinyl ether copolymer, AGC product LF-9716, solid content concentration: 66.8% by mass) (65.3 g), and Table 1. The particles (39.1 g) described in Example 1 of the above were added, and 30 g of zirconia beads having a diameter of 5 mm were further added, and the mixture was stirred at 2,000 rpm for 20 minutes using a kneader (Sinky's product Awatori Kentarou). Then, a curing agent (Asahi Kasei TPA-B80E, solid content concentration: 80% by mass) (39.6 g) is added, and the mixture is further stirred at 2,000 rpm for 1 minute to remove zirconia beads to form a functional layer. The composition for was obtained.
The obtained composition was used as a base material on one surface of a soda lime silicate glass plate (AGC product JFL, length 150 mm x width 75 mm, average plate thickness: 3.2 mm) on a screen printing machine (Microtech Co., Ltd.). It was painted using MTVC-320) manufactured by Japan. Then, it is dried by heating in a thermostatic chamber at 160 ° C. for 30 minutes and cured to form a glass plate as a base material, a functional layer (average thickness: 28 μm, matrix: fluororesin) arranged on the base material. An optical layer composed of was obtained.
[例2~16]
 粒子の種類、機能層中の濃度、及び機能層の厚さを表1および2に示すように変更した以外は例1と同様にして、各例における光学層を得た。
[Examples 2 to 16]
The optical layer in each example was obtained in the same manner as in Example 1 except that the type of particles, the concentration in the functional layer, and the thickness of the functional layer were changed as shown in Tables 1 and 2.
[使用した粒子の詳細]
 例1、例2、例6:ジルコニア粒子1(東ソー社商品 TZ-3Y-E、密度:6.05g/cm、Zrの一部がYで置換されており、Zrに対して3モル%のYを含むジルコニア粒子)
 例3~5、例7:ジルコニア粒子2(東ソー社商品 TZ-3YS-E、密度:6.05g/cm、Zrの一部がYで置換されており、Zrに対して3モル%のYを含むジルコニア粒子)
 例8~11:中空シリカ粒子1(国際公開第2019/131658号の例10に記載の方法により製造された中空シリカ、密度:0.6g/cm、シェルの平均厚さ:20nm)
 例12:中空ガラス粒子1(ポッターズ・バロティーニ社商品 110P8、密度:1.1g/cm
 例13:アルミナ粒子1(アルドリッチ社試薬、密度:3.95g/cm
 例14:チタニア粒子1(堺化学社商品 STR-100A-LP、密度:4.23g/cm
 例15:ジルコニア粒子3(アルドリッチ社試薬 544760-25G、密度:5.68g/cm
 例16:中空シリカ粒子2(日鉄鉱業社商品 シリナックスSP-PN(b)、密度:0.6g/cm
[Details of particles used]
Example 1, Example 2, Example 6: Zirconia particle 1 (Tosoh product TZ-3Y-E, density: 6.05 g / cm 3 , part of Zr is replaced with Y, 3 mol% with respect to Zr. Zirconia particles containing Y)
Examples 3 to 5, Example 7: Zirconia particle 2 (Tosoh product TZ-3YS-E, density: 6.05 g / cm 3 , part of Zr is replaced with Y, and 3 mol% with respect to Zr. Zirconia particles containing Y)
Examples 8-11: Hollow silica particles 1 (hollow silica produced by the method described in Example 10 of WO 2019/131658, density: 0.6 g / cm 3 , shell average thickness: 20 nm).
Example 12: Hollow glass particles 1 (Potters Barotini product 110P8, density: 1.1 g / cm 3 )
Example 13: Alumina particles 1 (Aldrich reagent, density: 3.95 g / cm 3 )
Example 14: Titania particles 1 (Sakai Chemical Co., Ltd. product STR-100A-LP, density: 4.23 g / cm 3 )
Example 15: Zirconia particles 3 (Aldrich reagent 544760-25G, density: 5.68 g / cm 3 )
Example 16: Hollow silica particles 2 (Nittetsu Mining Co., Ltd. product Sirinax SP-PN (b), density: 0.6 g / cm 3 )
[評価方法]
 各物性の測定方法は、上述した通りである。以下、更に詳細な測定方法及び条件を記載する。
[Evaluation method]
The method for measuring each physical property is as described above. Hereinafter, more detailed measurement methods and conditions will be described.
(粒子)
<平均一次粒子径>
 走査型電子顕微鏡(日立ハイテクノロジーズ社製 S-4800)を用いて、粒子のSEM写真を撮影し、画像中の一次粒子の長軸径を100個測定した。その算術平均値を平均一次粒子径として採用した。
(particle)
<Average primary particle size>
Using a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation), SEM photographs of the particles were taken, and 100 major axis diameters of the primary particles in the image were measured. The arithmetic mean value was adopted as the average primary particle size.
<D50>
 散乱強度が測定範囲に入るようにイオン交換水に分散させた粒子を含む分散液を用いて、レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル社製 MT3300EXII)を用いて体積基準の累積50%径を測定した。得られた3点の累積50%径の平均をD50として採用した。
<D50>
Cumulative volume-based accumulation using a laser diffraction / scattering particle size distribution measuring device (MT3300EXII manufactured by Microtrac Bell) using a dispersion containing particles dispersed in ion-exchanged water so that the scattering intensity falls within the measurement range. The 50% diameter was measured. The average of the cumulative 50% diameters of the three obtained points was adopted as D50.
<比表面積>
 比表面積測定装置(マウンテック社製 HM model-1208)を用い、200℃で20分の脱気条件下での窒素吸着BET法によって、比表面積を測定した。
<Specific surface area>
The specific surface area was measured by the nitrogen adsorption BET method under degassing conditions at 200 ° C. for 20 minutes using a specific surface area measuring device (HM model-1208 manufactured by Mountech).
(光学層の光学特性)
 光学層の全光透過率は、分光光度計(日本分光社製 V-670)を用いて、波長200~1,200nmの範囲を5nm刻みで、1,000nm/minのスキャン速度で測定した。光学層は積分球の受光部に接触させるように設置し、ガラス基材側から光が入射するように設定した。光源切り替えは自動、切り替え波長は340.0nm、回折格子切り替えは850nmとした。
 光学層の直線透過率は、分光光度計(日本分光社製 V-670)を用いて、波長200~1,500nmの範囲を5nm刻みで、1,000nm/minのスキャン速度で積分球を使わずに測定した。
(Optical characteristics of optical layer)
The total light transmittance of the optical layer was measured using a spectrophotometer (V-670 manufactured by JASCO Corporation) in a wavelength range of 200 to 1,200 nm in 5 nm increments at a scanning speed of 1,000 nm / min. The optical layer was installed so as to be in contact with the light receiving portion of the integrating sphere, and was set so that light was incident from the glass substrate side. The light source switching was automatic, the switching wavelength was 340.0 nm, and the diffraction grating switching was 850 nm.
For the linear transmittance of the optical layer, a spectrophotometer (V-670 manufactured by JASCO Corporation) is used, and an integrating sphere is used at a scanning speed of 1,000 nm / min in a wavelength range of 200 to 1,500 nm in 5 nm increments. Measured without.
 V1(可視光平均透過率):上記測定で得られる全光透過率のうち、波長400~780nmの可視光領域において、5nm刻みの全光透過率を算術平均して求めた。
 V2(可視光平均散乱透過率):上記可視光平均透過率から、上記測定で得られる直線透過率のうち、波長400~780nmの可視光領域において、5nm刻みの直線透過率を算術平均して求めた値を引いて、可視光平均散乱透過率を算出した。
 V3(可視光散乱率):可視光平均拡散透過率を可視光平均透過率で除した割合を算出した。
 N1(近赤外光平均透過率):上記測定で得られる全光透過率のうち、波長780~1,200nmの近赤外光領域において、5nm刻みの全光透過率を算術平均して求めた。
 N2(近赤外光平均拡散透過率):上記近赤外光平均透過率から、上記測定で得られる直線透過率のうち、波長780~1200nmの近赤外領域において、5nm刻みの直線透過率を算術平均して求めた値を引いて、近赤外光平均拡散透過率を算出した。
 N3(近赤外光散乱率):近赤外光平均拡散透過率を近赤外光平均透過率で除した割合を算出した。
V1 (Visible light average transmittance): Of the total light transmittance obtained by the above measurement, the total light transmittance in increments of 5 nm was calculated and averaged in the visible light region having a wavelength of 400 to 780 nm.
V2 (Visible light average scattering transmittance): From the above visible light average transmittance, among the linear transmittances obtained by the above measurement, the linear transmittance in increments of 5 nm is arithmetically averaged in the visible light region having a wavelength of 400 to 780 nm. The visible light average scattering transmittance was calculated by subtracting the obtained value.
V3 (Visible light scattering rate): The ratio of the visible light average diffusion transmittance divided by the visible light average transmittance was calculated.
N1 (Near Infrared Light Average Transmittance): Of the total light transmittance obtained by the above measurement, the total light transmittance in increments of 5 nm is calculated by arithmetically averaging in the near infrared light region having a wavelength of 780 to 1,200 nm. It was.
N2 (Near Infrared Light Average Diffuse Transmittance): From the near infrared light average transmittance, among the linear transmittances obtained by the above measurement, the linear transmittance in increments of 5 nm in the near infrared region having a wavelength of 780 to 1200 nm. The near-infrared light average diffuse transmittance was calculated by subtracting the value obtained by arithmetically averaging.
N3 (Near-infrared light scattering rate): The ratio of the near-infrared light average diffusion transmittance divided by the near-infrared light average transmittance was calculated.
(分光色彩)
 L、a、b及び刺激純度を、分光色彩計(日本電色工業社製 SD6000)を用いて測定した。測定時にはサンプルの背面に黒色の板を置き、黒色板とサンプルとの間に水を張った。測定光はガラス基材側から入射させた。
(Spectroscopic color)
L * , a * , b * and stimulus purity were measured using a spectrocolorimeter (SD6000 manufactured by Nippon Denshoku Kogyo Co., Ltd.). At the time of measurement, a black plate was placed on the back surface of the sample, and water was filled between the black plate and the sample. The measurement light was incident from the glass substrate side.
(隠蔽性)
 光学層における光学特性のうち、可視光平均透過率について、下記基準にて光学層の隠蔽性を評価した。可視光平均透過率が低いほど隠蔽性に優れるため、太陽電池セルが視認されにくく意匠性が高い太陽電池モジュールを製造できる。
 S:30%未満
 A:30%以上60%未満
 B:60%以上80%未満
 C:80%以上
(Concealment)
Among the optical characteristics of the optical layer, the concealing property of the optical layer was evaluated based on the following criteria for the average visible light transmittance. The lower the average visible light transmittance, the better the concealment property. Therefore, it is possible to manufacture a solar cell module having a high design because the solar cell is hard to see.
S: Less than 30% A: 30% or more and less than 60% B: 60% or more and less than 80% C: 80% or more
(色調)
 光学層における光学特性のうち、刺激純度について、下記基準にて光学層の色調を評価した。刺激純度が低いほど光学層の色調が白色に近いため、白色の外観を有する太陽電池モジュールを製造できる。
 S:4.0未満
 A:4.0以上6.0未満
 B:6.0以上12.0未満
 C:12.0以上
(Color tone)
Among the optical characteristics of the optical layer, the color tone of the optical layer was evaluated based on the following criteria for stimulation purity. The lower the stimulation purity, the closer the color tone of the optical layer is to white, so that a solar cell module having a white appearance can be manufactured.
S: Less than 4.0 A: 4.0 or more and less than 6.0 B: 6.0 or more and less than 12.0 C: 12.0 or more
(発電効率)
 単結晶シリコンセルの可視光(400~780nm)と、近赤外光(780~1,200nm)との発電寄与度をそれぞれ30%、70%として、可視光平均透過率及び近赤外光平均透過率を乗算したものを合計し、無塗工のソーダライムシリケートガラス板(AGC社商品 JFL、平均板厚:3.2mmの)を用いた単結晶シリコンセルに対する予想発電効率を算出した。
(Power generation efficiency)
Visible light (400 to 780 nm) and near infrared light (780 to 1,200 nm) have a power generation contribution of 30% and 70%, respectively, and the visible light average transmittance and the near infrared light average. Multiplying the transmittances was added up to calculate the expected power generation efficiency for a single crystal silicon cell using an uncoated soda lime silicate glass plate (AGC product JFL, average plate thickness: 3.2 mm).
 詳細を表1及び表2に示す。 Details are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2に示す通り、所定の平均一次粒子径のジルコニアの粒子、又は、所定の平均一次粒子径のシリカもしくはガラスの中空粒子を含み、所定の厚みの機能層を有する光学層を用いれば、太陽電池セルの隠蔽性に優れ、白色の外観を呈し、かつ、発電効率に優れた太陽電池モジュールが得られることがわかった(例1~12)。
 一方、アルミナ粒子又はチタニア粒子を含む場合や、平均一次粒子径が本発明の範囲外であるジルコニア粒子又は中空シリカ粒子を含む場合には、太陽電池セルの隠蔽性に優れ、白色の外観を呈し、かつ、発電効率に優れた太陽電池モジュールは得られなかった(例12~16)。
As shown in Tables 1 and 2, if an optical layer containing zirconia particles having a predetermined average primary particle size or hollow particles of silica or glass having a predetermined average primary particle size and having a functional layer having a predetermined thickness is used. It has been found that a solar cell module having excellent concealing property of a solar cell, exhibiting a white appearance, and excellent power generation efficiency can be obtained (Examples 1 to 12).
On the other hand, when it contains alumina particles or titania particles, or when it contains zirconia particles or hollow silica particles whose average primary particle size is outside the range of the present invention, the solar cell has excellent hiding power and exhibits a white appearance. Moreover, a solar cell module having excellent power generation efficiency could not be obtained (Examples 12 to 16).
 10   光学層
 10A  第1光学層
 10B  第2光学層
 110  基材
 110A 第1基材
 110B 第2基材
 120  機能層
 120A 第1機能層
 120B 第2機能層
 14   太陽電池セル
 14A  第1受光面
 14B  第2受光面
 16   封止層
 18   裏面保護層
 20   太陽電池モジュール
 30   太陽電池アレイ
 40、40A、40B 太陽光
10 Optical layer 10A 1st optical layer 10B 2nd optical layer 110 base material 110A 1st base material 110B 2nd base material 120 functional layer 120A 1st functional layer 120B 2nd functional layer 14 solar cell 14A 1st light receiving surface 14B second 2 Light receiving surface 16 Sealing layer 18 Back surface protective layer 20 Solar cell module 30 Solar cell array 40, 40A, 40B Sunlight
 なお、2019年7月31日に出願された日本特許出願2019-141081号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2019-141081, filed on July 31, 2019, are cited here as disclosure of the specification of the present invention. It is something to incorporate.

Claims (16)

  1.  太陽電池セルに対して太陽光の入射面側に配されて用いられる光学層であって、
     前記光学層が、平均一次粒子径が40~500nmである、構成元素の一部がZr以外の元素で置換されていてもよいジルコニアの粒子、又は、平均一次粒子径が120~30,000nmである、Si原子を含む無機酸化物の中空粒子、を含む機能層を有し、
     前記機能層の厚さが1~1,000μmであることを特徴とする、光学層。
    An optical layer used by being arranged on the incident surface side of sunlight with respect to a solar cell.
    The optical layer has an average primary particle size of 40 to 500 nm, zirconia particles in which some of the constituent elements may be replaced with elements other than Zr, or an average primary particle size of 120 to 30,000 nm. Has a functional layer containing hollow particles of an inorganic oxide containing Si atoms,
    An optical layer, characterized in that the thickness of the functional layer is 1 to 1,000 μm.
  2.  前記ジルコニアの粒子の体積基準の累積50%径が、0.1~5μmである、請求項1に記載の光学層。 The optical layer according to claim 1, wherein the cumulative 50% diameter of the zirconia particles based on the volume is 0.1 to 5 μm.
  3.  前記ジルコニアの粒子の比表面積が0.5~100m/gである、請求項1又は2に記載の光学層。 The optical layer according to claim 1 or 2, wherein the specific surface area of the zirconia particles is 0.5 to 100 m 2 / g.
  4.  前記ジルコニアの粒子の含有量が、前記機能層の全質量に対して1~80質量%である、請求項1~3のいずれか1項に記載の光学層。 The optical layer according to any one of claims 1 to 3, wherein the content of the zirconia particles is 1 to 80% by mass with respect to the total mass of the functional layer.
  5.  前記ジルコニアにおける構成元素の一部がYで置換されている、請求項1~4のいずれか1項に記載の光学層。 The optical layer according to any one of claims 1 to 4, wherein a part of the constituent elements in the zirconia is substituted with Y.
  6.  前記中空粒子が、シェル層がシリカで構成された中空粒子、及びシェル層がガラスで構成された中空粒子の少なくとも一方である、請求項1~5のいずれか1項に記載の光学層。 The optical layer according to any one of claims 1 to 5, wherein the hollow particles are at least one of hollow particles whose shell layer is made of silica and hollow particles whose shell layer is made of glass.
  7.  前記中空粒子の体積基準の累積50%径が、0.2~100μmである、請求項1に記載の光学層。 The optical layer according to claim 1, wherein the volume-based cumulative 50% diameter of the hollow particles is 0.2 to 100 μm.
  8.  前記中空粒子の比表面積が、0.1~1,000m/gである、請求項1又は7に記載の光学層。 The optical layer according to claim 1 or 7, wherein the specific surface area of the hollow particles is 0.1 to 1,000 m 2 / g.
  9.  前記中空粒子の含有量が、前記機能層の全質量に対して、0.1~30質量%である、請求項1、7及び8のいずれか1項に記載の光学層。 The optical layer according to any one of claims 1, 7 and 8, wherein the content of the hollow particles is 0.1 to 30% by mass with respect to the total mass of the functional layer.
  10.  前記中空粒子の平均一次粒子径に対する、前記中空粒子のシェル層の平均厚さの比が、0.01~0.3である、請求項1及び7~9のいずれか1項に記載の光学層。 The optics according to any one of claims 1 and 7 to 9, wherein the ratio of the average thickness of the shell layer of the hollow particles to the average primary particle diameter of the hollow particles is 0.01 to 0.3. layer.
  11.  前記光学層が、更にガラス板からなる基材を有し、該基材は、前記機能層よりも太陽光の入射面側に配置されている、請求項1~10のいずれか1項に記載の光学層。 The invention according to any one of claims 1 to 10, wherein the optical layer further has a base material made of a glass plate, and the base material is arranged on the incident surface side of sunlight with respect to the functional layer. Optical layer.
  12.  前記機能層が更にフッ素樹脂を含む、請求項1~11のいずれか1項に記載の光学層。 The optical layer according to any one of claims 1 to 11, wherein the functional layer further contains a fluororesin.
  13.  太陽電池セルと、請求項1~12のいずれか1項に記載の光学層と、を有し、前記光学層が、前記太陽電池セルに対して太陽光の入射面側に配置されている、太陽電池モジュール。 It has a solar cell and an optical layer according to any one of claims 1 to 12, and the optical layer is arranged on the incident surface side of sunlight with respect to the solar cell. Solar cell module.
  14.  前記太陽電池モジュールが、前記太陽電池セルにおける太陽光の入射面側とは反対面側に配置された裏面保護層を更に有し、
     前記裏面保護層が黒色である、請求項13に記載の太陽電池モジュール。
    The solar cell module further has a back surface protective layer arranged on the side opposite to the incident surface side of sunlight in the solar cell.
    The solar cell module according to claim 13, wherein the back surface protective layer is black.
  15.  請求項13又は14に記載の太陽電池モジュールを有する建築用外壁材。 A building exterior wall material having the solar cell module according to claim 13 or 14.
  16.  請求項15に記載の建築用外壁材を有する建造物。 A building having the building exterior wall material according to claim 15.
PCT/JP2020/029100 2019-07-31 2020-07-29 Optical layer, solar cell module, outer wall material for construction, and building WO2021020457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535393A JPWO2021020457A1 (en) 2019-07-31 2020-07-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019141081 2019-07-31
JP2019-141081 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020457A1 true WO2021020457A1 (en) 2021-02-04

Family

ID=74230358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029100 WO2021020457A1 (en) 2019-07-31 2020-07-29 Optical layer, solar cell module, outer wall material for construction, and building

Country Status (2)

Country Link
JP (1) JPWO2021020457A1 (en)
WO (1) WO2021020457A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190912A (en) * 2010-03-01 2011-09-21 住龙纳米技术材料(深圳)有限公司 Manufacturing method, coating material and photovoltaic device of antireflective film used in solar cell, and solar cell module
WO2012014572A1 (en) * 2010-07-28 2012-02-02 株式会社カネカ Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
WO2015115237A1 (en) * 2014-01-28 2015-08-06 株式会社カネカ Substrate with transparent electrode and method for producing same
JP2016041481A (en) * 2014-08-18 2016-03-31 旭硝子株式会社 Transparent base material with antiglare antireflection film, and article
WO2018143371A1 (en) * 2017-02-06 2018-08-09 富士フイルム株式会社 Coating composition, antireflective film and method for producing same, laminated body, and solar cell module
WO2019116859A1 (en) * 2017-12-11 2019-06-20 Agc株式会社 Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
WO2019131658A1 (en) * 2017-12-26 2019-07-04 Agc株式会社 Method for producing hollow silica particles
JP2019117906A (en) * 2017-12-27 2019-07-18 富士フイルム株式会社 Protective sheet for solar cell and solar cell module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190912A (en) * 2010-03-01 2011-09-21 住龙纳米技术材料(深圳)有限公司 Manufacturing method, coating material and photovoltaic device of antireflective film used in solar cell, and solar cell module
WO2012014572A1 (en) * 2010-07-28 2012-02-02 株式会社カネカ Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
WO2015115237A1 (en) * 2014-01-28 2015-08-06 株式会社カネカ Substrate with transparent electrode and method for producing same
JP2016041481A (en) * 2014-08-18 2016-03-31 旭硝子株式会社 Transparent base material with antiglare antireflection film, and article
WO2018143371A1 (en) * 2017-02-06 2018-08-09 富士フイルム株式会社 Coating composition, antireflective film and method for producing same, laminated body, and solar cell module
WO2019116859A1 (en) * 2017-12-11 2019-06-20 Agc株式会社 Optical layer, manufacturing method for optical layer, solar battery module equipped with optical layer, external wall material for construction, and structure
WO2019131658A1 (en) * 2017-12-26 2019-07-04 Agc株式会社 Method for producing hollow silica particles
JP2019117906A (en) * 2017-12-27 2019-07-18 富士フイルム株式会社 Protective sheet for solar cell and solar cell module

Also Published As

Publication number Publication date
JPWO2021020457A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP7162012B2 (en) Optical layer, method for manufacturing optical layer, solar cell module with optical layer, outer wall material for building, and building
EP1447433B1 (en) Coating material composition and article having coating film formed therewith
JP6193244B2 (en) Solar cell module having antiglare film and method for producing the same, antiglare film for solar cell and method for producing the same, and coating solution for forming antiglare film
TW201606357A (en) Substrate with anti-glare film and article thereof
TW202110543A (en) Curved substrate with film, method for producing the same, and image display device
WO2014061606A1 (en) Antifouling antireflection film, article and method for manufacturing same
KR102028349B1 (en) Heat-isolating paint with high performance
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
WO2021020457A1 (en) Optical layer, solar cell module, outer wall material for construction, and building
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP5749807B2 (en) Infrared reflective film for solar cell module and infrared reflector
JP6877180B2 (en) Method for manufacturing a base material with an infrared reflective multilayer film and a base material with an infrared reflective multilayer film
WO2021106869A1 (en) Solar battery module, method for manufacturing same, and construction-use exterior wall material using same
JP6736049B2 (en) Glass composite, transparent screen including the same, and image projection system including the same
WO2018003772A1 (en) Light-scattering coating film in which polycrystalline nanodiamonds are dispersed, and application liquid for forming light-scattering coating film
JP2013080067A (en) Coating liquid and substrate
KR101691550B1 (en) Monolayer hydrophobic coating composition improved anti-reflection efficiency for solar cell
CN107474600B (en) Self-cleaning coating composition and its preparation method and application
CN110935603A (en) Preparation method of aluminum pinch plate with super-hydrophobic surface and aluminum pinch plate with super-hydrophobic surface
JP2015086303A (en) Uv-ray/near ir-ray cut-off coating composition and uv-ray/near ir-ray cut-off transparent opening member
JP5810906B2 (en) Weather-resistant particles, weather-resistant particle-containing dispersion, weather-resistant particle-containing resin composition, and weather-resistant film and weather-resistant substrate using the same
JP2011178911A (en) Coating liquid for forming ground glass-like substrate and ground glass-like substrate
JP7055051B2 (en) Laminate coating film
JP2021134257A (en) Coating liquid, coating liquid set, and hydrophilic member
JP2003165912A (en) Resin composition, and organic electroluminescent display solar cell, touch panel, and plasma display panel all using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847862

Country of ref document: EP

Kind code of ref document: A1