WO2021020454A1 - Uv visualization unit and electromechanical instrument - Google Patents

Uv visualization unit and electromechanical instrument Download PDF

Info

Publication number
WO2021020454A1
WO2021020454A1 PCT/JP2020/029096 JP2020029096W WO2021020454A1 WO 2021020454 A1 WO2021020454 A1 WO 2021020454A1 JP 2020029096 W JP2020029096 W JP 2020029096W WO 2021020454 A1 WO2021020454 A1 WO 2021020454A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
ultraviolet
phosphor
ultraviolet rays
Prior art date
Application number
PCT/JP2020/029096
Other languages
French (fr)
Japanese (ja)
Inventor
中村 真人
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019221479A external-priority patent/JP2021020044A/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Publication of WO2021020454A1 publication Critical patent/WO2021020454A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation

Definitions

  • the present invention relates to an ultraviolet visualization unit and an electric machine / appliance.
  • ultraviolet rays are used to sterilize fluids such as liquids and gases, and various medical instruments. Further, in recent years, for example, ultraviolet rays have been used for sterilizing a portion that comes into contact with water droplets due to dew condensation or the like (see, for example, Patent Document 1).
  • Patent Document 1 describes an air conditioner (air conditioner) having a sterilizing function.
  • the air conditioner described in Patent Document 1 includes a casing having an intake port and an outlet, an indoor heat exchanger, an indoor fan, a drain pan, an LED module including a light emitting diode (LED) that emits ultraviolet rays, and a filter. And have.
  • LED light emitting diode
  • the indoor air is sucked from the intake port by driving the indoor fan. Dust and dust are collected by the filter of the sucked air. The temperature of the dust and the air in which the dust is collected is lowered by the indoor heat exchanger. The air whose temperature has been lowered is blown into the room from the outlet by an indoor fan. On the other hand, water droplets generated by dew condensation on the surface of the indoor heat exchanger are collected by a drain pan and discharged to the outside of the room. Further, the indoor heat exchanger and the LED module are arranged so as to face each other, and the surface of the indoor heat exchanger is sterilized by emitting ultraviolet rays from the LED.
  • UVC ultraviolet C wave
  • UVC ultraviolet C wave
  • the indoor heat exchanger will not be sterilized because the sterilization function will not be exhibited.
  • the LED module since it is not known whether the LED module is operating, if ultraviolet rays leak to the outside, it may have an adverse effect on the human body.
  • the ultraviolet visualization unit of the present invention has a light emitting element that emits ultraviolet rays and a phosphor that emits visible light by irradiating a part of the ultraviolet rays emitted from the light emitting element. A part of the above reaches a region other than the phosphor.
  • the electromechanical device of the present invention has the ultraviolet visualization unit of the present invention.
  • the ultraviolet visualization unit of the present invention can visually confirm the ultraviolet rays emitted from the light emitting element.
  • FIGS. 1A and 1B are diagrams showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a first embodiment of the present invention.
  • 2A to 2D are views showing the configuration of the luminous flux control member.
  • FIG. 3 is a perspective view showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a modified example of the first embodiment of the present invention.
  • 4A and 4B are schematic views showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a second embodiment of the present invention.
  • 5A and 5B are schematic views showing a partial configuration of a dehumidifier including an ultraviolet visualization unit according to a third embodiment of the present invention.
  • 6A to 6D are diagrams showing the configuration of other light flux control members that can be used in the ultraviolet visualization unit according to the first to third embodiments of the present invention.
  • 7A and 7B are schematic views showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a fourth embodiment of the present invention.
  • the ultraviolet visualization unit arranged in the indoor unit of the air conditioner (hereinafter, also referred to as “air conditioner”) which is an electric machine / appliance will be described, but the ultraviolet visualization unit of the present invention is not limited to this. It can be applied to any device or device having a light emitting element that emits ultraviolet rays.
  • FIG. 1A is a perspective view showing a part of the configuration of the indoor unit 100 of the air conditioner, and FIG. 1B is a side view.
  • the indoor unit 100 of the air conditioner includes a suction part, a heat exchanger 110, a fan 120, a drain pan 130, an ultraviolet visualization unit 140, a filter, a blowout part, and a cover 150. And have.
  • the suction part, the filter, and the blowout part are omitted, and only a part of the internal structure of the indoor unit 100 of the air conditioner is shown.
  • the cover 150 is arranged so as to cover the ultraviolet visualization unit 140.
  • a window portion 156 (opening portion) is opened in the cover 150, and a suction portion and a blowout portion are formed.
  • the window portion 156 is a through hole that connects the inside and the outside of the indoor unit 100.
  • the plan-view shape of the window portion 156 is not particularly limited. Examples of the plan view shape of the window portion 156 include a circular shape, an elliptical shape, and a polygonal shape.
  • the window portion 156 does not necessarily have to be intentionally formed, and usually includes a through hole such as a slit existing between the cover 150 and the blowout portion. In the present embodiment, the window portion 156 is covered with the shielding member 133.
  • the suction unit functions to take indoor air into the indoor unit 100.
  • the arrangement and shape of the suction portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed.
  • the blowing unit functions to blow out the air inside the indoor unit 100 into the room.
  • the arrangement and shape of the blowout portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed.
  • the suction portion and the blowout portion are formed on the cover 150.
  • the filter captures foreign matter in the air taken into the indoor unit 100. As the filter, a known filter can be used.
  • the heat exchanger 110 cools warm air when the air conditioner operates for cooling, and warms cold air when the air conditioner operates for heating.
  • the heat exchanger 110 is arranged directly above the light emitting element 131 of the ultraviolet visualization unit 140.
  • the heat exchanger 110 is not particularly limited as long as it can exhibit the above-mentioned functions, and a known heat exchanger can be used.
  • the heat exchanger 110 cools the warm air, so that dew condensation occurs on the surface of the heat exchanger 110. Water droplets adhere to the surface of the heat exchanger 110 due to this dew condensation. The water droplets adhering to the surface of the heat exchanger 110 fall into the drain pan 130 and are discharged to the outside of the room.
  • the fan 120 functions to take indoor air into the indoor unit 100 and discharge the air inside the indoor unit 100 to the outside of the indoor unit 100.
  • the configuration of the fan 120 is not particularly limited as long as it can exhibit the above-mentioned functions, and a known fan can be used.
  • the ultraviolet visualization unit 140 includes a light emitting element 131, a phosphor 132, and a shielding member 133.
  • the light emitting element 131 emits ultraviolet rays.
  • the type of the light emitting element 131 is not particularly limited as long as it can emit ultraviolet rays.
  • Examples of the light emitting element 131 include a light emitting diode (LED), a mercury lamp, a metal halide lamp, a xenon lamp, and a laser diode (LD).
  • the center wavelength or peak wavelength of the ultraviolet rays emitted from the light emitting element 131 is preferably 200 nm or more and 350 nm or less.
  • the center wavelength or peak wavelength of the ultraviolet rays emitted from the light emitting element 131 is more preferably 250 nm or more and 290 nm or less from the viewpoint of high sterilization efficiency.
  • ultraviolet rays are more preferably ultraviolet C waves (UVC).
  • the number of light emitting elements 131 is not particularly limited. The number of light emitting elements 131 may be one or two or more. In the present embodiment, the number of light emitting elements 131 is two.
  • the luminous flux control member 134 that controls the light distribution of the ultraviolet rays emitted from the light emitting element 131 is arranged so as to face the light emitting surface of the light emitting element 131. A part of the ultraviolet rays emitted from the light emitting element 131 reaches the phosphor 132. The other part of the ultraviolet light emitted from the light emitting element 131 reaches a region other than the phosphor. The region other than the phosphor includes the irradiated surface 135.
  • FIGS. 2A to 2D are diagrams showing a configuration of a luminous flux control member 134 that controls the light distribution of ultraviolet rays emitted from the light emitting element 131 in the ultraviolet visualization unit 140 according to the first embodiment.
  • 2A is a plan view of the luminous flux control member 134
  • FIG. 2B is a bottom view
  • FIG. 2C is a left side view
  • FIG. 2D is a cross-sectional view taken along the line AA shown in FIG. 2A. is there.
  • the luminous flux control member 134 is a member that controls the light distribution of ultraviolet rays emitted from the light emitting element 131. As shown in FIGS. 2A to 2D, the luminous flux control member 134 has an incident region 141 and an emitted region 142. Further, in the present embodiment, the luminous flux control member 134 has a tubular portion 143, a flange portion 144, and a positioning convex portion 145. The luminous flux control member 134 is arranged so that the central axis CA of the luminous flux control member 134 coincides with the optical axis OA of the light emitting element 131.
  • the incident region 141 is arranged so as to face the light emitting element 131, and the ultraviolet rays emitted from the light emitting element 131 are incident.
  • the incident region 141 includes a first control unit 146 and a second control unit 147.
  • the first control unit 146 uses the incident region 141 as a boundary with a virtual plane including the central axis CA of the luminous flux control member 134 that coincides with the optical axis OA of the light emitting element 131. It is arranged on one side (upper side in FIGS. 2B and 2D).
  • the second control unit 147 is placed on the other side of the incident region 141 (lower side in FIGS. 2B and D) with the virtual plane including the central axis CA as a boundary. Have been placed.
  • the luminous flux control member 134 is arranged so that the second control unit 147 is located closer to the irradiated surface 135 than the first control unit 146.
  • the first control unit 146 has a first refraction incident surface 151 and a first convex portion 152.
  • the first refraction incident surface 151 is arranged on the CA side (inside) of the central axis of the first control unit 146.
  • the first refracting incident surface 151 refracts and incidents ultraviolet rays emitted from the light emitting element 131 so that the angle with respect to the central axis CA becomes small.
  • the first refraction incident surface 151 is formed so as to move toward the emission region 142 side as the distance from the central axis CA increases.
  • the plan view shape of the first refraction incident surface 151 is a fan shape having a central angle of 180 °.
  • the first convex portion 152 is arranged at a distance from the first refraction incident surface 151 with respect to the central axis CA.
  • the first convex portion 152 controls the ultraviolet rays emitted from the light emitting element 131 toward the emission region 142 so that the angle with respect to the central axis CA becomes smaller in the cross section including the central axis CA.
  • the number of the first convex portions 152 is not particularly limited. In the present embodiment, there are three first convex portions 152. The sizes of the three first convex portions 152 may all be the same or may be different from each other.
  • the first convex portion 152 farthest from the central axis CA is larger than the other first convex portions 152.
  • the plan view shape of the first convex portion 152 is a partial shape of an annulus (semi-annular ring).
  • the three first convex portions 152 are arranged so that their respective first ridge lines 155 are located on concentric circles.
  • the first convex portion 152 includes a first incident surface 153 on the central axis CA side (inside) and a first reflecting surface 154 arranged at a position (outside) away from the first incident surface 153 with respect to the central axis CA. It has a first ridge line 155, which is a connecting line between the first incident surface 153 and the first reflecting surface 154.
  • a first incident surface 153 on the central axis CA side (inside) and a first reflecting surface 154 arranged at a position (outside) away from the first incident surface 153 with respect to the central axis CA. It has a first ridge line 155, which is a connecting line between the first incident surface 153 and the first reflecting surface 154.
  • the ultraviolet rays emitted from the light emitting element 131 some of the ultraviolet rays are incident on the first incident surface 153, reflected by the first reflecting surface 154, and then emitted from the emission region 142.
  • the second control unit 147 has a second refraction incident surface 161 (refraction incident surface) and a second convex portion 162.
  • the second refraction incident surface 161 is arranged on the CA side (inside) of the central axis of the second control unit 147.
  • the second refracting incident surface 161 refracts and incidents ultraviolet rays emitted from the light emitting element 131 so that the angle with respect to the central axis CA becomes small.
  • the second refraction incident surface 161 is formed so as to be convex toward the emission region 142.
  • the plan view shape of the second refraction incident surface 161 is a fan shape having a central angle of 180 °.
  • the second convex portion 162 is arranged at a distance from the second refraction incident surface 161 with respect to the central axis CA.
  • the second convex portion 162 controls the ultraviolet rays emitted from the light emitting element 131 toward the emission region 142 so that the angle with respect to the central axis CA becomes smaller in the cross section including the central axis CA.
  • the number of the second convex portions 162 is not particularly limited. In the present embodiment, there is only one second convex portion 162.
  • the second convex portion 162 has a notched portion 163.
  • the second convex portion 162 includes a second incident surface 164 on the central axis CA side (inside) and a second reflecting surface 165 arranged at a position (outside) away from the second incident surface 164 with respect to the central axis CA. It has a second ridge line 166, which is a connecting line between the second incident surface 164 and the second reflecting surface 165.
  • the plan view shape of the second convex portion 162 is a partial shape of an annulus (a semicircular annulus except for the notch portion 163). Of the ultraviolet rays emitted from the light emitting element 131, some of the ultraviolet rays are incident on the second incident surface 164, reflected by the second reflecting surface 165, and then emitted from the emission region 142.
  • the notch portion 163 is formed in the second convex portion 162 so as to divide the second convex portion 162 into two.
  • the cutout portion 163 is a region in which the second convex portion 162 is not partially formed, and is formed to guide light directly below the luminous flux control member 134.
  • a surface parallel to the central axis CA is formed in this region located outside the second refraction incident surface 161.
  • the position of the notch portion 163 is not particularly limited as long as the light can be guided directly under the luminous flux control member 134.
  • the notch portion 163 is formed at a position away from the first control unit 146.
  • the cutout portion 163 is formed at a position closest to the irradiated surface 135 when the luminous flux control member 134 is incorporated into the indoor unit 100.
  • the width of the cutout portion 163 is not particularly limited. The width of the cutout portion 163 is appropriately set according to the width of the irradiated surface 135 and the like.
  • the tubular portion 143 is arranged so as to surround the incident region 141 and the emitted region 142.
  • the shape of the tubular portion 143 is not particularly limited. In the present embodiment, the shape of the tubular portion 143 is a cylindrical shape.
  • a flange portion 144 is connected to the base end portion of the light emitting element 131 of the tubular portion 143.
  • the flange portion 144 is connected to the end portion (base end portion) of the cylinder portion 143 on the light emitting element 131 side.
  • the flange portion 144 extends radially outward from the outer peripheral surface of the tubular portion 143.
  • the shape of the flange portion 144 is not particularly limited. In the present embodiment, the flange portion 144 has an annular shape.
  • the positioning convex portion 145 is arranged so as to project from the surface (back surface) of the flange portion 144 on the light emitting element 131 side.
  • the number of positioning protrusions 145 is not particularly limited. In the present embodiment, the number of positioning convex portions 145 is three.
  • the three positioning convex portions 145 are arranged so as to be evenly spaced in the circumferential direction of the flange portion 144.
  • the three positioning protrusions 145 are used for positioning on a substrate (not shown).
  • the luminous flux control member 134 is formed, for example, by integral molding.
  • the material of the luminous flux control member 134 is appropriately selected from materials having translucency that allows light of a desired wavelength to pass through.
  • the material of the light beam control member 134 includes a light-transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP) silicone resin, and glass such as synthetic quartz.
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • EP epoxy resin
  • the number of the luminous flux control members 134 is not particularly limited as long as it is the same as the number of the light emitting elements 131. In the present embodiment, since the number of light emitting elements 131 is two, the number of luminous flux control members 134 is also two.
  • the luminous flux control member 134 is arranged so that the central axis CA of the luminous flux control member 134 coincides with the optical axis OA of the light emitting element 131.
  • Such a light flux control member 134 arbitrarily adjusts the light distribution of ultraviolet rays by arranging it with respect to the irradiated surface 135. Whether the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) is arranged so as to be parallel to the long axis of the irradiated surface 135 when the drain pan 130 (irradiated surface 135) is viewed in a plan view. The light distribution characteristic of the luminous flux control member 134 is adjusted according to whether the light flux control member 134 is arranged so as to be parallel to the minor axis.
  • the luminous flux control member 134 When the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) is arranged so as to be parallel to the long axis of the irradiated surface 135 when viewed in a plan view, the luminous flux control member 134 is at least Ultraviolet rays are condensed in the direction of the minor axis (the left-right direction when the irradiated surface 135 is viewed from the luminous flux control member 134).
  • the ultraviolet rays emitted from the light emitting element 131 are collected by the luminous flux control member 134.
  • the central axis CA (optical axis OA of the light emitting element 131) of the luminous flux control member 134 is arranged so as to be parallel to the minor axis of the irradiated surface 135 when viewed in a plan view, the luminous flux control member 134 is arranged.
  • the ultraviolet rays are condensed. That is, in a virtual plane including the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) and parallel to the long axis, the ultraviolet rays emitted from the light emitting element 131 are collected by the luminous flux control member 134.
  • the irradiated surface 135 is irradiated with ultraviolet rays by the light emitting element 131.
  • the size of the irradiated surface 135 is not particularly limited and is appropriately set.
  • the shape of the irradiated surface 135 is also not particularly limited.
  • the irradiated surface 135 is a surface that the water droplets of the drain pan 130 come into contact with. That is, the irradiated surface 135 is the inner surface (bottom surface) of the drain pan 130.
  • the shape of the drain pan 130 is not particularly limited. In the present embodiment, the shape of the drain pan 130 is a box shape with an open upper surface.
  • the irradiated surface 135 may be a flat surface or may have a convex portion formed therein.
  • the irradiated surface 135 is a flat surface. Further, in the present embodiment, the irradiated surface 135 is rectangular when viewed in a plan view, and includes a long axis and a short axis orthogonal to the long axis.
  • the light emitting element 131 and the light flux control member 134 are arranged at a predetermined height from the irradiated surface 135 (inner surface of the drain pan 130), and irradiate the irradiated surface 135 with ultraviolet rays.
  • the two sets of the light emitting element 131 and the luminous flux control member 134 are arranged directly above both ends of the irradiated surface 135 in the long axis direction.
  • one set of the light emitting element 131 and the light flux control member 134 are arranged directly above one end portion in one direction (major axis direction) of the irradiated surface 135, and the other set.
  • the light emitting element 131 and the luminous flux control member 134 are arranged directly above the other end portion in one direction (major axis direction) of the irradiated surface 135.
  • the light emitting element 131 and the light flux control member 134 are arranged so as to be inclined so that the ultraviolet rays emitted from the light flux control member 134 are directed into the irradiated surface 135.
  • the optical axes OA of the two luminous flux control members 134 are arranged so as to be located on the same virtual plane including the normal line and the long axis of the irradiated surface 135.
  • the height of the luminous flux control member 134 from the irradiated surface 135 is appropriately set.
  • the phosphor 132 emits visible light (fluorescence) when a part of ultraviolet rays is irradiated.
  • the phosphor 132 is arranged between the light emitting element 131 and the window portion 156 or the shielding member 133.
  • Fluorescent material 132 is usually transparent or white.
  • the phosphor 132 is used in a dispersed manner, or is used after being coated with a fluorescent solution dissolved in a solvent and then cured. In the present embodiment, the phosphor 132 is applied as a phosphor solution to the light emitting element 131 side of the shielding member 133 to form the phosphor layer 136.
  • the phosphor layer 136 may be arranged on the entire shielding member 133, or may be arranged on a part of the shielding member 133, for example.
  • the phosphor 132 (fluorescent layer 136) may be arranged so as to close the window portion 156. Further, the phosphor may be applied to a portion that is not to be irradiated with ultraviolet rays, or may be arranged between the portion that is not to be irradiated with ultraviolet rays and the light emitting element 131.
  • the phosphor 132 may be applied to a member deteriorated by ultraviolet rays, or may be arranged between the member deteriorated by ultraviolet rays and the light emitting element 131.
  • Examples of phosphor 132 that emits red light include Y 2 O 2 S: Eu (a material obtained by doping Y 2 O 2 S with europium, the same notation used below), Zn 3 (PO 4 ) 2 : Mn. , Y 2 O 3 : Eu, (Y, Gd) BO 3 : Eu, Y (P, V) O 4 : Eu, YVO 4 : Eu, ZnS: Mn, (Sr ⁇ Mg) 3 (PO4) 2 : Sn , (ZnSr) 3 (PO4) 2: Mn, 3.5MgO ⁇ 0.5MgF 2 ⁇ GeO 2: Mn, Mg5As 2 O 11: Mn, (Ca, Sr) Si0 3: Pb, include Mn.
  • Eu a material obtained by doping Y 2 O 2 S with europium, the same notation used below
  • Zn 3 (PO 4 ) 2 Mn.
  • Y 2 O 3 Eu
  • Examples of phosphor 132 that emits green light include BaMg 2 Al 16 O 27 : Eu, Mn (a material obtained by doping BaMg 2 Al 16 O 27 with europium and manganese, the same notation used below), Zn 2 SiO.
  • the shielding member 133 is arranged so as to close the window portion 156 (opening), shields the ultraviolet rays emitted from the light emitting element 131, and transmits visible light.
  • the shielding member 133 is formed larger than the window portion 156, and is arranged so as to cover the window portion 156 from the inside of the cover 150. As a result, it is possible to prevent the ultraviolet rays from being reliably emitted from the window portion 156 to the outside.
  • the material of the shielding member 133 is not particularly limited as long as it can exhibit the above functions. Examples of the material of the shielding member 133 include a resin such as polymethyl methacrylate (PMMA) and a glass such as BK7 which is a crown optical glass borosilicate.
  • the ultraviolet rays emitted from the light emitting element 131 some of the ultraviolet rays are applied to the phosphor 132 (fluorescent layer 136) arranged in the window portion 156.
  • the phosphor 132 irradiated with ultraviolet rays emits visible light.
  • the user can confirm the visible light emitted from the phosphor 132 from the window portion 156. Therefore, in the present embodiment, even when UVC is used as ultraviolet rays, the ultraviolet rays can be visualized because they have the shielding member 133 and the phosphor 132.
  • the modified example according to the present embodiment differs from the indoor unit 100 according to the first embodiment only in the arrangement of the shielding member 133 and the phosphor 132 (fluorescent layer 136). Therefore, the same reference numerals are given to the same configurations as those of the indoor unit 100 according to the first embodiment, and the description thereof will be omitted.
  • FIG. 3 is a diagram showing a partial configuration of the indoor unit 200 according to the modified example of the first embodiment.
  • the ultraviolet visualization unit 240 in the modified example of the present embodiment has a light emitting element 131, a phosphor 132, and a shielding member 133.
  • the shielding member 133 in the modified example of the present embodiment is arranged so as to be fitted in the window portion 156.
  • the phosphor 132 (fluorescent layer 136) may be arranged so as to protrude from the window portion 156 toward the light emitting element 131, or may be arranged inside the window portion 156.
  • the ultraviolet visualization units 140 and 240 since the ultraviolet visualization units 140 and 240 according to the present embodiment include the shielding member 133 and the phosphor 132, it is possible to visually and safely confirm whether or not ultraviolet rays are emitted from the light emitting element 131.
  • FIG. 4A is a perspective view showing a part of the configuration of the indoor unit 300 having the ultraviolet visualization unit 340 according to the second embodiment.
  • the ultraviolet visualization unit 340 includes a light emitting element 131, a phosphor 132, a shielding member 133, and a light receiving member 344.
  • the light receiving member 344 is arranged between the light emitting element 131 and the shielding member 133.
  • the light receiving member 344 receives ultraviolet rays and transmits visible light (fluorescence) emitted from the phosphor 132.
  • the material of the light receiving member 344 is preferably a substance that is not easily deteriorated by being irradiated with ultraviolet rays. Examples of the material of the light receiving member 344 include silicone and synthetic quartz.
  • the phosphor 132 may be arranged on the light emitting element 131 side or may be arranged on the shielding member 133 side. In the present embodiment, the light receiving member 344 is arranged on the surface of the shielding member 133 on the light emitting element 131 side.
  • the phosphor 132 may be dispersed inside the light receiving member 344, or may be arranged as a phosphor layer 136 on the surface of the light receiving member 344. In the present embodiment, the phosphor 132 is dispersed inside the light receiving member 344.
  • the ultraviolet rays emitted from the light emitting element 131 some of the ultraviolet rays are applied to the phosphor 132 arranged on the light receiving member 344.
  • the phosphor 132 irradiated with ultraviolet rays emits visible light (fluorescence). The user can visually confirm the ultraviolet rays by confirming the visible light emitted from the phosphor 132.
  • FIG. 4B is a perspective view showing a part of the configuration of the indoor unit 400 having the ultraviolet visualization unit 440 according to the modified example of the second embodiment.
  • the light receiving member 344 in the modified example of this embodiment is arranged closer to the light emitting element 131 than the shielding member 133. Further, the phosphor 132 is dispersed inside the light receiving member 344.
  • the ultraviolet visualization units 340 and 440 according to the present embodiment can shield the ultraviolet rays from the light emitting element 131 toward the shielding member 133 in addition to the effect of the ultraviolet visualization unit 140 according to the first embodiment, and thus emit light. Deterioration of the filter arranged between the element 131 and the window portion 156 can be suppressed.
  • the dehumidifier 500 having the ultraviolet visualization unit 140 according to the first embodiment will be described as the third embodiment.
  • the same components as those of the indoor unit 100 having the ultraviolet visualization unit 140 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 5A is a perspective view showing a part of the configuration of the dehumidifier 500 having the ultraviolet visualization unit 140 according to the first embodiment
  • FIG. 5B is a side view.
  • the dehumidifier 500 includes a suction part, a cooler 510, a radiator 520, a compressor 530, a fan, a drain pan 540, an ultraviolet visualization unit 140, and a blowout part. It has a cover 560 and. That is, the dehumidifier 500 according to the present embodiment is a compressor type.
  • the dehumidifier 500 may be a desiccant system or a hybrid system in which a compressor system and a desiccant system are used in combination.
  • the suction part, the fan, and the blowout part are omitted, and only a part of the internal structure of the dehumidifier 500 is shown.
  • the cover 560 is arranged so as to cover the ultraviolet visualization unit 140.
  • a window portion 532 (opening) is opened in the cover 560.
  • the window portion 532 is a through hole that connects the inside and the outside of the indoor unit 100.
  • the plan-view shape of the window portion 532 is not particularly limited. Examples of the plan view shape of the window portion 532 include a circular shape, an elliptical shape, and a polygonal shape.
  • the window portion 532 is covered with a shielding member 133.
  • the suction part functions to take in the water vapor in the room into the dehumidifier 500.
  • the arrangement and shape of the suction portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed.
  • the blowout unit functions to blow out dehumidified air into the room.
  • the arrangement and shape of the blowout portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed.
  • the suction portion and the blowout portion are formed on the cover 560.
  • the cooler 510 causes dew condensation on its surface and turns the water vapor in the air taken in into water droplets.
  • the water droplets are collected in the drain pan 540 and stored in the water storage tank.
  • the radiator 520 warms the air cooled by the cooler 510.
  • the compressor 530 is rotated by, for example, an electric motor, and cools and condenses air in the process of compressing and expanding the refrigerant.
  • the air taken in from the suction part by the fan is cooled by the cooler 510.
  • the cooled air is heated to about room temperature by the radiator 520 and then discharged from the blowout portion into the room.
  • the ultraviolet visualization unit 140 has a light emitting element 131, a phosphor 132, and a shielding member 133.
  • the phosphor 132 is arranged as the phosphor layer 136 on the surface of the shielding member 133 on the light emitting element 131 side.
  • the dehumidifier 500 (electric machine / equipment) according to the present embodiment has the same effect as the indoor unit 100 (electric machine / equipment) according to the first embodiment.
  • the ultraviolet visualization unit 140 may further include a light receiving member in the second embodiment.
  • the light receiving member may be arranged on the surface of the shielding member 133 on the light emitting element 131 side, or may be arranged on the light emitting element 131 side.
  • the phosphor may also be arranged as a phosphor layer on the surface of the light receiving member, or may be arranged inside the light receiving member.
  • the luminous flux control member 634 that can be used in the ultraviolet visualization units 140, 240, 340, and 440 according to the first to third embodiments will be described.
  • FIGStructure of luminous flux control member 6A to 6D are diagrams showing the configuration of the luminous flux control member 634 that can be used in the ultraviolet visualization units 140, 240, 340, and 440 according to the first to third embodiments.
  • 6A is a plan view of the luminous flux control member 634
  • FIG. 6B is a bottom view
  • FIG. 6C is a side view
  • FIG. 6D is a cross-sectional view taken along the line AA shown in FIG. 6A. ..
  • the luminous flux control member 634 has an incident surface 641, a total reflection surface 642, an exit surface 643, and a tubular portion 644.
  • the flange portion and the leg portion are omitted.
  • the incident surface 641 causes the ultraviolet rays emitted from the light emitting element 131 to enter the inside of the luminous flux control member 634.
  • the incident surface 641 is an inner surface of a recess 647 formed so as to face the light emitting element 131.
  • the incident surface 641 has a first incident surface 645 corresponding to the bottom surface of the recess 647 and a second incident surface 646 corresponding to the inner surface of the recess 647.
  • the first incident surface 645 is incident with ultraviolet rays having a small emission angle among the ultraviolet rays emitted from the light emitting element 131.
  • the first incident surface 645 is formed so that the distance between the first incident surface 645 and the central axis CA gradually increases from the incident surface 641 to the exit surface 643 in the cross section including the central axis CA.
  • the second incident surface 646 incidents ultraviolet rays having a large emission angle among the ultraviolet rays emitted from the light emitting element 131.
  • the second incident surface 646 connects the first incident surface 645 and the total reflection surface 642.
  • the second incident surface 646 is formed so as to approach the central axis CA as it goes from the incident surface 641 to the exit surface 643 in the cross section including the central axis CA.
  • the total reflection surface 642 reflects a part of the ultraviolet rays incident from the incident surface 641 toward the exit surface 643.
  • the "total reflection surface” means a surface intended to totally reflect the ultraviolet rays that have reached the surface among the ultraviolet rays emitted from the light emitting center of the light emitting element 131.
  • the total reflection surface 642 is a rotationally symmetric plane centered on the central axis CA, which is arranged so as to surround the central axis CA.
  • the distance between the total reflection surface 642 and the central axis CA gradually increases from the light emitting element 131 side toward the emission surface 643 side of the luminous flux control member 634.
  • the shape of the total reflection surface 642 in the cross section of the luminous flux control member 634 passing through the central axis CA is a curved line convex outward (the side away from the central axis CA).
  • the exit surface 643 is arranged on the opposite side of the incident surface 641 and emits ultraviolet rays that have traveled inside the luminous flux control member 634 to the outside.
  • the exit surface 643 is a circular plane centered on the central axis CA, and is arranged so as to intersect the central axis CA perpendicularly.
  • the tubular portion 644 is arranged so as to surround the exit surface 643.
  • the shape of the tubular portion 644 is not particularly limited. In the present embodiment, the shape of the tubular portion 644 is a cylindrical shape.
  • the light flux control member 634 in the present embodiment mainly reflects ultraviolet rays on the total reflection surface 642 to collect the ultraviolet rays emitted from the light emitting element 131. Even if the light flux control member 634 according to the modified example is used instead of the light flux control member 134, the entire surface of the irradiated surface 135 can be irradiated with ultraviolet rays by using a small number of light emitting elements 131 and the light flux control member 634.
  • the indoor unit 600 having the ultraviolet visualization unit 640 according to the fourth embodiment differs from the indoor unit 100 according to the first embodiment only in the configuration of the ultraviolet visualization unit 640. Therefore, the same reference numerals are given to the same configurations as those of the indoor unit 100 according to the first embodiment, and the description thereof will be omitted.
  • FIG. 7A is a perspective view showing a partial configuration of the indoor unit 600 according to the fourth embodiment, and FIG. 7B is a side view.
  • the ultraviolet visualization unit 640 includes a light emitting element 131 and a phosphor 132. That is, the ultraviolet visualization unit 640 according to the present embodiment does not have the shielding member 133.
  • the phosphor 132 is applied to a member that transmits visible light to form the phosphor layer 136 and close the window portion 156. In this case, the ultraviolet rays emitted from the light emitting element 131 and directed to the outside of the indoor unit 600 are irradiated to the phosphor 132 and are not emitted to the outside.
  • the ultraviolet visualization unit 640 since the ultraviolet visualization unit 640 according to the present embodiment has the phosphor 132, it is possible to visually and safely visually confirm whether or not ultraviolet rays are emitted from the light emitting element 131.
  • the ultraviolet visualization unit of the present invention can visually confirm the ultraviolet rays emitted from the light emitting element. Therefore, it can be used in any device or device that uses a light emitting element that emits ultraviolet rays. For example, it can be mounted on an electronic machine or appliance having a heat pump, that is, an electric machine or appliance such as an air conditioner, a dehumidifier, or a refrigerator that uses ultraviolet rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A UV visualization unit according to the present invention comprises a light-emitting element that emits UV radiation, and a phosphor that emits visible light as a result of being irradiated by a portion of the UV radiation emitted from the light-emitting element. The other portion of the UV radiation reaches regions other than that of the phosphor.

Description

紫外線可視化ユニット、電気機械器具UV visualization unit, electromechanical equipment
 本発明は、紫外線可視化ユニットおよび電気機械器具に関する。 The present invention relates to an ultraviolet visualization unit and an electric machine / appliance.
 紫外線を用いて液体や気体などの流体や、各種医療器具などを殺菌処理することが広く知られている。また、近年では、例えば、結露などで水滴が触れる部分を殺菌処理するために紫外線が使用されている(例えば、特許文献1参照)。 It is widely known that ultraviolet rays are used to sterilize fluids such as liquids and gases, and various medical instruments. Further, in recent years, for example, ultraviolet rays have been used for sterilizing a portion that comes into contact with water droplets due to dew condensation or the like (see, for example, Patent Document 1).
 特許文献1には、殺菌機能を有する空気調和機(エアコンディショナー)が記載されている。特許文献1に記載の空気調和機は、吸気口および吹出口を有するケーシングと、室内熱交換器と、室内ファンと、ドレンパンと、紫外線を出射する発光ダイオード(LED)を含むLEDモジュールと、フィルターとを有する。 Patent Document 1 describes an air conditioner (air conditioner) having a sterilizing function. The air conditioner described in Patent Document 1 includes a casing having an intake port and an outlet, an indoor heat exchanger, an indoor fan, a drain pan, an LED module including a light emitting diode (LED) that emits ultraviolet rays, and a filter. And have.
 特許文献1に記載の空気調和機では、室内ファンを駆動することにより吸気口から室内の空気を吸い込む。吸い込まれた空気は、フィルターによって、塵や埃が捕集される。塵や埃が捕集された空気は、室内熱交換器で温度が下げられる。温度が下げられた空気は、室内ファンにより吹出口から室内に吹き出される。一方、室内熱交換器の表面に結露により生じた水滴は、ドレンパンで集められ、部屋の外部に排出される。また、室内熱交換器とLEDモジュールとが対向するように配置されており、LEDから紫外線が出射されることにより、室内熱交換器の表面が殺菌される。 In the air conditioner described in Patent Document 1, the indoor air is sucked from the intake port by driving the indoor fan. Dust and dust are collected by the filter of the sucked air. The temperature of the dust and the air in which the dust is collected is lowered by the indoor heat exchanger. The air whose temperature has been lowered is blown into the room from the outlet by an indoor fan. On the other hand, water droplets generated by dew condensation on the surface of the indoor heat exchanger are collected by a drain pan and discharged to the outside of the room. Further, the indoor heat exchanger and the LED module are arranged so as to face each other, and the surface of the indoor heat exchanger is sterilized by emitting ultraviolet rays from the LED.
特開2008-155466号公報Japanese Unexamined Patent Publication No. 2008-155466
 ここで、一般に、殺菌には、紫外線のうち、紫外線C波(UVC)が使用される。紫外線C波は、強い殺菌作用を有するが、人体に有害である。しかしながら、紫外線C線は、目視で確認できないため、特許文献1に記載された空気調和機内において、LEDモジュールが機能しているか否かを目視で判断できない。 Here, in general, ultraviolet C wave (UVC) is used for sterilization. Ultraviolet C wave has a strong bactericidal action, but is harmful to the human body. However, since the ultraviolet C-ray cannot be visually confirmed, it cannot be visually determined whether or not the LED module is functioning in the air conditioner described in Patent Document 1.
 LEDモジュールが作動していない場合、殺菌機能が発揮しないため、室内熱交換器が殺菌されない。一方、LEDモジューが作動しているかわからないため、紫外線が外部に漏れた場合、人体に悪い影響をおよぼすことが考えられる。 If the LED module is not operating, the indoor heat exchanger will not be sterilized because the sterilization function will not be exhibited. On the other hand, since it is not known whether the LED module is operating, if ultraviolet rays leak to the outside, it may have an adverse effect on the human body.
 本発明の目的は、発光素子から紫外線が出射されているか否かを目視で確認できる紫外線可視化ユニットを提供することである。また、本発明の別の目的は、当該紫外線可視化ユニットを有する電気機械器具を提供することである。 An object of the present invention is to provide an ultraviolet visualization unit capable of visually confirming whether or not ultraviolet rays are emitted from a light emitting element. Another object of the present invention is to provide an electric machine / appliance having the ultraviolet visualization unit.
 本発明の紫外線可視化ユニットは、紫外線を出射する発光素子と、前記発光素子から出射された紫外線の一部が照射されることにより、可視光線を発光する蛍光体と、を有し、紫外線の他の一部は、前記蛍光体以外の領域に到達する。 The ultraviolet visualization unit of the present invention has a light emitting element that emits ultraviolet rays and a phosphor that emits visible light by irradiating a part of the ultraviolet rays emitted from the light emitting element. A part of the above reaches a region other than the phosphor.
 本発明の電気機械器具は、本発明の紫外線可視化ユニットを有する。 The electromechanical device of the present invention has the ultraviolet visualization unit of the present invention.
 本発明の紫外線可視化ユニットは、発光素子から出射された紫外線を目視で確認できる。 The ultraviolet visualization unit of the present invention can visually confirm the ultraviolet rays emitted from the light emitting element.
図1A、Bは、本発明の実施の形態1に係る紫外線可視化ユニットを含む室内機の一部の構成を示す図である。1A and 1B are diagrams showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a first embodiment of the present invention. 図2A~Dは、光束制御部材の構成を示す図である。2A to 2D are views showing the configuration of the luminous flux control member. 図3は、本発明の実施の形態1の変形例に係る紫外線可視化ユニットを含む室内機の一部の構成を示す斜視図である。FIG. 3 is a perspective view showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a modified example of the first embodiment of the present invention. 図4A、Bは、本発明の実施の形態2に係る紫外線可視化ユニットを含む室内機の一部の構成を示す模式図である。4A and 4B are schematic views showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a second embodiment of the present invention. 図5A、Bは、本発明の実施の形態3に係る紫外線可視化ユニットを含む除湿機の一部の構成を示す模式図である。5A and 5B are schematic views showing a partial configuration of a dehumidifier including an ultraviolet visualization unit according to a third embodiment of the present invention. 図6A~Dは、本発明の実施の形態1~3に係る紫外線可視化ユニットに利用可能な他の光束制御部材の構成を示す図である。6A to 6D are diagrams showing the configuration of other light flux control members that can be used in the ultraviolet visualization unit according to the first to third embodiments of the present invention. 図7A、Bは、本発明の実施の形態4に係る紫外線可視化ユニットを含む室内機の一部の構成を示す模式図である。7A and 7B are schematic views showing a partial configuration of an indoor unit including an ultraviolet visualization unit according to a fourth embodiment of the present invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [実施の形態1]
 本実施の形態では、電気機械器具であるエアコンディショナー(以下「エアコン」ともいう)の室内機に配置された紫外線可視化ユニットについて説明するが、本発明の紫外線可視化ユニットは、これに限定されず、紫外線を出射する発光素子を有するあらゆる器具や装置に応用できる。
[Embodiment 1]
In the present embodiment, the ultraviolet visualization unit arranged in the indoor unit of the air conditioner (hereinafter, also referred to as “air conditioner”) which is an electric machine / appliance will be described, but the ultraviolet visualization unit of the present invention is not limited to this. It can be applied to any device or device having a light emitting element that emits ultraviolet rays.
 (室内機の構成)
 図1Aは、エアコンの室内機100の一部の構成を示す斜視図であり、図1Bは、側面図である。
(Composition of indoor unit)
FIG. 1A is a perspective view showing a part of the configuration of the indoor unit 100 of the air conditioner, and FIG. 1B is a side view.
 図1A、Bに示されるように、エアコンの室内機100は、吸込み部と、熱交換器110と、ファン120と、ドレンパン130と、紫外線可視化ユニット140と、フィルターと、吹出し部と、カバー150とを有する。図1では、吸込み部、フィルターおよび吹出し部を省略しており、エアコンの室内機100の内部構造の一部のみを図示している。 As shown in FIGS. 1A and 1B, the indoor unit 100 of the air conditioner includes a suction part, a heat exchanger 110, a fan 120, a drain pan 130, an ultraviolet visualization unit 140, a filter, a blowout part, and a cover 150. And have. In FIG. 1, the suction part, the filter, and the blowout part are omitted, and only a part of the internal structure of the indoor unit 100 of the air conditioner is shown.
 カバー150は、紫外線可視化ユニット140を覆うように配置されている。カバー150には、窓部156(開口部)が開口しており、吸い込み部および吹出し部が形成されている。窓部156は、室内機100の内部と外部とを繋ぐ貫通孔である。窓部156の平面視形状は、特に限定されない。窓部156の平面視形状の例には、円形状、楕円形状、多角形状が含まれる。なお、窓部156は、必ずしも意図的に形成されている必要はなく、通常カバー150と吹出し部の間に存在するスリットなどの貫通孔も含まれる。本実施の形態では窓部156は、遮蔽部材133に覆われている。 The cover 150 is arranged so as to cover the ultraviolet visualization unit 140. A window portion 156 (opening portion) is opened in the cover 150, and a suction portion and a blowout portion are formed. The window portion 156 is a through hole that connects the inside and the outside of the indoor unit 100. The plan-view shape of the window portion 156 is not particularly limited. Examples of the plan view shape of the window portion 156 include a circular shape, an elliptical shape, and a polygonal shape. The window portion 156 does not necessarily have to be intentionally formed, and usually includes a through hole such as a slit existing between the cover 150 and the blowout portion. In the present embodiment, the window portion 156 is covered with the shielding member 133.
 吸込み部は、室内の空気を室内機100の内部に取り入れるために機能する。吸込み部の配置および形状は、前述の機能を発揮できれば特に限定されず、適宜設計できる。吹出し部は、室内機100の内部の空気を室内に吹出すために機能する。吹出し部の配置および形状は、前述の機能を発揮できれば特に限定されず、適宜設計できる。本実施の形態では、吸込み部および吹出し部は、カバー150に形成されている。フィルターは、室内機100に取り込む空気中の異物を捕捉する。フィルターは、公知のフィルターを使用できる。 The suction unit functions to take indoor air into the indoor unit 100. The arrangement and shape of the suction portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed. The blowing unit functions to blow out the air inside the indoor unit 100 into the room. The arrangement and shape of the blowout portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed. In the present embodiment, the suction portion and the blowout portion are formed on the cover 150. The filter captures foreign matter in the air taken into the indoor unit 100. As the filter, a known filter can be used.
 熱交換器110は、エアコンが冷房動作する時には暖かい空気を冷たくし、暖房動作する時には冷たい空気を暖かくする。本実施の形態では、熱交換器110は、紫外線可視化ユニット140の発光素子131の直上部に配置されている。熱交換器110は、前述の機能を発揮できれば、特に限定されず、公知の熱交換器を使用できる。エアコンが冷房動作する時には、熱交換器110が暖かい空気を冷たくするため、熱交換器110の表面で結露が生じる。この結露により熱交換器110の表面に水滴が付着する。熱交換器110の表面に付着した水滴は、ドレンパン130に落下して、室外に排出される。 The heat exchanger 110 cools warm air when the air conditioner operates for cooling, and warms cold air when the air conditioner operates for heating. In the present embodiment, the heat exchanger 110 is arranged directly above the light emitting element 131 of the ultraviolet visualization unit 140. The heat exchanger 110 is not particularly limited as long as it can exhibit the above-mentioned functions, and a known heat exchanger can be used. When the air conditioner operates for cooling, the heat exchanger 110 cools the warm air, so that dew condensation occurs on the surface of the heat exchanger 110. Water droplets adhere to the surface of the heat exchanger 110 due to this dew condensation. The water droplets adhering to the surface of the heat exchanger 110 fall into the drain pan 130 and are discharged to the outside of the room.
 ファン120は、室内の空気を室内機100の内部に取り入れるとともに、室内機100内の空気を室内機100の外部に排出するために機能する。ファン120の構成は、前述の機能を発揮できれば、特に限定されず、公知のファンを使用できる。 The fan 120 functions to take indoor air into the indoor unit 100 and discharge the air inside the indoor unit 100 to the outside of the indoor unit 100. The configuration of the fan 120 is not particularly limited as long as it can exhibit the above-mentioned functions, and a known fan can be used.
 (紫外線可視化ユニットの構成)
 紫外線可視化ユニット140は、発光素子131と、蛍光体132と、遮蔽部材133とを有する。
(Structure of UV visualization unit)
The ultraviolet visualization unit 140 includes a light emitting element 131, a phosphor 132, and a shielding member 133.
 発光素子131は、紫外線を出射する。発光素子131の種類は、紫外線を出射できれば特に限定されない。発光素子131の例には、発光ダイオード(LED)、水銀ランプ、メタルハライドランプ、キセノンランプ、レーザーダイオード(LD)が含まれる。発光素子131から出射される紫外線の中心波長またはピーク波長は、200nm以上350nm以下が好ましい。発光素子131から出射される紫外線の中心波長またはピーク波長は、殺菌効率が高い観点から、250nm以上290nm以下がより好ましい。すなわち、紫外線は、紫外線C波(UVC)がより好ましい。発光素子131の数は、特に限定されない。発光素子131の数は、1つでもよいし、2つ以上でもよい。本実施の形態では、発光素子131の数は、2つである。本実施の形態では、発光素子131の発光面に対向して、発光素子131から出射された紫外線の配光を制御する光束制御部材134が配置されている。発光素子131から出射される紫外線の一部は、蛍光体132に到達する。発光素子131から出射される紫外線の他の一部は、蛍光体以外の領域に到達する。蛍光体以外の領域は、被照射面135を含む。 The light emitting element 131 emits ultraviolet rays. The type of the light emitting element 131 is not particularly limited as long as it can emit ultraviolet rays. Examples of the light emitting element 131 include a light emitting diode (LED), a mercury lamp, a metal halide lamp, a xenon lamp, and a laser diode (LD). The center wavelength or peak wavelength of the ultraviolet rays emitted from the light emitting element 131 is preferably 200 nm or more and 350 nm or less. The center wavelength or peak wavelength of the ultraviolet rays emitted from the light emitting element 131 is more preferably 250 nm or more and 290 nm or less from the viewpoint of high sterilization efficiency. That is, ultraviolet rays are more preferably ultraviolet C waves (UVC). The number of light emitting elements 131 is not particularly limited. The number of light emitting elements 131 may be one or two or more. In the present embodiment, the number of light emitting elements 131 is two. In the present embodiment, the luminous flux control member 134 that controls the light distribution of the ultraviolet rays emitted from the light emitting element 131 is arranged so as to face the light emitting surface of the light emitting element 131. A part of the ultraviolet rays emitted from the light emitting element 131 reaches the phosphor 132. The other part of the ultraviolet light emitted from the light emitting element 131 reaches a region other than the phosphor. The region other than the phosphor includes the irradiated surface 135.
 図2A~Dは、実施の形態1に係る紫外線可視化ユニット140における発光素子131から出射される紫外線の配光を制御する光束制御部材134の構成を示す図である。図2Aは、光束制御部材134の平面図であり、図2Bは、底面図であり、図2Cは、左側面図であり、図2Dは、図2Aに示されるA-A線の断面図である。 2A to 2D are diagrams showing a configuration of a luminous flux control member 134 that controls the light distribution of ultraviolet rays emitted from the light emitting element 131 in the ultraviolet visualization unit 140 according to the first embodiment. 2A is a plan view of the luminous flux control member 134, FIG. 2B is a bottom view, FIG. 2C is a left side view, and FIG. 2D is a cross-sectional view taken along the line AA shown in FIG. 2A. is there.
 光束制御部材134は、発光素子131から出射された紫外線の配光を制御する部材である。図2A~Dに示されるように、光束制御部材134は、入射領域141と、出射領域142とを有する。また、本実施の形態では、光束制御部材134は、筒部143と、フランジ部144と、位置決め凸部145とを有している。光束制御部材134は、光束制御部材134の中心軸CAが発光素子131の光軸OAと一致するように配置される。 The luminous flux control member 134 is a member that controls the light distribution of ultraviolet rays emitted from the light emitting element 131. As shown in FIGS. 2A to 2D, the luminous flux control member 134 has an incident region 141 and an emitted region 142. Further, in the present embodiment, the luminous flux control member 134 has a tubular portion 143, a flange portion 144, and a positioning convex portion 145. The luminous flux control member 134 is arranged so that the central axis CA of the luminous flux control member 134 coincides with the optical axis OA of the light emitting element 131.
 入射領域141は、発光素子131と対向して配置され、発光素子131から出射された紫外線を入射させる。入射領域141は、第1制御部146と、第2制御部147とを含む。入射領域141を平面視(底面視)したときに、第1制御部146は、発光素子131の光軸OAと一致する光束制御部材134の中心軸CAを含む仮想平面を境界として、入射領域141の一方側(図2B、Dでは上側)に配置されている。また、入射領域141を平面視(底面視)したときに、第2制御部147は、中心軸CAを含む仮想平面を境界として、入射領域141の他方側(図2B、Dでは下側)に配置されている。室内機100において、光束制御部材134は、第2制御部147が第1制御部146よりも被照射面135側に位置するように配置される。 The incident region 141 is arranged so as to face the light emitting element 131, and the ultraviolet rays emitted from the light emitting element 131 are incident. The incident region 141 includes a first control unit 146 and a second control unit 147. When the incident region 141 is viewed in a plan view (bottom view), the first control unit 146 uses the incident region 141 as a boundary with a virtual plane including the central axis CA of the luminous flux control member 134 that coincides with the optical axis OA of the light emitting element 131. It is arranged on one side (upper side in FIGS. 2B and 2D). Further, when the incident region 141 is viewed in a plane (bottom view), the second control unit 147 is placed on the other side of the incident region 141 (lower side in FIGS. 2B and D) with the virtual plane including the central axis CA as a boundary. Have been placed. In the indoor unit 100, the luminous flux control member 134 is arranged so that the second control unit 147 is located closer to the irradiated surface 135 than the first control unit 146.
 第1制御部146は、第1屈折入射面151と、第1凸部152とを有する。 The first control unit 146 has a first refraction incident surface 151 and a first convex portion 152.
 第1屈折入射面151は、第1制御部146における中心軸CA側(内側)に配置されている。第1屈折入射面151は、中心軸CAに対する角度が小さくなるように、発光素子131から出射された紫外線を屈折して入射させる。中心軸CAを含む断面において、第1屈折入射面151は、中心軸CAから離れるにつれて、出射領域142側に向かうように形成されている。本実施の形態では、第1屈折入射面151の平面視形状は、中心角が180°の扇形形状である。 The first refraction incident surface 151 is arranged on the CA side (inside) of the central axis of the first control unit 146. The first refracting incident surface 151 refracts and incidents ultraviolet rays emitted from the light emitting element 131 so that the angle with respect to the central axis CA becomes small. In the cross section including the central axis CA, the first refraction incident surface 151 is formed so as to move toward the emission region 142 side as the distance from the central axis CA increases. In the present embodiment, the plan view shape of the first refraction incident surface 151 is a fan shape having a central angle of 180 °.
 第1凸部152は、中心軸CAに対して、第1屈折入射面151よりも離れて配置されている。第1凸部152は、中心軸CAを含む断面において、中心軸CAに対する角度が小さくなるように、発光素子131から出射された紫外線を出射領域142に向けて制御する。第1凸部152の数は、特に限定されない。本実施の形態では、第1凸部152は、3つである。3つの第1凸部152の大きさは、全て同じでもよいし、それぞれ異なっていてもよい。本実施の形態では、3つの第1凸部152のうち、最も中心軸CAから遠い第1凸部152は、他の第1凸部152よりも大きい。本実施の形態では、第1凸部152の平面視形状は、円環の一部の形状(半円環状)である。3つの第1凸部152は、それぞれの第1稜線155が同心円上に位置するように配置されている。 The first convex portion 152 is arranged at a distance from the first refraction incident surface 151 with respect to the central axis CA. The first convex portion 152 controls the ultraviolet rays emitted from the light emitting element 131 toward the emission region 142 so that the angle with respect to the central axis CA becomes smaller in the cross section including the central axis CA. The number of the first convex portions 152 is not particularly limited. In the present embodiment, there are three first convex portions 152. The sizes of the three first convex portions 152 may all be the same or may be different from each other. In the present embodiment, of the three first convex portions 152, the first convex portion 152 farthest from the central axis CA is larger than the other first convex portions 152. In the present embodiment, the plan view shape of the first convex portion 152 is a partial shape of an annulus (semi-annular ring). The three first convex portions 152 are arranged so that their respective first ridge lines 155 are located on concentric circles.
 第1凸部152は、中心軸CA側(内側)の第1入射面153と、中心軸CAに対して第1入射面153から離れた位置(外側)に配置された第1反射面154と、第1入射面153および第1反射面154の接続線である第1稜線155とを有する。発光素子131から出射された紫外線のうち、一部の紫外線は、第1入射面153で入射し、第1反射面154で反射した後、出射領域142から出射される。 The first convex portion 152 includes a first incident surface 153 on the central axis CA side (inside) and a first reflecting surface 154 arranged at a position (outside) away from the first incident surface 153 with respect to the central axis CA. It has a first ridge line 155, which is a connecting line between the first incident surface 153 and the first reflecting surface 154. Of the ultraviolet rays emitted from the light emitting element 131, some of the ultraviolet rays are incident on the first incident surface 153, reflected by the first reflecting surface 154, and then emitted from the emission region 142.
 第2制御部147は、第2屈折入射面161(屈折入射面)と、第2凸部162とを有する。 The second control unit 147 has a second refraction incident surface 161 (refraction incident surface) and a second convex portion 162.
 第2屈折入射面161は、第2制御部147における中心軸CA側(内側)に配置されている。第2屈折入射面161は、中心軸CAに対する角度が小さくなるように、発光素子131から出射された紫外線を屈折して入射させる。中心軸CAを含む断面において、第2屈折入射面161は、出射領域142に向かって凸となるように形成されている。本実施の形態では、第2屈折入射面161の平面視形状は、中心角が180°の扇形形状である。 The second refraction incident surface 161 is arranged on the CA side (inside) of the central axis of the second control unit 147. The second refracting incident surface 161 refracts and incidents ultraviolet rays emitted from the light emitting element 131 so that the angle with respect to the central axis CA becomes small. In the cross section including the central axis CA, the second refraction incident surface 161 is formed so as to be convex toward the emission region 142. In the present embodiment, the plan view shape of the second refraction incident surface 161 is a fan shape having a central angle of 180 °.
 第2凸部162は、中心軸CAに対して、第2屈折入射面161よりも離れて配置されている。第2凸部162は、中心軸CAを含む断面において、中心軸CAに対する角度が小さくなるように、発光素子131から出射された紫外線を出射領域142に向けて制御する。第2凸部162の数は、特に限定されない。本実施の形態では、第2凸部162は、1つである。第2凸部162は、切り欠き部163を有する。 The second convex portion 162 is arranged at a distance from the second refraction incident surface 161 with respect to the central axis CA. The second convex portion 162 controls the ultraviolet rays emitted from the light emitting element 131 toward the emission region 142 so that the angle with respect to the central axis CA becomes smaller in the cross section including the central axis CA. The number of the second convex portions 162 is not particularly limited. In the present embodiment, there is only one second convex portion 162. The second convex portion 162 has a notched portion 163.
 第2凸部162は、中心軸CA側(内側)の第2入射面164と、中心軸CAに対して第2入射面164より離れた位置(外側)に配置された第2反射面165と、第2入射面164および第2反射面165の接続線である第2稜線166とを有する。本実施の形態では、第2凸部162の平面視形状は、円環の一部の形状(切り欠き部163を除いて半円環状)である。発光素子131から出射された紫外線のうち、一部の紫外線は、第2入射面164で入射し、第2反射面165で反射した後、出射領域142から出射される。 The second convex portion 162 includes a second incident surface 164 on the central axis CA side (inside) and a second reflecting surface 165 arranged at a position (outside) away from the second incident surface 164 with respect to the central axis CA. It has a second ridge line 166, which is a connecting line between the second incident surface 164 and the second reflecting surface 165. In the present embodiment, the plan view shape of the second convex portion 162 is a partial shape of an annulus (a semicircular annulus except for the notch portion 163). Of the ultraviolet rays emitted from the light emitting element 131, some of the ultraviolet rays are incident on the second incident surface 164, reflected by the second reflecting surface 165, and then emitted from the emission region 142.
 切り欠き部163は、第2凸部162を二分するように、第2凸部162に形成されている。切り欠き部163は、第2凸部162が部分的に形成されていない領域であり、光束制御部材134の直下に光を導くために形成されている。本実施の形態では、第2屈折入射面161の外側に位置するこの領域には、中心軸CAに平行な面が形成される。切り欠き部163の位置は、光束制御部材134の直下に光を導くことができれば特に限定されない。本実施の形態では、切り欠き部163は、第1制御部146から離れた位置に形成されている。より具体的には、切り欠き部163は、光束制御部材134が室内機100に組み込まれたときに、被照射面135に一番近い位置に形成されている。切り欠き部163の幅は、特に限定されない。切り欠き部163の幅は、被照射面135の幅などに応じて適宜設定される。 The notch portion 163 is formed in the second convex portion 162 so as to divide the second convex portion 162 into two. The cutout portion 163 is a region in which the second convex portion 162 is not partially formed, and is formed to guide light directly below the luminous flux control member 134. In the present embodiment, a surface parallel to the central axis CA is formed in this region located outside the second refraction incident surface 161. The position of the notch portion 163 is not particularly limited as long as the light can be guided directly under the luminous flux control member 134. In the present embodiment, the notch portion 163 is formed at a position away from the first control unit 146. More specifically, the cutout portion 163 is formed at a position closest to the irradiated surface 135 when the luminous flux control member 134 is incorporated into the indoor unit 100. The width of the cutout portion 163 is not particularly limited. The width of the cutout portion 163 is appropriately set according to the width of the irradiated surface 135 and the like.
 筒部143は、入射領域141および出射領域142を取り囲むように配置されている。筒部143の形状は、特に限定されない。本実施の形態では、筒部143の形状は円筒形状である。筒部143の発光素子131基端部には、フランジ部144が接続されている。 The tubular portion 143 is arranged so as to surround the incident region 141 and the emitted region 142. The shape of the tubular portion 143 is not particularly limited. In the present embodiment, the shape of the tubular portion 143 is a cylindrical shape. A flange portion 144 is connected to the base end portion of the light emitting element 131 of the tubular portion 143.
 フランジ部144は、筒部143の発光素子131側の端部(基端部)に接続されている。フランジ部144は、筒部143の外周面から径方向外側に向かって延在している。フランジ部144の形状は、特に限定されない。本実施の形態では、フランジ部144は、円環形状である。 The flange portion 144 is connected to the end portion (base end portion) of the cylinder portion 143 on the light emitting element 131 side. The flange portion 144 extends radially outward from the outer peripheral surface of the tubular portion 143. The shape of the flange portion 144 is not particularly limited. In the present embodiment, the flange portion 144 has an annular shape.
 位置決め凸部145は、フランジ部144の発光素子131側の面(裏面)から突出して配置されている。位置決め凸部145の数は、特に限定されない。本実施の形態では、位置決め凸部145の数は、3つである。3つの位置決め凸部145は、フランジ部144の周方向において等間隔となるように配置されている。3つの位置決め凸部145は、基板(図示省略)への位置決めに使用される。 The positioning convex portion 145 is arranged so as to project from the surface (back surface) of the flange portion 144 on the light emitting element 131 side. The number of positioning protrusions 145 is not particularly limited. In the present embodiment, the number of positioning convex portions 145 is three. The three positioning convex portions 145 are arranged so as to be evenly spaced in the circumferential direction of the flange portion 144. The three positioning protrusions 145 are used for positioning on a substrate (not shown).
 光束制御部材134は、例えば一体成形により形成されている。光束制御部材134の材料は、所望の波長の光を通過させる透光性を有する材料から適宜に選ばれる。光束制御部材134の材料には、ポリメタクリル酸メチル(PMMA)やポリカーボネート(PC)、エポキシ樹脂(EP)シリコーン樹脂などの光透過性樹脂、および、合成石英などのガラスが含まれる。光束制御部材134の数は、発光素子131の数と同じ数であれば特に限定されない。本実施の形態では、発光素子131の数が2つであるため、光束制御部材134の数も2つである。光束制御部材134は、光束制御部材134の中心軸CAが発光素子131の光軸OAと一致するように配置される。 The luminous flux control member 134 is formed, for example, by integral molding. The material of the luminous flux control member 134 is appropriately selected from materials having translucency that allows light of a desired wavelength to pass through. The material of the light beam control member 134 includes a light-transmitting resin such as polymethyl methacrylate (PMMA), polycarbonate (PC), and epoxy resin (EP) silicone resin, and glass such as synthetic quartz. The number of the luminous flux control members 134 is not particularly limited as long as it is the same as the number of the light emitting elements 131. In the present embodiment, since the number of light emitting elements 131 is two, the number of luminous flux control members 134 is also two. The luminous flux control member 134 is arranged so that the central axis CA of the luminous flux control member 134 coincides with the optical axis OA of the light emitting element 131.
 このような光束制御部材134は、被照射面135に対する配置により、紫外線の配光を任意に調整する。ドレンパン130(被照射面135)を平面視したときに、光束制御部材134の中心軸CA(発光素子131の光軸OA)を、被照射面135の長軸と平行となるように配置するか、短軸と平行となるように配置するかに応じて、光束制御部材134の配光特性を調整する。平面視したときに、光束制御部材134の中心軸CA(発光素子131の光軸OA)が被照射面135の長軸と平行となるように配置する場合には、光束制御部材134は、少なくとも短軸の方向(光束制御部材134から被照射面135を見たときの左右方向)において紫外線を集光させる。すなわち、光束制御部材134の中心軸CA(発光素子131の光軸OA)を含み、かつ短軸に平行な仮想平面において、発光素子131から出射された紫外線は、光束制御部材134により集光される。また、平面視したときに、光束制御部材134の中心軸CA(発光素子131の光軸OA)が被照射面135の短軸と平行となるように配置する場合には、光束制御部材134は、少なくとも短軸の方向(光束制御部材134から被照射面135を見たときの上下(手前-奥)方向)において紫外線を集光させる。すなわち、光束制御部材134の中心軸CA(発光素子131の光軸OA)を含み、かつ長軸に平行な仮想平面において、発光素子131から出射された紫外線は、光束制御部材134により集光される。 Such a light flux control member 134 arbitrarily adjusts the light distribution of ultraviolet rays by arranging it with respect to the irradiated surface 135. Whether the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) is arranged so as to be parallel to the long axis of the irradiated surface 135 when the drain pan 130 (irradiated surface 135) is viewed in a plan view. The light distribution characteristic of the luminous flux control member 134 is adjusted according to whether the light flux control member 134 is arranged so as to be parallel to the minor axis. When the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) is arranged so as to be parallel to the long axis of the irradiated surface 135 when viewed in a plan view, the luminous flux control member 134 is at least Ultraviolet rays are condensed in the direction of the minor axis (the left-right direction when the irradiated surface 135 is viewed from the luminous flux control member 134). That is, in a virtual plane including the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) and parallel to the minor axis, the ultraviolet rays emitted from the light emitting element 131 are collected by the luminous flux control member 134. To. Further, when the central axis CA (optical axis OA of the light emitting element 131) of the luminous flux control member 134 is arranged so as to be parallel to the minor axis of the irradiated surface 135 when viewed in a plan view, the luminous flux control member 134 is arranged. , At least in the direction of the minor axis (the vertical (front-back) direction when the irradiated surface 135 is viewed from the luminous flux control member 134), the ultraviolet rays are condensed. That is, in a virtual plane including the central axis CA of the luminous flux control member 134 (optical axis OA of the light emitting element 131) and parallel to the long axis, the ultraviolet rays emitted from the light emitting element 131 are collected by the luminous flux control member 134. To.
 被照射面135は、発光素子131によって紫外線を照射される。被照射面135の大きさは、特に限定されず、適宜設定される。被照射面135の形状も、特に限定されない。本実施の形態では、被照射面135は、ドレンパン130の水滴が接触する面である。すなわち、被照射面135は、ドレンパン130の内面(底面)である。ドレンパン130の形状は、特に限定されない。本実施の形態では、ドレンパン130の形状は、上面が開放された箱型形状である。被照射面135は、平面でもよいし、凸部が形成されていてもよい。本実施の形態では、被照射面135は、平面である。また、本実施の形態では、被照射面135は、平面視したときに長方形であり、長軸と長軸に直交する短軸とを含む。 The irradiated surface 135 is irradiated with ultraviolet rays by the light emitting element 131. The size of the irradiated surface 135 is not particularly limited and is appropriately set. The shape of the irradiated surface 135 is also not particularly limited. In the present embodiment, the irradiated surface 135 is a surface that the water droplets of the drain pan 130 come into contact with. That is, the irradiated surface 135 is the inner surface (bottom surface) of the drain pan 130. The shape of the drain pan 130 is not particularly limited. In the present embodiment, the shape of the drain pan 130 is a box shape with an open upper surface. The irradiated surface 135 may be a flat surface or may have a convex portion formed therein. In the present embodiment, the irradiated surface 135 is a flat surface. Further, in the present embodiment, the irradiated surface 135 is rectangular when viewed in a plan view, and includes a long axis and a short axis orthogonal to the long axis.
 本実施の形態では、発光素子131および光束制御部材134は、被照射面135(ドレンパン130の内面)から所定の高さに配置されており、被照射面135に紫外線を照射する。本実施の形態では、2組の発光素子131および光束制御部材134は、被照射面135の長軸方向の両端の直上にそれぞれ配置されている。具体的には、一方の1組の発光素子131および光束制御部材134は、被照射面135の一方向(長軸方向)における一方の端部の直上に配置されており、他方の1組の発光素子131および光束制御部材134は、被照射面135の一方向(長軸方向)における他方の端部の直上に配置されている。発光素子131および光束制御部材134は、光束制御部材134から出射される紫外線が被照射面135内に向かうように傾けて配置されている。2つの光束制御部材134の光軸OAは、被照射面135の法線および長軸を含む同一の仮想平面上に位置するように配置されている。光束制御部材134の被照射面135からの高さは、適宜設定される。 In the present embodiment, the light emitting element 131 and the light flux control member 134 are arranged at a predetermined height from the irradiated surface 135 (inner surface of the drain pan 130), and irradiate the irradiated surface 135 with ultraviolet rays. In the present embodiment, the two sets of the light emitting element 131 and the luminous flux control member 134 are arranged directly above both ends of the irradiated surface 135 in the long axis direction. Specifically, one set of the light emitting element 131 and the light flux control member 134 are arranged directly above one end portion in one direction (major axis direction) of the irradiated surface 135, and the other set. The light emitting element 131 and the luminous flux control member 134 are arranged directly above the other end portion in one direction (major axis direction) of the irradiated surface 135. The light emitting element 131 and the light flux control member 134 are arranged so as to be inclined so that the ultraviolet rays emitted from the light flux control member 134 are directed into the irradiated surface 135. The optical axes OA of the two luminous flux control members 134 are arranged so as to be located on the same virtual plane including the normal line and the long axis of the irradiated surface 135. The height of the luminous flux control member 134 from the irradiated surface 135 is appropriately set.
 蛍光体132は、紫外線の一部が照射されることにより、可視光線(蛍光)を発光する。蛍光体132は、発光素子131と窓部156または遮蔽部材133との間に配置されている。蛍光体132は、通常、透明または白色である。蛍光体132は、分散されて使用されるか、溶媒に溶解させた蛍光体溶液を塗布した後、硬化して使用される。本実施の形態では、蛍光体132は、遮蔽部材133の発光素子131側に蛍光体溶液として塗布されて、蛍光体層136を形成している。蛍光体層136は、例えば、遮蔽部材133の全体に配置されていてもよいし、遮蔽部材133の一部に配置されていてもよい。なお、蛍光体132(蛍光体層136)は、窓部156を塞ぐように配置してもよい。また、蛍光体は、紫外線を照射したくない部分に塗布してもよいし、紫外線を照射したくない部分および発光素子131の間に配置してもよい。例えば、蛍光体132は、紫外線により劣化する部材に塗布してもよいし、紫外線により劣化する部材および発光素子131の間に配置してもよい。 The phosphor 132 emits visible light (fluorescence) when a part of ultraviolet rays is irradiated. The phosphor 132 is arranged between the light emitting element 131 and the window portion 156 or the shielding member 133. Fluorescent material 132 is usually transparent or white. The phosphor 132 is used in a dispersed manner, or is used after being coated with a fluorescent solution dissolved in a solvent and then cured. In the present embodiment, the phosphor 132 is applied as a phosphor solution to the light emitting element 131 side of the shielding member 133 to form the phosphor layer 136. The phosphor layer 136 may be arranged on the entire shielding member 133, or may be arranged on a part of the shielding member 133, for example. The phosphor 132 (fluorescent layer 136) may be arranged so as to close the window portion 156. Further, the phosphor may be applied to a portion that is not to be irradiated with ultraviolet rays, or may be arranged between the portion that is not to be irradiated with ultraviolet rays and the light emitting element 131. For example, the phosphor 132 may be applied to a member deteriorated by ultraviolet rays, or may be arranged between the member deteriorated by ultraviolet rays and the light emitting element 131.
 赤色の光を発光する蛍光体132の例には、YS:Eu(YSにユーロピウムをドープさせた材料、以下表記方法同じ)、Zn(PO:Mn、Y:Eu、(Y,Gd)BO:Eu、Y(P,V)O:Eu、YVO:Eu、ZnS:Mn、(Sr・Mg)(PO4):Sn、(ZnSr)(PO4):Mn、3.5MgO・0.5MgF・GeO:Mn、Mg5As11:Mn、(Ca、Sr)Si0:Pb,Mnが含まれる。 Examples of phosphor 132 that emits red light include Y 2 O 2 S: Eu (a material obtained by doping Y 2 O 2 S with europium, the same notation used below), Zn 3 (PO 4 ) 2 : Mn. , Y 2 O 3 : Eu, (Y, Gd) BO 3 : Eu, Y (P, V) O 4 : Eu, YVO 4 : Eu, ZnS: Mn, (Sr · Mg) 3 (PO4) 2 : Sn , (ZnSr) 3 (PO4) 2: Mn, 3.5MgO · 0.5MgF 2 · GeO 2: Mn, Mg5As 2 O 11: Mn, (Ca, Sr) Si0 3: Pb, include Mn.
 緑色の光を発光する蛍光体132の例には、BaMgAl1627:Eu,Mn(BaMgAl1627にユーロピウムおよびマンガンをドープさせた材料、以下表記方法同じ)、ZnSiO:Mn,As、(Ba,Sr,Mg)O・aA1Mn、(Y,Gd)BO:Tb、ZnO:Zn、(Ba,Eu)(Mg,Mn)Al1017、ZnS:CulAl、ZnS:Cu,Au,Al、GdS:Tb、LaPO:Ce,Tb、SrAl1425:Eu、CeMgAl1119:Tb、Ce(Mg,Zn)Al1119:Mn、CeMgAl1119:Ce,Tbが含まれる。 Examples of phosphor 132 that emits green light include BaMg 2 Al 16 O 27 : Eu, Mn (a material obtained by doping BaMg 2 Al 16 O 27 with europium and manganese, the same notation used below), Zn 2 SiO. 4 : Mn, As, (Ba, Sr, Mg) O · aA1 2 O 3 Mn, (Y, Gd) BO 3 : Tb, ZnO: Zn, (Ba, Eu) (Mg, Mn) Al 10 O 17 , ZnS: CulAl, ZnS: Cu, Au, Al, Gd 2 O 2 S: Tb, LaPO 4 : Ce, Tb, Sr 4 Al 14 O 25 : Eu, CeMgAl 11 O 19 : Tb, Ce (Mg, Zn) Al 11 O 19 : Mn, CeMgAl 11 O 19 : Ce, Tb is included.
 青色の光を発光する蛍光体132の例には、BaMgAl1627:Eu、ZnS:Ag,Al,Ga、BaMgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO12:Eu、(Ba,Sr,Eu)(Mg,Mn)Al1017、Sr10(PO12:Eu、(Ba,Eu)MgAl1017、ZnS:Ag、YSiO:Tb、(Sr,Ca,Ba,Mg)(POCl=Eu、CaWO、BaSrMgAl3051:Eu,Mn、CaWO:Pb、Sr:Eu、(Sr,Ca,Ba)(PO12:Eu、3Sr(PO12:Euが含まれる。 Examples of the phosphor 132 that emits blue light include BaMg 2 Al 16 O 27 : Eu, ZnS: Ag, Al, Ga, BaMgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO). 4 ) 6 C 12 : Eu, (Ba, Sr, Eu) (Mg, Mn) Al 10 O 17 , Sr 10 (PO 4 ) 6 C 12 : Eu, (Ba, Eu) MgAl 10 O 17 , ZnS: Ag , Y 2 SiO 5 : Tb, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl = Eu, CaWO 4 , Ba 2 SrMg 3 Al 30 O 51 : Eu, Mn, CaWO 4 : Pb, Sr 2 P 2 O 7 : Eu, (Sr, Ca, Ba) 3 (PO 4 ) 2 C 12 : Eu, 3Sr 3 (PO 4 ) 2 C 12 : Eu is included.
 遮蔽部材133は、窓部156(開口部)を塞ぐように配置されており、発光素子131から出射された紫外線を遮蔽し、可視光線を透過させる。本実施の形態では、遮蔽部材133は、窓部156よりも大きく形成されており、カバー150の内側から窓部156を覆うように配置されている。これにより、紫外線を確実に窓部156から外部に出射されることを防止できる。遮蔽部材133の材料は、上記の機能を発揮できれば特に限定されない。遮蔽部材133の材料の例には、ポリメタクリル酸メチル(PMMA)などの樹脂や、ホウケイ酸クラウン光学ガラスであるBK7などのガラスが含まれる。 The shielding member 133 is arranged so as to close the window portion 156 (opening), shields the ultraviolet rays emitted from the light emitting element 131, and transmits visible light. In the present embodiment, the shielding member 133 is formed larger than the window portion 156, and is arranged so as to cover the window portion 156 from the inside of the cover 150. As a result, it is possible to prevent the ultraviolet rays from being reliably emitted from the window portion 156 to the outside. The material of the shielding member 133 is not particularly limited as long as it can exhibit the above functions. Examples of the material of the shielding member 133 include a resin such as polymethyl methacrylate (PMMA) and a glass such as BK7 which is a crown optical glass borosilicate.
 発光素子131から出射された紫外線のうち、一部の紫外線は、窓部156に配置された蛍光体132(蛍光体層136)に照射される。紫外線が照射された蛍光体132は、可視光線を発光する。ユーザーは、蛍光体132から発光された可視光線を窓部156から確認できる。よって、本実施の形態では、紫外線としてUVCを使用した場合でも、遮蔽部材133および蛍光体132を有するため、紫外線を可視化できる。 Of the ultraviolet rays emitted from the light emitting element 131, some of the ultraviolet rays are applied to the phosphor 132 (fluorescent layer 136) arranged in the window portion 156. The phosphor 132 irradiated with ultraviolet rays emits visible light. The user can confirm the visible light emitted from the phosphor 132 from the window portion 156. Therefore, in the present embodiment, even when UVC is used as ultraviolet rays, the ultraviolet rays can be visualized because they have the shielding member 133 and the phosphor 132.
 (変形例)
 次に、変形例に係る紫外線可視化ユニット240を含む室内機200について説明する。本実施の形態に係る変形例は、遮蔽部材133および蛍光体132(蛍光体層136)の配置のみが実施の形態1に係る室内機100と異なる。そこで、実施の形態1に係る室内機100と同様の構成については同じ符号を付して、その説明を省略する。
(Modification example)
Next, the indoor unit 200 including the ultraviolet visualization unit 240 according to the modified example will be described. The modified example according to the present embodiment differs from the indoor unit 100 according to the first embodiment only in the arrangement of the shielding member 133 and the phosphor 132 (fluorescent layer 136). Therefore, the same reference numerals are given to the same configurations as those of the indoor unit 100 according to the first embodiment, and the description thereof will be omitted.
 図3は、実施の形態1の変形例に係る室内機200の一部の構成を示す図である。 FIG. 3 is a diagram showing a partial configuration of the indoor unit 200 according to the modified example of the first embodiment.
 図3に示されるように、本実施の形態の変形例における紫外線可視化ユニット240は、発光素子131と、蛍光体132と、遮蔽部材133とを有する。本実施の形態の変形例における遮蔽部材133は、窓部156にはめ込まれるように配置されている。蛍光体132(蛍光体層136)は、窓部156から発光素子131側にはみ出すように配置されていてもよいし、窓部156の内部に配置されていてもよい。 As shown in FIG. 3, the ultraviolet visualization unit 240 in the modified example of the present embodiment has a light emitting element 131, a phosphor 132, and a shielding member 133. The shielding member 133 in the modified example of the present embodiment is arranged so as to be fitted in the window portion 156. The phosphor 132 (fluorescent layer 136) may be arranged so as to protrude from the window portion 156 toward the light emitting element 131, or may be arranged inside the window portion 156.
 (効果)
 以上のように、本実施の形態に係る紫外線可視化ユニット140、240は、遮蔽部材133および蛍光体132を有するため、発光素子131から紫外線が出射されているか否かを目視で安全に確認できる。
(effect)
As described above, since the ultraviolet visualization units 140 and 240 according to the present embodiment include the shielding member 133 and the phosphor 132, it is possible to visually and safely confirm whether or not ultraviolet rays are emitted from the light emitting element 131.
 [実施の形態2]
 次に、実施の形態2に係る紫外線可視化ユニット340を有する室内機300について説明する。実施の形態2に係る紫外線可視化ユニット140を有する室内機100と同様の構成については、同じ符号を付してその説明を省略する。
[Embodiment 2]
Next, the indoor unit 300 having the ultraviolet visualization unit 340 according to the second embodiment will be described. The same components as those of the indoor unit 100 having the ultraviolet visualization unit 140 according to the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図4Aは、実施の形態2に係る紫外線可視化ユニット340を有する室内機300の一部の構成を示す斜視図である。 FIG. 4A is a perspective view showing a part of the configuration of the indoor unit 300 having the ultraviolet visualization unit 340 according to the second embodiment.
 図4Aに示されるように、紫外線可視化ユニット340は、発光素子131と、蛍光体132と、遮蔽部材133と、受光部材344とを有する。 As shown in FIG. 4A, the ultraviolet visualization unit 340 includes a light emitting element 131, a phosphor 132, a shielding member 133, and a light receiving member 344.
 受光部材344は、発光素子131と、遮蔽部材133との間に配置されている。受光部材344は、紫外線を受光し、蛍光体132から発光される可視光線(蛍光)を透過させる。受光部材344の材料は、紫外線が照射されることにより劣化しにくい物質であることが好ましい。受光部材344の材料の例には、シリコーン、合成石英が含まれる。受光部材344の材料が紫外線を透過させる場合、蛍光体132は発光素子131側に配置されていてもよいし、遮蔽部材133側に配置されていてもよい。本実施の形態では、受光部材344は、遮蔽部材133の発光素子131側の面上に配置されている。 The light receiving member 344 is arranged between the light emitting element 131 and the shielding member 133. The light receiving member 344 receives ultraviolet rays and transmits visible light (fluorescence) emitted from the phosphor 132. The material of the light receiving member 344 is preferably a substance that is not easily deteriorated by being irradiated with ultraviolet rays. Examples of the material of the light receiving member 344 include silicone and synthetic quartz. When the material of the light receiving member 344 transmits ultraviolet rays, the phosphor 132 may be arranged on the light emitting element 131 side or may be arranged on the shielding member 133 side. In the present embodiment, the light receiving member 344 is arranged on the surface of the shielding member 133 on the light emitting element 131 side.
 蛍光体132は、受光部材344の内部に分散されていてもよいし、受光部材344の表面に蛍光体層136として配置されていてもよい。本実施の形態では、蛍光体132は、受光部材344の内部に分散されている。 The phosphor 132 may be dispersed inside the light receiving member 344, or may be arranged as a phosphor layer 136 on the surface of the light receiving member 344. In the present embodiment, the phosphor 132 is dispersed inside the light receiving member 344.
 発光素子131から出射された紫外線のうち、一部の紫外線は、受光部材344に配置された蛍光体132に照射される。紫外線が照射された蛍光体132は、可視光線(蛍光)を発光する。ユーザーは、蛍光体132から発光された可視光線を確認することで、紫外線を目視で確認できる。 Of the ultraviolet rays emitted from the light emitting element 131, some of the ultraviolet rays are applied to the phosphor 132 arranged on the light receiving member 344. The phosphor 132 irradiated with ultraviolet rays emits visible light (fluorescence). The user can visually confirm the ultraviolet rays by confirming the visible light emitted from the phosphor 132.
 (変形例)
 次に、実施の形態2の変形例に係る紫外線可視化ユニット440を有する室内機400について説明する。実施の形態2の変形例に係る紫外線可視化ユニット440を有する室内機400と同様の構成については、同じ符号を付してその説明を省略する。
(Modification example)
Next, the indoor unit 400 having the ultraviolet visualization unit 440 according to the modified example of the second embodiment will be described. The same components as those of the indoor unit 400 having the ultraviolet visualization unit 440 according to the modified example of the second embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図4Bは、実施の形態2の変形例に係る紫外線可視化ユニット440を有する室内機400の一部の構成を示す斜視図である。 FIG. 4B is a perspective view showing a part of the configuration of the indoor unit 400 having the ultraviolet visualization unit 440 according to the modified example of the second embodiment.
 図4Bに示されるように、本実施の形態の変形例における受光部材344は、遮蔽部材133よりも発光素子131側に配置されている。また、蛍光体132は、受光部材344の内部に分散されている。 As shown in FIG. 4B, the light receiving member 344 in the modified example of this embodiment is arranged closer to the light emitting element 131 than the shielding member 133. Further, the phosphor 132 is dispersed inside the light receiving member 344.
 (効果)
 以上のように、本実施の形態に係る紫外線可視化ユニット340、440は、実施の形態1に係る紫外線可視化ユニット140の効果に加え、発光素子131から遮蔽部材133に向かう紫外線を遮蔽できるため、発光素子131および窓部156の間に配置されるフィルターの劣化を抑制できる。
(effect)
As described above, the ultraviolet visualization units 340 and 440 according to the present embodiment can shield the ultraviolet rays from the light emitting element 131 toward the shielding member 133 in addition to the effect of the ultraviolet visualization unit 140 according to the first embodiment, and thus emit light. Deterioration of the filter arranged between the element 131 and the window portion 156 can be suppressed.
 [実施の形態3]
 次に、実施の形態1に係る紫外線可視化ユニット140を有する除湿機500を実施の形態3として説明する。実施の形態1に係る紫外線可視化ユニット140を有する室内機100と同様の構成については、同じ符号を付してその説明を省略する。
[Embodiment 3]
Next, the dehumidifier 500 having the ultraviolet visualization unit 140 according to the first embodiment will be described as the third embodiment. The same components as those of the indoor unit 100 having the ultraviolet visualization unit 140 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 図5Aは、実施の形態1に係る紫外線可視化ユニット140を有する除湿機500の一部の構成を示す斜視図であり、図5Bは、側面図である。 FIG. 5A is a perspective view showing a part of the configuration of the dehumidifier 500 having the ultraviolet visualization unit 140 according to the first embodiment, and FIG. 5B is a side view.
 図5A、Bに示されるように、除湿機500は、吸込み部と、冷却器510と、放熱器520と、コンプレッサー530と、ファンと、ドレンパン540と、紫外線可視化ユニット140と、吹出し部と、カバー560とを有する。すなわち、本実施の形態に係る除湿機500は、コンプレッサー方式である。なお、除湿機500は、デシカント方式でもよいし、コンプレッサー方式およびデシカント方式を併用したハイブリッド方式でもよい。図4では、吸込み部、ファンおよび吹出し部を省略しており、除湿機500の内部構造の一部のみを図示している。 As shown in FIGS. 5A and 5B, the dehumidifier 500 includes a suction part, a cooler 510, a radiator 520, a compressor 530, a fan, a drain pan 540, an ultraviolet visualization unit 140, and a blowout part. It has a cover 560 and. That is, the dehumidifier 500 according to the present embodiment is a compressor type. The dehumidifier 500 may be a desiccant system or a hybrid system in which a compressor system and a desiccant system are used in combination. In FIG. 4, the suction part, the fan, and the blowout part are omitted, and only a part of the internal structure of the dehumidifier 500 is shown.
 カバー560は、紫外線可視化ユニット140を覆うように配置されている。カバー560には、窓部532(開口部)が開口している。窓部532は、室内機100の内部と外部とを繋ぐ貫通孔である。窓部532の平面視形状は、特に限定されない。窓部532の平面視形状の例には、円形状、楕円形状、多角形状が含まれる。窓部532は、遮蔽部材133に覆われている。 The cover 560 is arranged so as to cover the ultraviolet visualization unit 140. A window portion 532 (opening) is opened in the cover 560. The window portion 532 is a through hole that connects the inside and the outside of the indoor unit 100. The plan-view shape of the window portion 532 is not particularly limited. Examples of the plan view shape of the window portion 532 include a circular shape, an elliptical shape, and a polygonal shape. The window portion 532 is covered with a shielding member 133.
 吸込み部は、室内の水蒸気を除湿機500の内部に取り入れるために機能する。吸込み部の配置、形状は、前述の機能を発揮できれば特に限定されず、適宜設計できる。吹出し部は、除湿した空気を室内に吹出すために機能する。吹出し部の配置、形状は、前述の機能を発揮できれば特に限定されず、適宜設計できる。本実施の形態では、吸込み部および吹出し部は、カバー560に形成されている。 The suction part functions to take in the water vapor in the room into the dehumidifier 500. The arrangement and shape of the suction portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed. The blowout unit functions to blow out dehumidified air into the room. The arrangement and shape of the blowout portion are not particularly limited as long as they can exhibit the above-mentioned functions, and can be appropriately designed. In the present embodiment, the suction portion and the blowout portion are formed on the cover 560.
 冷却器510は、その表面で結露を生じさせ、取り込まれた空気中の水蒸気を水滴にする。水滴は、ドレンパン540で集められ、貯水タンクに貯留される。 The cooler 510 causes dew condensation on its surface and turns the water vapor in the air taken in into water droplets. The water droplets are collected in the drain pan 540 and stored in the water storage tank.
 放熱器520は、冷却器510で冷却された空気を暖かくする。 The radiator 520 warms the air cooled by the cooler 510.
 コンプレッサー530は、例えば電動モーターなどで回転し、冷媒を圧縮および膨張させる過程で空気を冷却および結露させる。 The compressor 530 is rotated by, for example, an electric motor, and cools and condenses air in the process of compressing and expanding the refrigerant.
 ファンにより吸込み部から取り込まれた空気は、冷却器510で冷却される。冷却された空気は、放熱器520で室温程度まで加熱された後に、吹出し部から室内に放出される。 The air taken in from the suction part by the fan is cooled by the cooler 510. The cooled air is heated to about room temperature by the radiator 520 and then discharged from the blowout portion into the room.
 紫外線可視化ユニット140は、発光素子131と、蛍光体132と、遮蔽部材133とを有する。本実施の形態では、蛍光体132は、遮蔽部材133の発光素子131側の面上に蛍光体層136として配置されている。 The ultraviolet visualization unit 140 has a light emitting element 131, a phosphor 132, and a shielding member 133. In the present embodiment, the phosphor 132 is arranged as the phosphor layer 136 on the surface of the shielding member 133 on the light emitting element 131 side.
 (効果)
 以上のように、本実施の形態に係る除湿機500(電気機械器具)は、実施の形態1に係る室内機100(電気機械器具)と同様の効果を有する。
(effect)
As described above, the dehumidifier 500 (electric machine / equipment) according to the present embodiment has the same effect as the indoor unit 100 (electric machine / equipment) according to the first embodiment.
 なお、実施の形態1と同様に、実施の形態2においても紫外線可視化ユニット140は、受光部材をさらに有していてもよい。この場合、受光部材は、遮蔽部材133の発光素子131側の面上に配置されていてもよいし、発光素子131側に配置されていてもよい。また、蛍光体も受光部材の表面に蛍光体層として配置されていてもよいし、受光部材の内部に配置されていてもよい。 As in the first embodiment, the ultraviolet visualization unit 140 may further include a light receiving member in the second embodiment. In this case, the light receiving member may be arranged on the surface of the shielding member 133 on the light emitting element 131 side, or may be arranged on the light emitting element 131 side. Further, the phosphor may also be arranged as a phosphor layer on the surface of the light receiving member, or may be arranged inside the light receiving member.
 次に、実施の形態1~3に係る紫外線可視化ユニット140、240、340、440に利用可能な光束制御部材634について説明する。 Next, the luminous flux control member 634 that can be used in the ultraviolet visualization units 140, 240, 340, and 440 according to the first to third embodiments will be described.
 (光束制御部材の構成)
 図6A~Dは、実施の形態1~3に係る紫外線可視化ユニット140、240、340、440に利用可能な光束制御部材634の構成を示す図である。図6Aは、光束制御部材634の平面図であり、図6Bは、底面図であり、図6Cは、側面図であり、図6Dは、図6Aに示されるA-A線の断面図である。
(Structure of luminous flux control member)
6A to 6D are diagrams showing the configuration of the luminous flux control member 634 that can be used in the ultraviolet visualization units 140, 240, 340, and 440 according to the first to third embodiments. 6A is a plan view of the luminous flux control member 634, FIG. 6B is a bottom view, FIG. 6C is a side view, and FIG. 6D is a cross-sectional view taken along the line AA shown in FIG. 6A. ..
 光束制御部材634は、入射面641と、全反射面642と、出射面643と、筒部644とを有する。本実施の形態の変形例では、フランジ部および脚部を省略している。 The luminous flux control member 634 has an incident surface 641, a total reflection surface 642, an exit surface 643, and a tubular portion 644. In the modified example of this embodiment, the flange portion and the leg portion are omitted.
 入射面641は、発光素子131から出射された紫外線を光束制御部材634の内部に入射させる。入射面641は、発光素子131と対向するように形成された凹部647の内面である。入射面641は、凹部647の底面に相当する第1入射面645と、凹部647の内側面に相当する第2入射面646とを有する。 The incident surface 641 causes the ultraviolet rays emitted from the light emitting element 131 to enter the inside of the luminous flux control member 634. The incident surface 641 is an inner surface of a recess 647 formed so as to face the light emitting element 131. The incident surface 641 has a first incident surface 645 corresponding to the bottom surface of the recess 647 and a second incident surface 646 corresponding to the inner surface of the recess 647.
 第1入射面645は、発光素子131から出射された紫外線のうち、出射角度の小さな紫外線を入射させる。第1入射面645は、中心軸CAを含む断面において、入射面641から出射面643に向かうにつれて、第1入射面645と中心軸CAとの距離が徐々に長くなるように形成されている。第2入射面646は、発光素子131から出射された紫外線のうち、出射角度の大きな紫外線を入射させる。第2入射面646は、第1入射面645および全反射面642を接続する。第2入射面646は、中心軸CAを含む断面において、入射面641から出射面643に向かうにつれて、中心軸CAに近づくように形成されている。 The first incident surface 645 is incident with ultraviolet rays having a small emission angle among the ultraviolet rays emitted from the light emitting element 131. The first incident surface 645 is formed so that the distance between the first incident surface 645 and the central axis CA gradually increases from the incident surface 641 to the exit surface 643 in the cross section including the central axis CA. The second incident surface 646 incidents ultraviolet rays having a large emission angle among the ultraviolet rays emitted from the light emitting element 131. The second incident surface 646 connects the first incident surface 645 and the total reflection surface 642. The second incident surface 646 is formed so as to approach the central axis CA as it goes from the incident surface 641 to the exit surface 643 in the cross section including the central axis CA.
 全反射面642は、入射面641から入射した紫外線の一部を出射面643側に向けて反射させる。ここで、「全反射面」とは、発光素子131の発光中心から出射された紫外線のうち、その面に到達した紫外線を全反射させることを意図した面を意味する。本実施の形態では、全反射面642は、中心軸CAを囲むように配置された、中心軸CAを中心とする回転対称面である。全反射面642と中心軸CAとの距離は、発光素子131側から光束制御部材634の出射面643側に向かって漸増している。光束制御部材634の中心軸CAを通る断面における全反射面642の形状は、外側(中心軸CAから離れる側)に凸の曲線である。 The total reflection surface 642 reflects a part of the ultraviolet rays incident from the incident surface 641 toward the exit surface 643. Here, the "total reflection surface" means a surface intended to totally reflect the ultraviolet rays that have reached the surface among the ultraviolet rays emitted from the light emitting center of the light emitting element 131. In the present embodiment, the total reflection surface 642 is a rotationally symmetric plane centered on the central axis CA, which is arranged so as to surround the central axis CA. The distance between the total reflection surface 642 and the central axis CA gradually increases from the light emitting element 131 side toward the emission surface 643 side of the luminous flux control member 634. The shape of the total reflection surface 642 in the cross section of the luminous flux control member 634 passing through the central axis CA is a curved line convex outward (the side away from the central axis CA).
 また、出射面643は、入射面641の反対側に配置され、光束制御部材634の内部を進行した紫外線を外部に出射する。本実施の形態では、出射面643は、中心軸CAを中心とした円形状の平面であり、中心軸CAと垂直に交わるように配置されている。 Further, the exit surface 643 is arranged on the opposite side of the incident surface 641 and emits ultraviolet rays that have traveled inside the luminous flux control member 634 to the outside. In the present embodiment, the exit surface 643 is a circular plane centered on the central axis CA, and is arranged so as to intersect the central axis CA perpendicularly.
 筒部644は、出射面643を取り囲むように配置されている。筒部644の形状は、特に限定されない。本実施の形態では、筒部644の形状は、円筒形状である。 The tubular portion 644 is arranged so as to surround the exit surface 643. The shape of the tubular portion 644 is not particularly limited. In the present embodiment, the shape of the tubular portion 644 is a cylindrical shape.
 本実施の形態における光束制御部材634では、主として全反射面642で紫外線を反射させることで、発光素子131から出射された紫外線を集光する。光束制御部材134の代わりに変形例に係る光束制御部材634を使用しても、少数の発光素子131および光束制御部材634を用いて被照射面135の全面に紫外線を照射できる。 The light flux control member 634 in the present embodiment mainly reflects ultraviolet rays on the total reflection surface 642 to collect the ultraviolet rays emitted from the light emitting element 131. Even if the light flux control member 634 according to the modified example is used instead of the light flux control member 134, the entire surface of the irradiated surface 135 can be irradiated with ultraviolet rays by using a small number of light emitting elements 131 and the light flux control member 634.
 [実施の形態4]
 次に、実施の形態4に係る紫外線可視化ユニット640を有する室内機600について説明する。本実施の形態に係る室内機600は、紫外線可視化ユニット640の構成のみが実施の形態1に係る室内機100と異なる。そこで、実施の形態1に係る室内機100と同様の構成については同じ符号を付して、その説明を省略する。
[Embodiment 4]
Next, the indoor unit 600 having the ultraviolet visualization unit 640 according to the fourth embodiment will be described. The indoor unit 600 according to the present embodiment differs from the indoor unit 100 according to the first embodiment only in the configuration of the ultraviolet visualization unit 640. Therefore, the same reference numerals are given to the same configurations as those of the indoor unit 100 according to the first embodiment, and the description thereof will be omitted.
 図7Aは、実施の形態4係る室内機600の一部の構成を示す斜視図であり、図7Bは、側面図である。 FIG. 7A is a perspective view showing a partial configuration of the indoor unit 600 according to the fourth embodiment, and FIG. 7B is a side view.
 図7A、Bに示されるように、本実施の形態に係る紫外線可視化ユニット640は、発光素子131と、蛍光体132と、を有する。すなわち、本実施の形態に係る紫外線可視化ユニット640は、遮蔽部材133を有していない。本実施の形態では、蛍光体132は、可視光線を透過させる部材に塗布されて蛍光体層136を形成し、窓部156を塞いでいる。この場合、発光素子131から出射され、室内機600の外部に向かう紫外線は、蛍光体132に照射され、外部に出射されない。 As shown in FIGS. 7A and 7B, the ultraviolet visualization unit 640 according to the present embodiment includes a light emitting element 131 and a phosphor 132. That is, the ultraviolet visualization unit 640 according to the present embodiment does not have the shielding member 133. In the present embodiment, the phosphor 132 is applied to a member that transmits visible light to form the phosphor layer 136 and close the window portion 156. In this case, the ultraviolet rays emitted from the light emitting element 131 and directed to the outside of the indoor unit 600 are irradiated to the phosphor 132 and are not emitted to the outside.
 (効果)
 以上のように、本実施の形態に係る紫外線可視化ユニット640は、蛍光体132を有するため、発光素子131から紫外線が出射されているか否かを目視で安全に確認できる。
(effect)
As described above, since the ultraviolet visualization unit 640 according to the present embodiment has the phosphor 132, it is possible to visually and safely visually confirm whether or not ultraviolet rays are emitted from the light emitting element 131.
 本出願は、2019年7月30日出願の特願2019-139841および2019年12月6日出願の特願2019-221479に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-139841 filed on July 30, 2019 and Japanese Patent Application No. 2019-22479 filed on December 6, 2019. All the contents described in the application specification and drawings are incorporated herein by reference.
 本発明の紫外線可視化ユニットは、発光素子から出射された紫外線を目視で確認できる。よって、紫外線を出射する発光素子を用いるあらゆる器具や装置に用いることができる。例えば、ヒートポンプを有する電子機械器具など、すなわち、紫外線を使用するエアコン、除湿機、冷蔵庫などの電気機械器具に搭載できる。 The ultraviolet visualization unit of the present invention can visually confirm the ultraviolet rays emitted from the light emitting element. Therefore, it can be used in any device or device that uses a light emitting element that emits ultraviolet rays. For example, it can be mounted on an electronic machine or appliance having a heat pump, that is, an electric machine or appliance such as an air conditioner, a dehumidifier, or a refrigerator that uses ultraviolet rays.
 100、200、300、400、600 室内機
 110 熱交換器
 120 ファン
 130、540 ドレンパン
 131 発光素子
 132 蛍光体
 133 遮蔽部材
 134、634 光束制御部材
 135 被照射面
 136 蛍光体層
 140、240、340、440、640 紫外線可視化ユニット
 141 入射領域
 142 出射領域
 143 筒部
 144 フランジ部
 145 位置決め凸部
 146 第1制御部
 147 第2制御部
 150、560 カバー
 151 第1屈折入射面
 152 第1凸部
 153 第1入射面
 154 第1反射面
 155 第1稜線
 156 窓部
 161 第2屈折入射面
 162 第2凸部
 163 欠き部
 164 第2入射面
 165 第2反射面
 166 第2稜線
 344 受光部材
 500 除湿機
 510 冷却器
 520 放熱器
 530 コンプレッサー
 532 窓部
 641 入射面
 642 全反射面
 643 出射面
 644 筒部
 645 第1入射面
 646 第2入射面
 647 凹部
 CA 中心軸
 OA 光軸
 
100, 200, 300, 400, 600 Indoor unit 110 Heat exchanger 120 Fan 130, 540 Drain pan 131 Light emitting element 132 Fluorescent material 133 Shielding member 134, 634 Light beam control member 135 Irradiated surface 136 Fluorescent material layer 140, 240, 340, 440, 640 Ultraviolet visualization unit 141 Incident area 142 Exit area 143 Cylindrical part 144 Flange part 145 Positioning convex part 146 First control part 147 Second control part 150, 560 Cover 151 First refraction incident surface 152 First convex part 153 First Incident surface 154 First reflection surface 155 First ridge line 156 Window part 161 Second refraction incident surface 162 Second convex part 163 Notch 164 Second incident surface 165 Second reflection surface 166 Second ridge line 344 Light receiving member 500 Dehumidifier 510 Instrument 520 Heat radiator 530 Compressor 532 Window 641 Incident surface 642 Total reflection surface 643 Exit surface 644 Tube 645 First incident surface 646 Second incident surface 647 Concave CA Central axis OA Optical axis

Claims (9)

  1.  紫外線を出射する発光素子と、
     前記発光素子から出射された紫外線の一部が照射されることにより、可視光線を発光する蛍光体と、
     を有し、
     紫外線の他の一部は、前記蛍光体以外の領域に到達する、
     紫外線可視化ユニット。
    A light emitting element that emits ultraviolet rays and
    A phosphor that emits visible light when a part of the ultraviolet rays emitted from the light emitting element is irradiated.
    Have,
    The other part of the ultraviolet light reaches the region other than the phosphor.
    UV visualization unit.
  2.  前記蛍光体に対して前記発光素子と反対側に配置され、前記発光素子から出射された紫外線を遮蔽し、可視光線を透過する遮蔽部材をさらに有する、請求項1に記載の紫外線可視化ユニット。 The ultraviolet visualization unit according to claim 1, further comprising a shielding member which is arranged on the side opposite to the light emitting element with respect to the phosphor, shields ultraviolet rays emitted from the light emitting element, and transmits visible light.
  3.  前記発光素子および前記遮蔽部材の間に配置され、前記発光素子から出射された紫外線を受光し、前記蛍光体から発光された可視光線を透過させる受光部材をさらに有し、
     前記蛍光体は、前記受光部材に配置されている、
     請求項2に記載の紫外線可視化ユニット。
    It further has a light receiving member which is arranged between the light emitting element and the shielding member, receives ultraviolet rays emitted from the light emitting element, and transmits visible light emitted from the phosphor.
    The phosphor is arranged on the light receiving member.
    The ultraviolet visualization unit according to claim 2.
  4.  前記紫外線は、紫外線C波である、請求項1~3のいずれか一項に記載の紫外線可視化ユニット。 The ultraviolet visualization unit according to any one of claims 1 to 3, wherein the ultraviolet ray is an ultraviolet C wave.
  5.  前記受光部材は、前記遮蔽部材の前記発光素子側の面上に配置されており、
     前記蛍光体は、前記受光部材の前記発光素子側の面上に層状に配置されている、
     請求項3に記載の紫外線可視化ユニット。
    The light receiving member is arranged on the surface of the shielding member on the light emitting element side.
    The phosphor is arranged in a layer on the surface of the light receiving member on the light emitting element side.
    The ultraviolet visualization unit according to claim 3.
  6.  前記受光部材は、前記遮蔽部材よりも前記発光素子側に配置されており、
     前記蛍光体は、前記受光部材の内部に分散されている、
     請求項3に記載の紫外線可視化ユニット。
    The light receiving member is arranged closer to the light emitting element than the shielding member.
    The phosphor is dispersed inside the light receiving member.
    The ultraviolet visualization unit according to claim 3.
  7.  前記発光素子は、殺菌対象物に向けて紫外線を出射する、請求項1~6のいずれか一項に記載の紫外線可視化ユニット。 The ultraviolet visualization unit according to any one of claims 1 to 6, wherein the light emitting element emits ultraviolet rays toward an object to be sterilized.
  8.  請求項1~7のいずれか一項に記載の紫外線可視化ユニットを有する、電気機械器具。 An electric machine / appliance having the ultraviolet visualization unit according to any one of claims 1 to 7.
  9.  前記電気機械器具は、エアコンディショナーである、請求項8に記載の電子機械器具。
     
    The electronic machine / appliance according to claim 8, wherein the electric machine / appliance is an air conditioner.
PCT/JP2020/029096 2019-07-30 2020-07-29 Uv visualization unit and electromechanical instrument WO2021020454A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-139841 2019-07-30
JP2019139841 2019-07-30
JP2019-221479 2019-12-06
JP2019221479A JP2021020044A (en) 2019-07-30 2019-12-06 Ultraviolet visualization unit and electrical machine tool

Publications (1)

Publication Number Publication Date
WO2021020454A1 true WO2021020454A1 (en) 2021-02-04

Family

ID=74229208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029096 WO2021020454A1 (en) 2019-07-30 2020-07-29 Uv visualization unit and electromechanical instrument

Country Status (1)

Country Link
WO (1) WO2021020454A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108685A (en) * 2002-09-19 2004-04-08 Nippon Pmac Kk Air conditioner with dust removing, deodorizing, and sterilizing functions
JP2007007083A (en) * 2005-06-29 2007-01-18 Univ Of Tokushima Ultraviolet sterilizer
JP2013166132A (en) * 2012-02-16 2013-08-29 Sharp Corp Ultraviolet light source apparatus
JP2017158829A (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Sterilization container
JP2019033954A (en) * 2017-08-18 2019-03-07 国立研究開発法人産業技術総合研究所 Apparatus and method for estimating reaction force

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108685A (en) * 2002-09-19 2004-04-08 Nippon Pmac Kk Air conditioner with dust removing, deodorizing, and sterilizing functions
JP2007007083A (en) * 2005-06-29 2007-01-18 Univ Of Tokushima Ultraviolet sterilizer
JP2013166132A (en) * 2012-02-16 2013-08-29 Sharp Corp Ultraviolet light source apparatus
JP2017158829A (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Sterilization container
JP2019033954A (en) * 2017-08-18 2019-03-07 国立研究開発法人産業技術総合研究所 Apparatus and method for estimating reaction force

Similar Documents

Publication Publication Date Title
CN104755111B (en) Air cleaning unit
JP5734198B2 (en) Lighting and air purifier
JP2021020044A (en) Ultraviolet visualization unit and electrical machine tool
KR101459071B1 (en) Air conditioner having ultraviolet sterilization filter
US20100092346A1 (en) Photocatalyst device using porous pipe and air purification apparatus using the same
JP2009054989A (en) Light-emitting apparatus, illuminating apparatus, and clean room having the illuminating apparatus
US20150345746A1 (en) Illumination device for illuminating an illumination area
WO2021020454A1 (en) Uv visualization unit and electromechanical instrument
JP2024514736A (en) High efficiency UV-C bulb with multi-sided filter
WO2021020453A1 (en) Sterilization apparatus
ES2953949T3 (en) Drain pan and air conditioner unit
WO2019098125A1 (en) Light source device and projector
KR20200099341A (en) Deodorizing unit and air purifier
JP2007207532A (en) Lighting system
JP2017192433A (en) Sterilizing apparatus and air conditioning apparatus
CN105785490B (en) Light irradiation device
US20220193299A1 (en) Air Sterilizing And Lighting Apparatus
RU2755078C1 (en) Bactericidal irradiator with illuminator function
KR20070088999A (en) Sterilization device
JP2007294379A (en) Lighting system
EP4331719A1 (en) Ultraviolet ray radiation apparatus
WO2023112235A1 (en) Indoor unit and air conditioner
JP6867719B1 (en) Indoor lighting Air purification device and air purification method
JP5539768B2 (en) Lighting device
CN114909716B (en) air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846288

Country of ref document: EP

Kind code of ref document: A1