WO2021020346A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2021020346A1
WO2021020346A1 PCT/JP2020/028707 JP2020028707W WO2021020346A1 WO 2021020346 A1 WO2021020346 A1 WO 2021020346A1 JP 2020028707 W JP2020028707 W JP 2020028707W WO 2021020346 A1 WO2021020346 A1 WO 2021020346A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance weight
compression mechanism
refrigerant
electric motor
drive shaft
Prior art date
Application number
PCT/JP2020/028707
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 東田
里 和哉
努 昆
昭徳 福田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021020346A1 publication Critical patent/WO2021020346A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a compressor used in an outdoor unit of an air conditioner or a refrigerator.
  • Patent Document 1 includes a first seal member provided between the balance weight and the swivel scroll and a second seal member provided between the balance weight and the frame, thereby causing an excess inside the compressor. It suppresses the supply of oil.
  • Patent Document 1 since the gap between the balance weight press-fitted and fixed to the crankshaft and the parts formed above and below the balance weight is sealed with a sealing material, the sealing material is worn or broken due to contact between the rotating body and the sealing material. It is difficult to ensure reliability because of the risk of such problems. In addition, since the number of parts increases, it leads to an increase in assembly man-hours and costs.
  • the present invention provides a compressor that can reduce the mixing of lubricating oil discharged from the communication holes with the refrigerant by bringing the lower end surface of the balance weight closer to the electric motor portion without using a separate member such as a sealing material.
  • the purpose is to do.
  • the compressor of the present invention includes a compression mechanism unit 20 and an electric motor unit 30 in a closed container 10, the compression mechanism unit 20 is arranged above the electric motor unit 30, and the compression mechanism unit 20 is provided. And the electric motor unit 30 are connected by a drive shaft 40, a balance weight 90 is arranged above the electric motor unit 30 and below the compression mechanism unit 20, and the balance weight 90 is connected to the drive shaft 40 by the connecting unit 91.
  • An oil reservoir 15 is formed in the inner bottom portion 14 of the closed container 10 so as to be fixed, and the lubricating oil stored in the oil reservoir 15 is guided to the compression mechanism portion 20 and the bearing 61 on the drive shaft 40.
  • the electric motor unit 30 is fixed to the annular stator 31 and the drive shaft 40 and rotatably arranged inside the stator 31.
  • the present invention according to claim 3 is characterized in that, in the compressor according to claim 2, the gap dimension S is 20% or more and 60% or less of the diameter D of the communication hole 44.
  • the compressor of the present invention according to claim 4 is the compressor according to claim 2 or 3, wherein the gap dimension S is 1 mm or more and 2.7 mm or less.
  • the compressor of the present invention according to claim 5 is the compressor according to any one of claims 1 to 4, wherein the inside of the closed container 10 is divided into upper and lower partitions.
  • the low-pressure space 17 is divided into a low-pressure space 17 filled with the low-pressure refrigerant, and the electric motor unit 30, the compression mechanism unit 20, and the balance weight 90 are arranged in the low-pressure space 17, and the low-pressure space 17 is located.
  • the refrigerant is compressed by the compression mechanism unit 20.
  • the lower end surface of the balance weight can be brought close to the electric motor portion, it is possible to reduce the mixing of the lubricating oil discharged from the communication hole with the refrigerant and reduce the amount of oil discharged from the closed container. ..
  • the lower end surface of the balance weight is projected below the lower end of the connecting portion of the balance weight. According to the present embodiment, since the lower end surface of the balance weight can be brought close to the electric motor portion, it is possible to reduce the mixing of the lubricating oil discharged from the communication hole with the refrigerant, and the lubricating oil is mixed with the refrigerant and compressed. The amount of oil discharged from the closed container that flows out into the refrigeration cycle together with the refrigerant can be reduced.
  • the second embodiment of the present invention comprises an annular stator and a rotor fixed to a drive shaft and rotatably arranged inside the stator.
  • the gap between the lower end surface of the balance weight and the rotor is made smaller than the diameter of the communication hole.
  • the third embodiment of the present invention is the compressor according to the second embodiment in which the gap size is 20% or more and 60% or less of the diameter of the communication hole. According to the present embodiment, since the lubricating oil discharged from the communication hole is less likely to come out from the rotor, it is possible to reduce the mixing of the lubricating oil with the refrigerant, and the lubricating oil is mixed with the refrigerant and frozen together with the compressed refrigerant. The amount of oil discharged from the closed container that flows out into the cycle can be reduced.
  • the fourth embodiment of the present invention has a gap size of 1 mm or more and 2.7 mm or less in the compressor according to the second or third embodiment. According to the present embodiment, since the lubricating oil discharged from the communication hole is less likely to come out from the rotor, it is possible to reduce the mixing of the lubricating oil with the refrigerant, and the lubricating oil is mixed with the refrigerant and frozen together with the compressed refrigerant. The amount of oil discharged from the closed container that flows out into the cycle can be reduced.
  • a partition plate for partitioning the inside of the closed container is provided in the closed container, and the partition plate is used.
  • the inside of the closed container is divided into a high-pressure space filled with a high-pressure refrigerant after being compressed by the compression mechanism and a low-pressure space filled with a low-pressure refrigerant before being compressed by the compression mechanism.
  • the electric motor unit, the compression mechanism unit, and the balance weight are arranged, and the refrigerant in the low pressure space is compressed by the compression mechanism unit.
  • the lubricating oil discharged from the communication hole is mixed with the refrigerant in the low-pressure space, so that the lubricating oil mixed in the refrigerant in the low-pressure space is mixed.
  • FIG. 1 is a side sectional view of the compressor according to the present embodiment.
  • a scroll compressor is used as the compressor.
  • the closed container 10 has a cylindrical body shell 11 having an axis in the vertical direction, a bowl-shaped lower shell 12 that is airtightly welded to the lower end of the body shell 11, and a bowl that is airtightly welded to the upper end of the body shell 11. It is formed by the upper shell 13 in the shape.
  • An oil reservoir 15 is formed in the inner bottom 14 of the closed container 10.
  • the airtight container 10 is provided with a compression mechanism unit 20 and an electric motor unit 30.
  • the compression mechanism unit 20 is arranged above the electric motor unit 30.
  • the compression mechanism unit 20 and the electric motor unit 30 are connected by a drive shaft 40.
  • the compression mechanism unit 20 is composed of a fixed scroll 21 and a swivel scroll 22.
  • the fixed scroll 21 is composed of a end plate 21a and a spiral (involute) wrap 21b formed on the lower surface of the end plate 21a.
  • the swivel scroll 22 is composed of a end plate 22a and a spiral (involute) wrap 22b formed on the upper surface of the end plate 22a.
  • a cylindrical boss 24 is provided at the center of the lower surface of the end plate 22a of the swivel scroll 22.
  • the lap 21b of the fixed scroll 21 and the lap 22b of the swivel scroll 22 are meshed with each other, and a plurality of compression chambers 23 are formed between the fixed scroll 21 and the swivel scroll 22 by both laps 21b and 22b.
  • a discharge hole 25 is provided in the central portion of the end plate 21a of the fixed scroll 21, and a discharge valve 26 is provided in the discharge hole 25.
  • a suction unit 28 for sucking a low-pressure refrigerant is provided on the outer circumference of the fixed scroll 21.
  • the electric motor unit 30 is composed of an annular stator 31 and a rotor 32 rotatably configured inside the stator 31.
  • the stator 31 is fixed to the inner peripheral surface of the closed container 10.
  • the rotor 32 is fixed to the drive shaft 40.
  • a partition plate 50 that partitions the inside of the closed container 10 up and down is provided above the inside of the closed container 10.
  • the partition plate 50 divides the inside of the closed container 10 into a high-pressure space 16 and a low-pressure space 17.
  • the high-pressure space 16 is a space filled with the high-pressure refrigerant after being compressed by the compression mechanism unit 20
  • the low-pressure space 17 is a space filled with the low-pressure refrigerant before being compressed by the compression mechanism unit 20.
  • the closed container 10 includes a refrigerant suction pipe 18 that communicates the outside of the closed container 10 with the low pressure space 17, and a refrigerant discharge pipe 19 that communicates the outside of the closed container 10 with the high pressure space 16.
  • the compressor introduces a low-pressure refrigerant into the low-pressure space 17 from a refrigeration cycle circuit (not shown) provided outside the closed container 10 via a refrigerant suction pipe 18. Further, the high-pressure refrigerant compressed by the compression mechanism unit 20 is first introduced into the high-pressure space 16. After that, it is discharged from the high pressure space 16 to the refrigeration cycle circuit via the refrigerant discharge pipe 19.
  • a main bearing 60 for supporting the swivel scroll 22 is provided below the fixed scroll 21 and the swivel scroll 22, a main bearing 60 for supporting the swivel scroll 22 is provided.
  • the swivel scroll 22 is arranged between the fixed scroll 21 and the main bearing 60.
  • the main bearing 60 has a bearing 61 formed in the center thereof and is fixed to the inner wall of the closed container 10.
  • a rotation suppressing member (oldam ring) 27 is provided between the swivel scroll 22 and the main bearing 60.
  • the old dam ring 27 prevents the turning scroll 22 from rotating. As a result, the swivel scroll 22 makes a swivel motion without rotating with respect to the fixed scroll 21.
  • One end side of the drive shaft 40 is pivotally supported by the bearing 61, and the other end side is pivotally supported by the auxiliary bearing 70.
  • An eccentric shaft 41 eccentric with respect to the axis of the drive shaft 40 is provided at the upper end of the drive shaft 40.
  • the eccentric shaft 41 is slidably inserted into the boss 24 via the swing bush 41a and the swivel bearing 41b.
  • the boss 24 is swiveled by the eccentric shaft 41.
  • An oil supply passage 42 through which lubricating oil passes is formed inside the drive shaft 40.
  • the oil supply passage 42 is a through hole formed in the axial direction of the drive shaft 40.
  • One end of the oil supply passage 42 is opened in the oil reservoir 15 as a suction port 42a provided at the lower end of the drive shaft 40.
  • a paddle 43 for pumping lubricating oil from the suction port 42a to the oil supply passage 42 is provided above the suction port 42a.
  • the oil supply passage 42 guides the lubricating oil stored in the oil reservoir 15 to the compression mechanism 20 and the bearing 61.
  • the drive shaft 40 is formed with a communication hole 44 that communicates with the oil supply passage 42.
  • the communication hole 44 functions as a degassing of the oil supply passage 42, and discharges the lubricating oil guided from the oil supply passage 42.
  • the drive shaft 40 is formed with a bearing communication hole 42b that supplies lubricating oil to the main bearing 60.
  • the bearing communication hole 42b communicates with the oil supply passage 42.
  • the auxiliary bearing 70 is provided below the low pressure space 17, preferably in the oil reservoir 15.
  • the auxiliary bearing 70 includes a boss portion 71 that is formed in a cylindrical shape and into which a drive shaft 40 is inserted, and an arm portion 72 that extends from the boss portion 71 in the outer peripheral direction and is fixed to the inner peripheral surface of the closed container 10. ..
  • a balance weight 90 is provided on the drive shaft 40.
  • the balance weight 90 is located below the compression mechanism unit 20 and above the electric motor unit 30.
  • the compression mechanism unit 20, the electric motor unit 30, the main bearing 60, the sub bearing 70, and the balance weight 90 are arranged in the low pressure space 17.
  • the electric motor unit 30 and the balance weight 90 are arranged between the main bearing 60 and the auxiliary bearing 70.
  • the fixed scroll 21 and the swivel scroll 22 are arranged between the partition plate 50 and the main bearing 60.
  • the partition plate 50 and the main bearing 60 are fixed to the closed container 10.
  • At least one provided with an elastic body is at least a part between the partition plate 50 and the main bearing 60, and more specifically, the partition plate 50 and swivel. It is provided so as to be movable in the axial direction between the scroll 22 or between the fixed scroll 21 and the main bearing 60.
  • a straightening vane 100 is provided between the refrigerant suction pipe 18 and the suction portion 28 of the compression mechanism portion 20.
  • the straightening vane 100 is arranged at a position facing the suction port of the refrigerant suction pipe 18.
  • an upper closed portion 100a is formed above the refrigerant suction pipe 18 side of the rectifying plate 100, and the refrigerant suction pipe 18 of the rectifying plate 100 is formed.
  • a lower opening 100b is formed below the side.
  • the drive shaft 40 rotates together with the rotor 32 by driving the electric motor unit 30.
  • the eccentric shaft 41 and the old dam ring 27 cause the swivel scroll 22 to swivel around the central axis of the drive shaft 40 without rotating. As a result, the volume of the compression chamber 23 is reduced, and the refrigerant in the compression chamber 23 is compressed.
  • the refrigerant is introduced from the refrigerant suction pipe 18 into the low pressure space 17. Then, the refrigerant introduced into the low-pressure space 17 collides with the rectifying plate 100 and the upper closing portion 100a of the rectifying plate 100, and is rectified in the direction of the electric motor portion 30. Then, the refrigerant rectified in the direction of the electric motor unit 30 is temporarily released into the low-pressure space 17, and the refrigerant in a turbulent flow state due to the drive of the electric motor unit 30 is sucked into the compression chamber 23 and compressed in the compression chamber 23. The refrigerant is discharged from the refrigerant discharge pipe 19 via the high-pressure space 16.
  • the lubricating oil in the oil reservoir 15 is pumped into the oil supply passage 42 by the paddle 43.
  • the lubricating oil pumped up into the oil supply passage 42 flows out from the communication hole 44, is supplied to the main bearing 60 from the bearing communication hole 42b, and is supplied into the boss 24 from the upper end opening of the drive shaft 40.
  • the lubricating oil supplied into the boss 24 is supplied to the sliding surface of the compression mechanism portion 20.
  • the lubricating oil flowing out of the communication hole 44 is mainly discharged into the low pressure space 17 through the gap between the balance weight 90 and the rotor 32.
  • FIG. 2 is an enlarged cross-sectional view of a main part of the compressor.
  • the balance weight 90 is formed in an arc shape in a plan view, and is fixed to the drive shaft 40 by the connecting portion 91.
  • the drive shaft 40 is formed with an enlarged diameter portion 40a, the rotor 32 is positioned by the lower end of the enlarged diameter portion 40a, and the balance weight 90 is positioned by the upper end of the enlarged diameter portion 40a.
  • the rotor 32 has a protrusion 32b at the end of the iron core portion 32a.
  • the communication hole 44 is formed in the enlarged diameter portion 40a. Therefore, the communication hole 44 is located below the balance weight 90 and above the iron core portion 32a of the rotor 32. Further, the communication hole 44 is located on the inner circumference of the protrusion 32b of the rotor 32.
  • the balance weight 90 projects the lower end surface 90d of the balance weight 90 below the lower end 91d of the connecting portion 91 of the balance weight 90. Further, the balance weight 90 projects the upper end surface 90u of the balance weight 90 upward from the upper end 91u of the connecting portion 91 of the balance weight 90. The upper end 91u of the connecting portion 91 of the balance weight 90 is positioned above the lower end surface 61d of the main bearing 60.
  • the lower end surface 90d of the balance weight 90 is projected downward from the lower end 91d of the connecting portion 91 of the balance weight 90, so that the lower end surface 90d of the balance weight 90 is used as the rotor 32 of the electric motor unit 30. Since they can be brought close to each other, the lubricating oil discharged from the communication hole 44 can be reduced from being mixed with the refrigerant existing in the low pressure space 17, and the amount of oil discharged from the closed container 10 can be reduced.
  • the upper end surface 90u of the balance weight 90 is positioned above the upper end 91u of the connecting portion 91 of the balance weight 90 and above the lower end surface 61d of the main bearing 60, whereby the main bearing 60 It is possible to reduce the amount of lubricating oil dripping from the surface being mixed with the refrigerant existing in the low pressure space 17, and to reduce the amount of oil discharged from the closed container 10.
  • the gap dimension S between the lower end surface 90d of the balance weight 90 and the rotor 32 is smaller than the diameter D of the communication hole 44.
  • the balance weight 90 according to this embodiment is used to set the gap size S.
  • the oil discharge amount was changed to 2.7 mm, the oil discharge amount could be reduced to 26%, and when the gap size S was changed to 1 mm, the oil discharge amount could be reduced to 22%.
  • the amount of oil discharged can be significantly reduced by setting the gap dimension S to 20% or more and 60% or less of the diameter D of the communication hole 44.
  • the gap size S is preferably 1 mm or more and 2.7 mm or less.
  • the refrigerant in the low pressure space 17 is compressed by the compression mechanism unit 20, the refrigerant is discharged from the communication hole 44. Since the lubricating oil mixed in the refrigerant in the low pressure space 17 is mixed with the refrigerant in the low pressure space 17, the lubricating oil mixed in the refrigerant in the low pressure space 17 is likely to be discharged together with the high pressure refrigerant discharged from the compression mechanism unit 20, but according to this embodiment. For example, since it is possible to reduce the mixing of the refrigerant in the low pressure space 17, the amount of oil discharged from the closed container 10 can be reduced.
  • the present invention is particularly suitable for low-pressure scroll compressors.
  • Airtight container 11 Body shell 12 Lower shell 13 Upper shell 14 Inner bottom 15 Oil reservoir 16 High pressure space 17 Low pressure space 18 Refrigerant suction pipe 19 Refrigerant discharge pipe 20 Compression mechanism 21 Fixed scroll 21a End plate 21b Wrap 22 Swivel scroll 22a End plate 22b Wrap 23 Compression chamber 24 Boss 25 Discharge hole 26 Discharge valve 27 Rotation suppression member (old dam ring) 28 Suction part 30 Electric motor part 31 Stator 32 Rotor 32a Iron core part 32b Protrusion part 40 Drive shaft 40a Diameter expansion part 41 Eccentric shaft 41a Swing bush 41b Swing bearing 42 Oil supply passage 42a Suction port 42b Bearing oil supply hole 43 Paddle 44 Plate 60 Main bearing 61 Bearing 61d Lower end surface 70 Sub-bearing 71 Boss part 72 Arm part 90 Balance weight 90d Lower end surface 90u Upper end surface 91 Connecting part 91d Lower end 91u Upper end 100 Straightening plate 100a Upper closing part 100b Lower opening D Diameter S Gap Size

Abstract

Provided is a compressor in which: a balance weight 90 is disposed above an electric motor portion 30 and below a compressor mechanism portion 20; the balance weight 90 is fixed to a drive shaft 40 by means of a linking portion 91; an oil reservoir portion 15 is formed in an inner bottom portion 14 of a hermetically sealed container 10; an oil feed passage 42 for guiding lubricating oil stored in the oil reservoir portion 15 to the compressor mechanism portion 20 and to a bearing 61, and a communicating hole 44 which communicates with the oil feed passage 42 are formed in the drive shaft 40; the communicating hole 44 is positioned below the balance weight 90; the lubricating oil guided from the oil feed passage 42 is discharged from the communicating hole 44; and by causing a lower end surface 90d of the balance weight 90 to protrude below a lower end 91d of the linking portion 91 of the balance weight 90, so as to approach the electric motor portion 30, contamination of a refrigerant by the lubricating oil discharged from the communicating hole 44 can be reduced.

Description

圧縮機Compressor
 本発明は空気調和機の室外機や冷凍機に用いられる圧縮機に関するものである。 The present invention relates to a compressor used in an outdoor unit of an air conditioner or a refrigerator.
従来、冷却装置や給湯装置などに用いられる密閉型圧縮機は、冷凍サイクルから戻ってきた冷媒ガスを圧縮機構部で圧縮し、冷凍サイクルへと送り込むが、その際圧縮機構部には潤滑油を供給してその摺動部分を潤滑し、潤滑した後の油を圧縮機内部へと放出して圧縮機底部の油溜部に戻すようになっている。
 この時、密閉型圧縮機の内部は冷媒ガスが乱流状態となっているため、冷媒には多くの潤滑油が混ざり、圧縮された冷媒とともに冷凍サイクルへと流出する吐油量が大きなってしまう。
 そのため特許文献1は、バランスウェイトと旋回スクロールとの間に設けられた第1シール部材と、バランスウェイトとフレームとの間に設けられた第2シール部材とを備えることで、圧縮機内部に過剰な油が供給されるのを抑制している。
Conventionally, a closed compressor used in a cooling device or a hot water supply device compresses the refrigerant gas returned from the refrigeration cycle by a compression mechanism and sends it to the refrigeration cycle. At that time, lubricating oil is applied to the compression mechanism. It is supplied to lubricate the sliding portion, and the lubricated oil is discharged to the inside of the compressor and returned to the oil reservoir at the bottom of the compressor.
At this time, since the refrigerant gas is in a turbulent flow state inside the closed compressor, a large amount of lubricating oil is mixed with the refrigerant, and the amount of oil discharged to the refrigeration cycle together with the compressed refrigerant is large. It ends up.
Therefore, Patent Document 1 includes a first seal member provided between the balance weight and the swivel scroll and a second seal member provided between the balance weight and the frame, thereby causing an excess inside the compressor. It suppresses the supply of oil.
特開2018-17211号公報JP-A-2018-17211
 特許文献1では、クランク軸に圧入固定されたバランスウェイトとその上下に構成される部品との間の隙間をシール材で密閉するため、回転体とシール材との接触によりシール材に摩耗や破断などが生じる恐れがあり、信頼性の確保が困難である。また、部品点数が増加するため、組立工数とコストの増加につながる。 In Patent Document 1, since the gap between the balance weight press-fitted and fixed to the crankshaft and the parts formed above and below the balance weight is sealed with a sealing material, the sealing material is worn or broken due to contact between the rotating body and the sealing material. It is difficult to ensure reliability because of the risk of such problems. In addition, since the number of parts increases, it leads to an increase in assembly man-hours and costs.
 そこで本発明は、シール材等の別部材を用いることなくバランスウェイトの下端面を電動機部に近接させることで、連通孔から吐出される潤滑油が冷媒に混入することを少なくできる圧縮機を提供することを目的とする。 Therefore, the present invention provides a compressor that can reduce the mixing of lubricating oil discharged from the communication holes with the refrigerant by bringing the lower end surface of the balance weight closer to the electric motor portion without using a separate member such as a sealing material. The purpose is to do.
 請求項1記載の本発明の圧縮機は、密閉容器10内に圧縮機構部20と電動機部30とを備え、前記圧縮機構部20を前記電動機部30の上方に配置し、前記圧縮機構部20と前記電動機部30とを駆動軸40によって連結し、前記電動機部30の上方で前記圧縮機構部20の下方にバランスウェイト90を配置し、前記バランスウェイト90を連結部91によって前記駆動軸40に固定し、前記密閉容器10の内底部14には油溜部15が形成され、前記駆動軸40には、前記油溜部15に貯留される潤滑油を前記圧縮機構部20及び軸受61に導く給油路42と、前記給油路42に連通する連通孔44とが形成され、前記連通孔44が前記バランスウェイト90より下方に位置し、前記給油路42から導かれた前記潤滑油が前記連通孔44から吐出する圧縮機であって、前記バランスウェイト90の下端面90dを、前記バランスウェイト90の前記連結部91の下端91dよりも下方に突出させたことを特徴とする。
 請求項2記載の本発明は、請求項1に記載の圧縮機において、前記電動機部30が、環状のステータ31と、前記駆動軸40に固定され前記ステータ31の内側に回転自在に配置されるロータ32とで構成され、前記バランスウェイト90の前記下端面90dと前記ロータ32との隙間寸法Sを、前記連通孔44の直径Dより小さくしたことを特徴とする。
 請求項3記載の本発明は、請求項2に記載の圧縮機において、前記隙間寸法Sを、前記連通孔44の前記直径Dの20%以上60%以下としたことを特徴とする。
 請求項4記載の本発明の圧縮機は、請求項2又は請求項3に記載の圧縮機において、前記隙間寸法Sを、1mm以上2.7mm以下としたことを特徴とする。
 請求項5記載の本発明の圧縮機は、請求項1から請求項4のいずれか1項に記載の圧縮機において、前記密閉容器10内に、前記密閉容器10の内部を上下に仕切る仕切板50を設け、前記仕切板50によって、前記密閉容器10の前記内部を、前記圧縮機構部20で圧縮された後の高圧の冷媒で満たされる高圧空間16と、前記圧縮機構部20で圧縮される前の低圧の前記冷媒で満たされる低圧空間17とに区画し、前記低圧空間17に、前記電動機部30、前記圧縮機構部20、及び前記バランスウェイト90を配置し、前記低圧空間17にある前記冷媒が前記圧縮機構部20で圧縮されることを特徴とする。
The compressor of the present invention according to claim 1 includes a compression mechanism unit 20 and an electric motor unit 30 in a closed container 10, the compression mechanism unit 20 is arranged above the electric motor unit 30, and the compression mechanism unit 20 is provided. And the electric motor unit 30 are connected by a drive shaft 40, a balance weight 90 is arranged above the electric motor unit 30 and below the compression mechanism unit 20, and the balance weight 90 is connected to the drive shaft 40 by the connecting unit 91. An oil reservoir 15 is formed in the inner bottom portion 14 of the closed container 10 so as to be fixed, and the lubricating oil stored in the oil reservoir 15 is guided to the compression mechanism portion 20 and the bearing 61 on the drive shaft 40. The oil supply passage 42 and the communication hole 44 communicating with the oil supply passage 42 are formed, the communication hole 44 is located below the balance weight 90, and the lubricating oil guided from the oil supply passage 42 is the communication hole. A compressor that discharges from 44, characterized in that the lower end surface 90d of the balance weight 90 is projected downward from the lower end 91d of the connecting portion 91 of the balance weight 90.
According to the second aspect of the present invention, in the compressor according to the first aspect, the electric motor unit 30 is fixed to the annular stator 31 and the drive shaft 40 and rotatably arranged inside the stator 31. It is composed of a rotor 32, and the gap dimension S between the lower end surface 90d of the balance weight 90 and the rotor 32 is made smaller than the diameter D of the communication hole 44.
The present invention according to claim 3 is characterized in that, in the compressor according to claim 2, the gap dimension S is 20% or more and 60% or less of the diameter D of the communication hole 44.
The compressor of the present invention according to claim 4 is the compressor according to claim 2 or 3, wherein the gap dimension S is 1 mm or more and 2.7 mm or less.
The compressor of the present invention according to claim 5 is the compressor according to any one of claims 1 to 4, wherein the inside of the closed container 10 is divided into upper and lower partitions. 50 is provided, and the inside of the closed container 10 is compressed by the partition plate 50 with a high-pressure space 16 filled with a high-pressure refrigerant after being compressed by the compression mechanism unit 20 and the compression mechanism unit 20. The low-pressure space 17 is divided into a low-pressure space 17 filled with the low-pressure refrigerant, and the electric motor unit 30, the compression mechanism unit 20, and the balance weight 90 are arranged in the low-pressure space 17, and the low-pressure space 17 is located. The refrigerant is compressed by the compression mechanism unit 20.
 本発明によれば、バランスウェイトの下端面を電動機部に近接させることができるため、連通孔から吐出される潤滑油が冷媒に混入することを少なくでき、密閉容器からの吐油量を低減できる。 According to the present invention, since the lower end surface of the balance weight can be brought close to the electric motor portion, it is possible to reduce the mixing of the lubricating oil discharged from the communication hole with the refrigerant and reduce the amount of oil discharged from the closed container. ..
本発明の一実施例による圧縮機の側面断面図Side sectional view of the compressor according to an embodiment of the present invention. 同圧縮機の要部拡大断面図Enlarged sectional view of the main part of the compressor
 本発明の第1の実施の形態による圧縮機は、バランスウェイトの下端面を、バランスウェイトの連結部の下端よりも下方に突出させたものである。本実施の形態によれば、バランスウェイトの下端面を電動機部に近接させることができるため、連通孔から吐出される潤滑油が冷媒に混入することを少なくでき、冷媒に混ざって、圧縮された冷媒とともに冷凍サイクルへと流出する密閉容器からの吐油量を低減できる。 In the compressor according to the first embodiment of the present invention, the lower end surface of the balance weight is projected below the lower end of the connecting portion of the balance weight. According to the present embodiment, since the lower end surface of the balance weight can be brought close to the electric motor portion, it is possible to reduce the mixing of the lubricating oil discharged from the communication hole with the refrigerant, and the lubricating oil is mixed with the refrigerant and compressed. The amount of oil discharged from the closed container that flows out into the refrigeration cycle together with the refrigerant can be reduced.
 本発明の第2の実施の形態は、第1の実施の形態による圧縮機において、電動機部が、環状のステータと、駆動軸に固定されステータの内側に回転自在に配置されるロータとで構成され、バランスウェイトの下端面とロータとの隙間寸法を、連通孔の直径より小さくしたものである。本実施の形態によれば、連通孔から吐出される潤滑油がロータより外方に出にくくなるため、潤滑油が冷媒に混入することを少なくでき、冷媒に混ざって、圧縮された冷媒とともに冷凍サイクルへと流出する密閉容器からの吐油量を低減することができる。 In the compressor according to the first embodiment, the second embodiment of the present invention comprises an annular stator and a rotor fixed to a drive shaft and rotatably arranged inside the stator. The gap between the lower end surface of the balance weight and the rotor is made smaller than the diameter of the communication hole. According to the present embodiment, since the lubricating oil discharged from the communication hole is less likely to come out from the rotor, it is possible to reduce the mixing of the lubricating oil with the refrigerant, and the lubricating oil is mixed with the refrigerant and frozen together with the compressed refrigerant. The amount of oil discharged from the closed container that flows out into the cycle can be reduced.
 本発明の第3の実施の形態は、第2の実施の形態による圧縮機において、隙間寸法を、連通孔の直径の20%以上60%以下としたものである。本実施の形態によれば、連通孔から吐出される潤滑油がロータより外方に出にくくなるため、潤滑油が冷媒に混入することを少なくでき、冷媒に混ざって、圧縮された冷媒とともに冷凍サイクルへと流出する密閉容器からの吐油量を低減することができる。 The third embodiment of the present invention is the compressor according to the second embodiment in which the gap size is 20% or more and 60% or less of the diameter of the communication hole. According to the present embodiment, since the lubricating oil discharged from the communication hole is less likely to come out from the rotor, it is possible to reduce the mixing of the lubricating oil with the refrigerant, and the lubricating oil is mixed with the refrigerant and frozen together with the compressed refrigerant. The amount of oil discharged from the closed container that flows out into the cycle can be reduced.
 本発明の第4の実施の形態は、第2又は第3の実施の形態による圧縮機において、隙間寸法を、1mm以上2.7mm以下としたものである。本実施の形態によれば、連通孔から吐出される潤滑油がロータより外方に出にくくなるため、潤滑油が冷媒に混入することを少なくでき、冷媒に混ざって、圧縮された冷媒とともに冷凍サイクルへと流出する密閉容器からの吐油量を低減することができる。 The fourth embodiment of the present invention has a gap size of 1 mm or more and 2.7 mm or less in the compressor according to the second or third embodiment. According to the present embodiment, since the lubricating oil discharged from the communication hole is less likely to come out from the rotor, it is possible to reduce the mixing of the lubricating oil with the refrigerant, and the lubricating oil is mixed with the refrigerant and frozen together with the compressed refrigerant. The amount of oil discharged from the closed container that flows out into the cycle can be reduced.
 本発明の第5の実施の形態は、第1から第4のいずれかの実施の形態による圧縮機において、密閉容器内に、密閉容器の内部を上下に仕切る仕切板を設け、仕切板によって、密閉容器の内部を、圧縮機構部で圧縮された後の高圧の冷媒で満たされる高圧空間と、圧縮機構部で圧縮される前の低圧の冷媒で満たされる低圧空間とに区画し、低圧空間に、電動機部、圧縮機構部、及びバランスウェイトを配置し、低圧空間にある冷媒が圧縮機構部で圧縮されるものである。電動機部、圧縮機構部、及びバランスウェイトが低圧空間に配置される場合には、連通孔から吐出される潤滑油は低圧空間にある冷媒に混入するため、低圧空間で冷媒に混入した潤滑油は、圧縮機構部から吐出される高圧の冷媒とともに吐出されやすいが、本実施の形態によれば、低圧空間での冷媒への混入を少なくできるため、冷媒に混ざって、圧縮された冷媒とともに冷凍サイクルへと流出する密閉容器からの吐油量を低減できる。 In the fifth embodiment of the present invention, in the compressor according to any one of the first to fourth embodiments, a partition plate for partitioning the inside of the closed container is provided in the closed container, and the partition plate is used. The inside of the closed container is divided into a high-pressure space filled with a high-pressure refrigerant after being compressed by the compression mechanism and a low-pressure space filled with a low-pressure refrigerant before being compressed by the compression mechanism. , The electric motor unit, the compression mechanism unit, and the balance weight are arranged, and the refrigerant in the low pressure space is compressed by the compression mechanism unit. When the electric motor unit, compression mechanism unit, and balance weight are arranged in the low-pressure space, the lubricating oil discharged from the communication hole is mixed with the refrigerant in the low-pressure space, so that the lubricating oil mixed in the refrigerant in the low-pressure space is mixed. , It is easy to be discharged together with the high-pressure refrigerant discharged from the compression mechanism unit, but according to this embodiment, since it is possible to reduce the mixing with the refrigerant in the low-pressure space, it is mixed with the refrigerant and the refrigeration cycle is performed together with the compressed refrigerant. The amount of oil discharged from the closed container that flows out to the air can be reduced.
 以下、本発明の一実施例について図面を参照しながら説明する。
 図1は本実施例による圧縮機の側面断面図である。なお、本実施例では、圧縮機としてスクロール圧縮機を用いている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a side sectional view of the compressor according to the present embodiment. In this embodiment, a scroll compressor is used as the compressor.
 密閉容器10は、上下方向に軸線を有する円筒状の胴シェル11と、胴シェル11の下端に気密に溶接される椀状の下シェル12と、胴シェル11の上端に気密に溶接される椀状の上シェル13とで形成される。密閉容器10の内底部14には、油溜部15が形成されている。 The closed container 10 has a cylindrical body shell 11 having an axis in the vertical direction, a bowl-shaped lower shell 12 that is airtightly welded to the lower end of the body shell 11, and a bowl that is airtightly welded to the upper end of the body shell 11. It is formed by the upper shell 13 in the shape. An oil reservoir 15 is formed in the inner bottom 14 of the closed container 10.
 密閉容器10内には、圧縮機構部20と電動機部30とを備えている。圧縮機構部20は電動機部30の上方に配置している。圧縮機構部20と電動機部30とは駆動軸40によって連結している。 The airtight container 10 is provided with a compression mechanism unit 20 and an electric motor unit 30. The compression mechanism unit 20 is arranged above the electric motor unit 30. The compression mechanism unit 20 and the electric motor unit 30 are connected by a drive shaft 40.
 圧縮機構部20は、固定スクロール21と旋回スクロール22とで構成されている。
 固定スクロール21は、鏡板21aと、鏡板21aの下面に形成された渦巻き状(インボリュート状)のラップ21bとで構成されている。
 旋回スクロール22は、鏡板22aと、鏡板22aの上面に形成された渦巻き状(インボリュート状)のラップ22bとで構成されている。旋回スクロール22の鏡板22aの下面の中心部には、円筒状のボス24を設けている。
 固定スクロール21のラップ21bと、旋回スクロール22のラップ22bとは互いに噛み合わされ、固定スクロール21と旋回スクロール22との間に、両ラップ21b、22bによって複数の圧縮室23が形成される。
 固定スクロール21の鏡板21aの中央部には吐出孔25が設けられ、吐出孔25には吐出弁26を設けている。固定スクロール21の外周には低圧の冷媒を吸入する吸入部28を設けている。
The compression mechanism unit 20 is composed of a fixed scroll 21 and a swivel scroll 22.
The fixed scroll 21 is composed of a end plate 21a and a spiral (involute) wrap 21b formed on the lower surface of the end plate 21a.
The swivel scroll 22 is composed of a end plate 22a and a spiral (involute) wrap 22b formed on the upper surface of the end plate 22a. A cylindrical boss 24 is provided at the center of the lower surface of the end plate 22a of the swivel scroll 22.
The lap 21b of the fixed scroll 21 and the lap 22b of the swivel scroll 22 are meshed with each other, and a plurality of compression chambers 23 are formed between the fixed scroll 21 and the swivel scroll 22 by both laps 21b and 22b.
A discharge hole 25 is provided in the central portion of the end plate 21a of the fixed scroll 21, and a discharge valve 26 is provided in the discharge hole 25. A suction unit 28 for sucking a low-pressure refrigerant is provided on the outer circumference of the fixed scroll 21.
 電動機部30は、環状のステータ31と、ステータ31の内側に回転自在に構成されたロータ32とで構成される。ステータ31は密閉容器10の内周面に固定される。ロータ32は駆動軸40に固定される。 The electric motor unit 30 is composed of an annular stator 31 and a rotor 32 rotatably configured inside the stator 31. The stator 31 is fixed to the inner peripheral surface of the closed container 10. The rotor 32 is fixed to the drive shaft 40.
 密閉容器10の内部上方には、密閉容器10の内部を上下に仕切る仕切板50が設けられている。仕切板50は、密閉容器10の内部を、高圧空間16と低圧空間17とに区画している。高圧空間16は、圧縮機構部20で圧縮された後の高圧の冷媒で満たされる空間であり、低圧空間17は、圧縮機構部20で圧縮される前の低圧の冷媒で満たされる空間である。 Above the inside of the closed container 10, a partition plate 50 that partitions the inside of the closed container 10 up and down is provided. The partition plate 50 divides the inside of the closed container 10 into a high-pressure space 16 and a low-pressure space 17. The high-pressure space 16 is a space filled with the high-pressure refrigerant after being compressed by the compression mechanism unit 20, and the low-pressure space 17 is a space filled with the low-pressure refrigerant before being compressed by the compression mechanism unit 20.
 密閉容器10は、密閉容器10の外部と低圧空間17とを連通させる冷媒吸入管18と、密閉容器10の外部と高圧空間16とを連通させる冷媒吐出管19とを備えている。圧縮機は、冷媒吸入管18を介して、密閉容器10の外部に設けられた冷凍サイクル回路(図示せず)から、低圧空間17に低圧の冷媒を導入する。また、圧縮機構部20で圧縮された高圧の冷媒は、まず、高圧空間16に導入される。その後、高圧空間16から冷媒吐出管19を介して、冷凍サイクル回路に吐出される。 The closed container 10 includes a refrigerant suction pipe 18 that communicates the outside of the closed container 10 with the low pressure space 17, and a refrigerant discharge pipe 19 that communicates the outside of the closed container 10 with the high pressure space 16. The compressor introduces a low-pressure refrigerant into the low-pressure space 17 from a refrigeration cycle circuit (not shown) provided outside the closed container 10 via a refrigerant suction pipe 18. Further, the high-pressure refrigerant compressed by the compression mechanism unit 20 is first introduced into the high-pressure space 16. After that, it is discharged from the high pressure space 16 to the refrigeration cycle circuit via the refrigerant discharge pipe 19.
 固定スクロール21及び旋回スクロール22の下方には、旋回スクロール22を支持する主軸受60が設けられている。旋回スクロール22は、固定スクロール21と主軸受60との間に配置される。主軸受60は、中心部に軸受61を形成し、密閉容器10の内壁に固定される。
 旋回スクロール22と主軸受60との間には、自転抑制部材(オルダムリング)27が設けられている。オルダムリング27は、旋回スクロール22の自転を防止する。これにより、旋回スクロール22は、固定スクロール21に対して自転することなく、旋回運動をする。
Below the fixed scroll 21 and the swivel scroll 22, a main bearing 60 for supporting the swivel scroll 22 is provided. The swivel scroll 22 is arranged between the fixed scroll 21 and the main bearing 60. The main bearing 60 has a bearing 61 formed in the center thereof and is fixed to the inner wall of the closed container 10.
A rotation suppressing member (oldam ring) 27 is provided between the swivel scroll 22 and the main bearing 60. The old dam ring 27 prevents the turning scroll 22 from rotating. As a result, the swivel scroll 22 makes a swivel motion without rotating with respect to the fixed scroll 21.
 駆動軸40の一端側は、軸受61により軸支され、他端側は、副軸受70で軸支される。駆動軸40の上端には、駆動軸40の軸心に対して偏心した偏心軸41が設けられている。偏心軸41は、スイングブッシュ41a及び旋回軸受41bを介して、ボス24に摺動自在に挿入されている。ボス24は、偏心軸41によって、旋回駆動される。 One end side of the drive shaft 40 is pivotally supported by the bearing 61, and the other end side is pivotally supported by the auxiliary bearing 70. An eccentric shaft 41 eccentric with respect to the axis of the drive shaft 40 is provided at the upper end of the drive shaft 40. The eccentric shaft 41 is slidably inserted into the boss 24 via the swing bush 41a and the swivel bearing 41b. The boss 24 is swiveled by the eccentric shaft 41.
 駆動軸40の内部には、潤滑油が通過する給油路42が形成されている。給油路42は、駆動軸40の軸方向に形成された貫通孔である。給油路42の一端は、駆動軸40の下端に設けられた吸込口42aとして、油溜部15内に開口している。吸込口42aの上部には、吸込口42aから給油路42に潤滑油を汲み上げるパドル43が設けられている。
 給油路42は、油溜部15に貯留される潤滑油を圧縮機構部20及び軸受61に導く。
 駆動軸40には、給油路42に連通する連通孔44が形成されている。連通孔44は、給油路42のガス抜きとして機能し、給油路42から導かれた潤滑油を吐出する。なお、駆動軸40には、主軸受60に潤滑油を供給する軸受用連通孔42bを形成している。軸受用連通孔42bは給油路42に連通している。
An oil supply passage 42 through which lubricating oil passes is formed inside the drive shaft 40. The oil supply passage 42 is a through hole formed in the axial direction of the drive shaft 40. One end of the oil supply passage 42 is opened in the oil reservoir 15 as a suction port 42a provided at the lower end of the drive shaft 40. A paddle 43 for pumping lubricating oil from the suction port 42a to the oil supply passage 42 is provided above the suction port 42a.
The oil supply passage 42 guides the lubricating oil stored in the oil reservoir 15 to the compression mechanism 20 and the bearing 61.
The drive shaft 40 is formed with a communication hole 44 that communicates with the oil supply passage 42. The communication hole 44 functions as a degassing of the oil supply passage 42, and discharges the lubricating oil guided from the oil supply passage 42. The drive shaft 40 is formed with a bearing communication hole 42b that supplies lubricating oil to the main bearing 60. The bearing communication hole 42b communicates with the oil supply passage 42.
 副軸受70は、低圧空間17の下方、望ましくは、油溜部15内に設けられる。副軸受70は、円筒状に形成されて駆動軸40が挿入されるボス部71と、ボス部71から外周方向に延びて密閉容器10内周面に固定されるアーム部72とを備えている。 The auxiliary bearing 70 is provided below the low pressure space 17, preferably in the oil reservoir 15. The auxiliary bearing 70 includes a boss portion 71 that is formed in a cylindrical shape and into which a drive shaft 40 is inserted, and an arm portion 72 that extends from the boss portion 71 in the outer peripheral direction and is fixed to the inner peripheral surface of the closed container 10. ..
 駆動軸40にはバランスウェイト90が設けられている。バランスウェイト90は、圧縮機構部20の下方で電動機部30の上方に位置している。
 圧縮機構部20、電動機部30、主軸受60、副軸受70、及びバランスウェイト90は低圧空間17に配置される。電動機部30及びバランスウェイト90は、主軸受60と副軸受70の間に配置される。
 また、固定スクロール21及び旋回スクロール22は、仕切板50と主軸受60との間に配置されている。仕切板50及び主軸受60は、密閉容器10に固定されている。固定スクロール21及び旋回スクロール22のうち、少なくとも弾性体(図示せず)が設けられた一方は、仕切板50と主軸受60との間の少なくとも一部、より詳細には、仕切板50と旋回スクロール22との間、または、固定スクロール21と主軸受60との間を、軸方向に移動自在に設けられている。
A balance weight 90 is provided on the drive shaft 40. The balance weight 90 is located below the compression mechanism unit 20 and above the electric motor unit 30.
The compression mechanism unit 20, the electric motor unit 30, the main bearing 60, the sub bearing 70, and the balance weight 90 are arranged in the low pressure space 17. The electric motor unit 30 and the balance weight 90 are arranged between the main bearing 60 and the auxiliary bearing 70.
Further, the fixed scroll 21 and the swivel scroll 22 are arranged between the partition plate 50 and the main bearing 60. The partition plate 50 and the main bearing 60 are fixed to the closed container 10. Of the fixed scroll 21 and the swivel scroll 22, at least one provided with an elastic body (not shown) is at least a part between the partition plate 50 and the main bearing 60, and more specifically, the partition plate 50 and swivel. It is provided so as to be movable in the axial direction between the scroll 22 or between the fixed scroll 21 and the main bearing 60.
 冷媒吸入管18と圧縮機構部20の吸入部28との間には整流板100を設けている。整流板100は、冷媒吸入管18の吸入口に対向する位置に配置する。整流板100を冷媒吸入管18の吸入口に対向する位置に配置することで、整流板100の冷媒吸入管18側の上方には上側閉口部100aが形成され、整流板100の冷媒吸入管18側の下方には下側開口部100bが形成される。 A straightening vane 100 is provided between the refrigerant suction pipe 18 and the suction portion 28 of the compression mechanism portion 20. The straightening vane 100 is arranged at a position facing the suction port of the refrigerant suction pipe 18. By arranging the rectifying plate 100 at a position facing the suction port of the refrigerant suction pipe 18, an upper closed portion 100a is formed above the refrigerant suction pipe 18 side of the rectifying plate 100, and the refrigerant suction pipe 18 of the rectifying plate 100 is formed. A lower opening 100b is formed below the side.
 以下に圧縮機の動作、作用について説明する。
 電動機部30の駆動により、ロータ32とともに駆動軸40が回転する。偏心軸41とオルダムリング27とによって、旋回スクロール22は自転することなく、駆動軸40の中心軸を中心に旋回運動する。これによって、圧縮室23の容積が縮小し、圧縮室23の冷媒は圧縮される。
The operation and operation of the compressor will be described below.
The drive shaft 40 rotates together with the rotor 32 by driving the electric motor unit 30. The eccentric shaft 41 and the old dam ring 27 cause the swivel scroll 22 to swivel around the central axis of the drive shaft 40 without rotating. As a result, the volume of the compression chamber 23 is reduced, and the refrigerant in the compression chamber 23 is compressed.
 冷媒は、冷媒吸入管18から低圧空間17に導入される。そして、低圧空間17に導入された冷媒は、整流板100及び整流板100の上側閉口部100aに衝突し、電動機部30の方向に整流される。
 そして、電動機部30の方向に整流された冷媒は、低圧空間17に一旦開放され、電動機部30の駆動によって乱流状態となった冷媒が圧縮室23に吸入され、圧縮室23で圧縮された冷媒は、高圧空間16を経由して、冷媒吐出管19から吐出される。
The refrigerant is introduced from the refrigerant suction pipe 18 into the low pressure space 17. Then, the refrigerant introduced into the low-pressure space 17 collides with the rectifying plate 100 and the upper closing portion 100a of the rectifying plate 100, and is rectified in the direction of the electric motor portion 30.
Then, the refrigerant rectified in the direction of the electric motor unit 30 is temporarily released into the low-pressure space 17, and the refrigerant in a turbulent flow state due to the drive of the electric motor unit 30 is sucked into the compression chamber 23 and compressed in the compression chamber 23. The refrigerant is discharged from the refrigerant discharge pipe 19 via the high-pressure space 16.
 次に本実施例による圧縮機での潤滑油流れを説明する。
 油溜部15にある潤滑油は、パドル43によって、給油路42に汲み上げられる。給油路42に汲み上げられた潤滑油は、連通孔44から流出するとともに、軸受用連通孔42bから主軸受60に供給され、駆動軸40の上端開口からボス24内に供給される。
 ボス24内に供給された潤滑油は、圧縮機構部20の摺動面に供給される。
 連通孔44から流出される潤滑油は、主にバランスウェイト90とロータ32との隙間から低圧空間17内に吐出される。
Next, the lubricating oil flow in the compressor according to this embodiment will be described.
The lubricating oil in the oil reservoir 15 is pumped into the oil supply passage 42 by the paddle 43. The lubricating oil pumped up into the oil supply passage 42 flows out from the communication hole 44, is supplied to the main bearing 60 from the bearing communication hole 42b, and is supplied into the boss 24 from the upper end opening of the drive shaft 40.
The lubricating oil supplied into the boss 24 is supplied to the sliding surface of the compression mechanism portion 20.
The lubricating oil flowing out of the communication hole 44 is mainly discharged into the low pressure space 17 through the gap between the balance weight 90 and the rotor 32.
 図2は同圧縮機の要部拡大断面図である。
 バランスウェイト90は、平面視で円弧状に形成され、連結部91によって駆動軸40に固定される。
 駆動軸40には、径を拡大させた拡径部40aが形成され、拡径部40aの下端によってロータ32を位置決めし、拡径部40aの上端によってバランスウェイト90を位置決めする。ロータ32は、鉄心部32aの端部に突部32bを有している。
 連通孔44は拡径部40aに形成される。従って、連通孔44はバランスウェイト90より下方で、ロータ32の鉄心部32aより上方に位置する。また、連通孔44はロータ32の突部32bの内周に位置する。
FIG. 2 is an enlarged cross-sectional view of a main part of the compressor.
The balance weight 90 is formed in an arc shape in a plan view, and is fixed to the drive shaft 40 by the connecting portion 91.
The drive shaft 40 is formed with an enlarged diameter portion 40a, the rotor 32 is positioned by the lower end of the enlarged diameter portion 40a, and the balance weight 90 is positioned by the upper end of the enlarged diameter portion 40a. The rotor 32 has a protrusion 32b at the end of the iron core portion 32a.
The communication hole 44 is formed in the enlarged diameter portion 40a. Therefore, the communication hole 44 is located below the balance weight 90 and above the iron core portion 32a of the rotor 32. Further, the communication hole 44 is located on the inner circumference of the protrusion 32b of the rotor 32.
 バランスウェイト90は、バランスウェイト90の下端面90dを、バランスウェイト90の連結部91の下端91dよりも下方に突出させている。
 また、バランスウェイト90は、バランスウェイト90の上端面90uを、バランスウェイト90の連結部91の上端91uよりも上方に突出させている。バランスウェイト90の連結部91の上端91uは、主軸受60の下端面61dより上方に位置させている。
The balance weight 90 projects the lower end surface 90d of the balance weight 90 below the lower end 91d of the connecting portion 91 of the balance weight 90.
Further, the balance weight 90 projects the upper end surface 90u of the balance weight 90 upward from the upper end 91u of the connecting portion 91 of the balance weight 90. The upper end 91u of the connecting portion 91 of the balance weight 90 is positioned above the lower end surface 61d of the main bearing 60.
 本実施例によれば、バランスウェイト90の下端面90dを、バランスウェイト90の連結部91の下端91dよりも下方に突出させることで、バランスウェイト90の下端面90dを電動機部30のロータ32に近接させることができるため、連通孔44から吐出される潤滑油が、低圧空間17に存在する冷媒に混入することを少なくでき、密閉容器10からの吐油量を低減できる。
 また本実施例によれば、バランスウェイト90の上端面90uを、バランスウェイト90の連結部91の上端91uよりも上方で、主軸受60の下端面61dより上方に位置させることで、主軸受60から滴下する潤滑油が、低圧空間17に存在する冷媒に混入することを少なくでき、密閉容器10からの吐油量を低減できる。
According to this embodiment, the lower end surface 90d of the balance weight 90 is projected downward from the lower end 91d of the connecting portion 91 of the balance weight 90, so that the lower end surface 90d of the balance weight 90 is used as the rotor 32 of the electric motor unit 30. Since they can be brought close to each other, the lubricating oil discharged from the communication hole 44 can be reduced from being mixed with the refrigerant existing in the low pressure space 17, and the amount of oil discharged from the closed container 10 can be reduced.
Further, according to this embodiment, the upper end surface 90u of the balance weight 90 is positioned above the upper end 91u of the connecting portion 91 of the balance weight 90 and above the lower end surface 61d of the main bearing 60, whereby the main bearing 60 It is possible to reduce the amount of lubricating oil dripping from the surface being mixed with the refrigerant existing in the low pressure space 17, and to reduce the amount of oil discharged from the closed container 10.
 バランスウェイト90の下端面90dとロータ32との隙間寸法Sを、連通孔44の直径Dより小さくすることが好ましい。
 連通孔44の直径Dを3mm、下端面90dとロータ32との隙間寸法Sを6mmとした時の吐油量を100%とした時、本実施例によるバランスウエイト90を用い、隙間寸法Sを2.7mmに変更した場合には、吐油量は26%に低減でき、隙間寸法Sを1mmに変更した場合には、吐油量は22%に低減できた。
 特に、隙間寸法Sを、連通孔44の直径Dの20%以上60%以下とすることで吐油量が大幅に低減できる。
 また、隙間寸法Sは、1mm以上2.7mm以下とすることが好ましい。
It is preferable that the gap dimension S between the lower end surface 90d of the balance weight 90 and the rotor 32 is smaller than the diameter D of the communication hole 44.
When the diameter D of the communication hole 44 is 3 mm and the gap size S between the lower end surface 90d and the rotor 32 is 6 mm and the amount of oil discharged is 100%, the balance weight 90 according to this embodiment is used to set the gap size S. When the oil discharge amount was changed to 2.7 mm, the oil discharge amount could be reduced to 26%, and when the gap size S was changed to 1 mm, the oil discharge amount could be reduced to 22%.
In particular, the amount of oil discharged can be significantly reduced by setting the gap dimension S to 20% or more and 60% or less of the diameter D of the communication hole 44.
The gap size S is preferably 1 mm or more and 2.7 mm or less.
 なお、電動機部30、圧縮機構部20、及びバランスウェイト90が低圧空間17に配置され、低圧空間17にある冷媒が圧縮機構部20で圧縮される圧縮機にあっては、連通孔44から吐出される潤滑油は低圧空間17にある冷媒に混入するため、低圧空間17で冷媒に混入した潤滑油は、圧縮機構部20から吐出される高圧の冷媒とともに吐出されやすいが、本実施例によれば、低圧空間17での冷媒への混入を少なくできるため、密閉容器10からの吐油量を低減できる。 In a compressor in which the electric motor unit 30, the compression mechanism unit 20, and the balance weight 90 are arranged in the low pressure space 17, and the refrigerant in the low pressure space 17 is compressed by the compression mechanism unit 20, the refrigerant is discharged from the communication hole 44. Since the lubricating oil mixed in the refrigerant in the low pressure space 17 is mixed with the refrigerant in the low pressure space 17, the lubricating oil mixed in the refrigerant in the low pressure space 17 is likely to be discharged together with the high pressure refrigerant discharged from the compression mechanism unit 20, but according to this embodiment. For example, since it is possible to reduce the mixing of the refrigerant in the low pressure space 17, the amount of oil discharged from the closed container 10 can be reduced.
 本発明は、特に低圧型のスクロール圧縮機に適している。 The present invention is particularly suitable for low-pressure scroll compressors.
 10 密閉容器
 11 胴シェル
 12 下シェル
 13 上シェル
 14 内底部
 15 油溜部
 16 高圧空間
 17 低圧空間
 18 冷媒吸入管
 19 冷媒吐出管
 20 圧縮機構部
 21 固定スクロール
 21a 鏡板
 21b ラップ
 22 旋回スクロール
 22a 鏡板
 22b ラップ
 23 圧縮室
 24 ボス
 25 吐出孔
 26 吐出弁
 27 自転抑制部材(オルダムリング)
 28 吸入部
 30 電動機部
 31 ステータ
 32 ロータ
 32a 鉄心部
 32b 突部
 40 駆動軸
 40a 拡径部
 41 偏心軸
 41a スイングブッシュ
 41b 旋回軸受
 42 給油路
 42a 吸込口
 42b 軸受用給油孔
 43 パドル
 44 連通孔
 50 仕切板
 60 主軸受
 61 軸受
 61d 下端面
 70 副軸受
 71 ボス部
 72 アーム部
 90 バランスウェイト
 90d 下端面
 90u 上端面
 91 連結部
 91d 下端
 91u 上端
 100 整流板
 100a 上側閉口部
 100b 下側開口部
 D 直径
 S 隙間寸法
10 Airtight container 11 Body shell 12 Lower shell 13 Upper shell 14 Inner bottom 15 Oil reservoir 16 High pressure space 17 Low pressure space 18 Refrigerant suction pipe 19 Refrigerant discharge pipe 20 Compression mechanism 21 Fixed scroll 21a End plate 21b Wrap 22 Swivel scroll 22a End plate 22b Wrap 23 Compression chamber 24 Boss 25 Discharge hole 26 Discharge valve 27 Rotation suppression member (old dam ring)
28 Suction part 30 Electric motor part 31 Stator 32 Rotor 32a Iron core part 32b Protrusion part 40 Drive shaft 40a Diameter expansion part 41 Eccentric shaft 41a Swing bush 41b Swing bearing 42 Oil supply passage 42a Suction port 42b Bearing oil supply hole 43 Paddle 44 Plate 60 Main bearing 61 Bearing 61d Lower end surface 70 Sub-bearing 71 Boss part 72 Arm part 90 Balance weight 90d Lower end surface 90u Upper end surface 91 Connecting part 91d Lower end 91u Upper end 100 Straightening plate 100a Upper closing part 100b Lower opening D Diameter S Gap Size

Claims (5)

  1.  密閉容器内に圧縮機構部と電動機部とを備え、
    前記圧縮機構部を前記電動機部の上方に配置し、
    前記圧縮機構部と前記電動機部とを駆動軸によって連結し、
    前記電動機部の上方で前記圧縮機構部の下方にバランスウェイトを配置し、
    前記バランスウェイトを連結部によって前記駆動軸に固定し、
    前記密閉容器の内底部には油溜部が形成され、
    前記駆動軸には、前記油溜部に貯留される潤滑油を前記圧縮機構部及び軸受に導く給油路と、前記給油路に連通する連通孔とが形成され、
    前記連通孔が前記バランスウェイトより下方に位置し、
    前記給油路から導かれた前記潤滑油が前記連通孔から吐出する圧縮機であって、
    前記バランスウェイトの下端面を、前記バランスウェイトの前記連結部の下端よりも下方に突出させた
    ことを特徴とする圧縮機。
    A compression mechanism and an electric motor are provided in a closed container.
    The compression mechanism portion is arranged above the electric motor portion,
    The compression mechanism unit and the electric motor unit are connected by a drive shaft.
    A balance weight is arranged above the electric motor unit and below the compression mechanism unit.
    The balance weight is fixed to the drive shaft by a connecting portion, and the balance weight is fixed to the drive shaft.
    An oil reservoir is formed on the inner bottom of the closed container.
    The drive shaft is formed with an oil supply passage for guiding the lubricating oil stored in the oil reservoir portion to the compression mechanism portion and the bearing, and a communication hole for communicating with the oil supply passage.
    The communication hole is located below the balance weight,
    A compressor in which the lubricating oil guided from the oil supply passage is discharged from the communication hole.
    A compressor characterized in that the lower end surface of the balance weight is projected downward from the lower end of the connecting portion of the balance weight.
  2.  前記電動機部が、環状のステータと、前記駆動軸に固定され前記ステータの内側に回転自在に配置されるロータとで構成され、
    前記バランスウェイトの前記下端面と前記ロータとの隙間寸法を、前記連通孔の直径より小さくした
    ことを特徴とする請求項1に記載の圧縮機。
    The electric motor unit is composed of an annular stator and a rotor fixed to the drive shaft and rotatably arranged inside the stator.
    The compressor according to claim 1, wherein the gap between the lower end surface of the balance weight and the rotor is made smaller than the diameter of the communication hole.
  3.  前記隙間寸法を、前記連通孔の前記直径の20%以上60%以下とした
    ことを特徴とする請求項2に記載の圧縮機。
    The compressor according to claim 2, wherein the gap size is 20% or more and 60% or less of the diameter of the communication hole.
  4.  前記隙間寸法を、1mm以上2.7mm以下とした
    ことを特徴とする請求項2又は請求項3に記載の圧縮機。
    The compressor according to claim 2 or 3, wherein the gap size is 1 mm or more and 2.7 mm or less.
  5.  前記密閉容器内に、前記密閉容器の内部を上下に仕切る仕切板を設け、
    前記仕切板によって、前記密閉容器の前記内部を、前記圧縮機構部で圧縮された後の高圧の冷媒で満たされる高圧空間と、前記圧縮機構部で圧縮される前の低圧の前記冷媒で満たされる低圧空間とに区画し、
    前記低圧空間に、前記電動機部、前記圧縮機構部、及び前記バランスウェイトを配置し、
    前記低圧空間にある前記冷媒が前記圧縮機構部で圧縮される
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の圧縮機。
    A partition plate for partitioning the inside of the closed container into upper and lower parts is provided in the closed container.
    With the partition plate, the inside of the closed container is filled with a high-pressure space filled with a high-pressure refrigerant after being compressed by the compression mechanism and a low-pressure refrigerant before being compressed by the compression mechanism. Partitioned into a low pressure space
    The electric motor unit, the compression mechanism unit, and the balance weight are arranged in the low pressure space.
    The compressor according to any one of claims 1 to 4, wherein the refrigerant in the low-pressure space is compressed by the compression mechanism unit.
PCT/JP2020/028707 2019-07-29 2020-07-27 Compressor WO2021020346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138449A JP7369934B2 (en) 2019-07-29 2019-07-29 compressor
JP2019-138449 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020346A1 true WO2021020346A1 (en) 2021-02-04

Family

ID=74230431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028707 WO2021020346A1 (en) 2019-07-29 2020-07-27 Compressor

Country Status (2)

Country Link
JP (1) JP7369934B2 (en)
WO (1) WO2021020346A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157079A (en) * 1991-06-10 1993-06-22 Carrier Corp Manufacture of driving shaft
US20080175738A1 (en) * 2007-01-19 2008-07-24 Jung Chul-Su Compressor and oil blocking device therefor
US20130251543A1 (en) * 2012-03-23 2013-09-26 Bitzer Kuehlmaschinenbau Gmbh Compressor with Oil Return Passage Formed Between Motor and Shell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998094B (en) 2017-07-27 2022-03-25 松下知识产权经营株式会社 Scroll compressor having a discharge port

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157079A (en) * 1991-06-10 1993-06-22 Carrier Corp Manufacture of driving shaft
US20080175738A1 (en) * 2007-01-19 2008-07-24 Jung Chul-Su Compressor and oil blocking device therefor
US20130251543A1 (en) * 2012-03-23 2013-09-26 Bitzer Kuehlmaschinenbau Gmbh Compressor with Oil Return Passage Formed Between Motor and Shell

Also Published As

Publication number Publication date
JP2021021363A (en) 2021-02-18
JP7369934B2 (en) 2023-10-27

Similar Documents

Publication Publication Date Title
US6773242B1 (en) Scroll compressor with vapor injection
US7771178B2 (en) Vapor injection system for a scroll compressor
EP3657018B1 (en) Scroll compressor
KR101974272B1 (en) Compressor having merged flow path structure
JP6300829B2 (en) Rotary compressor
CN101663485A (en) Compressor and oil supplying structure therefor
JP2012219654A (en) Rotary fluid machine
KR20060120386A (en) Oil separation apparatus for scroll compressor
JP2018035748A (en) Scroll compressor
US11703052B2 (en) High pressure scroll compressor
WO2021020346A1 (en) Compressor
JP5328536B2 (en) Scroll compressor
WO2020170886A1 (en) Hermetically sealed compressor
JP2018131910A (en) Scroll compressor
WO2015125304A1 (en) Compressor
WO2022070527A1 (en) Hermetic electric compressor
JP5114708B2 (en) Hermetic scroll compressor
WO2021039522A1 (en) Compressor
JP7139718B2 (en) compressor
JP6749183B2 (en) Scroll compressor
KR20130092769A (en) Scroll compressor
JP2014132158A (en) Scroll compressor
JP2019148188A (en) Compressor
JP2012193619A (en) Hermetic type compressor
JPWO2020148857A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847859

Country of ref document: EP

Kind code of ref document: A1