WO2021019899A1 - Antenna device, antenna module, and communication device - Google Patents

Antenna device, antenna module, and communication device Download PDF

Info

Publication number
WO2021019899A1
WO2021019899A1 PCT/JP2020/021683 JP2020021683W WO2021019899A1 WO 2021019899 A1 WO2021019899 A1 WO 2021019899A1 JP 2020021683 W JP2020021683 W JP 2020021683W WO 2021019899 A1 WO2021019899 A1 WO 2021019899A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
radiation plate
antenna
antenna device
grounding
Prior art date
Application number
PCT/JP2020/021683
Other languages
French (fr)
Japanese (ja)
Inventor
薫 須藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021019899A1 publication Critical patent/WO2021019899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the present disclosure relates to a multi-band antenna device, an antenna module, and a communication device.
  • Patent Document 1 An antenna device applicable to a multi-band type communication device capable of supporting communication in a plurality of frequency bands is disclosed, for example, in Japanese Patent Application Laid-Open No. 2003-283240 (Patent Document 1).
  • the antenna device disclosed in Japanese Patent Application Laid-Open No. 2003-283240 emits high-frequency signals having different frequencies from a multilayer substrate and a flat plate-shaped grounding plate (grounding electrode) arranged under the multilayer substrate3. It is provided with one flat radiation plate (radiating element) and one feeding line connected to the feeding point of the radiation plate arranged at the uppermost layer of the three radiation plates and shared by the three radiation plates. ..
  • the three radiation plates are laminated so as to overlap each other when the antenna device is viewed through from the normal direction of the ground plate. As a result, the length direction of the antenna device (extending direction of the ground plate) is reduced.
  • the three radiation plates disclosed in Japanese Patent Application Laid-Open No. 2003-283240 are so-called ordinary patch antennas that are not connected to the ground plate.
  • the length of the radiation plate is set to less than half of the wavelength emitted by the antenna, the radiation characteristics deteriorate. Therefore, it is difficult to reduce the length of the radiation plate to less than half of the wavelength, and it is difficult to further reduce the size of the antenna device.
  • the present disclosure has been made to solve such a problem, and an object of the present invention is to provide a multi-band type antenna device which can be miniaturized and whose radiation characteristics can be easily improved. ..
  • the antenna device includes an antenna unit having a flat plate-shaped ground plate, a flat plate-shaped first radiation plate facing the ground plate, and a flat plate-shaped second radiation plate facing the ground plate, and a first radiation plate. It is provided with a first feeder line connected to the feeding point of the above and a second feeding line provided separately from the first feeding line and connected to the feeding point of the second radiation plate.
  • the first radiation plate has a first grounding end that is connected to the grounding plate.
  • the second radiation plate has a second grounding end that is connected to the grounding plate.
  • the first radiation plate and the second radiation plate have a portion that overlaps with each other. This makes it possible to reduce the size of the antenna device in the length direction (extending direction of the ground plate).
  • the first radiation plate and the second radiation plate have a first grounding end and a second grounding end connected to the grounding plate, respectively. That is, the first radiation plate and the second radiation plate are not a normal patch antenna that is not connected to the ground plate, but a one-sided short-circuit type patch antenna (plate-shaped inverted F antenna) in which one end is connected to the ground plate. is there.
  • a one-sided short-circuit type patch antenna plate-shaped inverted F antenna
  • good radiation characteristics can be obtained by reducing the length of the radiation plate to about one-fourth of the wavelength emitted by the radiation plate. Therefore, the length of each radiation plate can be halved as compared with the case of using a normal patch antenna, and the antenna device can be further miniaturized.
  • a first feeder line connected to the feeding point of the first radiation plate and a second feeding line connected to the feeding point of the second radiation plate are separately provided.
  • the length of the feeder line can be adjusted individually for each radiation plate, so that impedance adjustment can be easily performed.
  • the radiation characteristics can be easily improved.
  • FIG. 1 It is a block diagram of an example of a communication device. It is a perspective view which see through the inside of a communication device. It is a side view which see through the inside of a communication device. It is the figure (the 1) which saw through the inside of the antenna device from the X-axis direction. It is a perspective view which saw through the inside of an antenna device. It is sectional drawing (the 1) of the antenna device. It is sectional drawing (the 2) of the antenna device. It is sectional drawing (the 3) of the antenna device. It is sectional drawing (the 4) of the antenna device. It is sectional drawing (the 5) of the antenna device. It is sectional drawing (the 6) of the antenna device.
  • FIG. 3 is a perspective view of the inside of the antenna device from the X-axis direction. It is the figure (4) which saw through the inside of the antenna device from the X-axis direction.
  • FIG. 5 is a perspective view of the inside of the antenna device from the X-axis direction (No. 5).
  • FIG. 1 is a block diagram of an example of a communication device 10 to which the antenna device 120 according to the present embodiment is applied.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
  • the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, and an antenna device 120.
  • the communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal at the BBIC 200. To do.
  • the antenna device 120 includes a plurality of antenna units 125.
  • a plurality of antenna units 125 are arranged in a straight line at predetermined intervals.
  • Each of the antenna units 125 includes a first radiation plate 121 and a second radiation plate 122.
  • the first radiation plate 121 and the second radiation plate 122 are both one-sided short-circuit type patch antennas having a flat plate shape.
  • the antenna device 120 is configured to be capable of radiating radio waves in different frequency bands from the first radiation plate 121 and the second radiation plate 122 of the antenna unit 125. That is, the antenna device 120 is a dual band type antenna device.
  • the first radiation plate 121 is configured to be capable of radiating a high frequency signal in the band of the first frequency f1.
  • the second radiation plate 122 is configured to be capable of radiating a high frequency signal in the band of the second frequency f2 lower than the first frequency f1.
  • the first frequency f1 and the second frequency f2 are not particularly limited, but may be set to, for example, 60 GHz and 28 GHz, respectively.
  • FIG. 1 for the sake of simplicity, only the configurations corresponding to the four antenna units 125 among the plurality of antenna units 125 constituting the antenna device 120 are shown, and the other antenna units 125 having the same configuration are shown. The corresponding configuration is omitted.
  • the RFIC 110 includes switches 111A to 111H, 113A to 113H, 117A, 117B, power amplifiers 112AT to 112HT, low noise amplifiers 112AR to 112HR, attenuators 114A to 114H, phase shifters 115A to 115H, and signal synthesis / minute. It includes wave devices 116A and 116B, mixers 118A and 118B, and amplifier circuits 119A and 119B.
  • the configuration of the amplifier circuit 119A is a circuit for a high frequency signal of the first frequency band radiated from the first radiation plate 121.
  • the configuration of the amplifier circuit 119B is a circuit for a high frequency signal in the second frequency band radiated from the second radiation plate 122.
  • the switches 111A to 111H and 113A to 113H are switched to the power amplifiers 112AT to 112HT side, and the switches 117A and 117B are connected to the transmitting side amplifiers of the amplifier circuits 119A and 119B.
  • the switches 111A to 111H and 113A to 113H are switched to the low noise amplifiers 112AR to 112HR, and the switches 117A and 117B are connected to the receiving side amplifiers of the amplifier circuits 119A and 119B.
  • the signal transmitted from the BBIC 200 is amplified by the amplifier circuits 119A and 119B, and up-converted by the mixers 118A and 118B.
  • the transmitted signal which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexers 116A and 116B, passes through the corresponding signal paths, and reaches different first radiation plates 121 and second radiation plates 122, respectively.
  • the directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115H arranged in each signal path.
  • the received signal which is a high-frequency signal received by the first radiation plate 121 and the second radiation plate 122, is transmitted to the RFIC 110 and combined in the signal synthesizer / demultiplexers 116A and 116B via four different signal paths.
  • the combined received signal is down-converted by the mixers 118A and 118B, amplified by the amplifier circuits 119A and 119B, and transmitted to the BBIC 200.
  • the RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration.
  • the devices switch, power amplifier, low noise amplifier, attenuator, phase shifter
  • corresponding to each antenna unit 125 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding antenna unit 125. ..
  • FIG. 2 is a perspective view of the inside of the communication device 10.
  • the communication device 10 is covered with a housing 11. Inside the housing 11, an antenna device 120 and a mounting board 20 on which the antenna device 120 is mounted are provided.
  • the antenna device 120 is arranged adjacent to the side surface 22 of the mounting board 20 instead of the main surface 21 of the mounting board 20.
  • FIG. 3 is a side view of the inside of the communication device 10 viewed from the direction along the main surface 21 and the side surface 22 of the mounting board 20.
  • the antenna device 120 is arranged adjacent to the side surface 22 of the mounting board 20.
  • the antenna device 120 and the mounting board 20 are connected by a connecting line 160.
  • the antenna device 120 is formed of a dielectric 130 having an inner surface 131 and an outer surface 132.
  • the dielectric 130 is formed by laminating a plurality of dielectric layers in the laminating direction with the direction from the inner surface 131 to the outer surface 132 as the laminating direction.
  • the dielectric 130 is formed of, for example, a resin such as epoxy or polyimide.
  • the dielectric 130 may be formed by using a liquid crystal polymer (LCP) or a fluororesin having a lower dielectric constant.
  • LCP liquid crystal polymer
  • the RFIC 110 is mounted on the inner surface 131 of the dielectric 130.
  • ground plate GND1 and GND2 extending in the direction along the inner surface 131 are provided.
  • the normal direction of the ground plate GND1 is the "X-axis direction”
  • the extending direction of the ground plate GND1 along the length direction of the antenna device 120 is the "Y-axis direction”
  • the X-axis direction and the Y-axis are provided.
  • the direction perpendicular to the direction is also referred to as "Z-axis direction”.
  • the thickness (length in the Z-axis direction) T of the housing 11 of the communication device 10 is considerably shorter than the length in the X-axis direction and the length in the Y-axis direction of the housing 11.
  • the length of the antenna device 120 in the Z-axis direction is restricted by the thin thickness T of the housing 11.
  • the antenna device 120 according to the present embodiment is devised to reduce the length in the Z-axis direction.
  • FIG. 4 is a perspective view of the inside of the antenna device 120 from the X-axis direction.
  • a plurality of antenna units 125 are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate.
  • the first radiation plate 121 and the second radiation plate 122 in each antenna unit 125 have portions that overlap each other.
  • FIG. 5 is a perspective view of the inside of the antenna device 120.
  • FIG. 6 is a VI-VI cross-sectional view of the antenna device 120 in FIG. The configuration of the antenna device 120 will be further described with reference to FIGS. 5 and 6.
  • the positive direction of the X-axis may be described as "up” and the positive direction of the X-axis may be described as "down”.
  • the antenna device 120 includes two flat plate-shaped grounding plates GND1 and GND2, an antenna unit 125, a first feeder line 141, a second feeder line 142, a plurality of first grounding vias 151, and a plurality of second feeding lines. It is provided with a grounding via 152.
  • the ground plates GND1 and GND2 are arranged in the lower layer of the dielectric 130, and are configured to extend in the Y-axis direction and the Z-axis direction over the entire lower layer.
  • the ground plates GND1 and GND2 are arranged side by side in the X-axis direction with a predetermined distance from each other.
  • Both the first radiation plate 121 and the second radiation plate 122 included in the antenna unit 125 are arranged so as to face the ground plate GND1.
  • the first radiation plate 121 is arranged in a layer above the second radiation plate 122 (a position away from the ground plate GND1).
  • the end portion 121a of the first radiation plate 121 on the negative direction side of the Z axis is connected to the ground plate GND1 by a plurality of first ground vias 151.
  • FIG. 5 shows an example in which the entire end portion 121a is connected to the grounding plate GND1, a part of the end portion 121a may be connected to the grounding plate GND1.
  • the end portion 121a of the first radiation plate 121 connected to the ground plate GND1 by the first grounding via 151 is also referred to as “the grounding end portion 121a of the first radiation plate 121”.
  • the end portion 122a of the second radiation plate 122 on the negative direction side of the Z axis is connected to the ground plate GND1 by a plurality of second ground vias 152.
  • FIG. 5 shows an example in which the entire end portion 122a is connected to the grounding plate GND1, a part of the end portion 122a may be connected to the grounding plate GND1.
  • the end portion 122a of the second radiation plate 122 connected to the ground plate GND1 by the second grounding via 152 is also referred to as “the grounding end portion 122a of the second radiation plate 122”.
  • the ground contact end 121a of the first radiation plate 121 and the ground contact end 122a of the second radiation plate 122 are aligned in the Z-axis direction.
  • the antenna device 120 is seen through from the X-axis direction (normal direction of the grounding plate GND1), the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 overlap each other. Has a part.
  • the first grounding via 151 is also connected to the grounding end 122a of the second radiation plate 122. Therefore, the first grounded via 151 and the second grounded via 152 have a portion shared with each other. That is, a part of the first grounding via 151 (the part from the grounding plate GND1 to the grounding end portion 122a of the second radiation plate 122) also functions as a part of the second grounding via 152. Further, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are the remaining part of the first grounding via 151 (the second from the grounding end portion 122a of the first radiation plate 121). A portion of the radiation plate 122 up to the grounding end 121a) is linearly connected in the X-axis direction.
  • the lower end of the first feeder line 141 is connected to the RFIC 110.
  • the upper end of the first feeder line 141 is connected to the feeder point SP1 of the first radiation plate 121.
  • the second radiation plate 122 and the ground plates GND1 and GND2 arranged between the first radiation plate 121 and the RFIC 110 have through holes for avoiding contact with the first feed line 141, and the first feeder line 141 is arranged to pass through these through holes.
  • a high frequency signal in the first frequency f1 (for example, 60 GHz) band is transmitted from the first radiation plate 121. Be radiated. Since the feeding point SP1 of the first radiation plate 121 is arranged at a position in the positive direction of the Z axis with respect to the ground contact end portion 121a, polarization from the first radiation plate 121 with the Z axis direction as the excitation direction. Is radiated in a direction inclined toward the positive direction of the Z axis from the positive direction of the X axis (the normal direction of the first radiation plate 121).
  • the second feeder line 142 is provided separately from the first feeder line 141.
  • the lower end of the second feeder 142 is connected to the RFIC 110.
  • the upper end of the second feeder line 142 is connected to the feeder point SP2 of the second radiation plate 122.
  • the ground plates GND1 and GND2 arranged between the second radiation plate 122 and the RFIC 110 have through holes for avoiding contact with the second feeder line 142, and the second feeder line 142 has these through holes. Arranged to pass through.
  • a high frequency signal in the second frequency f2 (for example, 28 GHz) band is transmitted from the second radiation plate 122. Be radiated. Since the feeding point SP2 of the second radiation plate 122 is arranged in the positive direction of the Z axis with respect to the ground contact end portion 122a, polarization with the Z axis direction as the excitation direction is generated from the second radiation plate 122. The radiation is emitted in a direction inclined toward the positive direction of the Z axis from the positive direction of the X axis (normal direction of the second radiation plate 122).
  • the length of the radiation plate of a normal patch antenna is about half of the wavelength, but the length of the radiation plate of a one-sided short-circuit type patch antenna is about one-fourth of the wavelength. Therefore, the length L1 of the first radiation plate 121 in the Z-axis direction is set to about one-fourth of the wavelength of the signal of the first frequency f1 (60 GHz). The length L2 of the second radiation plate 122 in the Z-axis direction is set to about one-fourth of the wavelength of the signal of the second frequency f2 (28 GHz). Therefore, the length L1 of the first radiation plate 121 in the Z-axis direction is shorter than the length L2 of the second radiation plate 122 in the Z-axis direction.
  • the antenna device 120 when the antenna device 120 is seen through from the X-axis direction (normal direction of the ground plate GND1), the first radiation plate 121 and the second radiation plate 122 Have parts that overlap each other.
  • the size of the antenna unit 125 in the Z-axis direction can be reduced as compared with the case where the first radiation plate 121 and the second radiation plate 122 are arranged side by side in the Z-axis direction without overlapping. ..
  • the antenna unit 125, the first radiation plate 121, the second radiation plate 122, and the ground plate GND1 are the "antenna unit", the "first radiation plate", the "second radiation plate", and the "ground plate” of the present disclosure. Can correspond to each.
  • the first radiation plate 121 is not a normal patch antenna that is not connected to the ground plate GND1, but a one-side short-circuit type patch antenna in which the ground end 121a on one side is connected to the ground plate GND1.
  • the second radiation plate 122 is not a normal patch antenna not connected to the ground plate GND1, but a one-side short-circuit type patch antenna in which the ground end 122a on one side is connected to the ground plate GND1. Therefore, in the antenna device 120 according to the present embodiment, the length L1 of the first radiation plate 121 in the Z-axis direction and the length of the second radiation plate 122 in the Z-axis direction are longer than in the case of using a normal patch antenna.
  • Each of the L2 can be halved, and the size of the antenna device 120 in the Z-axis direction can be further reduced.
  • the grounding end portion 121a and the grounding end portion 122a may correspond to the "first grounding end portion" and the "second grounding end portion" of the present disclosure, respectively.
  • first feeder line 141 connected to the feed point SP1 of the first radiation plate 121 and a second feeder line 142 connected to the feed point SP2 of the second radiation plate 122 are separately provided.
  • the length of the first feeder line 141 and the length of the second feeder line 142 can be adjusted individually, so that the impedance can be easily adjusted and the radiation characteristics can be easily improved.
  • the first feeder line 141 and the second feeder line 142 can correspond to the "first feeder line” and the "second feeder line” of the present disclosure, respectively.
  • the dual band type antenna device 120 which can be miniaturized and whose radiation characteristics can be easily improved is realized.
  • the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are aligned in the Z-axis direction.
  • the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 have a portion that overlaps with each other. Therefore, for example, the size of the antenna device 120 in the Z-axis direction is larger than that in the case where the grounding end portion 121a of the first radiation plate 121 is deviated from the grounding end portion 122a of the second radiation plate 122 in the negative direction of the Z-axis. It can be made smaller.
  • the first grounded via 151 and the second grounded via 152 have a portion shared with each other. That is, a part of the first grounding via 151 (the part from the grounding plate GND1 to the grounding end portion 122a of the second radiation plate 122) also functions as a part of the second grounding via 152. Therefore, the configurations of the first grounded via 151 and the second grounded via 152 can be simplified as compared with the case where the first grounded via 151 and the second grounded via 152 do not have a portion shared with each other.
  • the first grounding via 151 and the second grounding via 152 can correspond to the "first grounding wire" and the "second grounding wire" of the present disclosure, respectively.
  • the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are the remaining part of the first grounding via 151 (the first). It is linearly connected in the X-axis direction by a portion) from the grounding end portion 122a of the 1 radiation plate 121 to the grounding end portion 121a of the second radiation plate 122. Therefore, the length of the first grounding via 151 can be shortened.
  • a plurality of antenna units 125 are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate GND1. As a result, a dual band type array antenna is realized.
  • the dielectric 130 is formed of one substrate, and the grounding ends 121a and 122a and the grounding plates GND1 and GND2 are provided on one substrate.
  • the dielectric 130 may be formed of a plurality of substrates arranged at predetermined intervals in the X-axis direction, and the grounding ends 121a and 122a and the grounding plates GND1 and GND2 may be provided on separate substrates.
  • FIG. 7 is a cross-sectional view of the antenna device 120H according to the first modification.
  • the antenna device 120H is obtained by changing the dielectric 130 of the antenna device 120 described above to the dielectric 130H.
  • the dielectric 130H includes a first substrate 130a and a second substrate 130b arranged at predetermined intervals in the X-axis direction.
  • the first substrate 130a and the second substrate 130b are connected by solder bumps 160 or adhesion.
  • the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are provided on the first substrate 130a, and the grounding plates GND1 and GND2 are provided on the second substrate 130b.
  • the grounding ends 121a and 122a are connected to the grounding plate GND1 by solder bumps 160 or adhesion.
  • Such an antenna device 120H may be used.
  • the first substrate 130a on which the first radiation plate 121 and the second radiation plate 122 are formed may be formed of a part of a housing (for example, a resin housing covering the communication device 10). Further, the solder bump 160 may be an electrical contact portion such as a pogo pin.
  • the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are aligned in the Z-axis direction.
  • the ground contact end portion 121a of the first radiation plate 121 and the ground contact end portion 122a of the second radiation plate 122 may be displaced in the Z-axis direction.
  • FIG. 8 is a cross-sectional view of the antenna device 120A according to the second modification.
  • the antenna device 120A is obtained by changing the antenna unit 125 and the first grounded via 151 of the above-mentioned antenna device 120 to the antenna unit 125A and the first grounded via 151A, respectively.
  • the antenna unit 125A is different from the above-mentioned antenna unit 125 in that the grounding end 121a of the first radiation plate 121 is displaced in the negative direction of the Z axis from the grounding end 122a of the second radiation plate 122. Other points of the antenna unit 125A are the same as those of the antenna unit 125 described above.
  • the portion from the grounding end portion 122a of the second radiation plate 122 to the grounding end portion 121a of the first radiation plate 121 is in the negative direction of the Z axis with respect to the above-mentioned first grounding via 151. The difference is that they are out of alignment.
  • Other points of the first grounded via 151A are the same as those of the first grounded via 151 described above.
  • the ground contact end portion 121a of the first radiation plate 121 and the ground contact end portion 122a of the second radiation plate 122 may be displaced in the Z-axis direction.
  • FIG. 9 is a cross-sectional view of another antenna device 120B according to the second modification.
  • the antenna device 120B is obtained by changing the antenna unit 125, the first ground via 151, and the second ground via 152 of the above-mentioned antenna device 120 to the antenna unit 125B, the first ground via 151B, and the second ground via 152B, respectively. .. Since other structures are the same as those of the antenna device 120 described above, the detailed description here will not be repeated.
  • the antenna unit 125B is different from the above-mentioned antenna unit 125 in that the grounding end 121a of the first radiation plate 121 is displaced in the negative direction of the Z axis from the grounding end 122a of the second radiation plate 122. Other points of the antenna unit 125B are the same as those of the antenna unit 125 described above.
  • the first grounding via 151B is not connected to the grounding end 122a of the second radiation plate 122. That is, the first grounded via 151B and the second grounded via 152B are provided separately and do not have a portion shared with each other.
  • the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are displaced in the Z-axis direction, and the first grounding via 151B and the second grounding via 152B are separate. It may be provided in.
  • first grounding via 151B and the second grounding via 152B may be provided on different sides of the surface centers of the radiation plates 121 and 122.
  • FIG. 10 is a cross-sectional view of the antenna device 120I according to the third modification.
  • the antenna device 120I is a device in which the second grounding via 152B of the above-mentioned antenna device 120B is moved to the right side (Z-axis positive direction side) of the surface center of the second radiation plate 122.
  • the first grounding via 151B is provided on the left side (Z-axis negative direction side) of the surface center of the first radiation plate 121
  • the second grounding via 152B is the surface of the second radiation plate 122. It is provided on the right side (Z-axis positive direction side) of the center.
  • FIG. 11 is a cross-sectional view of the antenna device 120C according to the present modification 4.
  • the antenna unit 125 of the above-mentioned antenna device 120 is changed to the antenna unit 125C.
  • the antenna unit 125C includes a radiation plate 123 in addition to the first radiation plate 121 and the second radiation plate 122. That is, in the antenna unit 125C, a radiation plate 123 is added to the above-mentioned antenna unit 125.
  • the antenna unit 125C and the radiation plate 123 can correspond to the “antenna unit” and the “fifth radiation plate” of the present disclosure, respectively.
  • the radiation plate 123 is arranged between the first radiation plate 121 and the second radiation plate 122.
  • the feeding point SP3 of the radiation plate 123 is connected to the RFIC 110 via the third feeding line 143.
  • the grounding end portion (end on the negative direction side of the Z axis) 123a of the radiation plate 123 is connected to the grounding plate GND1 via the third grounding via 153C.
  • the radiation plate 123 is a one-sided short-circuit type patch antenna (plate-shaped inverted F antenna) like the first radiation plate 121 and the second radiation plate 122.
  • the first radiation plate 121, the second radiation plate 122, and the radiation plate 123 have portions that overlap each other.
  • the grounding end 121a of the first radiation plate 121, the grounding end 122a of the second radiation plate 122, and the grounding end 123a of the radiation plate 123 are aligned in the Z-axis direction.
  • the grounding end portion 121a of the first radiation plate 121 is connected to the grounding plate GND1 via the first grounding via 151C.
  • the grounding end portion 122a of the second radiation plate 122 is connected to the grounding plate GND1 via the second grounding via 152C.
  • the first grounding via 151C is also connected to the grounding end 122a of the second radiation plate 122 and the grounding end 123a of the radiation plate 123.
  • the third grounding via 153C is also connected to the grounding end 122a of the second radiation plate 122. Therefore, the first grounded via 151C, the second grounded via 152C, and the third grounded via 153C have a portion shared with each other.
  • the radiation plate 123 By supplying the signal from the RFIC 110 to the feeding point SP3 of the radiation plate 123 through the third feed line 143, the radiation plate 123 has a first frequency f1 (for example, 60 GHz) band and a second frequency f2 (for example, 28 GHz). A high frequency signal in the third frequency f3 (for example, 39 GHz) band between the band and the band is emitted.
  • f1 for example, 60 GHz
  • f2 for example, 28 GHz
  • the length L3 of the radiation plate 123 in the Z-axis direction is set to about one-fourth of the wavelength of the high-frequency signal of the third frequency f3 (for example, 39 GHz). Therefore, the length L3 of the radiation plate 123 in the Z-axis direction is longer than the length L1 of the first radiation plate 121 in the Z-axis direction and shorter than the length L2 of the second radiation plate 122 in the Z-axis direction.
  • the triple band type antenna device 120C in which three one-sided short-circuit type patch antennas radiating different frequencies may be stacked may be used.
  • an antenna different from the antenna unit 125 may be arranged between the plurality of antenna units 125.
  • FIG. 12 is a perspective view of the inside of the antenna device 120D according to the present modification 5 from the X-axis direction.
  • a plurality of antenna units 125 are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate GND1. Further, an antenna unit 125D different from the antenna unit 125 is arranged between the plurality of antenna units 125.
  • Each of the antenna units 125 includes a first radiation plate 121 and a radiation plate 123, and is configured to emit high frequency signals in the first frequency f1 (for example, 60 GHz) band and the second frequency f2 (for example, 28 GHz) band.
  • first frequency f1 for example, 60 GHz
  • second frequency f2 for example, 28 GHz
  • each of the antenna units 125D includes the first radiation plate 121 and the radiation plate 123, and emits high frequency signals of the first frequency f1 (for example, 60 GHz) band and the third frequency f3 (for example, 39 GHz) band. It is composed.
  • the antenna unit 125D is obtained by removing the second radiation plate 122 and the second feeder line 142 from the above-mentioned antenna unit 125C.
  • the first radiation plate 121 and the radiation plate 123 in the antenna unit 125D can correspond to the "third radiation plate” and the "fourth radiation plate” of the present disclosure, respectively.
  • the grounding ends of the first radiation plate 121 and the second radiation plate 122 of the antenna unit 125, and the grounding ends of the first radiation plate 121 and the radiation plate 123 of the antenna unit 125D are arranged so as to be aligned in the Z-axis direction. Radiation.
  • the dual band type antenna unit 125 that can correspond to the first frequency f1 and the second frequency f2, and the dual band type antenna unit 125D that can correspond to the first frequency f1 and the third frequency f3. May be arranged alternately in the Y-axis direction. This makes it possible to form a triple band type array antenna that can handle the first frequency f1, the second frequency f2, and the third frequency f3.
  • the first radiation plate 121 that emits the signal of the highest first frequency f1 among the first frequency f1, the second frequency f2, and the third frequency f3 is the antenna unit 125 and the antenna unit 125D. Included in both. Therefore, the arrangement interval of the first radiation plate 121 corresponding to the highest first frequency f1 can be made smaller than the arrangement interval of the other second radiation plate 122 and the radiation plate 123. As a result, the sidelobe level when the signal of the first frequency f1 is radiated can be reduced.
  • the distance between the surface centers of adjacent antennas is about half of the wavelength, and the distance between the surface centers is larger than one half of the wavelength.
  • the side lobe level will deteriorate.
  • the antenna device 120D by including the first radiation plate 121 that emits the signal of the first frequency f1 having the shortest wavelength in both the antenna unit 125 and the antenna unit 125D, the first radiation plate 121 The placement interval is reduced. As a result, the sidelobe level when the signal of the first frequency f1 is radiated can be reduced.
  • FIG. 13 is a perspective view of the inside of the other antenna device 120E according to the present modification 5 from the X-axis direction.
  • a plurality of antenna units 125C are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate GND1. Further, an antenna 125E different from the antenna unit 125C is arranged between the plurality of antenna units 125C.
  • each of the antenna units 125C includes a first radiation plate 121, a second radiation plate 122, and a radiation plate 123, and has a first frequency f1, a second frequency f2, and a third frequency f3. It is a compatible triple band type antenna.
  • a first radiation plate 121 that emits a high frequency signal in the first frequency f1 band is arranged in each of the antennas 125E.
  • the antenna 125E is obtained by removing the second radiation plate 122 and the second feeder line 142 from the above-mentioned antenna unit 125.
  • the first radiation plate 121 in the antenna 125E can correspond to the "third radiation plate" of the present disclosure.
  • the ground ends of the first radiation plate 121, the second radiation plate 122, and the radiation plate 123 of the antenna unit 125C, and the ground ends of the first radiation plate 121 of the antenna 125E are arranged so as to be aligned in the Z-axis direction. ..
  • the triple band type antenna unit 125C corresponding to the first frequency f1, the second frequency f2 and the third frequency f3, and the single band type antenna 125E corresponding to the first frequency f1 are Y. It may be arranged alternately in the axial direction. This makes it possible to form a triple band type array antenna that can handle the first frequency f1, the second frequency f2, and the third frequency f3.
  • the first radiation plate 121 that emits the signal of the highest first frequency f1 among the first frequency f1, the second frequency f2, and the third frequency f3. Is included in both the antenna unit 125C and the antenna 125E.
  • the arrangement interval of the first radiation plate 121 that emits the signal of the first frequency f1 having the shortest wavelength can be shortened. Therefore, the sidelobe level when the signal of the first frequency f1 is radiated can be reduced.
  • FIG. 14 is a perspective view of the inside of the antenna device 120F according to the present modification 6 from the X-axis direction.
  • the antenna device 120F is obtained by adding a plurality of antenna units 128 and 128D to the above-mentioned antenna device 120E. Since other structures are the same as those of the antenna device 120E described above, the detailed description here will not be repeated.
  • the antenna unit 128 and the antenna unit 128D are arranged alternately in the Y-axis direction and adjacent to the antenna units 125 and 125D on the negative direction side of the Z-axis.
  • the antenna units 128 and 128D can correspond to the "radiating electrode" of the present disclosure.
  • the antenna unit 128 is a dual band type antenna that can support the first frequency f1 and the second frequency f2. Specifically, the antenna unit 128 includes a radiation plate 126 that emits a high frequency signal in the first frequency f1 band and a radiation plate 127 that emits a high frequency signal in the second frequency f2 band. Both the radiation plates 126 and 127 are ordinary patch antennas that are arranged to face the ground plate GND1 and are not connected to the ground plate GND1. In other words, the antenna unit 128 is a modification of the above-mentioned antenna unit 125, which is a one-sided short-circuit type patch antenna, into a normal patch antenna unit.
  • the antenna unit 128D is a dual band type antenna that can support the first frequency f1 and the third frequency f3.
  • the antenna unit 128D includes a radiation plate 126 that emits a high frequency signal in the first frequency f1 band and a radiation plate 129 that emits a high frequency signal in the third frequency f3 band.
  • Both the radiation plates 126 and 129 are ordinary patch antennas that are arranged to face the ground plate GND1 and are not connected to the ground plate GND1.
  • the antenna unit 128D is a modification of the above-mentioned antenna unit 125D, which is a one-sided short-circuit type patch antenna, into a normal patch antenna unit.
  • the antenna units 128 and 128D which are normal patch antenna units
  • the antenna units 125 and 125D which are single-sided short-circuit type patch antenna units
  • the signal strength can be increased.
  • the grounding ends of the radiation plates included in the antenna units 125 and 125D, which are short-circuit type patch antennas on one side are all arranged on the side where the antenna units 128 and 128D are provided, that is, on the negative direction side of the Z axis. Has been done.
  • strong signals are emitted from the antenna units 125 and 125D in a direction inclined toward the positive direction of the Z axis rather than the positive direction of the X axis.
  • strong signals are emitted from the antenna units 128 and 128D, which are ordinary patch antennas, in the positive direction of the X-axis. This makes it possible to radiate strong radio waves over a wider range.
  • FIG. 15 is a perspective view of the inside of the other antenna device 120G according to the present modification 6 from the X-axis direction.
  • the antenna device 120G is obtained by adding the antenna units 125 and 125D to the above-mentioned antenna device 120F on the negative direction side of the Z axis of the antenna units 128 and 128D. Since the other structures are the same as those of the antenna device 120F described above, the detailed description here will not be repeated.
  • the antenna units 125 and 125D are provided on both the positive direction side and the negative direction side of the Z axis of the antenna units 128 and 128D with the antenna units 128 and 128D interposed therebetween. ..
  • the antenna units 125 and 125D provided on the positive direction side of the Z axis of the antenna units 128 and 128D can correspond to the "first antenna unit” of the present disclosure.
  • the antenna units 125 and 125D provided on the negative side of the Z axis of the antenna units 128 and 128D can correspond to the "second antenna unit" of the present disclosure.
  • the grounding end of the radiation plate included in the antenna units 125 and 125D provided on the positive direction side of the Z axis of the antenna units 128 and 128D is arranged on the side where the antenna units 128 and 128D are provided (negative direction side of the Z axis). Has been done.
  • the grounding end of the radiation plate included in the antenna units 125 and 125D provided on the negative side of the Z axis of the antenna units 128 and 128D is also the side on which the antenna units 128 and 128D are provided (the positive side of the Z axis). It is located in.
  • the antenna units 125 and 125D which are short-circuited one-sided patch antennas, on both sides of the antenna units 128 and 128D, which are normal patch antennas, it is possible to radiate strong radio waves over a wider range.
  • a normal patch antenna is added in addition to the one-sided short-circuit type patch antenna
  • the added antenna is not limited to the normal patch antenna.
  • a dipole antenna may be added in place of or in addition to the normal patch antenna.
  • 10 communication device 11 housing, 20 mounting board, 21 main surface, 22 side surface, 100 antenna module, 111A to 111H, 113A to 113H, 117A, 117B switch, 112AR to 112HR low noise amplifier, 112AT to 112HT power amplifier, 114A, 114D, 114E, 114H attenuator, 115A, 115D, 115E, 115H phase shifter, 116A, 116B demultiplexer, 118A, 118B mixer, 119A, 119B amplification circuit, 120, 120A to 120I antenna device, 121 first radiation plate , 121a, 122a, 123a Grounding end, 122 second radiator plate, 123,126,127,129 radiator plate, 125,125A to 125D, 128,128D antenna unit, 125E antenna, 130,130H dielectric, 131 inner surface , 132 outer surface, 141 1st feed line, 142 2nd feed line, 143 3rd feed line,

Abstract

An antenna device (120) is provided with: a flat-plate-shaped ground plate (GND1); an antenna unit having flat-plate-shaped first radiation plate (121) and second radiation plate (122) that face the ground plate (GND1); a first power supply line (141) connected to a power supply point (SP1) of the first radiation plate (121); and a second power supply line (142) that is provided separately from the first power supply line (141) and that is connected to a power supply point (SP2) of the second radiation plate (122). The first radiation plate (121) has a ground end section (121a) connected to the ground plate (GND1). The second radiation plate (122) has a ground end section (122a) connected to the ground plate (GND1). When the antenna device (120) is viewed in the normal direction of the ground plate (GND1), the first radiation plate (121) and the second radiation plate (122) have portions that overlap each other.

Description

アンテナ装置、アンテナモジュールおよび通信装置Antenna device, antenna module and communication device
 本開示は、マルチバンド型のアンテナ装置、アンテナモジュールおよび通信装置に関する。 The present disclosure relates to a multi-band antenna device, an antenna module, and a communication device.
 複数の周波数帯域での通信に対応可能なマルチバンド型の通信装置に適用可能なアンテナ装置が、たとえば特開2003-283240号公報(特許文献1)に開示されている。 An antenna device applicable to a multi-band type communication device capable of supporting communication in a plurality of frequency bands is disclosed, for example, in Japanese Patent Application Laid-Open No. 2003-283240 (Patent Document 1).
 特開2003-283240号公報に開示されたアンテナ装置は、多層基板と、多層基板の下層に配置される平板状の接地板(接地電極)と、各々が互いに異なる周波数の高周波信号を放射する3つの平板状の放射板(放射素子)と、3つの放射板のうちの最も上層に配置される放射板の給電点に接続され、3つの放射板に共用される1本の給電線とを備える。3つの放射板は、接地板の法線方向からアンテナ装置を透視したときに互いに重なり合うように積層される。これにより、アンテナ装置の長さ方向(接地板の延在方向)の小型化が図られている。 The antenna device disclosed in Japanese Patent Application Laid-Open No. 2003-283240 emits high-frequency signals having different frequencies from a multilayer substrate and a flat plate-shaped grounding plate (grounding electrode) arranged under the multilayer substrate3. It is provided with one flat radiation plate (radiating element) and one feeding line connected to the feeding point of the radiation plate arranged at the uppermost layer of the three radiation plates and shared by the three radiation plates. .. The three radiation plates are laminated so as to overlap each other when the antenna device is viewed through from the normal direction of the ground plate. As a result, the length direction of the antenna device (extending direction of the ground plate) is reduced.
特開2003-283240号公報JP-A-2003-283240
 特開2003-283240号公報に開示された3つの放射板は、いずれも接地板には接続されない、いわゆる通常のパッチアンテナである。一般的に、通常のパッチアンテナにおいては、放射板の長さをアンテナが放射する波長の2分の1未満にすると放射特性が劣化してしまう。そのため、放射板の長さを波長の2分の1未満にすることは難しく、アンテナ装置の更なる小型化は難しい。 The three radiation plates disclosed in Japanese Patent Application Laid-Open No. 2003-283240 are so-called ordinary patch antennas that are not connected to the ground plate. Generally, in a normal patch antenna, if the length of the radiation plate is set to less than half of the wavelength emitted by the antenna, the radiation characteristics deteriorate. Therefore, it is difficult to reduce the length of the radiation plate to less than half of the wavelength, and it is difficult to further reduce the size of the antenna device.
 さらに、特開2003-283240号公報に開示された3つの放射板は、1本の給電線を共用しているため、給電線の長さを放射板毎に別々に調整することができない。そのため、インピーダンス調整を容易に行なうことができず、放射特性を改善し難い。 Further, since the three radiation plates disclosed in Japanese Patent Application Laid-Open No. 2003-283240 share one power supply line, the length of the power supply line cannot be adjusted separately for each radiation plate. Therefore, impedance adjustment cannot be easily performed, and it is difficult to improve the radiation characteristics.
 本開示は、このような課題を解決するためになされたものであって、その目的は、小型化が可能で、かつ放射特性を改善し易い、マルチバンド型のアンテナ装置を提供することである。 The present disclosure has been made to solve such a problem, and an object of the present invention is to provide a multi-band type antenna device which can be miniaturized and whose radiation characteristics can be easily improved. ..
 本開示によるアンテナ装置は、平板状の接地板と、接地板と対向する平板状の第1放射板と接地板と対向する平板状の第2放射板とを有するアンテナユニットと、第1放射板の給電点に接続される第1給電線と、第1給電線とは別に設けられ、第2放射板の給電点に接続される第2給電線とを備える。第1放射板は、接地板に接続される第1接地端部を有する。第2放射板は、接地板に接続される第2接地端部を有する。接地板の法線方向からアンテナ装置を透視したとき、第1放射板と第2放射板とは互いに重なり合う部分を有する。 The antenna device according to the present disclosure includes an antenna unit having a flat plate-shaped ground plate, a flat plate-shaped first radiation plate facing the ground plate, and a flat plate-shaped second radiation plate facing the ground plate, and a first radiation plate. It is provided with a first feeder line connected to the feeding point of the above and a second feeding line provided separately from the first feeding line and connected to the feeding point of the second radiation plate. The first radiation plate has a first grounding end that is connected to the grounding plate. The second radiation plate has a second grounding end that is connected to the grounding plate. When the antenna device is viewed through from the normal direction of the ground plate, the first radiation plate and the second radiation plate have portions that overlap each other.
 上記のアンテナ装置においては、接地板の法線方向からアンテナ装置を透視したとき、第1放射板と第2放射板とは互いに重なり合う部分を有する。これにより、アンテナ装置の長さ方向(接地板の延在方向)の小型化が可能になる。 In the above antenna device, when the antenna device is viewed from the normal direction of the ground plate, the first radiation plate and the second radiation plate have a portion that overlaps with each other. This makes it possible to reduce the size of the antenna device in the length direction (extending direction of the ground plate).
 さらに、上記のアンテナ装置においては、第1放射板および第2放射板が、接地板に接続される第1接地端部および第2接地端部をそれぞれ有する。すなわち、第1放射板および第2放射板は、接地板に接続されない通常のパッチアンテナではなく、片側の端部が接地板に接続された片側短絡型パッチアンテナ(板状の逆Fアンテナ)である。一般的に、片側短絡型パッチアンテナにおいては、放射板の長さを、放射板が放射する波長の4分の1程度にすることで良好な放射特性が得られる。そのため、通常のパッチアンテナを用いる場合に比べて、各放射板の長さを約半分にすることができ、アンテナ装置をより小型化することが可能となる。 Further, in the above antenna device, the first radiation plate and the second radiation plate have a first grounding end and a second grounding end connected to the grounding plate, respectively. That is, the first radiation plate and the second radiation plate are not a normal patch antenna that is not connected to the ground plate, but a one-sided short-circuit type patch antenna (plate-shaped inverted F antenna) in which one end is connected to the ground plate. is there. Generally, in a one-sided short-circuit type patch antenna, good radiation characteristics can be obtained by reducing the length of the radiation plate to about one-fourth of the wavelength emitted by the radiation plate. Therefore, the length of each radiation plate can be halved as compared with the case of using a normal patch antenna, and the antenna device can be further miniaturized.
 さらに、上記のアンテナ装置においては、第1放射板の給電点に接続される第1給電線と、第2放射板の給電点に接続される第2給電線とが、別々に設けられる。これにより、給電線の長さを放射板毎に個別に調整することができるため、インピーダンス調整を容易に行なうことができる。その結果、放射特性を改善し易くすることができる。 Further, in the above antenna device, a first feeder line connected to the feeding point of the first radiation plate and a second feeding line connected to the feeding point of the second radiation plate are separately provided. As a result, the length of the feeder line can be adjusted individually for each radiation plate, so that impedance adjustment can be easily performed. As a result, the radiation characteristics can be easily improved.
 本開示によれば、小型化が可能で、かつ放射特性を改善し易い、マルチバンド型のアンテナ装置を提供することができる。 According to the present disclosure, it is possible to provide a multi-band type antenna device that can be miniaturized and whose radiation characteristics can be easily improved.
通信装置の一例のブロック図である。It is a block diagram of an example of a communication device. 通信装置の内部を透視した斜視図である。It is a perspective view which see through the inside of a communication device. 通信装置の内部を透視した側面図である。It is a side view which see through the inside of a communication device. アンテナ装置の内部をX軸方向から透視した図(その1)である。It is the figure (the 1) which saw through the inside of the antenna device from the X-axis direction. アンテナ装置の内部を透視した斜視図である。It is a perspective view which saw through the inside of an antenna device. アンテナ装置の断面図(その1)である。It is sectional drawing (the 1) of the antenna device. アンテナ装置の断面図(その2)である。It is sectional drawing (the 2) of the antenna device. アンテナ装置の断面図(その3)である。It is sectional drawing (the 3) of the antenna device. アンテナ装置の断面図(その4)である。It is sectional drawing (the 4) of the antenna device. アンテナ装置の断面図(その5)である。It is sectional drawing (the 5) of the antenna device. アンテナ装置の断面図(その6)である。It is sectional drawing (the 6) of the antenna device. アンテナ装置の内部をX軸方向から透視した図(その2)である。It is the figure (2) which saw through the inside of the antenna device from the X-axis direction. アンテナ装置の内部をX軸方向から透視した図(その3)である。FIG. 3 is a perspective view of the inside of the antenna device from the X-axis direction. アンテナ装置の内部をX軸方向から透視した図(その4)である。It is the figure (4) which saw through the inside of the antenna device from the X-axis direction. アンテナ装置の内部をX軸方向から透視した図(その5)である。FIG. 5 is a perspective view of the inside of the antenna device from the X-axis direction (No. 5).
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 (通信装置の基本構成)
 図1は、本実施の形態に係るアンテナ装置120が適用される通信装置10の一例のブロック図である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末や、通信機能を備えたパーソナルコンピュータなどである。
(Basic configuration of communication device)
FIG. 1 is a block diagram of an example of a communication device 10 to which the antenna device 120 according to the present embodiment is applied. The communication device 10 is, for example, a mobile terminal such as a mobile phone, a smartphone or a tablet, a personal computer having a communication function, or the like.
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ装置120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号を高周波信号にアップコンバートしてアンテナ装置120から放射するとともに、アンテナ装置120で受信した高周波信号をダウンコンバートしてBBIC200にて信号を処理する。 With reference to FIG. 1, the communication device 10 includes an antenna module 100 and a BBIC 200 constituting a baseband signal processing circuit. The antenna module 100 includes an RFIC 110, which is an example of a power feeding circuit, and an antenna device 120. The communication device 10 up-converts the signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal and radiates it from the antenna device 120, and down-converts the high-frequency signal received by the antenna device 120 to process the signal at the BBIC 200. To do.
 アンテナ装置120は、複数のアンテナユニット125を含む。本実施の形態においては、複数のアンテナユニット125が所定間隔を隔てて直線状に並べて配置される。アンテナユニット125の各々は、第1放射板121および第2放射板122を含む。第1放射板121および第2放射板122は、どちらも、平板形状を有する、片側短絡型パッチアンテナである。 The antenna device 120 includes a plurality of antenna units 125. In the present embodiment, a plurality of antenna units 125 are arranged in a straight line at predetermined intervals. Each of the antenna units 125 includes a first radiation plate 121 and a second radiation plate 122. The first radiation plate 121 and the second radiation plate 122 are both one-sided short-circuit type patch antennas having a flat plate shape.
 アンテナ装置120は、アンテナユニット125の第1放射板121および第2放射板122から、それぞれ異なる周波数帯域の電波を放射することが可能に構成されている。すなわち、アンテナ装置120は、デュアルバンド型のアンテナ装置である。第1放射板121は、第1周波数f1の帯域の高周波信号を放射可能に構成される。第2放射板122は、第1周波数f1よりも低い第2周波数f2の帯域の高周波信号を放射可能に構成される。第1周波数f1および第2周波数f2は、特に限定されないが、たとえば60GHzおよび28GHzにそれぞれ設定され得る。 The antenna device 120 is configured to be capable of radiating radio waves in different frequency bands from the first radiation plate 121 and the second radiation plate 122 of the antenna unit 125. That is, the antenna device 120 is a dual band type antenna device. The first radiation plate 121 is configured to be capable of radiating a high frequency signal in the band of the first frequency f1. The second radiation plate 122 is configured to be capable of radiating a high frequency signal in the band of the second frequency f2 lower than the first frequency f1. The first frequency f1 and the second frequency f2 are not particularly limited, but may be set to, for example, 60 GHz and 28 GHz, respectively.
 図1では、説明を容易にするために、アンテナ装置120を構成する複数のアンテナユニット125のうち、4つのアンテナユニット125に対応する構成のみ示され、同様の構成を有する他のアンテナユニット125に対応する構成については省略されている。 In FIG. 1, for the sake of simplicity, only the configurations corresponding to the four antenna units 125 among the plurality of antenna units 125 constituting the antenna device 120 are shown, and the other antenna units 125 having the same configuration are shown. The corresponding configuration is omitted.
 RFIC110は、スイッチ111A~111H,113A~113H,117A,117Bと、パワーアンプ112AT~112HTと、ローノイズアンプ112AR~112HRと、減衰器114A~114Hと、移相器115A~115Hと、信号合成/分波器116A,116Bと、ミキサ118A,118Bと、増幅回路119A、119Bとを備える。このうち、スイッチ111A~111D,113A~113D,117A、パワーアンプ112AT~112DT、ローノイズアンプ112AR~112DR、減衰器114A~114D、移相器115A~115D、信号合成/分波器116A、ミキサ118A、および増幅回路119Aの構成が、第1放射板121から放射される第1周波数帯域の高周波信号のための回路である。また、スイッチ111E~111H,113E~113H,117B、パワーアンプ112ET~112HT、ローノイズアンプ112ER~112HR、減衰器114E~114H、移相器115E~115H、信号合成/分波器116B、ミキサ118B、および増幅回路119Bの構成が、第2放射板122から放射される第2周波数帯域の高周波信号のための回路である。 The RFIC 110 includes switches 111A to 111H, 113A to 113H, 117A, 117B, power amplifiers 112AT to 112HT, low noise amplifiers 112AR to 112HR, attenuators 114A to 114H, phase shifters 115A to 115H, and signal synthesis / minute. It includes wave devices 116A and 116B, mixers 118A and 118B, and amplifier circuits 119A and 119B. Of these, switches 111A to 111D, 113A to 113D, 117A, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, signal synthesizer / demultiplexer 116A, mixer 118A, And the configuration of the amplifier circuit 119A is a circuit for a high frequency signal of the first frequency band radiated from the first radiation plate 121. Further, switches 111E to 111H, 113E to 113H, 117B, power amplifiers 112ET to 112HT, low noise amplifiers 112ER to 112HR, attenuators 114E to 114H, phase shifters 115E to 115H, signal synthesizer / demultiplexer 116B, mixer 118B, and The configuration of the amplifier circuit 119B is a circuit for a high frequency signal in the second frequency band radiated from the second radiation plate 122.
 高周波信号を送信する場合には、スイッチ111A~111H,113A~113Hがパワーアンプ112AT~112HT側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111H,113A~113Hがローノイズアンプ112AR~112HR側へ切換えられるとともに、スイッチ117A,117Bが増幅回路119A,119Bの受信側アンプに接続される。 When transmitting a high frequency signal, the switches 111A to 111H and 113A to 113H are switched to the power amplifiers 112AT to 112HT side, and the switches 117A and 117B are connected to the transmitting side amplifiers of the amplifier circuits 119A and 119B. When receiving a high frequency signal, the switches 111A to 111H and 113A to 113H are switched to the low noise amplifiers 112AR to 112HR, and the switches 117A and 117B are connected to the receiving side amplifiers of the amplifier circuits 119A and 119B.
 BBIC200から伝達された信号は、増幅回路119A,119Bで増幅され、ミキサ118A,118Bでアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116A,116Bで4分波され、対応する信号経路を通過して、それぞれ異なる第1放射板121および第2放射板122に給電される。各信号経路に配置された移相器115A~115Hの移相度が個別に調整されることにより、アンテナ装置120の指向性を調整することができる。 The signal transmitted from the BBIC 200 is amplified by the amplifier circuits 119A and 119B, and up-converted by the mixers 118A and 118B. The transmitted signal, which is an up-converted high-frequency signal, is demultiplexed by the signal synthesizer / demultiplexers 116A and 116B, passes through the corresponding signal paths, and reaches different first radiation plates 121 and second radiation plates 122, respectively. Powered. The directivity of the antenna device 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115H arranged in each signal path.
 第1放射板121および第2放射板122で受信された高周波信号である受信信号はRFIC110に伝達され、それぞれ異なる4つの信号経路を経由して信号合成/分波器116A,116Bにおいて合波される。合波された受信信号は、ミキサ118A,118Bでダウンコンバートされ、増幅回路119A,119Bで増幅されてBBIC200へ伝達される。 The received signal, which is a high-frequency signal received by the first radiation plate 121 and the second radiation plate 122, is transmitted to the RFIC 110 and combined in the signal synthesizer / demultiplexers 116A and 116B via four different signal paths. To. The combined received signal is down-converted by the mixers 118A and 118B, amplified by the amplifier circuits 119A and 119B, and transmitted to the BBIC 200.
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各アンテナユニット125に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応するアンテナユニット125毎に1チップの集積回路部品として形成されてもよい。 The RFIC 110 is formed as, for example, a one-chip integrated circuit component including the above circuit configuration. Alternatively, the devices (switch, power amplifier, low noise amplifier, attenuator, phase shifter) corresponding to each antenna unit 125 in the RFIC 110 may be formed as an integrated circuit component of one chip for each corresponding antenna unit 125. ..
 (アンテナ装置の配置)
 図2は、通信装置10の内部を透視した斜視図である。通信装置10は、筐体11で覆われている。筐体11の内部には、アンテナ装置120、アンテナ装置120を実装する実装基板20が設けられる。アンテナ装置120は、実装基板20の主面21ではなく、実装基板20の側面22に隣接して配置される。
(Arrangement of antenna device)
FIG. 2 is a perspective view of the inside of the communication device 10. The communication device 10 is covered with a housing 11. Inside the housing 11, an antenna device 120 and a mounting board 20 on which the antenna device 120 is mounted are provided. The antenna device 120 is arranged adjacent to the side surface 22 of the mounting board 20 instead of the main surface 21 of the mounting board 20.
 図3は、通信装置10の内部を、実装基板20の主面21および側面22に沿う方向から透視した側面図である。上述したように、アンテナ装置120は、実装基板20の側面22に隣接して配置される。アンテナ装置120と実装基板20とは接続線160によって接続される。 FIG. 3 is a side view of the inside of the communication device 10 viewed from the direction along the main surface 21 and the side surface 22 of the mounting board 20. As described above, the antenna device 120 is arranged adjacent to the side surface 22 of the mounting board 20. The antenna device 120 and the mounting board 20 are connected by a connecting line 160.
 アンテナ装置120は、内側表面131と外側表面132とを有する誘電体130によって形成される。誘電体130は、内側表面131から外側表面132に向かう方向を積層方向として、複数の誘電体層が積層方向に積層されて形成される。誘電体130は、たとえば、エポキシ、ポリイミドなどの樹脂で形成される。なお、誘電体130は、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)あるいはフッ素系樹脂を用いて形成されてもよい。RFIC110は、誘電体130の内側表面131に実装される。 The antenna device 120 is formed of a dielectric 130 having an inner surface 131 and an outer surface 132. The dielectric 130 is formed by laminating a plurality of dielectric layers in the laminating direction with the direction from the inner surface 131 to the outer surface 132 as the laminating direction. The dielectric 130 is formed of, for example, a resin such as epoxy or polyimide. The dielectric 130 may be formed by using a liquid crystal polymer (LCP) or a fluororesin having a lower dielectric constant. The RFIC 110 is mounted on the inner surface 131 of the dielectric 130.
 誘電体130の内側表面131に近い層には、内側表面131に沿う方向に延在する平板状の2枚の接地板GND1,GND2が設けられる。以下では、接地板GND1の法線方向を「X軸方向」、接地板GND1の延在方向であってアンテナ装置120の長さ方向に沿う方向を「Y軸方向」、X軸方向およびY軸方向に垂直な方向を「Z軸方向」とも称する。 In the layer close to the inner surface 131 of the dielectric 130, two flat plate-shaped ground plates GND1 and GND2 extending in the direction along the inner surface 131 are provided. In the following, the normal direction of the ground plate GND1 is the "X-axis direction", the extending direction of the ground plate GND1 along the length direction of the antenna device 120 is the "Y-axis direction", the X-axis direction and the Y-axis. The direction perpendicular to the direction is also referred to as "Z-axis direction".
 通信装置10の筐体11の厚さ(Z軸方向の長さ)Tは、筐体11のX軸方向の長さおよびY軸方向の長さに比べて、かなり短い。アンテナ装置120のZ軸方向の長さは、筐体11の薄い厚さTの制約を受ける。この点に鑑み、本実施の形態によるアンテナ装置120においては、Z軸方向の長さを小型化するための工夫が施されている。 The thickness (length in the Z-axis direction) T of the housing 11 of the communication device 10 is considerably shorter than the length in the X-axis direction and the length in the Y-axis direction of the housing 11. The length of the antenna device 120 in the Z-axis direction is restricted by the thin thickness T of the housing 11. In view of this point, the antenna device 120 according to the present embodiment is devised to reduce the length in the Z-axis direction.
 図4は、アンテナ装置120の内部をX軸方向から透視した図である。アンテナ装置120の内部には、複数のアンテナユニット125が、接地板の延在方向と平行なY軸方向に沿って並べて配置される。X軸方向からアンテナ装置120を透視したとき、各アンテナユニット125における第1放射板121と第2放射板122とは、互いに重なり合う部分を有する。 FIG. 4 is a perspective view of the inside of the antenna device 120 from the X-axis direction. Inside the antenna device 120, a plurality of antenna units 125 are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate. When the antenna device 120 is viewed through from the X-axis direction, the first radiation plate 121 and the second radiation plate 122 in each antenna unit 125 have portions that overlap each other.
 図5は、アンテナ装置120の内部を透視した斜視図である。図6は、図4におけるアンテナ装置120のVI-VI断面図である。図5、図6を参照して、アンテナ装置120の構成についてさらに説明する。アンテナ装置120の説明においては、X軸の正方向を「上」とし、X軸の正方向を「下」として説明する場合がある。 FIG. 5 is a perspective view of the inside of the antenna device 120. FIG. 6 is a VI-VI cross-sectional view of the antenna device 120 in FIG. The configuration of the antenna device 120 will be further described with reference to FIGS. 5 and 6. In the description of the antenna device 120, the positive direction of the X-axis may be described as "up" and the positive direction of the X-axis may be described as "down".
 アンテナ装置120は、平板状の2枚の接地板GND1,GND2と、アンテナユニット125と、第1給電線141と、第2給電線142と、複数の第1接地ビア151と、複数の第2接地ビア152とを備える。 The antenna device 120 includes two flat plate-shaped grounding plates GND1 and GND2, an antenna unit 125, a first feeder line 141, a second feeder line 142, a plurality of first grounding vias 151, and a plurality of second feeding lines. It is provided with a grounding via 152.
 接地板GND1,GND2は、誘電体130の下層に配置され、下層全体に亘ってY軸方向およびZ軸方向に延在するように構成される。接地板GND1,GND2は、互いに所定距離を隔ててX軸方向に並べて配置される。 The ground plates GND1 and GND2 are arranged in the lower layer of the dielectric 130, and are configured to extend in the Y-axis direction and the Z-axis direction over the entire lower layer. The ground plates GND1 and GND2 are arranged side by side in the X-axis direction with a predetermined distance from each other.
 アンテナユニット125に含まれる第1放射板121および第2放射板122は、どちらも、接地板GND1と対向するように配置される。第1放射板121は、第2放射板122よりも上層(接地板GND1から離れた位置)に配置される。 Both the first radiation plate 121 and the second radiation plate 122 included in the antenna unit 125 are arranged so as to face the ground plate GND1. The first radiation plate 121 is arranged in a layer above the second radiation plate 122 (a position away from the ground plate GND1).
 第1放射板121のZ軸の負方向側の端部121aは、複数の第1接地ビア151によって接地板GND1に接続される。なお、図5には端部121aの全体が接地板GND1に接続される例が示されるが、端部121aの一部が接地板GND1に接続されるものであってもよい。以下では、第1接地ビア151によって接地板GND1に接続される、第1放射板121の端部121aを、「第1放射板121の接地端部121a」とも称する。 The end portion 121a of the first radiation plate 121 on the negative direction side of the Z axis is connected to the ground plate GND1 by a plurality of first ground vias 151. Although FIG. 5 shows an example in which the entire end portion 121a is connected to the grounding plate GND1, a part of the end portion 121a may be connected to the grounding plate GND1. Hereinafter, the end portion 121a of the first radiation plate 121 connected to the ground plate GND1 by the first grounding via 151 is also referred to as “the grounding end portion 121a of the first radiation plate 121”.
 第2放射板122のZ軸の負方向側の端部122aは、複数の第2接地ビア152によって接地板GND1に接続される。なお、図5には端部122aの全体が接地板GND1に接続される例が示されるが、端部122aの一部が接地板GND1に接続されるものであってもよい。以下では、第2接地ビア152によって接地板GND1に接続される、第2放射板122の端部122aを、「第2放射板122の接地端部122a」とも称する。 The end portion 122a of the second radiation plate 122 on the negative direction side of the Z axis is connected to the ground plate GND1 by a plurality of second ground vias 152. Although FIG. 5 shows an example in which the entire end portion 122a is connected to the grounding plate GND1, a part of the end portion 122a may be connected to the grounding plate GND1. Hereinafter, the end portion 122a of the second radiation plate 122 connected to the ground plate GND1 by the second grounding via 152 is also referred to as “the grounding end portion 122a of the second radiation plate 122”.
 第1放射板121の接地端部121aと第2放射板122の接地端部122aとは、Z軸方向において揃えられている。言い換えれば、X軸方向(接地板GND1の法線方向)からアンテナ装置120を透視したとき、第1放射板121の接地端部121aと第2放射板122の接地端部122aとは、互いに重なり合う部分を有する。 The ground contact end 121a of the first radiation plate 121 and the ground contact end 122a of the second radiation plate 122 are aligned in the Z-axis direction. In other words, when the antenna device 120 is seen through from the X-axis direction (normal direction of the grounding plate GND1), the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 overlap each other. Has a part.
 さらに、第1接地ビア151は、第2放射板122の接地端部122aにも接続されている。したがって、第1接地ビア151と第2接地ビア152とは、互いに共用される部分を有する。すなわち、第1接地ビア151の一部(接地板GND1から第2放射板122の接地端部122aまでの部分)は、第2接地ビア152の一部としても機能する。さらに、第1放射板121の接地端部121aと第2放射板122の接地端部122aとは、第1接地ビア151の残りの一部(第1放射板121の接地端部122aから第2放射板122の接地端部121aまでの部分)によってX軸方向に直線的に接続される。 Further, the first grounding via 151 is also connected to the grounding end 122a of the second radiation plate 122. Therefore, the first grounded via 151 and the second grounded via 152 have a portion shared with each other. That is, a part of the first grounding via 151 (the part from the grounding plate GND1 to the grounding end portion 122a of the second radiation plate 122) also functions as a part of the second grounding via 152. Further, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are the remaining part of the first grounding via 151 (the second from the grounding end portion 122a of the first radiation plate 121). A portion of the radiation plate 122 up to the grounding end 121a) is linearly connected in the X-axis direction.
 第1給電線141の下側の端部は、RFIC110に接続される。第1給電線141の上側の端部は、第1放射板121の給電点SP1に接続される。第1放射板121とRFIC110との間に配置される第2放射板122および接地板GND1,GND2は第1給電線141との接触を避けるための貫通穴を有しており、第1給電線141はこれらの貫通穴を通るように配置される。 The lower end of the first feeder line 141 is connected to the RFIC 110. The upper end of the first feeder line 141 is connected to the feeder point SP1 of the first radiation plate 121. The second radiation plate 122 and the ground plates GND1 and GND2 arranged between the first radiation plate 121 and the RFIC 110 have through holes for avoiding contact with the first feed line 141, and the first feeder line 141 is arranged to pass through these through holes.
 RFIC110からの信号が第1給電線141を通って第1放射板121の給電点SP1に供給されることによって、第1放射板121からは、第1周波数f1(たとえば60GHz)帯域の高周波信号が放射される。なお、第1放射板121の給電点SP1が接地端部121aよりもZ軸の正方向の位置に配置されているため、第1放射板121からは、Z軸方向を励振方向とする偏波が、X軸の正方向(第1放射板121の法線方向)よりもZ軸の正方向側に傾いた方向に向けて放射される。 By supplying the signal from the RFIC 110 to the feeding point SP1 of the first radiation plate 121 through the first feeding line 141, a high frequency signal in the first frequency f1 (for example, 60 GHz) band is transmitted from the first radiation plate 121. Be radiated. Since the feeding point SP1 of the first radiation plate 121 is arranged at a position in the positive direction of the Z axis with respect to the ground contact end portion 121a, polarization from the first radiation plate 121 with the Z axis direction as the excitation direction. Is radiated in a direction inclined toward the positive direction of the Z axis from the positive direction of the X axis (the normal direction of the first radiation plate 121).
 第2給電線142は、第1給電線141とは別々に設けられる。第2給電線142の下側の端部は、RFIC110に接続される。第2給電線142の上側の端部は、第2放射板122の給電点SP2に接続される。第2放射板122とRFIC110との間に配置される接地板GND1,GND2は第2給電線142との接触を避けるための貫通穴を有しており、第2給電線142はこれらの貫通穴を通るように配置される。 The second feeder line 142 is provided separately from the first feeder line 141. The lower end of the second feeder 142 is connected to the RFIC 110. The upper end of the second feeder line 142 is connected to the feeder point SP2 of the second radiation plate 122. The ground plates GND1 and GND2 arranged between the second radiation plate 122 and the RFIC 110 have through holes for avoiding contact with the second feeder line 142, and the second feeder line 142 has these through holes. Arranged to pass through.
 RFIC110からの信号が第2給電線142を通って第2放射板122の給電点SP2に供給されることによって、第2放射板122からは、第2周波数f2(たとえば28GHz)帯域の高周波信号が放射される。なお、第2放射板122の給電点SP2が接地端部122aよりもZ軸の正方向に配置されているため、第2放射板122からは、Z軸方向を励振方向とする偏波が、X軸の正方向(第2放射板122の法線方向)よりもZ軸の正方向側に傾いた方向に向けて放射される。 By supplying the signal from the RFIC 110 to the feeding point SP2 of the second radiation plate 122 through the second feeding line 142, a high frequency signal in the second frequency f2 (for example, 28 GHz) band is transmitted from the second radiation plate 122. Be radiated. Since the feeding point SP2 of the second radiation plate 122 is arranged in the positive direction of the Z axis with respect to the ground contact end portion 122a, polarization with the Z axis direction as the excitation direction is generated from the second radiation plate 122. The radiation is emitted in a direction inclined toward the positive direction of the Z axis from the positive direction of the X axis (normal direction of the second radiation plate 122).
 一般的に、通常のパッチアンテナの放射板の長さは波長の2分の1程度とされるが、片側短絡型パッチアンテナの放射板の長さは波長の4分の1程度とされる。そのため、第1放射板121のZ軸方向の長さL1は、第1周波数f1(60GHz)の信号の波長の4分の1程度に設定される。第2放射板122のZ軸方向の長さL2は、第2周波数f2(28GHz)の信号の波長の4分の1程度に設定される。したがって、第1放射板121のZ軸方向の長さL1は、第2放射板122のZ軸方向の長さL2よりも短い。 Generally, the length of the radiation plate of a normal patch antenna is about half of the wavelength, but the length of the radiation plate of a one-sided short-circuit type patch antenna is about one-fourth of the wavelength. Therefore, the length L1 of the first radiation plate 121 in the Z-axis direction is set to about one-fourth of the wavelength of the signal of the first frequency f1 (60 GHz). The length L2 of the second radiation plate 122 in the Z-axis direction is set to about one-fourth of the wavelength of the signal of the second frequency f2 (28 GHz). Therefore, the length L1 of the first radiation plate 121 in the Z-axis direction is shorter than the length L2 of the second radiation plate 122 in the Z-axis direction.
 (アンテナ装置の特性)
 以上のような構成を有するアンテナ装置120の特性について説明する。
(Characteristics of antenna device)
The characteristics of the antenna device 120 having the above configuration will be described.
 上述のように、本実施の形態に係るアンテナ装置120においては、X軸方向(接地板GND1の法線方向)からアンテナ装置120を透視したとき、第1放射板121と第2放射板122とは互いに重なり合う部分を有する。これにより、たとえば第1放射板121と第2放射板122とが重なり合うことなくZ軸方向に並べて配置される場合に比べて、アンテナユニット125のZ軸方向のサイズを小さくすることが可能になる。なお、アンテナユニット125、第1放射板121、第2放射板122、および接地板GND1は、本開示の「アンテナユニット」、「第1放射板」、「第2放射板」、および「接地板」にそれぞれ対応し得る。 As described above, in the antenna device 120 according to the present embodiment, when the antenna device 120 is seen through from the X-axis direction (normal direction of the ground plate GND1), the first radiation plate 121 and the second radiation plate 122 Have parts that overlap each other. As a result, for example, the size of the antenna unit 125 in the Z-axis direction can be reduced as compared with the case where the first radiation plate 121 and the second radiation plate 122 are arranged side by side in the Z-axis direction without overlapping. .. The antenna unit 125, the first radiation plate 121, the second radiation plate 122, and the ground plate GND1 are the "antenna unit", the "first radiation plate", the "second radiation plate", and the "ground plate" of the present disclosure. Can correspond to each.
 さらに、第1放射板121は、接地板GND1に接続されない通常のパッチアンテナではなく、片側の接地端部121aが接地板GND1に接続された片側短絡型パッチアンテナである。また、第2放射板122も、接地板GND1に接続されない通常のパッチアンテナではなく、片側の接地端部122aが接地板GND1に接続された片側短絡型パッチアンテナである。そのため、本実施の形態に係るアンテナ装置120においては、通常のパッチアンテナを用いる場合に比べて、第1放射板121のZ軸方向の長さL1および第2放射板122のZ軸方向の長さL2をそれぞれ約半分にすることができ、アンテナ装置120のZ軸方向のサイズをより小さくすることが可能となる。なお、接地端部121aおよび接地端部122aは、本開示の「第1接地端部」および「第2接地端部」にそれぞれ対応し得る。 Further, the first radiation plate 121 is not a normal patch antenna that is not connected to the ground plate GND1, but a one-side short-circuit type patch antenna in which the ground end 121a on one side is connected to the ground plate GND1. Further, the second radiation plate 122 is not a normal patch antenna not connected to the ground plate GND1, but a one-side short-circuit type patch antenna in which the ground end 122a on one side is connected to the ground plate GND1. Therefore, in the antenna device 120 according to the present embodiment, the length L1 of the first radiation plate 121 in the Z-axis direction and the length of the second radiation plate 122 in the Z-axis direction are longer than in the case of using a normal patch antenna. Each of the L2 can be halved, and the size of the antenna device 120 in the Z-axis direction can be further reduced. The grounding end portion 121a and the grounding end portion 122a may correspond to the "first grounding end portion" and the "second grounding end portion" of the present disclosure, respectively.
 さらに、第1放射板121の給電点SP1に接続される第1給電線141と、第2放射板122の給電点SP2に接続される第2給電線142とが、別々に設けられる。これにより、第1給電線141の長さと第2給電線142の長さとを個別に調整することができるため、インピーダンス調整を容易に行なうことができ、放射特性を改善し易くすることができる。なお、第1給電線141および第2給電線142は、本開示の「第1給電線」および「第2給電線」にそれぞれ対応し得る。 Further, a first feeder line 141 connected to the feed point SP1 of the first radiation plate 121 and a second feeder line 142 connected to the feed point SP2 of the second radiation plate 122 are separately provided. As a result, the length of the first feeder line 141 and the length of the second feeder line 142 can be adjusted individually, so that the impedance can be easily adjusted and the radiation characteristics can be easily improved. The first feeder line 141 and the second feeder line 142 can correspond to the "first feeder line" and the "second feeder line" of the present disclosure, respectively.
 以上のように、本実施の形態においては、小型化が可能で、かつ放射特性を改善し易い、デュアルバンド型のアンテナ装置120が実現される。 As described above, in the present embodiment, the dual band type antenna device 120 which can be miniaturized and whose radiation characteristics can be easily improved is realized.
 さらに、本実施の形態に係るアンテナ装置120においては、第1放射板121の接地端部121aと第2放射板122の接地端部122aとは、Z軸方向において揃えられている。言い換えれば、X軸方向からアンテナ装置120を透視したとき、第1放射板121の接地端部121aと第2放射板122の接地端部122aとは、互いに重なり合う部分を有する。そのため、たとえば第1放射板121の接地端部121aが第2放射板122の接地端部122aよりもZ軸の負方向にずれている場合に比べて、アンテナ装置120のZ軸方向のサイズをより小さくすることが可能となる。 Further, in the antenna device 120 according to the present embodiment, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are aligned in the Z-axis direction. In other words, when the antenna device 120 is seen through from the X-axis direction, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 have a portion that overlaps with each other. Therefore, for example, the size of the antenna device 120 in the Z-axis direction is larger than that in the case where the grounding end portion 121a of the first radiation plate 121 is deviated from the grounding end portion 122a of the second radiation plate 122 in the negative direction of the Z-axis. It can be made smaller.
 さらに、本実施の形態に係るアンテナ装置120においては、第1接地ビア151と第2接地ビア152とは互いに共用される部分を有する。すなわち、第1接地ビア151の一部(接地板GND1から第2放射板122の接地端部122aまでの部分)は、第2接地ビア152の一部としても機能する。そのため、第1接地ビア151と第2接地ビア152とが互いに共用される部分を有しない場合に比べて、第1接地ビア151および第2接地ビア152の構成を簡素化できる。なお、第1接地ビア151および第2接地ビア152は、本開示の「第1接地線」および「第2接地線」にそれぞれ対応し得る。 Further, in the antenna device 120 according to the present embodiment, the first grounded via 151 and the second grounded via 152 have a portion shared with each other. That is, a part of the first grounding via 151 (the part from the grounding plate GND1 to the grounding end portion 122a of the second radiation plate 122) also functions as a part of the second grounding via 152. Therefore, the configurations of the first grounded via 151 and the second grounded via 152 can be simplified as compared with the case where the first grounded via 151 and the second grounded via 152 do not have a portion shared with each other. The first grounding via 151 and the second grounding via 152 can correspond to the "first grounding wire" and the "second grounding wire" of the present disclosure, respectively.
 さらに、本実施の形態に係るアンテナ装置120においては、第1放射板121の接地端部121aと第2放射板122の接地端部122aとが、第1接地ビア151の残りの一部(第1放射板121の接地端部122aから第2放射板122の接地端部121aまでの部分)によって、X軸方向に直線的に接続される。そのため、第1接地ビア151の長さを短くすることができる。 Further, in the antenna device 120 according to the present embodiment, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are the remaining part of the first grounding via 151 (the first). It is linearly connected in the X-axis direction by a portion) from the grounding end portion 122a of the 1 radiation plate 121 to the grounding end portion 121a of the second radiation plate 122. Therefore, the length of the first grounding via 151 can be shortened.
 さらに、本実施の形態に係るアンテナ装置120においては、複数のアンテナユニット125が接地板GND1の延在方向と平行なY軸方向に沿って並べて配置される。これにより、デュアルバンド型のアレイアンテナが実現される。 Further, in the antenna device 120 according to the present embodiment, a plurality of antenna units 125 are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate GND1. As a result, a dual band type array antenna is realized.
 <変形例1>
 上述の実施の形態に係るアンテナ装置120においては、誘電体130が1つの基板で形成されており、接地端部121a,122aと接地板GND1,GND2とが1つの基板に設けられる。しかしながら、誘電体130をX軸方向に所定間隔を隔てて配置された複数の基板で形成し、接地端部121a,122aと接地板GND1,GND2とを別々の基板に設けるようにしてもよい。
<Modification example 1>
In the antenna device 120 according to the above-described embodiment, the dielectric 130 is formed of one substrate, and the grounding ends 121a and 122a and the grounding plates GND1 and GND2 are provided on one substrate. However, the dielectric 130 may be formed of a plurality of substrates arranged at predetermined intervals in the X-axis direction, and the grounding ends 121a and 122a and the grounding plates GND1 and GND2 may be provided on separate substrates.
 図7は、本変形例1に係るアンテナ装置120Hの断面図である。アンテナ装置120Hは、上述のアンテナ装置120の誘電体130を、誘電体130Hに変更したものである。誘電体130Hは、X軸方向に所定間隔を隔てて配置された第1基板130aおよび第2基板130bを備える。第1基板130aと第2基板130bとは、はんだバンプ160もしくは接着により接続される。第1放射板121の接地端部121aおよび第2放射板122の接地端部122aは第1基板130aに設けられ、接地板GND1,GND2は第2基板130bに設けられる。接地端部121a,122aは、はんだバンプ160もしくは接着により接地板GND1に接続される。このようなアンテナ装置120Hであってもよい。 FIG. 7 is a cross-sectional view of the antenna device 120H according to the first modification. The antenna device 120H is obtained by changing the dielectric 130 of the antenna device 120 described above to the dielectric 130H. The dielectric 130H includes a first substrate 130a and a second substrate 130b arranged at predetermined intervals in the X-axis direction. The first substrate 130a and the second substrate 130b are connected by solder bumps 160 or adhesion. The grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are provided on the first substrate 130a, and the grounding plates GND1 and GND2 are provided on the second substrate 130b. The grounding ends 121a and 122a are connected to the grounding plate GND1 by solder bumps 160 or adhesion. Such an antenna device 120H may be used.
 なお、第1放射板121および第2放射板122が形成される第1基板130aは、筐体(たとえば通信装置10を覆う樹脂製のハウジング)の一部によって構成されてもよい。また、はんだバンプ160は、ポゴピンなどの電気接点部であってもよい。 The first substrate 130a on which the first radiation plate 121 and the second radiation plate 122 are formed may be formed of a part of a housing (for example, a resin housing covering the communication device 10). Further, the solder bump 160 may be an electrical contact portion such as a pogo pin.
 <変形例2>
 上述の実施の形態に係るアンテナ装置120においては、第1放射板121の接地端部121aと第2放射板122の接地端部122aとがZ軸方向において揃えられている。しかしながら、第1放射板121の接地端部121aと第2放射板122の接地端部122aとがZ軸方向にずれていてもよい。
<Modification 2>
In the antenna device 120 according to the above-described embodiment, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are aligned in the Z-axis direction. However, the ground contact end portion 121a of the first radiation plate 121 and the ground contact end portion 122a of the second radiation plate 122 may be displaced in the Z-axis direction.
 図8は、本変形例2に係るアンテナ装置120Aの断面図である。アンテナ装置120Aは、上述のアンテナ装置120のアンテナユニット125および第1接地ビア151を、それぞれアンテナユニット125Aおよび第1接地ビア151Aに変更したものである。 FIG. 8 is a cross-sectional view of the antenna device 120A according to the second modification. The antenna device 120A is obtained by changing the antenna unit 125 and the first grounded via 151 of the above-mentioned antenna device 120 to the antenna unit 125A and the first grounded via 151A, respectively.
 アンテナユニット125Aは、上述のアンテナユニット125に対して、第1放射板121の接地端部121aが第2放射板122の接地端部122aよりもZ軸の負方向にずれている点が異なる。アンテナユニット125Aのその他の点は上述のアンテナユニット125と同じである。 The antenna unit 125A is different from the above-mentioned antenna unit 125 in that the grounding end 121a of the first radiation plate 121 is displaced in the negative direction of the Z axis from the grounding end 122a of the second radiation plate 122. Other points of the antenna unit 125A are the same as those of the antenna unit 125 described above.
 第1接地ビア151Aは、上述の第1接地ビア151に対して、第2放射板122の接地端部122aから第1放射板121の接地端部121aまでの部分が、Z軸の負方向にずれている点が異なる。第1接地ビア151Aのその他の点は上述の第1接地ビア151と同じである。 In the first grounding via 151A, the portion from the grounding end portion 122a of the second radiation plate 122 to the grounding end portion 121a of the first radiation plate 121 is in the negative direction of the Z axis with respect to the above-mentioned first grounding via 151. The difference is that they are out of alignment. Other points of the first grounded via 151A are the same as those of the first grounded via 151 described above.
 このように、第1放射板121の接地端部121aと第2放射板122の接地端部122aとがZ軸方向にずれていてもよい。 In this way, the ground contact end portion 121a of the first radiation plate 121 and the ground contact end portion 122a of the second radiation plate 122 may be displaced in the Z-axis direction.
 図9は、本変形例2に係る他のアンテナ装置120Bの断面図である。アンテナ装置120Bは、上述のアンテナ装置120のアンテナユニット125、第1接地ビア151および第2接地ビア152を、それぞれアンテナユニット125B、第1接地ビア151Bおよび第2接地ビア152Bに変更したものである。その他の構造は、上述のアンテナ装置120と同じであるため、ここでの詳細な説明は繰返さない。 FIG. 9 is a cross-sectional view of another antenna device 120B according to the second modification. The antenna device 120B is obtained by changing the antenna unit 125, the first ground via 151, and the second ground via 152 of the above-mentioned antenna device 120 to the antenna unit 125B, the first ground via 151B, and the second ground via 152B, respectively. .. Since other structures are the same as those of the antenna device 120 described above, the detailed description here will not be repeated.
 アンテナユニット125Bは、上述のアンテナユニット125に対して、第1放射板121の接地端部121aが第2放射板122の接地端部122aよりもZ軸の負方向にずれている点が異なる。アンテナユニット125Bのその他の点は上述のアンテナユニット125と同じである。 The antenna unit 125B is different from the above-mentioned antenna unit 125 in that the grounding end 121a of the first radiation plate 121 is displaced in the negative direction of the Z axis from the grounding end 122a of the second radiation plate 122. Other points of the antenna unit 125B are the same as those of the antenna unit 125 described above.
 第1接地ビア151Bは、第2放射板122の接地端部122aには接続されていない。すなわち、第1接地ビア151Bと第2接地ビア152Bとは別々に設けられ、互いに共有する部分を有しない。 The first grounding via 151B is not connected to the grounding end 122a of the second radiation plate 122. That is, the first grounded via 151B and the second grounded via 152B are provided separately and do not have a portion shared with each other.
 このように、第1放射板121の接地端部121aと第2放射板122の接地端部122aとがZ軸方向にずれており、かつ第1接地ビア151Bと第2接地ビア152Bとが別々に設けられるようにしてもよい。 In this way, the grounding end portion 121a of the first radiation plate 121 and the grounding end portion 122a of the second radiation plate 122 are displaced in the Z-axis direction, and the first grounding via 151B and the second grounding via 152B are separate. It may be provided in.
 <変形例3>
 上述の変形例2に係る他のアンテナ装置120B(図9参照)においては、第1接地ビア151Bと第2接地ビア152Bとが別々に設けられるが、第1接地ビア151Bと第2接地ビア152Bとがどちらも各放射板121,122の面中心に対して同じ側(Z軸負方向側)に設けられる。
<Modification example 3>
In the other antenna device 120B (see FIG. 9) according to the above-described modification 2, the first grounded via 151B and the second grounded via 152B are separately provided, but the first grounded via 151B and the second grounded via 152B are provided separately. Both are provided on the same side (Z-axis negative direction side) with respect to the surface center of each of the radiation plates 121 and 122.
 しかしながら、第1接地ビア151Bと第2接地ビア152Bとが各放射板121,122の面中心に対して互いに異なる側に設けられるようにしてもよい。 However, the first grounding via 151B and the second grounding via 152B may be provided on different sides of the surface centers of the radiation plates 121 and 122.
 図10は、本変形例3に係るアンテナ装置120Iの断面図である。アンテナ装置120Iは、上述のアンテナ装置120Bの第2接地ビア152Bを、第2放射板122の面中心よりも右側(Z軸正方向側)に移動させたものである。これにより、アンテナ装置120Iにおいては、第1接地ビア151Bが第1放射板121の面中心よりも左側(Z軸負方向側)に設けられ、第2接地ビア152Bが第2放射板122の面中心よりも右側(Z軸正方向側)に設けられる。このような配置によって、第1放射板121の放射方向と第2放射板122の放射方向とを互いに異ならせることができる。 FIG. 10 is a cross-sectional view of the antenna device 120I according to the third modification. The antenna device 120I is a device in which the second grounding via 152B of the above-mentioned antenna device 120B is moved to the right side (Z-axis positive direction side) of the surface center of the second radiation plate 122. As a result, in the antenna device 120I, the first grounding via 151B is provided on the left side (Z-axis negative direction side) of the surface center of the first radiation plate 121, and the second grounding via 152B is the surface of the second radiation plate 122. It is provided on the right side (Z-axis positive direction side) of the center. With such an arrangement, the radiation direction of the first radiation plate 121 and the radiation direction of the second radiation plate 122 can be made different from each other.
 <変形例4>
 上述の実施の形態においてはデュアルバンド型のアンテナ装置120について説明したが、トリプルバンド型のアンテナ装置に変形してもよい。
<Modification example 4>
Although the dual-band type antenna device 120 has been described in the above-described embodiment, it may be transformed into a triple-band type antenna device.
 図11は、本変形例4によるアンテナ装置120Cの断面図である。アンテナ装置120Cにおいては、上述のアンテナ装置120のアンテナユニット125が、アンテナユニット125Cに変更されている。 FIG. 11 is a cross-sectional view of the antenna device 120C according to the present modification 4. In the antenna device 120C, the antenna unit 125 of the above-mentioned antenna device 120 is changed to the antenna unit 125C.
 アンテナユニット125Cは、第1放射板121と第2放射板122に加えて、放射板123を含む。すなわち、アンテナユニット125Cは、上述のアンテナユニット125に対して、放射板123が追加されている。なお、アンテナユニット125Cおよび放射板123は、本開示の「アンテナユニット」および「第5放射板」にそれぞれ対応し得る。 The antenna unit 125C includes a radiation plate 123 in addition to the first radiation plate 121 and the second radiation plate 122. That is, in the antenna unit 125C, a radiation plate 123 is added to the above-mentioned antenna unit 125. The antenna unit 125C and the radiation plate 123 can correspond to the “antenna unit” and the “fifth radiation plate” of the present disclosure, respectively.
 放射板123は、第1放射板121と第2放射板122との間に配置される。放射板123の給電点SP3は、第3給電線143を介してRFIC110に接続される。放射板123の接地端部(Z軸の負方向側の端部)123aは、第3接地ビア153Cを介して接地板GND1に接続される。放射板123は、第1放射板121および第2放射板122と同様、片側短絡型パッチアンテナ(板状の逆Fアンテナ)である。 The radiation plate 123 is arranged between the first radiation plate 121 and the second radiation plate 122. The feeding point SP3 of the radiation plate 123 is connected to the RFIC 110 via the third feeding line 143. The grounding end portion (end on the negative direction side of the Z axis) 123a of the radiation plate 123 is connected to the grounding plate GND1 via the third grounding via 153C. The radiation plate 123 is a one-sided short-circuit type patch antenna (plate-shaped inverted F antenna) like the first radiation plate 121 and the second radiation plate 122.
 X軸方向(接地板GND1の法線方向)からアンテナ装置120を透視したとき、第1放射板121、第2放射板122および放射板123は、互いに重なり合う部分を有する。第1放射板121の接地端部121a、第2放射板122の接地端部122a、および放射板123の接地端部123aは、Z軸方向において揃えられている。なお、第1放射板121の接地端部121aは、第1接地ビア151Cを介して接地板GND1に接続される。第2放射板122の接地端部122aは、第2接地ビア152Cを介して接地板GND1に接続される。 When the antenna device 120 is seen through from the X-axis direction (normal direction of the ground plate GND1), the first radiation plate 121, the second radiation plate 122, and the radiation plate 123 have portions that overlap each other. The grounding end 121a of the first radiation plate 121, the grounding end 122a of the second radiation plate 122, and the grounding end 123a of the radiation plate 123 are aligned in the Z-axis direction. The grounding end portion 121a of the first radiation plate 121 is connected to the grounding plate GND1 via the first grounding via 151C. The grounding end portion 122a of the second radiation plate 122 is connected to the grounding plate GND1 via the second grounding via 152C.
 第1接地ビア151Cは、第2放射板122の接地端部122aおよび放射板123の接地端部123aにも接続される。第3接地ビア153Cは、第2放射板122の接地端部122aにも接続される。したがって、第1接地ビア151C、第2接地ビア152Cおよび第3接地ビア153Cは、互いに共用される部分を有する。 The first grounding via 151C is also connected to the grounding end 122a of the second radiation plate 122 and the grounding end 123a of the radiation plate 123. The third grounding via 153C is also connected to the grounding end 122a of the second radiation plate 122. Therefore, the first grounded via 151C, the second grounded via 152C, and the third grounded via 153C have a portion shared with each other.
 RFIC110からの信号が第3給電線143を通って放射板123の給電点SP3に供給されることによって、放射板123からは、第1周波数f1(たとえば60GHz)帯域と第2周波数f2(たとえば28GHz)帯域との間の第3周波数f3(たとえば39GHz)帯域の高周波信号が放射される。 By supplying the signal from the RFIC 110 to the feeding point SP3 of the radiation plate 123 through the third feed line 143, the radiation plate 123 has a first frequency f1 (for example, 60 GHz) band and a second frequency f2 (for example, 28 GHz). A high frequency signal in the third frequency f3 (for example, 39 GHz) band between the band and the band is emitted.
 放射板123のZ軸方向の長さL3は、第3周波数f3(たとえば39GHz)の高周波信号の波長の4分の1程度に設定される。したがって、放射板123のZ軸方向の長さL3は、第1放射板121のZ軸方向の長さL1よりも長く、第2放射板122のZ軸方向の長さL2よりも短い。 The length L3 of the radiation plate 123 in the Z-axis direction is set to about one-fourth of the wavelength of the high-frequency signal of the third frequency f3 (for example, 39 GHz). Therefore, the length L3 of the radiation plate 123 in the Z-axis direction is longer than the length L1 of the first radiation plate 121 in the Z-axis direction and shorter than the length L2 of the second radiation plate 122 in the Z-axis direction.
 以上のように、異なる周波数を放射する3つの片側短絡型パッチアンテナを重ねたトリプルバンド型のアンテナ装置120Cとしてもよい。 As described above, the triple band type antenna device 120C in which three one-sided short-circuit type patch antennas radiating different frequencies may be stacked may be used.
 <変形例5>
 上述の実施の形態においては、複数のアンテナユニット125がY軸方向に沿って並べて配置される例について説明した。
<Modification 5>
In the above-described embodiment, an example in which a plurality of antenna units 125 are arranged side by side along the Y-axis direction has been described.
 しかしながら、複数のアンテナユニット125の間に、アンテナユニット125とは異なるアンテナを配置するようにしてもよい。 However, an antenna different from the antenna unit 125 may be arranged between the plurality of antenna units 125.
 図12は、本変形例5によるアンテナ装置120Dの内部をX軸方向から透視した図である。アンテナ装置120Dにおいては、複数のアンテナユニット125が、接地板GND1の延在方向と平行なY軸方向に沿って並べて配置される。さらに、複数のアンテナユニット125の間には、アンテナユニット125とは異なるアンテナユニット125Dがそれぞれ配置される。 FIG. 12 is a perspective view of the inside of the antenna device 120D according to the present modification 5 from the X-axis direction. In the antenna device 120D, a plurality of antenna units 125 are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate GND1. Further, an antenna unit 125D different from the antenna unit 125 is arranged between the plurality of antenna units 125.
 アンテナユニット125の各々は、第1放射板121と放射板123とを含み、第1周波数f1(たとえば60GHz)帯域と第2周波数f2(たとえば28GHz)帯域との高周波信号を放射するように構成される。 Each of the antenna units 125 includes a first radiation plate 121 and a radiation plate 123, and is configured to emit high frequency signals in the first frequency f1 (for example, 60 GHz) band and the second frequency f2 (for example, 28 GHz) band. To.
 また、アンテナユニット125Dの各々は、第1放射板121と放射板123とを含み、第1周波数f1(たとえば60GHz)帯域と第3周波数f3(たとえば39GHz)帯域との高周波信号を放射するように構成される。アンテナユニット125Dは、上述のアンテナユニット125Cから、第2放射板122および第2給電線142を取り除いたものである。アンテナユニット125Dにおける第1放射板121および放射板123は、本開示の「第3放射板」および「第4放射板」にそれぞれ対応し得る。 Further, each of the antenna units 125D includes the first radiation plate 121 and the radiation plate 123, and emits high frequency signals of the first frequency f1 (for example, 60 GHz) band and the third frequency f3 (for example, 39 GHz) band. It is composed. The antenna unit 125D is obtained by removing the second radiation plate 122 and the second feeder line 142 from the above-mentioned antenna unit 125C. The first radiation plate 121 and the radiation plate 123 in the antenna unit 125D can correspond to the "third radiation plate" and the "fourth radiation plate" of the present disclosure, respectively.
 アンテナユニット125の第1放射板121および第2放射板122の接地端部、並びに、アンテナユニット125Dの第1放射板121および放射板123の接地端部は、Z軸方向において揃うように配置される。 The grounding ends of the first radiation plate 121 and the second radiation plate 122 of the antenna unit 125, and the grounding ends of the first radiation plate 121 and the radiation plate 123 of the antenna unit 125D are arranged so as to be aligned in the Z-axis direction. Radiation.
 以上のように、第1周波数f1と第2周波数f2とに対応可能なデュアルバンド型のアンテナユニット125と、第1周波数f1と第3周波数f3とに対応可能なデュアルバンド型のアンテナユニット125Dとを、Y軸方向に交互に配置するようにしてもよい。これにより、第1周波数f1、第2周波数f2および第3周波数f3に対応可能なトリプルバンド型のアレイアンテナを形成することができる。 As described above, the dual band type antenna unit 125 that can correspond to the first frequency f1 and the second frequency f2, and the dual band type antenna unit 125D that can correspond to the first frequency f1 and the third frequency f3. May be arranged alternately in the Y-axis direction. This makes it possible to form a triple band type array antenna that can handle the first frequency f1, the second frequency f2, and the third frequency f3.
 特に、アンテナ装置120Dにおいては、第1周波数f1、第2周波数f2および第3周波数f3のうち、最も高い第1周波数f1の信号を放射する第1放射板121が、アンテナユニット125およびアンテナユニット125Dの双方に含まれる。そのため、最も高い第1周波数f1に対応する第1放射板121の配置間隔を、他の第2放射板122、放射板123の配置間隔よりも小さくすることができる。これにより、第1周波数f1の信号が放射される際のサイドローブレベルを低減することができる。 In particular, in the antenna device 120D, the first radiation plate 121 that emits the signal of the highest first frequency f1 among the first frequency f1, the second frequency f2, and the third frequency f3 is the antenna unit 125 and the antenna unit 125D. Included in both. Therefore, the arrangement interval of the first radiation plate 121 corresponding to the highest first frequency f1 can be made smaller than the arrangement interval of the other second radiation plate 122 and the radiation plate 123. As a result, the sidelobe level when the signal of the first frequency f1 is radiated can be reduced.
 一般的に、アレイアンテナを形成する場合、隣接するアンテナの面中心同士の距離を波長の2分の1程度にすることが望ましく、面中心同士の距離が波長の2分の1よりも大きいほど、サイドローブレベルが悪化することが懸念される。この点を踏まえ、アンテナ装置120Dにおいては、最も波長の短い第1周波数f1の信号を放射する第1放射板121をアンテナユニット125およびアンテナユニット125Dの双方に含めることで、第1放射板121の配置間隔を小さくしている。これにより、第1周波数f1の信号が放射される際のサイドローブレベルを低減することができる。 Generally, when forming an array antenna, it is desirable that the distance between the surface centers of adjacent antennas is about half of the wavelength, and the distance between the surface centers is larger than one half of the wavelength. , There is concern that the side lobe level will deteriorate. Based on this point, in the antenna device 120D, by including the first radiation plate 121 that emits the signal of the first frequency f1 having the shortest wavelength in both the antenna unit 125 and the antenna unit 125D, the first radiation plate 121 The placement interval is reduced. As a result, the sidelobe level when the signal of the first frequency f1 is radiated can be reduced.
 図13は、本変形例5による他のアンテナ装置120Eの内部をX軸方向から透視した図である。アンテナ装置120Eにおいては、複数のアンテナユニット125Cが、接地板GND1の延在方向と平行なY軸方向に沿って並べて配置される。さらに、複数のアンテナユニット125Cの間には、アンテナユニット125Cとは異なるアンテナ125Eが配置される。 FIG. 13 is a perspective view of the inside of the other antenna device 120E according to the present modification 5 from the X-axis direction. In the antenna device 120E, a plurality of antenna units 125C are arranged side by side along the Y-axis direction parallel to the extending direction of the ground plate GND1. Further, an antenna 125E different from the antenna unit 125C is arranged between the plurality of antenna units 125C.
 アンテナユニット125Cの各々は、上述の図11に示したように、第1放射板121、第2放射板122および放射板123を含み、第1周波数f1、第2周波数f2および第3周波数f3に対応可能なトリプルバンド型のアンテナである。 As shown in FIG. 11 above, each of the antenna units 125C includes a first radiation plate 121, a second radiation plate 122, and a radiation plate 123, and has a first frequency f1, a second frequency f2, and a third frequency f3. It is a compatible triple band type antenna.
 また、アンテナ125Eの各々には、第1周波数f1帯域の高周波信号を放射する第1放射板121が配置される。アンテナ125Eは、上述のアンテナユニット125から、第2放射板122および第2給電線142を取り除いたものである。アンテナ125Eにおける第1放射板121は、本開示の「第3放射板」に対応し得る。 Further, a first radiation plate 121 that emits a high frequency signal in the first frequency f1 band is arranged in each of the antennas 125E. The antenna 125E is obtained by removing the second radiation plate 122 and the second feeder line 142 from the above-mentioned antenna unit 125. The first radiation plate 121 in the antenna 125E can correspond to the "third radiation plate" of the present disclosure.
 アンテナユニット125Cの第1放射板121、第2放射板122および放射板123の接地端部、並びに、アンテナ125Eの第1放射板121の接地端部は、Z軸方向において揃うように配置される。 The ground ends of the first radiation plate 121, the second radiation plate 122, and the radiation plate 123 of the antenna unit 125C, and the ground ends of the first radiation plate 121 of the antenna 125E are arranged so as to be aligned in the Z-axis direction. ..
 以上のように、第1周波数f1、第2周波数f2および第3周波数f3に対応可能なトリプルバンド型のアンテナユニット125Cと、第1周波数f1に対応可能なシングルバンド型のアンテナ125Eとを、Y軸方向に交互に配置するようにしてもよい。これにより、第1周波数f1、第2周波数f2および第3周波数f3に対応可能なトリプルバンド型のアレイアンテナを形成することができる。 As described above, the triple band type antenna unit 125C corresponding to the first frequency f1, the second frequency f2 and the third frequency f3, and the single band type antenna 125E corresponding to the first frequency f1 are Y. It may be arranged alternately in the axial direction. This makes it possible to form a triple band type array antenna that can handle the first frequency f1, the second frequency f2, and the third frequency f3.
 また、アンテナ装置120Eにおいても、上述のアンテナ装置120Dと同様に、第1周波数f1、第2周波数f2および第3周波数f3のうち、最も高い第1周波数f1の信号を放射する第1放射板121が、アンテナユニット125Cおよびアンテナ125Eの双方に含まれる。これにより、最も波長が短い第1周波数f1の信号を放射する第1放射板121の配置間隔を短くすることができる。そのため、第1周波数f1の信号が放射される際のサイドローブレベルを低減することができる。 Further, also in the antenna device 120E, similarly to the above-mentioned antenna device 120D, the first radiation plate 121 that emits the signal of the highest first frequency f1 among the first frequency f1, the second frequency f2, and the third frequency f3. Is included in both the antenna unit 125C and the antenna 125E. As a result, the arrangement interval of the first radiation plate 121 that emits the signal of the first frequency f1 having the shortest wavelength can be shortened. Therefore, the sidelobe level when the signal of the first frequency f1 is radiated can be reduced.
 <変形例6>
 上述の実施の形態においては片側短絡型パッチアンテナを設ける例について説明したが、片側短絡型パッチアンテナに加えて通常のパッチアンテナを設けるようにしてもよい。
<Modification 6>
In the above-described embodiment, an example in which a one-sided short-circuit type patch antenna is provided has been described, but a normal patch antenna may be provided in addition to the one-sided short-circuit type patch antenna.
 図14は、本変形例6によるアンテナ装置120Fの内部をX軸方向から透視した図である。アンテナ装置120Fは、上述のアンテナ装置120Eに対して、複数のアンテナユニット128,128Dを追加したものである。その他の構造は、上述のアンテナ装置120Eと同じであるため、ここでの詳細な説明は繰返さない。 FIG. 14 is a perspective view of the inside of the antenna device 120F according to the present modification 6 from the X-axis direction. The antenna device 120F is obtained by adding a plurality of antenna units 128 and 128D to the above-mentioned antenna device 120E. Since other structures are the same as those of the antenna device 120E described above, the detailed description here will not be repeated.
 アンテナユニット128とアンテナユニット128Dとは、Y軸方向に交互に並べられた状態で、アンテナユニット125,125Dに対してZ軸の負方向側に隣接して配置される。なお、アンテナユニット128,128Dは、本開示の「放射電極」に対応し得る。 The antenna unit 128 and the antenna unit 128D are arranged alternately in the Y-axis direction and adjacent to the antenna units 125 and 125D on the negative direction side of the Z-axis. The antenna units 128 and 128D can correspond to the "radiating electrode" of the present disclosure.
 アンテナユニット128は、第1周波数f1および第2周波数f2に対応可能なデュアルバンド型のアンテナである。具体的には、アンテナユニット128は、第1周波数f1帯域の高周波信号を放射する放射板126と、第2周波数f2帯域の高周波信号を放射する放射板127とを含む。放射板126,127は、どちらも、接地板GND1に対向して配置され、接地板GND1には接続されない通常のパッチアンテナである。言い換えれば、アンテナユニット128は、片側短絡型パッチアンテナである上述のアンテナユニット125を、通常のパッチアンテナのユニットに変更したものである。 The antenna unit 128 is a dual band type antenna that can support the first frequency f1 and the second frequency f2. Specifically, the antenna unit 128 includes a radiation plate 126 that emits a high frequency signal in the first frequency f1 band and a radiation plate 127 that emits a high frequency signal in the second frequency f2 band. Both the radiation plates 126 and 127 are ordinary patch antennas that are arranged to face the ground plate GND1 and are not connected to the ground plate GND1. In other words, the antenna unit 128 is a modification of the above-mentioned antenna unit 125, which is a one-sided short-circuit type patch antenna, into a normal patch antenna unit.
 アンテナユニット128Dは、第1周波数f1および第3周波数f3に対応可能なデュアルバンド型のアンテナである。具体的には、アンテナユニット128Dは、第1周波数f1帯域の高周波信号を放射する放射板126と、第3周波数f3帯域の高周波信号を放射する放射板129とを含む。放射板126,129は、どちらも、接地板GND1に対向して配置され、接地板GND1には接続されない通常のパッチアンテナである。言い換えれば、アンテナユニット128Dは、片側短絡型パッチアンテナである上述のアンテナユニット125Dを、通常のパッチアンテナのユニットに変更したものである。 The antenna unit 128D is a dual band type antenna that can support the first frequency f1 and the third frequency f3. Specifically, the antenna unit 128D includes a radiation plate 126 that emits a high frequency signal in the first frequency f1 band and a radiation plate 129 that emits a high frequency signal in the third frequency f3 band. Both the radiation plates 126 and 129 are ordinary patch antennas that are arranged to face the ground plate GND1 and are not connected to the ground plate GND1. In other words, the antenna unit 128D is a modification of the above-mentioned antenna unit 125D, which is a one-sided short-circuit type patch antenna, into a normal patch antenna unit.
 このように、片側短絡型パッチアンテナのユニットであるアンテナユニット125,125Dに加えて、通常のパッチアンテナのユニットであるアンテナユニット128,128Dを追加することによって、X軸の正方向に放射される信号強度を増加させることができる。具体的には、片側短絡型パッチアンテナであるアンテナユニット125,125Dに含まれる放射板の接地端部は、いずれも、アンテナユニット128,128Dが設けられる側、すなわちZ軸の負方向側に配置されている。この場合、アンテナユニット125,125Dからは、X軸の正方向よりもZ軸の正方向側に傾いた方向に強い信号が放射される。これに対し、通常のパッチアンテナであるアンテナユニット128,128Dからは、X軸の正方向に強い信号が放射される。これにより、より広い範囲に強い電波を放射することが可能になる。 In this way, by adding the antenna units 128 and 128D, which are normal patch antenna units, in addition to the antenna units 125 and 125D, which are single-sided short-circuit type patch antenna units, the antenna units are radiated in the positive direction of the X-axis. The signal strength can be increased. Specifically, the grounding ends of the radiation plates included in the antenna units 125 and 125D, which are short-circuit type patch antennas on one side, are all arranged on the side where the antenna units 128 and 128D are provided, that is, on the negative direction side of the Z axis. Has been done. In this case, strong signals are emitted from the antenna units 125 and 125D in a direction inclined toward the positive direction of the Z axis rather than the positive direction of the X axis. On the other hand, strong signals are emitted from the antenna units 128 and 128D, which are ordinary patch antennas, in the positive direction of the X-axis. This makes it possible to radiate strong radio waves over a wider range.
 図15は、本変形例6による他のアンテナ装置120Gの内部をX軸方向から透視した図である。アンテナ装置120Gは、上述のアンテナ装置120Fに対して、アンテナユニット128,128DのZ軸の負方向側にも、アンテナユニット125,125Dを追加したものである。その他の構造は、上述のアンテナ装置120Fと同じであるため、ここでの詳細な説明は繰返さない。 FIG. 15 is a perspective view of the inside of the other antenna device 120G according to the present modification 6 from the X-axis direction. The antenna device 120G is obtained by adding the antenna units 125 and 125D to the above-mentioned antenna device 120F on the negative direction side of the Z axis of the antenna units 128 and 128D. Since the other structures are the same as those of the antenna device 120F described above, the detailed description here will not be repeated.
 図15に示すように、アンテナ装置120Gにおいては、アンテナユニット125,125Dが、アンテナユニット128,128Dを挟んで、アンテナユニット128,128DのZ軸の正方向側と負方向側の両方に設けられる。なお、アンテナユニット128,128DのZ軸の正方向側に設けられるアンテナユニット125,125Dは、本開示の「第1のアンテナユニット」に対応し得る。アンテナユニット128,128DのZ軸の負方向側に設けられるアンテナユニット125,125Dは、本開示の「第2のアンテナユニット」に対応し得る。 As shown in FIG. 15, in the antenna device 120G, the antenna units 125 and 125D are provided on both the positive direction side and the negative direction side of the Z axis of the antenna units 128 and 128D with the antenna units 128 and 128D interposed therebetween. .. The antenna units 125 and 125D provided on the positive direction side of the Z axis of the antenna units 128 and 128D can correspond to the "first antenna unit" of the present disclosure. The antenna units 125 and 125D provided on the negative side of the Z axis of the antenna units 128 and 128D can correspond to the "second antenna unit" of the present disclosure.
 アンテナユニット128,128DのZ軸の正方向側に設けられるアンテナユニット125,125Dに含まれる放射板の接地端部は、アンテナユニット128,128Dが設けられる側(Z軸の負方向側)に配置されている。 The grounding end of the radiation plate included in the antenna units 125 and 125D provided on the positive direction side of the Z axis of the antenna units 128 and 128D is arranged on the side where the antenna units 128 and 128D are provided (negative direction side of the Z axis). Has been done.
 また、アンテナユニット128,128DのZ軸の負方向側に設けられるアンテナユニット125,125Dに含まれる放射板の接地端部も、アンテナユニット128,128Dが設けられる側(Z軸の正方向側)に配置されている。 Further, the grounding end of the radiation plate included in the antenna units 125 and 125D provided on the negative side of the Z axis of the antenna units 128 and 128D is also the side on which the antenna units 128 and 128D are provided (the positive side of the Z axis). It is located in.
 このように、通常のパッチアンテナであるアンテナユニット128,128Dの両側に、片側短絡型パッチアンテナであるアンテナユニット125,125Dを配置することによって、より広い範囲に強い電波を放射することが可能になる。具体的には、X軸の正方向よりもZ軸の正方向側に傾いた方向、X軸の正方向、およびX軸の正方向よりもZ軸の負方向側に傾いた方向に、より強い電波を放射することができる。 In this way, by arranging the antenna units 125 and 125D, which are short-circuited one-sided patch antennas, on both sides of the antenna units 128 and 128D, which are normal patch antennas, it is possible to radiate strong radio waves over a wider range. Become. Specifically, the direction tilted toward the positive side of the Z axis from the positive direction of the X axis, the positive direction of the X axis, and the direction tilted toward the negative direction of the Z axis from the positive direction of the X axis. It can emit strong radio waves.
 なお、上述の図14,図15においては、片側短絡型パッチアンテナに加えて通常のパッチアンテナが追加される例を示したが、追加されるアンテナは、通常のパッチアンテナに限定されない。たとえば、通常のパッチアンテナに代えてあるいは加えて、ダイポールアンテナが追加されるようにしてもよい。 Note that, in FIGS. 14 and 15 described above, an example in which a normal patch antenna is added in addition to the one-sided short-circuit type patch antenna is shown, but the added antenna is not limited to the normal patch antenna. For example, a dipole antenna may be added in place of or in addition to the normal patch antenna.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 10 通信装置、11 筐体、20 実装基板、21 主面、22 側面、100 アンテナモジュール、111A~111H,113A~113H,117A,117B スイッチ、112AR~112HR ローノイズアンプ、112AT~112HT パワーアンプ、114A,114D,114E,114H 減衰器、115A,115D,115E,115H 移相器、116A,116B 分波器、118A,118B ミキサ、119A,119B 増幅回路、120,120A~120I アンテナ装置、121 第1放射板、121a,122a,123a 接地端部、122 第2放射板、123,126,127,129 放射板、125,125A~125D,128,128D アンテナユニット、125E アンテナ、130,130H 誘電体、131 内側表面、132 外側表面、141 第1給電線、142 第2給電線、143 第3給電線、151,151A,151B,151C 第1接地ビア、152,152B,152C 第2接地ビア、153C 第3接地ビア、160 接続線、GND1,GND2 接地板、SP1,SP2,SP3 給電点。 10 communication device, 11 housing, 20 mounting board, 21 main surface, 22 side surface, 100 antenna module, 111A to 111H, 113A to 113H, 117A, 117B switch, 112AR to 112HR low noise amplifier, 112AT to 112HT power amplifier, 114A, 114D, 114E, 114H attenuator, 115A, 115D, 115E, 115H phase shifter, 116A, 116B demultiplexer, 118A, 118B mixer, 119A, 119B amplification circuit, 120, 120A to 120I antenna device, 121 first radiation plate , 121a, 122a, 123a Grounding end, 122 second radiator plate, 123,126,127,129 radiator plate, 125,125A to 125D, 128,128D antenna unit, 125E antenna, 130,130H dielectric, 131 inner surface , 132 outer surface, 141 1st feed line, 142 2nd feed line, 143 3rd feed line, 151, 151A, 151B, 151C 1st ground via, 152, 152B, 152C 2nd ground via, 153C 3rd ground via , 160 connection line, GND1, GND2 ground plate, SP1, SP2, SP3 feed point.

Claims (16)

  1.  アンテナ装置であって、
     平板状の接地板と、
     前記接地板と対向する平板状の第1放射板と前記接地板と対向する平板状の第2放射板とを有するアンテナユニットと、
     前記第1放射板の給電点に接続される第1給電線と、
     前記第1給電線とは別に設けられ、前記第2放射板の給電点に接続される第2給電線とを備え、
     前記第1放射板は、前記接地板に接続される第1接地端部を有し、
     前記第2放射板は、前記接地板に接続される第2接地端部を有し、
     前記接地板の法線方向から前記アンテナ装置を透視したとき、前記第1放射板と前記第2放射板とは互いに重なり合う部分を有する、アンテナ装置。
    It is an antenna device
    A flat ground plate and
    An antenna unit having a flat plate-shaped first radiation plate facing the ground plate and a flat plate-shaped second radiation plate facing the ground plate, and
    The first feeder connected to the feeder point of the first radiation plate and
    A second feeder line provided separately from the first feeder and connected to a feeder point of the second radiation plate is provided.
    The first radiation plate has a first grounding end connected to the grounding plate.
    The second radiation plate has a second grounding end connected to the grounding plate.
    An antenna device having a portion in which the first radiation plate and the second radiation plate overlap each other when the antenna device is viewed through from the normal direction of the ground plate.
  2.  前記アンテナ装置は、
      前記第1接地端部と前記接地板とを接続する第1接地線と、
      前記第2接地端部と前記接地板とを接続する第2接地線とをさらに備え、
     前記接地板の法線方向から前記アンテナ装置を透視したとき、前記第1接地端部と前記第2接地端部とは互いに重なり合う部分を有する、請求項1に記載のアンテナ装置。
    The antenna device is
    A first grounding wire connecting the first grounding end and the grounding plate,
    A second grounding wire for connecting the second grounding end and the grounding plate is further provided.
    The antenna device according to claim 1, wherein the first grounding end portion and the second grounding end portion have a portion that overlaps with each other when the antenna device is viewed through from the normal direction of the grounding plate.
  3.  前記第1接地線と前記第2接地線とは、互いに共用される部分を有する、請求項2に記載のアンテナ装置。 The antenna device according to claim 2, wherein the first ground wire and the second ground wire have a portion shared with each other.
  4.  前記第1放射板は、前記第2放射板よりも前記接地板から離れた位置に配置され、
     前記第1接地端部と前記第2接地端部とは、前記第1接地線の一部によって直線的に接続される、請求項2または3に記載のアンテナ装置。
    The first radiation plate is arranged at a position farther from the ground plate than the second radiation plate.
    The antenna device according to claim 2 or 3, wherein the first grounding end portion and the second grounding end portion are linearly connected by a part of the first grounding wire.
  5.  前記アンテナ装置は、複数の前記アンテナユニットを備え、
     複数の前記アンテナユニットは、前記接地板の延在方向と平行な方向に沿って並べて配置される、請求項1~4のいずれかに記載のアンテナ装置。
    The antenna device includes a plurality of the antenna units.
    The antenna device according to any one of claims 1 to 4, wherein the plurality of antenna units are arranged side by side along a direction parallel to the extending direction of the ground plate.
  6.  前記アンテナ装置は、複数の前記アンテナユニットの間に配置される第3放射板をさらに備える、請求項1~5のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 5, further comprising a third radiation plate arranged between the plurality of antenna units.
  7.  前記第1放射板は、第1周波数の信号を放射し、
     前記第2放射板は、前記第1周波数よりも低い第2周波数の信号を放射し、
     前記第3放射板は、前記接地板に接続される接地端部を有し、前記第1周波数の信号を放射する、請求項6に記載のアンテナ装置。
    The first radiation plate emits a signal of the first frequency,
    The second radiation plate emits a signal having a second frequency lower than that of the first frequency.
    The antenna device according to claim 6, wherein the third radiation plate has a grounding end portion connected to the grounding plate and emits a signal of the first frequency.
  8.  前記アンテナ装置は、前記接地板の法線方向から前記アンテナ装置を透視したとき、前記第3放射板と重なり合う部分を有する第4放射板をさらに備える、請求項6に記載のアンテナ装置。 The antenna device according to claim 6, wherein the antenna device further includes a fourth radiation plate having a portion that overlaps with the third radiation plate when the antenna device is viewed through from the normal direction of the ground plate.
  9.  前記第1放射板は、第1周波数の信号を放射し、
     前記第2放射板は、前記第1周波数よりも低い第2周波数の信号を放射し、
     前記第3放射板は、前記接地板に接続される接地端部を有し、前記第1周波数の信号を放射し、
     前記第4放射板は、前記接地板に接続される端部を有し、前記第1周波数よりも低く、かつ前記第2周波数とは異なる第3周波数の信号を放射する、請求項8に記載のアンテナ装置。
    The first radiation plate emits a signal of the first frequency,
    The second radiation plate emits a signal having a second frequency lower than that of the first frequency.
    The third radiation plate has a grounding end connected to the grounding plate and emits a signal of the first frequency.
    8. The fourth radiation plate has an end connected to the ground plate and emits a signal having a third frequency lower than the first frequency and different from the second frequency. Antenna device.
  10.  前記アンテナ装置は、前記第1放射板と前記第2放射板との間の位置に配置される第5放射板をさらに備える、請求項1~9のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 9, further comprising a fifth radiation plate arranged at a position between the first radiation plate and the second radiation plate.
  11.  前記アンテナ装置は、前記アンテナユニットに対して前記接地板の延在方向に隣接して配置される放射電極をさらに備える、請求項1~10のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 10, further comprising a radiation electrode arranged adjacent to the antenna unit in the extending direction of the ground plate.
  12.  前記アンテナユニットにおける前記第1接地端部と前記第2接地端部とは、前記放射電極が設けられる側に配置される、請求項11に記載のアンテナ装置。 The antenna device according to claim 11, wherein the first grounded end portion and the second grounded end portion of the antenna unit are arranged on the side where the radiation electrode is provided.
  13.  前記アンテナユニットは、
      前記放射電極の一方の側に配置される第1の前記アンテナユニットと、
      前記放射電極の他方の側に配置される第2の前記アンテナユニットとを含む、請求項11または12に記載のアンテナ装置。
    The antenna unit is
    With the first antenna unit arranged on one side of the radiation electrode,
    The antenna device according to claim 11 or 12, further comprising a second antenna unit located on the other side of the radiation electrode.
  14.  第1の前記アンテナユニットにおける前記第1接地端部と前記第2接地端部とは、前記放射電極が設けられる側に配置され、
     第2の前記アンテナユニットにおける前記第1接地端部と前記第2接地端部とは、前記放射電極が設けられる側に配置される、請求項13に記載のアンテナ装置。
    The first grounded end portion and the second grounded end portion of the first antenna unit are arranged on the side where the radiation electrode is provided.
    The antenna device according to claim 13, wherein the first grounded end portion and the second grounded end portion of the second antenna unit are arranged on the side where the radiation electrode is provided.
  15.  請求項1~14のいずれかに記載のアンテナ装置と、
     前記アンテナ装置に高周波信号を供給するように構成された給電回路とを備える、アンテナモジュール。
    The antenna device according to any one of claims 1 to 14,
    An antenna module including a feeding circuit configured to supply a high frequency signal to the antenna device.
  16.  請求項15に記載のアンテナモジュールを搭載した、通信装置。 A communication device equipped with the antenna module according to claim 15.
PCT/JP2020/021683 2019-07-29 2020-06-02 Antenna device, antenna module, and communication device WO2021019899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138713 2019-07-29
JP2019-138713 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021019899A1 true WO2021019899A1 (en) 2021-02-04

Family

ID=74228665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021683 WO2021019899A1 (en) 2019-07-29 2020-06-02 Antenna device, antenna module, and communication device

Country Status (1)

Country Link
WO (1) WO2021019899A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2147744A (en) * 1983-10-04 1985-05-15 Dassault Electronique A radiating device with an improved microstrip structure and its application to an adaptable antenna
JPS63144606A (en) * 1986-11-29 1988-06-16 ノーザン テレコム リミテッド Circularly polarized wave antenna
JPS63131408U (en) * 1987-02-18 1988-08-29
JPH05211406A (en) * 1991-07-01 1993-08-20 Ball Corp Stacked microstrip antenna for multi- frequency use
JPH11150415A (en) * 1997-11-17 1999-06-02 Toshiba Corp Multiple frequency antenna
JP2001028511A (en) * 1999-07-13 2001-01-30 Hitachi Ltd Planar antenna and applying device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2147744A (en) * 1983-10-04 1985-05-15 Dassault Electronique A radiating device with an improved microstrip structure and its application to an adaptable antenna
JPS63144606A (en) * 1986-11-29 1988-06-16 ノーザン テレコム リミテッド Circularly polarized wave antenna
JPS63131408U (en) * 1987-02-18 1988-08-29
JPH05211406A (en) * 1991-07-01 1993-08-20 Ball Corp Stacked microstrip antenna for multi- frequency use
JPH11150415A (en) * 1997-11-17 1999-06-02 Toshiba Corp Multiple frequency antenna
JP2001028511A (en) * 1999-07-13 2001-01-30 Hitachi Ltd Planar antenna and applying device using the same

Similar Documents

Publication Publication Date Title
WO2020261806A1 (en) Antenna module and communication device equipped with same
JP7047918B2 (en) Antenna module
US11631936B2 (en) Antenna device
WO2019163419A1 (en) Antenna module and communication device installed therein
WO2020145392A1 (en) Antenna module and communication device with same mounted thereon
WO2022185917A1 (en) Antenna module and communication device equipped with same
WO2020261920A1 (en) Flexible substrate and antenna module provided with flexible substrate
US11539122B2 (en) Antenna module and communication unit provided with the same
US20220181794A1 (en) Antenna device, antenna module, and communication device
JP6798656B1 (en) Antenna module and communication device equipped with it
WO2021019899A1 (en) Antenna device, antenna module, and communication device
WO2022130877A1 (en) Antenna module and communication device equipped with same
WO2021039075A1 (en) Antenna module, communication device having antenna module mounted thereon, and circuit board
WO2020217971A1 (en) Antenna module, and communication device equipped with same
WO2022185874A1 (en) Antenna module and communication device equipped with same
WO2023210118A1 (en) Antenna module
WO2023037806A1 (en) Antenna module and communication device having same mounted thereon
WO2023157450A1 (en) Antenna module, and communication device having same mounted thereon
WO2023037805A1 (en) Antenna module and communication device equipped with same
WO2023214473A1 (en) Transmission line, and antenna module and communication device that include same
WO2023171115A1 (en) Antenna device and communication device including same
WO2023032581A1 (en) Antenna module and communication device equipped with same
WO2022004111A1 (en) Antenna module and communication device equipped with same
WO2024034188A1 (en) Antenna module and communication device equipped with same
WO2024004283A1 (en) Antenna module, and communication device having same mounted thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP