WO2021019749A1 - Stator manufacturing method - Google Patents

Stator manufacturing method Download PDF

Info

Publication number
WO2021019749A1
WO2021019749A1 PCT/JP2019/030100 JP2019030100W WO2021019749A1 WO 2021019749 A1 WO2021019749 A1 WO 2021019749A1 JP 2019030100 W JP2019030100 W JP 2019030100W WO 2021019749 A1 WO2021019749 A1 WO 2021019749A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
straight
stator
coil
low
Prior art date
Application number
PCT/JP2019/030100
Other languages
French (fr)
Japanese (ja)
Inventor
敬大 遠井
稔 粟津
翔吾 新谷
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2019/030100 priority Critical patent/WO2021019749A1/en
Priority to JP2021520249A priority patent/JP6922118B2/en
Publication of WO2021019749A1 publication Critical patent/WO2021019749A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines

Definitions

  • An embodiment of the present invention relates to a method for manufacturing a stator.
  • the rotary electric machine has a tubular stator and a rotor rotatably provided with respect to the stator.
  • the stator has a stator core formed by laminating a large number of annular electromagnetic steel sheets, and a coil attached to the stator core.
  • a coil formed by joining a plurality of coil segments has a coil end that projects axially from both end faces of the stator core.
  • An object of the embodiment of the present invention is to provide a method for manufacturing a stator that can be miniaturized.
  • the method for manufacturing a stator of the embodiment is formed by bending a flat conductor, and has a pair of straight portions facing each other and a crosslinked portion connecting one ends of the pair of straight portions, and each of the straight portions has a bridge portion.
  • the straight portions of the plurality of coil segments are inserted into a plurality of slots from one end surface side of the stator core, and a plurality of extending ends protruding from the other end surface side of the stator core in a predetermined length axial direction are formed.
  • the plurality of the extending end portions are arranged in a cylindrical shape having a plurality of layers coaxial with the stator core.
  • the tip of the straight portion gripped by the folding jig at least one of the bending jig and the stator core is relatively rotated in the circumferential direction of the stator core to extend the rod.
  • the end portion is bent in the circumferential direction of the stator core between the low rigidity portion and the other end surface side.
  • the low-rigidity portion is cut to form a joint portion.
  • the joint portions adjacent to each other in the radial direction of the stator core are joined to each other.
  • FIG. 1 is a vertical sectional view showing a rotary electric machine according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a rotary electric machine.
  • FIG. 3 is a perspective view showing the other end surface side of the stator of the rotary electric machine.
  • FIG. 4 is an enlarged perspective view showing the coil end portion of the coil segment of the stator in the region A of FIG.
  • FIG. 5 is a perspective view showing a coil segment.
  • FIG. 6 is a perspective view showing coil segments arranged in a cylindrical shape on a stator core.
  • FIG. 7 is an enlarged perspective view showing a coil segment in region B of FIG.
  • FIG. 8 is a perspective view showing a stator assembly in which a coil segment is attached to the stator core of FIG.
  • FIG. 1 is a vertical sectional view showing a rotary electric machine according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a rotary electric machine.
  • FIG. 3 is a perspective view showing
  • FIG. 9 is a perspective view showing the coil segments in which all the coil segments are mounted on the stator core and the coil segments are shown in different directions.
  • FIG. 10 shows a bending step (first time) of 48 coil segments located in the sixth layer (outermost layer) of the coil segments mounted on the stator core, and is first (1) by a folding jig.
  • the perspective view which shows the state just before bending and forming 48 coil segments of the outermost layer in the second).
  • FIG. 11 is an enlarged perspective view showing the region C of FIG. 10.
  • FIG. 12 is an enlarged side view showing the area C of FIG. 10.
  • FIG. 13 is a perspective view showing a state immediately after bending and molding 48 coil segments from the state of FIG.
  • FIG. 14 is an enlarged perspective view showing the region D of FIG. FIG.
  • FIG. 15 is an enlarged side view showing the area D of FIG.
  • FIG. 16 is a side view showing bending molding of the coil segment.
  • FIG. 17 is a perspective view showing a cutting process of the coil segment.
  • FIG. 18 shows a bending step (sixth time) of 48 coil segments located in the first layer (innermost layer) of the coil segments mounted on the stator core, and is the last (6th) by the bending jig.
  • the perspective view which shows the state just before bending and forming 48 coil segments of the innermost layer in the second).
  • FIG. 19 is a perspective view showing a state immediately after bending and molding 48 coil segments from the state of FIG.
  • FIG. 20 is a perspective view showing a joining process of coil segments.
  • FIG. 21 is a side view showing bending molding of the coil segment of the modified example 1 of the embodiment.
  • FIG. 22 is a side view showing bending molding of the coil segment of the modified example 2 of the embodiment.
  • FIG. 23 is a side view showing bending molding of the coil segment of the modified example 3 of the embodiment.
  • FIG. 1 is a vertical cross-sectional view of the rotary electric machine 10 according to the embodiment, and shows only one half of the rotary electric machine 10 with the central axis C1 as the center.
  • FIG. 2 is a cross-sectional view of the rotary electric machine 10.
  • the rotary electric machine 10 is configured as, for example, a permanent magnet type rotary electric machine.
  • the rotary electric machine 10 includes an annular or cylindrical stator 12, a rotor 14 that is rotatable inside the stator 12 around the central axis C1 and is coaxially supported with the stator 12, and these stators.
  • a casing 30 that supports the rotor 12 and the rotor 14 is provided.
  • the extending direction of the central axis C1 is referred to as an axial direction Z
  • the direction of rotation around the central axis C1 is referred to as a circumferential direction
  • the axial direction Z and the direction orthogonal to the circumferential direction are referred to as a radial direction.
  • the stator 12 includes a cylindrical stator core 16 and a rotor winding (coil) 18 wound around the stator core 16.
  • the stator core 16 is formed by laminating a large number of annular electromagnetic steel plates 17 made of a magnetic material, for example, silicon steel, in a concentric manner. A large number of electrical steel sheets 17 are connected to each other in a laminated state by welding a plurality of locations on the outer peripheral surface of the stator core 16.
  • the stator core 16 has one end surface 16a located at one end in the axial direction and the other end surface 16b located at the other end in the axial direction. One end surface 16a and the other end surface 16b extend orthogonally to the central axis C1.
  • a plurality of slots 20 are formed in the inner peripheral portion of the stator core 16.
  • the plurality of slots 20 are arranged at equal intervals in the circumferential direction.
  • Each slot 20 opens on the inner peripheral surface of the stator core 16 and extends in the radial direction from the inner peripheral surface.
  • Each slot 20 extends over the entire length of the stator core 16 in the axial direction Z.
  • One end of each slot 20 is open to one end surface 16a, and the other end is open to the other end surface 16b. It should be noted that each slot 20 may be configured not to open on the inner peripheral surface of the stator core 16.
  • each slot 20 extends over the entire length of the stator core 16 in the axial direction Z, but each slot 20 is provided at an angle with respect to the axial direction Z, so-called skew. It may be in shape.
  • the inner peripheral portion of the stator core 16 constitutes a plurality of (for example, 48 in the embodiment) teeth 21 projecting toward the central axis C1.
  • the teeth 21 are arranged at equal intervals along the circumferential direction.
  • the stator core 16 integrally has an annular yoke portion and a plurality of teeth 21 protruding in the radial direction from the inner peripheral surface of the yoke portion toward the central axis C1.
  • Coil 18 is embedded in a plurality of slots 20 and wound around each tooth 21.
  • the coil 18 has coil ends 18a and 18b extending outward in the axial direction from one end surface 16a and the other end surface 16b of the stator core 16. By passing an alternating current through the coil 18, a predetermined interlinkage magnetic flux is formed in the stator 12 (teeth 21).
  • iron core end plates 24 having substantially the same cross-sectional shape as the stator core 16 are provided at both ends of the stator core 16 in the axial direction. Further, an iron core retainer 26 is provided on these iron core end plates 24.
  • the casing 30 has a substantially cylindrical first bracket 32a and a bowl-shaped second bracket 32b.
  • the first bracket 32a is connected to the iron core retainer 26 located on the drive end side of the stator core 16.
  • the second bracket 32b is connected to the iron core retainer 26 located on the opposite drive end side.
  • the first and second brackets 32a and 32b are made of, for example, an aluminum alloy.
  • An annular bearing bracket 34 is coaxially fastened to the tip end side of the first bracket 32a with bolts.
  • a first bearing portion 36 incorporating a roller bearing 35 is fastened to the central portion of the bearing bracket 34.
  • a second bearing portion 38 containing, for example, a ball bearing 37 is fastened to the central portion of the second bracket 32b.
  • the rotor 14 has a cylindrical shaft (rotating shaft) 42 rotatably supported by the first and second bearing portions 36 and 38 about the central axis C1 and a substantially central portion in the axial direction of the shaft 42. It has a cylindrical rotor core 44 fixed to the rotor core 44, and a plurality of permanent magnets 46 embedded in the rotor core 44.
  • the rotor core 44 is configured as a laminated body in which a large number of magnetic materials, for example, a large number of annular electromagnetic steel plates 47 such as silicon steel are laminated concentrically.
  • the rotor core 44 has an inner hole 48 formed coaxially with the central axis C1.
  • the shaft 42 is inserted and fitted into the inner hole 48 and extends coaxially with the rotor core 44.
  • a substantially disk-shaped magnetic shielding plate 54 and a rotor core retainer 56 are provided at both ends of the rotor core 44 in the axial direction.
  • the rotor core 44 is coaxially arranged with a slight gap (air gap) inside the stator core 16. That is, the outer peripheral surface of the rotor core 44 faces the inner peripheral surface (tip surface of the teeth 21) of the stator core 16 with a slight gap.
  • a plurality of magnet embedding holes penetrating in the axial direction Z are formed in the rotor core 44.
  • a permanent magnet 46 is loaded and arranged in each magnet embedding hole, and is fixed to the rotor core 44 by, for example, an adhesive or the like.
  • Each permanent magnet 46 extends over the entire length of the rotor core 44. Further, the plurality of permanent magnets 46 are arranged at predetermined intervals in the circumferential direction of the rotor core 44.
  • the rotor core 44 has a d-axis extending in the radial direction or the radial direction of the rotor core 44, and a q-axis electrically separated from the d-axis by 90 °.
  • the axis extending in the radial direction through the boundary between adjacent magnetic poles and the central axis C1 is defined as the q-axis
  • the direction electrically perpendicular to the q-axis is defined as the d-axis.
  • the d-axis and the q-axis are provided alternately in the circumferential direction of the rotor core 44 and in a predetermined phase.
  • Each permanent magnet 46 is formed in an elongated flat plate shape having a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 44. When viewed in a cross section orthogonal to the central axis C1 of the rotor core 44, the permanent magnets 46 are respectively inclined with respect to the d-axis.
  • the two permanent magnets 46 are arranged side by side in a substantially V shape, for example. Here, the ends of the permanent magnets 46 on the inner peripheral side are adjacent to the d-axis and face each other with a slight gap.
  • the outer peripheral end of the permanent magnet 46 is separated from the d-axis along the circumferential direction of the rotor core 44, and is located near the outer peripheral surface of the rotor core 44 and near the q-axis. As a result, the outer peripheral end of the permanent magnet 46 is adjacent to the outer peripheral end of the permanent magnet 46 of the adjacent magnetic poles with the q-axis in between. In the present embodiment, the permanent magnets 46 are inclined with respect to the d-axis, but the permanent magnets 46 may be perpendicular to the d-axis.
  • FIG. 3 is a perspective view showing the other end surface side of the stator
  • FIG. 4 is a perspective view showing an enlarged view of the second coil end portion of the stator in the region A of FIG. 3, and
  • FIG. 5 shows a coil segment. It is a perspective view which shows.
  • the coil 18 is configured by using a plurality of coil segments 19 and is assembled to the stator core 16.
  • Each coil segment 19 is formed as a flat conductor by a flat copper wire having a rectangular cross section.
  • the flat line has a substantially rectangular cross section (cross section) perpendicular to the longitudinal direction, or has a shape having at least two opposite long sides.
  • the four corners do not have to be right angles and may be chamfered or rounded.
  • the portion connecting the ends of the two long sides facing each other in the cross section may be curved, for example, in an oval shape.
  • a conductor such as aluminum may be used in addition to copper.
  • the coil segment 19 is formed into a U-shape with both ends refracted by cutting and bending a flat wire. That is, the coil segment 19 integrally has a pair of straight line portions 19a facing each other at intervals and a bridging portion 19b connecting one ends of the straight line portions 19a.
  • the coil segment 19 has a rectangular cross-sectional shape, i.e., the cross-section has a pair of long sides facing each other and a pair of short sides facing each other.
  • the outer surface of the coil segment 19 is covered with an insulating coating 19c (indicated by dots) such as enamel. The insulating film 19c has been removed from the extending end of each straight portion 19a so that it can be conducted.
  • the extending end portion 19a1 has a joint portion 19a5 inclined at an angle ⁇ 1 (less than 90 °) with respect to the central axis C2 of the straight line portion 19a at the tip end portion thereof.
  • the joint portion 19a5 is formed in a rectangular shape, a pair of long sides are inclined by an angle ⁇ 1 with respect to the central axis C2, and a pair of short sides extend in a direction orthogonal to the central axis C2.
  • the insulating coating 19c shown by dots in FIG. 5 is not shown in drawings other than FIG.
  • the plurality of coil segments 19 are arranged in a plurality of cylinders, here in a six-layer cylindrical shape, and a pair of linear portions 19a of each coil segment are, for example, one of the stator cores 16. It is inserted into the corresponding different slots 20 from the end surface 16a side, and protrudes from the other end surface 16b of the stator core 16 by a predetermined length. As shown in FIG. 2, for example, six straight line portions 19a are inserted into one slot 20. In the slot 20, the six straight portions 19a are arranged side by side in the radial direction of the stator core 16. The six straight lines 19a are arranged in the slot 20 with their long sides facing each other in parallel.
  • the crosslinked portion 19b of the coil segment 19 faces the one end surface 16a of the stator core 16 with a slight gap.
  • the cross-linking portion 19b extends substantially along the circumferential direction of the stator core 16, and some cross-linking portions 19b extend so as to intersect with other cross-linking portions 19b. These cross-linked portions 19b form a coil end 18a protruding from one end surface 16a.
  • the straight portion 19a of the coil segment 19 extends from the other end surface 16b of the stator core 16 in the predetermined length axial direction Z to form the extending end portion 19a1.
  • the extending end portion 19a1 is bent in the circumferential direction of the stator core 16 and extends so as to be inclined with respect to the axial direction Z.
  • the extending end portion 19a1 of each straight portion 19a is a first bent portion 19M that bends at a predetermined angle in the circumferential direction from the axial direction Z of the stator core 16 and the first bent portion 19M with respect to the axial direction Z. It has an inclined portion 19N that is inclined and extends linearly.
  • the joint portion 19a5 located at the tip of the extension end portion 19a1 is located substantially parallel to the other end surface 16b of the stator core 16.
  • the extending end portions 19a1 of the six straight portions 19a inserted into each slot 20 are alternately bent in one direction and the opposite direction. That is, the extending end portion 19a1 located on the innermost circumference is bent in one direction in the circumferential direction of the stator core 16, and the extending end portion 19a1 on the outer side is in the other direction (opposite direction) in the circumferential direction. It is bent into. Further, the extending end portion 19a1 on the outer side is bent in one direction.
  • the six extending end portions 19a1 extending from the plurality of different slots 20 are bent so that the joint portions 19a5 are located substantially in a line in the radial direction of the stator core 16. These six joints 19a5 extend substantially in the same plane.
  • the portion of the extending end of each straight portion 19a from which the insulating coating 19c is removed is preferably the portion on the stator core 16 side adjacent to the joint portion 19a5.
  • the insulating coating 19c adjacent to the stator core 16 side is removed from the joint portion 19a5.
  • the welded part can be reliably conducted.
  • the low-rigidity portion 19a2 described later is provided near (for example, adjacent to) the joint portion 19a5, the stator core 16 of the portions adjacent to the low-rigidity portion 19a2 among the extending ends of the straight portions 19a.
  • the insulating coating 19c on the side portion may be removed.
  • the tip surfaces of the extending end portions 19a1 of each row arranged in the radial direction, that is, the joining portions 19a5 are mechanically and electrically joined to each other by two (two each).
  • the weld bead 19d is formed by irradiating the two joints 19a5 with laser light to partially melt the conductor.
  • Two joints 19a5 adjacent to each other in the radial direction are joined to form a three-phase coil 18 in the entire plurality of coil segments.
  • the extending end portion 19a1 constitutes a coil end 18b protruding from the other end surface 16b of the stator core 16.
  • the tip portion (conductive portion) including the joint portion (welded surface) of the straight portion 19a is covered with an insulating material (not shown) such as powder coating or varnish.
  • an insulating material such as powder coating or varnish.
  • FIG. 6 is a perspective view showing the stator core 16 and the coil segments 19 arranged in a cylindrical shape. As shown in FIG. 6, first, a large number of coil segments 19 are prepared, and these are arranged in a cylindrical shape. Although not shown, three sets of coil segments 19 each arranged in a cylindrical shape are prepared. One set (48 pieces) of coil segments 19 are arranged in a cylindrical shape along a plurality of slots 20 of the stator core 16.
  • One set of coil segments 19 includes two coil segments 19U1 and 19U2 for the U phase, two coil segments 19V1 and 19V2 for the V phase, and two coil segments 19W1 and 19W2 for the W phase, for a total of six.
  • the book is the minimum unit, and it is composed of 8 units.
  • the straight portions 19a of the coil segments 19 are arranged in two rows in the radial direction. That is, a large number (48 ⁇ 2) of straight portions 19a are arranged in a cylindrical shape having two layers having different diameters.
  • FIG. 7 is an enlarged perspective view of the coil segment 19 in the region B of FIG.
  • the straight portion 19a of the coil segment 19 before bending is the extending end portion 19a1 which is bent and molded in the bending step described later and the end discarded in the cutting step described later.
  • the material portion 19a3 is adjacent to each other via the extending end portion 19a1 and the low-rigidity portion 19a2 having a lower rigidity than the end material portion 19a3.
  • the groove portion 19a4 and the other side surface are formed from the other region of the flat line portion. Also forms a low-rigidity portion 19a2 having a small cross-sectional area and reduced rigidity.
  • the low-rigidity portion 19a2 is located in the straight line portion 19a between the extending end portion 19a1 and the end material portion 19a3 facing each other via the groove portion 19a4.
  • the groove portion 19a4 is formed in a slit shape at the tip of the straight portion 19a.
  • the groove portion 19a4 is inclined at an angle ⁇ 1 from the central axis C2 so as to intersect the central axis C2 of the straight line portion 19a.
  • the groove portion 19a4 extends from one short side of the flat line to the vicinity of the other short side in the straight portion 19a composed of the flat line, and further opens on the long side side surface of the flat line.
  • the inside of the groove portion 19a4 is exposed to the outside.
  • a part of the exposed region of the groove portion 19a4 is used as the joining portion 19a5 in the joining step described later.
  • the joint portion 19a5 is made substantially parallel to the other end surface 16b of the stator core 16 in the bending step. As shown by the broken line in FIG. 7, the low-rigidity portion 19a2 is cut in the cutting step, and the end material portion 19a3 is separated from the extending end portion 19a1.
  • FIG. 8 is a perspective view showing a stator core assembly in which the coil segment 19 is attached to the stator core 16 of FIG.
  • each set of coil segments 19 is inserted into the slot 20 from the one end surface 16a side of the stator core 16.
  • the straight portion 19a of the coil segment 19 is inserted into the slot 20 and protrudes from the other end surface 16b of the stator core 16 by a predetermined length to form the extending end portion 19a1.
  • the 96 (48 ⁇ 2) straight lines 19a located at both ends of a set (48) of coil segments 19 arranged in a cylindrical shape correspond to two layers of cylinders in the corresponding 48 slots 20.
  • FIG. 9 is a perspective view showing all the coil segments 19 mounted on the stator core 16 and changed in the vertical direction.
  • the stator core 16 stator core assembly
  • the stator core 16 stator core assembly to which the coil segment 19 is mounted is oriented up and down due to bending molding of the extension end portion 19a1 of the coil segment 19 described later.
  • coil segment 19Q located in the 5th layer located in the 4th layer
  • coil segment 19S located in the 3rd layer located in the 2nd layer
  • the coil segment 19T and the straight portion 19a of the coil segment 19U located in the first layer (innermost layer) are lined up in a row in the radial direction of the stator core 16.
  • FIGS. 10 to 16 show the 48 coils of the 6th layer, which are the first of the bending steps of the 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the 6th to 1st layers.
  • the bending process of the segment 19P is shown.
  • FIG. 10 shows a bending step (first time) of 48 coil segments 19P located in the sixth layer (outermost layer) of the coil segments 19 mounted on the stator core, and is performed by a bending jig 101.
  • First (first time) a perspective view showing a state immediately before bending and molding the 48 coil segments 19P of the outermost layer, FIG.
  • FIG. 11 is a perspective view showing an enlarged region C of FIG. 10, and FIG. 12 is a view. It is a side view which shows the area C of 10 enlarged.
  • 48 coils of the same layer are arranged in the order of 48 coil segments 19P located in the 6th layer (outermost layer) to 48 coil segments 19U located in the 1st layer (innermost layer).
  • the extending end portion 19a1 of the segment 19 is simultaneously bent and molded.
  • the 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U are arranged in a circular shape, but their diameters are different.
  • the diameter of the circular shape gradually decreases in the order of the 48 coil segments 19P located in the 6th layer (outermost layer) to the 48 coil segments 19U located in the 1st layer (innermost layer). Therefore, six types of bending jigs whose outer shape is gradually reduced are used in the order of 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U.
  • the bending jig 101 shown in FIG. 10 is used for bending molding of 48 coil segments 19P located in the sixth layer (outermost layer). As shown in FIGS. 11 and 12, the folding jig 101 is formed in a ring shape, and a concave mounting portion 101c is formed on the inner peripheral surface 101a.
  • the mounting portion 101c is formed by notching the inner peripheral surface 101a from the lower end 101b of the bending jig 101 upward by a predetermined length.
  • the mounting portions 101c are composed of 48 pieces as a set, and are formed at substantially equal intervals along the circumferential direction of the inner peripheral surface 101a.
  • the folding jig 101 is made of a metal having sufficient rigidity.
  • the folding jig 101 is supported by an elevating and rotating drive mechanism (not shown). As shown in FIGS. 11 and 12, the straight portion 19Pa of the coil segment 19 projects upward from the other end surface 16b of the stator core 16 along the axial direction Z of the stator core 16.
  • the groove portion 19Pa4 located between the extension end portion 19Pa1 and the end material portion 19Pa3 is inclined with respect to the axial direction Z of the stator core 16.
  • the low-rigidity portion 19Pa2 is located between the extending end portion 19Pa1 and the end material portion 19Pa3 separated by the groove portion 19Pa4.
  • the attachment portion 101c of the folding jig 101 is attached to the end material portion 19Pa3 located at the tip of the straight portion 19Pa. At this time, the lower end 101b of the bending jig 101 and the upper end of the groove portion 19Pa4 of the coil segment 19P are aligned along the circumferential direction of the stator core 16.
  • FIG. 13 is a perspective view showing a state immediately after bending and molding 48 coil segments 19P from the state of FIG. 10,
  • FIG. 14 is a perspective view showing an enlarged region D of FIG. 13, and
  • FIG. 15 is a view. It is a side view which shows the area D of 13 enlarged.
  • the folding jig 101 moves to the stator core 16 side while rotating clockwise CW around the stator core 16 in the bending step.
  • the extending end portion 19Pa1 of the 48 coil segments 19P is bent.
  • the groove portion 19a4 of the coil segment 19 is exposed to the outside on the inside in the bending step.
  • the joint portion 19Pa5 of the coil segment 19 is inclined from the other end surface 16b of the stator core 16 shown in FIG. 12 to a state substantially parallel to the other end surface 16b of the stator core 16 shown in FIG.
  • FIG. 16 is a side view showing bending molding of the coil segment 19.
  • the extending end portion 19a1 and the end material portion 19a3 pass through the low-rigidity portion 19a2 and the shaft of the stator core 16. Adjacent on the line.
  • the low-rigidity portion 19a2 is located in the straight portion 19a between the extending end portion 19a1 and the end material portion 19a3 facing each other via the groove portion 19a4.
  • the extension end portion 19a1 is bent and the inside of the groove portion 19a4 is exposed to the outside.
  • a part of the exposed region of the groove portion 19a4 is used as the joint portion 19a5.
  • the joint portion 192a5 is substantially parallel to the other end surface 16b of the stator core 16.
  • FIG. 17 is a perspective view showing a cutting process of the coil segment 19.
  • the cutting of the coil segment 19 is performed, for example, by cutting the low-rigidity portion 19a2 of the coil segment 19 by the laser beam L1.
  • the laser light L1 emitted from the laser light source 102 irradiates the low-rigidity portion 19a2 of each coil segment 19P along the direction of the circumscribed circle of the concentric circles composed of the 48 coil segments 19P.
  • the low-rigidity portion 19a2 between the extending end portion 19a1 and the end material portion 19a3 is cut by the laser beam L1 in order along the circumferential direction of the stator core 16, and the extending end is extended.
  • the portion 19a1 and the scrap portion 19a3 are separated.
  • the stator core 16 is rotated clockwise by an angle of 1 slot 20 and the low-rigidity portion 19a2 of the next coil segment 19P is rotated. Is cut.
  • the low-rigidity portion 19a2 is irradiated with the laser beam L1 while the bending jig 101 is still attached to the end material portion 19a3. It may be configured to be cut. Further, in order to efficiently cut the low-rigidity portion 19a2, the laser beam L1 may be scanned along the radial direction of the stator core 16. The coil segment 19 may be cut by using a mechanical cutter in addition to cutting by the laser beam L1.
  • the 48 coil segments 19Q, 19R, 19S, 19T and 19U located in the 5th to 1st layers are folded.
  • the bending step and the cutting step are performed in order.
  • the extending ends 19a1 of the coil segments 19P, 19Q, 19R, 19S, 19T and 19U are alternately bent and formed in opposite directions along the circumferential direction of the stator core 16. That is, the extending end portions 19a1 of the coil segments 19P, 19R and 19T of the 6th layer, the 4th layer and the 2nd layer are clocked from the base end side to the tip end side along the circumferential direction of the stator core 16. It is bent and molded in the direction CW.
  • the extending end portions 19a1 of the coil segments 19Q, 19S and 19U of the fifth layer, the third layer and the first layer are counterclockwise from the proximal end side to the distal end side along the circumferential direction of the stator core 16. It is bent and molded in a clockwise CCW direction.
  • the bending direction of the coil segment 19 is selected by changing the rotation direction of the bending jig. 18 and 19 show the 48 coils of the first layer, which are the last of the bending steps of the 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the 6th to 1st layers. The bending process of the segment 19U is shown.
  • FIG. 18 shows a bending step (sixth time) of 48 coil segments 19U located in the first layer (innermost layer) of the coil segments 19 mounted on the stator core, using the bending jig 103.
  • a perspective view showing a state immediately before bending and molding the 48 coil segments 19U of the innermost layer at the end (sixth time) FIG. 19 shows immediately after bending and molding the 48 coil segments 19U from the state of FIG. It is a perspective view which shows the state.
  • the folding jig 103 moves to the stator core 16 side while rotating counterclockwise CCW around the central axis of the stator core 16 as shown in FIG. 19 from the state shown in FIG. ..
  • the folding jig 101 and the folding jig 103 are rotated around the central axis of the stator core 16, but the circumference of the bending jig 101 with respect to the central axis of the stator core 16 The relative position in the direction may change, and the stator core 16 may be rotated around the central axis of the folding jig 101 and the folding jig 103, or the stator core 16 and the folding jig 101 and The folding jig 103 and the folding jig 103 may be rotated in opposite directions.
  • the extension end portions 19a1 of the coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the sixth to first layers may be bent at the same time.
  • the six types of bending jigs for the coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the sixth layer to the first layer are respectively along the radial direction of the stator core 16. It has a penetrating mounting part. That is, by reducing the radial thickness of the bending jig to the same degree as the radial thickness of the coil segment 19P, for example, the folding jig for the fifth layer can be used for the sixth layer and the fourth layer. Do not interfere with the folding jig for.
  • the three types of bending jigs have different rotation directions along the circumferential direction of the stator core 16.
  • FIG. 20 is a perspective view showing a joining process of the coil segment 19.
  • the joining step of the coil segment 19 is performed, for example, by welding the coil segment 19 with the laser beam L2.
  • the laser light L2 is emitted from the laser light source 104, and the joint portion 19a5 of the coil segment 19 is irradiated with the laser light L2.
  • the laser light source 104 is composed of, for example, a semiconductor laser and an optical fiber.
  • the boundary portion between the portion 19a5 and the joint portion 19a5 of the third layer and the boundary portion between the joint portion 19a5 of the second layer and the joint portion 19a5 of the first layer are irradiated with the laser beam L2, respectively.
  • the laser light source 104 is moved to the vicinity of the joint portion 19a5 of the coil segment 19 by a robot hand, a drive stage, or the like.
  • the two adjacent joints 19a5 are partially heated and melted by the laser beam L2, respectively, and then agglomerated weld beads 19d are formed in a fused state.
  • the weld bead 19d mechanically and electrically joins two adjacent joints 19a5.
  • a row of joints 19a5 After welding a row of joints 19a5, rotate the stator core 16 in the circumferential direction by 7.5 degrees (360 degrees divided by 48) and then stop. In this state, at the boundary between the 6th and 5th row joints 19a5, the boundary between the 4th and 3rd row joints 19a5, and the boundary between the 2nd and 1st row joints 19a5. , Laser light L2 is irradiated respectively, and two adjacent joints 19a5 are welded to each other. By repeating such a joining process, two joining portions 19a5 in all rows arranged in the radial direction are welded. By welding and joining two joints 19a5 in each row, a three-phase (U-phase, V-phase, and W-phase) coil 18 composed of a plurality of coil segments 19 is formed.
  • the bonding step is not limited to laser welding, and other bonding methods such as soldering and ultrasonic bonding may be used.
  • the joint portion 19a5 of the coil segment 19 is powder-coated or covered with an insulating material such as varnish to ensure electrical insulation between the coils 18. Further, a U-phase connection terminal TU, a V-phase connection terminal TV, and a W-phase connection terminal TW are connected to each phase of the coil 18.
  • the coil 18 is mounted and connected to the stator core 16 to form the stator 12.
  • the extending end portion 19a1 of the coil segment 19 is placed between the low-rigidity portion 19a2 and the other end surface 16b side to the circumference of the stator core 16. After bending in the direction, the low-rigidity portion 19a2 is cut.
  • the extending end can be easily and with a small curvature.
  • the portion 19a1 can be bent.
  • the extension end 19a1 is bent with a relatively small curvature by refracting the low-rigidity portion 19a2 connected to the tip gripped by the bending jig 101 without significantly bending the extension end 19a1.
  • the extending end portion 19a1 is bent at the position of the low-rigidity portion 19a2 of the coil segment 19 in the direction in which the groove portion 19a4 opens.
  • the groove portion 19a4 can be deformed so as to open outward. Therefore, the extending end portion 19a1 is formed starting from the low rigidity portion 19a2. Easy to refract. Therefore, the extending end portion 19a1 can be easily bent at the position of the low-rigidity portion 19Xa2 with a small curvature.
  • the low-rigidity portion 19a2 of the coil segment 19 is composed of a groove portion 19a4 provided in the straight line portion 19a. Therefore, an arbitrary low-rigidity portion 19a2 can be easily formed on the straight portion 19a of the coil segment 19. That is, the specifications of the low-rigidity portion 19a2 (high or low rigidity, etc.) can be easily set by the depth of cut and the angle of the groove portion 19a4 with respect to the straight portion 10a. Further, according to the manufacturing method of the embodiment, the thickness of the connecting portion between the extending end portion 19a1 and the end material portion 19a3 is reduced by the groove portion 19a4.
  • FIG. 21 is a side view showing bending molding of the coil segment 19X of the first modification of the embodiment.
  • a rectangular (triangular) notch portion 19Xa4 is formed in place of the slit-shaped groove portion 19a4 described above.
  • a notch portion 19Xa4 extending from one side surface of the flat conductor toward the other side surface is formed, and a low rigidity portion 19Xa2 is formed between the notch portion 19Xa4 and the other side surface.
  • the extension end portion 19Xa1 and the end material portion 19Xa3 are connected to the shaft of the stator core 16 via the low rigidity portion 19Xa2 in the straight portion 19Xa.
  • the low-rigidity portion 19Xa2 is located in the straight portion 19Xa between the extending end portion 19Xa1 and the end material portion 19Xa3 facing each other via the notch portion 19Xa4.
  • the extending end portion 19Xa1 is bent in the direction in which the notched portion 19Xa4 opens at the position of the low-rigidity portion 19Xa2.
  • the cutout portion 19Xa4 is located on the straight portion 19Xa on the front side in the bending direction of the extending end portion 19Xa1.
  • the joint portion 19Xa5 has a triangular shape as an example, but may have a rectangular shape or a semicircular shape. As shown by the solid line in FIG.
  • the extension end portion 19Xa1 is bent by the bending molding of the coil segment 19X, and the notch portion 19Xa4 is expanded from the inside to the outside and exposed.
  • a part of the exposed region of the cutout portion 19Xa4 is used as the joint portion 19Xa5 after the low-rigidity portion 19Xa2 is cut.
  • the straight portion 19Xa of the coil segment 19X the low-rigidity portion 19Xa2 is cut, and the end material portion 19Xa3 is separated from the extending end portion 19Xa1.
  • the low-rigidity portion 19Xa2 of the coil segment 19X is composed of the notch portion 19Xa4 provided in the straight portion 19Xa. Therefore, an arbitrary low-rigidity portion 19Xa2 can be easily formed on the straight portion 19Xa of the coil segment 19X. That is, the specifications of the low-rigidity portion 19Xa2 (high or low rigidity, etc.) can be easily set by the notch amount of the notch portion 19Xa4 with respect to the straight portion 10a.
  • the extending end portion 19Xa1 is bent at the position of the low-rigidity portion 19Xa2 in the direction in which the notched portion 19Xa4 opens.
  • the notch portion 19Xa4 can be deformed so as to open outward. Therefore, the extension end portion 19a1 starts from the low rigidity portion 19Xa2. Is easy to refract. Therefore, the extending end portion 19a1 can be easily bent at the position of the low-rigidity portion 19Xa2 with a small curvature.
  • the shape of the notch portion 19Xa4 can be easily recognized by an image using a CCD camera or the like or visually confirmed by an operator, the specifications of the low rigidity portion 19Xa2 (high or low rigidity) are used. Easy to maintain within a certain range. Further, according to the manufacturing method of the embodiment, the connecting portion between the extending end portion 19Xa1 and the end material portion 19Xa3 is thinned by the notch portion 19Xa4. Therefore, it is easy to cut the end material portion 19Xa3 from the extending end portion 19Xa1 and remove the end material portion 19Xa3.
  • FIG. 22 is a side view showing bending molding of the coil segment 19Y of the second modification of the embodiment.
  • a notched portion 19Ya4 formed of a step formed by a long and narrow tip is formed. ..
  • the width along the circumferential direction of the stator core 16 of the end material portion 19Ya3 is narrowed as compared with the width along the circumferential direction of the stator core 16 of the extending end portion 19Ya1, and the notch portion is formed. It constitutes 19Ya4.
  • a portion located on the front side in the bending direction in bending molding is vertically elongated and cut out.
  • the notch portion 19Ya4 is located on the straight portion 19Ya on the front side in the bending direction of the extending end portion 19Ya1.
  • the extension end portion 19Ya1 and the end material portion 19Ya3 pass through the low rigidity portion 19Ya2 and the shaft of the stator core 16 Adjacent on the line.
  • the low-rigidity portion 19Ya2 is located in the straight portion 19Ya between the extending end portion 19Ya1 and the end material portion 19Ya3 facing each other via the notch portion 19Ya4.
  • the extension end portion 19Ya1 is bent by the bending molding of the coil segment 19Y.
  • the cutout portion 19Ya4 is used as the joint portion 19Ya5 after the low-rigidity portion 19Ya2 is cut (partially melted and cut).
  • the low-rigidity portion 19Ya2 is cut, and the end material portion 19Ya3 is separated from the extending end portion 19Ya1.
  • the coil segment 19Y Any low-rigidity portion 19Ya2 can be easily formed on the straight portion 19Ya. That is, the specifications of the low-rigidity portion 19Ya2 (high or low rigidity, etc.) can be easily set by the size of the step shape (the shape notched in an elongated rectangular shape) of the notched portion 19Ya4 with respect to the straight portion 10a.
  • FIG. 23 is a side view showing bending molding of the coil segment 19Z of the modification 3 of the embodiment.
  • the straight portion 19Z of the coil segment 19Z of the modification 3 of the embodiment has a portion located on the rear side in the bending direction in the bending molding, which is vertically elongated. Missing. That is, the notch portion 19Za4 is located in the straight portion 19Za on the rear side in the bending direction of the extending end portion 19Za1. As shown by a broken line in FIG. 23, before bending and forming the coil segment 19Z, in the straight portion 19Za, the extension end portion 19Za1 and the end material portion 19Za3 pass through the low rigidity portion 19Za2 and the shaft of the stator core 16. Adjacent on the line.
  • the low-rigidity portion 19Za2 is located in the straight portion 19Za between the extending end portion 19Za1 and the end material portion 19Za3 facing each other via the notch portion 19Za4. As shown by the solid line in FIG. 23, the extension end portion 19Za1 is bent by the bending molding of the coil segment 19Z.
  • the cutout portion 19Za4 is used as the joint portion 19Za5 after the low-rigidity portion 19Za2 is cut.
  • the straight portion 19Za of the coil segment 19Z the low-rigidity portion 19Za2 is cut, and the end material portion 19Za3 is separated from the extending end portion 19Za1.
  • the coil segment 19Z Any low-rigidity portion 19Za2 can be easily formed on the straight portion 19Za. That is, the specifications of the low-rigidity portion 19Za2 (high or low rigidity, etc.) can be easily set by the size of the step shape (the shape notched in an elongated rectangular shape) of the notched portion 19Za4 with respect to the straight portion 10a.
  • the low-rigidity portion 19Za2 is likely to be sandwiched between the extension end portion 19Za1 and the end material portion 19Za3. Therefore, for example, the low-rigidity portion 19Za2 is cut so as to be substantially parallel to the other end surface 16b of the stator core 16, and the joint portion 19Za5 can be easily formed into an arbitrary shape.
  • the dimensions, materials, shapes, and the like of the rotor are not limited to the above-described embodiments, and can be variously changed according to the design.
  • the rotor and the rotary electric machine according to the embodiment can be applied not only to a permanent magnet field electric motor but also to an induction motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided is a stator manufacturing method with which a reduction in size is possible. A plurality of coil segments 19 are prepared in an embodiment, said coil segments 19 having a pair of mutually opposed straight-line sections 19a formed by bending a rectangular conductor, and a cross-link section 19b that interconnects one end of each of the pair of straight-line sections 19a. Each of the straight-line sections 19a have, at the distal ends thereof, a low-rigidity section 19a2 having a smaller cross-sectional area lower rigidity than in other regions of the rectangular conductor. In a state where the distal end of the straight-line section 19a is gripped by a bending jig 101, the bending tool 101 and/or a stator core 16 is caused to rotate relative to the circumferential direction of the stator core 16, an extension end section 19a1 is bent in the circumferential direction of the stator core 16 between the low-rigidity section 19a2 and another end surface 16b, the low-rigidity section 19a2 is cut to form a junction 19a5, and junctions 19a5 that are adjacent in the radial direction of the stator core 16 are joined to each other.

Description

固定子の製造方法Stator manufacturing method
 この発明の実施形態は、固定子の製造方法に関する。 An embodiment of the present invention relates to a method for manufacturing a stator.
 回転電機は、筒状の固定子と、固定子に対して回転自在に設けられた回転子とを有している。固定子は、円環状の電磁鋼板を多数枚積層して構成された固定子鉄心と、固定子鉄心に取付けられたコイルと、を有している。複数のコイルセグメントを接合して構成されるコイルは、固定子鉄心の両端面から軸方向に突出するコイルエンドを有している。近年、回転電機の固定子は、一層の小型化が望まれている。 The rotary electric machine has a tubular stator and a rotor rotatably provided with respect to the stator. The stator has a stator core formed by laminating a large number of annular electromagnetic steel sheets, and a coil attached to the stator core. A coil formed by joining a plurality of coil segments has a coil end that projects axially from both end faces of the stator core. In recent years, further miniaturization of the stator of a rotary electric machine has been desired.
特許第4412330号公報Japanese Patent No. 4412330
 本発明の実施形態の課題は、小型化を図ることができる固定子の製造方法を提供することにある。 An object of the embodiment of the present invention is to provide a method for manufacturing a stator that can be miniaturized.
 実施形態の固定子の製造方法は、平角導体を折り曲げて形成され、互いに対向する一対の直線部と前記一対の直線部の一端同士を連結した架橋部とを有し、前記直線部の各々は、先端部に平角導体の他の領域よりも断面積が小さく剛性を低くした低剛性部を有している複数のコイルセグメントを用意する。複数の前記コイルセグメントの前記直線部を、固定子鉄心の一端面側から複数のスロットに挿通し、前記固定子鉄心の他端面側から所定長さ軸方向に突出した複数の延出端部を構成し、各スロットに複数の前記直線部を径方向に並べて配置することにより、複数の前記延出端部を前記固定子鉄心と同軸の複数層の円筒状に配列する。前記直線部の先端部を折曲治具によって把持した状態で、前記折曲治具及び前記固定子鉄心の少なくとも一方を前記固定子鉄心の周方向に相対的に回動させて、前記延出端部を前記低剛性部と前記他端面側との間において前記固定子鉄心の周方向に折曲げる。前記低剛性部を切断して接合部を形成する。前記固定子鉄心の径方向に隣接する前記接合部を互いに接合する。 The method for manufacturing a stator of the embodiment is formed by bending a flat conductor, and has a pair of straight portions facing each other and a crosslinked portion connecting one ends of the pair of straight portions, and each of the straight portions has a bridge portion. , Prepare a plurality of coil segments having a low rigidity portion having a smaller cross-sectional area and lower rigidity than other regions of the flat conductor at the tip portion. The straight portions of the plurality of coil segments are inserted into a plurality of slots from one end surface side of the stator core, and a plurality of extending ends protruding from the other end surface side of the stator core in a predetermined length axial direction are formed. By constructing and arranging a plurality of the straight portions in each slot side by side in the radial direction, the plurality of the extending end portions are arranged in a cylindrical shape having a plurality of layers coaxial with the stator core. With the tip of the straight portion gripped by the folding jig, at least one of the bending jig and the stator core is relatively rotated in the circumferential direction of the stator core to extend the rod. The end portion is bent in the circumferential direction of the stator core between the low rigidity portion and the other end surface side. The low-rigidity portion is cut to form a joint portion. The joint portions adjacent to each other in the radial direction of the stator core are joined to each other.
図1は、実施形態に係る回転電機を示す縦断面図。FIG. 1 is a vertical sectional view showing a rotary electric machine according to an embodiment. 図2は、回転電機を示す横断面図。FIG. 2 is a cross-sectional view showing a rotary electric machine. 図3は、回転電機の固定子の他端面側を示す斜視図。FIG. 3 is a perspective view showing the other end surface side of the stator of the rotary electric machine. 図4は、図3の領域Aであって固定子のコイルセグメントのコイルエンド部分を拡大して示す斜視図。FIG. 4 is an enlarged perspective view showing the coil end portion of the coil segment of the stator in the region A of FIG. 図5は、コイルセグメントを示す斜視図。FIG. 5 is a perspective view showing a coil segment. 図6は、固定子鉄心に円筒状に配列されたコイルセグメントを示す斜視図。FIG. 6 is a perspective view showing coil segments arranged in a cylindrical shape on a stator core. 図7は、図6の領域Bであってコイルセグメントを拡大して示す斜視図。FIG. 7 is an enlarged perspective view showing a coil segment in region B of FIG. 図8は、図6の固定子鉄心にコイルセグメントを装着した状態である固定子組立体を示す斜視図。FIG. 8 is a perspective view showing a stator assembly in which a coil segment is attached to the stator core of FIG. 図9は、固定子鉄心に全てのコイルセグメントを装着し、かつ、上下向きを変えて示すコイルセグメントを示す斜視図。FIG. 9 is a perspective view showing the coil segments in which all the coil segments are mounted on the stator core and the coil segments are shown in different directions. 図10は、固定子鉄心に装着されたコイルセグメントのうち6層目(最外層)に位置する48個のコイルセグメントの折曲げ工程(1回目)であって、折曲治具によって最初(1回目)に最外層の48個のコイルセグメントを折曲げ成形する直前の状態を示す斜視図。FIG. 10 shows a bending step (first time) of 48 coil segments located in the sixth layer (outermost layer) of the coil segments mounted on the stator core, and is first (1) by a folding jig. The perspective view which shows the state just before bending and forming 48 coil segments of the outermost layer in the second). 図11は、図10の領域Cを拡大して示す斜視図。FIG. 11 is an enlarged perspective view showing the region C of FIG. 10. 図12は、図10の領域Cを拡大して示す側面図。FIG. 12 is an enlarged side view showing the area C of FIG. 10. 図13は、図10の状態から48個のコイルセグメントを折曲げ成形した直後の状態を示す斜視図。FIG. 13 is a perspective view showing a state immediately after bending and molding 48 coil segments from the state of FIG. 図14は、図13の領域Dを拡大して示す斜視図。FIG. 14 is an enlarged perspective view showing the region D of FIG. 図15は、図13の領域Dを拡大して示す側面図。FIG. 15 is an enlarged side view showing the area D of FIG. 図16は、コイルセグメントの折曲げ成形を示す側面図。FIG. 16 is a side view showing bending molding of the coil segment. 図17は、コイルセグメントの切断工程を示す斜視図。FIG. 17 is a perspective view showing a cutting process of the coil segment. 図18は、固定子鉄心に装着されたコイルセグメントのうち1層目(最内層)に位置する48個のコイルセグメントの折曲げ工程(6回目)であって、折曲治具によって最後(6回目)に最内層の48個のコイルセグメントを折曲げ成形する直前の状態を示す斜視図。FIG. 18 shows a bending step (sixth time) of 48 coil segments located in the first layer (innermost layer) of the coil segments mounted on the stator core, and is the last (6th) by the bending jig. The perspective view which shows the state just before bending and forming 48 coil segments of the innermost layer in the second). 図19は、図18の状態から48個のコイルセグメントを折曲げ成形した直後の状態を示す斜視図。FIG. 19 is a perspective view showing a state immediately after bending and molding 48 coil segments from the state of FIG. 図20は、コイルセグメントの接合工程を示す斜視図。FIG. 20 is a perspective view showing a joining process of coil segments. 図21は、実施形態の変形例1のコイルセグメントの折曲げ成形を示す側面図。FIG. 21 is a side view showing bending molding of the coil segment of the modified example 1 of the embodiment. 図22は、実施形態の変形例2のコイルセグメントの折曲げ成形を示す側面図。FIG. 22 is a side view showing bending molding of the coil segment of the modified example 2 of the embodiment. 図23は、実施形態の変形例3のコイルセグメントの折曲げ成形を示す側面図。FIG. 23 is a side view showing bending molding of the coil segment of the modified example 3 of the embodiment.
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 なお、開示はあくまで一例にすぎず、以下の実施形態に記載した内容により発明が限定されるものではない。当業者が容易に想到し得る変形は、当然に開示の範囲に含まれる。説明をより明確にするため、図面において、各部分のサイズ、形状等を実際の実施態様に対して変更して模式的に表す場合もある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The disclosure is merely an example, and the invention is not limited by the contents described in the following embodiments. Modifications that can be easily conceived by those skilled in the art are naturally included in the scope of disclosure. In order to clarify the explanation, in the drawings, the size, shape, etc. of each part may be changed with respect to the actual embodiment and represented schematically.
 (実施形態)
 先ず、実施形態に係る固定子12が適用される回転電機10の一例について説明する。
 図1は、実施形態に係る回転電機10の縦断面図であり、中心軸線C1を中心として片側の半分だけを示している。図2は、回転電機10の横断面図である。
(Embodiment)
First, an example of the rotary electric machine 10 to which the stator 12 according to the embodiment is applied will be described.
FIG. 1 is a vertical cross-sectional view of the rotary electric machine 10 according to the embodiment, and shows only one half of the rotary electric machine 10 with the central axis C1 as the center. FIG. 2 is a cross-sectional view of the rotary electric machine 10.
 図1に示すように、回転電機10は、例えば、永久磁石型の回転電機として構成されている。回転電機10は、環状あるいは円筒状の固定子12と、固定子12の内側に中心軸線C1の回りで回転自在に、かつ固定子12と同軸的に支持された回転子14と、これら固定子12および回転子14を支持するケーシング30と、を備えている。
 以下の説明では、中心軸線C1の延在方向を軸方向Z、中心軸線C1回りに回転する方向を周方向、軸方向Zおよび周方向に直交する方向を径方向と称する。
As shown in FIG. 1, the rotary electric machine 10 is configured as, for example, a permanent magnet type rotary electric machine. The rotary electric machine 10 includes an annular or cylindrical stator 12, a rotor 14 that is rotatable inside the stator 12 around the central axis C1 and is coaxially supported with the stator 12, and these stators. A casing 30 that supports the rotor 12 and the rotor 14 is provided.
In the following description, the extending direction of the central axis C1 is referred to as an axial direction Z, the direction of rotation around the central axis C1 is referred to as a circumferential direction, and the axial direction Z and the direction orthogonal to the circumferential direction are referred to as a radial direction.
 図1および図2に示すように、固定子12は、円筒状の固定子鉄心16と固定子鉄心16に巻き付けられた回転子巻線(コイル)18とを備えている。固定子鉄心16は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板17を多数枚、同芯状に積層して構成されている。多数枚の電磁鋼板17は、固定子鉄心16の外周面の複数個所を溶接することにより、互いに積層状態に連結されている。固定子鉄心16は、軸方向一端に位置する一端面16a、および軸方向他端に位置する他端面16bを有している。一端面16aおよび他端面16bは、中心軸線C1と直交して延在している。 As shown in FIGS. 1 and 2, the stator 12 includes a cylindrical stator core 16 and a rotor winding (coil) 18 wound around the stator core 16. The stator core 16 is formed by laminating a large number of annular electromagnetic steel plates 17 made of a magnetic material, for example, silicon steel, in a concentric manner. A large number of electrical steel sheets 17 are connected to each other in a laminated state by welding a plurality of locations on the outer peripheral surface of the stator core 16. The stator core 16 has one end surface 16a located at one end in the axial direction and the other end surface 16b located at the other end in the axial direction. One end surface 16a and the other end surface 16b extend orthogonally to the central axis C1.
 固定子鉄心16の内周部には、複数のスロット20が形成されている。複数のスロット20は、円周方向に等間隔を置いて並んでいる。各スロット20は、固定子鉄心16の内周面に開口し、この内周面から放射方向に延出している。各スロット20は、固定子鉄心16の軸方向Zの全長に亘って延在している。各スロット20の一端は一端面16aに開口し、他端は他端面16bに開口している。なお、各スロット20については、固定子鉄心16の内周面に開口しない構成とすることもできる。なお、本実施の形態においては各スロット20が固定子鉄心16の軸方向Zの全長にわたって延在する例を示したが、各スロット20が軸方向Zに対して傾いて設けられる、いわゆるスキューした形状としても構わない。
 複数のスロット20を形成することにより、固定子鉄心16の内周部は、中心軸線C1に向かって突出する複数(例えば、実施形態では48個)のティース21を構成している。ティース21は、周方向に沿って等間隔を置いて配置されている。このように、固定子鉄心16は、円環状のヨーク部と、ヨーク部の内周面から中心軸線C1に向かって径方向に突出した複数のティース21とを一体に有している。
A plurality of slots 20 are formed in the inner peripheral portion of the stator core 16. The plurality of slots 20 are arranged at equal intervals in the circumferential direction. Each slot 20 opens on the inner peripheral surface of the stator core 16 and extends in the radial direction from the inner peripheral surface. Each slot 20 extends over the entire length of the stator core 16 in the axial direction Z. One end of each slot 20 is open to one end surface 16a, and the other end is open to the other end surface 16b. It should be noted that each slot 20 may be configured not to open on the inner peripheral surface of the stator core 16. In the present embodiment, an example is shown in which each slot 20 extends over the entire length of the stator core 16 in the axial direction Z, but each slot 20 is provided at an angle with respect to the axial direction Z, so-called skew. It may be in shape.
By forming the plurality of slots 20, the inner peripheral portion of the stator core 16 constitutes a plurality of (for example, 48 in the embodiment) teeth 21 projecting toward the central axis C1. The teeth 21 are arranged at equal intervals along the circumferential direction. As described above, the stator core 16 integrally has an annular yoke portion and a plurality of teeth 21 protruding in the radial direction from the inner peripheral surface of the yoke portion toward the central axis C1.
 複数のスロット20にコイル18が埋め込まれ、各ティース21に巻き付けられている。コイル18は、固定子鉄心16の一端面16aおよび他端面16bから軸方向外側に向かって延出するコイルエンド18a、18bを有している。コイル18に交流電流を流すことにより、固定子12(ティース21)に所定の鎖交磁束が形成される。 Coil 18 is embedded in a plurality of slots 20 and wound around each tooth 21. The coil 18 has coil ends 18a and 18b extending outward in the axial direction from one end surface 16a and the other end surface 16b of the stator core 16. By passing an alternating current through the coil 18, a predetermined interlinkage magnetic flux is formed in the stator 12 (teeth 21).
 図1に示す例では、固定子鉄心16の軸方向両端には、固定子鉄心16と略同一断面形状を有する鉄心端板24がそれぞれ設けられている。更に、これら鉄心端板24の上に鉄心押え26が設けられている。
 ケーシング30は、ほぼ円筒状の第1ブラケット32aと、お椀形状の第2ブラケット32bと、を有している。第1ブラケット32aは、固定子鉄心16の駆動端側に位置する鉄心押え26に連結されている。第2ブラケット32bは、反駆動端側に位置する鉄心押え26に連結されている。第1および第2ブラケット32a、32bは、例えば、アルミニウム合金等で形成されている。第1ブラケット32aの先端側に、環状のベアリングブラケット34がボルトにて同軸的に締結されている。ベアリングブラケット34の中央部に、例えば、ころ軸受35を内蔵した第1軸受部36が締結されている。第2ブラケット32bの中央部に、例えば玉軸受37を内蔵した第2軸受部38が締結されている。
In the example shown in FIG. 1, iron core end plates 24 having substantially the same cross-sectional shape as the stator core 16 are provided at both ends of the stator core 16 in the axial direction. Further, an iron core retainer 26 is provided on these iron core end plates 24.
The casing 30 has a substantially cylindrical first bracket 32a and a bowl-shaped second bracket 32b. The first bracket 32a is connected to the iron core retainer 26 located on the drive end side of the stator core 16. The second bracket 32b is connected to the iron core retainer 26 located on the opposite drive end side. The first and second brackets 32a and 32b are made of, for example, an aluminum alloy. An annular bearing bracket 34 is coaxially fastened to the tip end side of the first bracket 32a with bolts. For example, a first bearing portion 36 incorporating a roller bearing 35 is fastened to the central portion of the bearing bracket 34. A second bearing portion 38 containing, for example, a ball bearing 37 is fastened to the central portion of the second bracket 32b.
 一方、回転子14は、第1および第2軸受部36、38により、中心軸線C1を中心に回転自在に支持された円柱形状のシャフト(回転軸)42と、シャフト42の軸方向ほぼ中央部に固定された円筒形状の回転子鉄心44と、回転子鉄心44内に埋め込まれた複数の永久磁石46と、を有している。回転子鉄心44は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板47を多数枚、同芯状に積層した積層体として構成されている。回転子鉄心44は中心軸線C1と同軸的に形成された内孔48を有している。シャフト42は内孔48に挿通および嵌合され、回転子鉄心44と同軸的に延在している。回転子鉄心44の軸方向両端に、略円板状の磁気遮蔽板54、回転子鉄心押え56が設けられている。 On the other hand, the rotor 14 has a cylindrical shaft (rotating shaft) 42 rotatably supported by the first and second bearing portions 36 and 38 about the central axis C1 and a substantially central portion in the axial direction of the shaft 42. It has a cylindrical rotor core 44 fixed to the rotor core 44, and a plurality of permanent magnets 46 embedded in the rotor core 44. The rotor core 44 is configured as a laminated body in which a large number of magnetic materials, for example, a large number of annular electromagnetic steel plates 47 such as silicon steel are laminated concentrically. The rotor core 44 has an inner hole 48 formed coaxially with the central axis C1. The shaft 42 is inserted and fitted into the inner hole 48 and extends coaxially with the rotor core 44. A substantially disk-shaped magnetic shielding plate 54 and a rotor core retainer 56 are provided at both ends of the rotor core 44 in the axial direction.
 図1および図2に示すように、回転子鉄心44は、固定子鉄心16の内側に僅かな隙間(エアギャップ)を置いて同軸的に配置されている。すなわち、回転子鉄心44の外周面は、僅かな隙間をおいて、固定子鉄心16の内周面(ティース21の先端面)に対向している。 As shown in FIGS. 1 and 2, the rotor core 44 is coaxially arranged with a slight gap (air gap) inside the stator core 16. That is, the outer peripheral surface of the rotor core 44 faces the inner peripheral surface (tip surface of the teeth 21) of the stator core 16 with a slight gap.
 回転子鉄心44には、軸方向Zに貫通する複数の磁石埋め込み孔が形成されている。各磁石埋め込み孔内に永久磁石46が装填および配置され、例えば、接着剤等により回転子鉄心44に固定されている。各永久磁石46は、回転子鉄心44の全長に亘って延在している。また、複数の永久磁石46は、回転子鉄心44の周方向に所定の間隔を置いて配列されている。 A plurality of magnet embedding holes penetrating in the axial direction Z are formed in the rotor core 44. A permanent magnet 46 is loaded and arranged in each magnet embedding hole, and is fixed to the rotor core 44 by, for example, an adhesive or the like. Each permanent magnet 46 extends over the entire length of the rotor core 44. Further, the plurality of permanent magnets 46 are arranged at predetermined intervals in the circumferential direction of the rotor core 44.
 図2に示すように、回転子鉄心44は、それぞれ回転子鉄心44の半径方向あるいは放射方向に延びるd軸、およびd軸に対して電気的に90°離間したq軸を有している。ここでは、隣合う磁極間の境界および中心軸線C1を通って放射方向に延びる軸をq軸とし、q軸に対して電気的に直角な方向をd軸としている。d軸およびq軸は、回転子鉄心44の円周方向に交互に、かつ、所定の位相で設けられている。 As shown in FIG. 2, the rotor core 44 has a d-axis extending in the radial direction or the radial direction of the rotor core 44, and a q-axis electrically separated from the d-axis by 90 °. Here, the axis extending in the radial direction through the boundary between adjacent magnetic poles and the central axis C1 is defined as the q-axis, and the direction electrically perpendicular to the q-axis is defined as the d-axis. The d-axis and the q-axis are provided alternately in the circumferential direction of the rotor core 44 and in a predetermined phase.
 回転子鉄心44の円周方向において、各d軸の両側に2つの永久磁石46が配置されている。各永久磁石46は、断面が矩形状の細長い平板状に形成され、回転子鉄心44の軸方向長さとほぼ等しい長さを有している。回転子鉄心44の中心軸線C1と直交する断面でみた場合、永久磁石46は、それぞれd軸に対して傾斜している。2つの永久磁石46は、例えば、ほぼV字状に並んで配置されている。ここでは、永久磁石46の内周側の端はそれぞれd軸に隣接し、僅かな隙間をおいて互いに対向している。永久磁石46の外周側の端は、回転子鉄心44の円周方向に沿ってd軸から離間し、回転子鉄心44の外周面の近傍およびq軸の近傍に位置している。これにより、永久磁石46の外周側の端は、隣合う磁極の永久磁石46の外周側端と、q軸を挟んで隣接対向している。なお、本実施の形態においては永久磁石46がそれぞれd軸に対して傾斜している例を示しているが、永久磁石46がd軸に対して垂直となっていても構わない。 Two permanent magnets 46 are arranged on both sides of each d-axis in the circumferential direction of the rotor core 44. Each permanent magnet 46 is formed in an elongated flat plate shape having a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 44. When viewed in a cross section orthogonal to the central axis C1 of the rotor core 44, the permanent magnets 46 are respectively inclined with respect to the d-axis. The two permanent magnets 46 are arranged side by side in a substantially V shape, for example. Here, the ends of the permanent magnets 46 on the inner peripheral side are adjacent to the d-axis and face each other with a slight gap. The outer peripheral end of the permanent magnet 46 is separated from the d-axis along the circumferential direction of the rotor core 44, and is located near the outer peripheral surface of the rotor core 44 and near the q-axis. As a result, the outer peripheral end of the permanent magnet 46 is adjacent to the outer peripheral end of the permanent magnet 46 of the adjacent magnetic poles with the q-axis in between. In the present embodiment, the permanent magnets 46 are inclined with respect to the d-axis, but the permanent magnets 46 may be perpendicular to the d-axis.
 図3は、固定子の他端面側を示す斜視図、図4は、図3の領域Aであって固定子の第2コイルエンド部分を拡大して示す斜視図、図5は、コイルセグメントを示す斜視図である。図3および図4に示すように、コイル18は、複数のコイルセグメント19を用いて構成され、固定子鉄心16に組みつけられている。各コイルセグメント19は、平角導体として、断面形状が矩形の銅の平角線で形成されている。平角線は、長手方向に垂直な断面(横断面)が略矩形状をしているか、少なくとも対向する2長辺を有する形状としている。平角導体の横断面が矩形である場合、四隅は直角である必要はなく、面取りやR加工がされていてもよい。また、横断面が対向する2長辺を有する場合、例えば長円状など、断面においてこれらの対向する2長辺の端部を結ぶ部分は曲線であってもよい。平角導体の材質については、銅以外にアルミなどの導体でも構わない。 FIG. 3 is a perspective view showing the other end surface side of the stator, FIG. 4 is a perspective view showing an enlarged view of the second coil end portion of the stator in the region A of FIG. 3, and FIG. 5 shows a coil segment. It is a perspective view which shows. As shown in FIGS. 3 and 4, the coil 18 is configured by using a plurality of coil segments 19 and is assembled to the stator core 16. Each coil segment 19 is formed as a flat conductor by a flat copper wire having a rectangular cross section. The flat line has a substantially rectangular cross section (cross section) perpendicular to the longitudinal direction, or has a shape having at least two opposite long sides. When the cross section of the flat conductor is rectangular, the four corners do not have to be right angles and may be chamfered or rounded. When the cross section has two long sides facing each other, the portion connecting the ends of the two long sides facing each other in the cross section may be curved, for example, in an oval shape. As for the material of the flat conductor, a conductor such as aluminum may be used in addition to copper.
 図5に示すように、コイルセグメント19は、平角線を切断および折曲げることにより、両端を屈折させたU字形状に形成されている。すなわち、コイルセグメント19は、互いに間隔を置いて対向する一対の直線部19aと、直線部19aの一端部同士を連結した架橋部19bと、を一体に有している。コイルセグメント19は、矩形の断面形状を有し、すなわち、断面は、互いに対向する一対の長辺および互いに対向する一対の短辺を有している。コイルセグメント19の外面は、エナメル等の絶縁被膜19c(ドットで図示)で覆われている。各直線部19aの延出端は、絶縁被膜19cが除去され、導通可能な状態となっている。延出端部19a1は、その先端部分に、直線部19aの中心軸線C2に対して角度θ1(90°未満)傾斜した接合部19a5を有している。接合部19a5は、矩形状に形成され、一対の長辺が中心軸線C2に対し角度θ1傾斜し、一対の短辺が中心軸線C2と直交する方向に延在している。図5においてドットで図示している絶縁被膜19cは、図5以外の図面において図示を省略している。 As shown in FIG. 5, the coil segment 19 is formed into a U-shape with both ends refracted by cutting and bending a flat wire. That is, the coil segment 19 integrally has a pair of straight line portions 19a facing each other at intervals and a bridging portion 19b connecting one ends of the straight line portions 19a. The coil segment 19 has a rectangular cross-sectional shape, i.e., the cross-section has a pair of long sides facing each other and a pair of short sides facing each other. The outer surface of the coil segment 19 is covered with an insulating coating 19c (indicated by dots) such as enamel. The insulating film 19c has been removed from the extending end of each straight portion 19a so that it can be conducted. The extending end portion 19a1 has a joint portion 19a5 inclined at an angle θ1 (less than 90 °) with respect to the central axis C2 of the straight line portion 19a at the tip end portion thereof. The joint portion 19a5 is formed in a rectangular shape, a pair of long sides are inclined by an angle θ1 with respect to the central axis C2, and a pair of short sides extend in a direction orthogonal to the central axis C2. The insulating coating 19c shown by dots in FIG. 5 is not shown in drawings other than FIG.
 図3に示すように、複数のコイルセグメント19は、複数の円筒状、ここでは、6層の円筒状に配列され、各コイルセグメントの一対の直線部19aが、例えば、固定子鉄心16の一端面16a側からそれぞれ対応する異なるスロット20に差し込まれ、固定子鉄心16の他端面16bから所定長さだけ突出している。図2に示すように、1スロット20に例えば、6つの直線部19aが挿通される。スロット20において、6つの直線部19aは、固定子鉄心16の半径方向に並んで配置されている。6つの直線部19aは、長辺同士が平行に向かい合った状態で、スロット20内に配置されている。 As shown in FIG. 3, the plurality of coil segments 19 are arranged in a plurality of cylinders, here in a six-layer cylindrical shape, and a pair of linear portions 19a of each coil segment are, for example, one of the stator cores 16. It is inserted into the corresponding different slots 20 from the end surface 16a side, and protrudes from the other end surface 16b of the stator core 16 by a predetermined length. As shown in FIG. 2, for example, six straight line portions 19a are inserted into one slot 20. In the slot 20, the six straight portions 19a are arranged side by side in the radial direction of the stator core 16. The six straight lines 19a are arranged in the slot 20 with their long sides facing each other in parallel.
 コイルセグメント19の架橋部19bは、固定子鉄心16の一端面16aに僅かに隙間を置いて対向している。架橋部19bは、固定子鉄心16のほぼ円周方向に沿って延在し、幾つかの架橋部19bは、他の架橋部19bと交差して延在している。これらの架橋部19bは、一端面16aから突出するコイルエンド18aを構成している。 The crosslinked portion 19b of the coil segment 19 faces the one end surface 16a of the stator core 16 with a slight gap. The cross-linking portion 19b extends substantially along the circumferential direction of the stator core 16, and some cross-linking portions 19b extend so as to intersect with other cross-linking portions 19b. These cross-linked portions 19b form a coil end 18a protruding from one end surface 16a.
 図3および図4に示すように、コイルセグメント19の直線部19aは、固定子鉄心16の他端面16bから所定長さ軸方向Zに延出し、延出端部19a1を構成している。延出端部19a1は、固定子鉄心16の周方向に折曲げられ、軸方向Zに対して傾斜して延在している。詳細には、各直線部19aの延出端部19a1は、固定子鉄心16の軸方向Zから周方向に所定角度折れ曲がる第1曲げ部19Mと、第1曲げ部19Mから軸方向Zに対して傾斜して直線的に延在する傾斜部19Nとを有している。延出端部19a1の先端に位置する接合部19a5は、固定子鉄心16の他端面16bとほぼ平行に位置している。 As shown in FIGS. 3 and 4, the straight portion 19a of the coil segment 19 extends from the other end surface 16b of the stator core 16 in the predetermined length axial direction Z to form the extending end portion 19a1. The extending end portion 19a1 is bent in the circumferential direction of the stator core 16 and extends so as to be inclined with respect to the axial direction Z. Specifically, the extending end portion 19a1 of each straight portion 19a is a first bent portion 19M that bends at a predetermined angle in the circumferential direction from the axial direction Z of the stator core 16 and the first bent portion 19M with respect to the axial direction Z. It has an inclined portion 19N that is inclined and extends linearly. The joint portion 19a5 located at the tip of the extension end portion 19a1 is located substantially parallel to the other end surface 16b of the stator core 16.
 各スロット20に挿通された6本の直線部19aの延出端部19a1は、交互に一方向および逆方向に折曲げられている。すなわち、最内周に位置する延出端部19a1は、固定子鉄心16の周方向の一方向に折曲げられ、1つ外側の延出端部19a1は、周方向の他方向(逆方向)に折曲げられている。更に1つ外側の延出端部19a1は、一方向に折曲げられている。異なる複数のスロット20から延出している6本の延出端部19a1は、接合部19a5が、固定子鉄心16の径方向にほぼ一列に並んで位置するように折曲げられている。これら6つの接合部19a5は、ほぼ同一平面に延在している。なお、各直線部19aの延出端のうち絶縁被膜19cが除去される部分は、接合部19a5に隣接する固定子鉄心16側の部分とすることが好ましい。このようにすることで、径方向に隣接するコイルセグメント19の接合部19a5同士を後述のように溶接で接合した際に、接合部19a5に固定子鉄心16側に隣接する絶縁被膜19cが除去された部分を確実に導通させることができる。なお、後述する低剛性部19a2が接合部19a5の近傍に(例えば隣接して)設けられる場合、各直線部19aの延出端のうち、低剛性部19a2に隣接する部分のうち固定子鉄心16側の部分の絶縁被膜19cを除去してもよい。 The extending end portions 19a1 of the six straight portions 19a inserted into each slot 20 are alternately bent in one direction and the opposite direction. That is, the extending end portion 19a1 located on the innermost circumference is bent in one direction in the circumferential direction of the stator core 16, and the extending end portion 19a1 on the outer side is in the other direction (opposite direction) in the circumferential direction. It is bent into. Further, the extending end portion 19a1 on the outer side is bent in one direction. The six extending end portions 19a1 extending from the plurality of different slots 20 are bent so that the joint portions 19a5 are located substantially in a line in the radial direction of the stator core 16. These six joints 19a5 extend substantially in the same plane. The portion of the extending end of each straight portion 19a from which the insulating coating 19c is removed is preferably the portion on the stator core 16 side adjacent to the joint portion 19a5. By doing so, when the joint portions 19a5 of the coil segments 19 adjacent to each other in the radial direction are joined by welding as described later, the insulating coating 19c adjacent to the stator core 16 side is removed from the joint portion 19a5. The welded part can be reliably conducted. When the low-rigidity portion 19a2 described later is provided near (for example, adjacent to) the joint portion 19a5, the stator core 16 of the portions adjacent to the low-rigidity portion 19a2 among the extending ends of the straight portions 19a. The insulating coating 19c on the side portion may be removed.
 径方向に並んだ各列の延出端部19a1の先端面、つまり、接合部19a5は、2つずつ(2本ずつ)互いに機械的かつ電気的に接合されている。接合には、例えば、レーザー溶接を用いることができる。2つの接合部19a5にレーザー光を照射し導体を部分的に溶融することにより、溶接ビード19dが形成されている。径方向に隣合う2つの接合部19a5が接合されて、複数のコイルセグメント全体で3相のコイル18を構成している。延出端部19a1は、固定子鉄心16の他端面16bから突出するコイルエンド18bを構成している。直線部19aの接合部(溶接面)を含む先端部(導電部)は、粉体塗装、ワニス等の図示しない絶縁材料で覆われる。
 図3に示すように、コイル18の内、3本のコイルに、それぞれU相接続端子TU、V相接続端子TV、W相接続端子TWが接続されている。
The tip surfaces of the extending end portions 19a1 of each row arranged in the radial direction, that is, the joining portions 19a5 are mechanically and electrically joined to each other by two (two each). For joining, for example, laser welding can be used. The weld bead 19d is formed by irradiating the two joints 19a5 with laser light to partially melt the conductor. Two joints 19a5 adjacent to each other in the radial direction are joined to form a three-phase coil 18 in the entire plurality of coil segments. The extending end portion 19a1 constitutes a coil end 18b protruding from the other end surface 16b of the stator core 16. The tip portion (conductive portion) including the joint portion (welded surface) of the straight portion 19a is covered with an insulating material (not shown) such as powder coating or varnish.
As shown in FIG. 3, a U-phase connection terminal TU, a V-phase connection terminal TV, and a W-phase connection terminal TW are connected to three of the coils 18, respectively.
 次に、実施形態に係る回転電機10の固定子12の製造方法の一例について説明する。
 図6から図9を参照して、固定子鉄心16にコイルセグメント19を装着する装着工程について説明する。
 図6は、固定子鉄心16および円筒状に配列されたコイルセグメント19を示す斜視図である。
 図6に示すように、先ず、多数本のコイルセグメント19を用意し、これらを円筒状に配列する。図示していないが、それぞれ円筒状に配列された3組のコイルセグメント19を用意する。1組(48本)のコイルセグメント19は、固定子鉄心16の複数のスロット20に沿って円筒形状に配列されている。1組のコイルセグメント19は、U相用の2本のコイルセグメント19U1と19U2、V相用の2本のコイルセグメント19V1と19V2、およびW相用の2本のコイルセグメント19W1と19W2の合計6本を最小ユニットとして、8ユニットから構成されている。円筒状に配列された1組において、コイルセグメント19の直線部19aは、径方向に2列に並んでいる。すなわち、多数(48本×2)の直線部19aは、径の異なる2層の円筒状に配列されている。なお、この例ではコイルセグメント19を3組用意することを例示したが、本実施形態は3組のコイルセグメント19を用意するものに限定されない。
Next, an example of a method of manufacturing the stator 12 of the rotary electric machine 10 according to the embodiment will be described.
The mounting process of mounting the coil segment 19 on the stator core 16 will be described with reference to FIGS. 6 to 9.
FIG. 6 is a perspective view showing the stator core 16 and the coil segments 19 arranged in a cylindrical shape.
As shown in FIG. 6, first, a large number of coil segments 19 are prepared, and these are arranged in a cylindrical shape. Although not shown, three sets of coil segments 19 each arranged in a cylindrical shape are prepared. One set (48 pieces) of coil segments 19 are arranged in a cylindrical shape along a plurality of slots 20 of the stator core 16. One set of coil segments 19 includes two coil segments 19U1 and 19U2 for the U phase, two coil segments 19V1 and 19V2 for the V phase, and two coil segments 19W1 and 19W2 for the W phase, for a total of six. The book is the minimum unit, and it is composed of 8 units. In one set arranged in a cylindrical shape, the straight portions 19a of the coil segments 19 are arranged in two rows in the radial direction. That is, a large number (48 × 2) of straight portions 19a are arranged in a cylindrical shape having two layers having different diameters. In this example, it is illustrated that three sets of coil segments 19 are prepared, but the present embodiment is not limited to the case where three sets of coil segments 19 are prepared.
 図7は、図6の領域Bのコイルセグメント19を拡大して示す斜視図である。
 図7に実線で示すように、折曲げ成形前のコイルセグメント19の直線部19aは、後述する折曲げ工程で折曲げ成形される延出端部19a1と、後述する切断工程において廃棄される端材部19a3とが、延出端部19a1及び端材部19a3よりも剛性が低い低剛性部19a2を介して、隣接して構成されている。すなわち、直線部19aの先端部において、平角線の一側面から他側面に向かって延びるスリット状の溝部19a4を形成することにより、溝部19a4と他側面との間に、平角線の他の領域よりも断面積が小さく剛性の低下した低剛性部19a2を形成している。低剛性部19a2は、直線部19aにおいて、溝部19a4を介して対向する延出端部19a1と端材部19a3との間に位置する。溝部19a4は、直線部19aの先端にスリット状に形成されている。溝部19a4は、直線部19aの中心軸線C2と交差するように、中心軸線C2から角度θ1傾斜している。溝部19a4は、平角線によって構成される直線部19aにおいて、その平角線の一方の短辺から他方の短辺の近傍まで延び、更に、平角線の長辺側側面に開口している。
 図7に破線で示すように、折曲げ工程において、延出端部19a1が折り曲げられると、溝部19a4の内側が外方に露出される。溝部19a4の露出した領域の一部は、後述する接合工程において、接合部19a5として用いられる。接合部19a5は、図7に破線で示すように、折曲工程において、固定子鉄心16の他端面16bとほぼ平行にされる。低剛性部19a2は、図7に破線で示すように、切断工程において切断されて、延出端部19a1から端材部19a3が分断される。
FIG. 7 is an enlarged perspective view of the coil segment 19 in the region B of FIG.
As shown by a solid line in FIG. 7, the straight portion 19a of the coil segment 19 before bending is the extending end portion 19a1 which is bent and molded in the bending step described later and the end discarded in the cutting step described later. The material portion 19a3 is adjacent to each other via the extending end portion 19a1 and the low-rigidity portion 19a2 having a lower rigidity than the end material portion 19a3. That is, by forming a slit-shaped groove portion 19a4 extending from one side surface of the flat line portion toward the other side surface at the tip portion of the straight line portion 19a, the groove portion 19a4 and the other side surface are formed from the other region of the flat line portion. Also forms a low-rigidity portion 19a2 having a small cross-sectional area and reduced rigidity. The low-rigidity portion 19a2 is located in the straight line portion 19a between the extending end portion 19a1 and the end material portion 19a3 facing each other via the groove portion 19a4. The groove portion 19a4 is formed in a slit shape at the tip of the straight portion 19a. The groove portion 19a4 is inclined at an angle θ1 from the central axis C2 so as to intersect the central axis C2 of the straight line portion 19a. The groove portion 19a4 extends from one short side of the flat line to the vicinity of the other short side in the straight portion 19a composed of the flat line, and further opens on the long side side surface of the flat line.
As shown by the broken line in FIG. 7, when the extending end portion 19a1 is bent in the bending step, the inside of the groove portion 19a4 is exposed to the outside. A part of the exposed region of the groove portion 19a4 is used as the joining portion 19a5 in the joining step described later. As shown by the broken line in FIG. 7, the joint portion 19a5 is made substantially parallel to the other end surface 16b of the stator core 16 in the bending step. As shown by the broken line in FIG. 7, the low-rigidity portion 19a2 is cut in the cutting step, and the end material portion 19a3 is separated from the extending end portion 19a1.
 図8は、図6の固定子鉄心16にコイルセグメント19を装着した状態である固定子鉄心組立体を示す斜視図である。
 図8に示すように、各組のコイルセグメント19は、固定子鉄心16の一端面16a側からスロット20に挿入される。コイルセグメント19の直線部19aは、スロット20に差し込まれ、固定子鉄心16の他端面16bから所定長さだけ突出し、延出端部19a1を構成する。円筒状に配列された1組(48本)のコイルセグメント19の両端に位置する96個(48×2)の直線部19aは、対応する48個のスロット20において、2層分の円筒に相当し、例えば6層目(最外層)と5層目の位置に差し込まれる。円筒状に配列された3組(144本、48本×3)のコイルセグメント19が、固定子鉄心16の一端面16a側から対応する48個のスロット20に挿入される。3組のコイルセグメント19の直線部19aおよび延出端部19a1は、同芯で径の異なる6層の円筒状に配列される。各スロット20において、直線部19aは、6層目(最外層)から1層目(最内層)まで径方向に並んで配置される。
FIG. 8 is a perspective view showing a stator core assembly in which the coil segment 19 is attached to the stator core 16 of FIG.
As shown in FIG. 8, each set of coil segments 19 is inserted into the slot 20 from the one end surface 16a side of the stator core 16. The straight portion 19a of the coil segment 19 is inserted into the slot 20 and protrudes from the other end surface 16b of the stator core 16 by a predetermined length to form the extending end portion 19a1. The 96 (48 × 2) straight lines 19a located at both ends of a set (48) of coil segments 19 arranged in a cylindrical shape correspond to two layers of cylinders in the corresponding 48 slots 20. Then, for example, it is inserted at the positions of the 6th layer (outermost layer) and the 5th layer. Three sets (144, 48 × 3) of coil segments 19 arranged in a cylindrical shape are inserted into the corresponding 48 slots 20 from the one end surface 16a side of the stator core 16. The straight portion 19a and the extending end portion 19a1 of the three sets of coil segments 19 are arranged in a concentric, six-layered cylindrical shape having different diameters. In each slot 20, the straight line portions 19a are arranged in a radial direction from the sixth layer (outermost layer) to the first layer (innermost layer).
 図9は、固定子鉄心16に全てのコイルセグメント19を装着し、かつ、上下向きを変えて示す斜視図である。
 図9に示すように、コイルセグメント19が装着された固定子鉄心16(固定子鉄心組立体)は、後述するコイルセグメント19の延出端部19a1の折曲げ成形のために、上下の向きが反転される。
 6層目(最外層)に位置するコイルセグメント19P、5層目に位置するコイルセグメント19Q、4層目に位置するコイルセグメント19R、3層目に位置するコイルセグメント19S、2層目に位置するコイルセグメント19T、および1層目(最内層)に位置するコイルセグメント19Uの直線部19aが、固定子鉄心16の径方向において、一列に並んでいる。
FIG. 9 is a perspective view showing all the coil segments 19 mounted on the stator core 16 and changed in the vertical direction.
As shown in FIG. 9, the stator core 16 (stator core assembly) to which the coil segment 19 is mounted is oriented up and down due to bending molding of the extension end portion 19a1 of the coil segment 19 described later. Inverted.
Coil segment 19P located in the 6th layer (outermost layer), coil segment 19Q located in the 5th layer, coil segment 19R located in the 4th layer, coil segment 19S located in the 3rd layer, located in the 2nd layer The coil segment 19T and the straight portion 19a of the coil segment 19U located in the first layer (innermost layer) are lined up in a row in the radial direction of the stator core 16.
 図10から図16等を参照して、固定子鉄心16に装着されたコイルセグメント19を折曲げる折曲げ工程について説明する。
 図10から図16は、6層目から1層目の48本のコイルセグメント19P、19Q、19R、19S、19Tおよび19Uの折曲げ工程のうち、最初に行われる6層目の48本のコイルセグメント19Pの折曲げ工程を示している。
 図10は、固定子鉄心に装着されたコイルセグメント19のうち6層目(最外層)に位置する48個のコイルセグメント19Pの折曲げ工程(1回目)であって、折曲治具101によって最初(1回目)に最外層の48個のコイルセグメント19Pを折曲げ成形する直前の状態を示す斜視図、図11は、図10の領域Cを拡大して示す斜視図、図12は、図10の領域Cを拡大して示す側面図である。
 折曲治具によって、6層目(最外層)に位置する48本のコイルセグメント19Pから1層目(最内層)に位置する48本のコイルセグメント19Uの順で、同一層の48本のコイルセグメント19の延出端部19a1を同時に折曲げ成形する。ここで、48本のコイルセグメント19P、19Q、19R、19S、19Tおよび19Uは、それぞれ円形状に配置されているが、その直径が異なる。すなわち、6層目(最外層)に位置する48本のコイルセグメント19Pから1層目(最内層)に位置する48本のコイルセグメント19Uの順で、円形状の直径が段階的に小さくなる。したがって、48本のコイルセグメント19P、19Q、19R、19S、19Tおよび19Uの順で、外形形状を段階的に小さくした6種類の折曲治具を使用する。
 図10に示す折曲治具101は、6層目(最外層)に位置する48本のコイルセグメント19Pの折曲げ成形に使用される。折曲治具101は、図11および図12に示すように、リング状に形成され、内周面101aに凹状の取付部101cが形成されている。取付部101cは、内周面101aにおいて、折曲治具101の下端101bから上方に向かって所定長さだけ切り欠いて形成されている。取付部101cは、48個を1組として構成し、内周面101aの周方向に沿ってほぼ均等な間隔で形成されている。折曲治具101は、十分な剛性を備えた金属によって形成されている。折曲治具101は、図示しない昇降および回転自在な駆動機構に支持されている。
 図11および図12に示すように、コイルセグメント19の直線部19Paは、固定子鉄心16の軸方向Zに沿って、固定子鉄心16の他端面16bから上方に突出している。直線部19Paにおいて、延出端部19Pa1と端材部19Pa3の間に位置する溝部19Pa4は、固定子鉄心16の軸方向Zに対して傾斜している。低剛性部19Pa2は、溝部19Pa4によって隔てられた、延出端部19Pa1と端材部19Pa3の間に位置する。折曲治具101の取付部101cは、直線部19Paの先端に位置する端材部19Pa3に取り付けられる。このとき、折曲治具101の下端101bと、コイルセグメント19Pの溝部19Pa4の上端は、固定子鉄心16の周方向に沿って並んでいる。
A bending step of bending the coil segment 19 mounted on the stator core 16 will be described with reference to FIGS. 10 to 16 and the like.
10 to 16 show the 48 coils of the 6th layer, which are the first of the bending steps of the 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the 6th to 1st layers. The bending process of the segment 19P is shown.
FIG. 10 shows a bending step (first time) of 48 coil segments 19P located in the sixth layer (outermost layer) of the coil segments 19 mounted on the stator core, and is performed by a bending jig 101. First (first time), a perspective view showing a state immediately before bending and molding the 48 coil segments 19P of the outermost layer, FIG. 11 is a perspective view showing an enlarged region C of FIG. 10, and FIG. 12 is a view. It is a side view which shows the area C of 10 enlarged.
With a folding jig, 48 coils of the same layer are arranged in the order of 48 coil segments 19P located in the 6th layer (outermost layer) to 48 coil segments 19U located in the 1st layer (innermost layer). The extending end portion 19a1 of the segment 19 is simultaneously bent and molded. Here, the 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U are arranged in a circular shape, but their diameters are different. That is, the diameter of the circular shape gradually decreases in the order of the 48 coil segments 19P located in the 6th layer (outermost layer) to the 48 coil segments 19U located in the 1st layer (innermost layer). Therefore, six types of bending jigs whose outer shape is gradually reduced are used in the order of 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U.
The bending jig 101 shown in FIG. 10 is used for bending molding of 48 coil segments 19P located in the sixth layer (outermost layer). As shown in FIGS. 11 and 12, the folding jig 101 is formed in a ring shape, and a concave mounting portion 101c is formed on the inner peripheral surface 101a. The mounting portion 101c is formed by notching the inner peripheral surface 101a from the lower end 101b of the bending jig 101 upward by a predetermined length. The mounting portions 101c are composed of 48 pieces as a set, and are formed at substantially equal intervals along the circumferential direction of the inner peripheral surface 101a. The folding jig 101 is made of a metal having sufficient rigidity. The folding jig 101 is supported by an elevating and rotating drive mechanism (not shown).
As shown in FIGS. 11 and 12, the straight portion 19Pa of the coil segment 19 projects upward from the other end surface 16b of the stator core 16 along the axial direction Z of the stator core 16. In the straight portion 19Pa, the groove portion 19Pa4 located between the extension end portion 19Pa1 and the end material portion 19Pa3 is inclined with respect to the axial direction Z of the stator core 16. The low-rigidity portion 19Pa2 is located between the extending end portion 19Pa1 and the end material portion 19Pa3 separated by the groove portion 19Pa4. The attachment portion 101c of the folding jig 101 is attached to the end material portion 19Pa3 located at the tip of the straight portion 19Pa. At this time, the lower end 101b of the bending jig 101 and the upper end of the groove portion 19Pa4 of the coil segment 19P are aligned along the circumferential direction of the stator core 16.
 図13は、図10の状態から48個のコイルセグメント19Pを折曲げ成形した直後の状態を示す斜視図、図14は、図13の領域Dを拡大して示す斜視図、図15は、図13の領域Dを拡大して示す側面図である。
 折曲治具101は、図13に示すように、折曲げ工程において、固定子鉄心16の回りで時計方向CWに回動しつつ、固定子鉄心16側に移動する。これにより、48本のコイルセグメント19Pの延出端部19Pa1は、折曲げられている。コイルセグメント19の溝部19a4は、図14及び図15に示すように、折曲げ工程において、内側が外方に露出される。コイルセグメント19の接合部19Pa5は、図12に示す固定子鉄心16の他端面16bに対して傾斜した状態から、図15に示す固定子鉄心16の他端面16bにほぼ平行な状態になる。
FIG. 13 is a perspective view showing a state immediately after bending and molding 48 coil segments 19P from the state of FIG. 10, FIG. 14 is a perspective view showing an enlarged region D of FIG. 13, and FIG. 15 is a view. It is a side view which shows the area D of 13 enlarged.
As shown in FIG. 13, the folding jig 101 moves to the stator core 16 side while rotating clockwise CW around the stator core 16 in the bending step. As a result, the extending end portion 19Pa1 of the 48 coil segments 19P is bent. As shown in FIGS. 14 and 15, the groove portion 19a4 of the coil segment 19 is exposed to the outside on the inside in the bending step. The joint portion 19Pa5 of the coil segment 19 is inclined from the other end surface 16b of the stator core 16 shown in FIG. 12 to a state substantially parallel to the other end surface 16b of the stator core 16 shown in FIG.
 図16は、コイルセグメント19の折曲げ成形を示す側面図である。
 図16に破線で示すように、コイルセグメント19の折曲げ成形前は、直線部19aにおいて、延出端部19a1と端材部19a3が、低剛性部19a2を介して、固定子鉄心16の軸線上で隣接している。低剛性部19a2は、直線部19aにおいて、溝部19a4を介して対向する延出端部19a1と端材部19a3との間に位置している。
 図16に実線で示すように、コイルセグメント19の折曲げ成形後は、延出端部19a1が折り曲げられ、溝部19a4の内側が外方に露出されている。溝部19a4の露出した領域の一部は、接合部19a5として用いられる。接合部192a5は、固定子鉄心16の他端面16bとほぼ平行になっている。
FIG. 16 is a side view showing bending molding of the coil segment 19.
As shown by the broken line in FIG. 16, before the coil segment 19 is bent and formed, in the straight portion 19a, the extending end portion 19a1 and the end material portion 19a3 pass through the low-rigidity portion 19a2 and the shaft of the stator core 16. Adjacent on the line. The low-rigidity portion 19a2 is located in the straight portion 19a between the extending end portion 19a1 and the end material portion 19a3 facing each other via the groove portion 19a4.
As shown by a solid line in FIG. 16, after the coil segment 19 is bent and molded, the extension end portion 19a1 is bent and the inside of the groove portion 19a4 is exposed to the outside. A part of the exposed region of the groove portion 19a4 is used as the joint portion 19a5. The joint portion 192a5 is substantially parallel to the other end surface 16b of the stator core 16.
 図17を参照して、折曲げ成形されたコイルセグメント19の端材部19a3を延出端部19a1から切断する切断工程について説明する。
 図17は、コイルセグメント19の切断工程を示す斜視図である。
 コイルセグメント19の切断は、一例として、レーザー光L1によるコイルセグメント19の低剛性部19a2の切断によって行われる。レーザー光源102から出射されるレーザー光L1は、48本のコイルセグメント19Pによって構成される同心円の外接線の方向に沿って、各々のコイルセグメント19Pの低剛性部19a2に照射される。48本のコイルセグメント19Pは、固定子鉄心16の周方向に沿って順番に、延出端部19a1と端材部19a3の間の低剛性部19a2がレーザー光L1によって切断されて、延出端部19a1と端材部19a3が分断される。1本のコイルセグメント19Pの低剛性部19a2がレーザー光L1によって切断される度に、固定子鉄心16が時計方向CWに1スロット20の角度だけ回転され、次のコイルセグメント19Pの低剛性部19a2の切断が行われる。
 ここで、コイルセグメント19Pの低剛性部19a2を安定的に切断するために、折曲治具101を端材部19a3に取り付けたままの状態で、低剛性部19a2にレーザー光L1を照射して切断する構成としてもよい。また、低剛性部19a2を効率良く切断するために、レーザー光L1を固定子鉄心16の径方向に沿って走査する構成としてもよい。
 コイルセグメント19については、レーザ光L1による切断の他に機械的なカッターを用いて切断しても構わない。
A cutting step of cutting the end material portion 19a3 of the bent-formed coil segment 19 from the extension end portion 19a1 will be described with reference to FIG.
FIG. 17 is a perspective view showing a cutting process of the coil segment 19.
The cutting of the coil segment 19 is performed, for example, by cutting the low-rigidity portion 19a2 of the coil segment 19 by the laser beam L1. The laser light L1 emitted from the laser light source 102 irradiates the low-rigidity portion 19a2 of each coil segment 19P along the direction of the circumscribed circle of the concentric circles composed of the 48 coil segments 19P. In the 48 coil segments 19P, the low-rigidity portion 19a2 between the extending end portion 19a1 and the end material portion 19a3 is cut by the laser beam L1 in order along the circumferential direction of the stator core 16, and the extending end is extended. The portion 19a1 and the scrap portion 19a3 are separated. Each time the low-rigidity portion 19a2 of one coil segment 19P is cut by the laser beam L1, the stator core 16 is rotated clockwise by an angle of 1 slot 20 and the low-rigidity portion 19a2 of the next coil segment 19P is rotated. Is cut.
Here, in order to stably cut the low-rigidity portion 19a2 of the coil segment 19P, the low-rigidity portion 19a2 is irradiated with the laser beam L1 while the bending jig 101 is still attached to the end material portion 19a3. It may be configured to be cut. Further, in order to efficiently cut the low-rigidity portion 19a2, the laser beam L1 may be scanned along the radial direction of the stator core 16.
The coil segment 19 may be cut by using a mechanical cutter in addition to cutting by the laser beam L1.
 6層目に位置する48本のコイルセグメント19Pの折曲げ工程および切断工程を終えた後、5層目から1層目に位置する48本のコイルセグメント19Q、19R、19S、19Tおよび19Uの折曲げ工程および切断工程が順番に行われる。コイルセグメント19P、19Q、19R、19S、19Tおよび19Uの延出端部19a1は、固定子鉄心16の周方向に沿って交互に逆方向に折曲げ成形される。すなわち、6層目、4層目および2層目のコイルセグメント19P、19Rおよび19Tの延出端部19a1は、固定子鉄心16の周方向に沿って、基端側から先端側に対して時計方向CWに折曲げ成形される。一方、5層目、3層目および1層目のコイルセグメント19Q、19Sおよび19Uの延出端部19a1は、固定子鉄心16の周方向に沿って、基端側から先端側に対して反時計方向CCWに折曲げ成形される。コイルセグメント19の折曲げ方向は、折曲治具の回動方向を変えることにより選択する。
 図18および図19は、6層目から1層目の48本のコイルセグメント19P、19Q、19R、19S、19Tおよび19Uの折曲げ工程のうち、最後に行われる1層目の48本のコイルセグメント19Uの折曲げ工程を示している。
 図18は、固定子鉄心に装着されたコイルセグメント19のうち1層目(最内層)に位置する48個のコイルセグメント19Uの折曲げ工程(6回目)であって、折曲治具103によって最後(6回目)に最内層の48個のコイルセグメント19Uを折曲げ成形する直前の状態を示す斜視図、図19は、図18の状態から48個のコイルセグメント19Uを折曲げ成形した直後の状態を示す斜視図である。
 折曲治具103は、図18に示す状態から図19に示す状態のように、固定子鉄心16の中心軸線の回りで反時計方向CCWに回動しつつ、固定子鉄心16側に移動する。これにより、48本のコイルセグメント19Uの延出端部が折曲げられ、接合部が固定子鉄心16の他端面16bとほぼ平行になる。
 なお、実施形態においては折曲治具101および折曲治具103を固定子鉄心16の中心軸線の回りに回動させているが、折曲治具101の固定子鉄心16の中心軸線に対する周方向の相対位置が変わればよく、固定子鉄心16を折曲治具101および折曲治具103の中心軸線の回りに回動させても、もしくは、固定子鉄心16と折曲治具101および折曲治具103とをそれぞれ逆方向に回動させても構わない。
 また、6層目から1層目のコイルセグメント19P、19Q、19R、19S、19Tおよび19Uの延出端部19a1を、同時に折曲げる構成としてもよい。このような構成の場合、6層目から1層目のコイルセグメント19P、19Q、19R、19S、19Tおよび19U用の6種類の折曲治具は、それぞれ固定子鉄心16の径方向に沿って貫通した取付部を備える。すなわち、折曲治具の径方向の厚みを、コイルセグメント19Pの径方向の厚みと同程度に薄くすることによって、例えば、5層目用の折曲治具が6層目用及び4層目用の折曲治具と干渉しないようにする。6層目、4層目および2層目のコイルセグメント19P、19Rおよび19T用の3種類の折曲治具と、5層目、3層目および1層目のコイルセグメント19Q、19Sおよび19U用の3種類の折曲治具は、固定子鉄心16の周方向に沿って回動方向を異ならせる。
After completing the bending and cutting steps of the 48 coil segments 19P located in the 6th layer, the 48 coil segments 19Q, 19R, 19S, 19T and 19U located in the 5th to 1st layers are folded. The bending step and the cutting step are performed in order. The extending ends 19a1 of the coil segments 19P, 19Q, 19R, 19S, 19T and 19U are alternately bent and formed in opposite directions along the circumferential direction of the stator core 16. That is, the extending end portions 19a1 of the coil segments 19P, 19R and 19T of the 6th layer, the 4th layer and the 2nd layer are clocked from the base end side to the tip end side along the circumferential direction of the stator core 16. It is bent and molded in the direction CW. On the other hand, the extending end portions 19a1 of the coil segments 19Q, 19S and 19U of the fifth layer, the third layer and the first layer are counterclockwise from the proximal end side to the distal end side along the circumferential direction of the stator core 16. It is bent and molded in a clockwise CCW direction. The bending direction of the coil segment 19 is selected by changing the rotation direction of the bending jig.
18 and 19 show the 48 coils of the first layer, which are the last of the bending steps of the 48 coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the 6th to 1st layers. The bending process of the segment 19U is shown.
FIG. 18 shows a bending step (sixth time) of 48 coil segments 19U located in the first layer (innermost layer) of the coil segments 19 mounted on the stator core, using the bending jig 103. A perspective view showing a state immediately before bending and molding the 48 coil segments 19U of the innermost layer at the end (sixth time), FIG. 19 shows immediately after bending and molding the 48 coil segments 19U from the state of FIG. It is a perspective view which shows the state.
The folding jig 103 moves to the stator core 16 side while rotating counterclockwise CCW around the central axis of the stator core 16 as shown in FIG. 19 from the state shown in FIG. .. As a result, the extending ends of the 48 coil segments 19U are bent, and the joints are substantially parallel to the other end surface 16b of the stator core 16.
In the embodiment, the folding jig 101 and the folding jig 103 are rotated around the central axis of the stator core 16, but the circumference of the bending jig 101 with respect to the central axis of the stator core 16 The relative position in the direction may change, and the stator core 16 may be rotated around the central axis of the folding jig 101 and the folding jig 103, or the stator core 16 and the folding jig 101 and The folding jig 103 and the folding jig 103 may be rotated in opposite directions.
Further, the extension end portions 19a1 of the coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the sixth to first layers may be bent at the same time. In the case of such a configuration, the six types of bending jigs for the coil segments 19P, 19Q, 19R, 19S, 19T and 19U of the sixth layer to the first layer are respectively along the radial direction of the stator core 16. It has a penetrating mounting part. That is, by reducing the radial thickness of the bending jig to the same degree as the radial thickness of the coil segment 19P, for example, the folding jig for the fifth layer can be used for the sixth layer and the fourth layer. Do not interfere with the folding jig for. Three types of bending jigs for the 6th, 4th and 2nd layer coil segments 19P, 19R and 19T, and the 5th, 3rd and 1st layer coil segments 19Q, 19S and 19U. The three types of bending jigs have different rotation directions along the circumferential direction of the stator core 16.
 上述したコイルセグメント19の折曲げ加工の後、径方向に隣合う2つの接合部19a5を互いに機械的かつ電気的に接合し、3相のコイル18を構成する。図20は、コイルセグメント19の接合工程を示す斜視図である。コイルセグメント19の接合工程は、一例として、レーザー光L2によるコイルセグメント19の溶接によって行われる。
 レーザー光源104からレーザー光L2を出射し、コイルセグメント19の接合部19a5にレーザー光L2を照射する。レーザー光源104は、例えば、半導体レーザと光ファイバー等によって構成する。具体的には、固定子鉄心16を所定位置に保持した状態で、径方向に一列に並んだ6層目の接合部19a5と5層目の接合部19a5との境界部、4層目の接合部19a5と3層目の接合部19a5との境界部、および2層目の接合部19a5と1層目の接合部19a5との境界部に、それぞれレーザー光L2を照射する。レーザー光源104は、ロボットハンドや駆動ステージ等によって、コイルセグメント19の接合部19a5の近傍に移動させる。隣合う2つの接合部19a5は、それぞれレーザー光L2により部分的に加熱、溶解され、その後、融合した状態で固まり溶接ビード19dが形成される。溶接ビード19dによって、隣合う2つの接合部19a5が機械的かつ電気的に接合される。
After the coil segment 19 is bent as described above, the two joints 19a5 adjacent to each other in the radial direction are mechanically and electrically joined to each other to form a three-phase coil 18. FIG. 20 is a perspective view showing a joining process of the coil segment 19. The joining step of the coil segment 19 is performed, for example, by welding the coil segment 19 with the laser beam L2.
The laser light L2 is emitted from the laser light source 104, and the joint portion 19a5 of the coil segment 19 is irradiated with the laser light L2. The laser light source 104 is composed of, for example, a semiconductor laser and an optical fiber. Specifically, with the stator core 16 held at a predetermined position, the boundary between the sixth layer joint portion 19a5 and the fifth layer joint portion 19a5 arranged in a row in the radial direction, and the fourth layer joint. The boundary portion between the portion 19a5 and the joint portion 19a5 of the third layer and the boundary portion between the joint portion 19a5 of the second layer and the joint portion 19a5 of the first layer are irradiated with the laser beam L2, respectively. The laser light source 104 is moved to the vicinity of the joint portion 19a5 of the coil segment 19 by a robot hand, a drive stage, or the like. The two adjacent joints 19a5 are partially heated and melted by the laser beam L2, respectively, and then agglomerated weld beads 19d are formed in a fused state. The weld bead 19d mechanically and electrically joins two adjacent joints 19a5.
 一列の接合部19a5を溶接した後、固定子鉄心16を周方向に7.5度(360度を48で割った角度)回転させてから停止する。この状態で、6列目と5列目の接合部19a5の境界部、4列目と3列目の接合部19a5の境界部、および2列目と1列目の接合部19a5の境界部に、レーザー光L2をそれぞれ照射し、隣合う2つの接合部19a5同士を溶接する。このような接合工程を繰り返し行い、径方向に並んだ全列の接合部19a5を2つずつ溶接する。各列の接合部19a5を2つずつ溶接して接合することにより、複数のコイルセグメント19からなる3相(U相、V相およびW相)のコイル18が形成される。なお、接合工程は、レーザー溶接に限定されことなく、半田付けや超音波接合等の他の接合手法を用いてもよい。 After welding a row of joints 19a5, rotate the stator core 16 in the circumferential direction by 7.5 degrees (360 degrees divided by 48) and then stop. In this state, at the boundary between the 6th and 5th row joints 19a5, the boundary between the 4th and 3rd row joints 19a5, and the boundary between the 2nd and 1st row joints 19a5. , Laser light L2 is irradiated respectively, and two adjacent joints 19a5 are welded to each other. By repeating such a joining process, two joining portions 19a5 in all rows arranged in the radial direction are welded. By welding and joining two joints 19a5 in each row, a three-phase (U-phase, V-phase, and W-phase) coil 18 composed of a plurality of coil segments 19 is formed. The bonding step is not limited to laser welding, and other bonding methods such as soldering and ultrasonic bonding may be used.
 接合工程が終了した後、コイルセグメント19の接合部19a5を粉体塗装、あるいは、ワニス等の絶縁材料で覆うことにより、コイル18間の電気的絶縁を担保する。更に、コイル18の各相に、それぞれU相接続端子TU、V相接続端子TV、W相接続端子TWが接続される。
 以上の製造工程により、固定子鉄心16にコイル18を装着および接続し、固定子12が構成される。
After the joining step is completed, the joint portion 19a5 of the coil segment 19 is powder-coated or covered with an insulating material such as varnish to ensure electrical insulation between the coils 18. Further, a U-phase connection terminal TU, a V-phase connection terminal TV, and a W-phase connection terminal TW are connected to each phase of the coil 18.
Through the above manufacturing process, the coil 18 is mounted and connected to the stator core 16 to form the stator 12.
 以上のように構成された実施形態に係る固定子12の製造方法によれば、コイルセグメント19の延出端部19a1を低剛性部19a2と他端面16b側との間において固定子鉄心16の周方向に折曲げた後、低剛性部19a2を切断する。平角線の他の領域に比較して断面積の小さい低剛性部19a2を設け、この低剛性部19a2の位置で延出端部19a1を折り曲げることにより、容易に、かつ、小さい曲率で延出端部19a1を折り曲げることが可能となる。すなわち、延出端部19a1を大きく湾曲させることなく、折曲治具101に把持された先端部と連なる低剛性部19a2の部分を屈折させて、延出端部19a1を相対的に小さい曲率で折曲げることができる。したがって、形成されるコイル18のコイルエンド18bの突出高さ(固定子鉄心16の他端面16bからの突出高さ)を低く抑えることができる。この結果、コイル18および固定子12の小型化が可能となる。
 以上のことから、実施形態によれば、小型化を図ることができる固定子12の製造方法が得られる。
 また、実施形態の製造方法によれば、コイルセグメント19の低剛性部19a2の位置で、溝部19a4が開く方向に延出端部19a1を折り曲げる。このような製造方法によれば、延出端部19a1を折曲げるときに、溝部19a4を外方に開くように変形させることができることから、低剛性部19a2を起点として、延出端部19a1を屈折させ易い。したがって、延出端部19a1を低剛性部19Xa2の位置で容易に、かつ、小さい曲率で折曲げることができる。
 また、実施形態の製造方法によれば、コイルセグメント19の低剛性部19a2は、直線部19aに設けた溝部19a4によって構成する。このため、コイルセグメント19の直線部19aに任意の低剛性部19a2を容易に形成することができる。すなわち、低剛性部19a2の仕様(剛性の高低等)を、直線部10aに対する溝部19a4の切り込み深さや角度によって容易に設定することができる。
 また、実施形態の製造方法によれば、延出端部19a1と端材部19a3の連結部分は、溝部19a4によって厚みが薄くなっている。このため、延出端部19a1から端材部19a3を切断して、端材部19a3を除去し易い。
 また、実施形態の製造方法によれば、延出端部19a1を固定子鉄心16の周方向に折曲げつつ、溝部19a4の内面の一部を固定子鉄心16の他端面16b側にほぼ平行にして、接合部19a5として用いる。このため、固定子鉄心16の径方向で隣り合う接合部19a5同士を接合することが容易である。
According to the method for manufacturing the stator 12 according to the embodiment configured as described above, the extending end portion 19a1 of the coil segment 19 is placed between the low-rigidity portion 19a2 and the other end surface 16b side to the circumference of the stator core 16. After bending in the direction, the low-rigidity portion 19a2 is cut. By providing a low-rigidity portion 19a2 having a smaller cross-sectional area than other regions of the flat wire and bending the extending end portion 19a1 at the position of the low-rigidity portion 19a2, the extending end can be easily and with a small curvature. The portion 19a1 can be bent. That is, the extension end 19a1 is bent with a relatively small curvature by refracting the low-rigidity portion 19a2 connected to the tip gripped by the bending jig 101 without significantly bending the extension end 19a1. Can be bent. Therefore, the protruding height of the coil end 18b of the formed coil 18 (the protruding height from the other end surface 16b of the stator core 16) can be suppressed low. As a result, the coil 18 and the stator 12 can be miniaturized.
From the above, according to the embodiment, a method for manufacturing the stator 12 that can be miniaturized can be obtained.
Further, according to the manufacturing method of the embodiment, the extending end portion 19a1 is bent at the position of the low-rigidity portion 19a2 of the coil segment 19 in the direction in which the groove portion 19a4 opens. According to such a manufacturing method, when the extending end portion 19a1 is bent, the groove portion 19a4 can be deformed so as to open outward. Therefore, the extending end portion 19a1 is formed starting from the low rigidity portion 19a2. Easy to refract. Therefore, the extending end portion 19a1 can be easily bent at the position of the low-rigidity portion 19Xa2 with a small curvature.
Further, according to the manufacturing method of the embodiment, the low-rigidity portion 19a2 of the coil segment 19 is composed of a groove portion 19a4 provided in the straight line portion 19a. Therefore, an arbitrary low-rigidity portion 19a2 can be easily formed on the straight portion 19a of the coil segment 19. That is, the specifications of the low-rigidity portion 19a2 (high or low rigidity, etc.) can be easily set by the depth of cut and the angle of the groove portion 19a4 with respect to the straight portion 10a.
Further, according to the manufacturing method of the embodiment, the thickness of the connecting portion between the extending end portion 19a1 and the end material portion 19a3 is reduced by the groove portion 19a4. Therefore, it is easy to cut the end material portion 19a3 from the extending end portion 19a1 to remove the end material portion 19a3.
Further, according to the manufacturing method of the embodiment, while bending the extending end portion 19a1 in the circumferential direction of the stator core 16, a part of the inner surface of the groove portion 19a4 is made substantially parallel to the other end surface 16b side of the stator core 16. It is used as the joint portion 19a5. Therefore, it is easy to join the joint portions 19a5 adjacent to each other in the radial direction of the stator core 16.
 次に、図21を参照しながら、実施形態の変形例1について説明する。
 図21は、実施形態の変形例1のコイルセグメント19Xの折曲げ成形を示す側面図である。
Next, a modification 1 of the embodiment will be described with reference to FIG.
FIG. 21 is a side view showing bending molding of the coil segment 19X of the first modification of the embodiment.
 実施形態の変形例1のコイルセグメント19Xの直線部19Xaには、前述したスリット状の溝部19a4に換えて、矩形状(三角形状)の切欠部19Xa4が形成されている。直線部19Xaの先端部において、平角導体の一側面から他側面に向かって延びる切欠部19Xa4が形成され、切欠部19Xa4と他側面との間に低剛性部19Xa2が形成されている。
 図21に破線で示すように、コイルセグメント19Xの折曲げ成形前は、直線部19Xaにおいて、延出端部19Xa1と端材部19Xa3が、低剛性部19Xa2を介して、固定子鉄心16の軸線上で隣接している。低剛性部19Xa2は、直線部19Xaにおいて、切欠部19Xa4を介して対向する延出端部19Xa1と端材部19Xa3との間に位置している。コイルセグメント19Xは、低剛性部19Xa2の位置で、切欠部19Xa4が開く方向に延出端部19Xa1が折り曲げられる。切欠部19Xa4は、直線部19Xaにおいて、延出端部19Xa1の折曲げ方向の前方側に位置する。接合部19Xa5は、一例として、三角形状としているが、矩形状や半円形状としてもよい。
 図21に実線で示すように、コイルセグメント19Xの折曲げ成形によって、延出端部19Xa1が折り曲げられ、切欠部19Xa4が内側から外側に拡張されて露出されている。切欠部19Xa4の露出した領域の一部は、低剛性部19Xa2が切断された後に、接合部19Xa5として用いられる。
 コイルセグメント19Xの直線部19Xaにおいて、低剛性部19Xa2が切断されて、延出端部19Xa1から端材部19Xa3が分断される。
In the straight portion 19Xa of the coil segment 19X of the modified example 1 of the embodiment, a rectangular (triangular) notch portion 19Xa4 is formed in place of the slit-shaped groove portion 19a4 described above. At the tip of the straight portion 19Xa, a notch portion 19Xa4 extending from one side surface of the flat conductor toward the other side surface is formed, and a low rigidity portion 19Xa2 is formed between the notch portion 19Xa4 and the other side surface.
As shown by the broken line in FIG. 21, before the bending molding of the coil segment 19X, the extension end portion 19Xa1 and the end material portion 19Xa3 are connected to the shaft of the stator core 16 via the low rigidity portion 19Xa2 in the straight portion 19Xa. Adjacent on the line. The low-rigidity portion 19Xa2 is located in the straight portion 19Xa between the extending end portion 19Xa1 and the end material portion 19Xa3 facing each other via the notch portion 19Xa4. In the coil segment 19X, the extending end portion 19Xa1 is bent in the direction in which the notched portion 19Xa4 opens at the position of the low-rigidity portion 19Xa2. The cutout portion 19Xa4 is located on the straight portion 19Xa on the front side in the bending direction of the extending end portion 19Xa1. The joint portion 19Xa5 has a triangular shape as an example, but may have a rectangular shape or a semicircular shape.
As shown by the solid line in FIG. 21, the extension end portion 19Xa1 is bent by the bending molding of the coil segment 19X, and the notch portion 19Xa4 is expanded from the inside to the outside and exposed. A part of the exposed region of the cutout portion 19Xa4 is used as the joint portion 19Xa5 after the low-rigidity portion 19Xa2 is cut.
In the straight portion 19Xa of the coil segment 19X, the low-rigidity portion 19Xa2 is cut, and the end material portion 19Xa3 is separated from the extending end portion 19Xa1.
 以上のように構成された実施形態の変形例1に係る固定子12の製造方法によれば、コイルセグメント19Xの低剛性部19Xa2は、直線部19Xaに設けた切欠部19Xa4によって構成する。このため、コイルセグメント19Xの直線部19Xaに任意の低剛性部19Xa2を容易に形成することができる。すなわち、低剛性部19Xa2の仕様(剛性の高低等)を、直線部10aに対する切欠部19Xa4の切り欠き量によって容易に設定することができる。
 また、コイルセグメント19Xは、低剛性部19Xa2の位置で、切欠部19Xa4が開く方向に延出端部19Xa1が折り曲げられる。このような製造方法によれば、延出端部19Xa1を折曲げるときに、切欠部19Xa4を外方に開くように変形させることができることから、低剛性部19Xa2を起点として、延出端部19a1を屈折させ易い。したがって、延出端部19a1を低剛性部19Xa2の位置で容易に、かつ、小さい曲率で折曲げることができる。
 また、切欠部19Xa4の形状は、CCDカメラ等を用いて画像認識したり作業者が目視して確認したりすることが容易であることから、低剛性部19Xa2の仕様(剛性の高低等)を一定の範囲内に維持し易い。
 また、実施形態の製造方法によれば、延出端部19Xa1と端材部19Xa3の連結部分は、切欠部19Xa4によって厚みが薄くなっている。このため、延出端部19Xa1から端材部19Xa3を切断して、端材部19Xa3を除去し易い。
According to the method for manufacturing the stator 12 according to the first modification of the embodiment configured as described above, the low-rigidity portion 19Xa2 of the coil segment 19X is composed of the notch portion 19Xa4 provided in the straight portion 19Xa. Therefore, an arbitrary low-rigidity portion 19Xa2 can be easily formed on the straight portion 19Xa of the coil segment 19X. That is, the specifications of the low-rigidity portion 19Xa2 (high or low rigidity, etc.) can be easily set by the notch amount of the notch portion 19Xa4 with respect to the straight portion 10a.
Further, in the coil segment 19X, the extending end portion 19Xa1 is bent at the position of the low-rigidity portion 19Xa2 in the direction in which the notched portion 19Xa4 opens. According to such a manufacturing method, when the extension end portion 19Xa1 is bent, the notch portion 19Xa4 can be deformed so as to open outward. Therefore, the extension end portion 19a1 starts from the low rigidity portion 19Xa2. Is easy to refract. Therefore, the extending end portion 19a1 can be easily bent at the position of the low-rigidity portion 19Xa2 with a small curvature.
Further, since the shape of the notch portion 19Xa4 can be easily recognized by an image using a CCD camera or the like or visually confirmed by an operator, the specifications of the low rigidity portion 19Xa2 (high or low rigidity) are used. Easy to maintain within a certain range.
Further, according to the manufacturing method of the embodiment, the connecting portion between the extending end portion 19Xa1 and the end material portion 19Xa3 is thinned by the notch portion 19Xa4. Therefore, it is easy to cut the end material portion 19Xa3 from the extending end portion 19Xa1 and remove the end material portion 19Xa3.
 次に、図22を参照しながら、実施形態の変形例2について説明する。
 図22は、実施形態の変形例2のコイルセグメント19Yの折曲げ成形を示す側面図である。
Next, a modification 2 of the embodiment will be described with reference to FIG.
FIG. 22 is a side view showing bending molding of the coil segment 19Y of the second modification of the embodiment.
 実施形態の変形例2のコイルセグメント19Yの直線部19Yaには、前述したスリット状の溝部19a4に換えて、先端が長細く切り欠かれて構成された段差からなる切欠部19Ya4が形成されている。
 直線部19Yaにおいて、延出端部19Ya1の固定子鉄心16の周方向に沿った幅と比較して、端材部19Ya3の固定子鉄心16の周方向に沿った幅を細くして、切欠部19Ya4を構成している。具体的には、直線部19Yaの先端において、折曲げ成形における折曲げ方向の前方側に位置する部分が、縦に長細く切り欠かれている。すなわち、切欠部19Ya4は、直線部19Yaにおいて、延出端部19Ya1の折曲げ方向の前方側に位置する。
 図22に破線で示すように、コイルセグメント19Yの折曲げ成形前は、直線部19Yaにおいて、延出端部19Ya1と端材部19Ya3が、低剛性部19Ya2を介して、固定子鉄心16の軸線上で隣接している。低剛性部19Ya2は、直線部19Yaにおいて、切欠部19Ya4を介して対向する延出端部19Ya1と端材部19Ya3との間に位置している。
 図22に実線で示すように、コイルセグメント19Yの折曲げ成形によって、延出端部19Ya1が折り曲げられる。切欠部19Ya4は、低剛性部19Ya2が切断された(部分的に溶かされて溶断された)後に接合部19Ya5として用いられる。
 コイルセグメント19Yの直線部19Yaにおいて、低剛性部19Ya2が切断されて、延出端部19Ya1から端材部19Ya3が分断される。
In the straight portion 19Ya of the coil segment 19Y of the modified example 2 of the embodiment, instead of the slit-shaped groove portion 19a4 described above, a notched portion 19Ya4 formed of a step formed by a long and narrow tip is formed. ..
In the straight portion 19Ya, the width along the circumferential direction of the stator core 16 of the end material portion 19Ya3 is narrowed as compared with the width along the circumferential direction of the stator core 16 of the extending end portion 19Ya1, and the notch portion is formed. It constitutes 19Ya4. Specifically, at the tip of the straight portion 19Ya, a portion located on the front side in the bending direction in bending molding is vertically elongated and cut out. That is, the notch portion 19Ya4 is located on the straight portion 19Ya on the front side in the bending direction of the extending end portion 19Ya1.
As shown by the broken line in FIG. 22, before the coil segment 19Y is bent and formed, in the straight portion 19Ya, the extension end portion 19Ya1 and the end material portion 19Ya3 pass through the low rigidity portion 19Ya2 and the shaft of the stator core 16 Adjacent on the line. The low-rigidity portion 19Ya2 is located in the straight portion 19Ya between the extending end portion 19Ya1 and the end material portion 19Ya3 facing each other via the notch portion 19Ya4.
As shown by the solid line in FIG. 22, the extension end portion 19Ya1 is bent by the bending molding of the coil segment 19Y. The cutout portion 19Ya4 is used as the joint portion 19Ya5 after the low-rigidity portion 19Ya2 is cut (partially melted and cut).
In the straight portion 19Ya of the coil segment 19Y, the low-rigidity portion 19Ya2 is cut, and the end material portion 19Ya3 is separated from the extending end portion 19Ya1.
 以上のように構成された実施形態の変形例2に係る固定子12の製造方法によれば、実施形態の変形例1に係る固定子12の製造方法と同様に、このため、コイルセグメント19Yの直線部19Yaに任意の低剛性部19Ya2を容易に形成することができる。すなわち、低剛性部19Ya2の仕様(剛性の高低等)を、直線部10aに対する切欠部19Ya4の段差形状(細長く矩形状に切り欠いた形状)の大小によって容易に設定することができる。 According to the method for manufacturing the stator 12 according to the modified example 2 of the embodiment configured as described above, similarly to the method for manufacturing the stator 12 according to the modified example 1 of the embodiment, therefore, the coil segment 19Y Any low-rigidity portion 19Ya2 can be easily formed on the straight portion 19Ya. That is, the specifications of the low-rigidity portion 19Ya2 (high or low rigidity, etc.) can be easily set by the size of the step shape (the shape notched in an elongated rectangular shape) of the notched portion 19Ya4 with respect to the straight portion 10a.
 次に、図23を参照しながら、実施形態の変形例3について説明する。
 図23は、実施形態の変形例3のコイルセグメント19Zの折曲げ成形を示す側面図である。
Next, a modification 3 of the embodiment will be described with reference to FIG. 23.
FIG. 23 is a side view showing bending molding of the coil segment 19Z of the modification 3 of the embodiment.
 実施形態の変形例3のコイルセグメント19Zの直線部19Zaは、実施形態の変形例2のコイルセグメント19Yと異なり、折曲げ成形における折曲げ方向の後方側に位置する部分が、縦に長細く切り欠かれている。すなわち、切欠部19Za4は、直線部19Zaにおいて、延出端部19Za1の折曲げ方向の後方側に位置する。
 図23に破線で示すように、コイルセグメント19Zの折曲げ成形前は、直線部19Zaにおいて、延出端部19Za1と端材部19Za3が、低剛性部19Za2を介して、固定子鉄心16の軸線上で隣接している。低剛性部19Za2は、直線部19Zaにおいて、切欠部19Za4を介して対向する延出端部19Za1と端材部19Za3との間に位置している。
 図23に実線で示すように、コイルセグメント19Zの折曲げ成形によって、延出端部19Za1が折り曲げられる。切欠部19Za4は、低剛性部19Za2が切断された後に接合部19Za5として用いられる。
 コイルセグメント19Zの直線部19Zaにおいて、低剛性部19Za2が切断されて、延出端部19Za1から端材部19Za3が分断される。
Unlike the coil segment 19Y of the modification 2 of the embodiment, the straight portion 19Z of the coil segment 19Z of the modification 3 of the embodiment has a portion located on the rear side in the bending direction in the bending molding, which is vertically elongated. Missing. That is, the notch portion 19Za4 is located in the straight portion 19Za on the rear side in the bending direction of the extending end portion 19Za1.
As shown by a broken line in FIG. 23, before bending and forming the coil segment 19Z, in the straight portion 19Za, the extension end portion 19Za1 and the end material portion 19Za3 pass through the low rigidity portion 19Za2 and the shaft of the stator core 16. Adjacent on the line. The low-rigidity portion 19Za2 is located in the straight portion 19Za between the extending end portion 19Za1 and the end material portion 19Za3 facing each other via the notch portion 19Za4.
As shown by the solid line in FIG. 23, the extension end portion 19Za1 is bent by the bending molding of the coil segment 19Z. The cutout portion 19Za4 is used as the joint portion 19Za5 after the low-rigidity portion 19Za2 is cut.
In the straight portion 19Za of the coil segment 19Z, the low-rigidity portion 19Za2 is cut, and the end material portion 19Za3 is separated from the extending end portion 19Za1.
 以上のように構成された実施形態の変形例3に係る固定子12の製造方法によれば、実施形態の変形例2に係る固定子12の製造方法と同様に、このため、コイルセグメント19Zの直線部19Zaに任意の低剛性部19Za2を容易に形成することができる。すなわち、低剛性部19Za2の仕様(剛性の高低等)を、直線部10aに対する切欠部19Za4の段差形状(細長く矩形状に切り欠いた形状)の大小によって容易に設定することができる。
 また、延出端部19Za1を折曲げるときに、低剛性部19Za2が延出端部19Za1と端材部19Za3との間に挟み込まれ易い。したがって、例えば、固定子鉄心16の他端面16bにほぼ平行になるように低剛性部19Za2を切断する等、接合部19Za5を任意の形状に形成し易い。
According to the method for manufacturing the stator 12 according to the modified example 3 of the embodiment configured as described above, similarly to the method for manufacturing the stator 12 according to the modified example 2 of the embodiment, therefore, the coil segment 19Z Any low-rigidity portion 19Za2 can be easily formed on the straight portion 19Za. That is, the specifications of the low-rigidity portion 19Za2 (high or low rigidity, etc.) can be easily set by the size of the step shape (the shape notched in an elongated rectangular shape) of the notched portion 19Za4 with respect to the straight portion 10a.
Further, when the extension end portion 19Za1 is bent, the low-rigidity portion 19Za2 is likely to be sandwiched between the extension end portion 19Za1 and the end material portion 19Za3. Therefore, for example, the low-rigidity portion 19Za2 is cut so as to be substantially parallel to the other end surface 16b of the stator core 16, and the joint portion 19Za5 can be easily formed into an arbitrary shape.
 なお、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態や変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 例えば、コイルの巻数、コイルセグメントの設置数は、上述した実施形態に限定されることなく、適宜、増減可能である。例えば、1スロットに4本あるいは8本のセグメント直線部が配置されるように構成してもよい。回転子の寸法、材質、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。実施形態に係る回転子および回転電機は、永久磁石界磁電動機に限らず、誘導電動機にも適用可能である。
Although the embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
For example, the number of coil turns and the number of coil segments installed are not limited to the above-described embodiments, and can be increased or decreased as appropriate. For example, it may be configured so that four or eight segment straight portions are arranged in one slot. The dimensions, materials, shapes, and the like of the rotor are not limited to the above-described embodiments, and can be variously changed according to the design. The rotor and the rotary electric machine according to the embodiment can be applied not only to a permanent magnet field electric motor but also to an induction motor.
 10…回転電機、12…固定子、16…固定子鉄心、16a…一端面、16b…他端面、
18…コイル、18a,18b…コイルエンド、
19,19P,19Q,19R,19S,19T,19U,19X,19Y,19Z…コイルセグメント、
19a,19Pa,19Xa,19Ya,19Za…直線部、
19a1,19Pa1,19Xa1,19Ya1,19Za1…延出端部、
19a2,19Pa2,19Xa2,19Ya2,19Za2…低剛性部、
19a3,19Pa3,19Xa3,19Ya3,19Za3…端材部、
19a4,19Pa4…溝部、19Xa4,19Ya4,19Za4…切欠部、
19a5,19Pa5,19Xa5,19Ya5,19Za5…接合部、
19b…架橋部、19c…絶縁被膜、19d…溶接ビード、20…スロット、
101,103…折曲治具
10 ... rotary electric machine, 12 ... stator, 16 ... stator core, 16a ... one end surface, 16b ... other end surface,
18 ... Coil, 18a, 18b ... Coil end,
19, 19P, 19Q, 19R, 19S, 19T, 19U, 19X, 19Y, 19Z ... Coil segment,
19a, 19Pa, 19Xa, 19Ya, 19Za ... Straight line part,
19a1,19Pa1,19Xa1,19Ya1,19Za1 ... Extension end,
19a2, 19Pa2, 19Xa2, 19Ya2, 19Za2 ... Low rigidity part,
19a3, 19Pa3, 19Xa3, 19Ya3, 19Za3 ...
19a4, 19Pa4 ... Groove, 19Xa4, 19Ya4, 19Za4 ... Notch,
19a5,19Pa5,19Xa5,19Ya5,19Za5 ... Joint,
19b ... Cross-linked part, 19c ... Insulation coating, 19d ... Welded bead, 20 ... Slot,
101, 103 ... Bending jig

Claims (5)

  1.  平角導体を折り曲げて形成され、互いに対向する一対の直線部と前記一対の直線部の一端同士を連結した架橋部とを有し、前記直線部の各々は、先端部に平角導体の他の領域よりも断面積が小さく剛性を低くした低剛性部を有している複数のコイルセグメントを用意し、
     複数の前記コイルセグメントの前記直線部を、固定子鉄心の一端面側から複数のスロットに挿通し、前記固定子鉄心の他端面側から所定長さ軸方向に突出した複数の延出端部を構成し、各スロットに複数の前記直線部を径方向に並べて配置することにより、複数の前記延出端部を前記固定子鉄心と同軸の複数層の円筒状に配列し、
     前記直線部の先端部を折曲治具によって把持した状態で、前記折曲治具及び前記固定子鉄心の少なくとも一方を前記固定子鉄心の周方向に相対的に回動させて、前記延出端部を前記低剛性部と前記他端面側との間において前記固定子鉄心の周方向に折曲げ、
     前記低剛性部を切断して接合部を形成し、
     前記固定子鉄心の径方向に隣接する前記接合部を互いに接合する、固定子の製造方法。
    It is formed by bending a flat conductor and has a pair of straight portions facing each other and a cross-linked portion connecting one ends of the pair of straight portions, each of the straight portions having another region of the flat conductor at the tip portion. Prepare a plurality of coil segments having a low-rigidity portion having a smaller cross-sectional area and lower rigidity.
    The straight portions of the plurality of coil segments are inserted into a plurality of slots from one end surface side of the stator core, and a plurality of extending ends protruding from the other end surface side of the stator core in a predetermined length axial direction are formed. By constructing and arranging the plurality of the straight portions side by side in the radial direction in each slot, the plurality of the extending end portions are arranged in a cylindrical shape of a plurality of layers coaxial with the stator core.
    With the tip of the straight portion gripped by the folding jig, at least one of the bending jig and the stator core is relatively rotated in the circumferential direction of the stator core to extend the rod. The end portion is bent in the circumferential direction of the stator core between the low rigidity portion and the other end surface side.
    The low-rigidity portion is cut to form a joint portion,
    A method for manufacturing a stator, in which the joint portions adjacent to each other in the radial direction of the stator core are joined to each other.
  2.  前記直線部の先端部において、前記平角導体の一側面から他側面に向かって延びるスリット状の溝部を形成し、前記溝部の端と前記他側面との間に前記低剛性部を形成する、請求項1に記載の固定子の製造方法。 A claim for forming a slit-shaped groove extending from one side surface of the flat conductor toward the other side surface at the tip end portion of the straight line portion, and forming the low rigidity portion between the end of the groove portion and the other side surface. Item 2. The method for manufacturing a stator according to item 1.
  3.  前記低剛性部の位置で、前記溝部が開く方向に前記延出端部を折り曲げる、請求項2に記載の固定子の製造方法。 The method for manufacturing a stator according to claim 2, wherein the extending end portion is bent at the position of the low rigidity portion in the direction in which the groove portion opens.
  4.  前記直線部の先端部において、前記平角導体の一側面から他側面に向かって延びる切欠部を形成し、前記切欠部と前記他側面との間に前記低剛性部を形成する、請求項1に記載の固定子の製造方法。 The first aspect of the present invention, wherein a notch extending from one side surface of the flat conductor toward the other side surface is formed at the tip end portion of the straight line portion, and the low rigidity portion is formed between the notch portion and the other side surface. The method for manufacturing the stator described.
  5.  前記低剛性部の位置で、前記切欠部が開く方向に前記延出端部を折り曲げる、請求項4に記載の固定子の製造方法。 The method for manufacturing a stator according to claim 4, wherein the extending end portion is bent at the position of the low rigidity portion in a direction in which the notch portion opens.
PCT/JP2019/030100 2019-07-31 2019-07-31 Stator manufacturing method WO2021019749A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/030100 WO2021019749A1 (en) 2019-07-31 2019-07-31 Stator manufacturing method
JP2021520249A JP6922118B2 (en) 2019-07-31 2019-07-31 Stator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030100 WO2021019749A1 (en) 2019-07-31 2019-07-31 Stator manufacturing method

Publications (1)

Publication Number Publication Date
WO2021019749A1 true WO2021019749A1 (en) 2021-02-04

Family

ID=74228627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030100 WO2021019749A1 (en) 2019-07-31 2019-07-31 Stator manufacturing method

Country Status (2)

Country Link
JP (1) JP6922118B2 (en)
WO (1) WO2021019749A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010585A (en) * 2000-05-11 2002-01-11 Valeo Equip Electric Moteur Apparatus to form winding head of stator of rotary electric machine in the predetermined shape
JP2006333562A (en) * 2005-05-24 2006-12-07 Hitachi Ltd Bonding electric wire and processing method of bonding electric wire, stator in dynamo-electric machine and manufacturing method of stator in dynamo-electric machine, and bonding electric wire manufacturing apparatus
JP2008199751A (en) * 2007-02-09 2008-08-28 Denso Corp Stator winding of rotating electrical machine and its manufacturing method
WO2013190860A1 (en) * 2012-06-22 2013-12-27 本田技研工業株式会社 Stator manufacturing device and stator manufacturing method
JP2014204597A (en) * 2013-04-08 2014-10-27 株式会社デンソー Stator for rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019205230A (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Rotary electric machine stator manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010585A (en) * 2000-05-11 2002-01-11 Valeo Equip Electric Moteur Apparatus to form winding head of stator of rotary electric machine in the predetermined shape
JP2006333562A (en) * 2005-05-24 2006-12-07 Hitachi Ltd Bonding electric wire and processing method of bonding electric wire, stator in dynamo-electric machine and manufacturing method of stator in dynamo-electric machine, and bonding electric wire manufacturing apparatus
JP2008199751A (en) * 2007-02-09 2008-08-28 Denso Corp Stator winding of rotating electrical machine and its manufacturing method
WO2013190860A1 (en) * 2012-06-22 2013-12-27 本田技研工業株式会社 Stator manufacturing device and stator manufacturing method
JP2014204597A (en) * 2013-04-08 2014-10-27 株式会社デンソー Stator for rotary electric machine

Also Published As

Publication number Publication date
JPWO2021019749A1 (en) 2021-02-04
JP6922118B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US7936100B2 (en) Stator for rotating machine and rotating machine using the same
EP2063516B1 (en) Stator for rotating machine and rotating machine using the same
US20220352796A1 (en) Method of manufacturing stator
JP2006211810A (en) Segment connection type rotary electric machine
US11031852B2 (en) Manufacturing method of stator, stator, and bending process machine
JP5516989B2 (en) Armature for rotating electrical machine
WO2012011352A1 (en) Dynamo-electric machine armature
US20210273537A1 (en) Method of manufacturing stator
WO2021144937A1 (en) Rotating electric machine stator
JP6848131B1 (en) Stator and how to manufacture the stator
WO2021176662A1 (en) Stator
JP2019140823A (en) Manufacturing method of stator
JP6922118B2 (en) Stator manufacturing method
JP2009106008A (en) Stator for rotating electric machine
JP6848129B1 (en) Stator manufacturing method and stator manufacturing equipment
WO2021048994A1 (en) Stator and method for manufacturing stator
JP2021097539A (en) Stator, rotary electric machine, and manufacturing method of stator
CN108702044B (en) Stator for rotating electrical machine, rotating electrical machine using same, and method for manufacturing stator for rotating electrical machine
JP2019140819A (en) Manufacturing method of stator
JP2019140822A (en) Flexure processing device
JP2011172384A (en) Rotary electric machine armature
JP6851499B2 (en) Manufacturing method of stator, stator assembly and stator
JP2012029443A (en) Armature for rotary electric machine and segment conductor
JP2019205230A (en) Rotary electric machine stator manufacturing method
JP2012029442A (en) Armature for rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939345

Country of ref document: EP

Kind code of ref document: A1