WO2021019639A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2021019639A1
WO2021019639A1 PCT/JP2019/029634 JP2019029634W WO2021019639A1 WO 2021019639 A1 WO2021019639 A1 WO 2021019639A1 JP 2019029634 W JP2019029634 W JP 2019029634W WO 2021019639 A1 WO2021019639 A1 WO 2021019639A1
Authority
WO
WIPO (PCT)
Prior art keywords
strainer
compressor according
casing
compressor
filter member
Prior art date
Application number
PCT/JP2019/029634
Other languages
French (fr)
Japanese (ja)
Inventor
克也 前田
雅章 上川
伊藤 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/029634 priority Critical patent/WO2021019639A1/en
Publication of WO2021019639A1 publication Critical patent/WO2021019639A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a compressor equipped with a strainer and a refrigeration cycle device.
  • a strainer is installed inside the casing of the compressor to remove foreign substances such as dust sucked into the casing together with the refrigerant (see Patent Document 1).
  • the strainer of Patent Document 1 is formed in a tubular shape and is connected to a suction port formed in a casing. By removing foreign matter flowing into the casing from the suction port, the compression portion slides from damage caused by the foreign matter. It plays a role of protecting the surface and the motor part.
  • a strainer In a compressor, a strainer is required to remove foreign matter, but installing a strainer causes pressure loss in the refrigerant.
  • the pressure loss of the refrigerant causes a decrease in the performance of the compressor.
  • Patent Document 1 since the tubular strainer is connected to the suction port, the flow path of the refrigerant is narrowed from the inside of the casing to the inside of the strainer in a sense, so that the pressure loss is increased.
  • Patent Document 1 in order to reduce the pressure loss while installing the strainer in the casing, the flow path of the strainer, that is, the diameter of the strainer may be increased.
  • the diameter of the strainer cannot be increased due to structural restrictions.
  • the end portion of the strainer opposite to the suction port is arranged so as to enter the inner space of the circumferential coil end of the motor. Therefore, if the diameter of the strainer is increased, there is a concern that it may interfere with the coil end of the motor or the like. Therefore, there is a problem that the diameter of the strainer cannot be increased and it is difficult to reduce the pressure loss.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a compressor and a refrigeration cycle device capable of reducing an increase in pressure loss due to installation of a strainer.
  • the compressor according to the present invention has a casing in which a suction port for sucking the refrigerant is formed, and a flat plate-shaped strainer installed in the casing facing the suction port.
  • the strainer by making the strainer flat, it is possible to avoid shrinkage of the flow path due to the installation of the strainer, and it is possible to reduce an increase in pressure loss.
  • FIG. 5 is a schematic cross-sectional view of the compressor according to the first embodiment. It is a figure which shows the cover casing of the compressor which concerns on Embodiment 1. FIG. It is a figure which shows the strainer of the compressor which concerns on Embodiment 1. FIG. It is a figure which shows the photograph of the strainer of the compressor which concerns on Embodiment 1. FIG. It is a figure which shows the strainer of the compressor which concerns on Embodiment 2. FIG. It is sectional drawing of the main part including the strainer of the compressor which concerns on Embodiment 3. FIG. It is sectional drawing of the main part including the strainer of the compressor which concerns on Embodiment 4. FIG. It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on Embodiment 5.
  • FIG. 1 is a schematic cross-sectional view of the compressor according to the first embodiment.
  • FIG. 2 is a diagram showing a cover casing of the compressor according to the first embodiment.
  • the compressor 1 according to the first embodiment has a compressor main body 10 and an oil separator 20.
  • the oil separator 20 is fastened to the casing 11 of the compressor main body 10 by bolts (not shown).
  • the demista type oil separator is shown here, a cyclone type oil separator may be used. Further, the oil separator may not be provided in the compressor but may be provided in the refrigeration cycle apparatus.
  • the compressor main body 10 is fixed to a tubular casing 11, a motor 12 housed in the casing 11, a screw shaft 13 rotationally driven by the motor 12, and a screw shaft 13. It is provided with a screw rotor 14 and a strainer 80.
  • the casing 11 has a motor casing 50 for accommodating the motor 12, a cover casing 60, and a suction casing 70.
  • the suction casing 70 is formed with a suction port 70a in which a refrigerant suction pipe (not shown) is connected from the outside to suck the refrigerant.
  • the casing 11 has a configuration in which these are sequentially arranged and fixed in the axial direction of the screw shaft 13.
  • the screw rotor 14 has a columnar shape, and a plurality of screw grooves 14a extending spirally from one end to the other end of the screw rotor 14 are formed on the outer peripheral surface.
  • One end side of the screw rotor 14 is the suction side of the refrigerant gas, and the screw groove 14a communicates with the suction pressure side.
  • the other end side of the screw rotor 14 is the discharge side of the refrigerant gas, and the screw groove 14a communicates with the discharge pressure side.
  • a pair of gate rotors 15 arranged so as to be axisymmetric with respect to the screw shaft 13 are arranged. Further, a tubular slide valve 16 is arranged between the side surface of the casing 11 and the screw rotor 14.
  • the gate rotor 15 has a disk shape, and a plurality of tooth portions 15a are provided on the outer peripheral surface along the circumferential direction.
  • the tooth portions 15a of the gate rotor 15 are arranged so as to mesh with the screw grooves 14a of the screw rotor 14.
  • a compression chamber 19 for compressing the refrigerant is formed by a space surrounded by the screw groove 14a, the tooth portion 15a of the gate rotor 15, the inner peripheral surface of the casing 11, and the slide valve 16. Oil for lubricating the bearing 17 and sealing the compression chamber 19 flows into the compression chamber 19 together with the refrigerant.
  • the refrigerant compressed in the compression chamber 19 flows into the oil separator 20 and is separated into the refrigerant and the oil in the oil separator 20.
  • the slide valve 16 is provided so as to be slidable in the axial direction of the screw rotor 14 along the outer peripheral surface of the screw rotor 14.
  • An opening 16a is formed at the center of the slide valve 16 in the sliding direction.
  • the slide valve 16 may be used for the purpose of mechanical capacity control, or may be used for the purpose of changing the discharge timing to change the internal volume.
  • the motor 12 has a stator 12a that is inscribed and fixed in the motor casing 50, and a motor rotor 12b that is arranged inside the stator 12a.
  • the motor rotor 12b is fixed to the screw shaft 13 and is arranged on the same line as the screw rotor 14.
  • the end of the screw shaft 13 on the side not fixed to the motor 12 is rotatably supported by the bearing 17, and the end on the side fixed to the motor 12 is rotatably supported by the bearing 18. .
  • the rotation speed of the motor 12 can be changed by driving the inverter, and the motor 12 is driven by the inverter.
  • the motor 12 may be a motor 12 having a constant speed that rotates at a constant rotation speed.
  • the bearing 18 is housed in the cover casing 60.
  • the cover casing 60 is connected to the motor casing 50 by bolting, and a sealing component (not shown) such as a gasket or an O-ring is arranged on the joint surface.
  • the cover casing 60 and the casing 11 may be fixed by welding instead of bolting. When welding is used, sealing parts can be eliminated.
  • a plurality of bolt holes 60a are formed in the cover casing 60.
  • the strainer 80 which will be described later, is fixed to the cover casing 60 by bolting using the bolt holes 60a, and the suction casing 70 is also fixed by bolting.
  • Sealing parts such as gaskets or O-rings are arranged on the joint surface between the cover casing 60 and the suction casing 70.
  • the cover casing 60 and the suction casing 70 do not have to be fastened with bolts, but may be welded. When welding is used, sealing parts can be eliminated.
  • the suction casing 70 is formed with a suction port 70a into which the refrigerant is sucked.
  • a refrigerant suction pipe (not shown) is connected to the suction port 70a from the outside, and the refrigerant is sucked into the casing 11.
  • a strainer 80 is installed in the casing 11 so as to face the suction port 70a.
  • the strainer 80 catches foreign matter such as fine dust sucked into the casing 11 from the suction port 70a together with the refrigerant, and has a role of preventing seizure of the compression chamber 19 and wear of the sliding portion of the bearing 18. Have.
  • FIG. 3 is a diagram showing a strainer of the compressor according to the first embodiment.
  • (a) is a side view and (b) is a front view.
  • FIG. 4 is a diagram showing a photograph of the strainer of the compressor according to the first embodiment, and is a partially enlarged view.
  • the strainer 80 is formed in a circular flat plate shape.
  • the strainer 80 has two disc-shaped plates 81 having a plurality of holes 81a formed therein and a disc-shaped filter member 82, and the filter member 82 is sandwiched between the two disc-shaped plates 81. Has a configuration.
  • the material of the plate 81 is preferably a metal plate such as SPCC (cold rolled steel plate) in consideration of workability, but may be a resin plate.
  • the filter member 82 is made of a metal mesh.
  • the metal mesh is constructed by weaving a metal wire into a mesh shape.
  • the filter member 82 is not limited to this structure, and may be made of filter paper.
  • the filter member 82 may be selected in consideration of the required filtration accuracy and strength.
  • the plate 81 When the plate 81 is made of metal, the plate 81 and the filter member 82 are fixed by welding the outer periphery. When the plate 81 is made of resin, the plate 81 and the filter member 82 are fixed by using an adhesive or the like.
  • the drilling of the plate 81 is preferably performed by punching or edging from the viewpoint of productivity and cost.
  • the plurality of holes 81a formed in the plate 81 are classified into a flow path hole 81aa forming a flow path and a bolt hole 81ab for fixing the strainer 80 and the cover casing 60.
  • the flow path hole 81aa is indicated by a white hole
  • the bolt hole 81ab is indicated by a hatched hole.
  • the flow path hole 81aa and the bolt hole 81ab have the same diameter from the same viewpoint of productivity and cost.
  • the size of these holes and the pitch between the holes are determined in consideration of the required flow path area, aperture ratio and strength.
  • the aperture ratio is preferably set to, for example, 30% to 80%, and by setting it within this range, it is possible to secure both the flow path area and the strength.
  • the pitches of the plurality of holes 81a are equal pitches or close to equal pitches from the viewpoint of productivity and cost.
  • the bolt holes 81ab are provided in the outer peripheral portion and the inner peripheral portion of the plate 81, respectively, because vibration due to pulsation can be reduced.
  • six bolt holes 81ab are formed on the outer peripheral portion of the plate 81 at intervals in the circumferential direction, and three bolt holes 81ab are formed on the inner peripheral portion of the plate 81 at intervals in the circumferential direction.
  • the configuration is shown, but the number is arbitrary.
  • the strainer 80 As a comparative example, the strainer has conventionally been tubular. Therefore, it is necessary to make the diameter of the strainer smaller than the diameter of the peripheral coil end of the motor so that the strainer does not interfere with the motor, and the smaller flow path diameter causes an increase in pressure loss.
  • the strainer 80 has a flat plate shape, so that the portion of interference with other parts in the casing 11 can be reduced and the strainer 80 does not interfere with the motor 12. Therefore, the diameter of the strainer 80 can be set without being subject to structural restrictions due to the positional relationship with the motor 12. Therefore, the diameter of the strainer 80 can be set larger than the diameter of the coil end, and can be expanded to the diameter of the installation location of the strainer 80 in the casing 11. From a different point of view, this corresponds to avoiding the reduction of the flow path diameter due to the installation of the strainer 80 in the casing 11, and the increase in pressure loss can be reduced.
  • some conventional tubular strainers have a structure in which the side surface of the cylinder is composed of a filter member through which the refrigerant passes, and the bottom surface of the cylinder is closed with a plate.
  • the refrigerant flowing in from the suction port once collides with the bottom surface of the cylinder, and the refrigerant rebounded by the collision passes through the filter member on the side surface.
  • the strainer 80 of the first embodiment has a plurality of holes 81a penetrating in the flow direction of the refrigerant, the pressure loss can be reduced as compared with the conventional configuration, which is preferable.
  • the compressor 1 of the first embodiment has a casing 11 in which a suction port 70a for sucking the refrigerant is formed, and a flat plate-shaped compressor 11 installed in the casing 11 facing the suction port 70a. It has a strainer 80 and. As described above, by using the flat plate strainer 80, it is possible to avoid the reduction of the flow path due to the installation of the strainer 80 in the casing 11. As a result, the increase in pressure loss can be reduced, and the performance of the compressor 1 can be improved.
  • the outer diameter of the strainer 80 is larger than the diameter of the suction port 70a, an increase in pressure loss can be reduced as compared with the case where a strainer having the same outer diameter as the suction port 70a is used, and the performance can be improved. Can be planned.
  • the strainer 80 has two plates 81 having a plurality of holes 81a and a filter member 82, and the filter member 82 is sandwiched between the two plates 81.
  • the flat plate strainer 80 can be composed of the two plates 81 and the filter member 82.
  • the plurality of holes 81a can be classified into a flow path hole 81aa forming a flow path and a bolt hole 81ab for fixing, and the flow path hole 81aa and the bolt hole 81ab are round holes and have the same diameter. Therefore, productivity can be improved and costs can be reduced.
  • a metal mesh can be used for the filter member 82.
  • a metal plate can be used for the two plates 81 of the strainer 80, and the strainer 80 can be fixed to the filter member 82 by welding at the outer peripheral portion.
  • the casing 11 includes a motor casing 50 that houses the motor 12, a cover casing 60, and a suction casing 70 in which a suction port 70a is formed.
  • the casing 11 has a configuration in which these are arranged and fixed in order in the axial direction of the motor 12, and the strainer 80 may be fixed to the cover casing 60.
  • Embodiment 2 the configuration of the strainer 80 is different from that of the first embodiment.
  • Other configurations are the same as or equivalent to those of the first embodiment.
  • the configuration in which the second embodiment is different from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • the filter member 82 of the strainer 80 If the filter member 82 of the strainer 80 is clogged with foreign matter, or if the so-called liquid back operation in which the liquid refrigerant returns to the compressor is performed intermittently or continuously, excessive pressure is locally applied to the filter member 82 to filter the filter.
  • the member 82 may be damaged.
  • the strength of the filter member 82 In order to prevent the filter member 82 from being damaged, the strength of the filter member 82 may be increased, but in order to increase the strength, it is necessary to increase the wire diameter of the metal wire rod constituting the filter member 82, and the wire diameter of the metal wire rod must be increased.
  • the thicker the filter the coarser the filter. If the mesh of the filter becomes coarse, the filtration accuracy of the filter member 82 deteriorates and the strainer cannot fulfill its original role. That is, foreign matter to be filtered may flow into the compression chamber 19 to cause seizure of the screw rotor 14, or foreign matter may flow into the motor 12 to cause insulation failure of the motor 12.
  • FIG. 5 is a diagram showing a strainer of the compressor according to the second embodiment.
  • the strainer 80 of the second embodiment has a plurality of filter members 82.
  • the fine-meshed filter member 82a is sandwiched between two coarse-meshed filter members 82b.
  • the coarse-meshed filter member 82b has a higher strength than the fine-meshed filter member 82a because the wire diameter of the metal wire is larger.
  • one fine-meshed filter member 82a and two coarse-meshed filter members 82b are used, but the number of each is arbitrary. Since the cost of the coarse filter member 82b is higher than that of the fine filter member 82a, one coarse filter member 82b may be used for cost reduction.
  • the plurality of filter members 82 for example, a plurality of filter members having the same number of meshes may be combined. Further, filter members having different numbers of meshes, such as 120 meshes, 30 meshes and 20 meshes, may be combined. Further, when a plurality of coarse filter members 82b are used, it is preferable that the filter members 82b are arranged so that the positions of the meshes of the respective meshes are overlapped for the purpose of reducing pressure loss.
  • the same effect as that of the first embodiment can be obtained, and since the strainer 80 is configured to include a plurality of filter members 82, both filtration accuracy and strength can be achieved.
  • the planned strainer 80 can be realized.
  • Embodiment 3 differs from the first embodiment only in the fastening structure of the strainer 80 and the cover casing 60. Other configurations are the same as or equivalent to those of the first embodiment.
  • the configuration in which the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of a main part including the strainer of the compressor according to the third embodiment. Since the strainer 80 is thin, the flatness may not be good. If the flatness of the strainer 80 is not good, the joint surface between the strainer 80 and the cover casing 60 has a metal touch, so that a gap is generated in the joint surface between the strainer 80 and the cover casing 60, and minute dust is generated through this gap. There is a possibility that it will flow into the compression chamber 19. Depending on the type of compressor, there is a risk of failure even with minute dust.
  • the seal component 84 and the seal component 85 are provided on the joint surface between the strainer 80 and the cover casing 60.
  • a gasket or an O-ring can be used for each of the sealing component 84 and the sealing component 85.
  • the same effect as that of the first embodiment can be obtained, and the following effects can be obtained. That is, since the seal component 84 and the seal component 85 are provided on the joint surface between the strainer 80 and the cover casing 60, the inflow of dust from the joint surface between the strainer 80 and the cover casing 60 into the compression chamber 19 is reliably prevented. , Can provide a highly reliable compressor.
  • Embodiment 4 the shape of the strainer 80 is different from that of the first embodiment.
  • Other configurations are the same as or equivalent to those of the first embodiment.
  • the configuration in which the fourth embodiment is different from the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view of a main part including the strainer of the compressor according to the fourth embodiment.
  • the strainer 80 has a structure divided into a plurality of parts. Specifically, the strainer 80 has a split strainer 86 on the inner diameter side and a split strainer 87 on the outer diameter side.
  • the split strainer 86 is formed in a circular shape.
  • the split strainer 87 is formed in an annular shape.
  • the roughness of each of the filter members 82 of the split strainer 86 and the split strainer 87 may be the same or different.
  • each divided strainer is reduced in weight and easy to handle, so that maintenance work can be simplified.
  • the bolt 90 provided on the screw shaft 13 may be manually rotated with a tool such as a torque wrench. In this operation, it is necessary to remove the strainer 80, but in the case where the strainer 80 is not divided, it is necessary to first remove the suction casing 70 from the cover casing 60 and then remove the strainer 80.
  • the strainer 80 since the strainer 80 is divided, the divided strainer 86 on the inner diameter side is taken out of the suction casing 70 through the suction port 70a without removing the suction casing 70. Can be done. That is, the work on the bolt 90 becomes possible only by removing the split strainer 86 on the inner diameter side, and the maintainability is improved.
  • the strainer 80 has a divided structure, so that the number of strainers can be increased, which is effective in reducing the cost.
  • the same effect as that of the first embodiment can be obtained, and since the strainer 80 is divided into a plurality of structures, the maintenance work can be simplified and the cost can be reduced. it can.
  • each embodiment of the compressor of the present invention has been described above, the present invention is not limited to each of these embodiments, and each embodiment can be appropriately combined.
  • the second embodiment and the third embodiment may be combined, and the strainer 80 having a plurality of filter members 82 may be fastened to the cover casing 60 by using a seal component.
  • the third embodiment and the fourth embodiment are combined to form the strainer 80 having a divided structure as shown in FIG. 7, and the divided strainers 86 and the divided strainers 87 are fastened to the cover casing 60 by using seal parts. It may be configured.
  • the second embodiment and the fourth embodiment may be combined, and each of the split strainers 86 and the split strainers 87 shown in FIG. 7 may have a plurality of filter members 82.
  • Embodiment 5 relates to a refrigeration cycle apparatus including the compressor according to any one of the first to fourth embodiments.
  • FIG. 8 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the fifth embodiment.
  • the refrigeration cycle device 100 includes a compressor 101, a condenser 102, an expansion valve 103 as a depressurizing device, and an evaporator 104.
  • the compressor 101 the compressor 1 according to any one of the first to fourth embodiments is used.
  • the compressor 101 sucks in the refrigerant, compresses it, and then discharges it.
  • the gas refrigerant discharged from the compressor 101 flows into the condenser 102, exchanges heat with the air passing through the condenser 102, and flows out as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the condenser 102 is depressurized by the expansion valve 103 to become a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 104.
  • the refrigerating cycle device 100 configured in this way can be improved in performance by providing the compressor 1 according to any one of the first to fourth embodiments.
  • the refrigerating cycle device 100 can be applied to an air conditioner, a refrigerator / freezer, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

This compressor (1) has a casing (11) having formed therein a suction port (70a) through which a refrigerant is suctioned, and a plate-like strainer (80) installed facing the suction port inside the casing.

Description

圧縮機および冷凍サイクル装置Compressor and refrigeration cycle equipment
 本発明は、ストレーナを備えた圧縮機および冷凍サイクル装置に関するものである。 The present invention relates to a compressor equipped with a strainer and a refrigeration cycle device.
 圧縮機のケーシングの内部には、冷媒と共にケーシング内に吸入されたゴミ等の異物を除去するストレーナが設置されている(特許文献1参照)。特許文献1のストレーナは、筒状に構成され、ケーシングに形成された吸入口に接続されており、吸入口からケーシング内に流入した異物を除去することで、異物による損傷から圧縮部の摺動面およびモータ部を保護する役割を果たしている。 Inside the casing of the compressor, a strainer is installed to remove foreign substances such as dust sucked into the casing together with the refrigerant (see Patent Document 1). The strainer of Patent Document 1 is formed in a tubular shape and is connected to a suction port formed in a casing. By removing foreign matter flowing into the casing from the suction port, the compression portion slides from damage caused by the foreign matter. It plays a role of protecting the surface and the motor part.
特開2007-303319号公報JP-A-2007-303319
 圧縮機では、異物除去のためにストレーナが必要であるが、ストレーナを設置することで冷媒に圧力損失が生じる。冷媒の圧力損失は、圧縮機の性能低下の要因となる。特許文献1では、吸入口に筒状のストレーナが接続されていることで、冷媒の流路が、ある意味ケーシング内からストレーナ内に狭められることで圧力損失が増大している。 In a compressor, a strainer is required to remove foreign matter, but installing a strainer causes pressure loss in the refrigerant. The pressure loss of the refrigerant causes a decrease in the performance of the compressor. In Patent Document 1, since the tubular strainer is connected to the suction port, the flow path of the refrigerant is narrowed from the inside of the casing to the inside of the strainer in a sense, so that the pressure loss is increased.
 特許文献1において、ケーシング内にストレーナを設置しつつ圧力損失の低下を図るには、ストレーナの流路、つまりストレーナの径を大きくすればよい。しかし、特許文献1では、構造的な制約からストレーナの径を大きくとることができない。特許文献1では、ストレーナの吸入口と反対側の端部が、モータの周状のコイルエンドの内側空間に入り込んで配置されている。このため、ストレーナの径を大きくすると、モータのコイルエンド等と干渉する懸念がある。したがって、ストレーナの径を大きくとることができず、圧力損失の低減が難しいという問題があった。 In Patent Document 1, in order to reduce the pressure loss while installing the strainer in the casing, the flow path of the strainer, that is, the diameter of the strainer may be increased. However, in Patent Document 1, the diameter of the strainer cannot be increased due to structural restrictions. In Patent Document 1, the end portion of the strainer opposite to the suction port is arranged so as to enter the inner space of the circumferential coil end of the motor. Therefore, if the diameter of the strainer is increased, there is a concern that it may interfere with the coil end of the motor or the like. Therefore, there is a problem that the diameter of the strainer cannot be increased and it is difficult to reduce the pressure loss.
 本発明はこのような点を鑑みなされたもので、ストレーナの設置に起因する圧力損失の増加を低減することが可能な圧縮機および冷凍サイクル装置を提供することを目的とする。 The present invention has been made in view of these points, and an object of the present invention is to provide a compressor and a refrigeration cycle device capable of reducing an increase in pressure loss due to installation of a strainer.
 本発明に係る圧縮機は、冷媒が吸入される吸入口が形成されたケーシングと、ケーシング内において吸入口と対向して設置された平板状のストレーナとを有するものである。 The compressor according to the present invention has a casing in which a suction port for sucking the refrigerant is formed, and a flat plate-shaped strainer installed in the casing facing the suction port.
 本発明によれば、ストレーナを平板状とすることで、ストレーナの設置に起因する流路の縮小化を避けることができ、圧力損失の増加を低減することができる。 According to the present invention, by making the strainer flat, it is possible to avoid shrinkage of the flow path due to the installation of the strainer, and it is possible to reduce an increase in pressure loss.
実施の形態1に係る圧縮機の断面模式図である。FIG. 5 is a schematic cross-sectional view of the compressor according to the first embodiment. 実施の形態1に係る圧縮機のカバーケーシングを示す図である。It is a figure which shows the cover casing of the compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機のストレーナを示す図である。It is a figure which shows the strainer of the compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機のストレーナの写真を示す図である。It is a figure which shows the photograph of the strainer of the compressor which concerns on Embodiment 1. FIG. 実施の形態2に係る圧縮機のストレーナを示す図である。It is a figure which shows the strainer of the compressor which concerns on Embodiment 2. FIG. 実施の形態3に係る圧縮機のストレーナを含む要部の断面模式図である。It is sectional drawing of the main part including the strainer of the compressor which concerns on Embodiment 3. FIG. 実施の形態4に係る圧縮機のストレーナを含む要部の断面模式図である。It is sectional drawing of the main part including the strainer of the compressor which concerns on Embodiment 4. FIG. 実施の形態5に係る冷凍サイクル装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on Embodiment 5.
 以下、本発明に係る圧縮機の実施の形態について図を参照して説明する。なお、これらの実施の形態によって本発明が限定されることはない。また、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、本発明の範囲内で適宜変更することができる。 Hereinafter, embodiments of the compressor according to the present invention will be described with reference to the drawings. The present invention is not limited by these embodiments. Further, in each drawing, the same or corresponding parts are designated by the same reference numerals, and the description thereof will be omitted or simplified as appropriate. In addition, the shape, size, arrangement, etc. of the configurations shown in each figure can be appropriately changed within the scope of the present invention.
実施の形態1.
 本実施の形態1に係る圧縮機について、図1~図4を用いて説明する。
 図1は、実施の形態1に係る圧縮機の断面模式図である。図2は、実施の形態1に係る圧縮機のカバーケーシングを示す図である。
 実施の形態1に係る圧縮機1は、圧縮機本体部10と油分離器20とを有する。油分離器20は、圧縮機本体部10のケーシング11にボルト(図示せず)によって締結されている。ここでは、デミスタ式の油分離器を図示しているが、サイクロン式の油分離器としても良い。また油分離器を、圧縮機に設けず、冷凍サイクル装置内に設けても良い。
Embodiment 1.
The compressor according to the first embodiment will be described with reference to FIGS. 1 to 4.
FIG. 1 is a schematic cross-sectional view of the compressor according to the first embodiment. FIG. 2 is a diagram showing a cover casing of the compressor according to the first embodiment.
The compressor 1 according to the first embodiment has a compressor main body 10 and an oil separator 20. The oil separator 20 is fastened to the casing 11 of the compressor main body 10 by bolts (not shown). Although the demista type oil separator is shown here, a cyclone type oil separator may be used. Further, the oil separator may not be provided in the compressor but may be provided in the refrigeration cycle apparatus.
 圧縮機本体部10は、図1に示すように、筒状のケーシング11と、ケーシング11内に収容されたモータ12と、モータ12によって回転駆動されるスクリュー軸13と、スクリュー軸13に固定されたスクリューローター14と、ストレーナ80とを備えている。 As shown in FIG. 1, the compressor main body 10 is fixed to a tubular casing 11, a motor 12 housed in the casing 11, a screw shaft 13 rotationally driven by the motor 12, and a screw shaft 13. It is provided with a screw rotor 14 and a strainer 80.
 ケーシング11は、モータ12を収容するモータケーシング50と、カバーケーシング60と、吸入ケーシング70とを有する。吸入ケーシング70には、冷媒吸入管(図示せず)が外部から接続されて冷媒が吸入される吸入口70aが形成されている。ケーシング11は、これらがスクリュー軸13の軸方向に順に配置されて固定された構成を有する。 The casing 11 has a motor casing 50 for accommodating the motor 12, a cover casing 60, and a suction casing 70. The suction casing 70 is formed with a suction port 70a in which a refrigerant suction pipe (not shown) is connected from the outside to suck the refrigerant. The casing 11 has a configuration in which these are sequentially arranged and fixed in the axial direction of the screw shaft 13.
 スクリューローター14は円柱状であり、外周面には、スクリューローター14の一端から他端に向かって複数の螺旋状に延びるスクリュー溝14aが複数本形成されている。スクリューローター14の一端側は冷媒ガスの吸入側となり、スクリュー溝14aが吸入圧力側と連通する。スクリューローター14の他端側は冷媒ガスの吐出側となり、スクリュー溝14aが吐出圧力側と連通する。 The screw rotor 14 has a columnar shape, and a plurality of screw grooves 14a extending spirally from one end to the other end of the screw rotor 14 are formed on the outer peripheral surface. One end side of the screw rotor 14 is the suction side of the refrigerant gas, and the screw groove 14a communicates with the suction pressure side. The other end side of the screw rotor 14 is the discharge side of the refrigerant gas, and the screw groove 14a communicates with the discharge pressure side.
 スクリューローター14の側面には、スクリュー軸13に対して軸対象となるように配置された一対のゲートローター15が配置されている。また、ケーシング11の側面とスクリューローター14の間には、筒状のスライドバルブ16が配置されている。 On the side surface of the screw rotor 14, a pair of gate rotors 15 arranged so as to be axisymmetric with respect to the screw shaft 13 are arranged. Further, a tubular slide valve 16 is arranged between the side surface of the casing 11 and the screw rotor 14.
 ゲートローター15は円板状であり、外周面には周方向に沿って複数の歯部15aが設けられている。ゲートローター15の歯部15aは、スクリューローター14のスクリュー溝14aに噛み合うように配置されている。そして、スクリュー溝14aとゲートローター15の歯部15aとケーシング11の内周面とスライドバルブ16とによって囲まれた空間によって、冷媒を圧縮する圧縮室19が形成されている。圧縮室19には、軸受17の潤滑および圧縮室19のシールを行うための油が、冷媒と共に流入する。圧縮室19にて圧縮された冷媒は油分離器20へ流入し、油分離器20にて冷媒と油とに分離される。 The gate rotor 15 has a disk shape, and a plurality of tooth portions 15a are provided on the outer peripheral surface along the circumferential direction. The tooth portions 15a of the gate rotor 15 are arranged so as to mesh with the screw grooves 14a of the screw rotor 14. A compression chamber 19 for compressing the refrigerant is formed by a space surrounded by the screw groove 14a, the tooth portion 15a of the gate rotor 15, the inner peripheral surface of the casing 11, and the slide valve 16. Oil for lubricating the bearing 17 and sealing the compression chamber 19 flows into the compression chamber 19 together with the refrigerant. The refrigerant compressed in the compression chamber 19 flows into the oil separator 20 and is separated into the refrigerant and the oil in the oil separator 20.
 スライドバルブ16は、スクリューローター14の外周面に沿って、スクリューローター14の軸方向に摺動可能に設けられている。スライドバルブ16の摺動方向の中央部には、開口部16aが形成されている。スライドバルブ16は、機械式の容量制御の用途で用いられるものでもよいし、吐出のタイミングを変更させて内部容積を変更する用途で用いられるものでもよい。 The slide valve 16 is provided so as to be slidable in the axial direction of the screw rotor 14 along the outer peripheral surface of the screw rotor 14. An opening 16a is formed at the center of the slide valve 16 in the sliding direction. The slide valve 16 may be used for the purpose of mechanical capacity control, or may be used for the purpose of changing the discharge timing to change the internal volume.
 モータ12は、モータケーシング50内に内接して固定されたステーター12aと、ステーター12aの内側に配置されたモータローター12bとを有する。モータローター12bは、スクリュー軸13に固定され、スクリューローター14と同一線上に配置されている。スクリュー軸13においてモータ12に固定されていない側の端部は、軸受17によって回転自在に支持されており、モータ12に固定されている側の端部は軸受18によって回転自在に支持されている。モータ12はインバータ駆動により回転数を変更可能であり、インバータ駆動される。なお、モータ12は、一定の回転数で回転する一定速のものでもよい。 The motor 12 has a stator 12a that is inscribed and fixed in the motor casing 50, and a motor rotor 12b that is arranged inside the stator 12a. The motor rotor 12b is fixed to the screw shaft 13 and is arranged on the same line as the screw rotor 14. The end of the screw shaft 13 on the side not fixed to the motor 12 is rotatably supported by the bearing 17, and the end on the side fixed to the motor 12 is rotatably supported by the bearing 18. .. The rotation speed of the motor 12 can be changed by driving the inverter, and the motor 12 is driven by the inverter. The motor 12 may be a motor 12 having a constant speed that rotates at a constant rotation speed.
 軸受18は、カバーケーシング60に内装されている。カバーケーシング60は、モータケーシング50とボルト締結により接続され、接合面にはガスケットまたはOリングなどのシール部品(図示しない)が配置されている。なお、カバーケーシング60とケーシング11との固定は、ボルト締結でなくともよく、溶接としてもよい。溶接とした場合は、シール部品を不要とできる。 The bearing 18 is housed in the cover casing 60. The cover casing 60 is connected to the motor casing 50 by bolting, and a sealing component (not shown) such as a gasket or an O-ring is arranged on the joint surface. The cover casing 60 and the casing 11 may be fixed by welding instead of bolting. When welding is used, sealing parts can be eliminated.
 カバーケーシング60には、図2に示すように複数のボルト穴60aが形成されている。カバーケーシング60には、このボルト穴60aを用いて後述のストレーナ80がボルト締結により固定されていると共に、吸入ケーシング70もまたボルト締結により固定されている。 As shown in FIG. 2, a plurality of bolt holes 60a are formed in the cover casing 60. The strainer 80, which will be described later, is fixed to the cover casing 60 by bolting using the bolt holes 60a, and the suction casing 70 is also fixed by bolting.
 カバーケーシング60と吸入ケーシング70との接合面には、ガスケットまたはOリングなどのシール部品(図示しない)が配置されている。なお、カバーケーシング60と吸入ケーシング70との固定は、ボルト締結でなくともよく、溶接としてもよい。溶接とした場合は、シール部品を不要とできる。 Sealing parts (not shown) such as gaskets or O-rings are arranged on the joint surface between the cover casing 60 and the suction casing 70. The cover casing 60 and the suction casing 70 do not have to be fastened with bolts, but may be welded. When welding is used, sealing parts can be eliminated.
 吸入ケーシング70には、冷媒が吸入される吸入口70aが形成されている。吸入口70aに外部から冷媒吸入管(図示せず)が接続されてケーシング11内に冷媒が吸入される。 The suction casing 70 is formed with a suction port 70a into which the refrigerant is sucked. A refrigerant suction pipe (not shown) is connected to the suction port 70a from the outside, and the refrigerant is sucked into the casing 11.
 ケーシング11内には、吸入口70aと対向してストレーナ80が設置されている。ストレーナ80は、冷媒と共に吸入口70aからケーシング11内に吸入される微細なゴミ等の異物をキャッチするものであり、圧縮室19の焼き付きと軸受18の摺動部の摩耗とを防止する役割を有する。 A strainer 80 is installed in the casing 11 so as to face the suction port 70a. The strainer 80 catches foreign matter such as fine dust sucked into the casing 11 from the suction port 70a together with the refrigerant, and has a role of preventing seizure of the compression chamber 19 and wear of the sliding portion of the bearing 18. Have.
 図3は、実施の形態1に係る圧縮機のストレーナを示す図である。図3において(a)は側面図、(b)は正面図である。図4は、実施の形態1に係る圧縮機のストレーナの写真を示す図で、一部拡大して示した図である。
 ストレーナ80は、図3に示すように、円形の平板状に構成されている。ストレーナ80は、複数の穴81aが形成された2枚の円板状の板81と円板状のフィルタ部材82とを有し、フィルタ部材82を2枚の円板状の板81で挟んだ構成を有する。板81の材質は、加工性を考慮し、SPCC(冷間圧延鋼板)などの金属板が好ましいが、樹脂板としてもよい。フィルタ部材82は、金属メッシュで構成されている。金属メッシュは、金属線材をメッシュ状に編み込まれて構成されている。なお、フィルタ部材82はこの構成に限られたものではなく、濾紙で構成されてもよい。フィルタ部材82の選定は、必要なろ過精度および強度を考慮して選定すればよい。
FIG. 3 is a diagram showing a strainer of the compressor according to the first embodiment. In FIG. 3, (a) is a side view and (b) is a front view. FIG. 4 is a diagram showing a photograph of the strainer of the compressor according to the first embodiment, and is a partially enlarged view.
As shown in FIG. 3, the strainer 80 is formed in a circular flat plate shape. The strainer 80 has two disc-shaped plates 81 having a plurality of holes 81a formed therein and a disc-shaped filter member 82, and the filter member 82 is sandwiched between the two disc-shaped plates 81. Has a configuration. The material of the plate 81 is preferably a metal plate such as SPCC (cold rolled steel plate) in consideration of workability, but may be a resin plate. The filter member 82 is made of a metal mesh. The metal mesh is constructed by weaving a metal wire into a mesh shape. The filter member 82 is not limited to this structure, and may be made of filter paper. The filter member 82 may be selected in consideration of the required filtration accuracy and strength.
 板81とフィルタ部材82とは、板81が金属の場合、外周を溶接することにより固定される。板81とフィルタ部材82とは、板81が樹脂の場合は接着剤等を使用して固定される。 When the plate 81 is made of metal, the plate 81 and the filter member 82 are fixed by welding the outer periphery. When the plate 81 is made of resin, the plate 81 and the filter member 82 are fixed by using an adhesive or the like.
 板81の穴あけは、生産性およびコストの問題から、パンチングまたはエッジング加工などにより行うことが好ましい。板81に形成された複数の穴81aは、流路を形成する流路穴81aaと、ストレーナ80とカバーケーシング60との固定用のボルト穴81abと、に分類される。図3において流路穴81aaを白穴で示し、ボルト穴81abをハッチングされた穴で示している。 The drilling of the plate 81 is preferably performed by punching or edging from the viewpoint of productivity and cost. The plurality of holes 81a formed in the plate 81 are classified into a flow path hole 81aa forming a flow path and a bolt hole 81ab for fixing the strainer 80 and the cover casing 60. In FIG. 3, the flow path hole 81aa is indicated by a white hole, and the bolt hole 81ab is indicated by a hatched hole.
 流路穴81aaとボルト穴81abとは、同じく生産性およびコストの問題から、同じ径であることが望ましい。これらの穴のサイズおよび穴同士のピッチは、必要な流路面積、開口率および強度を考慮して決定する。開口率を大きくすると、流路面積は大きくなるものの強度低下が避けられない。そのため、開口率は例えば30%から80%とすることが好ましく、この範囲内とすることで、流路面積の確保と強度確保との両立を図ることができる。 It is desirable that the flow path hole 81aa and the bolt hole 81ab have the same diameter from the same viewpoint of productivity and cost. The size of these holes and the pitch between the holes are determined in consideration of the required flow path area, aperture ratio and strength. When the aperture ratio is increased, the flow path area is increased, but the strength is inevitably decreased. Therefore, the aperture ratio is preferably set to, for example, 30% to 80%, and by setting it within this range, it is possible to secure both the flow path area and the strength.
 複数の穴81aのピッチについても、生産性およびコストの問題から等ピッチもしくは等ピッチ近傍とすることが好ましい。また、ボルト穴81abは、板81の外周部と内周部とのそれぞれに設けることで、脈動による振動を低減できるので好ましい。この例では、板81の外周部に、周方向に間隔を開けて6つのボルト穴81abが形成され、板81の内周部に、周方向に間隔を開けて3つのボルト穴81abが形成された構成を示したが、数は任意である。 It is preferable that the pitches of the plurality of holes 81a are equal pitches or close to equal pitches from the viewpoint of productivity and cost. Further, it is preferable that the bolt holes 81ab are provided in the outer peripheral portion and the inner peripheral portion of the plate 81, respectively, because vibration due to pulsation can be reduced. In this example, six bolt holes 81ab are formed on the outer peripheral portion of the plate 81 at intervals in the circumferential direction, and three bolt holes 81ab are formed on the inner peripheral portion of the plate 81 at intervals in the circumferential direction. The configuration is shown, but the number is arbitrary.
 次に、以上のように構成した平板状のストレーナ80の作用について説明する。
 まず、比較例として従来は、ストレーナが筒形であった。このため、ストレーナがモータと干渉しないように、ストレーナの径を、モータの周状のコイルエンドの直径よりも小さくする必要があり、流路径が小さくなることで圧力損失の増大を招いていた。
Next, the operation of the flat plate strainer 80 configured as described above will be described.
First, as a comparative example, the strainer has conventionally been tubular. Therefore, it is necessary to make the diameter of the strainer smaller than the diameter of the peripheral coil end of the motor so that the strainer does not interfere with the motor, and the smaller flow path diameter causes an increase in pressure loss.
 これに対し、本実施の形態1では、ストレーナ80を平板状としたことで、ケーシング11内の他の部品との干渉部位を少なくでき、モータ12と干渉しない。このため、モータ12との位置関係に伴う構造的な制約を受けずにストレーナ80の径を設定できる。したがって、ストレーナ80の径をコイルエンドの直径よりも大きく設定でき、ケーシング11内におけるストレーナ80の設置箇所の径まで拡大できる。これは、見方を変えれば、ストレーナ80をケーシング11内に設置することに起因する流路径の縮小化を避けることができることに相当し、圧力損失の増加の低減を図ることができる。 On the other hand, in the first embodiment, the strainer 80 has a flat plate shape, so that the portion of interference with other parts in the casing 11 can be reduced and the strainer 80 does not interfere with the motor 12. Therefore, the diameter of the strainer 80 can be set without being subject to structural restrictions due to the positional relationship with the motor 12. Therefore, the diameter of the strainer 80 can be set larger than the diameter of the coil end, and can be expanded to the diameter of the installation location of the strainer 80 in the casing 11. From a different point of view, this corresponds to avoiding the reduction of the flow path diameter due to the installation of the strainer 80 in the casing 11, and the increase in pressure loss can be reduced.
 また、従来の筒状のストレーナには、筒の側面が冷媒を通過するフィルタ部材で構成され、筒の底面が板で閉塞された構成のものがある。この構成のストレーナにおいては、吸入口から流入した冷媒が一旦、筒の底面に衝突し、その衝突により跳ね返った冷媒が側面のフィルタ部材を通り抜けることになる。 In addition, some conventional tubular strainers have a structure in which the side surface of the cylinder is composed of a filter member through which the refrigerant passes, and the bottom surface of the cylinder is closed with a plate. In the strainer having this configuration, the refrigerant flowing in from the suction port once collides with the bottom surface of the cylinder, and the refrigerant rebounded by the collision passes through the filter member on the side surface.
 これに対し、本実施の形態1のストレーナ80は、冷媒の流れ方向に貫通する複数の穴81aを有するため、上記従来の構成のものに比べて圧力損失を低減できて好ましい。 On the other hand, since the strainer 80 of the first embodiment has a plurality of holes 81a penetrating in the flow direction of the refrigerant, the pressure loss can be reduced as compared with the conventional configuration, which is preferable.
 以上説明したように、本実施の形態1の圧縮機1は、冷媒が吸入される吸入口70aが形成されたケーシング11と、ケーシング11内において吸入口70aと対向して設置された平板状のストレーナ80とを有する。このように、平板状のストレーナ80を用いることで、ストレーナ80をケーシング11内へ設置することに起因する流路の縮小化を避けることができる。その結果、圧力損失の増加を低減でき、圧縮機1の性能向上を図ることができる。 As described above, the compressor 1 of the first embodiment has a casing 11 in which a suction port 70a for sucking the refrigerant is formed, and a flat plate-shaped compressor 11 installed in the casing 11 facing the suction port 70a. It has a strainer 80 and. As described above, by using the flat plate strainer 80, it is possible to avoid the reduction of the flow path due to the installation of the strainer 80 in the casing 11. As a result, the increase in pressure loss can be reduced, and the performance of the compressor 1 can be improved.
 本実施の形態1において、ストレーナ80の外径は、吸入口70aの径よりも大きいので、吸入口70aと同じ外径のストレーナを用いる場合に比べて圧力損失の増加を低減でき、性能向上を図ることができる。 In the first embodiment, since the outer diameter of the strainer 80 is larger than the diameter of the suction port 70a, an increase in pressure loss can be reduced as compared with the case where a strainer having the same outer diameter as the suction port 70a is used, and the performance can be improved. Can be planned.
 本実施の形態1においてストレーナ80は、複数の穴81aを有する2枚の板81とフィルタ部材82とを有し、フィルタ部材82を2枚の板81で挟んで構成されている。このように、平板状のストレーナ80は、2枚の板81とフィルタ部材82とにより構成できる。また、複数の穴81aは、流路を形成する流路穴81aaと、固定用のボルト穴81abとに分類でき、流路穴81aaとボルト穴81abとが丸穴であって同じ径とすることで、生産性の向上およびコストの低減を図ることができる。 In the first embodiment, the strainer 80 has two plates 81 having a plurality of holes 81a and a filter member 82, and the filter member 82 is sandwiched between the two plates 81. As described above, the flat plate strainer 80 can be composed of the two plates 81 and the filter member 82. Further, the plurality of holes 81a can be classified into a flow path hole 81aa forming a flow path and a bolt hole 81ab for fixing, and the flow path hole 81aa and the bolt hole 81ab are round holes and have the same diameter. Therefore, productivity can be improved and costs can be reduced.
 フィルタ部材82には、金属メッシュを用いることができる。ストレーナ80の2枚の板81には、金属板を用いることができ、外周部で溶接によりフィルタ部材82と固定できる。 A metal mesh can be used for the filter member 82. A metal plate can be used for the two plates 81 of the strainer 80, and the strainer 80 can be fixed to the filter member 82 by welding at the outer peripheral portion.
 ケーシング11は、モータ12を収容するモータケーシング50と、カバーケーシング60と、吸入口70aが形成された吸入ケーシング70とを有する。ケーシング11は、これらがモータ12の軸方向に順に配置されて固定された構成を有し、ストレーナ80はカバーケーシング60に固定すればよい。 The casing 11 includes a motor casing 50 that houses the motor 12, a cover casing 60, and a suction casing 70 in which a suction port 70a is formed. The casing 11 has a configuration in which these are arranged and fixed in order in the axial direction of the motor 12, and the strainer 80 may be fixed to the cover casing 60.
実施の形態2.
 実施の形態2は、ストレーナ80の構成が実施の形態1と異なる。その他の構成については実施の形態1と同一または同等である。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
Embodiment 2.
In the second embodiment, the configuration of the strainer 80 is different from that of the first embodiment. Other configurations are the same as or equivalent to those of the first embodiment. Hereinafter, the configuration in which the second embodiment is different from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
 ストレーナ80のフィルタ部材82に異物が詰まったり、圧縮機に液冷媒が戻るいわゆる液バック運転が断続的または継続的に行われたり等すると、過大な圧力が局所的にフィルタ部材82に加わり、フィルタ部材82が破損することがある。フィルタ部材82の破損を防止するにはフィルタ部材82の強度を上げればよいが、強度を上げるにはフィルタ部材82を構成する金属線材の線径を太くする必要があり、金属線材の線径を太くするとフィルタの目が粗くなる。フィルタの目が粗くなると、フィルタ部材82のろ過精度が悪化してストレーナ本来の役割を果たせなくなってしまう。つまり、ろ過すべき異物が圧縮室19へ流入してスクリューローター14の焼き付きを生じさせたり、異物がモータ12へ流入してモータ12の絶縁不良を引き起こす可能性がある。 If the filter member 82 of the strainer 80 is clogged with foreign matter, or if the so-called liquid back operation in which the liquid refrigerant returns to the compressor is performed intermittently or continuously, excessive pressure is locally applied to the filter member 82 to filter the filter. The member 82 may be damaged. In order to prevent the filter member 82 from being damaged, the strength of the filter member 82 may be increased, but in order to increase the strength, it is necessary to increase the wire diameter of the metal wire rod constituting the filter member 82, and the wire diameter of the metal wire rod must be increased. The thicker the filter, the coarser the filter. If the mesh of the filter becomes coarse, the filtration accuracy of the filter member 82 deteriorates and the strainer cannot fulfill its original role. That is, foreign matter to be filtered may flow into the compression chamber 19 to cause seizure of the screw rotor 14, or foreign matter may flow into the motor 12 to cause insulation failure of the motor 12.
 そこで、本実施の形態2では、ろ過精度とメッシュ強度とを両立するストレーナを提案する。 Therefore, in the second embodiment, we propose a strainer that has both filtration accuracy and mesh strength.
 図5は、実施の形態2に係る圧縮機のストレーナを示す図である。図5において(a)は側面図、(b)は正面図である。
 実施の形態2のストレーナ80は、フィルタ部材82を複数枚有する。フィルタ部材82を複数枚有することで、ろ過精度と強度との両立を図ることができる。図5の例では、目の細かいフィルタ部材82aを、目の粗い2枚のフィルタ部材82bで挟んだ構成としている。目の粗いフィルタ部材82bは、目の細かいフィルタ部材82aに比べて金属線材の線径が太いため、強度が高い。なお、ここでは、目の細かいフィルタ部材82aを1枚、目の粗いフィルタ部材82bを2枚としたが、それぞれの枚数は任意である。なお、目の粗いフィルタ部材82bは、目の細かいフィルタ部材82aに比べてコストが高いことから、目の粗いフィルタ部材82bをコスト削減の関係で1枚にしてもよい。
FIG. 5 is a diagram showing a strainer of the compressor according to the second embodiment. In FIG. 5, (a) is a side view and (b) is a front view.
The strainer 80 of the second embodiment has a plurality of filter members 82. By having a plurality of filter members 82, it is possible to achieve both filtration accuracy and strength. In the example of FIG. 5, the fine-meshed filter member 82a is sandwiched between two coarse-meshed filter members 82b. The coarse-meshed filter member 82b has a higher strength than the fine-meshed filter member 82a because the wire diameter of the metal wire is larger. Here, one fine-meshed filter member 82a and two coarse-meshed filter members 82b are used, but the number of each is arbitrary. Since the cost of the coarse filter member 82b is higher than that of the fine filter member 82a, one coarse filter member 82b may be used for cost reduction.
 複数枚のフィルタ部材82の構成としては、他に例えばメッシュ数が同じフィルタ部材を複数組み合わせてもよい。また、メッシュ数が例えば120メッシュ、30メッシュおよび20メッシュといったように、メッシュ数が異なるフィルタ部材を組み合わせてもよい。また、目の粗いフィルタ部材82bを複数枚用いる場合には、圧損低減を目的として各フィルタ部材82bを、それぞれのメッシュの目の位置を重ね合わせて配置することが好ましい。 As the configuration of the plurality of filter members 82, for example, a plurality of filter members having the same number of meshes may be combined. Further, filter members having different numbers of meshes, such as 120 meshes, 30 meshes and 20 meshes, may be combined. Further, when a plurality of coarse filter members 82b are used, it is preferable that the filter members 82b are arranged so that the positions of the meshes of the respective meshes are overlapped for the purpose of reducing pressure loss.
 以上説明したように、本実施の形態2では、実施の形態1と同様の効果が得られると共に、ストレーナ80が複数枚のフィルタ部材82を備えた構成としたので、ろ過精度と強度の両立を図ったストレーナ80を実現できる。 As described above, in the second embodiment, the same effect as that of the first embodiment can be obtained, and since the strainer 80 is configured to include a plurality of filter members 82, both filtration accuracy and strength can be achieved. The planned strainer 80 can be realized.
実施の形態3.
 実施の形態3は、実施の形態1に対してストレーナ80とカバーケーシング60との締結構造のみ異なる。その他の構成については実施の形態1と同一または同等である。以下、実施の形態3が実施の形態1と異なる構成を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態1と同様である。
Embodiment 3.
The third embodiment differs from the first embodiment only in the fastening structure of the strainer 80 and the cover casing 60. Other configurations are the same as or equivalent to those of the first embodiment. Hereinafter, the configuration in which the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
 図6は、実施の形態3に係る圧縮機のストレーナを含む要部の断面模式図である。
 ストレーナ80は、厚みが薄いため平面度が良くない場合がある。ストレーナ80の平面度が良くないと、ストレーナ80とカバーケーシング60との接合面がメタルタッチであることから、ストレーナ80とカバーケーシング60との接合面に隙間が生じ、この隙間を通じて微小なゴミが圧縮室19へ流入してしまう可能性がある。圧縮機の種類によっては、微小なゴミによっても故障するリスクがある。
FIG. 6 is a schematic cross-sectional view of a main part including the strainer of the compressor according to the third embodiment.
Since the strainer 80 is thin, the flatness may not be good. If the flatness of the strainer 80 is not good, the joint surface between the strainer 80 and the cover casing 60 has a metal touch, so that a gap is generated in the joint surface between the strainer 80 and the cover casing 60, and minute dust is generated through this gap. There is a possibility that it will flow into the compression chamber 19. Depending on the type of compressor, there is a risk of failure even with minute dust.
 そこで、本実施の形態3では、図6に示すように、ストレーナ80とカバーケーシング60との接合面にシール部品84およびシール部品85を設けた構成としている。シール部品84およびシール部品85のそれぞれには、ガスケットまたはOリングを用いることができる。このようにストレーナ80とカバーケーシング60との接合面にシール部品を設けることで、ゴミが圧縮室19へ流入することを防止できる。 Therefore, in the third embodiment, as shown in FIG. 6, the seal component 84 and the seal component 85 are provided on the joint surface between the strainer 80 and the cover casing 60. A gasket or an O-ring can be used for each of the sealing component 84 and the sealing component 85. By providing the sealing component on the joint surface between the strainer 80 and the cover casing 60 in this way, it is possible to prevent dust from flowing into the compression chamber 19.
 以上説明したように、本実施の形態3では、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。すなわち、ストレーナ80とカバーケーシング60との接合面にシール部品84およびシール部品85を設けたので、ストレーナ80とカバーケーシング60との接合面からの圧縮室19へのゴミの流入を確実に防止し、信頼性の高い圧縮機を提供できる。 As described above, in the third embodiment, the same effect as that of the first embodiment can be obtained, and the following effects can be obtained. That is, since the seal component 84 and the seal component 85 are provided on the joint surface between the strainer 80 and the cover casing 60, the inflow of dust from the joint surface between the strainer 80 and the cover casing 60 into the compression chamber 19 is reliably prevented. , Can provide a highly reliable compressor.
実施の形態4.
 実施の形態4は、実施の形態1に対してストレーナ80の形状が異なる。その他の構成については実施の形態1と同一または同等である。以下、実施の形態4が実施の形態1と異なる構成を中心に説明するものとし、本実施の形態4で説明されていない構成は実施の形態1と同様である。
Embodiment 4.
In the fourth embodiment, the shape of the strainer 80 is different from that of the first embodiment. Other configurations are the same as or equivalent to those of the first embodiment. Hereinafter, the configuration in which the fourth embodiment is different from the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
 図7は、実施の形態4に係る圧縮機のストレーナを含む要部の断面模式図である。
 本実施の形態4では、ストレーナ80が複数に分割された構造を有する。具体的には、ストレーナ80は、内径側の分割ストレーナ86と、外径側の分割ストレーナ87とを有する。分割ストレーナ86は円形状に構成されている。分割ストレーナ87は、環状に構成されている。分割ストレーナ86および分割ストレーナ87のそれぞれのフィルタ部材82の粗さは、同じとしてもよいし、異ならせてもよい。
FIG. 7 is a schematic cross-sectional view of a main part including the strainer of the compressor according to the fourth embodiment.
In the fourth embodiment, the strainer 80 has a structure divided into a plurality of parts. Specifically, the strainer 80 has a split strainer 86 on the inner diameter side and a split strainer 87 on the outer diameter side. The split strainer 86 is formed in a circular shape. The split strainer 87 is formed in an annular shape. The roughness of each of the filter members 82 of the split strainer 86 and the split strainer 87 may be the same or different.
 このようにストレーナ80を分割した構造としたことで、各分割ストレーナが軽量化して取り扱いが容易となるため、メンテナンス作業の簡単化を図ることができる。また、メンテナンス時には、スクリュー軸13に備え付けられたボルト90を、トルクレンチなどの工具で手回しする作業を行う場合がある。この作業の際にはストレーナ80を取り外す必要があるが、ストレーナ80が分割されていない構成の場合、まず、吸入ケーシング70をカバーケーシング60から取り外し、次にストレーナ80を取り外す必要がある。これに対し、本実施の形態4では、ストレーナ80が分割されていることで、吸入ケーシング70を取り外すことなく、内径側の分割ストレーナ86を、吸入口70aを介して吸入ケーシング70外へ取り出すことができる。つまり、内径側の分割ストレーナ86を取り外すだけでボルト90への作業が可能となり、メンテナンス性が向上する。 By adopting the structure in which the strainer 80 is divided in this way, each divided strainer is reduced in weight and easy to handle, so that maintenance work can be simplified. Further, at the time of maintenance, the bolt 90 provided on the screw shaft 13 may be manually rotated with a tool such as a torque wrench. In this operation, it is necessary to remove the strainer 80, but in the case where the strainer 80 is not divided, it is necessary to first remove the suction casing 70 from the cover casing 60 and then remove the strainer 80. On the other hand, in the fourth embodiment, since the strainer 80 is divided, the divided strainer 86 on the inner diameter side is taken out of the suction casing 70 through the suction port 70a without removing the suction casing 70. Can be done. That is, the work on the bolt 90 becomes possible only by removing the split strainer 86 on the inner diameter side, and the maintainability is improved.
 また、ストレーナ80は外径が大きくなるほど、1枚の基材に対する取り数が少なくなってコストが大幅に上昇する場合がある。これに対し、本実施の形態4ではストレーナ80を分割構造としたことで、取り数を増やすことが可能であり、コスト低減に効果がある。 Further, as the outer diameter of the strainer 80 becomes larger, the number of strainers taken for one base material is reduced, and the cost may increase significantly. On the other hand, in the fourth embodiment, the strainer 80 has a divided structure, so that the number of strainers can be increased, which is effective in reducing the cost.
 以上説明したように、本実施の形態4では、実施の形態1と同様の効果が得られると共に、ストレーナ80を複数に分割した構造としたので、メンテナンス作業の簡単化およびコスト低減を図ることができる。 As described above, in the fourth embodiment, the same effect as that of the first embodiment can be obtained, and since the strainer 80 is divided into a plurality of structures, the maintenance work can be simplified and the cost can be reduced. it can.
 以上、本発明の圧縮機の各実施の形態について説明したが、本発明は、これらの各実施の形態に限られず、各実施の形態を適宜組み合わせることもできる。例えば実施の形態2と実施の形態3とを組み合わせ、複数のフィルタ部材82を有するストレーナ80をシール部品を用いてカバーケーシング60に締結した構成としてもよい。また、実施の形態3と実施の形態4とを組み合わせ、ストレーナ80を図7に示したような分割構造とし、各分割ストレーナ86および分割ストレーナ87を、シール部品を用いてカバーケーシング60と締結した構成としてもよい。また、実施の形態2と実施の形態4とを組み合わせ、図7に示した各分割ストレーナ86および分割ストレーナ87を、複数のフィルタ部材82を有する構成としてもよい。 Although each embodiment of the compressor of the present invention has been described above, the present invention is not limited to each of these embodiments, and each embodiment can be appropriately combined. For example, the second embodiment and the third embodiment may be combined, and the strainer 80 having a plurality of filter members 82 may be fastened to the cover casing 60 by using a seal component. Further, the third embodiment and the fourth embodiment are combined to form the strainer 80 having a divided structure as shown in FIG. 7, and the divided strainers 86 and the divided strainers 87 are fastened to the cover casing 60 by using seal parts. It may be configured. Further, the second embodiment and the fourth embodiment may be combined, and each of the split strainers 86 and the split strainers 87 shown in FIG. 7 may have a plurality of filter members 82.
実施の形態5.
 実施の形態5は、実施の形態1~実施の形態4のいずれかの圧縮機を備えた冷凍サイクル装置に関するものである。
Embodiment 5.
The fifth embodiment relates to a refrigeration cycle apparatus including the compressor according to any one of the first to fourth embodiments.
 図8は、実施の形態5に係る冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置100は、圧縮機101と、凝縮器102と、減圧装置としての膨張弁103と、蒸発器104とを備えている。圧縮機101には、実施の形態1~実施の形態4のいずれかの圧縮機1が用いられている。
FIG. 8 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the fifth embodiment.
The refrigeration cycle device 100 includes a compressor 101, a condenser 102, an expansion valve 103 as a depressurizing device, and an evaporator 104. As the compressor 101, the compressor 1 according to any one of the first to fourth embodiments is used.
 以上のように構成された冷凍サイクル装置100において、圧縮機101は、冷媒を吸入して圧縮した後、吐出する。圧縮機101から吐出されたガス冷媒は凝縮器102に流入し、凝縮器102を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器102を流出した高圧液冷媒は膨張弁103で減圧されて低圧の気液二相冷媒となり、蒸発器104に流入する。蒸発器104に流入した低圧の気液二相冷媒は、蒸発器104を通過する空気と熱交換して低圧ガス冷媒となり、再び圧縮機101に吸入される。 In the refrigeration cycle device 100 configured as described above, the compressor 101 sucks in the refrigerant, compresses it, and then discharges it. The gas refrigerant discharged from the compressor 101 flows into the condenser 102, exchanges heat with the air passing through the condenser 102, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the condenser 102 is depressurized by the expansion valve 103 to become a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 104. The low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 104 exchanges heat with the air that passes through the evaporator 104 to become a low-pressure gas refrigerant, which is again sucked into the compressor 101.
 このように構成された冷凍サイクル装置100は、実施の形態1~実施の形態4のいずれかの圧縮機1を備えることで性能の向上を図ることができる。 The refrigerating cycle device 100 configured in this way can be improved in performance by providing the compressor 1 according to any one of the first to fourth embodiments.
 なお、冷凍サイクル装置100は、空気調和機および冷蔵冷凍庫等に適用することができる。 The refrigerating cycle device 100 can be applied to an air conditioner, a refrigerator / freezer, and the like.
 1 圧縮機、10 圧縮機本体部、11 ケーシング、12 モータ、12a ステーター、12b モータローター、13 スクリュー軸、14 スクリューローター、14a スクリュー溝、15 ゲートローター、15a 歯部、16 スライドバルブ、16a 開口部、17 軸受、18 軸受、19 圧縮室、20 油分離器、50 モータケーシング、60 カバーケーシング、60a ボルト穴、70 吸入ケーシング、70a 吸入口、80 ストレーナ、81 板、81a 穴、81aa 流路穴、81ab ボルト穴、82 フィルタ部材、82a フィルタ部材、82b フィルタ部材、84 シール部品、85 シール部品、86 分割ストレーナ、87 分割ストレーナ、90 ボルト、100 冷凍サイクル装置、101 圧縮機、102 凝縮器、103 膨張弁、104 蒸発器。 1 compressor, 10 compressor body, 11 casing, 12 motor, 12a stator, 12b motor rotor, 13 screw shaft, 14 screw rotor, 14a screw groove, 15 gate rotor, 15a teeth, 16 slide valve, 16a opening , 17 bearings, 18 bearings, 19 compression chambers, 20 oil separators, 50 motor casings, 60 cover casings, 60a bolt holes, 70 suction casings, 70a suction ports, 80 strainers, 81 plates, 81a holes, 81aa flow path holes, 81ab bolt hole, 82 filter member, 82a filter member, 82b filter member, 84 seal part, 85 seal part, 86 split strainer, 87 split strainer, 90 bolt, 100 refrigeration cycle device, 101 compressor, 102 condenser, 103 expansion Valve, 104 evaporator.

Claims (17)

  1.  冷媒が吸入される吸入口が形成されたケーシングと、
     前記ケーシング内において前記吸入口と対向して設置された平板状のストレーナと
    を有する圧縮機。
    A casing with a suction port for sucking refrigerant,
    A compressor having a flat plate-shaped strainer installed in the casing facing the suction port.
  2.  前記ストレーナの外径は、前記吸入口の径よりも大きい請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the outer diameter of the strainer is larger than the diameter of the suction port.
  3.  前記ストレーナは、複数の穴を有する2枚の板とフィルタ部材とを有し、前記フィルタ部材を前記2枚の板で挟んで構成されている請求項1または請求項2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the strainer has two plates having a plurality of holes and a filter member, and the filter member is sandwiched between the two plates.
  4.  前記複数の穴は、流路を形成する流路穴と、固定用のボルト穴とを有する請求項3に記載の圧縮機。 The compressor according to claim 3, wherein the plurality of holes have a flow path hole forming a flow path and a bolt hole for fixing.
  5.  前記複数の穴は、丸穴である請求項3または請求項4に記載の圧縮機。 The compressor according to claim 3 or 4, wherein the plurality of holes are round holes.
  6.  前記流路穴と前記ボルト穴とは同じ径である請求項4に従属する請求項5に記載の圧縮機。 The compressor according to claim 5, which is subordinate to claim 4, wherein the flow path hole and the bolt hole have the same diameter.
  7.  前記フィルタ部材は、金属メッシュで構成されている請求項3~請求項6のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 3 to 6, wherein the filter member is made of a metal mesh.
  8.  前記ストレーナの前記2枚の板は金属板である請求項3~請求項7のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 3 to 7, wherein the two plates of the strainer are metal plates.
  9.  前記2枚の板は、外周部で溶接により前記フィルタ部材に固定されている請求項3~請求項8のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 3 to 8, wherein the two plates are fixed to the filter member by welding at the outer peripheral portion.
  10.  前記ストレーナは、前記フィルタ部材を複数枚備える請求項3~請求項9のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 3 to 9, wherein the strainer includes a plurality of the filter members.
  11.  複数枚の前記フィルタ部材は、目の細かいフィルタ部材と目の粗いフィルタ部材とを有する請求項10に記載の圧縮機。 The compressor according to claim 10, wherein the plurality of filter members include a fine-mesh filter member and a coarse-mesh filter member.
  12.  前記ストレーナは、複数に分割されている請求項1~請求項11のいずれか一項に記載の圧縮機。 The compressor according to any one of claims 1 to 11, wherein the strainer is divided into a plurality of parts.
  13.  前記複数に分割された各ストレーナのメッシュ粗さが、それぞれ異なる請求項12に記載の圧縮機。 The compressor according to claim 12, wherein the mesh roughness of each strainer divided into the plurality of strainers is different.
  14.  前記ストレーナは、内径側と外径側との2つに分割されている請求項12または請求項13に記載の圧縮機。 The compressor according to claim 12 or 13, wherein the strainer is divided into two parts, an inner diameter side and an outer diameter side.
  15.  前記ケーシングは、モータを収容するモータケーシングと、カバーケーシングと、前記吸入口が形成された吸入ケーシングとを有し、これらが前記モータの軸方向に順に配置されて固定された構成を有し、
     前記ストレーナが前記カバーケーシングに固定されている請求項1~請求項14のいずれか一項に記載の圧縮機。
    The casing has a motor casing for accommodating a motor, a cover casing, and a suction casing in which the suction port is formed, and these have a configuration in which they are sequentially arranged and fixed in the axial direction of the motor.
    The compressor according to any one of claims 1 to 14, wherein the strainer is fixed to the cover casing.
  16.  前記ストレーナが前記カバーケーシングにシール部品を介して固定されている請求項15に記載の圧縮機。 The compressor according to claim 15, wherein the strainer is fixed to the cover casing via a sealing component.
  17.  請求項1~請求項16のいずれか一項に記載の圧縮機を備えた冷凍サイクル装置。 A refrigeration cycle device provided with the compressor according to any one of claims 1 to 16.
PCT/JP2019/029634 2019-07-29 2019-07-29 Compressor and refrigeration cycle device WO2021019639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029634 WO2021019639A1 (en) 2019-07-29 2019-07-29 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029634 WO2021019639A1 (en) 2019-07-29 2019-07-29 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021019639A1 true WO2021019639A1 (en) 2021-02-04

Family

ID=74230323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029634 WO2021019639A1 (en) 2019-07-29 2019-07-29 Compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2021019639A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554350U (en) * 1978-06-23 1980-01-12
JPS6241679U (en) * 1985-08-30 1987-03-12
US6254354B1 (en) * 1998-09-02 2001-07-03 American Standard Inc. Enhanced suction gas management in a refrigeration compressor
JP2007303319A (en) * 2006-05-10 2007-11-22 Hitachi Appliances Inc Sealed compressor for refrigerant
JP2008190448A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Filter and refrigerant compressor
JP2009542949A (en) * 2006-07-06 2009-12-03 ワールプール・エシ・ア Acoustic muffler for cooling compressor
JP2010223145A (en) * 2009-03-25 2010-10-07 Hitachi Appliances Inc Screw compressor
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554350U (en) * 1978-06-23 1980-01-12
JPS6241679U (en) * 1985-08-30 1987-03-12
US6254354B1 (en) * 1998-09-02 2001-07-03 American Standard Inc. Enhanced suction gas management in a refrigeration compressor
JP2007303319A (en) * 2006-05-10 2007-11-22 Hitachi Appliances Inc Sealed compressor for refrigerant
JP2009542949A (en) * 2006-07-06 2009-12-03 ワールプール・エシ・ア Acoustic muffler for cooling compressor
JP2008190448A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Filter and refrigerant compressor
JP2010223145A (en) * 2009-03-25 2010-10-07 Hitachi Appliances Inc Screw compressor
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same

Similar Documents

Publication Publication Date Title
US9777731B2 (en) Duct-mounted suction gas filter
US11585345B2 (en) Two-piece suction fitting
JP2008519940A (en) Vacuum prevention device for scroll compressor
CN1811189A (en) Screw compressor acoustic resonance reduction
EP1820970A1 (en) Compressor
JP4852441B2 (en) Oil separator built-in compressor
KR20070083469A (en) Screw compressor seal
JP5679384B2 (en) Multi-cylinder rotary compressor
WO2021019639A1 (en) Compressor and refrigeration cycle device
JP5067064B2 (en) Oil collector and compressor for compressor
JP2005147093A (en) 2-cylinder hermetic rotary compressor and refrigerating air conditioner
JP2009180107A (en) Sealed-type scroll compressor
CN105805014A (en) Multi-cylinder rotary compressor
JP5033351B2 (en) Hermetic compressor for refrigerant
EP3699432A1 (en) Cast-in offset fixed scroll intake opening
JPH0510281A (en) Closed type compressor
US10830239B2 (en) Refrigeration compressor fittings
JP6760804B2 (en) Compressor
JP2005330821A (en) Hermetic rotary compressor
JP4773877B2 (en) Air conditioning compressor
CN114810589A (en) Horizontal scroll compressor with oil absorption filter screen
CN105909523B (en) Rotary compressor
JP4339725B2 (en) Compressor and assembly method of separation chamber of this compressor
JP2007170409A (en) Rotary compressor
JP2006132414A (en) Rotary compressor and method for manufacturing rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP