WO2021018958A1 - Système amélioré de planification d'itinéraires pour des usagers d'un réseau multimodal de transports structurés - Google Patents

Système amélioré de planification d'itinéraires pour des usagers d'un réseau multimodal de transports structurés Download PDF

Info

Publication number
WO2021018958A1
WO2021018958A1 PCT/EP2020/071388 EP2020071388W WO2021018958A1 WO 2021018958 A1 WO2021018958 A1 WO 2021018958A1 EP 2020071388 W EP2020071388 W EP 2020071388W WO 2021018958 A1 WO2021018958 A1 WO 2021018958A1
Authority
WO
WIPO (PCT)
Prior art keywords
graph
network
multimodal
traffic
information
Prior art date
Application number
PCT/EP2020/071388
Other languages
English (en)
Inventor
Pascal POISSON
Manel ABID
Lionel SCREMIN
Omar DIB
Original Assignee
Alstom Transport Technologies
Institut De Recherche Technologique Systemx
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport Technologies, Institut De Recherche Technologique Systemx filed Critical Alstom Transport Technologies
Priority to EP20761147.6A priority Critical patent/EP4004840A1/fr
Priority to US17/631,105 priority patent/US20220276062A1/en
Publication of WO2021018958A1 publication Critical patent/WO2021018958A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3423Multimodal routing, i.e. combining two or more modes of transportation, where the modes can be any of, e.g. driving, walking, cycling, public transport
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3484Personalized, e.g. from learned user behaviour or user-defined profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3605Destination input or retrieval
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/133Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams within the vehicle ; Indicators inside the vehicles or at stops

Definitions

  • TITLE Improved route planning system for users of a multimodal structured transport network
  • the field of the invention is that of route planning systems for users of a multimodal network of structured transport, in particular of public transport.
  • Online services which allow a user to plan in advance his journey between a departure station and an arrival station, in particular by selecting the times of the various public transport allowing him to make a connection in a middle station with the least possible waiting time.
  • the aim of the invention is therefore to solve this problem, in particular by proposing a rerouting solution in the event of traffic disruption.
  • the invention relates to a route planning system for users of a multimodal structured transport network suitable for recommending to a user an optimal route for making a journey on said multimodal network between a departure station and a station.
  • arrival station characterized in that it is suitable for updating, in real time, an instantaneous graph representative of the multimodal network and of a current operation of the multimodal network from information describing a current state traffic at the current time and information for predicting the evolution of the traffic state from the current time, the graph being initialized from planning information associated with nominal operation of the multimodal network
  • the planning system comprising a module for determining an optimal route suitable for using the instantaneous graph to provide an optimal route suitable for the current operation of the network m ultimodal at the request of a user.
  • the system comprises one or more of the following characteristics taken in isolation and according to all the technically possible combinations:
  • system further includes a module for initializing a graph suitable for generating an initial graph from a description of the multimodal network, tables timetables describing nominal network operation and a history of past traffic conditions on the multimodal network when nominal operation was planned.
  • the past states taken into account by the initialization module of a graph are selected according to a plurality of context variables.
  • the system further comprises a module for updating a graph suitable for updating the initial graph as a function of the information describing the state of the traffic and the information for predicting the evolution of the state of the traffic. traffic, to obtain the instantaneous graph.
  • the subject of the invention is also a global supervision system, characterized in that it integrates a route planning system in accordance with the previous system, the module for initializing a graph being interfaced on the one hand to an historical database and to an operational data management system and the module for updating a graph being interfaced with the operational data management system and a prediction system.
  • the subject of the invention is also a method of planning routes for users of a multimodal structured transport network making it possible to recommend to a user an optimal route for making a journey on said multimodal network between a departure station and a station. arrival point, characterized in that the method consists of a step of updating, in real time, an instantaneous graph representative of the multimodal network and of a current operation of the multimodal network on the basis of description information of a current state of the traffic at a current instant and information for predicting the evolution of the state of the traffic from the current instant, the instantaneous graph being determined as a function of an initial graph initialized from planning information associated with nominal operation of the multimodal network, and in a step of determining an optimal route to provide, at the user's request, an optimal route adapted to the ’Current operation of the multimodal network from the instantaneous graph delivered at the output of the update step.
  • the method comprises one or more of the following characteristics taken in isolation and according to all the technically possible combinations:
  • - a step of initializing a graph suitable for generating the initial graph from a description of the multimodal network, time tables describing a nominal operation of the network and a history of past traffic conditions on the multimodal network when nominal operation was planned.
  • the past states taken into account during the step of initializing a graph are selected as a function of a plurality of context variables.
  • the updating step consists, in order to obtain the instantaneous graph, in updating the initial graph according to the information describing the current state of the traffic and the information for predicting the evolution of the state of the traffic.
  • the step of initializing a graph takes as input information coming from a history database and from an operational data management system
  • the step of updating a graph takes as input information coming from the operational data management system and from a prediction system.
  • the subject of the invention is also a global supervision system, characterized in that it integrates a route planning system in accordance with the previous system, the module for initializing a graph being interfaced on the one hand to a base historical data and to an operational data management system and the module for updating a graph being interfaced with the operational data management system and a prediction system.
  • Figure 1 is a schematic representation, in the form of blocks, of an overall supervision system comprising a route planning system according to the invention
  • FIG. 2 is a schematic representation of a portion of a multimodal public transport network, in the vicinity of a connection station between two lines served by public transport means, advantageously of different types;
  • Figure 3 is an initial graph calculated offline by the route planning system of Figure 1 for the portion of the network shown in Figure 2;
  • Figure 4 is an instant graph dynamically updated by the route planning system of Figure 1 from the initial graph of Figure 3.
  • the route planning system according to the invention advantageously forms part of an overall supervision system of a supervision infrastructure of a land multimodal transport network as described in patent application FR 3,047,835.
  • the supervision infrastructure 10 comprises a global supervision system 20 interfaced with a database 22 and an operational data management system 40.
  • the database 22 stores a history of the state of the traffic on the multimodal network.
  • the operational data management system 40 is able to determine an instantaneous state of the traffic on the multimodal network.
  • the instantaneous state of traffic is for example characterized by a plurality of variables, in particular variables associated with a level of load (in terms of number of passengers) of the entities of the network, which are vehicles and platforms.
  • the instantaneous reports delivered by the system 40 are stored as they occur in the database 22.
  • the overall supervision system 20 includes a prediction system 30 and a route planning system 50.
  • the route planning system 50 includes a module 52 for calculating an initial graph, a module 54 for updating the initial graph to obtain an instantaneous graph, and a module 56 for determining real-time routes.
  • the module 56 for real-time route determination comprises an interface allowing a user 5 to interact with the system 50 by means for example of a computer terminal, connected to a communication network, such as the Internet.
  • the user 5 is thus able to transmit to the module 56 an interrogation request, indicating the value of a plurality of parameters, in particular his origin station, his destination station and his preferences (journey time, number of connections , etc.), and to receive from the module 56 a response indicating an optimal recommended route at the time of interrogation.
  • the module 52 is interfaced to the database 22 and to the operational data management system 40 so as to calculate, from the topology of the multimodal network and the current and past states of traffic on this network, an initial graph representative of the traffic conditions on the multimodal network in accordance with nominal operation.
  • the module 54 is interfaced to the operational data management system 40 and to the prediction system 30.
  • the module 54 is able to generate an instantaneous graph resulting from the update of the initial graph from the current operational situation, as measured. by system 40, or the upcoming operational situation, as anticipated by system 30.
  • the module 56 is based on the instantaneous graph delivered at the output of the module 54 to determine the optimal route to recommend to the user 5.
  • FIG. 2 represents a portion of a multimodal network 2 equipped with the infrastructure 10 of FIG. 1.
  • first line L1 composed of an outbound channel L1 1 and a return channel L12 running in parallel with each other.
  • the S1 and S2 stations have platforms that allow the exchange of passengers when a vehicle is stopped alongside their platform.
  • the station S1 comprises a platform P1 along the outbound path L1 1 and a platform P5 along the return path L12.
  • the station S2 comprises a platform P2 along the outward path L1 1 and a platform P6 along the return path L12.
  • a second line L2 composed of an outbound track L21 and a return track L22 running in parallel with each other.
  • the S2 station has platforms that allow the exchange of passengers.
  • the station S2 comprises a platform P4 along the outward path L21 and a platform P3 along the return path L22.
  • Station S2 is a connecting station between lines L1 and L2. It allows a user arriving at station S2 via the first line L1, to leave on the second line L2, and conversely to arrive on the second line L2 and to leave from station S2 on the first line L1.
  • a first vehicle V1 is traveling on the outbound lane L1 1 of the first line L1
  • a second vehicle V2 is traveling on the outbound lane L1 1, behind the first vehicle V1
  • a third vehicle V3 is traveling on the return lane L22 of the second line L2.
  • the system 50 allows a user 5, whose initial route provided for a correspondence at station S2 between the second vehicle V2 and the third vehicle V3, to be rerouted in real time on another route to take account of the current state. traffic, in this case a delay of the second vehicle V2.
  • the system 50 uses a graph which is a specific representation of the state of traffic on the multimodal network 2.
  • FIG. 3 represents an initial graph.
  • This graph is generated by the module 52 from a description of the multimodal network, traffic planning information for nominal operation of the network and historical information of the state of the traffic when such nominal operation was planned.
  • the system 40 communicates timetables for the circulation of vehicles on the various lines of the multimodal network for nominal operation of each line.
  • nominal is understood to mean operation of the network without incident and in particular during which the theoretical arrival and departure times at the station of the vehicles circulating on the network are respected.
  • the initial graph is limited, for station S1, to platform P1 and, for station S2, to platforms P2 and P3. These platforms are considered to be “physical” nodes.
  • the two oriented links connecting platforms P2 and P3 indicate the possibility of a passenger exchange between these two platforms at station S2, one indicating the movement of passengers from platform P2 to platform P3, the other, movement passengers from platform P3 to platform P2.
  • Each of these links is associated with at least one travel time attribute, for example worth 3 minutes, indicating the time required for a passenger to pass from one platform to the other using the C23 corridor.
  • the initial graph also includes pairs of “event” nodes. They are represented by a circle in Figure 3, arranged along a time axis, each time axis being associated with a platform.
  • a pair of “event” nodes comprises a node A, corresponding to the “arrival” event of a vehicle along the associated platform and, a node D, corresponding to the “departure” event of this same vehicle from this same vehicle. same platform.
  • a link oriented from node A to node D of the same pair of "event" nodes is indicative of a stop of the vehicle along the associated platform.
  • This link is characterized by an attribute of downtime in station.
  • the pair of nodes A1 and D1 represents the arrival and departure of the first vehicle V1 along the platform P1.
  • the nominal stopping time of the vehicle V1 at station S1 is 1:30 minutes.
  • the pair of nodes A2 and D2 represents the arrival and departure of the second vehicle V2 along the platform P1.
  • the nominal stopping time of the V2 vehicle at the S1 station is 1:30 minutes.
  • the pair of nodes A3 and D3 represents the arrival and departure of the first vehicle V1 along the platform P2.
  • the nominal stopping time of vehicle V1 at station S2 is 1: 00 minute.
  • the pair of nodes A5 and D5 represents the arrival and departure of the second vehicle V2 along the platform P2.
  • the nominal stopping time of vehicle V2 at station S2 is 1: 00 minute.
  • the pair of nodes A4 and D4 represents the arrival and departure of the third vehicle V3 along the platform P3.
  • the nominal stopping time of the V3 vehicle at station S2 is 1:30 minutes.
  • a oriented link connects, for the same vehicle, a starting node D associated with a platform and an arrival node A associated with the next platform along the same line according to the direction of travel of the vehicle.
  • a link connects the starting node D1, associated with the platform P1, to the arrival node A3, associated with the platform P2. It corresponds to the movement of the first vehicle V1 from platform P1 to platform P2 in accordance with the time table.
  • a link connects the starting node D2 associated with the platform P1 with the arrival node A5 associated with the platform P2. It corresponds to the circulation of the second vehicle V2 from the platform P1 to the platform P2.
  • Such a link is characterized by attributes of travel time between stations, maximum authorized load on board the vehicle in question, and average vehicle load (obtained by using historical traffic data).
  • An arrival node A is connected to the associated platform P to indicate the possible transfer of passengers from the vehicle to the platform.
  • Each link is associated with an attribute of the average number of passengers exiting the vehicle (obtained by using historical traffic data).
  • each departure node D is connected to the associated platform to indicate the possible transfer of passengers from the platform to the vehicle stopped along this platform.
  • Each link is associated with at least one attribute of the average number of passengers boarding the vehicle (obtained by using historical traffic data).
  • FIG. 4 an instantaneous graph resulting from the update of the initial graph of FIG. 3 is represented.
  • the instantaneous graph is similar to the initial graph of figure 3. However, the starting node D2 has been moved along the time axis of the platform P1 to take into account a prolonged stop of the second vehicle V2 at the first station. S1. In fact, the stopping time indicated between the arrival and departure nodes, A2 and D2, is now in this example, estimated at a duration of 7:00 minutes, taking into account the typology of the incident.
  • the pair of nodes, A5, D5, associated with the next platform P2 is also shifted in time to anticipate the fact that the second vehicle V2 is not not expected at station S2 before 8:17:00, the estimated travel time between platform P1 and platform P2 being here maintained at 6:30 min. For this trip, the estimated loads are reassessed.
  • the arrival node A5 is now placed temporally after the departure node D4, indicating that the second vehicle V2 will likely arrive at station S2 after the third vehicle V3 has left.
  • the module for determining a route 56 uses the instantaneous graph to check whether the initial route is still achievable given the event that disrupted the traffic, in this case the stopping of the second vehicle V2 at the station. S1 or whether user 5 should be rerouted to optimize his route or the portion of the route that remains to be done.
  • the route planning system 50 will now be presented in more detail in its structure.
  • the module 52 is able to communicate with the system 40. It transmits a request to the system 40, which responds by returning scheduling information such as the various time tables.
  • the time tables for each line of the multimodal network indicate the various vehicles in circulation during the day and, for each vehicle, the times of arrival and departure of each station on the line.
  • the module 52 also receives from the database 22 a history of the traffic state for nominal operation of the network.
  • the database 22 stores historical data of traffic on the network and, in particular, a history of the load of platforms and vehicles for different operating contexts.
  • operating context we mean a set of context variables describing the nominal operation envisaged for traffic on the network and used to initialize the graph. This is for example a type of day (weekdays or weekends), a time slot (rush hour, off-peak hour) or specific circumstances foreseen during the operating day (sporting event at the level of such or such station for example).
  • the estimated load of the number of passengers can be weighted or recalculated as a function of the context variables.
  • This historical information is loaded by the module 52 and used to instantiate the initial graph associated with the multimodal network, such as that of FIG. 3.
  • the system 40 collects instantaneous traffic measurement data from various sources (on-board computers on board vehicles, sensors on the ground, vehicle traffic supervision system along each line. network, etc.) The module 40 performs an analysis of these measurements and merges them to obtain high level data indicative of the instantaneous state of the traffic.
  • sources on-board computers on board vehicles, sensors on the ground, vehicle traffic supervision system along each line. network, etc.
  • the estimated times of arrival at the next station is for example obtained from a supervision system.
  • the module 54 subscribes to a data broadcasting service of the system 40 so as to periodically receive the snapshot of the traffic.
  • the function of the prediction system 30 is to deliver predictive data on the evolution of traffic, in particular an estimate of the load at each platform of the multimodal network, and an estimate of the journey times of the vehicles.
  • the prediction system 30 is advantageously executed when certain critical events appear on the multimodal network, such as for example the occurrence of an incident or the detection of an overload of passengers at a point of the network.
  • the module 54 subscribes to a data broadcasting service from the prediction module 30.
  • the taking into account by the module 54 of these estimated data makes it possible to take into account the probable evolution of the state of the network in the near future and not only of its current state.
  • the module 54 updates the graph initialized by the module 52 according to the deviations observed with the nominal planned operation.
  • module 54 uses more particularly the following information: cancellation or modification of the mission of a vehicle;
  • the detection of congestion points on the network such as for example the observation or the estimation of a passenger load on a platform which deviates beyond a predetermined critical threshold, for example determined from the history stored in database 22.
  • Each user 5 subscribed to the rerouting service offered by the system 50 indicates in an interrogation request from the system 50 interrogation parameters such as its origin station, its destination station, certain preferences relating to the route (timetable , duration, preferred mode of public transport, etc.).
  • this request can be developed automatically or semi-automatically from information related to a profile of the user and / or his past requests.
  • system 50 provides user 5 with an optimal route.
  • This itinerary can be transmitted automatically and periodically to the user during his trip.
  • This optimal route may constitute a variant of the route initially proposed so as to take account of events that have arisen in the operation of the network.
  • the optimal route is provided to user 5 only when the latter applies his request to system 50.
  • the module 56 is based on the instantaneous graph and not on the initial graph to make a recommendation adapted to a request to be processed.
  • the module 56 implements an algorithm for finding the shortest path along the instantaneous graph. This shortest path takes into account the weights on the connection links of the nodes. The weight of a link is calculated based on all the attributes of that link or a part of these attributes.
  • the module 56 is based on a statistical approach allowing a robust optimization of a route. According to this approach, the parameters of interest in the optimization of the route are random variables presenting a certain probability distribution and the route finally proposed to the user is the most probable route.
  • the module 56 is also based on a particular graph making it possible to simply describe the multimodal network and the traffic on the network. It thus represents certain static aspects of the network, such as the different lines and the possibility of switching from one line to another. This graph represents certain dynamic aspects of the multimodal network, such as the available capacity of the different vehicles of the different modes of transport.
  • system 50 just described allows the implementation of a route planning method, in particular to provide a functionality for real-time rerouting of users of a multimodal network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Automation & Control Theory (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Quality & Reliability (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Social Psychology (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Ce système (50) de planification d'itinéraires pour des usagers (5) d'un réseau multimodal de transports structurés recommande à un usager un itinéraire optimal pour effectuer un trajet sur le réseau multimodal entre une station de départ et une station d'arrivée. Le système met à jour, en temps réel, un graphe instantané représentatif du réseau multimodal et d'une exploitation courante du réseau multimodal à partir d'informations de description d'un état courant du trafic à l'instant courant et d'informations de prédiction de l'évolution de l'état du trafic à partir de l'instant courant, le graphe étant initialisé à partir d'informations de planification associées à une exploitation nominale du réseau multimodal, le système de planification comportant un module (56) de détermination d'un itinéraire optimal propre à utiliser le graphe instantané pour fournir un itinéraire optimal adapté à l'exploitation courante du réseau multimodal sur requête d'un usager.

Description

TITRE : Système amélioré de planification d’itinéraires pour des usagers d’un réseau multimodal de transports structurés
L’invention a pour domaine celui des systèmes de planification d’itinéraires pour des usagers d’un réseau multimodal de transports structurés, en particulier de transports en commun.
On connaît des services en ligne qui permettent à un usager de planifier à l’avance son trajet entre une station de départ et une station d’arrivée, notamment en sélectionnant les horaires des différents transports en commun lui permettant d’effectuer une correspondance dans une station intermédiaire avec le moins de temps d’attente possible.
Cependant, si de tels services permettent de recommander un itinéraire optimisé pour une exploitation nominale du réseau, ils ne permettent pas, ou de façon très limitée, de tenir compte d’évènements inattendus qui perturbent l’exploitation nominale et risquent d’invalider l’itinéraire optimal recommandé.
Le but de l’invention est donc de résoudre ce problème, en proposant notamment une solution de reroutage en cas de perturbation du trafic.
Pour cela l’invention a pour objet un système de planification d’itinéraires pour des usagers d’un réseau multimodal de transports structurés propre à recommander à un usager un itinéraire optimal pour effectuer un trajet sur ledit réseau multimodal entre une station de départ et une station d’arrivée, caractérisé en ce qu’il est propre à mettre à jour, en temps réel, un graphe instantané représentatif du réseau multimodal et d’une exploitation courante du réseau multimodal à partir d’informations de description d’un état courant du trafic à l’instant courant et d’informations de prédiction de l’évolution de l’état du trafic à partir de l’instant courant, le graphe étant initialisé à partir d’informations de planification associées à une exploitation nominale du réseau multimodal, le système de planification comportant un module de détermination d’un itinéraire optimal propre à utiliser le graphe instantané pour fournir un itinéraire optimal adapté à l’exploitation courante du réseau multimodal sur requête d’un usager.
Suivant des modes particuliers de réalisation, le système comporte une ou plusieurs des caractéristiques suivantes prises isolement et suivant toutes les combinaisons techniquement possibles :
- le système comporte en outre un module d’initialisation d’un graphe propre à générer un graphe initial à partir d’une description du réseau multimodal, de tables horaires décrivant une exploitation nominale du réseau et d’un historique des états passés du trafic sur le réseau multimodal lorsqu’une exploitation nominale était prévue.
- les états passés pris en compte par le module d’initialisation d’un graphe sont sélectionnés en fonction d’une pluralité de variables de contexte.
- Le système comporte en outre un module de mise à jour d’un graphe propre à mettre à jour le graphe initial en fonction des informations de description de l’état du trafic et des informations de prédiction de l’évolution de l’état du trafic, pour obtenir le graphe instantané.
L’invention a également pour objet un système de supervsion globale, caractéisé en ce qu’il intégrer intègre un système de planification d’itinéraires conforme au système précédent, le module d’initialisation d’un graphe étant interfacé d’une part à une base de données d’historique et à un système de gestion des données opérationnelles et le module de mise à jour d’un graphe étant interfacé avec le système de gestion des données opérationnelles et un système de prédiction.
L’invention a également pour objet un procédé de planification d’itinéraires pour des usagers d’un réseau multimodal de transports structurés permettant de recommander à un usager un itinéraire optimal pour effectuer un trajet sur ledit réseau multimodal entre une station de départ et une station d’arrivée, caractérisé en ce que le procédé consiste en une étape de mise à jour, en temps réel, d’un graphe instantané représentatif du réseau multimodal et d’une exploitation courante du réseau multimodal à partir d’informations de description d’un état courant du trafic à un instant courant et d’informations de prédiction de l’évolution de l’état du trafic à partir de l’instant courant, le graphe instantané étant déterminé en fonction d’un graphe initial initialisé à partir d’informations de planification associées à une exploitation nominale du réseau multimodal, et en une étape de détermination d’un itinéraire optimal pour fournir, sur requête de l’usager, un itinéraire optimal adapté à l’exploitation courante du réseau multimodal à partir du graphe instantané délivré en sortie de l’étape de mise à jour.
Suivant des modes particuliers de réalisation, le procédé comporte une ou plusieurs des caractéristiques suivantes prises isolement et suivant toutes les combinaisons techniquement possibles :
- une étape d’initialisation d’un graphe propre à générer le graphe initial à partir d’une description du réseau multimodal, de tables horaires décrivant une exploitation nominale du réseau et d’un historique des états passés du trafic sur le réseau multimodal lorsqu’une exploitation nominale était prévue.
- les états passés pris en compte au cours de l’étape d’initialisation d’un graphe sont sélectionnés en fonction d’une pluralité de variables de contexte. - l’étape de mise à jour consiste, pour obtenir le graphe instantané, à mettre à jour le graphe initial en fonction des informations de description de l’état courant du trafic et des informations de prédiction de l’évolution de l’état du trafic.
- l’étape d’initialisation d’un graphe prend en entrée des informations provenant d’une base de données d’historique et d’un système de gestion des données opérationnelles, et l’étape de mise à jour d’un graphe prend en entrée des informations provenant du système de gestion des données opérationnelles et d’un système de prédiction.
L’invention a également pour objet un système de supervision globale, caractérisé en ce qu’il intègre un système de planification d’itinéraires conforme au système précédent, le module d’initialisation d’un graphe étant interfacé d’une part à une base de données d’historique et à un système de gestion des données opérationnelles et le module de mise à jour d’un graphe étant interfacé avec le système de gestion des données opérationnelles et un système de prédiction.
L’invention et ses avantages seront mieux compris à la lecture de la description détaillée qui va suivre d’un mode de réalisation particulier, donné uniquement à titre d’exemple non limitatif, cette description étant faite en se référant aux dessins annexés sur lesquels :
La figure 1 est une représentation schématique, sous forme de blocs, d’un système de supervision globale comportant un système de planification d’itinéraires selon l’invention ;
La figure 2 est une représentation schématique d’une portion d’un réseau multimodal de transports en commun, au voisinage d’une station de correspondance entre deux lignes desservies par des moyens de transport en commun, avantageusement de types différents ;
La figure 3 est un graphe initial calculé hors ligne par le système de planification d’itinéraires de la figure 1 pour la portion du réseau représentée à la figure 2 ; et,
La figure 4 est un graphe instantané mis à jour dynamiquement par le système de planification d’itinéraires de la figure 1 à partir du graphe initial de la figure 3.
Le système de planification d’itinéraires selon l’invention fait avantageusement partie d’un système de supervision globale d’une infrastructure de supervision d’un réseau de transport multimodal terrestre tel que décrit dans la demande de brevet FR 3 047 835.
Comme représenté à la figure 1 , l’infrastructure de supervision 10 comporte un système de supervision globale 20 interfacé avec une base de données 22 et un système de gestion de données opérationnelles 40. La base de données 22 stocke un historique de l’état du trafic sur le réseau multimodal.
Le système de gestion de données opérationnelles 40 est propre à déterminer un état instantané du trafic sur le réseau multimodal.
L’état instantané du trafic est par exemple caractérisé par une pluralité de variables, notamment des variables associées à un niveau de charge (en termes de nombre de passagers) des entités du réseau que sont les véhicules et les plateformes.
Avantageusement, les états instantanés délivrés par le système 40 sont stockés au fur et à mesure dans la base de données 22.
Le système de supervision globale 20 comporte un système de prédiction 30 et un système de planification d’itinéraires 50.
Le système de planification d’itinéraires 50 comporte un module 52 de calcul d’un graphe initial, un module 54 de mise à jour du graphe initial pour obtenir un graphe instantané, et un module 56 de détermination en temps réel d’itinéraires.
Le module 56 de détermination en temps réel d’itinéraires comporte une interface permettant à un usager 5 d’interagir avec le système 50 au moyen par exemple d’un terminal informatique, connecté à un réseau de communication, tel que l’Internet. L’usager 5 est ainsi capable de transmettre au module 56 une requête d’interrogation, indiquant la valeur d’une pluralité de paramètres, notamment sa station d’origine, sa station de destination et ses préférences (temps de trajet, nombre de correspondances, etc.), et de recevoir du module 56 une réponse indiquant un itinéraire optimal recommandé à l’instant d’interrogation.
Le module 52 est interfacé à la base de données 22 et au système de gestion des données opérationnelles 40 de manière à calculer, à partir de la topologie du réseau multimodal et des états courants et passés du trafic sur ce réseau, un graphe initial représentatif de l’état du trafic sur le réseau multimodal conformément à une exploitation nominale.
Le module 54 est interfacé au système de gestion des données opérationnelles 40 et au système de prédiction 30. Le module 54 est propre à générer un graphe instantané résultant de la mise à jour du graphe initial à partir de la situation opérationnelle courante, telle que mesurée par le système 40, ou de la situation opérationnelle à venir, telle qu’anticipée par le système 30.
Le module 56 s’appuie sur le graphe instantané délivré en sortie du module 54 pour déterminer l’itinéraire optimal à recommander à l’usager 5.
Un exemple du fonctionnement général du système selon l’invention va maintenant être présenté en référence aux figures 2, 3 et 4. La figure 2 représente une portion d’un réseau multimodal 2 équipé de l’infrastructure 10 de la figure 1.
Sur cette figure, est représentée une première ligne L1 composée d’une voie aller L1 1 et d’une voie retour L12 circulant en parallèle l’une de l’autre.
Les véhicules circulant le long de la ligne L1 marquent l’arrêt aux stations SO, S1 , S2 et S3. Les stations S1 et S2 comportent des plateformes qui permettent l’échange de passagers lorsqu’un véhicule est arrêté le long de leur quai. Ainsi, la station S1 comporte une plateforme P1 le long de la voie aller L1 1 et une plateforme P5 le long de la voie retour L12. Ainsi la station S2 comporte une plateforme P2 le long de la voie aller L1 1 et une plateforme P6 le long de la voie retour L12.
Est également représentée une seconde ligne L2 composée d’une voie aller L21 et d’une voie retour L22 circulant en parallèle l’une de l’autre.
Les véhicules circulant le long de la ligne L2 marquent l’arrêt aux stations S4, S2 et S6. La station S2 comporte des plateformes qui permettent l’échange de passagers. Ainsi la station S2 comporte une plateforme P4 le long de la voie aller L21 et une plateforme P3 le long de la voie retour L22.
La station S2 est une station de correspondance entre les lignes L1 et L2. Elle permet à un usager arrivant à la station S2 par la première ligne L1 , d’en repartir sur la seconde ligne L2, et inversement d’arriver sur la seconde ligne L2 et de repartir de la station S2 sur la première ligne L1.
Par exemple, l’échange de passagers est possible entre les plateformes P2 et P3, les passagers empruntant un corridor C23.
Sur la figure 2, un premier véhicule V1 circule sur la voie aller L1 1 de la première ligne L1 , un second véhicule V2 circule sur la voie aller L1 1 , derrière le premier véhicule V1 , et un troisième véhicule V3 circule sur la voie retour L22 de la seconde ligne L2.
Le système 50 permet à un usager 5, dont un itinéraire initial prévoyait une correspondance à la station S2 entre le second véhicule V2 et le troisième véhicule V3, d’être rerouté en temps réel sur un autre itinéraire pour tenir compte de l’état courant du trafic, en l’occurrence un retard du second véhicule V2.
Pour ce faire le système 50 utilise un graphe qui est une représentation spécifique de l’état du trafic sur le réseau multimodal 2.
La figure 3 représente un graphe initial. Ce graphe est généré par le module 52 à partir d’une description du réseau multimodal, d’informations de planification du trafic pour une exploitation nominale du réseau et d’informations d’historique de l’état du trafic lorsqu’une telle exploitation nominale était prévue. En particulier, le système 40 communique des tables horaires de circulation des véhicules sur les différentes lignes du réseau multimodal pour une exploitation nominale de chacune des lignes. Par nominale on entend une exploitation du réseau sans incident et notamment au cours de laquelle des horaires théoriques d’arrivée et de départ en station des véhicules circulant sur le réseau sont respectés.
Sur la figure 3, le graphe initial est limité, pour la station S1 , à la plateforme P1 et, pour la station S2, aux plateformes P2 et P3. Ces plateformes sont considérées comme des noeuds « physiques ».
Les deux liens orientés connectant les plateformes P2 et P3 indiquent la possibilité d’un échange passagers entre ces deux plateformes à la station S2, l’un indiquant le déplacement des passagers de la plateforme P2 vers la plateforme P3, l’autre, le déplacement des passagers de la plateforme P3 vers la plateforme P2.
Chacun de ces liens est associé à au moins un attribut de temps de parcours, valant par exemple 3 mn, indiquant le temps nécessaire à un passager pour passer de l’une à l’autre des plateformes en utilisant le corridor C23.
Le graphe initial comporte également des paires de noeuds « évènements ». Ils sont représentés par un cercle sur la figure 3, disposé le long d’un axe temporel, chaque axe temporel étant associé à une plateforme.
Une paire de noeuds « évènements » comporte un nœud A, correspondant à l’évènement « arrivée » d’un véhicule le long de la plateforme associée et, un nœud D, correspondant à l’évènement « départ » de ce même véhicule de cette même plateforme.
Un lien orienté du nœud A vers le nœud D d’une même paire de nœuds « évènements » est indicatif d’un arrêt du véhicule le long de la plateforme associée. Ce lien est caractérisé par un attribut de temps d’arrêt en station.
Ainsi, la paire de nœuds A1 et D1 représente l’arrivée et le départ du premier véhicule V1 le long de la plateforme P1 . Le temps d’arrêt nominal du véhicule V1 à la station S1 est de 1 :30 minute.
Ainsi, la paire de nœuds A2 et D2 représente l’arrivée et le départ du second véhicule V2 le long de la plateforme P1 . Le temps d’arrêt nominal du véhicule V2 à la station S1 est de 1 :30 minute.
Ainsi, la paire de nœuds A3 et D3 représente l’arrivée et le départ du premier véhicule V1 le long de la plateforme P2. Le temps d’arrêt nominal du véhicule V1 à la station S2 est de 1 :00 minute.
Ainsi, la paire de nœuds A5 et D5 représente l’arrivée et le départ du second véhicule V2 le long de la plateforme P2. Le temps d’arrêt nominal du véhicule V2 à la station S2 est de 1 :00 minute. Ainsi, la paire de nœuds A4 et D4 représente l’arrivée et le départ du troisième véhicule V3 le long de la plateforme P3. Le temps d’arrêt nominal du véhicule V3 à la station S2 est de 1 :30 minute.
Un lien orienté connecte, pour un même véhicule, un nœud de départ D associé à une plateforme et un nœud d’arrivée A associé à la plateforme suivante le long de la même ligne selon la direction de déplacement du véhicule.
Ainsi, un lien connecte le nœud de départ D1 , associé à la plateforme P1 , au nœud d’arrivée A3, associé à la plateforme P2. Il correspond à la circulation du premier véhicule V1 de la plateforme P1 à la plateforme P2 conformément à la table horaire.
De la même manière, un lien connecte le nœud de départ D2 associé à la plateforme P1 avec le nœud d’arrivée A5 associé à la plateforme P2. Il correspond à la circulation du second véhicule V2 de la plateforme P1 à la plateforme P2.
Un tel lien est caractérisé par des attributs de temps de parcours entre stations, de charge maximale autorisée à bord du véhicule considéré, et de charge moyenne du véhicule (obtenue par exploitation des données d’historique du trafic).
Un nœud d’arrivée A est connecté à la plateforme P associée pour indiquer le transfert possible de passagers depuis le véhicule vers la plateforme. Chaque lien est associé à un attribut de nombre moyen de passagers descendant du véhicule (obtenu par exploitation des données d’historique du trafic).
De manière réciproque, chaque nœud de départ D est connecté à la plateforme associée pour indiquer le transfert possible de passagers depuis la plateforme vers le véhicule arrêté le long de cette plateforme. Chaque lien est associé avec au moins un attribut de nombre moyen de passagers montant à bord du véhicule (obtenu par exploitation des données d’historique du trafic).
A la figure 4, est représenté un graphe instantané résultant de la mise à jour du graphe initial de la figure 3.
Le graphe instantané est similaire au graphe initial de la figure 3. Cependant, le nœud de départ D2 a été déplacé le long de l’axe temporel de la plateforme P1 pour tenir compte d’un arrêt prolongé du second véhicule V2 à la première station S1. En effet, le temps d’arrêt indiqué entre les nœuds d’arrivée et de départ, A2 et D2, est maintenant dans cet exemple, estimé à une durée de 7:00 mn, compte tenu de la typologie de l’incident.
Ainsi, l’instant de départ D2 du second véhicule V2 de la plateforme P1 est retardé.
En conséquence, la paire de nœuds, A5, D5, associée à la plateforme suivante P2 est également décalée dans le temps pour anticiper le fait que le second véhicule V2 n’est pas attendu à la station S2 avant 8:17:00, le temps de parcours estimé entre la plateforme P1 et la plateforme P2 étant ici maintenu à 6:30 mn. Pour ce trajet, les charges estimées sont réévaluées.
Il est à noter que le nœud d’arrivée A5 est maintenant placé temporellement après le nœud de départ D4, indiquant que le second véhicule V2 arrivera vraisemblablement à la station S2 après que le troisième véhicule V3 soit parti.
Ainsi, un usager 5 dont l’itinéraire initial, élaboré à partir du graphe initial de la figure 3, prévoyait une connexion à la station intermédiaire S2 en passant du second véhicule V2 au troisième véhicule V3, est maintenant caduc. Un nouvel itinéraire doit être élaboré à partir du graphe instantané de la figure 4 et proposé à l’usager 5.
Pour cela, le module de détermination d’un itinéraire 56 utilise le graphe instantané pour vérifier si l’itinéraire initial est encore réalisable compte tenu de l’évènement ayant perturbé le trafic en l’occurrence l’arrêt du second véhicule V2 à la station S1 ou s’il convient de rerouter l’usager 5 pour optimiser son trajet ou la portion du trajet qu’il lui reste à effectuer.
Le système de planification d’itinéraires 50 va maintenant être présenté plus en détail dans sa structure.
Le module 52 est propre à communiquer avec le système 40. Il transmet une requête au système 40, lequel répond en renvoyant des informations de planification comme les différentes tables horaires. Les tables horaires de chaque ligne du réseau multimodal indiquent les différents véhicules en circulation au cours de la journée et, pour chaque véhicule, les instants d’arrivée et de départ de chaque station de la ligne.
Le module 52 reçoit également de la base de données 22 un historique de l’état du trafic pour une exploitation nominale du réseau. La base de données 22 stocke des données d’historique du trafic sur le réseau et, en particulier, un historique de la charge des plateformes et des véhicules pour différents contextes d’exploitation.
Par contexte d’exploitation, on entend un ensemble de variables de contexte décrivant l’exploitation nominale envisagée pour le trafic sur le réseau et utilisées pour initialiser le graphe. Il s’agit par exemple d’un type de journée (en semaine ou en weekend), un créneau horaire (heure de pointe, heure creuse) ou des circonstances spécifiques prévues au cours de la journée d’exploitation (évènement sportif au niveau de telle ou telle station par exemple). En particulier, la charge estimée du nombre de passagers peut être pondérée ou recalculée en fonction des variables de contexte.
Ces informations d’historique sont chargées par le module 52 et utilisées pour instancier le graphe initial associé au réseau multimodal, tel que celui de la figure 3. Au cours de l’exploitation du réseau, le système 40 collecte des données instantanées de mesure du trafic à partir de différentes sources (calculateurs embarqués à bord des véhicules, capteurs au sol, système de supervision de la circulation des véhicules le long de chaque ligne du réseau, etc.) Le module 40 effectue une analyse de ces mesures et les fusionne pour obtenir des données de haut niveau indicatives de l’état instantané du trafic. Ces données comportent par exemple :
Une mesure de la charge instantanée sur les plateformes et des véhicules en circulation ;
Les missions courantes des véhicules en circulation, ces missions prenant en compte d’éventuelles modifications par rapport à une mission nominale (par exemple, ne plus desservir une station) ;
Les instants d’arrivée estimés à la prochaine station. Cette estimation étant par exemple obtenue d’un système de supervision.
Le module 54 s’abonne à un service de diffusion de données du système 40 de manière à recevoir périodiquement l’état instantané du trafic.
Le système de prédiction 30 a pour fonction de délivrer des données prédictives sur l’évolution du trafic, notamment une estimation de la charge au niveau de chaque plateforme du réseau multimodal, et une estimation des temps de trajet des véhicules.
Le système de prédiction 30 est avantageusement exécuté lorsque certains événements critiques apparaissent sur le réseau multimodal, tel que par exemple la survenue d’un incident ou la détection d’une surcharge de passagers en un point du réseau.
Le module 54 s’abonne à un service de diffusion des données du module de prédiction 30.
La prise en compte par le module 54 de ces données estimées permet de tenir compte de l’évolution probable de l’état du réseau dans un futur proche et non pas seulement de son état courant.
La prise en compte de cette évolution probable permet de conférer une plus grande robustesse à la recommandation qui sera faite à l’usager. Cela sous-entend que le système 50 est propre à prendre en compte des intervalles d’erreur autour des paramètres qu’il prend en compte pour générer les graphes et déterminer l’itinéraire optimal.
Le module 54, au cours de l’exploitation du réseau multimodal, met à jour le graphe initialisé par le module 52 en fonction des écarts constatés avec l’exploitation nominale planifiée.
Pour cela, le module 54 utilise plus particulièrement les informations suivantes: annulation ou de modification de la mission d’un véhicule;
- Temps d’arrivée estimé d’un véhicule le long d’une plateforme particulière, avantageusement lorsque ce temps d’arrivée estimé est supérieur au temps d’arrivée planifié d’un écart prédéterminé;
Les temps de départ effectifs d’un véhicule d’une plateforme, avantageusement lorsque ce temps de départ effectif s’écarte du temps de départ planifié d’un écart supérieur à un écart prédéterminé;
La détection de points de congestion sur le réseau, tel que par exemple l’observation ou l’estimation d’une charge passager sur une plateforme qui dévie au-delà d’un seuil critique prédéterminé, par exemple déterminé à partir de l’historique stocké dans la base de données 22.
Chaque usager 5 abonné au service de reroutage offert par le système 50 indique dans une requête d’interrogation du système 50 des paramètres d’interrogation tels que sa station d’origine, sa station de destination, certaines préférences relatives à l’itinéraire (horaire, durée, mode de transport en commun préféré, etc.). Eventuellement, cette requête peut être élaborée automatiquement ou semi automatiquement à partir d’informations liées à un profil de l’usager et/ou à ses requêtes passées.
En réponse, le système 50 fournit à l’usager 5 un itinéraire optimal. Cet itinéraire peut être transmis automatiquement et périodiquement à l’usager au cours de son déplacement. Cet itinéraire optimal peut constituer une variante du trajet initialement proposé de manière à tenir compte des évènements survenus dans l’exploitation du réseau.
En variante, l’itinéraire optimal est fourni à l’usager 5 uniquement lorsque ce dernier applique sa requête au système 50.
Le module 56 se fonde sur le graphe instantané et non pas sur le graphe initial pour faire une recommandation adaptée à une requête à traiter. Le module 56 met en oeuvre un algorithme de recherche du chemin le plus court le long du graphe instantané. Ce chemin le plus court tient compte des poids sur les liens de connexion des noeuds. Le poids d’un lien est calculé en fonction de tous les attributs de ce lien ou une partie de ces attributs.
L’homme du métier constatera que le module 56 est fondé sur une approche statistique permettant une optimisation robuste d’un itinéraire. Selon cette approche, les paramètres d’intérêt dans l’optimisation de l’itinéraire sont des variables aléatoires présentant une certaine distribution de probabilité et l’itinéraire finalement proposé à l’usager est l’itinéraire le plus probable. Le module 56 est également fondé sur un graphe particulier permettant de décrire simplement le réseau multimodal et le trafic sur le réseau. Il représente ainsi certains aspects statiques du réseau, comme les différentes lignes et la possibilité de commuter d’une ligne à l’autre. Ce graphe représente certains aspects dynamiques du réseau multimodal, comme la capacité disponible des différents véhicules des différents modes de transport.
L’homme du métier comprendra que le système 50 venant d’être décrit permet la mise en oeuvre d’un procédé de planification d’itinéraires, en particulier d’offrir une fonctionnalité de reroutage en temps réel des usagers d’un réseau multimodal.

Claims

REVENDICATIONS
1. Système (50) de planification d’itinéraires pour des usagers (5) d’un réseau multimodal de transports structurés propre à recommander à un usager un itinéraire optimal pour effectuer un trajet sur ledit réseau multimodal entre une station de départ et une station d’arrivée, caractérisé en ce qu’il est propre à mettre à jour, en temps réel, un graphe instantané représentatif du réseau multimodal et d’une exploitation courante du réseau multimodal à partir d’informations de description d’un état courant du trafic à un instant courant et d’informations de prédiction de l’évolution de l’état du trafic à partir de l’instant courant, le graphe instantané étant déterminé en fonction d’un graphe initial initialisé à partir d’informations de planification associées à une exploitation nominale du réseau multimodal, le système de planification comportant un module (56) de détermination d’un itinéraire optimal propre à utiliser le graphe instantané pour fournir un itinéraire optimal adapté à l’exploitation courante du réseau multimodal sur requête de l’usager.
2. Système selon la revendication 1 , comportant en outre un module d’initialisation d’un graphe (52) propre à générer le graphe initial à partir d’une description du réseau multimodal, de tables horaires décrivant une exploitation nominale du réseau et d’un historique des états passés du trafic sur le réseau multimodal lorsqu’une exploitation nominale était prévue.
3. Système selon la revendication 2, dans lequel les états passés pris en compte par le module d’initialisation d’un graphe (52) sont sélectionnés en fonction d’une pluralité de variables de contexte.
4. Système selon la revendication 2 ou la revendication 3, comportant en outre un module de mise à jour d’un graphe (54) propre à mettre à jour le graphe initial en fonction des informations de description de l’état courant du trafic et des informations de prédiction de l’évolution de l’état du trafic, pour obtenir le graphe instantané.
5. Système de supervision globale (20), caractérisé en ce qu’il intègre un système (50) de planification d’itinéraires selon la revendication 4, le module d’initialisation d’un graphe (52) étant interfacé d’une part à une base de données (22) d’historique et à un système de gestion des données opérationnelles (40) et le module de mise à jour d’un graphe (54) étant interfacé avec le système de gestion des données opérationnelles (40) et un système de prédiction (30).
6. Procédé de planification d’itinéraires pour des usagers (5) d’un réseau multimodal de transports structurés permettant de recommander à un usager un itinéraire optimal pour effectuer un trajet sur ledit réseau multimodal entre une station de départ et une station d’arrivée, caractérisé en ce que le procédé consiste en une étape de mise à jour, en temps réel, d’un graphe instantané représentatif du réseau multimodal et d’une exploitation courante du réseau multimodal à partir d’informations de description d’un état courant du trafic à un instant courant et d’informations de prédiction de l’évolution de l’état du trafic à partir de l’instant courant, le graphe instantané étant déterminé en fonction d’un graphe initial initialisé à partir d’informations de planification associées à une exploitation nominale du réseau multimodal, et en une étape de détermination d’un itinéraire optimal pour fournir, sur requête de l’usager, un itinéraire optimal adapté à l’exploitation courante du réseau multimodal à partir du graphe instantané délivré en sortie de l’étape de mise à jour.
7. Procédé selon la revendication 6, comportant en outre une étape d’initialisation d’un graphe (52) propre à générer le graphe initial à partir d’une description du réseau multimodal, de tables horaires décrivant une exploitation nominale du réseau et d’un historique des états passés du trafic sur le réseau multimodal lorsqu’une exploitation nominale était prévue.
8. Procédé selon la revendication 7, dans lequel les états passés pris en compte au cours de l’étape d’initialisation d’un graphe (52) sont sélectionnés en fonction d’une pluralité de variables de contexte.
9. Procédé selon la revendication 7 ou la revendication 8, dans lequel l’étape de mise à jour consiste, pour obtenir le graphe instantané, à mettre à jour le graphe initial en fonction des informations de description de l’état courant du trafic et des informations de prédiction de l’évolution de l’état du trafic.
10. Procédé selon l’une quelconque des revendication 7 à 9, dans lequel l’étape d’initialisation d’un graphe (52) prend en entrée des informations provenant d’une base de données (22) d’historique et d’un système de gestion des données opérationnelles (40), et l’étape de mise à jour d’un graphe (54) prend en entrée des informations provenant du système de gestion des données opérationnelles (40) et d’un système de prédiction (30).
PCT/EP2020/071388 2019-07-29 2020-07-29 Système amélioré de planification d'itinéraires pour des usagers d'un réseau multimodal de transports structurés WO2021018958A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20761147.6A EP4004840A1 (fr) 2019-07-29 2020-07-29 Système amélioré de planification d'itinéraires pour des usagers d'un réseau multimodal de transports structurés
US17/631,105 US20220276062A1 (en) 2019-07-29 2020-07-29 Improved system for planning routes for users of a multimodal structured transport network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908619A FR3099620B1 (fr) 2019-07-29 2019-07-29 Système amélioré de planification d’itinéraires pour des usagers d’un réseau multimodal de transports structurés
FRFR1908619 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021018958A1 true WO2021018958A1 (fr) 2021-02-04

Family

ID=69024311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/071388 WO2021018958A1 (fr) 2019-07-29 2020-07-29 Système amélioré de planification d'itinéraires pour des usagers d'un réseau multimodal de transports structurés

Country Status (4)

Country Link
US (1) US20220276062A1 (fr)
EP (1) EP4004840A1 (fr)
FR (1) FR3099620B1 (fr)
WO (1) WO2021018958A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113269347A (zh) * 2021-03-31 2021-08-17 安徽农业大学 一种基于随机森林的高校快递网络节点流量预测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047835A1 (fr) 2016-02-12 2017-08-18 Alstom Transp Tech Infrastructure de supervision d'un reseau de transport multimodal terrestre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067406B2 (en) * 2017-12-20 2021-07-20 Trafi Limited Navigation method using historical navigation data to provide geographical- and user-optimised route suggestions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3047835A1 (fr) 2016-02-12 2017-08-18 Alstom Transp Tech Infrastructure de supervision d'un reseau de transport multimodal terrestre

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALESSIO CIONINI ET AL: "Engineering Graph-Based Models for Dynamic Timetable Information Systems", ACM, 1 January 2014 (2014-01-01), pages 46 - 61, XP055692885, DOI: 10.4230/OASIcs.ATMOS.2014.46 *
FIGUEIRAS PAULO ET AL: "Knowledge base approach for developing a mobile personalized travel companion", 2013 13TH INTERNATIONAL CONFERENCE ON ITS TELECOMMUNICATIONS (ITST), IEEE, 5 November 2013 (2013-11-05), pages 97 - 103, XP032532137, DOI: 10.1109/ITST.2013.6685528 *
GIANNAKOPOULOU KALLIOPI ET AL: "Multimodal Dynamic Journey Planning", 2018 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), IEEE, 25 June 2018 (2018-06-25), pages 1164 - 1170, XP033448631, DOI: 10.1109/ISCC.2018.8538625 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113269347A (zh) * 2021-03-31 2021-08-17 安徽农业大学 一种基于随机森林的高校快递网络节点流量预测方法
CN113269347B (zh) * 2021-03-31 2023-05-30 安徽农业大学 一种基于随机森林的高校快递网络节点流量预测方法

Also Published As

Publication number Publication date
FR3099620B1 (fr) 2024-02-02
US20220276062A1 (en) 2022-09-01
EP4004840A1 (fr) 2022-06-01
FR3099620A1 (fr) 2021-02-05

Similar Documents

Publication Publication Date Title
Caggiani et al. A modular soft computing based method for vehicles repositioning in bike-sharing systems
Caggiani et al. A dynamic simulation based model for optimal fleet repositioning in bike-sharing systems
US11204252B2 (en) Method and a computer system for providing a route or a route duration for a journey from a source location to a target location
US9103690B2 (en) Automatic travel time and routing determinations in a wireless network
US11067406B2 (en) Navigation method using historical navigation data to provide geographical- and user-optimised route suggestions
CA2937414A1 (fr) Procede et systeme de reequilibrage d'une installation d'utilisation partagee de vehicules, installation mettant en oeuvre un tel procede et/ou systeme
Lee et al. Zonal-based flexible bus service under elastic stochastic demand
CN112424569A (zh) 设置用于对自主驾驶进行路径规划的方法和设备
Kim et al. Effect of taxi information system on efficiency and quality of taxi services
Trozzi et al. Effects of countdown displays in public transport route choice under severe overcrowding
EP4004840A1 (fr) Système amélioré de planification d'itinéraires pour des usagers d'un réseau multimodal de transports structurés
CN115708343A (zh) 从一组载具收集数据的方法
EP1858214B1 (fr) Procédé de routage adaptif par déflexion avec apprentissage par renforcement
EP3957104A1 (fr) Procédé de prédiction d'une modification des conditions d'attachement d'un terminal à un réseau cellulaire
CN111582527A (zh) 行程时间的预估方法、装置、电子设备和存储介质
EP2260481B1 (fr) Systeme et procede d'information sur le trafic dans un reseau routier
Groß et al. Evaluation of alternative paths for reliable routing in city logistics
Pratelli et al. A mathematical programming model for the bus deviation route problem
WO2022258806A1 (fr) Procédé et système d'exécution à distance de services requis par un dispositif mobile via un réseau de communication cellulaire
Syed et al. User-assignment strategy considering future imbalance impacts for ride hailing
Sarma et al. On-Demand Ride-Pooling with Walking Legs: Decomposition Approach for Dynamic Matching and Virtual Stops Selection
WO2020039061A1 (fr) Procédé et système de prédiction quasi temps réel d'au moins un indicateur de fonctionnement d'un réseau de transport de passagers
FR3086493A1 (fr) Procede de reattribution d’un serveur peripherique de traitement de donnees
FR3093976A1 (fr) Procédé de routage adaptatif d’un véhicule dans un réseau routier
Kuppusamy et al. A Literature review on finding the K Shortest Path using Dynamic Route Guidance Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20761147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020761147

Country of ref document: EP

Effective date: 20220228