WO2021018320A1 - Machine and method for the simultaneous recovery of solvent, improved crude oil and dry asphaltene solid in a deasphalting process - Google Patents

Machine and method for the simultaneous recovery of solvent, improved crude oil and dry asphaltene solid in a deasphalting process Download PDF

Info

Publication number
WO2021018320A1
WO2021018320A1 PCT/CO2020/000007 CO2020000007W WO2021018320A1 WO 2021018320 A1 WO2021018320 A1 WO 2021018320A1 CO 2020000007 W CO2020000007 W CO 2020000007W WO 2021018320 A1 WO2021018320 A1 WO 2021018320A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
improved crude
container
dry
crude oil
Prior art date
Application number
PCT/CO2020/000007
Other languages
Spanish (es)
French (fr)
Inventor
Carlos Eduardo LIZCANO PIMIENTO
Lina Constanza NAVARRO QUINTERO
Jhon Ivan PEÑALOZA BUENO
Carlos Gregorio DALLOS ARENALES
Original Assignee
Ecopetrol S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A. filed Critical Ecopetrol S.A.
Publication of WO2021018320A1 publication Critical patent/WO2021018320A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/08Working-up pitch, asphalt, bitumen by selective extraction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/14Solidifying, Disintegrating, e.g. granulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/14Solidifying, Disintegrating, e.g. granulating
    • C10C3/16Solidifying, Disintegrating, e.g. granulating by direct contact with liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/20Condensation polymers of aldehydes or ketones

Definitions

  • the economic sustainability of solvent deasphalting technologies for crude oil depends mainly on three factors, the reduction of solvent losses, the improvement in the recovery efficiency of the improved crude oil and the obtaining of a reusable solid asphalt.
  • the present invention describes a method and apparatus of low operational complexity, low investment and operating costs, which manages to simultaneously comply with the aforementioned factors.
  • the object of the invention makes it possible to recover the solvent and a residual improved crude oil fraction from the bottom stream of the separation stage of any deasphalting process.
  • the technology described manages to obtain dry and granulated asphaltenes, ready to be used as fuel within the same process.
  • the characteristics of the invention ensure the technical and economic viability of its implementation in any industrial scale solvent deasphalting process, located in areas close to the oil production areas.
  • Patent US7968020 describes a rotating head to which a mixture of asphaltenes and solvent is pumped, which is dispersed into particles, which are subsequently cooled in contact with a cooling medium.
  • Patent US7597794 declares a method of granulating an asphalt residue, which uses a dispersion solvent to form a mixture that is then passed to a gas-solid separator, where it vaporizes and gives rise to the appearance of asphalt particles of defined size.
  • Patent document US8221105B2 describes a system for pelletizing hot asphalt by means of; the dispersion of an asphaltic hydrocarbon in a distributor with holes between 0.5 mm and 50 mm; a temperature between 175 ° C and 430 ° C.
  • the particles are pre-cooled by passing through a cooling mist before coming into contact with a film of the cooling medium, which has; a thickness between, 1 mm and 500 mm; a cooling medium with a temperature between, 0 ° C to 95 ° C.
  • the description does not define whether solvent and improved crude can be recovered simultaneously.
  • Application document CN103102894 describes an apparatus and a method for recovering solvent during granulation of a high melting point asphalt stream, which originates from a solvent deasphalting tower.
  • the asphaltene is granulated through a screw system for extrusion, and then the solid is passed to a cabin where it is cooled and the solvent is extracted.
  • the invention does not describe how the solids pass from the auger to the cabin and how the agglomeration of asphaltenic particles is avoided during the process.
  • document US4931231 presents a method to manufacture asphalt pellets without generating dust. It includes heating the asphalt material to 450 ° F, to keep the material liquid and flowing by gravity in an elongated annular stream. Subsequently, the material enters a reservoir of cooling liquid at 130 ° F, to solidify and cut the annular stream into small particles without generating dust.
  • the apparatus includes a hopper, a heating system, flow channels connected to the hopper, and a cooling water reservoir. The cold solids are transferred to a drying zone and can be packed into uniform particles. The process keeps the temperature of the asphaltenes between 260 ° C and 290 ° C and the cooling liquid below 50 ° C. Flow diameters listed are between 0.5 "and 5/8" or 1/4 "and 3/4". The process detailed in the invention does not describe the transport or handling mechanism of the asphalt sludge prior to introduction into the asphalt threads forming device.
  • Patent application WO2013 / 106897 A1 describes a solvent extraction process. Initially it performs a moderate thermal cracking, obtaining two streams; one of which is rich in asphalt.
  • the reactor uses a scavenging gas which can be nitrogen, hydrogen vapor or light hydrocarbon.
  • the stream rich in asphaltenes is taken to a solvent separation unit and finally, the asphaltenes are separated in an inertial unit, obtaining solid and dry asphaltenes.
  • the process is made up of a heater, a reactor with a separator, a solvent extraction unit and an inertial separation unit.
  • the document does not describe the drying mechanism, nor the granulation or formation of threads, the whole process is carried out in different units and the separation of asphaltenes is carried out in an inertial unit.
  • Patent application GB2134537A presents a process of solvent extraction by evaporation.
  • Asphaltenes containing residual solvent are passed through a hot, ventilated extruder (200 ° F-370 ° F (366K-643K)) and the volatilized solvent is recovered and recycled to the extraction system.
  • the asphalt product can be extruded in a cold water bath, fragmented, dried, and collected.
  • the process consists of separator, condenser, settler and vented twin screw extruder. In this process, the extraction of the solvent and the formation of the material are carried out in different units, cold water is used to fragment the solid product, asphalt pelletization is not mentioned.
  • Patent US3847751 mentions the treatment of an asphalt obtained as a by-product in a solvent deasphalting process, this asphalt is treated to obtain a useful by-product.
  • the mixture of asphalt and solvent is heated.
  • the solvent is removed as vapor and the asphalt is cooled to produce a useful liquid such as fuel oil, a flake material or a powder material. If the stream of asphaltenes is brought directly into the spray tower and contacted with inert gas or steam before it falls into a band, an asphaltene concentrate will be formed in the form of powder or granules.
  • the granules will have a melting point of 400 ° F to 500 ° F (478 K to 533K), while the cooler flakes would have a melting point of 250 ° F to 400 ° F (394K to 478K).
  • the asphaltenes / solvent separation is carried out in a deep deasphalting tower, heating the mixture after leaving the tower at 600 ° F (588K), the pulverized asphaltene particles are received on a surface cooled with moving water.
  • the solvent separation is carried out in a different unit, the asphaltenes are initially pulverized, the equipment uses a rotating head with holes in the upper part, it uses water to cool the granules (60 ° F to 140 ° F (289K to 333K)).
  • the present invention provides an apparatus and a method that solves three of the main factors that affect the applicability of the deasphalting process in the fields of heavy and extra heavy crude production. It refers to the loss of solvent during the extraction process, recovery of a fraction of the improved crude oil in the mixture and the obtaining of an asphalt solid.
  • the design of the apparatus of the present invention manages to close the solvent cycle reducing replacement needs, recovers part of the remaining improved crude, increasing the efficiency of the process and delivers an asphaltic solid with the necessary characteristics to be applied as fuel, either within the same process or to satisfy energy needs of nearby areas.
  • the configuration of the invention allows the reduction of investment and operating costs, since it manages to perform three operations in the same device.
  • the invention consists of a mechanical device to introduce load to the process; a container that allows to apply heating, stir, extract vapors; a self-heating extrusion device installed in the container and a cooling unit.
  • the invention described receives as raw material, a mixture that can be composed of: a residual improved crude, a solvent that can be a light fraction of crude oil, a condensate from a production field, a refinery stream, a pure solvent or a derivative of the above.
  • the input current can be composed of one, two or three of the components described above in any of the possible proportions.
  • the input stream is transferred through a pumping device into the container. Once it is inside the container, the mixture receives the necessary energy to evaporate the solvent that is in it.
  • agitation can be applied to the material with an anchor-type stirrer or two spirally wound metal bands, in order to facilitate the transfer of mass and heat.
  • Figure 1 is the diagram of one of the modes of the apparatus, the inputs, outputs and component parts are represented.
  • Figure 2 presents the design of asphalt distribution nozzles.
  • Figure 3 shows the asphalt threads obtained at the end of the drying process.
  • Figure 4 shows the location of the temperatures in the apparatus for separating and obtaining dry asphalt.
  • Figure 5 represents the details of the geometry of the anchor-type stirrer apparatus of the invention.
  • Figure 6 represents the details of the geometry of the RibbonBlender type stirrer apparatus of the invention.
  • Figure 7 represents the relationship between the fluid temperature and the solvent fraction inside the apparatus of the invention.
  • Figure 8 represents the relationship between the temperature reached by the fluid and the amount of energy required for the evaporation of the solvent.
  • Figure 9 represents the performance test temperature curve of the inventive apparatus.
  • the present invention is characterized by being composed of an apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphalt solid in a deasphalting process, consisting of the following elements:
  • An extrusion device (105) consisting of a perforated sheet with 1 to 30 holes, preferably between 7 to 19 holes and a diameter of each hole between 0.002 mm and 0.005 mm, preferably between 0.003 mm and 0.004 mm and an internal system heating.
  • a cooling unit (106) that is made up of a tubular cavity, which uses gases or water as cooling fluids.
  • the invention described receives as filler, a mixture that is generally composed of: a heavy fraction of an asphaltic nature; a residual improved crude oil and a solvent that can be: a light fraction of a crude oil, a condensate from a production field, a refinery stream, a pure solvent or a derivative of the above.
  • the input current can also be composed of one, two or three of them, in any of the possible proportions.
  • the fraction by weight of the solids within the mixture entering the process can vary in a range from 10 to 65% by weight, while the liquid fraction is made up of solvent and improved crude oil, which can reach a maximum composition of 85%. . In the range of the compositions described, mixing viscosities between 0.01 Pa.s to 0.045 Pa.s can occur at temperatures between 300 - 350 K.
  • the current described above is introduced to the process through a device (101) of those known in the state of the art, to conduct this type of mixture, such as pumps for handling solids or worm gears.
  • the mixture is received in a container (102) designed in such a way that energy for internal heating (104) can be applied to it; induce homogenization of the content with an anchor-type stirrer device (103) or with two spirally wound metal ribbons (fiber blender) ⁇ , extract vapors (107) and induce pressurization by means of an inert gas.
  • the internal heating of the container (104) can be applied through any of the devices known in the state of the art, such as coils or jackets.
  • the charging stream Once the charging stream enters the container (102), it is subjected to heating that brings it to the temperature necessary to achieve evaporation of the solvent.
  • the temperature must be in a range between 300 K and 430 K.
  • the mixture will continue its heating process from the evaporation temperature of the solvent, to a temperature that allows the total fluidity of the asphalt material inside the container of 400 and 550 K, starting stirring around 422 K, also allowing the recovery of a fraction of the improved crude that manages to be evaporated at the temperature reached.
  • the temperature reaches a range between 420 K and 500 K and homogenization is maintained during heating to improve mass and heat transfer, facilitating complete evaporation of the solvent and recovery of the crude fraction. improved that evaporation is achieved during heating.
  • pressure is applied to the container by injecting an inert gas.
  • the pressure must favor the exit of the molten solid through an extrusion device (105) that gives the solid the required shape.
  • pressure values between 100-300 kPa, preferably between 1 15 kPa and 308 kPa can be reached depending on the configuration of the system.
  • the molten asphaltene passes from the outlet valve of the container (108) towards an extrusion device (105) connected to it, which has holes that allow the formation of granules or threads.
  • the extrusion device (105) consists of a perforated sheet, which can be internally heated to maintain the fluidity of the material that passes through it. The size of the holes will depend on the conditions for cooling.
  • the fluidized solid takes the form of grains or threads of known diameter, which upon leaving are led to a cooling unit (106) where the material is suddenly cooled by means of nitrogen streams. , air or water.
  • the cooling unit (106) is made up of a tubular cavity, through which solids fall. Subsequently, the solids are subjected to a handling of those already known, such as rotary valves, vane, conveyor belt, buckets, storage in silos.
  • This apparatus can be adapted as a final stage for bottom stream processing of heavy and extra heavy crude upgrading processes, heavy phase separation processes and / or delayed coking processes.
  • the conceptual design of the nozzle was carried out by means of a simulation model with the ANSYS FLUENT tool, the models were built using the solver, based on pressure and in steady state, including gravitational acceleration (- 9.81 m / s 2 in the y direction) .
  • the model included energy balances.
  • the nozzle orifices were made up of 374 standard tubes of internal diameter equal to 0.0103 m and 0.076 m in length with a triangular distribution and a pitch of 0.015 m. Furthermore, a temperature of 473 K and a pressure of 308 kPa inside the apparatus were considered.
  • Example 2 Test results for asphalt discharge with a plate with 7 and 19 holes.
  • plates with 7 holes (0.0037 m or 0.00475 m) and 19 holes (0.003 m or 0.004 m) were evaluated, under conditions of adjusted temperature and pressure, as well as the pressure of the cooling air line.
  • Figure 2 shows the design of the asphalt distribution nozzles, for the case of 19 holes.
  • Figure 3 shows the asphalt threads obtained at the end of the process.
  • the temperature points in the device are located, where: the temperature of zone 1 (T. Zone 1) is the temperature of the fluid inside the equipment; the temperature in zone 2 (T. Zone 2) corresponds to the temperature in the area of the equipment where cooling occurs and the temperature in zone 3 (T. Zone 3) is the temperature obtained by the fluid after cooling.
  • Example 3 Simulation for heat transfer within the drying equipment using two different types of mixers for agitation of the fluid.
  • the ANSYS MESHING tool was used for the case of the 1 BPD plant equipment, using two kinds of meshes, one for the configuration with an anchor-type stirrer based on the dimensions measured in the pilot plant, the detail of which is shown in figure 5 and another for the configuration with a Ribbon Blender type agitator as shown in figure 6, which consists of two metal ribbons wound in a spiral.
  • the simulation was carried out.
  • the temperature of the resistors was set at 379K, the initial filling volume was adjusted and it was calculated until convergence was obtained, both for the equipment with an anchor-type stirrer, and for that of the RibbonBlender-type stirrer.
  • the temperature of the resistors was set at 541 K, and it was calculated until convergence was obtained for both the equipment with an anchor-type stirrer and for the Ribbon Blender-type stirrer. A larger interface was observed for the equipment with a Ribbon Blender type agitator; While with the anchor type equipment higher values of temperature distribution are reached, this is confirmed by calculating the mean value of the hydrocarbon temperature:
  • a load composed of a mixture of improved crude oil, solvent and asphaltic material, from a bottom stream of the ECODESF ® deasphalting process was fed.
  • the load was approximately 26 barrels of a mixture of improved crude, solvent and asphalt material obtained from a bottom stream of the process.
  • heat was supplied, keeping the equipment at a pressure of 239 kPa.
  • the temperature was brought from 300 K until total removal of the solvent was reached at 430 K, for 150 minutes.
  • the temperature of the equipment was increased until reaching 41 1 K, stirring was started in order to homogenize the mixture of improved crude oil and asphalt material in order to ensure better heat transfer to the entire system.
  • FIG. 9 shows the temperature versus operating time curve of the equipment of the invention.
  • the molten material passed through the discharge valve.
  • the heating of the apparatus was maintained, to avoid solidification and facilitate the transfer of the material to the solids handling system.
  • a water cooling device was located downstream of the discharge valve to guarantee the cooling and solidification of the material.
  • 79% corresponded to asphalt, equivalent to 2.76 tons.
  • the remaining mass (21%) corresponded to the improved crude carried out by the solids.

Abstract

The present invention discloses a machine and a method, constituted by a mechanical device for the incorporation into the process of a load, comprised of a mix of residual improved crude oil, an asphaltene solid and a solvent; a container enabling the application of heat, shaking, and the extraction of vapours; an extrusion device with its own heater installed in the container, and a cooling unit. The machine and the method of the present invention enable the closing of the solvent cycle, reducing the need for replacement, recovers part of the remanent improved crude oil, increasing the efficiency of the process, and yields an asphaltene solid with the necessary characteristics for its use as fuel.

Description

APARATO Y MÉTODO PARA LA RECUPERACIÓN SIMULTÁNEA DE SOLVENTE, CRUDO MEJORADO Y SÓLIDO ASFALTÉNICO SECO EN UN PROCESO DE APPARATUS AND METHOD FOR THE SIMULTANEOUS RECOVERY OF SOLVENT, IMPROVED CRUDE AND DRY ASPHALTENIC SOLID IN A PROCESS OF
DESASFALTADO DISASFALLED
CAMPO TÉCNICO TECHNICAL FIELD
La sostenibilidad económica de las tecnologías de desasfaltado de crudo mediante solvente, depende principalmente de tres factores, la reducción de las pérdidas de solvente, la mejora en la eficiencia de recuperación del crudo mejorado y la obtención de un sólido asfalténico reutilizable. La presente invención describe un método y aparato de baja complejidad operacional, bajos costos de inversión y operación, que logra cumplir simultáneamente con los factores antes mencionados. De esta manera, el objeto de la invención permite recuperar el solvente y una fracción de crudo mejorado residual de la corriente de fondos de la etapa de separación de cualquier proceso de desasfaltado. A su vez, la tecnología descrita logra obtener los asfáltenos secos y granulados, listos para ser aprovechados como combustible dentro del mismo proceso. Las características de la invención aseguran la viabilidad técnica y económica de su implementación en cualquier proceso de desasfaltado con solvente a escala industrial, localizado en áreas cercanas a las zonas de producción del crudo. The economic sustainability of solvent deasphalting technologies for crude oil depends mainly on three factors, the reduction of solvent losses, the improvement in the recovery efficiency of the improved crude oil and the obtaining of a reusable solid asphalt. The present invention describes a method and apparatus of low operational complexity, low investment and operating costs, which manages to simultaneously comply with the aforementioned factors. In this way, the object of the invention makes it possible to recover the solvent and a residual improved crude oil fraction from the bottom stream of the separation stage of any deasphalting process. In turn, the technology described manages to obtain dry and granulated asphaltenes, ready to be used as fuel within the same process. The characteristics of the invention ensure the technical and economic viability of its implementation in any industrial scale solvent deasphalting process, located in areas close to the oil production areas.
ESTADO DE LA TÉCNICA STATE OF THE ART
La producción de los crudos pesados y extrapesados requiere de la aplicación de tecnologías que viabilicen su transporte y comercialización desde el lugar de explotación hasta el sitio de procesamiento. Dentro del estado de la técnica se encuentra una amplia gama de alternativas, tal como la dilución con naftas, detallada en US20100056408 y WO2014099467, o la construcción de pequeñas refinerías en los campos de producción, presentado en US6357526 y US 7749378. Sin embargo, los elevados costos y altas complejidades operativas, descritas detalladamente en US20130015100, han obligado al desarrollo de tecnologías alternativas como; la extracción de la fase asfalténica de los crudos mediante el uso de solventes (Desasfaltado) a presiones y temperaturas moderadas. La tecnología de extracción de las fracciones pesadas de los crudos mediante solventes a condiciones moderadas, permiten obtener un crudo mejorado que puede ser transportado por ducto y refinado más fácilmente. La configuración de este tipo de tecnologías de desasfaltado, requiere de bajos costos de inversión y operación, lo que facilita su implementación en los campos de producción del crudo, como se presenta en US 8257579, además aventaja a la tecnología de dilución, pues evita la dependencia de factores externos como el precio de diluyentes y la logística de transporte. Sin embargo, la economía del proceso depende directamente de la eficiencia en la recuperación del crudo mejorado y de que se mantenga constante la cantidad de solvente, evitando las pérdidas y por ende las reposiciones de este. The production of heavy and extra-heavy crude oil requires the application of technologies that enable their transport and commercialization from the place of exploitation to the processing site. Within the state of the art there is a wide range of alternatives, such as dilution with naphtha, detailed in US20100056408 and WO2014099467, or the construction of small refineries in the production fields, presented in US6357526 and US 7749378. However, the high costs and high operating complexities, described in detail in US20130015100, have forced the development of alternative technologies such as; the extraction of the asphaltic phase of the crude oil through the use of solvents (Deasphalting) at moderate pressures and temperatures. The technology of extraction of heavy fractions of crude oils using solvents at moderate conditions, allow to obtain an improved crude that can be transported by pipeline and refined more easily. The configuration of this type of deasphalting technologies requires low investment and operating costs, which facilitates its implementation in the oil production fields, as presented in US 8257579, it also has an advantage over dilution technology, since it avoids the dependence on external factors such as the price of diluents and transport logistics. However, the economy of the process depends directly on the efficiency in the recovery of the improved crude oil and that the amount of solvent is kept constant, avoiding losses and therefore its replenishments.
La importancia de la obtención de un sólido asfalténico seco y del factor de recuperación de solvente en los procesos de desasfaltado, se evidencia en el estado del arte en patentes como US3053751 , US4101415, US4315815, US4810367, CA1263625 A1. Sin embargo, estas no se ocupan de definir el mecanismo tecnológico de obtención del sólido. The importance of obtaining a dry asphaltic solid and the solvent recovery factor in deasphalting processes is evidenced in the state of the art in patents such as US3053751, US4101415, US4315815, US4810367, CA1263625 A1. However, these do not deal with defining the technological mechanism for obtaining the solid.
Otros documentos del estado del arte describen procedimientos tanto para obtener asfáltenos granulados secos, como para realizar la recuperación del solvente de los sólidos asfalténicos, empleando métodos o aparatos de distinta naturaleza a la del objeto de la presenta invención. Por ejemplo, la patente US7968020, describe una cabeza de rotación a la que es bombeada una mezcla de asfáltenos y solvente, que es dispersada en partículas, que posteriormente son enfriadas en contacto con un medio de refrigeración. La patente US7597794 declara un método de granulación de un residuo asfalténico, que emplea un solvente de dispersión para formar una mezcla que a continuación pasa a un separador gas-sólido, donde se vaporiza y da lugar a la aparición de partículas asfalténicas de tamaño definido. En la solicitud de patente US20140246357, los asfáltenos con solvente pasan a una unidad inercial de separación de solvente (ISU) de bajo costo, para obtener los sólidos secos, bajo este mismo concepto se relaciona la patente US20190023990A1 y la patente de utilidad CA3008103A1 , las cuales se centran en la descripción del proceso y aparato para la aglomeración de asfáltenos para su transporte. En la patente US4572781 el lodo asfalténico recuperado de una centrífuga, es enviado a un secador, donde se obtienen tanto el solvente recuperado, como el sólido en finas partículas casi libres de solvente y DAO. Other documents of the state of the art describe procedures both to obtain dry granulated asphaltenes, and to carry out the recovery of the solvent from asphaltenic solids, using methods or apparatus of a different nature from that of the object of the present invention. For example, patent US7968020, describes a rotating head to which a mixture of asphaltenes and solvent is pumped, which is dispersed into particles, which are subsequently cooled in contact with a cooling medium. Patent US7597794 declares a method of granulating an asphalt residue, which uses a dispersion solvent to form a mixture that is then passed to a gas-solid separator, where it vaporizes and gives rise to the appearance of asphalt particles of defined size. In patent application US20140246357, solvent asphaltenes go to a low-cost inertial solvent separation unit (ISU), to obtain dry solids, under this same concept are related patent US20190023990A1 and utility patent CA3008103A1, the which focus on the description of the process and apparatus for the agglomeration of asphalt for transport. In patent US4572781, the asphalt sludge recovered from a centrifuge is sent to a dryer, where it is obtained both the recovered solvent and the solid in fine particles almost free of solvent and DAO.
A continuación, se describen algunas patentes de mayor relación con la invención descrita en la presente memoria descriptiva: Some of the patents most closely related to the invention described in this specification are described below:
El documento de patente US8221105B2 describe un sistema para peletizar asfáltenos calientes mediante; la dispersión de un hidrocarburo asfalténico en un distribuidor con orificios entre, 0.5 mm y 50 mm; una temperatura entre, 175°C y 430°C. Las partículas se pre-enfrían al pasar por una niebla de refrigeración antes de entrar en contacto con una película del medio de refrigeración, la cual tiene; un espesor entre, 1 mm y 500 mm; un medio de enfriamiento con una temperatura entre, 0°C a 95°C. La descripción no define si se puede recuperar solvente y crudo mejorado simultáneamente. Patent document US8221105B2 describes a system for pelletizing hot asphalt by means of; the dispersion of an asphaltic hydrocarbon in a distributor with holes between 0.5 mm and 50 mm; a temperature between 175 ° C and 430 ° C. The particles are pre-cooled by passing through a cooling mist before coming into contact with a film of the cooling medium, which has; a thickness between, 1 mm and 500 mm; a cooling medium with a temperature between, 0 ° C to 95 ° C. The description does not define whether solvent and improved crude can be recovered simultaneously.
El documento de aplicación CN103102894, describe un aparato y un método para recuperar solvente durante la granulación de una corriente asfalténica con alto punto de fusión, la cual se origina en una torre de desasfaltado con solvente. El asfalteno es granulado a través de un sistema de tornillo para extrusión, para luego pasar el sólido a una cabina donde se enfría y se extrae el solvente. Sin embargo, la invención no describe como los sólidos pasan del tornillo sin fin a la cabina y ni como se evita la aglomeración de partículas asfalténicas durante el proceso. Application document CN103102894 describes an apparatus and a method for recovering solvent during granulation of a high melting point asphalt stream, which originates from a solvent deasphalting tower. The asphaltene is granulated through a screw system for extrusion, and then the solid is passed to a cabin where it is cooled and the solvent is extracted. However, the invention does not describe how the solids pass from the auger to the cabin and how the agglomeration of asphaltenic particles is avoided during the process.
Por su parte, el documento US4931231 , presenta un método para fabricar pellets de material asfáltico sin generar polvo. Incluye el calentamiento del material asfáltico hasta 450°F, para mantener el material líquido y fluyendo por gravedad en una corriente anular elongada. Posteriormente el material entra a un reservorio de líquido de enfriamiento a 130°F, para solidificar y cortar la corriente anular en pequeñas partículas sin generación de polvo. El aparato incluye una tolva, un sistema de calentamiento, canales de flujo conectados a la tolva y un reservorio de agua de enfriamiento. Los sólidos fríos se trasladan a una zona de secado y pueden empacarse en partículas uniformes. El proceso mantiene la temperatura de los asfáltenos entre 260°C y 290°C y el líquido de enfriamiento por debajo de 50°C. Los diámetros de flujo mencionados están entre 0.5" y 5/8" o 1/4" y 3/4". El proceso detallado en la invención no describe el mecanismo de transporte o manipulación del lodo asfalténico antes de la introducción al dispositivo de formación de los hilos de asfáltenos. For its part, document US4931231, presents a method to manufacture asphalt pellets without generating dust. It includes heating the asphalt material to 450 ° F, to keep the material liquid and flowing by gravity in an elongated annular stream. Subsequently, the material enters a reservoir of cooling liquid at 130 ° F, to solidify and cut the annular stream into small particles without generating dust. The apparatus includes a hopper, a heating system, flow channels connected to the hopper, and a cooling water reservoir. The cold solids are transferred to a drying zone and can be packed into uniform particles. The process keeps the temperature of the asphaltenes between 260 ° C and 290 ° C and the cooling liquid below 50 ° C. Flow diameters listed are between 0.5 "and 5/8" or 1/4 "and 3/4". The process detailed in the invention does not describe the transport or handling mechanism of the asphalt sludge prior to introduction into the asphalt threads forming device.
En el documento US7101499, se describe un aparato y método para peletizar hidrocarburos pesados y asfáltenos. Se suministra calor al material para que fluya a través de un conducto por donde sale el fluido, y se encuentra con una corriente que actúa como medio de peletización al romper la corriente de hidrocarburo. El aparato tiene un recipiente donde se mezcla el fluido de peletización con los pellets, formando un slurry, que es transportado para separación del fluido. El mecanismo de formación de las partículas no garantiza la formación uniforme y homogénea de las mismas. In US7101499, an apparatus and method for pelletizing heavy hydrocarbons and asphalt is described. Heat is supplied to the material to flow through a conduit where the fluid exits, and meets a stream that acts as a pelletizing medium by breaking the hydrocarbon stream. The apparatus has a container where the pelletizing fluid is mixed with the pellets, forming a slurry, which is transported to separate the fluid. The mechanism for forming the particles does not guarantee their uniform and homogeneous formation.
La solicitud de patente WO2013/106897 A1 describe un proceso de extracción con solvente. Inicialmente realiza un craqueo térmico moderado, obteniendo dos corrientes; una de las cuales es rica en asfáltenos. El reactor utiliza un gas de barrido que puede ser nitrógeno, vapor de hidrógeno o hdrocarburo liviano. La corriente rica en asfáltenos es llevada a una unidad de separación de solvente y finalmente, los asfáltenos son separados en una unidad inercial obteniéndose asfáltenos sólidos y secos. El proceso se encuentra conformado por un calentador, un reactor con separador, una unidad de extracción de solvente y una unidad de separación inercial. En el documento no se describe el mecanismo de secado, ni la granulación o formación de hilos, todo el proceso se lleva a cabo en unidades diferentes y la separación de asfáltenos se realiza en una unidad inercial. Patent application WO2013 / 106897 A1 describes a solvent extraction process. Initially it performs a moderate thermal cracking, obtaining two streams; one of which is rich in asphalt. The reactor uses a scavenging gas which can be nitrogen, hydrogen vapor or light hydrocarbon. The stream rich in asphaltenes is taken to a solvent separation unit and finally, the asphaltenes are separated in an inertial unit, obtaining solid and dry asphaltenes. The process is made up of a heater, a reactor with a separator, a solvent extraction unit and an inertial separation unit. The document does not describe the drying mechanism, nor the granulation or formation of threads, the whole process is carried out in different units and the separation of asphaltenes is carried out in an inertial unit.
La aplicación de patente GB2134537A presenta un proceso de extracción de solvente por evaporación. Los asfáltenos que contienen solvente residual son pasados a través de una extrusora ventilada y caliente (200°F-370°F (366K-643K)) y el solvente volatilizado es recuperado y reciclado al sistema de extracción. El producto de asfáltenos puede ser extruido en un baño de agua fría, fragmentado, secado y recolectado. El proceso consta de separador, condensador, sedimentador y extrusora de doble tornillo ventilada. En este proceso, la extracción del solvente y la formación del material se realizan en unidades diferentes, se emplea agua fría para fragmentar el producto sólido, no se menciona peletización de asfáltenos. La patente US3847751 menciona el tratamiento de un asfalto obtenido como un subproducto en un proceso de desasfaltado con disolvente, este asfalto se trata para obtener un subproducto útil. La mezcla de asfalto y disolvente se calienta. Posteriormente, el disolvente se separa como vapor y el asfalto se enfría para producir un líquido útil como fuel oil, un material en escamas o un material en polvo. Si la corriente de asfáltenos se lleva directamente a la torre de pulverización y se pone en contacto con gas inerte o vapor antes de que caiga a una banda se formará un concentrado de asfáltenos en forma de polvo o gránulos. Los gránulos tendrán punto de fusión de 400°F a 500°F (478 K a 533K), mientras que las escamas del enfriador tendrían un punto de fusión de 250°F a 400°F (394K a 478K). En este proceso, la separación asfaltenos/disolvente se lleva a cabo en una torre de desasfaltado profundo, calentamiento de la mezcla luego de salir de la torre a 600°F (588K), las partículas pulverizadas de asfáltenos son recibidas en una superficie enfriada con agua en movimiento. Patent application GB2134537A presents a process of solvent extraction by evaporation. Asphaltenes containing residual solvent are passed through a hot, ventilated extruder (200 ° F-370 ° F (366K-643K)) and the volatilized solvent is recovered and recycled to the extraction system. The asphalt product can be extruded in a cold water bath, fragmented, dried, and collected. The process consists of separator, condenser, settler and vented twin screw extruder. In this process, the extraction of the solvent and the formation of the material are carried out in different units, cold water is used to fragment the solid product, asphalt pelletization is not mentioned. Patent US3847751 mentions the treatment of an asphalt obtained as a by-product in a solvent deasphalting process, this asphalt is treated to obtain a useful by-product. The mixture of asphalt and solvent is heated. Subsequently, the solvent is removed as vapor and the asphalt is cooled to produce a useful liquid such as fuel oil, a flake material or a powder material. If the stream of asphaltenes is brought directly into the spray tower and contacted with inert gas or steam before it falls into a band, an asphaltene concentrate will be formed in the form of powder or granules. The granules will have a melting point of 400 ° F to 500 ° F (478 K to 533K), while the cooler flakes would have a melting point of 250 ° F to 400 ° F (394K to 478K). In this process, the asphaltenes / solvent separation is carried out in a deep deasphalting tower, heating the mixture after leaving the tower at 600 ° F (588K), the pulverized asphaltene particles are received on a surface cooled with moving water.
En el documento US6331245B1 - MXPA01002768 se desarrolla un proceso y sistema para el mejoramiento de crudo pesado y "bitumen", y recuperación de energía por producción de vapor. La corriente que contienen asfáltenos sigue un paso opcional de peletización, los cuales son utilizados como combustible para combustión. Los asfáltenos son utilizados igualmente como materia prima de gasificación para producir vapor de inyección y gas de síntesis. El recipiente de peletización tiene una zona superior de pulverización que contiene una cabeza giratoria con orificios, seguido de una zona de formación de esferas, una zona de enfriamiento y un baño acuoso de enfriamiento. De igual forma, boquillas para rociar agua a la zona de enfriamiento para solidificar los gránulos líquidos que se recogen en el baño. Finalmente, posee un separador líquido/sólido para deshidratar los gránulos de la suspensión. En el proceso descrito, la separación del solvente se realiza en una unidad diferente, los asfáltenos son inicialmente pulverizados, el equipo utiliza en la parte superior una cabeza giratoria con orificios, utiliza agua para enfriamiento de los gránulos (60°F a 140 °F (289K a 333K)). Document US6331245B1 - MXPA01002768 develops a process and system for upgrading heavy crude oil and "bitumen", and energy recovery through steam production. The stream containing asphaltenes follows an optional pelletization step, which is used as fuel for combustion. Asphaltenes are also used as raw material for gasification to produce injection steam and synthesis gas. The pelletizing vessel has an upper spray zone containing a rotating head with holes, followed by a sphere-forming zone, a cooling zone, and an aqueous cooling bath. Likewise, nozzles to spray water into the cooling zone to solidify the liquid granules that are collected in the bath. Finally, it has a liquid / solid separator to dehydrate the granules from the suspension. In the described process, the solvent separation is carried out in a different unit, the asphaltenes are initially pulverized, the equipment uses a rotating head with holes in the upper part, it uses water to cool the granules (60 ° F to 140 ° F (289K to 333K)).
En ninguna de las invenciones del estado de la técnica, antes mencionadas, se presenta una alternativa que permita la recuperación simultánea de parte del crudo mejorado, solvente residual y un sólido asfalténico seco, listo para ser empleado como combustible dentro del proceso. Algunas invenciones se enfocan en la obtención de un sólido asfalténico granulado o se orientan en la recuperación de solvente de la corriente de asfáltenos que sale del proceso. La configuración de la presente invención logra asegurar un proceso que integra los requerimientos antes mencionados, de fácil operación y bajo costo, aplicable a procesos de desasfaltado en campo de producción. In none of the inventions of the state of the art, mentioned above, is an alternative presented that allows the simultaneous recovery of part of the improved crude oil, residual solvent and a dry asphaltic solid, ready to be used as fuel within the process. Some inventions focus on obtaining a granulated asphaltic solid or are oriented on the recovery of solvent from the asphalt stream that leaves the process. The configuration of the present invention manages to ensure a process that integrates the aforementioned requirements, easy to operate and low cost, applicable to deasphalting processes in the production field.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención provee un aparato y un método que da solución a tres de los principales factores que afectan la aplicabilidad del proceso de desasfaltado en los campos de producción de crudos pesados y extrapesados. Se refiere a las pérdidas de solvente durante el proceso de extracción, recuperación de una fracción del crudo mejorado en la mezcla y la obtención de un sólido asfalténico. El diseño del aparato de la presente invención logra cerrar el ciclo del solvente disminuyendo las necesidades de reposición, recupera parte del crudo mejorado remanente elevando la eficiencia del proceso y entrega un sólido asfalténico con las características necesarias para ser aplicado como combustible, ya sea dentro del mismo proceso o para satisfacer necesidades energéticas de áreas cercanas. The present invention provides an apparatus and a method that solves three of the main factors that affect the applicability of the deasphalting process in the fields of heavy and extra heavy crude production. It refers to the loss of solvent during the extraction process, recovery of a fraction of the improved crude oil in the mixture and the obtaining of an asphalt solid. The design of the apparatus of the present invention manages to close the solvent cycle reducing replacement needs, recovers part of the remaining improved crude, increasing the efficiency of the process and delivers an asphaltic solid with the necessary characteristics to be applied as fuel, either within the same process or to satisfy energy needs of nearby areas.
La configuración de la invención permite la disminución de los costos de inversión y operación, pues logra realizar tres operaciones en un mismo aparato. La invención está constituida por un dispositivo mecánico para introducir carga al proceso; un recipiente que permite aplicar calentamiento, agitar, extraer vapores; un dispositivo de extrusión con calentamiento propio, instalado en el recipiente y una unidad de enfriamiento. The configuration of the invention allows the reduction of investment and operating costs, since it manages to perform three operations in the same device. The invention consists of a mechanical device to introduce load to the process; a container that allows to apply heating, stir, extract vapors; a self-heating extrusion device installed in the container and a cooling unit.
La invención descrita, recibe como materia prima, una mezcla que puede estar compuesta por: un crudo mejorado residual, un solvente que puede ser una fracción liviana de un crudo, un condensado de un campo de producción, una corriente de refinería, un solvente puro o un derivado de los anteriores. La corriente de entrada puede estar compuesta por uno, dos o tres de los componentes descritos anteriormente en cualquiera de las proporciones posibles. La corriente de entrada es transferida a través de un dispositivo de bombeo hacia el interior del recipiente. Una vez se encuentra dentro del recipiente, la mezcla recibe la energía necesaria para evaporar el solvente que se encuentra en ella. Durante el tiempo de residencia dentro del recipiente se puede aplicar agitación al material con un agitador tipo ancla o tipo dos cintas metálicas enrolladas en espiral, con el fin de facilitar la transferencia de masa y calor. Una vez se evapora el solvente de la masa al interior del recipiente, se sigue transfiriendo energía, esta vez con el fin de recuperar una fracción de crudo mejorado residual y mantener los sólidos asfalténicos fluidos. Al finalizar la evaporación y retiro del solvente y del crudo mejorado, dentro del recipiente se encontrará un sólido fluidizado de naturaleza asfalténica, el cual es sometido a presión con el fin de facilitar la salida del material del recipiente. El fluido asfalténico pasa del recipiente a un dispositivo de extrusión, donde los asfáltenos toman forma de hilos o partículas. Los sólidos que salen del extrusor caen directamente a una unidad de enfriamiento, donde se hace pasar un fluido refrigerante, con el fin de disminuir su temperatura y facilitar su transporte y manejo. Posteriormente los sólidos son sometidos a un manejo de los ya conocidos, como válvulas rotativas de paletas, banda de transporte, cangilones, almacenamiento en silos, entre otros. The invention described receives as raw material, a mixture that can be composed of: a residual improved crude, a solvent that can be a light fraction of crude oil, a condensate from a production field, a refinery stream, a pure solvent or a derivative of the above. The input current can be composed of one, two or three of the components described above in any of the possible proportions. The input stream is transferred through a pumping device into the container. Once it is inside the container, the mixture receives the necessary energy to evaporate the solvent that is in it. During the residence time within the container, agitation can be applied to the material with an anchor-type stirrer or two spirally wound metal bands, in order to facilitate the transfer of mass and heat. Once the solvent has evaporated from the mass into the container, energy continues to be transferred, this time in order to recover a residual improved crude oil fraction and keep the asphaltene solids fluid. At the end of the evaporation and removal of the solvent and the improved crude, within the container there will be a fluidized solid of an asphaltenic nature, which is subjected to pressure in order to facilitate the exit of the material from the container. The asphalt fluid passes from the container to an extrusion device, where the asphaltenes take the form of threads or particles. The solids that come out of the extruder fall directly to a cooling unit, where a cooling fluid is passed through, in order to lower its temperature and facilitate its transport and handling. Subsequently, the solids are subjected to the handling of those already known, such as rotary vane valves, conveyor belt, buckets, storage in silos, among others.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1. La Figura 1 es el esquema de una de las modalidades del aparato, se representan las entradas, salidas y partes que lo componen. Fig. 1. Figure 1 is the diagram of one of the modes of the apparatus, the inputs, outputs and component parts are represented.
Fig. 2. La Figura 2 presenta el diseño de boquillas de distribución de asfáltenos. Fig. 2. Figure 2 presents the design of asphalt distribution nozzles.
Fig. 3. La Figura 3 muestra los hilos de asfáltenos obtenidos al terminar el proceso de secado. Fig. 3. Figure 3 shows the asphalt threads obtained at the end of the drying process.
Fig. 4. La Figura 4 presenta la localización de las temperaturas en el aparato de separación y obtención de asfáltenos seco. Fig. 4. Figure 4 shows the location of the temperatures in the apparatus for separating and obtaining dry asphalt.
Fig. 5. La Figura 5 representa los detalles de la geometría del agitador tipo ancla aparato de invención. Fig. 5. Figure 5 represents the details of the geometry of the anchor-type stirrer apparatus of the invention.
Fig. 6. La Figura 6 representa los detalles de la geometría del agitador tipo RibbonBlender aparato de invención. Fig. 6. Figure 6 represents the details of the geometry of the RibbonBlender type stirrer apparatus of the invention.
Fig. 7. La Figura 7 representa la relación entre la temperatura del fluido y la fracción de solvente en el interior del aparato de invención. Fig. 8. La Figura 8 representa relación entre la temperatura alcanzada por el fluido y la cantidad de energía requerida para la evaporación del solvente. Fig. 7. Figure 7 represents the relationship between the fluid temperature and the solvent fraction inside the apparatus of the invention. Fig. 8. Figure 8 represents the relationship between the temperature reached by the fluid and the amount of energy required for the evaporation of the solvent.
Fig. 9. La Figura 9 representa la curva de temperatura en prueba de desempeño del aparato de invención. Fig. 9. Figure 9 represents the performance test temperature curve of the inventive apparatus.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
A continuación, se presenta una descripción detallada de la invención. El objeto de esta descripción es dar claridad sobre los detalles propios de la misma, pero no limitarla únicamente a esta modalidad. Es parte del conocimiento normal de la persona versada en la materia, que algunas de las variables de proceso, e incluso la disposición de algunos de los equipos, pueden ser modificadas sin alterar substancialmente la invención. The following is a detailed description of the invention. The purpose of this description is to give clarity about the details of the same, but not to limit it only to this modality. It is part of the normal knowledge of the person skilled in the art, that some of the process variables, and even the arrangement of some of the equipment, can be modified without substantially altering the invention.
La presente invención se caracteriza por estar compuesta por un aparato para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco en un proceso de desasfaltado, constituido por los siguientes elementos: The present invention is characterized by being composed of an apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphalt solid in a deasphalting process, consisting of the following elements:
• Un dispositivo (101 ) tipo tornillo sinfín o para el manejo de sólidos • An auger type device (101) or for solids handling
• Un recipiente (102) diseñado para aplicar energía. • A container (102) designed to apply energy.
• Un dispositivo agitador (103) tipo ancla o tipo dos cintas metálicas enrolladas en espiral. • A stirrer device (103) type anchor or type two spiral wound metal bands.
• Un sistema de calentamiento interno (104) tipo chaqueta o serpentín. • An internal heating system (104) type jacket or coil.
• Un dispositivo de extrusión (105) que consta de una lámina perforada de 1 a 30 orificios, preferiblemente entre 7 a 19 orificios y diámetro de cada orificio entre 0,002 mm y 0,005 mm, preferiblemente entre 0,003 mm y 0,004 mm y de un sistema interno de calentamiento. • An extrusion device (105) consisting of a perforated sheet with 1 to 30 holes, preferably between 7 to 19 holes and a diameter of each hole between 0.002 mm and 0.005 mm, preferably between 0.003 mm and 0.004 mm and an internal system heating.
• Una unidad de enfriamiento (106) que está conformada por una cavidad tubular, que emplea gases o agua como fluidos de enfriamiento. • A cooling unit (106) that is made up of a tubular cavity, which uses gases or water as cooling fluids.
• Un conducto para extraer vapores (107) del recipiente. • A duct to extract vapors (107) from the container.
• Una válvula inferior de salida del recipiente (108). • A lower container outlet valve (108).
• Un sistema de presurización (109) para la inyección de gas inerte. Etapas del proceso. • A pressurization system (109) for the injection of inert gas. Stages of the process.
La invención descrita, recibe como carga, una mezcla que generalmente está compuesta por: una fracción pesada de naturaleza asfalténica; un crudo mejorado residual y un solvente que puede ser: una fracción liviana de un crudo, un condensado de un campo de producción, una corriente de refinería, un solvente puro o un derivado de los anteriores. Aunque generalmente en la carga se presentan los tres componentes, la corriente de entrada también puede estar compuesta por uno, dos o tres de ellos, en cualquiera de las proporciones posibles. La fracción en peso de los sólidos dentro de la mezcla de entrada al proceso puede variar en un intervalo desde el 10 al 65% en peso, mientras la fracción líquida está constituida por solvente y crudo mejorado, que puede alcanzar una composición máxima del 85%. En el rango de las composiciones descritas se pueden presentar viscosidades de mezcla entre 0,01 Pa.s a 0.045 Pa.s a temperaturas entre 300 - 350 K. The invention described receives as filler, a mixture that is generally composed of: a heavy fraction of an asphaltic nature; a residual improved crude oil and a solvent that can be: a light fraction of a crude oil, a condensate from a production field, a refinery stream, a pure solvent or a derivative of the above. Although generally all three components are present in the load, the input current can also be composed of one, two or three of them, in any of the possible proportions. The fraction by weight of the solids within the mixture entering the process can vary in a range from 10 to 65% by weight, while the liquid fraction is made up of solvent and improved crude oil, which can reach a maximum composition of 85%. . In the range of the compositions described, mixing viscosities between 0.01 Pa.s to 0.045 Pa.s can occur at temperatures between 300 - 350 K.
La corriente antes descrita, es introducida al proceso a través de un dispositivo (101 ) de los conocidos en el estado del arte, para conducción de este tipo de mezcla, tal como bombas para manejo de sólidos o tornillos sinfín. The current described above is introduced to the process through a device (101) of those known in the state of the art, to conduct this type of mixture, such as pumps for handling solids or worm gears.
La mezcla es recibida en un recipiente (102) diseñado de tal forma que se le pueda aplicar energía para calentamiento interno (104); inducir la homogenización del contenido con un dispositivo agitador (103) tipo ancla o tipo dos cintas metálicas enrolladas en espiral ( fíibbon blender)·, extraer vapores (107) e inducir presurización mediante un gas inerte. El calentamiento interno del recipiente (104) se puede aplicar a través de cualquiera de los dispositivos conocidos en el estado del arte, como serpentines o chaquetas. The mixture is received in a container (102) designed in such a way that energy for internal heating (104) can be applied to it; induce homogenization of the content with an anchor-type stirrer device (103) or with two spirally wound metal ribbons (fiber blender) ·, extract vapors (107) and induce pressurization by means of an inert gas. The internal heating of the container (104) can be applied through any of the devices known in the state of the art, such as coils or jackets.
Una vez la corriente de carga entra al recipiente (102), se somete a un calentamiento que lo lleva a la temperatura necesaria para lograr la evaporación del solvente. La temperatura debe estar en un intervalo entre 300 K y 430 K. La mezcla continuará su proceso de calentamiento desde la temperatura de evaporación del solvente, hasta una temperatura que permita la fluidez total del material asfalténico dentro del recipiente de 400 y 550 K, iniciando agitación alrededor de los 422 K, permitiendo además, la recuperación de una fracción del crudo mejorado que logra ser evaporado a la temperatura alcanzada. Para la modalidad preferida de la invención, la temperatura alcanza un intervalo entre 420 K y 500 K y se mantiene la homogenización durante el calentamiento para mejorar la transferencia de masa y calor, facilitando la evaporación completa del solvente y la recuperación de la fracción de crudo mejorado que se logre evaporar durante el calentamiento. Once the charging stream enters the container (102), it is subjected to heating that brings it to the temperature necessary to achieve evaporation of the solvent. The temperature must be in a range between 300 K and 430 K. The mixture will continue its heating process from the evaporation temperature of the solvent, to a temperature that allows the total fluidity of the asphalt material inside the container of 400 and 550 K, starting stirring around 422 K, also allowing the recovery of a fraction of the improved crude that manages to be evaporated at the temperature reached. For the preferred embodiment of the invention, the temperature reaches a range between 420 K and 500 K and homogenization is maintained during heating to improve mass and heat transfer, facilitating complete evaporation of the solvent and recovery of the crude fraction. improved that evaporation is achieved during heating.
Una vez se ha recuperado el solvente y el crudo residual (107), se aplica presión al recipiente mediante la inyección de un gas inerte. La presión debe favorecer la salida del sólido fundido a través de un dispositivo de extrusión (105) que le da la forma requerida al sólido. En la presurización del recipiente se pueden alcanzar valores de presión entre 100-300 kPa , preferiblemente entre 1 15 kPa y 308 kPa dependiendo de la configuración del sistema. Once the solvent and residual crude (107) have been recovered, pressure is applied to the container by injecting an inert gas. The pressure must favor the exit of the molten solid through an extrusion device (105) that gives the solid the required shape. In the pressurization of the container, pressure values between 100-300 kPa, preferably between 1 15 kPa and 308 kPa can be reached depending on the configuration of the system.
El asfalteno fundido pasa de la válvula de salida del recipiente (108) hacia un dispositivo de extrusión (105) conectado al mismo, el cual posee orificios que permiten la formación de gránulos o hilos. El dispositivo de extrusión (105) consta de una lámina perforada, la cual internamente puede ser calentada para mantener la fluidez del material que lo traspasa. El tamaño de los orificios dependerá de las condiciones para el enfriamiento. The molten asphaltene passes from the outlet valve of the container (108) towards an extrusion device (105) connected to it, which has holes that allow the formation of granules or threads. The extrusion device (105) consists of a perforated sheet, which can be internally heated to maintain the fluidity of the material that passes through it. The size of the holes will depend on the conditions for cooling.
Al pasar por el dispositivo extrusor (105), el sólido fluidizado toma la forma de granos o hilos de diámetro conocido, los cuales al salir son conducidos a una unidad de enfriamiento (106) donde el material es súbitamente enfriado por medio de corrientes de nitrógeno, aire o agua. La unidad de enfriamiento (106) está conformada por una cavidad tubular, a través de la que caen sólidos. Posteriormente, los sólidos son sometidos a un manejo de los ya conocidos, como válvulas rotativas, de paletas, banda de transporte, cangilones, almacenamiento en silos. As it passes through the extruder device (105), the fluidized solid takes the form of grains or threads of known diameter, which upon leaving are led to a cooling unit (106) where the material is suddenly cooled by means of nitrogen streams. , air or water. The cooling unit (106) is made up of a tubular cavity, through which solids fall. Subsequently, the solids are subjected to a handling of those already known, such as rotary valves, vane, conveyor belt, buckets, storage in silos.
Este aparato puede adaptarse como etapa final para procesamiento de corrientes de fondo de procesos de mejoramiento de crudos pesados y extra pesados, procesos de separación de fases pesadas y/o procesos de coquización retardada. This apparatus can be adapted as a final stage for bottom stream processing of heavy and extra heavy crude upgrading processes, heavy phase separation processes and / or delayed coking processes.
EJEMPLOS Ejemplo 1. Desarrollo de boquilla o conjunto de boquillas para la evacuación de los asfáltenos fluido. EXAMPLES Example 1. Development of nozzle or set of nozzles for evacuating asphalt fluid.
El diseño conceptual de la boquilla fue realizado mediante un modelo de simulación con la herramienta ANSYS FLUENT, los modelos se construyeron utilizando el solver, basado en presión y en estado estacionario, incluyendo aceleración gravitacional (- 9.81 m/s2 en la dirección y). El modelo incluyó balances de energía. Para el movimiento del aire alrededor del equipo se aplicó un modelo de turbulencia k-e con funciones de pared estándar. Los orificios de la boquilla estuvieron conformados por 374 tubos estándar de diámetro interno igual a 0.0103 m y 0.076 m de longitud con una distribución triangular y un paso de 0.015 m. Además, se consideró una temperatura de 473 K y presión de 308 kPa en el interior del aparato. Se modelaron cinco (5) casos en los cuales la variable independiente fue la temperatura de la chaqueta. De acuerdo con los resultados de la tabla 1 , de los cinco (5) casos simulados, cuatro mostraron tiempos de descarga inferiores a 3 horas, considerados como adecuados; pero se observó que la temperatura de salida del asfalteno aumentó al disminuir el tiempo de descarga, situación que podría llegar a no favorecer el enfriamiento de los asfáltenos con aire. The conceptual design of the nozzle was carried out by means of a simulation model with the ANSYS FLUENT tool, the models were built using the solver, based on pressure and in steady state, including gravitational acceleration (- 9.81 m / s 2 in the y direction) . The model included energy balances. For the air movement around the equipment, a turbulence model ke with standard wall functions was applied. The nozzle orifices were made up of 374 standard tubes of internal diameter equal to 0.0103 m and 0.076 m in length with a triangular distribution and a pitch of 0.015 m. Furthermore, a temperature of 473 K and a pressure of 308 kPa inside the apparatus were considered. Five (5) cases were modeled in which the independent variable was the temperature of the jacket. According to the results of Table 1, of the five (5) simulated cases, four showed discharge times of less than 3 hours, considered adequate; However, it was observed that the asphaltene outlet temperature increased as the discharge time decreased, a situation that could not favor the cooling of the asphaltenes with air.
Tabla 1. Resultados de la boquilla con calentamiento. Table 1. Results of the nozzle with heating.
Temp. chaqueta Flujo Temp. Tiempo descargaTemp. jacket Flow Temp. Discharge time
(K) hidrocarburo salida (h) (K) hydrocarbon outlet (h)
(kg/s) (K) (kg / s) (K)
523 4.160E-04 489 5.2 523 4.160E-04 489 5.2
548 7.274E-04 493 2.9 548 7.274E-04 493 2.9
573 1.068E-03 496 2.0 573 1.068E-03 496 2.0
598 1.357E-03 500 1 .6 598 1.357E-03 500 1 .6
623 1.588E-03 504 1 .3 623 1.588E-03 504 1 .3
Ejemplo 2. Resultados pruebas para descarga asfáltenos con placa de 7 y 19 orificios. En las pruebas para descarga de asfáltenos, se evaluaron placas de 7 orificios (0.0037 m o 0.00475 m) y de 19 orificios (0.003 m o 0.004 m), bajo condiciones de temperatura y presión ajustada, así como la presión de la línea de aire de enfriamiento. En la figura 2 se muestra el diseño de las boquillas de distribución de asfáltenos, para el caso de 19 orificios. En la figura 3 se observan los hilos de asfáltenos obtenidos al final del proceso. En la Figura 4 se localizan los puntos de las temperaturas en el aparato, donde: la temperatura de la zona 1 (T. Zona 1 ) es la temperatura del fluido dentro del equipo; la temperatura en la zona 2 (T. Zona 2) corresponde a la temperatura en la zona del equipo donde se produce el enfriamiento y la temperatura de la zona 3 (T. Zona 3) es la temperatura obtenida por el fluido después del enfriamiento. Example 2. Test results for asphalt discharge with a plate with 7 and 19 holes. In the asphalt discharge tests, plates with 7 holes (0.0037 m or 0.00475 m) and 19 holes (0.003 m or 0.004 m) were evaluated, under conditions of adjusted temperature and pressure, as well as the pressure of the cooling air line. . Figure 2 shows the design of the asphalt distribution nozzles, for the case of 19 holes. Figure 3 shows the asphalt threads obtained at the end of the process. In Figure 4 the temperature points in the device are located, where: the temperature of zone 1 (T. Zone 1) is the temperature of the fluid inside the equipment; the temperature in zone 2 (T. Zone 2) corresponds to the temperature in the area of the equipment where cooling occurs and the temperature in zone 3 (T. Zone 3) is the temperature obtained by the fluid after cooling.
Tabla 2. Resultado pruebas en el aparato de separación y obtención de asfáltenos seco. Table 2. Test results in the apparatus for separating and obtaining dry asphalt.
# Presión Línea T Zona T Zona T Zona 3 Presión Flujo total orificios (kPa) 1 (K) 2 (K) (K) equipo asfáltenos # Pressure Line T Zone T Zone T Zone 3 Pressure Total flow orifices (kPa) 1 (K) 2 (K) (K) asphalt equipment
(Programada) (kPa) (g/min) (Scheduled) (kPa) (g / min)
7 Ϊ22 516 470 322 177.6 16,59 7 Ϊ22 516 470 322 177.6 16.59
7 122 525 482 415 177.6 32,69 7 122 525 482 415 177.6 32.69
7 122 522 490 492 177.6 28,97 7 122 522 490 492 177.6 28.97
7 122 518 481 420 190.95 31 ,71 7 122 518 481 420 190.95 31, 71
7 122 528 498 423 190.95 36,15 7 122 528 498 423 190.95 36.15
7 142.6 515 469 307 177.6 16,59 7 142.6 515 469 307 177.6 16.59
7 142.6 523 500 396 190.95 36,15 7 142.6 523 500 396 190.95 36.15
7 163.3 515 468 304 177.6 16,59 7 163.3 515 468 304 177.6 16.59
7 163.3 510 485 353 208.8 22,22 7 163.3 510 485 353 208.8 22.22
7 163.3 522 486 355 190.95 23,81 7 163.3 522 486 355 190.95 23.81
7 163.3 524 500 394 190.95 36,15 7 163.3 524 500 394 190.95 36.15
7 184 516 470 303 177.6 16,59 7 184 516 470 303 177.6 16.59
7 184 524 490 358 177.6 26,84 7 184 524 490 358 177.6 26.84
7 184 523 493 361 190.95 36,15 7 184 523 493 361 190.95 36.15
7 204.7 499 482 323 208.8 22,22 7 204.7 499 482 323 208.8 22.22
7 204.7 520 481 325 190.95 23,81 7 204.7 520 481 325 190.95 23.81
Figure imgf000014_0001
7 204.7 510 486 343 190.95 36.15
Figure imgf000014_0001
7 204.7 510 486 343 190.95 36.15
19 122 527 499 334 21 1 .6 1 1 ,5619 122 527 499 334 21 1 .6 1 1, 56
19 122 532 505 445 163.4 20,2119 122 532 505 445 163.4 20.21
19 122 533 501 343 197.8 24.1519 122 533 501 343 197.8 24.15
19 122 545 51 1 471 266.8 29,0919 122 545 51 1 471 266.8 29.09
19 122 537 510 490 239.2 34,7519 122 537 510 490 239.2 34.75
19 122 533 495 343 225.4 37,9919 122 533 495 343 225.4 37.99
19 122 524 493 524 1 15.1 39,1219 122 524 493 524 1 15.1 39.12
19 142.6 538 499 353 197.8 24,1519 142.6 538 499 353 197.8 24.15
19 142.6 540 506 418 266.8 29,0919 142.6 540 506 418 266.8 29.09
19 142.6 523 492 386 1 15.1 39,1219 142.6 523 492 386 1 15.1 39.12
19 163.3 544 509 445 21 1 .6 22,8419 163.3 544 509 445 21 1 .6 22.84
19 163.3 532 497 339 197.8 24,1519 163.3 532 497 339 197.8 24.15
19 163.3 545 502 486 253 32,7919 163.3 545 502 486 253 32.79
19 184 537 497 387 266.8 36,9319 184 537 497 387 266.8 36.93
19 204.7 545 508 398 184 28,6 19 204.7 545 508 398 184 28.6
Ejemplo 3. Simulación para la transferencia de calor dentro del equipo de secado empleando dos diferentes tipos de mezcladores para la agitación del fluido. Se utilizó la herramienta ANSYS MESHING para el caso del equipo de la planta de 1 BPD, empleando dos clases de mallados, uno para la configuración con agitador tipo ancla basado en las dimensiones medidas en la planta piloto, cuyo detalle se muestra en la figura 5 y otro para la configuración con agitador tipo Ribbon Blender como se muestra en la figura 6 que consiste en dos cintas metálicas enrolladas en espiral. Example 3. Simulation for heat transfer within the drying equipment using two different types of mixers for agitation of the fluid. The ANSYS MESHING tool was used for the case of the 1 BPD plant equipment, using two kinds of meshes, one for the configuration with an anchor-type stirrer based on the dimensions measured in the pilot plant, the detail of which is shown in figure 5 and another for the configuration with a Ribbon Blender type agitator as shown in figure 6, which consists of two metal ribbons wound in a spiral.
Para la prueba realizada se utilizó una carga sintética formada por 2.74 kg de fase pesada proveniente del decantador (asfáltenos en su mayor proporción) y 1 .55 kg de solvente (2.422 mi). En ambos casos, después de la carga, el equipo se sometió a una etapa de calentamiento durante la cual se mantuvo el agitador en movimiento a 5 RPM, mientras los vapores que se formaron fueron condensados y recuperados. Durante este periodo se registró la curva de temperatura de las resistencias, la curva de temperatura en la parte inferior del fluido y el valor recuperado de solvente condensado (Tabla 3). For the test carried out, a synthetic load was used consisting of 2.74 kg of heavy phase from the decanter (asphalt in its highest proportion) and 1.55 kg of solvent (2.422 ml). In both cases, after loading, the equipment was subjected to a heating stage during which the stirrer was kept in motion at 5 RPM, while the vapors that formed were condensed and recovered. During This period the temperature curve of the resistances, the temperature curve in the lower part of the fluid and the recovered value of condensed solvent were recorded (Table 3).
Tabla 3. Desempeño del equipo durante la prueba. Table 3. Team performance during the test.
Fracción Fraction
T resistencias T interna Solvente T resistors T internal Solvent
t (min) solvente t (min) solvent
(K) (K) recuperado (mi) (K) (K) recovered (mi)
Recuperado Recovered
5 233 308 0 0.00 5 233 308 0 0.00
25 373 317 375 0.15 25 373 317 375 0.15
35 423 347 710 0.29 35 423 347 710 0.29
48 473 373 1 135 0.47 48 473 373 1 135 0.47
65 523 476 1710 0.71 65 523 476 1710 0.71
95 573 533 2120 0.88 95 573 533 2120 0.88
Estos datos permitieron establecer una relación entre la temperatura del fluido y la fracción de solvente en el interior del equipo (Figura 7). Adicionalmente, conociendo el calor latente de evaporación del solvente y midiendo la cantidad de solvente evaporado, se pudo establecer una relación entre la temperatura alcanzada por el fluido y la cantidad de energía requerida para la evaporación del solvente (Figura 8). These data made it possible to establish a relationship between the temperature of the fluid and the fraction of solvent inside the equipment (Figure 7). Additionally, knowing the latent heat of evaporation of the solvent and measuring the amount of solvent evaporated, it was possible to establish a relationship between the temperature reached by the fluid and the amount of energy required for the evaporation of the solvent (Figure 8).
Equipo para la planta piloto con resistencias configuradas a 379 K Equipment for the pilot plant with resistors configured at 379 K
Una vez configurado el modelo en el software ANSYS FLUENT se procedió a realizar la simulación. En primera instancia se fijó la temperatura de las resistencias en 379K, se ajustó el volumen inicial de llenado y se calculó hasta obtener convergencia, tanto para el equipo con agitador tipo ancla, como para con el del agitador tipo RibbonBlender. Once the model had been configured in the ANSYS FLUENT software, the simulation was carried out. In the first instance, the temperature of the resistors was set at 379K, the initial filling volume was adjusted and it was calculated until convergence was obtained, both for the equipment with an anchor-type stirrer, and for that of the RibbonBlender-type stirrer.
Se establecieron los diferentes aspectos de la distribución de temperatura. Se determinó que en el equipo tipo ancla se alcanzan valores mayores: The different aspects of the temperature distribution were established. It was determined that in the anchor type equipment higher values are reached:
89.9 °C para el equipo con agitador tipo ancla 89.9 ° C for anchor-type stirrer equipment
84.6 °C para el equipo con agitador tipo RibbonBlender Para el agitador tipo ancla se muestran dos zonas continuas con velocidades altas a la misma altura, mientras que para el agitador tipo RibbonBlender, las zonas de alta velocidad son menores y solo hay una de ellas por nivel. Lo anterior sugiere que con el agitador tipo ancla se puede encontrar mayor velocidad media en el fluido, lo cual se comprueba al hacer el cálculo: 84.6 ° C for equipment with RibbonBlender type agitator For the anchor type agitator, two continuous zones with high speeds are shown at the same height, while for the RibbonBlender type agitator, the high speed zones are smaller and there is only one of them per level. The above suggests that with the anchor-type agitator, a higher average speed can be found in the fluid, which is verified when making the calculation:
• 0.0181 m/s para el equipo con agitador tipo ancla • 0.0181 m / s for equipment with anchor type agitator
• 0.0136 m/s para el equipo con agitador tipo RibbonBlender. • 0.0136 m / s for equipment with RibbonBlender type agitator.
• Equipo para la planta piloto con resistencias configuradas a 541 K • Equipment for the pilot plant with resistors set to 541 K
Se fijó la temperatura de las resistencias en 541 K, y se calculó hasta obtener convergencia tanto para el equipo con agitador tipo ancla como para el agitador tipo Ribbon Blender. Se observó una interfase de mayor tamaño para el equipo con agitador tipo Ribbon Blender; mientras que con el equipo tipo ancla se alcanzan valores mayores de distribución de temperatura, esto se confirma al calcular el valor medio de la temperatura del hidrocarburo: The temperature of the resistors was set at 541 K, and it was calculated until convergence was obtained for both the equipment with an anchor-type stirrer and for the Ribbon Blender-type stirrer. A larger interface was observed for the equipment with a Ribbon Blender type agitator; While with the anchor type equipment higher values of temperature distribution are reached, this is confirmed by calculating the mean value of the hydrocarbon temperature:
• 246.6 °C para el equipo con agitador tipo ancla • 246.6 ° C for equipment with anchor type stirrer
• 230.8 °C para el equipo con agitador tipo Ribbon Blender • 230.8 ° C for equipment with Ribbon Blender type agitator
Ejemplo 4. Resultados de pruebas de evaluación en el aparato de invención Example 4. Results of evaluation tests on the inventive apparatus
En la prueba del aparato de invención, se alimentó una carga compuesta por una mezcla de crudo mejorado, solvente y material asfalténico, provenientes de una corriente de fondos del proceso de desasfaltado ECODESF®. La carga fue de aproximadamente 26 barriles de mezcla de crudo mejorado, solvente y material asfalténico obtenidos de una corriente de fondos del proceso. Inicialmente, se suministró calor, manteniendo el equipo a una presión de 239 kPa. La temperatura se llevó desde 300 K hasta alcanzar la separación total del solvente a 430 K, durante 150 minutos. Posteriormente, se aumentó la temperatura del equipo hasta llegar a 41 1 K, se inició la agitación con el propósito de homogenizar la mezcla de crudo mejorado y material asfalténico con el fin de asegurar una mejor transferencia de calor a todo el sistema. Transcurrido el tiempo de operación, se alcanzó una temperatura de 500 K, en la que además de asegurar la fluidez del material, se recuperó una fracción cercana al 10% del crudo mejorado original en la mezcla. En la figura 9 se presenta la curva de temperatura contra tiempo de operación del equipo de invención. In the test of the apparatus of the invention, a load composed of a mixture of improved crude oil, solvent and asphaltic material, from a bottom stream of the ECODESF ® deasphalting process, was fed. The load was approximately 26 barrels of a mixture of improved crude, solvent and asphalt material obtained from a bottom stream of the process. Initially, heat was supplied, keeping the equipment at a pressure of 239 kPa. The temperature was brought from 300 K until total removal of the solvent was reached at 430 K, for 150 minutes. Subsequently, the temperature of the equipment was increased until reaching 41 1 K, stirring was started in order to homogenize the mixture of improved crude oil and asphalt material in order to ensure better heat transfer to the entire system. After the operating time, a temperature of 500 K was reached, in which, in addition to ensuring the fluidity of the material, a fraction close to 10% of the original improved crude oil was recovered in the mixture. Figure 9 shows the temperature versus operating time curve of the equipment of the invention.
Una vez finalizado el ciclo de calentamiento en el aparato, el material fundido pasó a través de la válvula de descarga. Durante la descarga de la mezcla asfáltenos con crudo mejorado, se mantuvo el calentamiento del aparato, para evitar la solidificación y facilitar la transferencia del material al sistema de manejo de sólidos. Aguas abajo de la válvula de descarga, se ubicó un dispositivo de refrigeración con agua para garantizar el enfriamiento y solidificación del material. En la composición de los sólidos, el 79 % correspondió a asfáltenos, equivalente a 2.76 toneladas. La masa restante (21%) correspondía al crudo mejorado arrastrado por los sólidos. After completion of the heating cycle in the apparatus, the molten material passed through the discharge valve. During the discharge of the mixture asphalt with improved crude, the heating of the apparatus was maintained, to avoid solidification and facilitate the transfer of the material to the solids handling system. Downstream of the discharge valve, a water cooling device was located to guarantee the cooling and solidification of the material. In the composition of solids, 79% corresponded to asphalt, equivalent to 2.76 tons. The remaining mass (21%) corresponded to the improved crude carried out by the solids.

Claims

REIVINDICACIONES
1. Un aparato para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco en un proceso de desasfaltado caracterizado por que comprende las siguientes partes: 1. An apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphalt solid in a deasphalting process characterized in that it comprises the following parts:
a. Un dispositivo (101 ) de transporte de una mezcla de crudo mejorado, solvente y sólido asfalténico, para el transporte desde el proceso de desasfaltado al interior del aparato. to. A device (101) for transporting a mixture of improved crude oil, solvent and asphaltic solid, for transport from the deasphalting process into the apparatus.
b. Un recipiente (102) que cuenta con una entrada, controlada por una válvula, por donde ingresa la mezcla al aparato. b. A container (102) that has an inlet, controlled by a valve, through which the mixture enters the apparatus.
c. Un dispositivo de agitación (103) para la homogeneidad en la transferencia de masa y calor dentro del recipiente. c. A stirring device (103) for homogeneity in the transfer of mass and heat within the container.
d. Un sistema de calentamiento (104) incorporado al recipiente para el aumento de temperatura del material en el interior del mismo. d. A heating system (104) incorporated into the container to increase the temperature of the material inside it.
e. Un dispositivo de extrusión (105) constituido por una lámina con orificios para fragmentar los sólidos en hilos o partículas. and. An extrusion device (105) made up of a sheet with holes to break up the solids into threads or particles.
f. Una unidad de enfriamiento (106) instalada en el recipiente, que recibe los sólidos formados en la extrusión y los pone en contacto con un flujo de gases o agua de enfriamiento. F. A cooling unit (106) installed in the container, which receives the solids formed in the extrusion and brings them into contact with a flow of gases or cooling water.
g. Un conducto para salida de vapores (107) del recipiente. g. A conduit for the outlet of vapors (107) from the container.
h. Una válvula inferior de salida (108) que regula el paso de los asfáltenos fundidos hacia el dispositivo de extrusión. h. A lower outlet valve (108) that regulates the passage of the molten asphalt towards the extrusion device.
i. Un sistema de presurización (109) instalado en el recipiente, sistema, para la inyección de gas inerte. i. A pressurization system (109) installed in the container, system, for the injection of inert gas.
2. El aparato para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco, de acuerdo con la reivindicación 1 , caracterizado porque el dispositivo (101 ) de transporte de la mezcla, es un tornillo sinfín. 2. The apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphalt solid, according to claim 1, characterized in that the device (101) for transporting the mixture is an endless screw.
3. El aparato para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 1 , caracterizado porque el dispositivo de agitación es un agitador compuesto de dos cintas metálicas enrolladas en espiral. 3. The apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphaltic solid according to claim 1, characterized in that the stirring device is a stirrer composed of two metal ribbons wound in a spiral.
4. El aparato para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 1 , caracterizado porque dispositivo de agitación es un agitador tipo ancla. The apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphaltic solid according to claim 1, characterized in that the stirring device is an anchor-type stirrer.
5. El aparato para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 1 , caracterizado porque el sistema de presurización emplea gas inerte para la salida de los sólidos fundidos hacia el dispositivo de extrusión. The apparatus for the simultaneous recovery of solvent, improved crude oil and dry asphaltic solid according to claim 1, characterized in that the pressurization system uses inert gas for the exit of the molten solids towards the extrusion device.
6. El aparato para la recuperación de solvente, una fracción del crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 1 , caracterizado porque el dispositivo de extrusión (105) está conformado por una lámina perforada de 1 a 30 orificios, preferiblemente entre 7 a 19 orificios y diámetro de cada orificio entre 0,002 mm y 0,005 mm, preferiblemente entre 0,003 mm y 0,004 mm. 6. The apparatus for the recovery of solvent, a fraction of the improved crude oil and dry asphaltic solid according to claim 1, characterized in that the extrusion device (105) is made up of a perforated sheet with 1 to 30 holes, preferably between 7 to 19 holes and diameter of each hole between 0.002 mm and 0.005 mm, preferably between 0.003 mm and 0.004 mm.
7. El dispositivo de extrusión está conformado por una lámina perforada con orificios de acuerdo con la reivindicación 6, caracterizado porque posee calentamiento interno para mantener el sólido fluido mientras es extruido. 7. The extrusion device is made up of a perforated sheet with holes according to claim 6, characterized in that it has internal heating to keep the solid fluid while it is extruded.
8. El aparato para la recuperación de solvente, una fracción de crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 1 , caracterizado porque la unidad de enfriamiento (106) está conformada por una cavidad tubular, a través de la que caen sólidos. 8. The apparatus for the recovery of solvent, a fraction of improved crude oil and dry asphalt solid according to claim 1, characterized in that the cooling unit (106) is formed by a tubular cavity, through which solids fall.
9. El aparato para la recuperación simultánea de solvente, fracción de crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 1 , caracterizado porque la unidad de enfriamiento (106) instalada en el recipiente emplea gases como nitrógeno o agua como fluidos de enfriamiento. The apparatus for the simultaneous recovery of solvent, improved crude fraction and dry asphaltic solid according to claim 1, characterized in that the cooling unit (106) installed in the vessel uses gases such as nitrogen or water as cooling fluids.
10. El método para la recuperación simultánea de solvente, fracción de crudo mejorado y sólido asfalténico seco en un proceso de desasfaltado que comprende las siguientes etapas de: 10. The method for the simultaneous recovery of solvent, improved crude fraction and dry asphalt solid in a deasphalting process that comprises the following steps of:
a. Transferir el material a procesar del el proceso de desasfaltado hacia el aparato que permite la recuperación simultánea de solvente, fracción de crudo mejorado y sólido asfalténico seco. b. Una vez dentro del aparato, calentar el material en el recipiente hasta el punto de ebullición del solvente entre 300 y 430 K, evaporándolo totalmente. to. Transfer the material to be processed from the deasphalting process to the apparatus that allows the simultaneous recovery of solvent, improved crude fraction and dry asphalt solid. b. Once inside the apparatus, heat the material in the container to the boiling point of the solvent between 300 and 430 K, evaporating it completely.
c. Iniciar una homogenización permanente del material dentro del recipiente. c. Start a permanent homogenization of the material inside the container.
d. Continuar calentando el material dentro del recipiente hasta una temperatura que permita la evaporación y recuperación de la fracción liviana del crudo mejorado presente en el material, entre 400 y 550 K. d. Continue heating the material inside the container to a temperature that allows the evaporation and recovery of the light fraction of the improved crude present in the material, between 400 and 550 K.
e. Mantener el calentamiento dentro del recipiente, a la máxima temperatura que pueda suministrar el sistema de calentamiento, para que el sólido permanezca fundido y fluido. and. Maintain the heating inside the container, at the highest temperature that the heating system can supply, so that the solid remains molten and fluid.
f. Aplicar presión dentro del recipiente, presurizando el sistema entre 100-310 kPa, para facilitar la descarga del material. F. Apply pressure inside the container, pressurizing the system between 100-310 kPa, to facilitate the discharge of the material.
g. Abrir la salida del recipiente para que el flujo pase hacia el dispositivo de extrusión. h. Mantener el fluido caliente y extrudirlo a través del paso del mismo por el dispositivo de extrusión. g. Open the outlet of the container so that the flow passes towards the extrusion device. h. Keep the fluid warm and extrude it through its passage through the extrusion device.
i. Formar hilos o gotas del material para hacerlas caer a través de la unidad de enfriamiento donde un gas o agua permite su enfriamiento. i. Form threads or drops of the material to make them fall through the cooling unit where a gas or water allows its cooling.
11. El método para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 10, caracterizado porque la mezcla asfalténica o lodo asfalténico de entrada tiene una composición típica entre 10% y el 65% de sólidos, y la composición restante corresponde a la mezcla líquida de solvente y crudo mejorado, hasta una composición máxima del 85%. The method for the simultaneous recovery of solvent, improved crude and dry asphalt solid according to claim 10, characterized in that the input asphaltic mixture or asphaltic mud has a typical composition between 10% and 65% solids, and the The remaining composition corresponds to the liquid mixture of solvent and improved crude, up to a maximum composition of 85%.
12. El método para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 10, caracterizado porque la mezcla asfalténica o lodo asfalténico puede presentar una viscosidad entre 0.01 y 0.045 Pa.s a temperaturas entre 300 - 350 K. 12. The method for the simultaneous recovery of solvent, improved crude oil and dry asphaltic solid according to claim 10, characterized in that the asphaltic mixture or asphaltic mud can present a viscosity between 0.01 and 0.045 Pa.s at temperatures between 300-350 K.
13. El método para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 9, caracterizado porque una vez dentro del recipiente, la mezcla se somete a un calentamiento en un intervalo entre 300 K y 430 K para lograr la evaporación del solvente. The method for the simultaneous recovery of solvent, improved crude and dry asphaltic solid according to claim 9, characterized in that once inside the container, the mixture is subjected to heating in a range between 300 K and 430 K to achieve solvent evaporation.
14. El método para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 10, caracterizado porque se recupera el crudo mejorado al continuar calentando la mezcla desde 400 K hasta 550 K, iniciando agitación alrededor de los 422 K. 14. The method for the simultaneous recovery of solvent, improved crude oil and dry asphalt solid according to claim 10, characterized in that the improved crude is recovered by continuing to heat the mixture from 400 K to 550 K, starting stirring around 422 K .
15. El método para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 10, caracterizado porque se aplica presión al sistema entre 1 15 kPa y 308 kPa. The method for the simultaneous recovery of solvent, improved crude oil and dry asphaltic solid according to claim 10, characterized in that pressure is applied to the system between 1 15 kPa and 308 kPa.
16. El método para la recuperación simultánea de solvente, crudo mejorado y sólido asfalténico seco de acuerdo con la reivindicación 10, caracterizado porque los hilos o gotas formados pasan a través de la unidad de enfriamiento donde se ponen en contacto con gases tipo nitrógeno o aire, o agua. 16. The method for the simultaneous recovery of solvent, improved crude and dry asphaltic solid according to claim 10, characterized in that the threads or drops formed pass through the cooling unit where they are put in contact with gases such as nitrogen or air , or water.
17. El método para la recuperación simultánea de solvente, fracción de crudo mejorado y sólido asfalténico seco en un proceso de desasfaltado donde el aparato puede adaptarse como etapa final para procesamiento de corrientes de fondo de procesos de mejoramiento de crudos pesados y extra pesados, procesos de separación de fases pesadas y/o procesos de coquización retardada. 17. The method for the simultaneous recovery of solvent, fraction of improved crude oil and dry asphalt solid in a deasphalting process where the apparatus can be adapted as a final stage for processing bottom streams of improvement processes of heavy and extra heavy crude, processes of heavy phase separation and / or delayed coking processes.
PCT/CO2020/000007 2019-07-26 2020-07-24 Machine and method for the simultaneous recovery of solvent, improved crude oil and dry asphaltene solid in a deasphalting process WO2021018320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2019/0008161A CO2019008161A1 (en) 2019-07-26 2019-07-26 Apparatus and method for the simultaneous recovery of solvent, improved crude oil and dry asphalt solid in a deasphalting process
CONC2019/0008161 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021018320A1 true WO2021018320A1 (en) 2021-02-04

Family

ID=74192016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2020/000007 WO2021018320A1 (en) 2019-07-26 2020-07-24 Machine and method for the simultaneous recovery of solvent, improved crude oil and dry asphaltene solid in a deasphalting process

Country Status (2)

Country Link
CO (1) CO2019008161A1 (en)
WO (1) WO2021018320A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60025429T2 (en) * 1999-11-23 2006-07-20 Kellogg Brown & Root, Inc., Houston Residual oil particles, process and apparatus for their production
US7101499B1 (en) * 2000-07-27 2006-09-05 Ormat Technologies, Inc. Method of and apparatus for producing pellets from heavy hydrocarbon liquid
JP2011157547A (en) * 2010-02-03 2011-08-18 Kellogg Brown & Root Llc System and method for pelletizing heavy hydrocarbon
WO2016084034A1 (en) * 2014-11-28 2016-06-02 Ecopetrol S.A. System and method for separating the heavy phase of heavy and extra-heavy crude oils by using a solvent in subcritical conditions
WO2016110747A1 (en) * 2015-01-09 2016-07-14 Etanchal Spa Process for packaging bitumen, packaging for packaged bitumen and use of this packaging for storing and transporting bitumen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60025429T2 (en) * 1999-11-23 2006-07-20 Kellogg Brown & Root, Inc., Houston Residual oil particles, process and apparatus for their production
US7101499B1 (en) * 2000-07-27 2006-09-05 Ormat Technologies, Inc. Method of and apparatus for producing pellets from heavy hydrocarbon liquid
JP2011157547A (en) * 2010-02-03 2011-08-18 Kellogg Brown & Root Llc System and method for pelletizing heavy hydrocarbon
WO2016084034A1 (en) * 2014-11-28 2016-06-02 Ecopetrol S.A. System and method for separating the heavy phase of heavy and extra-heavy crude oils by using a solvent in subcritical conditions
WO2016110747A1 (en) * 2015-01-09 2016-07-14 Etanchal Spa Process for packaging bitumen, packaging for packaged bitumen and use of this packaging for storing and transporting bitumen

Also Published As

Publication number Publication date
CO2019008161A1 (en) 2021-01-29

Similar Documents

Publication Publication Date Title
BR0100963B1 (en) process for recovering a pumpable crude oil from an underground bitumen or heavy oil reservoir and system for producing a pumpable synthetic crude oil.
CN101952199B (en) Making discrete solid particles of polymeric material
RU2015105894A (en) METHOD AND SYSTEM FOR PREPARING A LIQUID FOR HYDRAULIC FRACTURES
WO2017106146A1 (en) Supercritical water upgrading process to produce high grade coke
JP2011017022A (en) Petroleum resid pelletization
BRPI1013631B1 (en) PROCESS FOR THE PRODUCTION OF AMMONIUM SULFATE NITRATE
CA2740935A1 (en) Enhanced temperature control of bitumen froth treatment process
CA2815281C (en) Sublimation systems and associated methods
BR112013027924B1 (en) PROCESS FOR DEPOLIMERIZATION OF PLASTIC MATERIAL
BR112013026336B1 (en) method of obtaining carbon black from rubber waste and device for the same
CN104445087B (en) The insoluble sulfur of high-quality and manufacture method thereof
JPS6295101A (en) Method and apparatus for recovering solid substance dissolved from liquid substance mixture
WO2013099665A1 (en) Production method for ashless coal
JP2018513892A (en) Method for mixing in hydrocarbon conversion processes
JPH01301786A (en) Continuous fluidization for improving quality of raw material containing heavy hydrocarbon
WO2021018320A1 (en) Machine and method for the simultaneous recovery of solvent, improved crude oil and dry asphaltene solid in a deasphalting process
CN108291769B (en) Process for removing CO2 from a contaminated hydrocarbon stream
US2896261A (en) Method of cooling and granulating petroleum pitch
JPH0639204A (en) Method and device for treating material or material mixture
JP5834075B2 (en) Method for thermally separating a solvent from a solution comprising a polymer and a solvent
US20160108320A1 (en) Method for treating oil sands and device for implementing such a method
US8444887B2 (en) Methods and systems for conversion of molten sulfur to powder sulfur
US20140138862A1 (en) Process and Apparatus for Making Proppants
US11566183B2 (en) Recovery of hydrocarbon diluent from froth treatment tailings
BRPI0720326A2 (en) Method for the production, storage and transport of hydrate gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846808

Country of ref document: EP

Kind code of ref document: A1