WO2021018220A1 - 一种燃料电池发动机用空气供给系统及方法 - Google Patents
一种燃料电池发动机用空气供给系统及方法 Download PDFInfo
- Publication number
- WO2021018220A1 WO2021018220A1 PCT/CN2020/105595 CN2020105595W WO2021018220A1 WO 2021018220 A1 WO2021018220 A1 WO 2021018220A1 CN 2020105595 W CN2020105595 W CN 2020105595W WO 2021018220 A1 WO2021018220 A1 WO 2021018220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- air compressor
- fuel cell
- compressor
- supply system
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1423—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present disclosure relates to the technical field of fuel cell engine system energy recovery, in particular to an air supply system for a fuel cell engine with possible quantity recovery and a working method thereof.
- the fuel cell engine system is widely regarded as one of the main energy power devices in the future society because of its pollution-free, zero emission, and high energy conversion efficiency.
- the air compressor is the main component that provides oxygen to the fuel cell stack cathode of the fuel cell system.
- the air compressor is driven by the motor and the expander. It is an important component of the fuel cell cathode air supply system for vehicles. It pressurizes the air entering the stack , Can improve the power density and efficiency of the fuel cell, and reduce the size of the fuel cell system.
- the parasitic power consumption of the air compressor is very large, accounting for about 80% of the auxiliary functions of the fuel cell, which directly affects the stoichiometric ratio in the fuel cell engine, and thus the efficiency of the fuel cell system.
- the existing fuel cell engine air supply system can Higher consumption.
- the present disclosure provides an air supply system and method for a fuel cell engine with possible recovery, which can recover the air compressor from a high speed to a low speed during the variable load output process of the fuel cell.
- the kinetic energy in the process of speed conversion improves energy utilization efficiency and increases the response speed of the air compressor from high speed to low speed.
- An air supply system for a fuel cell engine includes an air cleaner, an air compressor and a humidifier.
- the ambient air flows into the air compressor through the air cleaner, and the air flows into the air compressor after being pressurized by the air compressor.
- Humidifier humidified by the humidifier, flows into the fuel cell stack.
- the air compressor includes a compressor, an air compressor motor, and an air compressor controller.
- One end of the compressor is connected to an air filter, and the other end is connected to a humidifier; the air compressor motor Connected with the compressor, and the air compressor controller is connected with the air compressor motor.
- the air compressor controller is also connected to an energy storage battery, the energy storage battery outputs direct current to the air compressor controller, and the air compressor controller converts the direct current into three-phase alternating current and outputs it to the air compressor motor.
- the rotation of the compressor motor drives the compressor to rotate and compress air to achieve air boost.
- the air compressor controller is also communicatively connected with the fuel cell control unit through the CAN bus, receives a negative torque command sent by the fuel cell control unit, and controls the air compressor motor to convert the kinetic energy of the compressor into AC electrical energy.
- the machine controller converts the AC power output by the air compressor motor into DC power and stores it in the energy storage battery.
- a working method of an air supply system for a fuel cell engine includes the following steps:
- the energy storage battery outputs DC power to the air compressor controller.
- the air compressor controller converts the DC power into three-phase AC power and outputs it to the air compressor motor.
- the air compressor motor rotates to drive the compressor to rotate and compress air to achieve air boost;
- the pressurized air flows into the humidifier, and then flows into the fuel cell stack after being humidified by the humidifier.
- the air compressor controller receives the negative torque command sent by the fuel cell control unit, and then controls the air compressor motor to convert the kinetic energy of the compressor into AC electrical energy;
- the air compressor controller converts the AC power output by the air compressor motor into DC power and stores it in the energy storage battery.
- a fuel cell engine system is characterized in that the system includes a fuel cell stack and an air supply system for the fuel cell engine, and ambient air flows into the fuel cell stack after being pressurized and humidified by the air supply system for the fuel cell engine.
- the present disclosure can recover the kinetic energy during the conversion process of the air compressor from high rotation speed to low rotation speed and the shutdown process, thereby improving energy utilization efficiency;
- the air compressor motor of the present disclosure has a braking effect when used as a generator, which improves the response speed of the air compressor from high speed to low speed.
- Figure 1 is a structural diagram of an air supply system for a fuel cell engine according to the first embodiment
- this embodiment provides an air supply system for a fuel cell engine that can be recovered.
- the air supply system changes from high power to the fuel cell engine.
- the air compressor controller is used to control the air compressor motor to operate as a generator, thereby recovering the kinetic energy of the air compressor during the conversion from high speed to low speed, and improving energy utilization efficiency.
- the air supply system improves the response speed of the air compressor from high speed to low speed.
- the air supply system for fuel cell engines with possible volume recovery is composed of air cleaner 1, air compressor 2 and humidifier 4. Ambient air flows into the air compressor through air cleaner 1 2. The air flows into the humidifier 4 after being pressurized by the air compressor 2, and flows into the fuel cell stack 5 after being humidified by the humidifier 4.
- the air compressor 2 is composed of a compressor 3, an air compressor motor 6 and an air compressor controller 8.
- One end of the compressor 3 is connected to the air cleaner 1, and the other end is connected to the humidifier 4. Connection;
- the compressor 3 is also connected to the air compressor motor 6, and one end of the air compressor controller 8 is connected to the energy storage battery 7; the other end is connected to the air compressor motor 6.
- the air compressor controller 8 can convert direct current to alternating current, and can also convert alternating current to direct current.
- the air compressor motor 6 can be used as a motor to convert electrical energy into mechanical energy, or as a generator to convert mechanical energy into Electrical energy.
- the energy storage battery 7 outputs direct current to the air compressor controller 8.
- the air compressor controller 8 converts the direct current into three-phase alternating current and outputs it to the air compressor motor 6.
- the motor 6 rotates to drive the compressor 3 to rotate and pressurize the air to achieve air boost; when the air compressor motor 6 is used as a generator, the compressor 3 drives the air compressor motor 6 to rotate and generate electricity, and the generated three-phase alternating current is passed through the air compressor controller 8 After being converted into direct current, the energy storage battery 7 is charged, and the electric energy is stored in the energy storage battery 7 for backup.
- the air compressor controller 8 controls the air compressor motor 6 to operate as a generator, thereby recovering the air compressor from The kinetic energy during the transition from high speed to low speed.
- the operation of the fuel cell engine system is controlled by the fuel cell control unit FCU9.
- the air compressor controller 8 communicates with the fuel cell control unit FCU9 through the CAN bus.
- the air compressor controller 8 is based on the received from the FCU9
- the rotation speed command adjusts the speed of the air compressor motor 6 to realize the adjustment of the rotation speed of the compressor 3.
- FCU9 When FCU9 needs to control the fuel cell engine to change from high-power operating conditions to low-power operating conditions in response to load demand, correspondingly, the speed of the air compressor also needs to change from high speed to low speed.
- FCU9 passes through the CAN bus.
- Send a negative torque command to the air compressor controller 8 (the motor control under this working condition is a torque control mode, and the specific negative torque value needs to be calibrated according to each working condition), after the air compressor controller 8 receives the negative torque command ,
- the air compressor motor 6 is controlled to operate as a generator, and the kinetic energy of the compressor 3 is converted into electric energy, which is then converted into direct current by the air compressor controller 8 and stored in the energy storage battery 7.
- the FCU 9 constantly monitors the air When the speed of the compressor motor 6 reaches the target low speed, it stops sending a negative torque command to the air compressor controller 8, and the air compressor 2 runs stably at this target low speed.
- the air supply system proposed in this embodiment can recover the kinetic energy of the air compressor from the high-speed to low-speed conversion process and the shutdown process, improve energy utilization efficiency, and because the motor has a braking effect when used as a generator, it is comparable to the prior art Compared with this, the air compressor in the air supply system will change from a high speed to a low speed more quickly, that is, the speed regulation response is faster.
- the present embodiment provides a working method of an air supply system for a fuel cell engine with possible quantity recovery, which is characterized in that the method includes the following steps:
- the ambient air flows into the compressor 3 of the air compressor through the air filter 1;
- the energy storage battery 7 outputs direct current to the air compressor controller 8.
- the air compressor controller 8 converts the direct current into three-phase alternating current and then outputs it to the air compressor motor 6.
- the air compressor motor 6 rotates to drive the compressor 3 to rotate and compress air To achieve air boost;
- the pressurized air flows into the humidifier 4, and after being humidified by the humidifier 4, flows into the fuel cell stack 5.
- the FCU 9 sends a negative torque command to the air compressor controller 8 through the CAN bus. After receiving the negative torque command, the air compressor controller 8 controls the air compressor motor 6 to operate as a generator. The kinetic energy of the compressor 3 is converted into electric energy, which is then converted into direct current by the air compressor controller 8 and stored in the energy storage battery 7. During this process, the FCU 9 constantly monitors the speed of the air compressor motor 6 and when the speed drops When the value is set, stop sending a negative torque command to the air compressor controller 8.
- This embodiment provides a fuel cell engine system.
- the system includes a fuel cell stack and an air supply system for a fuel cell engine.
- the output end of the fuel cell engine air supply system is connected to the fuel cell stack; ambient air passes through the fuel cell engine.
- the air supply system is pressurized and humidified and then flows into the fuel cell stack.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种燃料电池发动机用空气供给系统及方法,能够回收燃料电池在变载输出过程中空压机由高转速向低转速转换过程中的动能,提高能量利用效率,并且提高空压机由高转速向低转速转变的响应速度。该系统包括空气滤清器、空压机和增湿器,环境空气经空气滤清器流进空压机,空气经空压机增压后流进增湿器,经增湿器增湿后流进燃料电池堆;所述空压机包括压缩机、空压机电机和空压机控制器。
Description
本公开涉及燃料电池发动机系统能量回收技术领域,具体涉及一种可能量回收的燃料电池发动机用空气供给系统及其工作方法。
随着环境污染及能源短缺问题日益严峻,燃料电池发动机系统因其具有无污染、零排放、能量转化效率高的特点,被普遍认为是未来社会主要的能源动力装置之一。
空压机是给燃料电池系统燃料电池堆阴极提供氧气的主要部件,空压机由电机和膨胀机共同驱动,是车用燃料电池阴极供气系统的重要部件,通过对进堆空气进行增压,可以提高燃料电池的功率密度和效率,减小燃料电池系统的尺寸。但空压机的寄生功耗很大,约占燃料电池辅助功能的80%,直接影响燃料电池发动机中的化学计量比,进而影响燃料电池系统的效率,现有的燃料电池发动机空气供给系统能耗较高。
发明内容
针对燃料电池发动机空气供给系统能耗高的问题,本公开提供了一种可能量回收的燃料电池发动机用空气供给系统及方法,能够回收燃料电池在变载输出过程中空压机由高转速向低转速转换过程中的动能,提高能量利用效率,并且提高空压机由高转速向低转速转变的响应速度。
本公开一方面提供的一种燃料电池发动机用空气供给系统的技术方案是:
一种燃料电池发动机用空气供给系统,该系统包括空气滤清器、空压机和 增湿器,环境空气经空气滤清器流进空压机,空气经空压机增压后流进增湿器,经增湿器增湿后流进燃料电池堆。
进一步的,所述空压机包括压缩机、空压机电机和空压机控制器,所述压缩器的一端与空气滤清器连接,另一端与增湿器连接;所述空压机电机与压缩机连接,所述空压机控制器与空压机电机连接。
进一步的,所述空压机控制器还与储能电池连接,储能电池输出直流电至空压机控制器,空压机控制器将直流电转换为三相交流电后输出至空压机电机,空压机电机旋转带动压缩机旋转压气,实现空气增压。
进一步的,所述空压机控制器还通过CAN总线与燃料电池控制单元通讯连接,接收燃料电池控制单元发送的负扭矩命令,控制空压机电机将压缩机的动能转化为交流电能,空压机控制器将空压机电机输出的交流电转化为直流电后储存在储能电池中。
本公开另一方面提供的一种燃料电池发动机用空气供给系统的工作方法的技术方案是:
一种燃料电池发动机用空气供给系统的工作方法,该方法包括以下步骤:
环境空气经空气滤清器流进压缩机;
储能电池输出直流电至空压机控制器,空压机控制器将直流电转换为三相交流电后输出至空压机电机,空压机电机旋转带动压缩机旋转压气,实现空气增压;
增压后的空气流进增湿器,经增湿器增湿后流进燃料电池堆。
进一步的,还包括:
当燃料电池发动机需要停机时,空压机控制器接收到燃料电池控制单元发 送的负扭矩命令后,控制空压机电机将压缩机的动能转化为交流电能;
空压机控制器将空压机电机输出的交流电转化为直流电后储存在储能电池中。
进一步的,还包括:
采集空压机电机的转速,当空压机电机转速下降至设定值时,停止向空压机控制器发送负扭矩命令。
本公开另一方面提供的一种燃料电池发动机系统的技术方案是:
一种燃料电池发动机系统,其特征是,该系统包括燃料电池堆和燃料电池发动机用空气供给系统,环境空气经燃料电池发动机用空气供给系统增压和增湿后流进燃料电池堆。
通过上述技术方案,本公开的有益效果是:
(1)本公开能够回收空压机由高转速向低转速转换过程以及停机过程中的动能,提高能量利用效率;
(2本公开的空压机电机作为发电机时具有制动作用,提高了空压机由高转速向低转速转变的响应速度。
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本申请,并不构成对本公开的不当限定。
图1是实施例一燃料电池发动机用空气供给系统的结构图;
其中,1、空气滤清器,2、空压机,3、压缩机,4、增湿器,5、燃料电池堆,6、空压机电机,7、储能电池,8、空压机控制器,9、燃料电池控制单元。
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本公开使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一
针对燃料电池发动机关键零部件空压机寄生功耗高的问题,本实施例提供了一种可能量回收的燃料电池发动机用空气供给系统,该空气供给系统在燃料电池发动机由大功率工况向小功率工况转变以及发动机停机的过程中,利用空压机控制器控制空压机电机作为发电机运行,从而回收空压机由高转速向低转速转换过程中的动能,提高能量利用效率,与此同时,该空气供给系统提高了空压机由高转速向低转速转变的响应速度。
请参阅附图1,所述可能量回收的燃料电池发动机用空气供给系统由空气滤清器1、空压机2和增湿器4组成,环境空气经空气滤清器1流进空压机2,空气经空压机2增压后流进增湿器4,经增湿器4增湿后流进燃料电池堆5。
具体地,所述空压机2由压缩机3、空压机电机6和空压机控制器8组成,所述压缩器3的一端与空气滤清器1连接,另一端与增湿器4连接;所述压缩机3还与空压机电机6连接,所述空压机控制器8的一端与储能电池7连接; 另一端与空压机电机6连接。
所述空压机控制器8即能实现直流电转变为交流电,也能实现交流电转换为直流电,所述空压机电机6即能作为电动机将电能转换为机械能,也能作为发电机将机械能转换为电能。所述空压机电机6作为电动机时,储能电池7输出直流电至空压机控制器8,空压机控制器8将直流电转换为三相交流电后输出至空压机电机6,空压机电机6旋转带动压缩机3旋转压气,实现空气增压;空压机电机6作为发电机时,压缩机3拖动空压机电机6旋转发电,生成的三相交流电经空压机控制器8转换为直流电后给储能电池7充电,电能储存在储能电池7内备用。
在燃料电池发动机变载输出过程中由大功率工况向小功率工况转变以及发动机停机的过程中,空压机控制器8控制空压机电机6作为发电机运行,从而回收空压机由高转速向低转速转换过程中的动能。
所述燃料电池发动机系统的运行由燃料电池控制单元FCU9进行控制,所述空压机控制器8与燃料电池控制单元FCU9通过CAN总线进行通讯,空压机控制器8根据接收到的来自FCU9的转速命令对空压机电机6进行调速,进而实现对压缩机3的转速调节。
当FCU9为响应负载需求,需要控制燃料电池发动机由大功率工况向小功率工况转变时,相应的,空压机的转速也需要由高转速向低转速转变,此时,FCU9通过CAN总线向空压机控制器8发送负扭矩命令(此工况下的电机控制为扭矩控制模式,具体负扭矩的值需要根据各工况进行标定),空压机控制器8接收到负扭矩命令后,控制空压机电机6作为发电机运行,将压缩机3的动能转化为电能,进而经空压机控制器8转化为直流电后储存在储能电池7中,此过程中, FCU9时刻监控空压机电机6的转速,当达到目标低转速后,停止向空压机控制器8发送负扭矩命令,空压机2以此目标低转速稳定运行。
本实施例提出的空气供给系统能够回收空压机由高转速向低转速转换过程以及停机过程中的动能,提高能量利用效率,并且由于电机作为发电机时具有制动作用,与现有技术相比,该空气供给系统中空压机由高转速向低转速的转换会更迅速,即调速响应更快。
实施例二
本实施例提供一种可能量回收的燃料电池发动机用空气供给系统的工作方法,其特征是,该方法包括以下步骤:
S1,环境空气经空气滤清器1流进空压机的压缩机3;
S2,储能电池7输出直流电至空压机控制器8,空压机控制器8将直流电转换为三相交流电后输出至空压机电机6,空压机电机6旋转带动压缩机3旋转压气,实现空气增压;
S3,增压后的空气流进增湿器4,经增湿器4增湿后流进燃料电池堆5。
本实施例提出的可能量回收的燃料电池发动机用空气供给系统的工作方法还包括以下步骤:
S4,当燃料电池发动机需要停机时,FCU9通过CAN总线向空压机控制器8发送负扭矩命令,空压机控制器8接收到负扭矩命令后,控制空压机电机6作为发电机运行,将压缩机3的动能转化为电能,进而经空压机控制器8转化为直流电后储存在储能电池7中,此过程中,FCU9时刻监控空压机电机6的转速,当转速降至设定值时,停止向空压机控制器8发送负扭矩命令。
实施例三
本实施例提供一种燃料电池发动机系统,该系统包括燃料电池堆和燃料电池发动机用空气供给系统,所述燃料电池发动机用空气供给系统的输出端与燃料电池堆连接;环境空气经燃料电池发动机用空气供给系统增压和增湿后流进燃料电池堆。
其中,本实施例的燃料电池发动机用空气供给系统的具体结构请参阅前面实施例的相关描述,在此不做赘述。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。
Claims (5)
- 一种燃料电池发动机用空气供给系统,其特征是,包括空气滤清器、空压机和增湿器,环境空气经空气滤清器流进空压机,空气经空压机增压后流进增湿器,经增湿器增湿后流进燃料电池堆;所述空压机包括压缩机、空压机电机和空压机控制器,所述压缩机的一端与空气滤清器连接,另一端与增湿器连接;所述空压机电机与压缩机连接,所述空压机控制器与空压机电机连接;所述空压机控制器还与储能电池连接,储能电池输出直流电至空压机控制器,空压机控制器将直流电转换为三相交流电后输出至空压机电机,空压机电机旋转带动压缩机旋转压气,实现空气增压;所述空压机控制器还通过CAN总线与燃料电池控制单元通讯连接,接收燃料电池控制单元发送的负扭矩命令,控制空压机电机将压缩机的动能转化为交流电能,空压机控制器将空压机电机输出的交流电转化为直流电后储存在储能电池中。
- 一种基于权利要求1所述的燃料电池发动机用空气供给系统的工作方法,其特征是,该方法包括以下步骤:环境空气经空气滤清器流进压缩机;储能电池输出直流电至空压机控制器,空压机控制器将直流电转换为三相交流电后输出至空压机电机,空压机电机旋转带动压缩机旋转压气,实现空气增压;增压后的空气流进增湿器,经增湿器增湿后流进燃料电池堆。
- 根据权利要求2所述的燃料电池发动机用空气供给系统的工作方法,其 特征是,还包括:当燃料电池发动机需要停机时,空压机控制器接收到燃料电池控制单元发送的负扭矩命令后,控制空压机电机将压缩机的动能转化为交流电能;空压机控制器将空压机电机输出的交流电转化为直流电后储存在储能电池中。
- 根据权利要求3所述的燃料电池发动机用空气供给系统的工作方法,其特征是,还包括:采集空压机电机的转速,当空压机电机转速下降至设定值时,停止向空压机控制器发送负扭矩命令。
- 一种燃料电池发动机系统,其特征是,该系统包括燃料电池堆和权利要求1所述的燃料电池发动机用空气供给系统,环境空气经燃料电池发动机用空气供给系统增压和增湿后流进燃料电池堆。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910690153.6A CN110459784B (zh) | 2019-07-29 | 2019-07-29 | 一种燃料电池发动机用空气供给系统及方法 |
CN201910690153.6 | 2019-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021018220A1 true WO2021018220A1 (zh) | 2021-02-04 |
Family
ID=68483947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/105595 WO2021018220A1 (zh) | 2019-07-29 | 2020-07-29 | 一种燃料电池发动机用空气供给系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110459784B (zh) |
WO (1) | WO2021018220A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110459784B (zh) * | 2019-07-29 | 2020-06-19 | 中通客车控股股份有限公司 | 一种燃料电池发动机用空气供给系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009254155A (ja) * | 2008-04-08 | 2009-10-29 | Toyota Motor Corp | 燃料電池ハイブリッドシステム |
CN103287279A (zh) * | 2012-02-24 | 2013-09-11 | 福特全球技术公司 | 车辆系统 |
CN109278590A (zh) * | 2018-09-28 | 2019-01-29 | 奇瑞汽车股份有限公司 | 一种氢燃料电池汽车热管理系统 |
CN110459784A (zh) * | 2019-07-29 | 2019-11-15 | 中通客车控股股份有限公司 | 一种燃料电池发动机用空气供给系统及方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100565998C (zh) * | 2006-12-27 | 2009-12-02 | 中国科学院大连化学物理研究所 | 一种高温质子交换膜燃料电池组的冷却方法及其系统 |
CN108172866A (zh) * | 2017-12-29 | 2018-06-15 | 萍乡北京理工大学高新技术研究院 | 燃料电池空气供给系统及控制方法 |
CN108417863B (zh) * | 2018-02-08 | 2020-12-15 | 广东国鸿氢能科技有限公司 | 一种燃料电池启动控制方法及装置 |
-
2019
- 2019-07-29 CN CN201910690153.6A patent/CN110459784B/zh active Active
-
2020
- 2020-07-29 WO PCT/CN2020/105595 patent/WO2021018220A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009254155A (ja) * | 2008-04-08 | 2009-10-29 | Toyota Motor Corp | 燃料電池ハイブリッドシステム |
CN103287279A (zh) * | 2012-02-24 | 2013-09-11 | 福特全球技术公司 | 车辆系统 |
CN109278590A (zh) * | 2018-09-28 | 2019-01-29 | 奇瑞汽车股份有限公司 | 一种氢燃料电池汽车热管理系统 |
CN110459784A (zh) * | 2019-07-29 | 2019-11-15 | 中通客车控股股份有限公司 | 一种燃料电池发动机用空气供给系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110459784A (zh) | 2019-11-15 |
CN110459784B (zh) | 2020-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018184351A1 (zh) | 车辆复合能源供给系统及方法、复合能源汽车 | |
CN107516905B (zh) | 一种多元耦合储能系统 | |
CN111430751B (zh) | 燃料电池系统的怠速供氧控制方法及系统 | |
KR100704963B1 (ko) | 태양광-풍력 발전 시스템의 제어장치 | |
CN201247964Y (zh) | 变桨距系统电源 | |
CN114388843B (zh) | 一种燃料电池系统及控制方法 | |
CN101325344B (zh) | 一种小型风力发电机低风速充电控制器 | |
CN212400925U (zh) | 增程式混合动力工程机械能量管理系统 | |
CN111668860B (zh) | 一种风氢耦合发电系统及其控制方法 | |
WO2023134180A1 (zh) | 增程式电动车辆及其控制方法 | |
WO2021018220A1 (zh) | 一种燃料电池发动机用空气供给系统及方法 | |
CN107021191A (zh) | 一种平衡船 | |
CN113517683A (zh) | 转子侧储能的直流并网型双馈风力发电系统及其控制方法 | |
CN111287805A (zh) | 一种高效灵活汽电混合动力设备 | |
CN103825292B (zh) | 实现运动能量回收发电的节能装置及其控制方法 | |
CN212454554U (zh) | 一种高效灵活汽电混合动力设备 | |
CN111703443B (zh) | 混合动力机车及其能量平衡控制方法与系统 | |
CN207989140U (zh) | 一种脉冲式电辅助涡轮增压发电装置 | |
CN205646981U (zh) | 混合触发发电系统 | |
CN216975121U (zh) | 一种风力发电机卸荷系统 | |
CN215452696U (zh) | 基于气动马达变工况的发电装置 | |
CN205647186U (zh) | 保护型混合发电系统 | |
CN111022131A (zh) | 一种用于双动力汽轮机的动态功率控制方法 | |
JP2003123778A (ja) | 電源システム及びその運転方法 | |
CN212572095U (zh) | 一种游梁式抽油机的节能装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20847853 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20847853 Country of ref document: EP Kind code of ref document: A1 |