WO2023134180A1 - 增程式电动车辆及其控制方法 - Google Patents

增程式电动车辆及其控制方法 Download PDF

Info

Publication number
WO2023134180A1
WO2023134180A1 PCT/CN2022/116642 CN2022116642W WO2023134180A1 WO 2023134180 A1 WO2023134180 A1 WO 2023134180A1 CN 2022116642 W CN2022116642 W CN 2022116642W WO 2023134180 A1 WO2023134180 A1 WO 2023134180A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
air
vehicle
battery system
range
Prior art date
Application number
PCT/CN2022/116642
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
靳普科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靳普科技(北京)有限公司 filed Critical 靳普科技(北京)有限公司
Publication of WO2023134180A1 publication Critical patent/WO2023134180A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/12Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable fluidic accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to an extended-range electric vehicle and a control method thereof, belonging to the technical field of vehicles.
  • the range-extended electric vehicles mainly involve three situations: the first one uses the internal combustion engine as the range extender, that is, uses the internal combustion engine to drive the generator to generate electricity to charge the battery; the second one uses the free piston expander-linear generator as the range extender
  • the range extender uses compressed air to drive a free piston generator to output electric energy to charge the battery; the third type uses a micro gas turbine as a range extender to use the output shaft of the gas turbine to drive the generator to charge the battery.
  • CN 204383180 U discloses an electric vehicle with The program electric vehicle transmission adopts the flywheel energy storage to recover the braking energy. This scheme is complicated in structure, bulky, is not easy to implement.
  • CN 104691358 A discloses an energy recovery control method and device for a range-extended electric vehicle, which compares the pre-charging power with the maximum allowable secondary electric power of the power battery, and determines the braking recovery currently used by the range extender of the electric vehicle according to the comparison result. power. This solution needs to monitor and limit the charging power in the extended range working mode.
  • the power recovered during the braking process of the motor of a hybrid vehicle ranges from a dozen kilowatts to forty to fifty kilowatts, and a pure electric vehicle can reach sixty to seventy kilowatts.
  • the energy recovered by electric vehicles during braking is less than 30% of the braking energy, and the rest of the energy is released in the form of heat, resulting in energy waste.
  • the wheels of the vehicle need to be exposed, and the exposed wheels will increase the resistance of the vehicle.
  • the present invention provides a range-extended electric vehicle and a control method thereof.
  • the range-extended electric vehicle of the present invention can reasonably recycle the energy in the braking process of the vehicle without limiting the output power of the range extender, and can timely and effectively utilize the excess electric energy output by the generator, and when the vehicle needs Provides extra power to the vehicle when accelerating.
  • An extended-range electric vehicle comprising:
  • An electric vehicle comprising:
  • a driving system including a motor A as a driving motor, and a wheel coaxially connected with the motor A;
  • the battery system is electrically connected to the motor A and provides electric energy for the motor A;
  • An energy recovery system including an electronically controlled clutch, an air compressor pump A and a high-pressure gas cylinder, wherein the air compressor A is connected to the motor A through an electronically controlled clutch; the high-pressure gas cylinder is connected to the air compressor A, and the air compressor A is used to compress Air and stored in high pressure cylinders;
  • a range extender comprising a connected micro gas turbine and a generator connected to the battery system
  • the micro gas turbine includes a rotating shaft, a compressor, a combustion chamber, a turbine and a regenerator, the compressor and the turbine are arranged on the rotating shaft, the exhaust port of the compressor communicates with the air inlet at the cold end of the regenerator, and the heat regenerator
  • the air outlet at the end is connected with the air inlet of the combustion chamber
  • the air outlet of the combustion chamber is connected with the air inlet of the turbine
  • the exhaust port of the turbine is connected with the air inlet of the hot end of the regenerator.
  • the high temperature exhaust gas discharged by the turbine When working, the high temperature exhaust gas discharged by the turbine is used Preheating the air intake at the inlet of the combustion chamber: the high-temperature exhaust gas discharged from the turbine enters the regenerator, and exchanges heat with the compressed air that enters the regenerator through the exhaust port of the compressor. After the heat exchange, the temperature of the compressed air rises and Entering the combustion chamber, the temperature of the exhaust gas is lowered and discharged through the gas outlet at the cold end of the regenerator.
  • the micro gas turbine also includes at least one thermal element, the thermal element is connected to the generator, and the power distributor can be controlled to distribute the electric energy of the generator to the thermal element, so as to preheat the air entering the combustion chamber;
  • the thermal element Can be located in any of the following locations:
  • the circuit connecting the battery system with the motor A can also be provided with an AC-DC converter.
  • the motor A When the vehicle is braking, the motor A can be controlled to be in the generator working mode. The alternating current is converted to direct current for easy battery pack storage. .
  • the energy recovery system also includes a motor B and an air compression pump B, the generator of the range extender is connected to the motor B, the motor B is connected to the air compression pump B; the air compression pump B is connected to the high-pressure gas cylinder, The air compressor B is used to compress the air and store it in a high pressure cylinder.
  • the energy recovery system also includes a heat exchanger, the heat exchanger is arranged in the high-pressure gas cylinder, the heat exchanger is connected with the micro gas turbine, and the high temperature tail gas (about 200° C.) discharged by the micro gas turbine is realized through the heat exchanger.
  • Heat exchange of compressed gas in cylinders After heat exchange, on the one hand, the compressed gas in the high-pressure gas cylinder is heated, the pressure is higher, and the efficiency of expansion and work is better during injection, and the thrust for the vehicle is stronger.
  • the temperature of the exhaust gas decreases and can be close to normal temperature The temperature discharge achieves waste heat recovery, which is environmentally friendly and pollution-free.
  • the heat exchanger is also communicated with the air outlet of the hot end of the regenerator or the air outlet of the combustion chamber, so as to indirectly use the heat generated by the heat exchanger and the thermal element to heat the compressed air in the high-pressure cylinder, and then Increase its internal energy and improve the efficiency of expansion.
  • the high-pressure gas cylinder is provided with a high-pressure gas injection port.
  • the energy recovery system further includes a pneumatic generator, the exhaust port of the high-pressure gas cylinder is connected to the pneumatic generator, and the pneumatic generator is connected to the battery system.
  • the vehicle also includes a power splitter, which is connected to the battery system, motor A and motor B, and includes the following working modes:
  • the electric energy from the generator of the range extender is distributed to motor B to drive the air compressor pump B to compress the air and store it in a high-pressure cylinder.
  • the vehicle also includes an electronically controlled clutch controller, which is connected to the electronically controlled clutch and includes the following working modes:
  • the electronically controlled clutch is controlled to engage, and the wheels drive the air compressor A through the motor A to compress the air and store it in the high-pressure cylinder.
  • the air compressor A provides reverse resistance for the wheels.
  • a speed increaser is provided between the electronically controlled clutch and the air compression pump A, and when the vehicle brakes, the low rotational speed of the transmission shaft used to drive the wheels and/or the motor A (due to the braking of the shaft due to braking) speed reduction) amplification, strengthen the pumping efficiency of the air compressor pump A.
  • the energy recovery system also includes a sensor for detecting the working state parameters of the high-pressure gas cylinder, and a high-pressure gas cylinder controller for controlling the opening and closing of the high-pressure gas injection port of the high-pressure gas cylinder, the sensor and the high-pressure gas cylinder control
  • the sensor is connected; the sensor is selected from a pressure sensor, a temperature sensor and/or a flow sensor.
  • the high-pressure gas cylinder controller can control the opening and closing of the high-pressure gas injection port in response to the working state parameters of the high-pressure gas cylinder detected by the sensor, for example: when the sensor detects that the pressure in the high-pressure gas cylinder is close to the preset pressure, the gas cylinder The controller controls the opening of the high-pressure gas injection port, and the gas is injected in the direction opposite to the driving direction of the vehicle to provide thrust for the vehicle; for example, when the sensor detects that the temperature of the gas in the high-pressure gas cylinder is close to the radiation temperature of the heat exchanger, it indicates that Heat exchange, at this time the gas cylinder controller controls the opening of the high-pressure gas injection port.
  • the electric vehicle also includes a vehicle control system, which is used for the management, control, coordination, information collection and processing of the vehicle and its components, which includes the following elements:
  • AC-to-DC converters for converting the AC power generated by the generator into DC power for storage in the battery system
  • the motor controller controls the motor A by receiving control commands from the vehicle controller.
  • air compression pump A and/or air compression pump B are selected from piston pumps, screw pumps or centrifugal pumps.
  • the body of the high-pressure gas cylinder is made of heat-insulating material to achieve a heat-insulation effect and ensure that the heat of the gas in the cylinder is not lost.
  • the battery system is a battery pack.
  • the whole vehicle control system also includes a battery system status monitor, which monitors the power condition of the battery system in real time during the running of the vehicle.
  • the range extender and the high-pressure gas cylinder can be installed in various positions in the vehicle, such as front, middle, and rear.
  • the range-extended electric passenger car, such as CN 104802629 A discloses a mid-engine extended-range electric vehicle, which will not be repeated here.
  • the control method for the above-mentioned extended-range electric vehicle includes:
  • the motor controller can control the motor A to switch to the generator working mode, and use the sliding rotation of the wheels to drive the motor A to generate electricity.
  • the DC converter is converted and sent to the battery system for storage; at the same time, it can control the electronically controlled clutch to close, and use the sliding of the wheels to drive the air compression pump A to work. resistance for better braking.
  • the electric energy from the generator of the range extender is distributed to the motor B to drive the air compressor B to compress the air and store it in the high-pressure cylinder;
  • the electric energy from the generator of the range extender is distributed to the thermal element to preheat the air entering the combustion chamber.
  • the range-extended electric vehicle and the control system of the present invention use a high-pressure gas cylinder as an energy balancer to recover and reuse the braking energy of the extended-range electric vehicle.
  • the energy is converted into the potential energy recovery of compressed air through the air compressor A.
  • the electric energy that cannot be stored in time can be converted into potential energy recovery of compressed air through the air compression pump B.
  • the heat of the high-temperature exhaust gas emitted by the engine is recovered by setting up a heat exchanger.
  • the present invention can reuse the recovered energy in time, discharge the high-pressure gas through the high-pressure gas injection port, provide extra power for the running of the vehicle, and improve the energy utilization rate while realizing environmental protection and energy saving.
  • the present invention further improves the energy utilization rate by arranging a regenerator and a thermal element to preheat the air entering the combustion chamber by using high-temperature tail gas or excess electric energy.
  • the present invention can also realize the recovery of braking energy by making the motor A enter the power generation mode, which can further improve the energy utilization rate.
  • the range-extended electric vehicle and the control system of the present invention can reasonably recycle the energy in the braking process of the vehicle without limiting the output power of the range-extender, and can efficiently recycle the braking energy of the vehicle, which is useful for improving the range-extender
  • the cruising range and vehicle power performance of electric vehicles play an extremely important role in reducing energy waste.
  • the present invention has the following advantages:
  • the high-pressure gas injected by the high-pressure gas cylinder is used to provide thrust for the vehicle, which can reduce the battery energy density and discharge rate standards of the extended-range electric vehicle. Therefore, ordinary battery packs can be used or the battery volume can be reduced to save costs.
  • the high-pressure gas cylinder recycles the braking energy of the vehicle, and provides thrust for the vehicle when the vehicle needs to accelerate, so as to realize peak-shaving and valley-filling of the energy of the entire vehicle.
  • High-pressure gas cylinders, air compression pumps, electronically controlled clutches, etc. are easy to install, and the structure is relatively simple, so the whole scheme is easy to implement.
  • Air compression stores potential energy without energy loss.
  • the heat of the high-temperature exhaust gas emitted by the engine is recovered, which improves the energy utilization efficiency.
  • the thermal efficiency of the whole vehicle can reach 70% to 90%.
  • the thermal element can also be used as a protection resistor for the micro gas turbine.
  • the generator loses load, the electric energy generated by the generator can be released in the form of heat through the thermal element in time to ensure that the micro gas turbine can stop safely. In this way, There is no need to set a separate protection resistor for the micro gas turbine, which makes the structure of the micro gas turbine simpler.
  • Figure 1 Schematic diagram of the control system of an extended-range electric vehicle.
  • Figure 2 Schematic diagram of the position of the thermal element (the arrow in the figure indicates electric energy).
  • Figure 3 Schematic diagram of the location of the thermal element.
  • Figure 4 Schematic diagram of the location of the thermal element.
  • Figure 5 Schematic diagram of the location of the thermal element.
  • a kind of extended-range electric vehicle which has structure is shown in Figure 1, comprises:
  • the drive system provides power output for the vehicle, including the motor A2 as the drive motor, and the wheel 1 coaxially connected with the motor A2.
  • the battery system 11 is electrically connected with the motor A 2 and provides electric energy for the motor A 2; it is used to store electric energy and provide power for the drive system.
  • the energy recovery system is used to recover the braking energy of the vehicle, including an electronically controlled clutch 3, an air compression pump A 5 and a high-pressure gas cylinder 6, wherein the air compression pump A 5 is connected to the motor A 2 through the electronically controlled clutch 3; Bottle 6 is connected with air compression pump A 5, and air compression pump A 5 is used for compressing air and is stored in high-pressure gas cylinder 6; Described high-pressure gas cylinder 6 is provided with high-pressure gas injection port 7.
  • the range extender includes a connected micro gas turbine and a generator 18 , and the generator 18 is connected to the battery system 11 .
  • Described micro gas turbine mainly comprises air compressor 19, combustor 20, turbine 21 three big parts, and during work, air compressor 19 sucks in air from external atmospheric environment, and compresses and makes it supercharged, and air temperature also correspondingly improves simultaneously; The gas is compressed into the combustion chamber 20 and mixed with the injected fuel to generate high-temperature and high-pressure gas; then it enters the turbine 21 to expand and perform work, pushing the turbine 21 to drive the compressor 19 and the external load rotor to rotate together at high speed, and through the connection with the generator 18 output power.
  • Described micro gas turbine comprises rotating shaft, compressor 19, combustor 20, turbine 21 and regenerator 24, and wherein, the exhaust port of compressor 19 is communicated with the air inlet of regenerator 24 cold ends, and regenerator 24 heat
  • the gas outlet at the end is communicated with the air inlet of the combustion chamber 20
  • the gas outlet of the combustion chamber 20 is communicated with the air inlet of the turbine 21
  • the exhaust port of the turbine 21 is communicated with the air inlet of the hot end of the regenerator 24.
  • the high-temperature exhaust gas discharged from the turbine 21 preheats the air intake at the inlet of the combustion chamber 20: the high-temperature exhaust gas discharged from the turbine 21 enters the regenerator 24, and exchanges heat with the compressed air that enters the regenerator 24 through the exhaust port of the compressor 19, After heat exchange, the temperature of the compressed air increases and enters the combustion chamber 20 , while the temperature of the exhaust gas decreases and is discharged through the air outlet at the cold end of the regenerator 24 .
  • the micro gas turbine also includes one or more thermal elements 25, the thermal elements 25 are connected to the generator 18, the power distributor 16 can be controlled to distribute the electric energy of the generator 18 to the thermal elements 25, and the air entering the combustion chamber 20 is pre-heated. Heating; the thermal element 25 can be located in any of the following positions:
  • the circuit connecting the battery system 11 and the motor A 2 may also be provided with an AC-DC converter 14.
  • the motor A 2 can be controlled to be in the generator working mode, and the wheels 1 drive the motor A 2 to generate electricity, and the AC-DC
  • the converter 14 converts the alternating current generated by the motor A2 into direct current, so that the battery system 11 can store it.
  • the energy recovery system can also include a motor B 22 and an air compression pump B 23, the generator of the range extender is connected to the motor B 22, and the motor B 22 is connected to the air compression pump B 23; the air compression pump B 23 is connected to the high pressure Gas cylinder 6 is connected, and air compressor pump B 23 is used for compressing air and is stored in high-pressure gas cylinder 6.
  • Described energy recovery system can also comprise heat exchanger 8, and heat exchanger 8 is arranged in the high-pressure cylinder 6, and heat exchanger 8 is connected with micro gas turbine, realizes the high-temperature tail gas (about 200 °C) of micro gas turbine discharge through heat exchanger 8. ) and the heat exchange of the compressed gas in the high-pressure cylinder 6.
  • the compressed gas in the high-pressure gas cylinder 6 is heated, the pressure is higher, the efficiency of expansion and work is better during injection, and the thrust for the vehicle is stronger; on the other hand, the temperature of the exhaust gas 10 is lowered, which can Discharge at a temperature close to normal temperature realizes waste heat recovery, which is environmentally friendly and pollution-free.
  • the heat exchanger 8 can also be communicated with the gas outlet at the hot end of the regenerator 24 or the gas outlet of the combustion chamber 20, thereby indirectly utilizing the heat generated by the heat exchanger 8 and the thermal element 25 to compress the air in the high-pressure cylinder 6 Heating is carried out to increase its internal energy and improve the efficiency of expansion.
  • the energy recovery system can also include a pneumatic generator, the exhaust port of the high-pressure gas cylinder 6 is connected to the pneumatic generator, and the pneumatic generator is connected to the battery system 11. During operation, the compressor of the high-pressure gas cylinder 6 drives the pneumatic generator to generate electricity. generator.
  • the vehicle also includes a power splitter 16 connected to the battery system 11, the motor A 2 and the motor B 22, and includes the following modes of operation:
  • the electric energy from the generator 18 of the range extender is distributed to the battery system 11 to charge the battery system 11;
  • the electric energy from the generator 11 of the range extender is distributed to the motor B 22 to drive the air compressor B 23 to compress the air and store it in the high-pressure gas cylinder 6.
  • Described vehicle also comprises electronically controlled clutch controller 17, and electronically controlled clutch controller 17 is connected with electronically controlled clutch 3, and comprises the following operating modes:
  • the electronic control clutch 3 When the vehicle brakes, the electronic control clutch 3 is controlled to engage, and the wheel 1 drives the air compression pump A5 to compress the air through the motor A2 and stores it in the high-pressure gas cylinder 6. At the same time, the air compression pump A5 provides reverse resistance for the wheel 1.
  • a speed increaser 4 may be provided between the electronically controlled clutch 3 and the air compression pump A5, and when the vehicle is braked, it is used to drive the wheel 1 and/or the motor A2 at a low speed of the drive shaft (due to braking) cause the rotation speed of the shaft to decrease) to amplify and strengthen the pumping efficiency of the air compressor pump A5.
  • Described energy recovery system can also comprise the sensor 9 that is used to detect the working state parameter of high-pressure gas cylinder 6, and the gas cylinder controller 13 that is used to control the opening and closing of the high-pressure gas injection port 7 of high-pressure gas cylinder 6, sensor 9 and high pressure
  • the gas cylinder controller 13 is connected; the sensor 9 is selected from a pressure sensor, a temperature sensor and/or a flow sensor.
  • the high-pressure gas cylinder controller 13 can control the opening and closing of the high-pressure gas injection port 7 in response to the working state parameters of the high-pressure gas cylinder 6 detected by the sensor 9, for example: when the sensor 9 detects that the pressure in the high-pressure gas cylinder 6 is close to the predetermined
  • the high-pressure gas cylinder controller 13 controls the high-pressure gas injection port 7 to open, and sprays gas in the direction opposite to the vehicle's driving direction, thereby providing thrust for the vehicle; for example: when the sensor 9 detects that the temperature of the gas in the high-pressure gas cylinder 6 is close to When heat exchanger 8 radiates temperature, it shows that heat exchange can no longer be performed.
  • high-pressure gas cylinder controller 13 controls high-pressure gas injection port 7 to open.
  • the electric vehicle also includes a vehicle control system for the management, control, coordination, information collection and processing of the vehicle and its components, which includes the following elements:
  • Vehicle controller 12
  • the AC-DC converter 14 is used to convert the AC power generated by the generator 18 into DC power for storage by the battery system 11;
  • the motor controller 15 controls the motor A2 by receiving the control command from the vehicle controller.
  • the whole vehicle control system may also include a battery system status monitor (not shown in the figure), which monitors the power condition of the battery system in real time during the running of the vehicle.
  • a battery system status monitor (not shown in the figure), which monitors the power condition of the battery system in real time during the running of the vehicle.
  • Described air compression pump A5, air compression pump B23 can be piston pump, screw pump or centrifugal pump.
  • the bottle body of the high-pressure gas cylinder 6 can be made of heat insulating material, so as to realize the heat insulation effect and ensure that the heat of the gas in the bottle is not lost.
  • the battery system 11 may be a battery pack.
  • the range extender and the high-pressure gas cylinder 6 can be arranged in various positions in the vehicle, such as front, middle, and rear.
  • Embodiment 2 Control method of extended-range electric vehicle
  • the high-pressure gas injection port 7 of the high-pressure gas cylinder 6 is controlled to inject air in the direction opposite to the vehicle's running direction, so as to provide thrust for the vehicle.
  • the electronic control clutch 3 When the vehicle is non-emergency braking (only relying on the friction between the wheel 1 and the road surface), the electronic control clutch 3 is controlled to engage, and the motor A 2 is controlled not to work, and the wheel 1 drives the air compression pump A 5 through the motor A 2 The air is compressed and stored in the high-pressure cylinder 6, while the air compression pump A5 provides reverse resistance for the wheel 1, thereby achieving a better braking effect.
  • the motor A2 can be controlled to switch to the generator working mode, and the power of the wheel 1 can be utilized.
  • the sliding rotation drives the motor A 2 to generate electricity, and the AC power generated by the motor A 2 is converted by the AC-DC converter 14 and then sent to the battery system 11 for storage; at the same time, the electronically controlled clutch 3 can be controlled to close, and the sliding of the wheel 1 drives the air compressor A 5 Work, when the air compression pump A5 pumps air in the high-pressure cylinder 6, the wheel 1 will be provided with reverse resistance, so as to achieve a better braking effect.
  • the electric energy from the generator 18 of the range extender is distributed to the battery system 11 to charge the battery system 11;
  • the electric energy from the generator 18 of the range extender is distributed to the motor B 22 to drive the air compressor B 23 to compress the air and store it in the high-pressure gas cylinder 6, Realize the conversion and storage of electric energy to potential energy.
  • the electric energy from the generator 18 of the range extender can be distributed to the thermal element 25 to preheat the air entering the combustion chamber 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Development (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

提供了一种增程式电动车辆,包括:驱动系统,包括作为驱动电机的电机A(2),以及与电机A(2)同轴连接的车轮(1);电池系统(11),与电机A(2)电连接;能量回收系统,包括电控离合器(3)、空气压缩泵A(5)和高压气瓶(6);增程器,包括相连接的微型燃气轮机和发电机(18);微型燃气轮机,包括转轴、压气机(19)、燃烧室(20)、涡轮(21)和回热器(24),还可包括至少一个热力元件(25),热力元件(25)与发电机(18)连接。还提供了增程式电动车辆的控制方法。以高压气瓶(6)作为能量平衡器,对车辆制动能量进行回收,空气压缩存储势能,没有能量损耗,并可在车辆需要加速时为车辆提供推力;通过设置回热器(24)、热力元件(25),进一步提高了能源利用率,且能保证微型燃气轮机安全停机。

Description

增程式电动车辆及其控制方法 技术领域
本发明涉及一种增程式电动车辆及其控制方法,属于车辆技术领域。
背景技术
随着全球环境和空气质量的变差,越来越多的人们意识到环境保护的重要性。传统燃油车对能源的利用率不高,效率低,对环境的危害较大,因此,作为新能源车的增程式电动车辆在诸多客观因素的促使下越来越受到人们的追捧。
目前,增程式电动车辆主要涉及三种情况:第一种是以内燃机作为增程器,即利用内燃机带动发电机发电,给电池充电;第二种是以自由活塞膨胀机-直线发电机作为增程器,利用压缩空气驱动自由活塞发电机输出电能,给电池充电;第三种是以微型燃气轮机作为增程器,利用燃机输出轴转动带动发电机工作,给电池充电。
为提高增程式电动车辆的能源利用率,避免能源的浪费,对车辆的制动能量进行回收是必要的,现有技术中有诸多报道,比如CN 204383180 U公开了一种具有飞轮储能的增程式电动汽车传动装置,采用飞轮储能对制动能量进行回收。该方案结构复杂,体积庞大,不便于实施。比如CN 104691358 A公开了增程式电动汽车的能量回收控制方法和装置,其将预充电功率与动力电池的最大允许从电功率比较,根据比较结果,确定电动车辆的增程器当前使用的制动回收功率。该方案需要对增程工作模式下充电功率进行监督和限制。
一般情况下,混合动力车辆的电机制动过程中回收的功率在十几千瓦到四五十千瓦左右,纯电动车可以达到六七十千瓦。总体而言,由于受到电池充电功率的限制,一般电动车辆在制动过程中回收的能量不到制动能量的百分之三十,其余能量都以热量的形式释放,造成能源浪费。而同时为了更好地散热,需要车辆的车轮裸露,而裸露在外的车轮又会增加车辆行驶的阻力。因此,如何提供一种易于实施且不限制增程器的输出功率,同时能够高效率地回收车辆制动能量的能量回收系统,对于提高增程式电动车辆的续航里程和整车动力性能,减少能源浪费具有极其重要的作用。
发明内容
针对上述现有技术,本发明提供了一种增程式电动车辆及其控制方法。本发明的增程式电动车辆能够对车辆制动过程中的能量进行合理回收利用,且无需限制增程器的输出功率,能够对发电机输出的多余电能进行及时、有效地利用,且在车辆需要加速时可为车辆提供额外动力。
本发明是通过以下技术方案实现的:
一种增程式电动车辆,包括:
一种电动车辆,包括:
驱动系统,包括作为驱动电机的电机A,以及与电机A同轴连接的车轮;
电池系统,与电机A电连接并为电机A提供电能;
能量回收系统,包括电控离合器、空气压缩泵A和高压气瓶,其中,空气压缩泵A通过电控离合器与电机A连接;高压气瓶与空气压缩泵A连接,空气压缩泵A用于压缩空气并存储于高压气瓶中;
增程器,包括相连接的微型燃气轮机和发电机,所述发电机与电池系统连接;
所述微型燃气轮机,包括转轴、压气机、燃烧室、涡轮和回热器,压气机和涡轮设在转轴上,压气机的排气口与回热器冷端的进气口连通,回热器热端的出气口与燃烧室的进气口连通,燃烧室的出气口与涡轮的进气口连通,涡轮的排气口与回热器热端的进气口连通,工作时,利用涡轮排放的高温尾气对燃烧室进口的空气进气预热:涡轮排放的高温尾气进入回热器,与通过压气机排气口进入回热器的压缩空气进行换热,换热后,压缩空气的温度升高并进入燃烧室,尾气的温度降低并通过回热器冷端的出气口排出。
进一步地,所述微型燃气轮机还包括至少一个热力元件,热力元件与发电机连接,可控制功率分配器将发电机的电能分配给热力元件,对进入燃烧室的空气进行预加热;所述热力元件可以设在以下任意位置:
(1)设在压气机与回热器连通的管道上,以对即将进入回热器的空气进行加热。
(2)设在回热器内,以对通过回热器的空气进行加热。
(3)设在回热器与燃烧室连通的管道上,以对即将进入燃烧室的空气进行加热。
(4)设在燃烧室内,以对已经进入燃烧室的空气进行加热,可以设在燃烧室的进气口处。
(5)设在回热器与涡轮连通的管道上,以对即将进入回热器的尾气进行加热,间接对进入燃烧室的空气进行加热。
所述电池系统与电机A连接的电路上还可以设有交直流转换器,车辆制动时,可以控制电机A处于发电机工作模式,车轮带动电机A发电,经由交直流转换器将电机A发出的交流电转换为直流电,以便于电池组存储。。
进一步地,所述能量回收系统还包括电机B和空气压缩泵B,所述增程器的发电机与电机B连接,电机B与空气压缩泵B连接;空气压缩泵B与高压气瓶连接,空气压缩泵B用于压缩空气并存储于高压气瓶中。
进一步地,所述能量回收系统还包括换热器,换热器设在高压气瓶内,换热器与微型燃气轮机连接,通过换热器实现微型燃气轮机排放的高温尾气(约200℃)与高压气瓶内的压缩气体的换热。换热后,一方面,高压气瓶内的压缩气体被加热,压力更高,在喷射时膨胀做功的效能更好,给车辆的推力更强劲,另一方面,尾气的温度降低,可以接近常温的温度排放,实现了余热回收,环保无污染。
进一步地,所述换热器还与回热器热端的出气口或燃烧室的出气口连通,从而间接地利用换热器、热力元件产生的热量对高压气瓶中的压缩空气进行加热,进而增加其内能,提高膨胀作用效率。
进一步地,所述高压气瓶上设有高压气喷射口。
进一步地,所述能量回收系统还包括气动发电机,高压气瓶的排气口与气动发电机连接,气动发电机与电池系统连接。
进一步地,所述车辆还包括功率分配器,功率分配器与电池系统、电机A和电机B连接,并且包括以下工作模式:
在电池系统未满电时,将来自于增程器的发电机的电能分配至电池系统,以为电池系统充电;
在电池系统满电时,将来自于增程器的发电机的电能分配至电机A,以驱动车轮转动;
在电池系统满电且电机A不工作时,将来自于增程器的发电机的电能分配至电机B,以带动空气压缩泵B压缩空气并存储于高压气瓶中。
进一步地,所述车辆还包括电控离合控制器,电控离合控制器与电控离合器连接,并且包括以下工作模式:
当车辆行驶时,控制电控离合器脱开,电机A驱动车轮转动;
当车辆制动时,控制电控离合器接合,车轮经由电机A带动空气压缩泵A压缩空气并存储于高压气瓶中,同时空气压缩泵A为车轮提供反向阻力。
进一步地,所述电控离合器与空气压缩泵A之间设有增速器,在车辆制动时,用于将车轮和/或电机A带动的传动轴的低转速(由于制动导致轴的转速降低)放大,强化空气压缩泵A的泵气效力。
进一步地,所述能量回收系统还包括用于检测高压气瓶工作状态参数的传感器,以及用于控制高压气瓶的高压气喷射口的开闭的高压气瓶控制器,传感器与高压气瓶控制器连接;所述传感器选自压力传感器、温度传感器和/或流量传感器。工作时,高压气瓶控制器可响应于传感器检测的高压气瓶的工作状态参数控制高压气喷射口的开闭,例如:当传感器检测到 高压气瓶内的压力接近预设压力时,气瓶控制器控制高压气喷射口开启,向与车辆行驶方向相反的方向喷气,从而为车辆提供推力;例如:当传感器检测到高压气瓶内气体的温度接近换热器辐射温度时,表明已经无法再换热,此时气瓶控制器控制高压气喷射口开启。
进一步地,所述电动车辆还包括整车控制系统,用于整车及各部件的管理、控制、协调、信息收集和处理,其包括以下元件:
整车控制器;
交直流转换器,用于将发电机发出的交流电转换为直流电,以便于电池系统存储;
电机控制器,通过接收整车控制器的控制命令,控制电机A。
进一步地,所述空气压缩泵A和/或空气压缩泵B,选自活塞泵、螺杆泵或离心泵。
进一步地,所述高压气瓶的瓶体采用隔热材料制作,以实现隔热效果,保证瓶内气体热量不流失。
进一步地,所述电池系统为电池组。
进一步地,所述整车控制系统还包括电池系统状态监控器,在车辆运行过程中实时监测电池系统的电量情况。
进一步地,所述增程器、高压气瓶在整车的设置位置可以为多种,比如前置,中置,后置,此为现有技术,例如CN 105774512 A公开的一种发动机前置的增程式电动乘用车,例如CN 104802629 A公开的一种发动机中置的增程式电动汽车,不再赘述。
上述的增程式电动车辆的控制方法,包括:
当车辆平稳行驶时,控制电控离合器脱开,电机A驱动车轮转动;
当车辆加速行驶时,控制高压气瓶的高压气喷射口向与车辆行驶方向相反的方向喷气,为车辆提供推力;
当车辆非紧急制动时,控制电控离合器接合,并控制电机A不工作,车轮经由电机A带动空气压缩泵A压缩空气并存储于高压气瓶中,同时空气压缩泵A为车轮提供反向阻力;
当车辆紧急制动时,控制电控离合器接合,并控制电机A工作,电机A驱动车轮上的机械卡盘对车轮制动,同时叠加空气压缩泵A的反向阻力,实现车辆制动;
当车辆非紧急制动时,若电池系统处于未充满电状态,则可通过电机控制器控制电机A切换至发电机工作模式,利用车轮的滑行转动带动电机A发电,电机A发出的交流电通过交直流转换器转换后输送至电池系统存储;同时,可控制电控离合器闭合,利用车轮的滑行带动空气压缩泵A工作,在空气压缩泵A给高压气瓶内泵气时会给车轮提供反向阻力,从而实现更好地制动效果。
进一步地,还包括以下工作模式:
在电池系统未满电时,将来自于增程器的发电机的电能分配至电池系统,以为电池系统充电;
在电池系统满电时,将来自于增程器的发电机的电能分配至电机A,以驱动车轮转动;
在电池系统满电且电机A不工作时,将来自于增程器的发电机的电能分配至电机B,以带动空气压缩泵B压缩空气并存储于高压气瓶中;
在电池系统满电时,将来自于增程器的发电机的电能分配至热力元件,对进入燃烧室的空气进行预加热。
本发明的增程式电动车辆及控制系统,以高压气瓶作为能量平衡器,对增程式电动车辆的制动能量进行回收再利用,在车辆行进过程中只要出现制动情况,就会将制动能量通过空气压缩泵A转化为压缩空气的势能回收。同时,在发动机不便于降速、关停或待机时,可通过空气压缩泵B将不能及时存储的电能转化为压缩空气的势能回收。另外,还通过设置换热器的方式,对发动机排放的高温尾气的热量进行回收。而且,本发明可以将回收的能量及时再利用,通过高压气喷射口将高压气体排出,为车辆的行驶提供额外的动力,在实现环保节能的同时提高了能源利用率。本发明还通过设置回热器、热力元件,利用高温尾气或多余电能对进入燃烧室的空气进行预加热,进一步提高了能源利用率。本发明还可通过使电机A进入发电模式实现制动能量的回收,可进一步提高能源利用率。
本发明的增程式电动车辆及控制系统,能够对车辆制动过程中的能量进行合理回收利用,且无需限制增程器的输出功率,能够高效率地回收汽车的制动能量,对于提高增程式电动车辆的续航里程和整车动力性能,减少能源浪费具有极其重要的作用。本发明具有以下优点:
1.利用高压气瓶喷射的高压气体为车辆提供推力,可降低增程式电动汽车对电池能量密度、放电倍率的标准,因此可选用普通电池组或减小电池体积,从而节约成本。
2.高压气瓶作为整个车辆的能量平衡器,对车辆制动能量进行回收,并在车辆需要加速时为车辆提供推力,实现整车能量的削峰填谷。
3.高压气瓶、空气压缩泵、电控离合器等易于安装,结构相对简单,整个方案便于实施。
4.空气压缩存储势能,没有能量损耗。
5.对发动机排放的高温尾气的热量进行回收,提高了能量利用效率,理论上整车热效率可达到70%~90%。
6.有效回收汽车的制动能量,由于热力元件可以瞬时将大量的电能转化为热能,因此可以将制动能量几乎全部转化为热能再利用,提高了能源利用率;经过试验验证,本发明的能 量回收系统实现了81.2%的制动能量的回收,汽车续航里程提高35%~40%。
7.克服了现有技术中的能量回收受到电池组最大充电功率和电池组容量的限制的缺点。
8.热力元件还可以用作微燃机的保护电阻,在发电机掉负荷的情况下,发电机发出的电能可以及时通过热力元件以热能的形式释放,以保证微型燃气轮机能够安全停机,如此,就无需再给微型燃气轮机设置单独的保护电阻,使得微型燃气轮机的结构更为简单。
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。提及的术语和短语如有与公知含义不一致的,以本发明所表述的含义为准。
附图说明
图1:增程式电动汽车控制系统示意图。
图2:热力元件的位置示意图(图中箭头所示为电能)。
图3:热力元件的位置示意图。
图4:热力元件的位置示意图。
图5:热力元件的位置示意图。
其中,1、车轮;2、电机A;3、电控离合器;4、增速器;5、空气压缩泵A;6、高压气瓶;7、高压气喷射口;8、换热器;9、传感器;10、尾气;11、电池系统;12、整车控制器;13、高压气瓶控制器;14、交直流转换器;15、电机控制器;16、功率分配器;17、电控离合控制器;18、发电机;19、压气机;20、燃烧室;21、涡轮;22、电机B;23、空气压缩泵B;24、回热器;25、热力元件。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域的专业人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
实施例1
一种增程式电动车辆,其结构如图1所示,包括:
驱动系统,为车辆提供动力输出,包括作为驱动电机的电机A 2,以及与电机A 2同轴连接的车轮1。
电池系统11,与电机A 2电连接并为电机A 2提供电能;用于存储电能并为驱动系统提供动力。
能量回收系统,用于回收车辆的制动能量,包括电控离合器3、空气压缩泵A 5和高压气瓶6,其中,空气压缩泵A 5通过电控离合器3与电机A 2连接;高压气瓶6与空气压缩 泵A 5连接,空气压缩泵A 5用于压缩空气并存储于高压气瓶6中;所述高压气瓶6上设有高压气喷射口7。
增程器,包括相连接的微型燃气轮机和发电机18,所述发电机18与电池系统11连接。
所述微型燃气轮机主要包括压气机19、燃烧室20、涡轮21三大部件,工作时,压气机19从外界大气环境吸入空气,并压缩使之增压,同时空气温度也相应提高;压缩空气被压送到燃烧室20与喷入的燃料混合燃烧生成高温高压的气体;然后再进入到涡轮21中膨胀做功,推动涡轮21带动压气机19和外负荷转子一起高速旋转,并通过连接发电机18输出电能。
所述微型燃气轮机,包括转轴、压气机19、燃烧室20、涡轮21和回热器24,其中,压气机19的排气口与回热器24冷端的进气口连通,回热器24热端的出气口与燃烧室20的进气口连通,燃烧室20的出气口与涡轮21的进气口连通,涡轮21的排气口与回热器24热端的进气口连通,工作时,利用涡轮21排放的高温尾气对燃烧室20进口的空气进气预热:涡轮21排放的高温尾气进入回热器24,与通过压气机19排气口进入回热器24的压缩空气进行换热,换热后,压缩空气的温度升高并进入燃烧室20,尾气的温度降低并通过回热器24冷端的出气口排出。
所述微型燃气轮机还包括一个或多个热力元件25,热力元件25与发电机18连接,可控制功率分配器16将发电机18的电能分配至热力元件25,对进入燃烧室20的空气进行预加热;所述热力元件25可以设在以下任意位置:
(1)设在压气机19与回热器24连通的管道上,以对即将进入回热器24的空气进行加热。如图1所示.
(2)设在回热器24内,以对通过回热器24的空气进行加热,如图2所示。
(3)设在回热器24与燃烧室20连通的管道上,以对即将进入燃烧室20的空气进行加热,如图3所示。
(4)设在燃烧室20内,以对已经进入燃烧室20的空气进行加热,如图4所示,可以设在燃烧室20的进气口处。
(5)设在回热器24与涡轮21连通的管道上,以对即将进入回热器24的尾气进行加热,间接对进入燃烧室20的空气进行加热,如图5所示。
所述电池系统11与电机A 2连接的电路上还可以设有交直流转换器14,车辆制动时,可以控制电机A 2处于发电机工作模式,车轮1带动电机A 2发电,经由交直流转换器14将电机A 2发出的交流电转换为直流电,以便于电池系统11存储。
所述能量回收系统还可包括电机B 22和空气压缩泵B 23,所述增程器的发电机与电机B  22连接,电机B 22与空气压缩泵B 23连接;空气压缩泵B 23与高压气瓶6连接,空气压缩泵B 23用于压缩空气并存储于高压气瓶6中。
所述能量回收系统还可包括换热器8,换热器8设在高压气瓶6内,换热器8与微型燃气轮机连接,通过换热器8实现微型燃气轮机排放的高温尾气(约200℃)与高压气瓶6内的压缩气体的换热。换热后,一方面,高压气瓶6内的压缩气体被加热,压力更高,在喷射时膨胀做功的效能更好,给车辆的推力更强劲,另一方面,尾气10的温度降低,可以接近常温的温度排放,实现了余热回收,环保无污染。
所述换热器8还可以与回热器24热端的出气口或燃烧室20的出气口连通,从而间接地利用换热器8、热力元件25产生的热量对高压气瓶6中的压缩空气进行加热,进而增加其内能,提高膨胀作用效率。
所述能量回收系统还可包括气动发电机,高压气瓶6的排气口与气动发电机连接,气动发电机与电池系统11连接,工作时,通过高压气瓶6的压缩器带动该气动发电机发电。
所述车辆还包括功率分配器16,功率分配器16与电池系统11、电机A 2和电机B 22连接,并且包括以下工作模式:
在电池系统11未满电时,将来自于增程器的发电机18的电能分配至电池系统11,以为电池系统11充电;
在电池系统11满电时,将来自于增程器的发电机18的电能分配至电机A 2,以驱动车轮1转动;
在电池系统11满电且电机A 2不工作时,将来自于增程器的发电机11的电能分配至电机B 22,以带动空气压缩泵B 23压缩空气并存储于高压气瓶6中。
所述车辆还包括电控离合控制器17,电控离合控制器17与电控离合器3连接,并且包括以下工作模式:
当车辆行驶时,控制电控离合器3脱开,电机A 2驱动车轮1转动;
当车辆制动时,控制电控离合器3接合,车轮1经由电机A 2带动空气压缩泵A 5压缩空气并存储于高压气瓶6中,同时空气压缩泵A 5为车轮1提供反向阻力。
所述电控离合器3与空气压缩泵A 5之间可以设有增速器4,在车辆制动时,用于将车轮1和/或电机A 2带动的传动轴的低转速(由于制动导致轴的转速降低)放大,强化空气压缩泵A 5的泵气效力。
所述能量回收系统还可包括用于检测高压气瓶6工作状态参数的传感器9,以及用于控制高压气瓶6的高压气喷射口7的开闭的气瓶控制器13,传感器9与高压气瓶控制器13连 接;所述传感器9选自压力传感器、温度传感器和/或流量传感器。工作时,高压气瓶控制器13可响应于传感器9检测的高压气瓶6的工作状态参数控制高压气喷射口7的开闭,例如:当传感器9检测到高压气瓶6内的压力接近预设压力时,高压气瓶控制器13控制高压气喷射口7开启,向与车辆行驶方向相反的方向喷气,从而为车辆提供推力;例如:当传感器9检测到高压气瓶6内气体的温度接近换热器8辐射温度时,表明已经无法再换热,此时高压气瓶控制器13控制高压气喷射口7开启。
所述电动车辆还包括整车控制系统,用于整车及各部件的管理、控制、协调、信息收集和处理,其包括以下元件:
整车控制器12;
交直流转换器14,用于将发电机18发出的交流电转换为直流电,以便于电池系统11存储;
电机控制器15,通过接收整车控制器的控制命令,控制电机A 2。
所述整车控制系统还可以包括电池系统状态监控器(图中未示出),在车辆运行过程中实时监测电池系统的电量情况。
所述空气压缩泵A 5、空气压缩泵B 23,可以是活塞泵、螺杆泵或离心泵。
所述高压气瓶6的瓶体可以采用隔热材料制作,以实现隔热效果,保证瓶内气体热量不流失。
所述电池系统11可以为电池组。
所述增程器、高压气瓶6在整车的设置位置可以为多种,比如前置,中置,后置。
实施例2增程式电动车辆的控制方法
包括以下工作模式:
当车辆平稳行驶时,控制电控离合器3脱开,电机A 2驱动车轮1转动。
当车辆加速行驶时,控制高压气瓶6的高压气喷射口7向与车辆行驶方向相反的方向喷气,为车辆提供推力。
当车辆非紧急制动(仅依靠车轮1与路面之间的摩擦力制动)时,控制电控离合器3接合,并控制电机A 2不工作,车轮1经由电机A 2带动空气压缩泵A 5压缩空气并存储于高压气瓶6中,同时空气压缩泵A 5为车轮1提供反向阻力,从而实现更好地制动效果。
当车辆紧急制动时,控制电控离合器3接合,并控制电机A 2工作,电机A 2驱动车轮1上的机械卡盘对车轮制动,同时叠加空气压缩泵A 5的反向阻力,实现车辆制动。
在车辆非紧急制动(仅依靠车轮1与路面之间的摩擦力制动)时,若电池系统11处于未 充满电状态,则可控制电机A 2切换至发电机工作模式,利用车轮1的滑行转动带动电机A 2发电,电机A 2发出的交流电通过交直流转换器14转换后输送至电池系统11存储;同时,可控制电控离合器3闭合,利用车轮1的滑行带动空气压缩泵A 5工作,在空气压缩泵A 5给高压气瓶6内泵气时会给车轮1提供反向阻力,从而实现更好地制动效果。
在电池系统11未满电时,将来自于增程器的发电机18的电能分配至电池系统11,以为电池系统11充电;
在电池系统11满电时,将来自于增程器的发电机18的电能分配至电机A 2,以驱动车轮1转动;
在电池系统11满电且电机A 2不工作时,将来自于增程器的发电机18的电能分配至电机B 22,以带动空气压缩泵B 23压缩空气并存储于高压气瓶6中,实现电能到势能的转换存储。
不论车辆处于正常行驶阶段,还是制动阶段,都可以将来自于增程器的发电机18的电能分配给热力元件25,对进入燃烧室20的空气进行预加热。
给本领域技术人员提供上述实施例,以完全公开和描述如何实施和使用所主张的实施方案,而不是用于限制本文公开的范围。对于本领域技术人员而言显而易见的修饰将在所附权利要求的范围内。

Claims (10)

  1. 一种增程式电动车辆,其特征在于:包括:
    驱动系统,包括作为驱动电机的电机A,以及与电机A同轴连接的车轮;
    电池系统,与电机A电连接并为电机A提供电能;
    能量回收系统,包括电控离合器、空气压缩泵A和高压气瓶,其中,空气压缩泵A通过电控离合器与电机A连接;高压气瓶与空气压缩泵A连接,空气压缩泵A用于压缩空气并存储于高压气瓶中;
    增程器,包括相连接的微型燃气轮机和发电机,所述发电机与电池系统连接;
    所述微型燃气轮机,包括转轴、压气机、燃烧室、涡轮和回热器,压气机和涡轮设在转轴上,压气机的排气口与回热器冷端的进气口连通,回热器热端的出气口与燃烧室的进气口连通,燃烧室的出气口与涡轮的进气口连通,涡轮的排气口与回热器热端的进气口连通。
  2. 根据权利要求1所述的增程式电动车辆,其特征在于:所述微型燃气轮机还包括至少一个热力元件,热力元件与发电机连接,所述热力元件设在以下任意位置:
    (1)设在压气机与回热器连通的管道上;
    (2)设在回热器内;
    (3)设在回热器与燃烧室连通的管道上;
    (4)设在燃烧室内;
    (5)设在回热器与涡轮连通的管道上。
  3. 根据权利要求1所述的增程式电动车辆,其特征在于:所述电池系统与电机A连接的电路上还设有交直流转换器。
  4. 根据权利要求1所述的增程式电动车辆,其特征在于:所述能量回收系统还包括电机B和空气压缩泵B,所述增程器的发电机与电机B连接,电机B与空气压缩泵B连接;空气压缩泵B与高压气瓶连接,空气压缩泵B用于压缩空气并存储于高压气瓶中。
  5. 根据权利要求1所述的增程式电动车辆,其特征在于:所述能量回收系统还包括换热器,换热器设在高压气瓶内,换热器与微型燃气轮机连接,通过换热器实现微型燃气轮机排放的高温尾气与高压气瓶内的压缩气体的换热。
  6. 根据权利要求5所述的增程式电动车辆,其特征在于:所述换热器与回热器热端的出气口或燃烧室的出气口连通。
  7. 根据权利要求1所述的增程式电动车辆,其特征在于:所述车辆还包括功率分配器,功率分配器与电池系统、电机A和电机B连接,并且包括以下工作模式:
    在电池系统未满电时,将来自于增程器的发电机的电能分配至电池系统,以为电池系统 充电;
    在电池系统满电时,将来自于增程器的发电机的电能分配至电机A,以驱动车轮转动;
    在电池系统满电且电机A不工作时,将来自于增程器的发电机的电能分配至电机B,以带动空气压缩泵B压缩空气并存储于高压气瓶中。
  8. 根据权利要求1所述的增程式电动车辆,其特征在于:所述车辆还包括电控离合控制器,电控离合控制器与电控离合器连接,并且包括以下工作模式:
    当车辆行驶时,控制电控离合器脱开,电机A驱动车轮转动;
    当车辆制动时,控制电控离合器接合,车轮经由电机A带动空气压缩泵A压缩空气并存储于高压气瓶中,同时空气压缩泵A为车轮提供反向阻力。
  9. 权利要求1~8中任一项所述的增程式电动车辆的控制方法,其特征在于:包括:
    当车辆平稳行驶时,控制电控离合器脱开,电机A驱动车轮转动;
    当车辆加速行驶时,控制高压气瓶的高压气喷射口向与车辆行驶方向相反的方向喷气,为车辆提供推力;
    当车辆非紧急制动时,控制电控离合器接合,并控制电机A不工作,车轮经由电机A带动空气压缩泵A压缩空气并存储于高压气瓶中,同时空气压缩泵A为车轮提供反向阻力;
    当车辆紧急制动时,控制电控离合器接合,并控制电机A工作,电机A驱动车轮上的机械卡盘对车轮制动,同时叠加空气压缩泵A的反向阻力,实现车辆制动;
    当车辆非紧急制动时,若电池系统处于未充满电状态,控制电机A切换至发电机工作模式,利用车轮的滑行转动带动电机A发电。
  10. 根据权利要求9所述的电动车辆的控制方法,其特征在于:
    在电池系统未满电时,将来自于增程器的发电机的电能分配至电池系统,以为电池系统充电;
    在电池系统满电时,将来自于增程器的发电机的电能分配至电机A,以驱动车轮转动;
    在电池系统满电且电机A不工作时,将来自于增程器的发电机的电能分配至电机B,以带动空气压缩泵B压缩空气并存储于高压气瓶中;
    在电池系统满电时,将来自于增程器的发电机的电能分配至热力元件,对进入燃烧室的空气进行预加热。
PCT/CN2022/116642 2022-01-11 2022-09-01 增程式电动车辆及其控制方法 WO2023134180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210026836.3A CN114274796A (zh) 2022-01-11 2022-01-11 增程式电动车辆及其控制方法
CN202210026836.3 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134180A1 true WO2023134180A1 (zh) 2023-07-20

Family

ID=80880729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116642 WO2023134180A1 (zh) 2022-01-11 2022-09-01 增程式电动车辆及其控制方法

Country Status (2)

Country Link
CN (1) CN114274796A (zh)
WO (1) WO2023134180A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114274796A (zh) * 2022-01-11 2022-04-05 靳普科技(北京)有限公司 增程式电动车辆及其控制方法
GB2622354A (en) * 2022-08-04 2024-03-20 K Timms Brian Electric vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024455A1 (en) * 2008-08-27 2010-03-04 Tama-Tlo, Ltd. Hybrid vehicle
CN105644346A (zh) * 2016-02-29 2016-06-08 上海大学 压缩空气式机动车尾气余热回收系统和回收方法
JP2016155514A (ja) * 2015-02-26 2016-09-01 トヨタ自動車株式会社 ガスタービンによる充電手段を備えた電動車の改良
CN107379958A (zh) * 2017-07-31 2017-11-24 长沙理工大学 一种汽车动力性能提升系统
CN108749586A (zh) * 2018-07-06 2018-11-06 至玥腾风科技投资集团有限公司 增程式电动交通工具能量回收系统
CN109435708A (zh) * 2018-07-06 2019-03-08 至玥腾风科技投资集团有限公司 一种增程式电动客车
CN110217113A (zh) * 2019-06-12 2019-09-10 北京工业大学 自由活塞膨胀机-直线发电机与复合电源增程式电动汽车
US20210221375A1 (en) * 2021-04-08 2021-07-22 Veerabhadra R Kattoju Hybrid system and method for conserving regenerative braking energy in a vehicle
CN114274796A (zh) * 2022-01-11 2022-04-05 靳普科技(北京)有限公司 增程式电动车辆及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024455A1 (en) * 2008-08-27 2010-03-04 Tama-Tlo, Ltd. Hybrid vehicle
JP2016155514A (ja) * 2015-02-26 2016-09-01 トヨタ自動車株式会社 ガスタービンによる充電手段を備えた電動車の改良
CN105644346A (zh) * 2016-02-29 2016-06-08 上海大学 压缩空气式机动车尾气余热回收系统和回收方法
CN107379958A (zh) * 2017-07-31 2017-11-24 长沙理工大学 一种汽车动力性能提升系统
CN108749586A (zh) * 2018-07-06 2018-11-06 至玥腾风科技投资集团有限公司 增程式电动交通工具能量回收系统
CN109435708A (zh) * 2018-07-06 2019-03-08 至玥腾风科技投资集团有限公司 一种增程式电动客车
CN110217113A (zh) * 2019-06-12 2019-09-10 北京工业大学 自由活塞膨胀机-直线发电机与复合电源增程式电动汽车
US20210221375A1 (en) * 2021-04-08 2021-07-22 Veerabhadra R Kattoju Hybrid system and method for conserving regenerative braking energy in a vehicle
CN114274796A (zh) * 2022-01-11 2022-04-05 靳普科技(北京)有限公司 增程式电动车辆及其控制方法

Also Published As

Publication number Publication date
CN114274796A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023134180A1 (zh) 增程式电动车辆及其控制方法
US10066532B2 (en) Electric supercharging device utilizing waste heat of internal combustion engine and power supplying method thereof
CN108749586B (zh) 增程式电动交通工具能量回收系统
CN112031929B (zh) 发动机用双电压的多级增压系统
WO2009067887A1 (fr) Procédé de commande cc-cc pour véhicules électriques hybrides
WO2017147950A1 (zh) 一种发动机前置的增程式电动乘用车
JP2012097604A (ja) 内燃機関の排気ブレーキ制御方法及び装置
CN102815192B (zh) 基于汽车尾气热电转换的弱混合动力系统及控制方法
CN102686431A (zh) 双模电池
WO2016150238A1 (zh) 一种增程式电动汽车
CN111469816B (zh) 高压热流体刹车及发动机能量回收系统
WO2023134179A1 (zh) 增程式电动车辆及其控制方法
CN110562043B (zh) 基于气动马达“双模式”的电动汽车制动能量回收系统
CN102107612A (zh) 车辆动能回收再驱动系统
CN219904068U (zh) 增程式电动车辆
CN204586535U (zh) 一种具有涡轴发动机的增程式电动汽车
CN114274794A (zh) 增程式电动车辆
CN104044468B (zh) 柴油驱动车辆制动能量的回收利用系统及其控制方法
CN110053491A (zh) 一种适用于电动汽车的双涡轮微燃机增程器
CN219904067U (zh) 电动车辆
CN112855338B (zh) 发动机用带能量回收功能的电动增压系统
CN108757161B (zh) 用于混合动力系统的发动机尾气能量处理方法和系统
CN219904069U (zh) 增程式电动车辆
CN114274782A (zh) 电动车辆及其控制方法
CN206246220U (zh) 基于储能飞轮的涡轮增压器系统以及内燃发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE