WO2021018217A1 - 用于不可逆电穿孔设备的电极针、电极针阵列和设备 - Google Patents

用于不可逆电穿孔设备的电极针、电极针阵列和设备 Download PDF

Info

Publication number
WO2021018217A1
WO2021018217A1 PCT/CN2020/105584 CN2020105584W WO2021018217A1 WO 2021018217 A1 WO2021018217 A1 WO 2021018217A1 CN 2020105584 W CN2020105584 W CN 2020105584W WO 2021018217 A1 WO2021018217 A1 WO 2021018217A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode needle
area
electrode
developable
ultrasonic
Prior art date
Application number
PCT/CN2020/105584
Other languages
English (en)
French (fr)
Inventor
王海峰
罗中宝
Original Assignee
上海睿刀医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海睿刀医疗科技有限公司 filed Critical 上海睿刀医疗科技有限公司
Publication of WO2021018217A1 publication Critical patent/WO2021018217A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle

Definitions

  • This application belongs to the field of medical devices. More specifically, the present application relates to electrodes of an irreversible electroporation device, an array of electrode needles, and an irreversible electroporation device including the electrode needles.
  • Tumors are the main diseases that endanger human health.
  • the traditional therapy for tumors and the newly developed therapy are thermal ablation physical therapy characterized by minimally invasive ablation. Due to the limitations of indications, contraindications, treatment side effects, thermal effects and other factors, its clinical application has certain limitations.
  • electric field pulses have attracted the attention of researchers due to their non-thermal and minimally invasive biomedical effects. Among them, irreversible electroporation treatment of tumors is fast, controllable, visible, and The advantages and characteristics of selectivity and non-thermal mechanism have attracted wide attention from researchers in the field of bioelectricity at home and abroad, and are gradually applied to clinical treatment of tumors.
  • Irreversible electroporation is a technique that inserts electrodes into the diseased part of the patient and applies a pulsed electric field around the cells to cause nano-scale micropores to appear on the surface of the cell membrane, which leads to the exchange of substances inside and outside the cell and destroys cell homeostasis, resulting in cell membrane damage. Permanent damage, eventually leading to cell death technology.
  • Pulsed electric field can produce non-thermal, non-chemically toxic killing effect.
  • the pulsed electric field only acts on the phospholipid bilayer membrane structure of the cell membrane, and does not act on the protein, collagen and other components. It protects the important structures of the blood vessels in the ablation zone and the ablation boundary is clear.
  • ultrasound is used to determine the diseased area, and then the electrode needle is inserted for treatment.
  • the electrode needle used with ultrasound and inserted into the human body is one or more long needles. At present, the electrode needle is invisible in ultrasound after being inserted into the human body. This makes it impossible to accurately measure the size of the electrode needle actually inserted into the human body (and the actual discharge size).
  • an electrode needle, an electrode needle array, and an irreversible electroporation device including the electrode needle for an irreversible electroporation device are provided.
  • the electrode needle used in an irreversible electroporation device.
  • the electrode needle includes an electrode needle body which is adapted to receive electric pulses and apply an electric field in a predetermined direction.
  • the surface of the electrode needle main body includes a conductive area and an ultrasonic developable area.
  • the conductive area is suitable for applying an electric field in a predetermined direction to perform irreversible electroporation.
  • the ultrasound visualizable area is suitable for accurately determining the size of the electrode needle actually inserted into the human body and the actual discharge size.
  • the conductive region is formed of a conductive material.
  • the ultrasonically developable area is formed of an ultrasonically developable material, for example, by coating an ultrasonically developable material.
  • the ultrasonic visualization can also be achieved by changing the surface structure of the electrode needle.
  • the surface of the electrode needle body further includes an insulating region.
  • the area/width of the insulating region is greater than, equal to, or smaller than the area/width of the ultrasonic developable region.
  • the area/width of the insulating region overlaps or partially overlaps the area/width of the ultrasonically developable region.
  • the insulating area can inhibit the electric field from spreading away from the target biological tissue, and alleviate side effects such as muscle contraction.
  • the insulating region is formed of an insulating material, for example, formed by coating a coatable insulating material.
  • the insulating material includes various organic materials and inorganic materials coatable materials having insulation, heat resistance, and biocompatibility, for example, parylene and the like (for example, see WO2018050025). This article incorporates the entire content of WO2018050025 into this article by reference.
  • an irreversible electroporation device which includes: a pulse forming device configured to generate electric pulses; and one or more of the above-mentioned electrode needles, which are configured to form pulses
  • the device receives electrical pulses to generate an electric field.
  • an electrode needle array It includes one or more electrode needles, the axes of the main bodies of the one or more electrode needles are parallel to each other, wherein at least one of the one or more electrode needles is the above-mentioned electrode needle.
  • the electrode needle described in this application can accurately determine the size of the electrode needle actually inserted into the human body and the actual discharge size during use, avoiding inaccuracy caused by insufficient experience of the operator. Further, since the size of the electrode needle actually inserted into the human body and the actual discharge size can be accurately determined, the irreversible electroporation device including the electrode needle described in this application can accurately apply an electric field to the diseased part (such as a tumor), thereby improving treatment effect.
  • Fig. 1 is a schematic diagram of an electrode needle according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an electrode needle according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an electrode needle according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an electrode needle according to an embodiment of the present application.
  • Ultrasound visualizable means are usually used in ultrasound-guided catheter interventions (for example, see CN107335099A, CN103623493A, CN204352312U).
  • This article incorporates the entire contents of CN107335099A, CN103623493A, and CN204352312U into this article by way of reference.
  • the inventor of the present application innovatively applied the ultrasonic visualization method to the electrode needle of the irreversible electroporation device, and solved the technical problem that the size of the electrode needle inserted into the patient's body and the actual discharge size cannot be accurately determined.
  • the electrode needle described in the present application includes an electrode needle body, which is adapted to receive electrical pulses and apply an electric field in a predetermined direction (for example, a tumor direction).
  • the surface of the electrode needle main body includes a conductive area and an ultrasonic developable area.
  • the conductive area is suitable for applying an electric field in a predetermined direction to perform irreversible electroporation.
  • the ultrasonic developable area is suitable for accurately determining the size of the electrode needle actually inserted into the human body and the actual discharge size.
  • the conductive area is formed of a conductive material.
  • the ultrasonic developable area is formed of an ultrasonic developable material, for example, by coating an ultrasonic developable material, such as a polymer developing material that can be coated.
  • the ultrasonic developable area When the ultrasonic developable area is formed by coating an ultrasonic developable material, the ultrasonic developable area may also be referred to as an ultrasonic developable coating.
  • the ultrasonic visualization can also be achieved by changing the surface structure of the electrode needle.
  • the surface of the electrode needle body further includes an insulating region.
  • the area/width of the insulating region is greater than, equal to, or smaller than the area/width of the ultrasonic developable region.
  • the area/width of the insulating region overlaps or partially overlaps the area/width of the ultrasonically developable region.
  • the insulating area can inhibit the electric field from spreading away from the target biological tissue, and alleviate side effects such as muscle contraction.
  • the insulating region is formed of a coatable insulating material, for example, by coating a coatable insulating material.
  • the coatable insulating material includes coatable materials of various organic and inorganic materials with insulation, heat resistance, and biocompatibility, such as parylene, polyether ether ketone (PEEK), and the like.
  • PEEK polyether ether ketone
  • the insulating area is formed by coating an insulating material, the insulating area may also be called an insulating coating.
  • the electrode needle described in the present application includes a conductive area, an ultrasonic visualizable area, and an insulating area.
  • the electrode needle described herein can be manufactured/constructed in any manner, as long as its surface has the conductive area, ultrasonic developable area, and optional insulating area described herein.
  • the terms “electrode needle” and “electrode needle body” described herein can be used interchangeably.
  • the electrode needle body may be entirely formed of a conductive material.
  • the conductive material may be any conductive material conceivable by those skilled in the art, especially a conductive material suitable for applying irreversible electroporation pulses, for example, a conductive metal material, such as (304) stainless steel.
  • a part of the surface of the electrode needle main body has an ultrasonic visualizable area and an insulating area.
  • the area/width of the insulating region is greater than, equal to, or smaller than the area/width of the ultrasonic developable region.
  • the area/width of the insulating region overlaps or partially overlaps the area/width of the ultrasonically developable region.
  • the electrode needle described in the present application includes one or more ultrasound visualizable regions.
  • the number of ultrasound developable regions can be 1, 2, 3, 4, 5, 6, or more, preferably two.
  • the area/width of the remaining ultrasonic developable area is greater than, less than or equal to the area/width of the insulating area, and the remaining ultrasonic developable area partially overlaps, overlaps, is adjacent to, or is spaced apart from the insulating area by an appropriate distance.
  • one end of an ultrasonic developable area may overlap with an end of the insulating area, and the overlapping end of the ultrasonic developable area and the insulating area may be adjacent to the conductive area.
  • the ultrasonically developable area may be insulated.
  • the insulating area overlaps or partially overlaps the ultrasonic developable area, from the radial direction of the electrode needle body, the insulating area is located above or below the ultrasonic developable area.
  • the insulating area is located above the ultrasonic developable area, and this arrangement can avoid the risk of the ultrasonic developable material falling off.
  • the conductive area is located on the top of the electrode pin, which can also be called a bare end.
  • the size of the conductive area is also called the actual discharge size.
  • the insulating area and/or the ultrasound visualizable area are located at the bottom of the electrode needle.
  • the top of the electrode needle may have various shapes, for example, a slope shape inclined with respect to the axis of the electrode needle, or a needle tip shape converging on the axis of the electrode needle.
  • the length of the conductive end is not particularly limited, and can be 1-20 cm, preferably 1-15 cm, more preferably 1-10 cm, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 cm.
  • the length of the electrode needle described in this application is not particularly limited.
  • the length of the electrode needle of the present application can be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70 cm.
  • those skilled in the art can select an electrode needle of a suitable length according to the actual situation, or cut the electrode needle to a suitable length, and then use it.
  • the surface of the electrode needle may be smooth or rough, preferably smooth.
  • the width of the insulating area is not particularly limited, for example, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 cm.
  • the insulating area is used to restrain the electric field from propagating away from the target biological tissue.
  • the width of the insulating area refers to the width of the insulating area in the direction of the electrode needle axis.
  • the width of the ultrasonic developable area is not particularly limited.
  • the width of the ultrasonic developable area may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 mm.
  • the number of ultrasound developable regions can be 1, 2, 3, 4, 5, 6, or more, preferably two. Further, when multiple ultrasonically developable regions are included, it is preferable that one ultrasonically developable region overlaps the insulating region, and the area/width of the ultrasonically developable region is smaller than the area/width of the insulating region.
  • the area/width of the remaining ultrasonic developable area is greater than, less than or equal to the area/width of the insulating area, and the remaining ultrasonic developable area overlaps, overlaps, adjoins, or is spaced apart from the insulating area by an appropriate distance.
  • the width of the ultrasonic developable area refers to the width of the ultrasonic developable area in the direction of the electrode needle axis.
  • the electrode needle described in the present application has two ultrasonically visualizable areas with a width of 5-15 mm respectively.
  • the first ultrasonic developable area overlaps the insulating area, wherein one end of the first ultrasonic developable area overlaps with one end of the insulating area, and the width of the first ultrasonic developable area is smaller than that of the insulating area. Width, and the overlapping end of the first ultrasonic developable area and the insulating area is adjacent to the conductive area.
  • the second ultrasonically visualizable area also overlaps the insulating area.
  • the first ultrasonically visualizable area is separated from the second ultrasonically visualizable area by an appropriate distance, for example, 5-10 cm, such as 5, 6, 7, 8, 9, 10 cm.
  • the ultrasonic developable area is formed of an ultrasonic developable material.
  • the ultrasonic developable material includes a material with high acoustic impedance (acoustic impedance greater than), such as one or more of aluminum oxide, titanium dioxide, and silicon dioxide.
  • a material with high acoustic impedance acoustic impedance greater than
  • aluminum oxide titanium dioxide
  • silicon dioxide silicon dioxide
  • a part of the electrode needle surface can be configured to have a shape different from the shape of other parts, such as recesses, threads, steps, etc.
  • the ultrasound developable area Due to the presence of the ultrasound developable area, those skilled in the art can easily determine the size of the electrode needle actually inserted into the human body and the actual discharge size, avoiding the inaccuracy caused by the lack of experience of the operator, so that the electrode described in this application is included.
  • the needle's irreversible electroporation device can accurately apply an electric field to the diseased part (such as a tumor) so that the medical staff can better execute the treatment plan, and ultimately improve the treatment effect.
  • the insulating area is located above the ultrasonic developable area, which can avoid the risk of the ultrasonic developable material falling off.
  • the target biological tissues described in this application include benign or malignant tumors.
  • the malignant tumors include rectal cancer, head and neck cancer, lung cancer, breast cancer, esophageal cancer, gastric cancer, intestinal cancer, liver cancer, pancreatic cancer, cholangiocarcinoma, gallbladder cancer, kidney Cancer, ovarian cancer, bladder cancer, or prostate cancer
  • the benign tumors include prostate hyperplasia or breast hyperplasia.
  • a target biological tissue for example, a tumor, etc.
  • the direction of application of the electric field of the electrode needle is opposite to the target biological tissue, so that the electric field is applied to the target biological tissue to ablate the target biological tissue (for example, , Tumors, etc.).
  • the electrode needles described herein can be used in irreversible electroporation devices, such as those described in CN106388932B and WO2018050025. During application, part or all of the length of the electrode needle described in this application is inserted into the patient's body, provided that the ultrasound visualizable area should be inserted into the patient's body.
  • the application also provides a method for preparing the electrode needle:
  • an irreversible electroporation device which includes: a pulse forming device configured to generate electrical pulses; and one or more electrode needles according to the application configured to receive electrical pulses from the pulse forming device To generate an electric field.
  • the present application provides a method for treating a tumor using an irreversible electroporation device including the electrode needle, which includes the steps of using an ultrasonic probe to detect the size of the electrode needle inserted into the patient and the actual discharge size, wherein the ultrasonic probe is used to detect the insertion
  • the size of the electrode needle in the patient's body and the actual discharge size are achieved by using an ultrasound probe to detect the ultrasound visible area on the electrode needle inserted into the patient's body.
  • the present application provides a use of the electrode needle in preparing an irreversible electroporation device for treating tumors.
  • the present application provides an electrode needle array, which comprises: one or more electrode needles, the axes of the main bodies of the one or more electrode needles are parallel to each other, wherein at least one of the one or more electrode needles It is the electrode needle described in this application.
  • the electrode needle is a 304 stainless steel electrode needle with a length of 30 cm.
  • the width of the top conductive area is 10 cm.
  • the electrode needle has an ultrasonic developable area with a width of 20 mm.
  • the ultrasonic developable area is formed by providing a concave shape on the surface of the electrode needle.
  • One end of the ultrasound developable area is adjacent to the top conductive area.
  • the bottom area adjacent to the other end of the ultrasonically developable area can also be used as the second conductive area.
  • the electrode needle is a 304 stainless steel electrode needle with a length of 40 cm.
  • the length of the top conductive area is 5 cm.
  • the electrode needle also has an ultrasonic visible area and an insulating area.
  • the ultrasonic developable area is formed by using a coatable material containing aluminum oxide on the surface of the electrode needle.
  • the insulating region is formed of parylene.
  • the width of the ultrasound developable area is 10 mm.
  • the length of the insulating area is 35 cm.
  • the ultrasonic developable area overlaps the insulating area, and one end of the ultrasonic developable area overlaps with one end of the insulating area, and the overlapping end is adjacent to the conductive area. From the radial direction of the electrode needle main body, the insulating area is located above the ultrasonic visualizable area.
  • the electrode needle is a 304 stainless steel electrode needle with a length of 40 cm.
  • the length of the top conductive area is 5 cm.
  • the length of the insulating area is 35 cm.
  • the ultrasonic developable area is formed by using a coatable material containing titanium dioxide on the surface of the electrode needle.
  • the insulating area is formed of PEEK.
  • the electrode needle also has two ultrasonically visualizable areas with a width of 10 mm respectively.
  • the first ultrasonic developable area overlaps the insulating area, and one end of the first ultrasonic developable area overlaps with one end of the insulating area, and the overlapping end of the ultrasonic developable area and the insulating area is adjacent to the conductive area.
  • the second ultrasonically developable area also overlaps the insulating area.
  • the first ultrasonically visualizable area and the second ultrasonically visualizable area are separated by 5 cm from each other. From the radial direction of the electrode needle main body, the insul

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

用于不可逆电穿孔设备的电极针、不可逆电穿孔设备及电极针阵列。电极针包括电极针主体(4),电极针主体(4)适于接收电脉冲并向预定方向施加电场,并且电极针主体(4)的表面上包括导电区域(3)和超声可显影区域(2)。设备包括:脉冲形成装置和一个或多个电极针。脉冲形成装置被配置为产生电脉冲,该一个或多个电极针被配置为从脉冲形成装置接收电脉冲以产生电场。电极针阵列包括一个或多个电极针,该一个或多个电极针的主体的轴线相互平行。电极针在使用时能够准确确定实际插入人体的电极针尺寸以及实际放电尺寸,避免了因操作人员经验不足带来的不准确性。

Description

用于不可逆电穿孔设备的电极针、电极针阵列和设备 技术领域
本申请属于医疗器械领域。更具体地,本申请涉及不可逆电穿孔设备的电极、电极针的阵列以及包括所述电极针的不可逆电穿孔设备。
背景技术
肿瘤,尤其是恶性肿瘤是危害人类健康的主要疾病。肿瘤的传统疗法以及新近发展起来的疗法是以微创消融为特征的热消融物理疗法。由于受适应症、禁忌症、治疗副作用、热效应等因素的限制,使得其临床应用存在一定的局限性。近年来,随着脉冲生物电学的不断发展,电场脉冲以其非热、微创的生物医学效应引起了研究人员的关注,而其中的不可逆电穿孔治疗肿瘤以其快捷、可控、可视、选择性和非热机理等的优势和特色更是引起国内外生物电学领域研究人员的广泛关注,并逐渐应用于肿瘤的临床治疗。
不可逆电穿孔技术是一种通过将电极插入到患者患病部位,施加脉冲电场作用在细胞周围,引起细胞膜表面出现纳米级的微孔,从而导致细胞内外物质交换进而破坏细胞稳态,导致细胞膜造成永久性损伤,最终导致细胞死亡的技术。此技术在肿瘤的治疗中具有优良的应 用价值。脉冲电场能产生非热能、无化学毒性的杀伤作用。而且,脉冲电场仅仅作用于细胞膜磷脂双层膜结构,不作用于蛋白、胶原等成分,保护消融区内血管重要结构,消融边界清晰。
通常,采用不可逆电穿孔技术进行治疗时,先采用超声确定患病部位,然后插入电极针进行治疗。配合超声使用并插入人体的电极针是一根或多根长针。目前,电极针插入人体后在超声中是不可见的。这使得电极针实际插入人体的尺寸(以及实际放电尺寸)无法精确测量。
目前,完全依靠医生的临床经验来确定实际插入人体的电极针尺寸(以及实际放电尺寸)。这不仅对医生的临床经验要求高,而且存在不准确性。
亟需设计克服上述缺陷的用于不可逆电穿孔设备的电极针及其使用方法。
发明内容
根据本申请的实施例,提供了用于不可逆电穿孔设备的电极针、电极针阵列以及包括所述电极针的不可逆电穿孔设备。
本申请实施例的一方面,提供一种用于不可逆电穿孔设备的电极针。所述电极针包括电极针主体,该电极针主体适于接收电脉冲并向预定方向施加电场。该电极针主体的表面上包括导电区域和超声可显影区域。所述导电区域适于向预定方向施加电场,以进行不可逆电穿孔。所述超声可显影区域适于准确确定实际插入人体的电极针尺寸以 及实际放电尺寸。
在某些实施例中,所述导电区域由导电材料形成。
在某些实施例中,所述超声可显影区域由超声可显影材料形成,例如通过涂布超声可显影材料的方式进行。或者,也可以通过改变电极针表面结构的方式实现超声可显影。
在某些实施例中,所述电极针主体的表面上还包括绝缘区域。所述绝缘区域的面积/宽度短大于、等于或小于所述超声可显影区域的面积/宽度。任选地,所述绝缘区域的面积/宽度与所述超声可显影区域的面积/宽度重叠或部分重叠。所述绝缘区域可以抑制电场向远离目标生物组织的方向传播,缓解了肌肉收缩等副作用。优选地,所述绝缘区域由绝缘材料形成,例如通过涂布可涂布绝缘材料的方式形成。所述绝缘材料包括具有绝缘性、耐热性和生物兼容性的各种有机材料和无机材料的可涂布材料,例如,聚对二甲苯等(例如,参见WO2018050025)。本文通过引用的方式将WO2018050025的全部内容并入本文。
本申请实施例的另一方面涉及一种不可逆电穿孔设备,其包括:脉冲形成装置,被配置为产生电脉冲;和一个或多个上述的电极针,所述电极针被配置为从脉冲形成装置接收电脉冲以产生电场。
本申请实施例的另一个方面提供一种电极针阵列。包括一个或多个电极针,所述一个或多个电极针的主体的轴线相互平行,其中所述一个或多个电极针的至少一个是上述的电极针。
本申请所述电极针在使用时能够准确确定实际插入人体的电极针 尺寸以及实际放电尺寸,避免了因操作人员经验不足带来的不准确性。进一步地,由于能够准确确定实际插入人体的电极针尺寸以及实际放电尺寸,使得包括本申请所述电极针的不可逆电穿孔设备能够准确地将电场施加到患病部位(例如肿瘤),改善了治疗效果。
附图说明
图1是根据本申请一种实施方式的电极针的示意图。
图2是根据本申请一种实施方式的电极针的示意图。
图3是根据本申请一种实施方式的电极针的示意图。
图4是根据本申请一种实施方式的电极针的示意图。
附图标记说明
1:绝缘区域
2:超声可显影区域
3:导电区域
4:电极针主体
发明详述
超声可显影手段通常用于超声引导的导管介入操作中(例如,参见CN107335099A、CN103623493A、CN204352312U)。本文通过引用的方式将CN107335099A、CN103623493A、CN204352312U的全部内容并入本文。
目前,在不可逆电穿孔设备的电极针中,还未见使用超声可显影手段。本申请发明人创新性地将超声可显影手段用于不可逆电穿孔设备的电极针,解决了不能准确确定插入患者体内的电极针尺寸以及实际放电尺寸的技术问题。
本申请所述电极针包括电极针主体,该电极针主体适于接收电脉冲并向预定方向(例如肿瘤方向)施加电场。该电极针主体的表面上包括导电区域和超声可显影区域。所述导电区域适于向预定方向施加电场,以进行不可逆电穿孔。所述超声可显影区域适于准确确定实际插入人体的电极针尺寸以及实际放电尺寸。所述导电区域由导电材料形成。所述超声可显影区域由超声可显影材料形成,例如通过涂布超声可显影材料的方式进行,比如可涂布高分子聚合显影材料。当所述超声可显影区域是通过涂布超声可显影材料的方式形成时,所述超声可显影区域又可以称为超声可显影涂层。或者,也可以通过改变电极针表面结构的方式实现超声可显影。
在另一种实施方式中,所述电极针主体的表面上还包括绝缘区域。所述绝缘区域的面积/宽度大于、等于或小于所述超声可显影区域的面积/宽度。任选地,所述绝缘区域的面积/宽度与所述超声可显影区域的面积/宽度重叠或部分重叠。所述绝缘区域可以抑制电场向远离目标生物组织的方向传播,缓解了肌肉收缩等副作用。优选地,所述绝缘区域由可涂布绝缘材料形成,例如通过涂布可涂布绝缘材料的方式形成。所述可涂布绝缘材料包括具有绝缘性、耐热性和生物兼容性的各种有机材料和无机材料的可涂布材料,例如,聚对二甲苯、聚醚醚酮 (PEEK)等。当所述绝缘区域是通过涂布绝缘材料的方式形成时,所述绝缘区域又可以称为绝缘涂层。
在一种优选的实施方式中,本申请所述电极针包括导电区域、超声可显影区域和绝缘区域。
本领域技术人员可以理解,本文所述电极针可以采用任何方式来制造/构造,只要其表面具有本文所述的导电区域、超声可显影区域、以及任选的绝缘区域即可。
在一些实施方式中,本文所述术语“电极针”和“电极针主体”可以互换使用。在一种实施方式中,所述电极针主体可以整体由导电材料形成。导电材料可以是本领域技术人员可以想到的任何导电材料,特别是适合于施加不可逆电穿孔脉冲的导电材料,例如,导电金属材料等,比如(304)不锈钢。
在一种实施方式中,所述电极针主体的一部分表面具有超声可显影区域和绝缘区域。所述绝缘区域的面积/宽度大于、等于或小于所述超声可显影区域的面积/宽度。任选地,所述绝缘区域的面积/宽度与所述超声可显影区域的面积/宽度重叠或部分重叠。
优选地,本申请所述电极针包括一个或多个超声可显影区域。超声可显影区域的个数可以是1、2、3、4、5、6个或更多个,优选2个。当包含多个超声可显影区域时,优选一个超声可显影区域与绝缘区域重叠,且该超声可显影区域的面积/宽度小于所述绝缘区域的面积/宽度。其余超声可显影区域的面积/宽度大于、小于或等于所述绝缘区域的面积/宽度,并且其余超声可显影区域与所述绝缘区域部分重叠、重 叠、相邻接或间隔适当的距离。进一步地,一个超声可显影区域的一端可与绝缘区域的一端重合,并且该超声可显影区域与绝缘区域的重合端与导电区域相邻接。所述超声可显影区域可以是绝缘的。
当所述绝缘区域与所述超声可显影区域重叠或部分重叠时,从所述电极针主体径向方向上来说,所述绝缘区域位于所述超声可显影区域之上或之下。优选地,从所述电极针主体径向方向上来说,所述绝缘区域位于所述超声可显影区域之上,这样的设置可规避超声可显影材料脱落的风险。
所述导电区域位于电极针顶部,其又可被称为裸露端。所述导电区域的尺寸又称为实际放电尺寸。所述绝缘区域和/或所述超声可显影区域位于电极针底部。所述电极针的顶部可以具有各种形状,例如以相对于电极针的轴线而倾斜的斜面形状、或者汇集于电极针的轴线的针尖形状。所述导电端的长度没有特别限定,可以是1-20厘米,优选1-15厘米,更优选1-10厘米,例如1、2、3、4、5、6、7、8、9、10、11、12、13、14或15厘米。
本申请所述电极针的长度没有特别的限制。例如,本申请电极针的长度可以是5、10、15、20、25、30、35、40、45、50、55、60、65或70厘米。在应用时,本领域技术人员可以根据实际情况选择合适长度的电极针,或者将电极针剪切成合适的长度,然后再使用。所述电极针的表面可以是光滑的或粗糙的,优选光滑的。
所述绝缘区域的宽度没有特别限制,例如,5、10、15、20、25、30、35、40、45、50、55、60、65厘米。所述绝缘区域用于抑制电场 向远离目标生物组织的方向传播。所述绝缘区域的宽度是指绝缘区域在电极针轴线方向上的宽度。
所述超声可显影区域的宽度没有特别限制。优选地,所述超声可显影区域的宽度可以是5、6、7、8、9、10、11、12、13、14、15毫米。超声可显影区域的个数可以是1、2、3、4、5、6个或更多个,优选2个。进一步地,当包含多个超声可显影区域时,优选一个超声可显影区域与绝缘区域重叠,且该超声可显影区域的面积/宽度小于所述绝缘区域的面积/宽度。其余超声可显影区域的面积/宽度大于、小于或等于所述绝缘区域的面积/宽度,并且其余超声可显影区域与所述绝缘区域分重叠、重叠、相邻接或间隔适当的距离。所述超声可显影区域的宽度是指超声可显影区域在电极针轴线方向上的宽度。
更进一步优选地,本申请所述电极针有两个超声可显影区域,宽度分别为5-15毫米。第1个超声可显影区域与绝缘区域重叠,其中所述第1个超声可显影区域的一端与所述绝缘区域的一端重合,所述第1个超声可显影区域的宽度小于所述绝缘区域的宽度,并且所述第1个超声可显影区域与所述绝缘区域的重合端与导电区域相邻接。第2个超声可显影区域也与所述绝缘区域重叠。第1个超声可显影区域与第2个超声可显影区域隔开适当的距离,例如5-10厘米,比如5、6、7、8、9、10厘米。
所述超声可显影区域由超声可显影材料形成。所述超声可显影材料包括具有高声阻抗(声阻抗大于)的材料,例如三氧化二铝、二氧化钛和二氧化硅中的一种或多种。或者,也可以通过改变电极针表面 结构的方式实现超声可显影,比如可以将电极针表面的一部分设置成具有不同于其他部分表面形状的形状,例如凹陷、螺纹、台阶等形状。
由于存在超声可显影区域,本领域技术人员很容易就能确定实际插入人体的电极针尺寸以及实际放电尺寸,避免了因操作人员经验不足带来的不准确性,从而使得包括本申请所述电极针的不可逆电穿孔设备能够准确地将电场施加到患病部位(例如肿瘤),以便医务人员更好地执行治疗计划,最终改善了治疗效果。而且,所述绝缘区域位于所述超声可显影区域之上,这能够规避超声可显影材料脱落的风险。
本申请所述目标生物组织包括良性或恶性肿瘤,例如所述恶性肿瘤包括直肠癌、头颈癌、肺癌、乳腺癌、食管癌、胃癌、肠癌、肝癌、胰腺癌、胆管癌、胆囊癌、肾癌、卵巢癌、膀胱癌、或前列腺癌,所述良性肿瘤包括前列腺增生或乳腺增生等。本领域技术人员知晓,在对目标生物组织(例如,肿瘤等)进行不可逆电穿孔时,电极针的电场施加方向与目标生物组织相对,以将电场施加到目标生物组织进而消融目标生物组织(例如,肿瘤等)。
本文所述电极针可用于不可逆电穿孔设备中,例如CN106388932B、WO2018050025所述的不可逆电穿孔设备中。在应用时,本申请所述电极针的部分或全部长度插入到患者体内,条件是所述超声可显影区域应插入患者体内。
本申请还提供一种制备所述电极针的方法:
1)提供商业上可获得的电极针;和
2)设置超声可显影结构或涂布超声可显影材料和/或绝缘材料, 以形成超声可显影区域和/或绝缘区域。
本申请的另一方面涉及一种不可逆电穿孔设备,其包括:脉冲形成装置,被配置为产生电脉冲;和一个或多个根据本申请的电极针,被配置为从脉冲形成装置接收电脉冲以产生电场。
本申请在另一个方面提供一种使用包括所述电极针的不可逆电穿孔设备治疗肿瘤的方法,包括使用超声探头探测插入患者体内的电极针尺寸以及实际放电尺寸的步骤,其中使用超声探头探测插入患者体内的电极针尺寸以及实际放电尺寸是通过用超声探头探测插入患者体内的电极针上的超声可显影区域而实现的。
本申请在另一个方面提供一种所述电极针在制备一种用于治疗肿瘤的不可逆电穿孔设备中的用途。
本申请在另一个方面提供一种电极针阵列,其包括:一个或多个电极针,所述一个或多个电极针的主体的轴线相互平行,其中所述一个或多个电极针的至少一个是根据本申请所述的电极针。
具体实施方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的方法,如无特殊说明,均为常规方法;所述材料,如无特殊说明,均可从商业途径获得。
根据以下方法制备实施例所述具有超声可显影区域的电极针
1)提供商业上可获得的电极针;
2)设置超声可显影结构或涂布超声可显影材料,以形成超声可显影区域;和
3)任选涂布绝缘材料,以形成绝缘区域。
实施例1
该电极针为长度30厘米的304不锈钢电极针。顶部导电区域的宽度为10厘米。该电极针具有一个超声可显影区域,宽度为20毫米。所述超声可显影区域通过在电极针表面的该区域设置凹陷形状而形成。超声可显影区域的一端与顶部导电区域邻接。与超声可显影区域的另一端邻接的底部区域也可用作第二导电区域。
实施例2
该电极针为长度40厘米的304不锈钢电极针。顶部导电区域的长度为5厘米。该电极针还具有一个超声可显影区域和一个绝缘区域。所述超声可显影区域通过在电极针表面的该区域使用包含三氧化二铝的可涂布材料形成。所述绝缘区域由聚对二甲苯形成。超声可显影区域的宽度为10毫米。绝缘区域的长度为35厘米。超声可显影区域与绝缘区域重叠,并且超声可显影区域的一端与绝缘区域的一端重合,重合端与导电区域相邻接。从所述电极针主体径向方向上来说,所述绝缘区域位于所述超声可显影区域之上。
实施例3
该电极针为长度40厘米的304不锈钢电极针。顶部导电区域的长度为5厘米。绝缘区域的长度为35厘米。所述超声可显影区域通过在电极针表面的该区域使用包含二氧化钛的可涂布材料形成。所述绝缘区域由PEEK形成的。该电极针还具有两个超声可显影区域,其宽度分别为10毫米。第一个超声可显影区域与绝缘区域重叠,并且第一个超声可显影区域的一端与绝缘区域的一端重合,并且该超声可显影区域与绝缘区域的重合端与导电区域相邻接。第二个超声可显影区域也与所述绝缘区域重叠。第1个超声可显影区域与第2个超声可显影区域彼此间隔5厘米。从所述电极针主体径向方向上来说,所述绝缘区域位于所述超声可显影区域之上。
等同物
前述实施例仅用于阐述本发明,而不应看作是对本发明的范围的任何限制。显然,可以对上述本发明具体实施方案和实施例中所述的内容做出的许多修饰和变化,而并不会背离本发明的原理。所有这样的修饰和变化均被本申请所涵盖。

Claims (17)

  1. 用于不可逆电穿孔设备的电极针,其特征在于,所述电极针包括电极针主体,所述电极针主体适于接收电脉冲并向预定方向施加电场,并且所述电极针主体的表面上包括导电区域和超声可显影区域。
  2. 根据权利要求1所述的电极针,其特征在于,所述电极针主体的表面上还包括绝缘区域。
  3. 根据权利要求2所述的电极针,其特征在于,所述绝缘区域由绝缘材料形成。
  4. 根据权利要求3所述的电极针,其特征在于,所述绝缘材料为聚对二甲苯。
  5. 根据权利要求1-4中任一项所述的电极针,其特征在于,所述导电区域由导电金属材料形成。
  6. 根据权利要求1-4中任一项所述的电极针,其特征在于,所述超声可显影区域通过以下方式形成:
    1)通过超声可显影材料形成;或者
    2)通过将电极针表面的一部分设置成具有不同于其他部分表面形状的形状而形成。
  7. 根据权利要求6所述的电极针,其特征在于,所述超声可显影材料为三氧化二铝、二氧化钛和二氧化硅中的一种或多种。
  8. 根据权利要求6所述的电极针,其特征在于,所述不同于其他部分表面形状的形状为凹陷、螺纹或台阶形状。
  9. 根据权利要求6所述的电极针,其特征在于,所述超声可显影区域的个数是1-6个。
  10. 根据权利要求9所述的电极针,其特征在于,所述超声可显影区域的个数是2个。
  11. 根据权利要求1-4中任一项所述的电极针,其特征在于,所述电极针主体整体由导电材料形成。
  12. 根据权利要求2-4中任一项所述的电极针,其特征在于,所述绝缘区域在电极针轴线方向上的宽度大于、等于或小于所述超声可显影区域在电极针轴线方向上的宽度。
  13. 根据权利要求2-4中任一项所述的电极针,其特征在于,所述绝缘区域在电极针轴线方向上的宽度与所述超声可显影区域在电极针轴线方向上的宽度重叠或部分重叠。
  14. 根据权利要求13所述的电极针,其特征在于,从所述电极针主体径向方向上来说,所述绝缘区域位于所述超声可显影区域之上或之下。
  15. 根据权利要求9所述的电极针,其特征在于,所述导电区域位于电极针顶部;所述超声可显影区域在电极针轴线方向上的宽度小于所述绝缘区域在电极针轴线方向上的宽度;第1个超声可显影区域与绝缘区域重叠,并且第1个超声可显影区域的一端与绝缘区域的一端重合,并且所述第1个超声可显影区域与绝缘区域的重合端与导电区域相邻接;其余超声可显影区域也与所述绝缘区域重叠。
  16. 一种不可逆电穿孔设备,其特征在于,包括:脉冲形成装置,被配置为产生电脉冲;和一个或多个根据权利要求1到15中任一项所述的电极针,被配置为从脉冲形成装置接收电脉冲以产生电场。
  17. 一种电极针阵列,其特征在于,包括:一个或多个电极针,所述一个或多个电极针的主体的轴线相互平行,其中所述一个或多个电极针的至少一个是根据权利要求1到15中任一项所述的电极针。
PCT/CN2020/105584 2019-07-30 2020-07-29 用于不可逆电穿孔设备的电极针、电极针阵列和设备 WO2021018217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910696724.7A CN112294431A (zh) 2019-07-30 2019-07-30 用于不可逆电穿孔设备的超声可显影电极针
CN201910696724.7 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021018217A1 true WO2021018217A1 (zh) 2021-02-04

Family

ID=74228820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105584 WO2021018217A1 (zh) 2019-07-30 2020-07-29 用于不可逆电穿孔设备的电极针、电极针阵列和设备

Country Status (2)

Country Link
CN (1) CN112294431A (zh)
WO (1) WO2021018217A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113907869A (zh) * 2021-10-08 2022-01-11 杭州维纳安可医疗科技有限责任公司 电极针组件和消融设备
CN113907868A (zh) * 2021-10-08 2022-01-11 杭州维纳安可医疗科技有限责任公司 电极针组件和消融设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204352312U (zh) * 2014-12-04 2015-05-27 上海市同济医院 一种可强化超声显影的肌电导引注射针
CN106388933A (zh) * 2016-09-14 2017-02-15 上海睿刀医疗科技有限公司 用于不可逆电穿孔设备的电极
CN107095718A (zh) * 2017-06-06 2017-08-29 日照天生物医疗科技有限公司 射频消融电极及射频消融装置
CN107260300A (zh) * 2017-07-20 2017-10-20 常州朗合医疗器械有限公司 射频消融导管及系统
US20190133671A1 (en) * 2008-04-29 2019-05-09 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
CN109833091A (zh) * 2017-11-28 2019-06-04 杭州诺诚医疗器械有限公司 消融针组件及消融系统
CN109846548A (zh) * 2019-04-01 2019-06-07 浙江大学 一种实时监测的超声与射频消融二合一导管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190133671A1 (en) * 2008-04-29 2019-05-09 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
CN204352312U (zh) * 2014-12-04 2015-05-27 上海市同济医院 一种可强化超声显影的肌电导引注射针
CN106388933A (zh) * 2016-09-14 2017-02-15 上海睿刀医疗科技有限公司 用于不可逆电穿孔设备的电极
CN107095718A (zh) * 2017-06-06 2017-08-29 日照天生物医疗科技有限公司 射频消融电极及射频消融装置
CN107260300A (zh) * 2017-07-20 2017-10-20 常州朗合医疗器械有限公司 射频消融导管及系统
CN109833091A (zh) * 2017-11-28 2019-06-04 杭州诺诚医疗器械有限公司 消融针组件及消融系统
CN109846548A (zh) * 2019-04-01 2019-06-07 浙江大学 一种实时监测的超声与射频消融二合一导管

Also Published As

Publication number Publication date
CN112294431A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
JP6723249B2 (ja) 軟部組織を切除するためのシステムおよび方法
JP5766163B2 (ja) 不可逆的電気穿孔による組織アブレーション
Siddiqui et al. Induction of rapid, reproducible hepatic ablations using next-generation, high frequency irreversible electroporation (H-FIRE) in vivo
Breton et al. Microsecond and nanosecond electric pulses in cancer treatments
US20190357960A1 (en) Methods, systems, and apparatuses for tissue ablation using electrolysis and permeabilization
JP4111829B2 (ja) 骨処置器具
Golberg et al. Nonthermal irreversible electroporation: fundamentals, applications, and challenges
Davalos et al. Tissue ablation with irreversible electroporation
Miklovic et al. A comprehensive characterization of parameters affecting high-frequency irreversible electroporation lesions
US20220133401A1 (en) Treatment of the reproductive tract with pulsed electric fields
Wagstaff et al. Irreversible electroporation of the porcine kidney: temperature development and distribution
US20060264752A1 (en) Electroporation controlled with real time imaging
Lu et al. Irreversible electroporation: ready for prime time?
JP2007516792A5 (zh)
WO2021018217A1 (zh) 用于不可逆电穿孔设备的电极针、电极针阵列和设备
JP2007516012A (ja) 角質化組織中の伝染病を治療する方法および装置
US20210212753A1 (en) Electro-thermal therapy for the treatment of diseased or unwanted tissue
Srimathveeravalli et al. Evaluation of an endorectal electrode for performing focused irreversible electroporation ablations in the Swine rectum
Malyško-Ptašinskė et al. Invasive and non-invasive electrodes for successful drug and gene delivery in electroporation-based treatments
RU2326618C2 (ru) Способ электролизной деструкции нерезектабельных злокачественных опухолей печени
RU2479871C1 (ru) Способ регистрации механической работы изолированного сердца лягушки
Al Raisi et al. Renal artery branch denervation: Evaluation of lesion characteristics using a Thermochromic liquid crystal phantom model
Latouche et al. Modeling of irreversible electroporation treatments for the optimization of pancreatic cancer therapies
CN212788678U (zh) 用于不可逆电穿孔设备的电极针、不可逆电穿孔设备、电极针阵列
CN117460476A (zh) 用于推断治疗效果的多电极系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846628

Country of ref document: EP

Kind code of ref document: A1