WO2021018122A1 - 一种开放无线信道中的资源分配与接入方法 - Google Patents

一种开放无线信道中的资源分配与接入方法 Download PDF

Info

Publication number
WO2021018122A1
WO2021018122A1 PCT/CN2020/105100 CN2020105100W WO2021018122A1 WO 2021018122 A1 WO2021018122 A1 WO 2021018122A1 CN 2020105100 W CN2020105100 W CN 2020105100W WO 2021018122 A1 WO2021018122 A1 WO 2021018122A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
receiving
channel
sending
power
Prior art date
Application number
PCT/CN2020/105100
Other languages
English (en)
French (fr)
Inventor
金野
王宝吉
吕国成
何涛
刘爱民
董明科
Original Assignee
北京大学
北京鑫星卫通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学, 北京鑫星卫通科技有限公司 filed Critical 北京大学
Priority to US17/630,925 priority Critical patent/US11974260B2/en
Publication of WO2021018122A1 publication Critical patent/WO2021018122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18528Satellite systems for providing two-way communications service to a network of fixed stations, i.e. fixed satellite service or very small aperture terminal [VSAT] system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70715Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with application-specific features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the technical field of wireless communication, in particular to a resource allocation and access method in an open wireless channel.
  • satellite communication system a large number of satellite earth stations form a communication system through satellite transponders. Multiple stations share the frequency band, power, and time resources of the transparent transponder.
  • Multiple terminal stations use multiple multiple access methods, such as FDMA, TDMA, and CDMA to share satellite resources to realize interactive services.
  • the FDMA (frequency division multiple access) access method is divided according to frequency band resources to realize satellite resource sharing.
  • the FDMA method is relatively simple and is suitable for mesh and star networking.
  • intermodulation interference which wastes the power of the transponder to a certain extent and reduces the power usage efficiency.
  • CDMA Time Division Multiple Access, Time Division Multiple Access
  • CDMA technology is relatively complex for users, and is mostly used in star networking.
  • the user capacity of CDMA depends on the orthogonality of codewords, but due to multiple access interference, the user capacity is limited.
  • TDMA Time Division Multiple Access
  • the TDMA system has no intermodulation problems.
  • the satellite power and frequency band can be fully utilized, and strict power control is not required.
  • the system has a large capacity and is widely used in satellite communication systems.
  • the TDMA communication system is more complicated to implement than other multiple-access systems and requires precise clock synchronization across the entire network. Accurate clock synchronization can reduce interference between users in different time slots and ensure system capacity.
  • the TDMA multiple access method is more suitable for networking between stations with the same capabilities. When TDMA is used for unified carrier mesh networking, in order to be compatible with the lowest-capable stations, it is usually necessary to reduce the overall carrier Speed limits the communication capabilities of other stations with higher capabilities.
  • FDMA and TDMA mesh networks are mostly suitable for satellite terminal stations with medium transmission and reception capabilities.
  • TDM/FDMA and TDM/CDMA systems are mostly suitable for star networks with a large central station and multiple small terminal stations.
  • the resource allocation and multiple access technologies of these satellite systems are different, forming multiple network systems that are incompatible with each other.
  • Various terminal stations can only be interconnected within this network system, and can only communicate with terminal stations in other network systems. Intercommunication can be achieved through the ground network. There are many types of equipment, high cost and low communication efficiency.
  • the technical problem to be solved by the present invention is to provide a resource allocation and access method in an open wireless channel, which can be compatible with sending terminal stations, receiving terminal stations, relay nodes, and relay nodes in the open wireless channel.
  • the difference and dynamic variability of wireless channels and user services make full use of the open interconnection characteristics of open wireless channels to realize the adaptive interconnection and intercommunication between terminal stations under the above-mentioned differences and dynamic variability conditions, avoiding the above-mentioned differences and dynamics
  • the variability conditions divide the terminal stations into separate groups, and different resource allocation and access methods are needed to solve the interconnection and intercommunication of different types of terminal station groups, forming a variety of mutually incompatible, even in an open wireless network.
  • a "chimney-like" information island that cannot directly establish interconnected communication links.
  • the technical solution of the present invention is: the resource allocation and access method in this open wireless channel,
  • the comprehensive change factors of the sending end refer to: the type and transmission capability of the sending station are changed, and the wireless connection between the sending station and the relay node
  • the current state of the channel is changing, the working state of the receiving end of the relay node is changing, the user service to be transmitted by the sending station is changing
  • the comprehensive change factor of the receiving end refers to: the type and receiving capacity of the receiving station are changing.
  • the current state of the channel between the following node and the receiving station is changing, and the working state of the transmitting end of the relay node is changing.
  • the present invention includes various types of user terminal stations in the open wireless channel.
  • dynamic adaptive matching is made with reference to the comprehensive change factors of the sending end and the receiving end, so that it can be compatible with the sending terminal station and the receiving terminal in the open wireless channel.
  • the difference and dynamic variability of terminal stations, relay nodes, wireless channels, and user services make full use of the open interconnection characteristics of open wireless channels to achieve adaptive interconnection between terminal stations under the above-mentioned differences and dynamic variability conditions, Avoid dividing the terminal stations into separate groups due to the above-mentioned differences and dynamic variability conditions, requiring different resource allocation and access methods to solve the interconnection and intercommunication of different types of terminal station groups, forming a variety of incompatible, even if In an open wireless network, it is also impossible to directly establish a "chimney-like" information island of interconnected communication links.
  • Fig. 1 shows a schematic diagram of an example of a resource allocation and access method in an open wireless channel according to the present invention.
  • Station 1 is a small satellite terminal station with 0.5m aperture antenna/3W power amplifier
  • station 2 is a medium satellite terminal station with 1.2m aperture antenna/10W power amplifier
  • station 3 is a large satellite terminal station with 3.7 aperture antenna/40W power amplifier.
  • the three satellite stations all work in the Ku frequency band.
  • the open-channel relay node selects the 36MHz bandwidth Ku national beam of the satellite 9 synchronous satellite, and the roll-off coefficient of the channel filter is 1.125.
  • the earth station as the signal sending end adopts a unified frame encapsulation format, supports multiple data frame types, adaptively completes information encapsulation and adaptation according to the receiving ability of the destination receiving station, and adaptively selects information transmission according to the receiving ability of the destination receiving station
  • the mode is adapted to the receiving capability of the receiving end; that is, regardless of the receiving station 2 with strong receiving ability, or the receiving station 1 with weak receiving ability, the unified frame encapsulation format is used to send.
  • the transmission mode of the internal information data frame is determined according to the receiving capability of the receiving station.
  • the receiving capability of the receiving station includes the downlink EIRP (equivalent isotropic radiated power), the downlink satellite link status (rain attenuation, interference, etc.), and the G/T value of the receiving station.
  • the frame header in the unified frame encapsulation format has a strong anti-interference reception margin. Regardless of the receiving station 2 with strong receiving ability or the receiving station 1 with weak receiving ability, it can receive the signals in the unified frame encapsulation format stably and reliably.
  • Frame header According to the received signal-to-noise ratio of the frame header, the power and level of the current information frame can be judged; according to the frame mode field in the frame header, the mode adopted by the subsequent information data frame can be judged, including spreading method, channel coding method, and channel modulation the way. If the destination address field is included in the frame header, the receiving station 1 and the receiving station 2 can determine whether the current data information frame is sent to itself, and decide whether to continue receiving or discarding.
  • the receiving station 1 or the receiving station 2 if it is determined that the information frame is sent to itself but cannot be received correctly or the signal-to-noise ratio of the correctly received signal is high, it indicates that the sender has the information of the receiver’s receiving ability or channel status. Wrong, unable to receive correctly indicates that the receiver's ability is too high, and the signal-to-noise ratio of the received signal indicates that the receiver's ability is too low, and the receiver needs to transmit correction information to the sender for the sender to adjust the sending of the information data frame mode. If the destination address field is not included in the frame header, the receiving station 1 and the receiving station 2 can only try to receive the current data information frame according to the mode field.
  • the present invention adopts a multi-dimensional resource allocation method integrating frequency domain, time domain, and power domain, which is compatible with the differences of transmitting stations, including the differences of transmitting terminal stations, and the satellite link channel conditions (rain attenuation, interference) of the transmitting station.
  • the satellite uplink operating point saturated flux density, G/T value
  • dynamic variability to achieve the matching of the characteristics of the transmitter and the occupied satellite channel resources, and to ensure the efficient use of satellite channel resources.
  • Scenario 1 Sending station No. 3 is a large station (antenna diameter above 3.7 meters, transmission power above 40W, Ku band) and the uplink status is good (no rainfall, no interference), the sending station can forward the Ku band on the satellite If the transmitter is saturated, the entire 36MHz bandwidth and all power of the transponder will be allocated to the sending station in the current time slot. According to the results of link calculation, the transmission rate from No. 3 sending station to No. 2 receiving station can reach 80Mbps.
  • the transmission mode adopted is no spread spectrum, channel coding is LDPC code, code length is 8064, code rate is 7/8, and channel modulation is 8PSK.
  • 1 receiving station can reach 32Mbps, and the adopted transmission mode is no spread spectrum, channel coding is LDPC code, code length is 8064, code rate is 1/2, and channel modulation is QPSK. If the information of No. 3 sending station is to be sent to No. 1 and No. 2 stations at the same time, only the 32Mbps rate that can be received by No. 1 station can be used.
  • Scenario 2 Strong rain occurs at the sending station No. 3, and the rain attenuation reaches 10dB. At this time, sending station No. 3 can only push to about 1/10 of the saturated power of the transponder. According to the principle of power and bandwidth balance, the 4MHz bandwidth of sending station No. 3 is allocated (accounting for 1/8 of the total frequency band, slightly higher than the power ratio) Correspondingly, stations 1 and 2 have to go to the corresponding 4MHz frequency band to receive the data sent by sending station 3.
  • the transmission rate of No. 3 sending station to No. 2 receiving station can reach 9Mbps, the carrier bandwidth is 4MHz, the transmission mode adopted is no spread spectrum, channel coding is LDPC code, code length is 8064, code rate is 3/4, and channel modulation is 8PSK.
  • the transmission rate from No. 3 sending station to No. 1 receiving station can reach 4Mbps, and the adopted transmission mode is no spread spectrum, channel coding is LDPC code, code length is 8064, code rate is 1/2, and channel modulation is QPSK. If the information of No. 3 sending station is to be sent to No. 1 and No. 2 stations at the same time, only the 4Mbps rate that can be received by No. 1 station can be used.
  • Scenario 3 Station 1 is the transmitter, and the transmission capacity of this station can only reach 0.7% of the saturation capacity of the satellite transponder.
  • the selected minimum frequency band bandwidth is 500 Hz, which accounts for 1/64 of the total bandwidth of 32 MHz.
  • the transmission capacity of the two stations 1 can correspond to the minimum bandwidth of 500 Hz. Therefore, in the current time slot, 500 Hz is allocated to station 1, and a spreading ratio of 2 is used. Stations 2 and 3 also need to go to the corresponding 500Hz frequency band to receive the information sent by station 1.
  • the carrier bandwidth is 500KHz
  • the transmission mode adopted is spreading ratio 2
  • channel coding is LDPC code, code length 8064, code rate 3/4
  • channel modulation is QPSK.
  • the transmission rate of No. 1 sending station to No. 2 receiving station can reach 125Kbps.
  • the adopted transmission mode is spread spectrum ratio 2
  • channel coding is LDPC code, code length is 8064, code rate is 1/2
  • channel modulation is BPSK. If the information of No. 1 sending station is to be sent to No. 3 and No. 2 stations at the same time, only the 125Kbps rate that can be received by No. 2 station can be used.
  • the comprehensive change factors of the sending end refer to: the type and transmission capability of the sending station are changed, and the wireless connection between the sending station and the relay node
  • the current state of the channel is changing, the working state of the receiving end of the relay node is changing, the user service to be transmitted by the sending station is changing
  • the comprehensive change factor of the receiving end refers to: the type and receiving capacity of the receiving station are changing.
  • the current state of the channel between the following node and the receiving station is changing, and the working state of the transmitting end of the relay node is changing.
  • the present invention includes various types of user terminal stations in the open wireless channel.
  • dynamic adaptive matching is made with reference to the comprehensive change factors of the sending end and the receiving end, so that it can be compatible with the sending terminal station and the receiving terminal in the open wireless channel.
  • the difference and dynamic variability of terminal stations, relay nodes, wireless channels, and user services make full use of the open interconnection characteristics of open wireless channels to achieve adaptive interconnection between terminal stations under the above-mentioned differences and dynamic variability conditions, Avoid dividing the terminal stations into separate groups due to the above-mentioned differences and dynamic variability conditions, requiring different resource allocation and access methods to solve the interconnection and intercommunication of different types of terminal station groups, forming a variety of incompatible, even if In an open wireless network, it is also impossible to directly establish a "chimney-like" information island of interconnected communication links.
  • the resource allocation adopts a dynamic adaptive mode, and each time slot, according to the same principle, reallocates power and frequency resources according to the dynamic changes of the communication requirements and comprehensive transmission capabilities of all transmitting terminal stations in the entire channel.
  • each sending terminal station uses a unified frame encapsulation format to send data frames, and sends them according to the resource allocation and access method in the open wireless channel.
  • each sending terminal station adopts a unified frame encapsulation format when sending information to different receiving terminal stations.
  • the frame encapsulation is opened according to its own ability to obtain the information in the frame;
  • Under the unified frame encapsulation format in view of the differences of different receiving terminals and the dynamic variability of relay nodes and wireless channels, dynamically and adaptively adjust the spreading/frequency hopping mode, channel coding mode and channel modulation mode of the internal information frame , Source coding method, adapt to the receiving capability of the receiving end and the status of the current relay node and wireless channel to ensure the correct reception of the receiving terminal station.
  • the transmitting terminal station dynamically and adaptively selects the spreading mode and channel coding mode of the internal information frame according to the receiving terminal station with the worst receiving ability , Channel modulation mode, to ensure the correct reception of all receiving terminal stations.
  • the open wireless channel when each transmitting terminal station sends information to different receiving terminal stations, a single carrier in a single frequency band or multiple carriers in multiple frequency bands are used, and a unified frame encapsulation format is transmitted on each carrier ,
  • the frame encapsulation adopts the frame header of the standard format, and the frame header design has a strong anti-interference margin, and the margin design selection range is 10 ⁇ 30dB.
  • the correct reception of the frame header can be ensured when the power of the interference and noise signal in the signal frequency band is 10 to 1000 times higher than the signal power when receiving at the receiving end.
  • the frame encapsulation adopts a frame header in a standard format
  • the frame header includes: synchronization header, pilot frequency, and frame mode fields
  • the synchronization header is used for timing and carrier recovery
  • the pilot field is used to eliminate frequency offset in signal reception
  • the frame mode field is a keyword to realize dynamic adaptive control, and indicates the dynamic transmission parameters of the information data frame in the unified frame package: spreading mode, channel coding mode, and channel modulation mode.
  • the frame header supports the maximum 1024 times spread spectrum
  • the synchronization header length should not be less than 64*1024bits
  • the pilot part length should not be less than 128*1024bits
  • the frame mode field length should not be less than the number of supported transmission modes 16*1024bits.
  • each sending terminal station adopts a unified frame encapsulation format when sending information to different receiving terminal stations
  • the frame encapsulation adopts a frame header in a standard format.
  • the frame header includes synchronization header, pilot, and frame. Mode field and destination terminal station identification field.
  • the synchronization header is used for timing and carrier recovery, and the pilot field is used to eliminate the frequency offset in signal reception;
  • the frame mode field is a keyword for dynamic adaptive control, indicating the dynamic transmission parameters of the information data frame in the unified frame package. That is, spreading method, channel coding method, and channel modulation method; the destination terminal station identification field is an option in the frame header.
  • the destination terminal station identification field allows many receiving terminal stations to receive the frame header but have not received the information data It can judge whether the current data frame is sent to itself when it is framed. If not, it can be discarded, saving computing resources and power consumption; the length of the destination terminal station identification field ranges from 4 to 32 bits, and the longer destination terminal station identification field can be Supporting a larger address space also means more frame header overhead and lower transmission efficiency.
  • the destination terminal station identification field is an option in the frame header.
  • the destination terminal station can be identified when the satellite supports multi-beam and has on-board load processing and switching capabilities.
  • the field is used as the identifier of the satellite beam corresponding to the destination terminal station, so that during the on-board processing, only the frame header can be identified to exchange the current information frame to the correct satellite beam without demodulating the information data frame And decoding, saving valuable on-board computing resources and power.
  • the method uses a unified frame encapsulation format to achieve dynamic adaptive matching when sending information to different receiving terminal stations in an open wireless channel, and is compatible with the differences of the sending end, including the differences of the sending terminal and Dynamic variability of transmitter channel conditions and channel relay node capabilities (if there is no channel relay node in the open wireless channel, ignore the latter two items) to match the characteristics of the transmitter with the developed wireless channel resources to ensure channel resource utilization High efficiency;
  • the transmitting power of the transmitting station is equal to or higher than the saturation power of the current channel, all frequency bands are allocated to the transmitting station;
  • a corresponding proportion of the bandwidth shall be allocated in the total bandwidth according to the principle of power and frequency balance.
  • the bandwidth of the allocated frequency band shall not be lower than the minimum bandwidth, and the minimum bandwidth shall account for the proportion of the total bandwidth.
  • the range is 1/100 ⁇ 1; multiple sending stations that cannot monopolize all channels are allocated matching frequency bands corresponding to the comprehensive change factors of their sending ends, and share the current power and frequency band resources together;
  • the transmitting terminal station cannot occupy a minimum frequency band alone, and multiple similar weakly capable transmitting stations are allocated by power domain resources. Way to share a minimum frequency band;
  • each sending station uses a unified frame encapsulation format to send data frames, and sends them according to the resource allocation and access method in the open wireless channel.
  • one or more weak signals are superimposed on a large carrier signal with a power headroom that occupies a single frequency band by means of power domain spread spectrum. If the receiving terminal station correctly receives this large carrier signal, it will receive the signal first. The large carrier signal is eliminated, and then the remaining one or more weak signals are received; if the receiving terminal station is weak and cannot receive the large carrier signal correctly, first perform interference cancellation on the received large carrier signal before receiving The remaining one or more weak signals.
  • the frequency domain allocation frequency bandwidth ranges from 250KHz to 2GHz.
  • the length of the time slot allocated in the time domain ranges from 1 ms to 10000 ms.
  • the length of the power domain allocation spreading code ranges from 1 to 1024 bits.
  • the resource allocation and access method in the open wireless channel adopts a unified frame encapsulation format and a standard frame header that can be reliably received, so that each frame of the unified encapsulation format is a signal unit that can be independently sent and received. Additional network synchronization and pilot signals are needed, which can burst in the allocated frequency bands and time slots to achieve correct reception; in each time slot, the frequency band and power allocation can be dynamically and adaptively adjusted to support the entire resource allocation Dynamic adaptive properties with access methods.
  • the sending and receiving parties are dynamically interconnected at the data frame level, and do not rely on the reference station or the central station. Various types of terminal stations that need to communicate can dynamically establish interconnection links.
  • the interconnection network can be in one-to-one, one-to-many, and multiple On-demand dynamic adjustment in one-hop and many-to-many one-hop through mode or two-hop connection mode through gateway node stations to achieve dynamic adaptive adjustment of network link form.
  • the method adopts an auxiliary bypass network guidance method to provide network-level synchronization services for all terminal stations in the channel;
  • the pilot signal occupies all or part of the frequency band of the open wireless channel for transmission.
  • the pilot signal occupies all or part of the frequency band in the open wireless channel.
  • the pilot signal power accounts for 0.1 ⁇ to 5% of the total power in the pilot band.
  • the pilot signal is sent, it is spread by spreading code and superimposed on the pilot in a noise-like low power spectrum signal mode.
  • the influence on the signal-to-noise ratio of the receiving end signal is lower than the influence of the background thermal noise of the receiving end;
  • the pilot signal provides guidance, carrier and clock synchronization, standard timing and indication information for multiple types of terminal stations in the channel to build networks and communicate with each other.
  • the unified frame encapsulation format adopts a frame header of a standard format and a dynamic data information frame that can be adaptively adjusted.
  • the adaptively adjusted parameters include spreading ratio, channel coding mode, channel modulation mode, and adapting to the receiving capability of the receiving end. And the status of the current relay node and wireless channel; where the spreading ratio ranges from 1 to 1024 bits, and the code length of the channel coding is 8064 LDPC (Low-density Parity-check) code, the code rate is 1/4, 1/2, 3/4, 7/8, 15/16, 31/32, or LDPC code with a code length of 1008, the code rate is 1/4, 1/2, 3/4, 7/ 8.
  • Channel modulation methods include: BPSK, QPSK, 8PSK, 16APSK, 32APSK, 64APSK, 128APSK, 256APSK.
  • each terminal station needs to send information frames to detect and declare its own transmission and reception capabilities.
  • an application is also required and confirmed by the system; the measurement and collection of this information, as well as the coordinated allocation of resources, are all completed through the exchange of network management information frames or signaling frames; through the open wireless channel Preset frequency bands, time slots and power resources for the transmission of these network management information frames or signaling frames; set a minimum frequency band as the corresponding signaling frequency band, and different terminal stations use different spreading codes or different spreading codes
  • the phase shares this signaling frequency band; when there are more terminal stations and more signaling, a wider signaling frequency band is allocated.
  • the response and processing of network signaling adopts a centered or non-centered manner
  • a certain terminal station is preset or selected as the network management station; each terminal station completes the transmission and reception capability measurement, channel dynamic state measurement and communication application through the interaction of the signaling frame with the network management station, and the network management station Collect and release this information and complete resource allocation and access control;
  • each terminal station sends and receives signaling frames through spontaneous transmission and reception of signaling frames or dynamically selects the counterpart terminal stations to send and receive signaling frames to complete the measurement of the receiving and sending capacity and the channel dynamic state, and notify other terminal stations through broadcast signaling.
  • a bypass network guidance method can be used to improve the performance and efficiency of the resource allocation and access method in the open wireless channel. Proceed as follows:
  • the reference station sends a bypass pilot signal.
  • the bypass pilot signal uses the spread spectrum method to occupy the entire satellite transponder bandwidth, but only the saturated power of the satellite channel A small amount of power of 1% of the value provides guidance, carrier and clock synchronization, and standard timing for various types of terminal stations in the channel to build networks and communicate with each other.
  • the pilot signal has a spread spectrum ratio of 4000 and has strong anti-interference signal characteristics. It is superimposed on the communication signal in the transponder channel in a noise-like low-power spectrum signal mode, which has a far lower impact on the signal-to-noise ratio of the receiving end. Due to the influence of the thermal noise at the receiving end, the reliable reception of the pilot signal at each receiving end in the channel can also be ensured under the condition that the power of the satellite channel is completely occupied by other signals (such as scenario 1).
  • station No. 3 with the strongest capability is selected as the reference station. It sends a bypass pilot signal with a bandwidth of 32MHz, a spreading ratio of 4000, and an information rate of 4Kbps.
  • Stations 1 and 2 can receive the bypass pilot signal to obtain The result of the pilot signal reception, combined with the dynamic indication information in the bypass pilot signal frame, including the network access information of each terminal station, terminal station working status information, satellite and satellite channel monitoring information, network management information, business information, and safety tips information.
  • stations 1 and 2 can synchronize with the carrier and clock of the reference station 3, establish a time reference, measure the absolute distance between the terminal station and the reference station and the change in distance, and collect the reference
  • the station updates the satellite space position and position changes. Carrier and clock synchronization, time reference and distance can significantly improve the performance of each stage of link establishment, communication maintenance, fault recovery, dynamic adjustment of stations 1, 2 and other terminal stations, and improve the resource utilization and operational reliability of the entire system .
  • one or more transmission signals of small stations of station 1 type can be allocated to superimpose the transmission of station 3 in the 4MHz bandwidth by power domain spreading.
  • each receiving terminal station can use interference cancellation to cancel the transmitted signal of station 3, and then receive one or more channels of spread spectrum signals of station 1 type small stations.
  • the network management center station is not fixed, and terminal stations with certain sending and receiving capabilities are all alternative network management center stations; after the current network management center station fails or exits, other terminal stations It can automatically take over through competition or predetermined order according to rules and become the new network management center station, responsible for the establishment and maintenance of the entire network communication link. Significantly improve the robustness of the entire system operation and management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

公开一种开放无线信道中的资源分配与接入方法,在开放无线信道中涵盖多种类型的用户终端站;在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,发送端的综合变动因素是指:发送站的类型与发送能力是变化的,发送站到中继节点间无线信道的当前状态是变化的,中继节点接收端的工作状态是变化的,发送站所要传输的用户业务是变化的,接收端的综合变动因素是指:接收站的类型和接收能力是变化的,中继节点到接收站间信道的当前状态是变化的,中继节点发送端的工作状态是变化的。

Description

一种开放无线信道中的资源分配与接入方法 技术领域
本发明涉及无线通信的技术领域,尤其涉及一种开放无线信道中的资源分配与接入方法。
背景技术
在卫星通信系统中,大量卫星地球站通过卫星转发器构成一个通信系统。多个站公用透明转发器的频带、功率、时间资源。
多个终端站采用多种多址接入方式,如FDMA、TDMA、CDMA共享卫星资源,实现交互式业务。
FDMA(frequency division multiple access,频分多址)接入方式按照频带资源划分,实现卫星资源共享,FDMA方式比较简单,适用于网状及星状组网。但是多个用户采用FDMA接入时存在交调干扰,一定程度上浪费了转发器功率,降低了功率使用效率。
CDMA(Time Division Multiple Access,时分多址)接入方式对不同用户分配不同的地址码实现卫星资源共享,CDMA用户之间同时占用相同的频率同时发送,用户之间通过码子的正交性来区分用户,相比于FDMA,CDMA技术相对复杂,多用于星状组网中。CDMA的用户容量依赖码字正交性,但是由于存在多址干扰,限制了用户容量。
TDMA(Time Division Multiple Access,时分多址)方式将卫星资源按照时隙划分实现卫星资源共享,不同的终端站占用不同的时隙,业务数据以数据突发形式发送。相比其他几种多址接入方式,TDMA系统没有互调问题,卫星功率与频带能充分利用,不需要严格的功率控制,系统容量较大,被广泛用于卫星通信系统。但是,TDMA通信系统相对其他多址系统实现较为复杂,需要精确的全网时钟同步。精确时钟同步能够降低不同时隙用户之间干扰,保证系统容量。此外,TDMA多址接入方式比较适宜具有相同能力的站型之间的组网,当采用TDMA采用统一载波网状组网时,为兼容最低能力的站型的能力,通常需要降低整体的载波速率,限制 了其他较高能力的站的通信能力。
现实中,FDMA、TDMA网状网络多适用于中等收发能力的卫星终端站型,TDM/FDMA、TDM/CDMA体制多适用于一个大型中心站带多个小型终端站的星状网络。这些卫星系统的资源分配和多址接入技术各不相同,构成了互相不兼容的多个网系,各种终端站只能在本网系内互联互通,与其他网系内的终端站只能通过地面网络实现互通。设备种类多、成本高、通信效益低。
发明内容
为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种开放无线信道中的资源分配与接入方法,能够兼容开放无线信道中发送终端站、接收终端站、中继节点、无线信道、用户业务的差异性和动态变化性,充分利用开放无线信道的开放互联特性,实现上述差异性和动态变化性条件下终端站之间的自适应互联互通,避免因为上述差异性和动态变化性条件将终端站分为相互分隔的群组,需要用不同的资源分配与接入方法解决不同类型终端站群组的互联互通,形成多种互不兼容、即使在开放的无线网络中也无法直接建立相互连通的通信链路的“烟囱式”信息孤岛。
本发明的技术方案是:这种开放无线信道中的资源分配与接入方法,
在开放无线信道中涵盖多种类型的用户终端站;
在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,发送端的综合变动因素是指:发送站的类型与发送能力是变化的,发送站到中继节点间无线信道的当前状态是变化的,中继节点接收端的工作状态是变化的,发送站所要传输的用户业务是变化的,接收端的综合变动因素是指:接收站的类型和接收能力是变化的,中继节点到接收站间信道的当前状态是变化的,中继节点发送端的工作状态是变化的。
本发明在开放无线信道中包括多种类的用户终端站,在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,因此能够兼容开放无线信道中发送终端站、接收终端站、中继节点、无线信道、用户业务的差异性和动态变化性,充分利用开放无线信道的开放互联特性,实现上述差异性和动态变化性条件下终端站之间的自适应互联互通,避免因为上述差异性和动态变化性条件将终端站分为相互分隔的群组,需 要用不同的资源分配与接入方法解决不同类型终端站群组的互联互通,形成多种互不兼容、即使在开放的无线网络中也无法直接建立相互连通的通信链路的“烟囱式”信息孤岛。
附图说明
图1示出了根据本发明的开放无线信道中的资源分配与接入方法的一个实例的示意图。
具体实施方式
如图1所示,实例中选定三个卫星站。1号站为0.5m口径天线/3W功放的小型卫星终端站,2号站为1.2m口径天线/10W功放的中型卫星终端站,3号站为3.7口径天线/40W功放的大型卫星终端站,三个卫星站都工作在Ku频段,开放信道中继节点选中星9号同步卫星的36MHz带宽的Ku全国波束,信道滤波器的滚降系数选1.125。
在作为信号发送端的地球站采用统一的帧封装格式,支持多种数据帧类型,根据目的接收站的接收能力自适应完成信息的封装及适配,根据目的接收站的接收能力自适应选择信息传输的模式,适配接收端的接收能力;即无论对接收能力强的接收站2,还是对接收能力弱的接收站1,都采用统一的帧封装格式发送。而内部的信息数据帧的传输模式,则根据接收站的接收能力来确定。接收站的接收能力包括下星链路EIRP(等效全向辐射功率)、下星卫星链路状态(雨衰、干扰等)和接收站的G/T值。
统一的帧封装格式中的帧头具有很强的抗干扰接收余量,无论接收能力强的接收站2,还是接收能力弱的接收站1,都能够稳定可靠地接收统一的帧封装格式中的帧头。根据帧头的接收信噪比,可以判断当前信息帧的功率和电平;根据帧头中帧模式字段,可以判定后续信息数据帧所采用的模式,包括扩频方式、信道编码方式、信道调制方式。如果帧头中包括目的地址字段,接收站1和接收站2可以判断当前数据信息帧是否是发给自己的,并决定继续接收还是丢弃。无论接收站1或接收站2,如果判定该信息帧是发给自己的但无法正确接收或正确接收信号的信噪比很高,就表明发送方掌握的接收方接收能力或信道状态的信息是错误的,无法正确接收表明对接收方能力判断过高,接收信号的信噪比过高表明对接收方能力判断过低,都需要接收方向发送方传输修正信息供发送方调整信息数据 帧的发送模式。如果帧头中不包括目的地址字段,接收站1和接收站2就只能根据模式字段努力接收当前数据信息帧。
在发送端,本发明采用综合频率域、时间域、功率域的多维度资源分配方法,兼容发送站差异性,包括发送终端站差异性、发送站上星链路信道条件(雨衰、干扰)、卫星上行链路工作点(饱和通量流密度、G/T值)动态变化性,实现发送端特性和所占上星信道资源的匹配,保证卫星信道资源利用的高效性。
场景一:3号发送站是大站(天线口径3.7米以上,发射功率40W以上,Ku频段)且上行链路状态良好(无降雨、无干扰),该发送站可以将星上的Ku频段转发器推饱和,则在当前时隙内将这个转发器的整个36MHz带宽和全部功率都分配给该发送站。根据链路计算的结果,3号发送站到2号接收站传输速率可以达到80Mbps,采用的传输模式是无扩频、信道编码为LDPC码、码长8064、码率7/8、信道调制为8PSK。3号发送站到1号接收站传输速率可以达到32Mbps,采用的传输模式是无扩频、信道编码为LDPC码、码长8064、码率1/2、信道调制为QPSK。如果3号发送站的信息要同时发送到1号和2号站,则只能采用1号站能接收的32Mbps速率。
场景二:3号发送站处发生较强降雨,雨衰达到10dB。这时3号发送站只能推送到转发器饱和功率的约1/10,按功率、带宽平衡原则,分配给3号发送站4MHz带宽(占总频带1/8,略高于功率占比),相应的,1号和2号站也要到对应的4MHz频带处去接收3号发送站所发出的数据。3号发送站到2号接收站传输速率可以达到9Mbps,载波带宽为4MHz,采用的传输模式是无扩频、信道编码为LDPC码、码长8064、码率3/4、信道调制为8PSK。3号发送站到1号接收站传输速率可以达到4Mbps,采用的传输模式是无扩频、信道编码为LDPC码、码长8064、码率1/2、信道调制为QPSK。如果3号发送站的信息要同时发送到1号和2号站,则只能采用1号站能接收的4Mbps速率。
场景三:1号站为发送端,该站的发送能力只能达到卫星转发器饱和能力的0.7%。选定最小频带带宽为500Hz,占总带宽32MHz的1/64。两个1号站的发送能力才能够对应500Hz的最小频带宽度。因此,在当前时隙,为1号站分配500Hz,采用扩频比为2的扩频。2号站和3号站也要到相应的500Hz频带去接收一号站发送的信息。1号发送站到3号接收站传输速率可以达到375Kbps,载波带宽为500KHz,采用的传输模式是扩频比为 2、信道编码为LDPC码、码长8064、码率3/4、信道调制为QPSK。1号发送站到2号接收站传输速率可以达到125Kbps,采用的传输模式是扩频比为2、信道编码为LDPC码、码长8064、码率1/2、信道调制为BPSK。如果1号发送站的信息要同时发送到3号和2号站,则只能采用2号站能接收的125Kbps速率。
综上所述,这种开放无线信道中的资源分配与接入方法,
在开放无线信道中涵盖多种类型的用户终端站;
在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,发送端的综合变动因素是指:发送站的类型与发送能力是变化的,发送站到中继节点间无线信道的当前状态是变化的,中继节点接收端的工作状态是变化的,发送站所要传输的用户业务是变化的,接收端的综合变动因素是指:接收站的类型和接收能力是变化的,中继节点到接收站间信道的当前状态是变化的,中继节点发送端的工作状态是变化的。
本发明在开放无线信道中包括多种类的用户终端站,在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,因此能够兼容开放无线信道中发送终端站、接收终端站、中继节点、无线信道、用户业务的差异性和动态变化性,充分利用开放无线信道的开放互联特性,实现上述差异性和动态变化性条件下终端站之间的自适应互联互通,避免因为上述差异性和动态变化性条件将终端站分为相互分隔的群组,需要用不同的资源分配与接入方法解决不同类型终端站群组的互联互通,形成多种互不兼容、即使在开放的无线网络中也无法直接建立相互连通的通信链路的“烟囱式”信息孤岛。
优选地,资源分配采用动态自适应模式,每一个时隙,按照相同的原则,根据整个信道内所有发送终端站的通信需求和综合发送能力的动态变化,重新分配功率和频率资源。
在每个时隙的发送端资源分配模式下,各发送终端站都采用统一的帧封装格式发送数据帧,按所述的开放无线信道中的资源分配与接入方法发送。
优选地,在开放无线信道中,每个发送终端站向不同接收终端站发送信息时采用统一的帧封装格式,在目的接收站,根据自己的能力拆开帧封装来获取帧内信息;发送终端站在统一的帧封装格式下针对不同接收终端 的差异性和中继节点、无线信道的动态变化性,动态自适应地调整内部信息帧的扩频/跳频方式、信道编码方式、信道调制方式、信源编码方式,适配接收端的接收能力和当前中继节点、无线信道的状态,保证接收终端站的正确接收。
优选地,当统一的帧封装格式数据帧对应的接收终端站有多个时,发送终端站依据其中接收能力最差的接收终端站动态自适应地选择内部信息帧的扩频方式、信道编码方式、信道调制方式,保证所有接收终端站的正确接收。
优选地,在开放无线信道中,每个发送终端站向不同接收终端站发送信息时,采用单一频段内的单载波或多个频段内的多载波,每个载波上都传输统一的帧封装格式,该帧封装采用标准格式的帧头,帧头设计具有很强的抗干扰余量,该余量设计选择范围在10~30dB。在接收端接收时在信号频带内干扰和噪声信号的功率比信号功率高10~1000倍的情况下都可以保证该帧头的正确接收。
优选地,所述帧封装采用标准格式的帧头,帧头包括:同步头、导频、帧模式字段;同步头用于定时及载波恢复,导频字段用于消除信号接收中的频偏;帧模式字段是实现动态自适应控制的关键字,指明了统一的帧封装内信息数据帧的动态传输参数:扩频方式、信道编码方式、信道调制方式。更进一步地,帧头支持最大1024倍扩频,同步头长度应该不低于64*1024bits,导频部分长度应不低于128*1024bits,帧模式字段长度根据支持传输模式的数量应不低于16*1024bits。
优选地,在开放无线信道中,每个发送终端站向不同接收终端站发送信息时采用统一的帧封装格式,该帧封装采用标准格式的帧头,帧头中包括同步头、导频、帧模式字段和目的终端站标识字段。同步头用于定时及载波恢复,导频字段用于消除信号接收中的频偏;帧模式字段是实现动态自适应控制的关键字,指明了统一的帧封装内信息数据帧的动态传输参数,即扩频方式、信道编码方式、信道调制方式;目的终端站标识字段在帧头中是选择项,使用目的终端站标识字段可以让众多的接收终端站在接收到帧头、还没有接收信息数据帧时就能够判断当前数据帧是否是发给自己的,若不是就可以丢弃,节省计算资源和功耗;目的终端站标识字段长度范为围4~32bits,更长的目的终端站标识字段可以支持更大的地址空间,也意味着更多的帧头开销和更低的传输效率。
优选地,目的终端站标识字段在帧头中是选择项,在开放无线信道的卫星通信领域中,可以在卫星支持多波束并具有星上载荷处理和交换能力的场景下,将目的终端站标识字段作为目的终端站所对应下星波束的标识,这样在星上处理的过程中,只需要识别帧头就可以把当前信息帧交换到正确的下星波束,不需要对信息数据帧做解调和解码,节省了宝贵的星上计算资源和功率。
优选地,该方法在开放无线信道中,每个发送终端站向不同接收终端站发送信息时采用统一的帧封装格式实现了动态自适应匹配,兼容发送端差异性,包括发送终端站差异性和发送端信道条件、信道中继节点能力动态变化性(如果开放无线信道中没有信道中继节点,则忽略后两项),实现发送端特性和所占有开发无线信道资源的匹配,保证信道资源利用的高效性;
如果发送站的发送功率等于或高于当前信道的饱和功率,则把所有频带全部分配给该发送站;
如果发送站的发送功率低于当前信道的饱和功率,则按功率、频率平衡的原则在总带宽中分配相应比例的频带宽度,分配频带带宽不低于最小带宽,最小带宽占总带宽的比例的范围为1/100~1;给多个不能够独占全部信道的发送站对应其发送端综合变动因素分配相匹配频带,共同分享当前的功率和频带资源;
如果发送站的发送功率占信道的饱和功率的比例低于上述最小频带占总带宽的比例,则该发送终端站不能独自占有一个最小频带,多个类似的弱能力发送站以功率域资源分配的方式共享一个最小频带;
到下一个时隙,按照相同的原则,与整个信道内所有发送站对应的发送端的综合变动因素相匹配,重新分配功率和频率资源;
在每个时隙的发送端资源分配模式下,各发送站都采用统一的帧封装格式发送数据帧,按该开放无线信道中的资源分配与接入方法发送。
优选地,在留有功率余量的独占单一频带的大的载波信号上,以功率域扩频的方式叠加一路或多路弱信号,如果接收终端站正确接收这一大载波信号,则先接收该大载波信号并予以消除,再接收其余的一路或多路弱信号;如果接收终端站能力较弱,不能够正确接收这一大载波信号,则先对接收该大载波信号做干扰消除,再接收剩下的一路或多路弱信号。
优选地,所述频率域分配频带宽度的范围在250KHz~2GHz。
更进一步地,所述时间域分配时隙长度的范围在1ms~10000ms。
更进一步地,所述功率域分配扩频码的长度范围在1~1024bit。
优选地,所述的开放无线信道中的资源分配与接入方法采用统一的帧封装格式和能够可靠接收的标准帧头,使每个统一封装格式帧都是可以独立发送接收的信号单元,不需要额外的网络同步和导引信号,可以在所分配的频带和时隙内突发出现,实现正确接收;在每一个时隙,都可以动态自适应的调整频带和功率分配,支持整个资源分配与接入方法的动态自适应属性。收发双方在数据帧层面动态互联,不依赖基准站或中心站,需要通信的各种类型的终端站间可以动态建立互联互通链路,互通的网络形态可以在一对一、一对多、多对一、多对多的一跳直通模式或经过网关节点站的两跳转接模式的下按需动态调整,实现网络链接形态的动态自适应调整。
优选地,该方法采用辅助的旁路网络导引方法为信道中的所有终端站提供网络级别的同步服务;
在开放无线信道中选定一个终端站作为基准,发送一路导引信号,导引信号占用开放无线信道的全部频带或部分频带发送,导引信号在开放无线信道中占用的全部频带或部分频带为导引频带,导引信号功率占为导引频带全部功率的比例范围为0.1‰-5%,导引信号发送时通过扩频码进行扩频,以类噪声的低功率谱信号模式叠加在导引频带内的通信信号上,对接收端信号接收信噪比的影响低于接收端本底热噪声的影响;
导引信号为信道中多类型的终端站构建网络和相互通信提供导引、载波与时钟同步、标准定时与指示信息。
优选地,所述统一的帧封装格式采用标准格式的帧头和可以自适应调节动态数据信息帧,自适应调节的参数包括扩频比、信道编码方式、信道调制方式,适配接收端的接收能力和当前中继节点、无线信道的状态;其中扩频比的范围为1~1024bit,信道编码的码长为8064的LDPC(Low-density Parity-check,低密度奇偶校验)码,码率为1/4、1/2、3/4、7/8、15/16、31/32,或者码长为1008的LDPC码,码率为1/4、1/2、3/4、7/8,信道调制方式包括:BPSK、QPSK、8PSK、16APSK、32APSK、64APSK、128APSK、256APSK。
优选地,收集各个终端站的发送与接收能力信息,以及开放无线信道的动态信道参数,作为资源分配的依据;各个终端站需要通过发送信息帧,来探测和申明自己的发送和接收能力,在建立通信连接时同样需要发出申请并得到系统的确认;这些信息的测定和收集,以及资源的协调分配,都是通过网络管理信息帧或信令帧的交换来完成的;通过在开放无线信道中预设频带、时隙和功率资源供这些网络管理信息帧或信令帧的传输;设定一个最小频带作为相应的信令频带,不同的终端站以不同的扩频码或不同的扩频码相位共享这一信令频带;在终端站数较多、信令较多时,分配更宽的信令频带。
优选地,对网络信令的响应和处理采用有中心或无中心方式;
有中心方式下,预设或选定某个终端站作为网络管理站;每个终端站通过与网络管理站的信令帧交互完成收发能力测定、信道动态状态测定和通信申请,由网络管理站收集、发布这些信息并完成资源分配和接入控制;
在无中心方式下,每个终端站通过信令帧的自发自收或动态选定对口终端站相互收发信令帧,完成收发能力测定、信道动态状态测定,通过广播信令通知其他终端站,完成信道内各个终端站的发送与接收能力信息,以及开放无线信道的动态信道参数的收集和同步;各终端站随机发出通信申请,在所述开放无线信道中的资源分配与接入方法的统一规则下完成资源分配和通信进程。
优选地,可以采用旁路网络导引的方法,提高该开放无线信道中的资源分配与接入方法的性能和效率。步骤如下:
(1)在开放无线信道的终端站中选定一个基准站,基准站发送一路旁路导引信号,旁路导引信号采用扩频方式占用整个卫星转发器带宽,但仅占用卫星信道饱和功率值的1%的少量功率,为信道中各种类型的终端站构建网络和相互通信提供导引、载波与时钟同步、标准定时。导引信号扩频比为4000,具有很强的抗干扰信号特性,以类噪声的低功率谱信号模式叠加在转发器信道内的通信信号上,对接收端信号接收信噪比的影响远低于接收端热噪声的影响,在卫星信道的功率被其他信号完全占用(如场景一)的条件下也能保证信道内各接收端对导引信号的可靠接收,
(2)实例中选能力最强的3号站为基准站,发送32MHz带宽、扩频比4000、信息速率4Kbps的旁路导引信号,1、2号站可以接收该旁路导引信号,获取导引信号接收的结果,再结合旁路导引信号帧中的动态指示信息,包括各终端站入网信息、终端站工作状态信息、卫星与卫星信道监测信息、网络管理信息、业务信息、安全提示信息。依托对导引信号的接收和处理,1、2号站可以相对基准3号站的载波和时钟同步,建立时间基准,测定终端站和基准站之间的绝对距离和距离的变化,可以收取基准站对卫星空间位置和位置变化的更新。载波和时钟同步、时间基准和距离能够显著提升1、2号站和其他终端站链路建立、通信维持、故障恢复、动态调整等各个阶段的性能,提高整个系统的资源利用率和运行可靠性。
(3)当1、2号等终端站需要申请资源发送业务时,可以向3号基准站申请发送频带、时隙h和/或功率,这是本发明的开放无线信道中的资源分配与接入方法中的有中心方式。
优选地,场景2中,3号站没有充分利用功率资源时,可以分配一路或多路1号站类型的小型站的发送信号,以功率域扩频方式叠加在4MHz带宽内3号站的发送信号上,各接收终端站可以采用干扰消除的方式消去3号站的发送信号,再接收一路或多路1号站类型的小型站的扩频信号。
优选地,资源分配采用有中心方式时,网络管理中心站不是固定的,具备一定发送接收能力的终端站都是备选的网络管理中心站;当前网络管理中心站故障或退出后,其他终端站可按规则通过竞争或预定顺序自动接替,成为新的网络管理中心站,负责全网通信链路的建立及维护。显著提高了整个系统运行与管理的鲁棒性。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的保护范围。

Claims (11)

  1. 一种开放无线信道中的资源分配与接入方法,其特征在于:
    在开放无线信道中涵盖多种类型的用户终端站;
    在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,发送端的综合变动因素是指:发送站的类型与发送能力是变化的,发送站到中继节点间无线信道的当前状态是变化的,中继节点接收端的工作状态是变化的,发送站所要传输的用户业务是变化的,接收端的综合变动因素是指:接收站的类型和接收能力是变化的,中继节点到接收站间信道的当前状态是变化的,中继节点发送端的工作状态是变化的。
  2. 根据权利要求1所述的开放无线信道中的资源分配与接入方法,其特征在于:
    在开放无线信道中,每个发送终端站向不同接收终端站发送信息时采用统一的帧封装格式,在目的接收站,根据自己的能力拆开帧封装来获取帧内信息;发送终端站在统一的帧封装格式下针对不同接收端的综合变动因素,动态自适应地调整内部信息帧的扩频方式、信道编码方式、信道调制方式,对应接收端的综合变动因素做出匹配,保证接收终端的正确接收。
  3. 根据权利要求2所述的开放无线信道中的资源分配与接入方法,其特征在于:当统一的帧封装格式数据帧对应的接收端包含有多个终端站时,发送终端站依据其中接收端的综合变动因素效果最差的接收站做出匹配,动态自适应地选择内部信息帧的扩频方式、信道编码方式、信道调制方式,保证所有接收终端站的正确接收。
  4. 根据权利要求3所述的开放无线信道中的资源分配与接入方法,其特征在于:在开放无线信道中,每个发送终端站向接收端发送信息时,采用单一频段内的单载波或多个频段内的多载波,每个载波上都传输统一的帧封装格式,该帧封装采用标准格式的帧头,帧头设计具有很强的抗干扰余量,该余量设计选择范围在10~30dB。
  5. 根据权利要求4所述的开放无线信道中的资源分配与接入方法,其特征在于:所述帧封装采用标准格式的帧头,帧头包括:同步头、导频、帧模式字段;同步头用于定时及载波恢复,导频字段用于消除信号接收中的频偏;帧模式字段是实现动态自适应控制的关键字,指明了统一的帧封装内信息数据帧的动态传输参数:扩频方式、信道编码方式、信道调制方式。
  6. 根据权利要求5所述的开放无线信道中的资源分配与接入方法,其特征在于:所述帧封装还包括目的终端站标识字段,目的终端站标识字段长度范围为4~32bits。
  7. 根据权利要求6所述的开放无线信道中的资源分配与接入方法,其特征在于:所述目的终端站标识字段在开放无线信道的卫星通信领域中,在卫星支持多波束并具有星上载荷处理和交换能力的场景下,将目的终端站标识字段作为目的终端站所对应下星波束的标识。
  8. 根据权利要求1-7任一项所述的开放无线信道中的资源分配与接入方法,其特征在于:
    该方法采用综合频率域、时间域、功率域的多维度资源分配方法,匹配发送端的综合变动因素,包括发送站的类型与发送能力变化 的,发送站到中继节点间无线信道的当前状态变化,中继节点接收端的工作状态变化和送站所要传输的用户业务变化;
    如果发送站的发送功率等于或高于当前信道的饱和功率,则把所有频带全部分配给该发送站;
    如果发送站的发送功率低于当前信道的饱和功率,则按功率、频率平衡的原则在总带宽中分配相应比例的频带宽度,分配频带带宽不低于最小带宽,最小带宽占总带宽的比例的范围为1/100~1;给多个不能够独占全部信道的发送站对应其发送端综合变动因素分配相匹配频带,共同分享当前的功率和频带资源;
    如果发送站的发送功率占信道的饱和功率的比例低于上述最小频带占总带宽的比例,则该发送终端站不能独自占有一个最小频带,多个类似的弱能力发送站以功率域资源分配的方式共享一个最小频带;
    到下一个时隙,按照相同的原则,与整个信道内所有发送站对应的发送端的综合变动因素相匹配,重新分配功率和频率资源;
    在每个时隙的发送端资源分配模式下,各发送站都采用统一的帧封装格式发送数据帧,按该开放无线信道中的资源分配与接入方法发送。
  9. 根据权利要求8所述的开放无线信道中的资源分配与接入方法,其特征在于:
    在留有功率余量的独占单一频带的大的载波信号上,功率域扩频的方式叠加一路或多路弱信号,如果接收站正确接收这一大载波信号,则先接收该大载波信号并予以消除,再接收其余的一路或多路 弱信号;如果接收终端站能力较弱,不能够正确接收这一大载波信号,则先对接收该大载波信号做干扰消除,再接收剩下的一路或多路弱信号。
  10. 根据权利要求9所述的开放无线信道中的资源分配与接入方法,其特征在于:所述频率域分配频带宽度的范围在250KHz~2GHz;所述时间域分配时隙长度的范围在1ms~10000ms;所述功率域分配扩频码的长度范围在1~1024bits。
  11. 一种开放无线信道中的资源分配与接入方法,其特征在于:
    在开放无线信道中涵盖多种类型的用户终端站;
    在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配,发送端的综合变动因素是指:发送站的类型与发送能力是变化的,发送站到中继节点间无线信道的当前状态是变化的,中继节点接收端的工作状态是变化的,发送站所要传输的用户业务是变化的,接收端的综合变动因素是指:接收站的类型和接收能力是变化的,中继节点到接收站间信道的当前状态是变化的,中继节点发送端的工作状态是变化的;
    在每一次通信过程中都参照发送端和接收端的综合变动因素做出动态自适应匹配具体为:
    如果发送站的发送功率等于或高于当前信道的饱和功率,则把所有频带全部分配给该发送站;
    如果发送站的发送功率低于当前信道的饱和功率,则按功率、频率平衡的原则在总带宽中分配相应比例的频带宽度,分配频带带宽不低于最小带宽,最小带宽占总带宽的比例的范围为1/100~1; 给多个不能够独占全部信道的发送站对应其发送端综合变动因素分配相匹配频带,共同分享当前的功率和频带资源;
    如果发送站的发送功率占信道的饱和功率的比例低于上述最小频带占总带宽的比例,则该发送终端站不能独自占有一个最小频带,多个类似的弱能力发送站以功率域资源分配的方式共享一个最小频带;
    根据发送端确定了所占用的卫星信道资源后,进一步根据目的接收站的接收能力自适应选择信息传输的模式,完成信息的封装及适配,根据接收站的接收能力来确定信息数据帧的传输模式,接收站的接收能力包括下星链路EIRP、下星卫星链路的状态和接收站的G/T值;信息数据帧的传输模式包括扩频方式、信道编码方式、信道调制方式,这些传输模式的动态变化通过一个稳定可靠的数据帧帧头来指明,接收站根据帧头中的模式字段判定后续信息数据帧所采用的传输模式,判断自己是否可以正确接收当前数据帧,在接收条件允许时,进一步接收该数据帧。
PCT/CN2020/105100 2019-07-30 2020-07-28 一种开放无线信道中的资源分配与接入方法 WO2021018122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,925 US11974260B2 (en) 2019-07-30 2020-07-28 Method for allocating resource and accessing in open wireless channels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910696808.0 2019-07-30
CN201910696808.0A CN110504987B (zh) 2019-07-30 2019-07-30 一种开放无线信道中的资源分配与接入方法

Publications (1)

Publication Number Publication Date
WO2021018122A1 true WO2021018122A1 (zh) 2021-02-04

Family

ID=68587849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105100 WO2021018122A1 (zh) 2019-07-30 2020-07-28 一种开放无线信道中的资源分配与接入方法

Country Status (3)

Country Link
US (1) US11974260B2 (zh)
CN (1) CN110504987B (zh)
WO (1) WO2021018122A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527637A (zh) * 2023-12-29 2024-02-06 摩尔线程智能科技(北京)有限责任公司 一种链路故障检测的方法、装置、存储介质及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518957B (zh) * 2019-07-30 2020-11-06 北京大学 一种开放无线信道中旁路网络导引方法
CN110504987B (zh) * 2019-07-30 2020-11-06 北京大学 一种开放无线信道中的资源分配与接入方法
CN115913342B (zh) * 2023-02-23 2023-05-09 成都星联芯通科技有限公司 数据帧处理方法、装置、本端基站、系统及存储介质
CN117560049A (zh) * 2023-05-11 2024-02-13 武汉能钠智能装备技术股份有限公司四川省成都市分公司 一种卫星地面站中继转发系统
CN117879697B (zh) * 2024-03-13 2024-05-28 中国电子科技集团公司第五十四研究所 一种mf-tdma卫星网资源动态均衡方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236854A1 (en) * 2002-06-13 2003-12-25 Shiron Satellite Communication Ltd. System and method for dynamic allocation of a resource
CN103944630A (zh) * 2014-05-06 2014-07-23 重庆大学 一种空间信息网络的信道动态带宽分配及接入方法
CN104467945A (zh) * 2013-09-16 2015-03-25 中国人民解放军总参谋部第六十一研究所 基于虚拟总线的分布式星群网络资源管理方法
CN110504987A (zh) * 2019-07-30 2019-11-26 北京大学 一种开放无线信道中的资源分配与接入方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1187721A (zh) * 1996-10-21 1998-07-15 环球星有限合伙人公司 多卫星衰落衰减控制系统
US6587687B1 (en) * 1996-10-21 2003-07-01 Globalstar L.P. Multiple satellite fade attenuation control system
CN1780457A (zh) * 2004-11-24 2006-05-31 北京三星通信技术研究有限公司 无线信道资源分配方法
CN101252384B (zh) * 2008-03-28 2012-02-22 清华大学 基于ofdm和跨层设计的星载交换方法
US10037689B2 (en) * 2015-03-24 2018-07-31 Donald Warren Taylor Apparatus and system to manage monitored vehicular flow rate
US10833756B2 (en) * 2015-12-14 2020-11-10 Higher Ground Llc Satellite communication for the Internet of Things
CN105578409B (zh) * 2015-12-18 2020-03-17 航天恒星科技有限公司 基于多波束卫星通信系统的终端发射功率的调整方法
US10630377B2 (en) * 2016-11-10 2020-04-21 Cable Laboratories, Inc Systems and methods for beacon detection infrastructures
US10656281B2 (en) * 2016-11-10 2020-05-19 Cable Television Laboratories, Inc. Systems and methods for interference detection in shared spectrum channels
US10917164B2 (en) * 2016-11-10 2021-02-09 Cable Television Laboratories, Inc. Systems and methods for ultra reliable low latency communications
US11686852B2 (en) * 2016-11-10 2023-06-27 Cable Television Laboratories, Inc. Systems and methods for interference detection in shared spectrum channels
CN108243498B (zh) * 2016-12-23 2020-12-04 大唐移动通信设备有限公司 一种卫星系统资源分配的方法和装置
DE112018003399T5 (de) * 2017-07-01 2020-03-12 Intel Corporation Verfahren und vorrichtungen für fahrzeugfunkkommunikationen
JP7272279B2 (ja) * 2018-01-30 2023-05-12 ソニーグループ株式会社 通信制御装置、通信制御方法およびコンピュータプログラム
WO2020051508A1 (en) * 2018-09-06 2020-03-12 Lynk Global, Inc. Cellular core network and radio access network infrastructure and management in space
CN109495326B (zh) * 2018-12-28 2021-12-14 北京东土科技股份有限公司 网络带宽分配方法和系统
WO2023129139A1 (en) * 2021-12-28 2023-07-06 Hughes Network Systems, Llc Satellite system optimization by differentiating application of adaptive coding and modulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030236854A1 (en) * 2002-06-13 2003-12-25 Shiron Satellite Communication Ltd. System and method for dynamic allocation of a resource
CN104467945A (zh) * 2013-09-16 2015-03-25 中国人民解放军总参谋部第六十一研究所 基于虚拟总线的分布式星群网络资源管理方法
CN103944630A (zh) * 2014-05-06 2014-07-23 重庆大学 一种空间信息网络的信道动态带宽分配及接入方法
CN110504987A (zh) * 2019-07-30 2019-11-26 北京大学 一种开放无线信道中的资源分配与接入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEI, HUA: "Application of Adaptive Coding and Modulation Techniques in Satellite Communication", MASTER'S THESIS OF BEIJING INSTITUTE OF TECHNOLOGY, 15 August 2016 (2016-08-15), pages 1 - 88, XP055777578 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527637A (zh) * 2023-12-29 2024-02-06 摩尔线程智能科技(北京)有限责任公司 一种链路故障检测的方法、装置、存储介质及电子设备
CN117527637B (zh) * 2023-12-29 2024-04-02 摩尔线程智能科技(北京)有限责任公司 一种链路故障检测的方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN110504987A (zh) 2019-11-26
CN110504987B (zh) 2020-11-06
US11974260B2 (en) 2024-04-30
US20220272703A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021018122A1 (zh) 一种开放无线信道中的资源分配与接入方法
US20200403689A1 (en) Repeater device for 5g new radio communication
RU2434339C2 (ru) Способ и устройство для мультиплексирования высокоскоростной передачи пакетных данных с передачей голоса/данных
US11509391B2 (en) Adaptive multiple access scheme in integrated access and backhaul networks
CN110572199B (zh) 一种卫星通信组网系统及其工作方法
US7558238B1 (en) Hybrid multiple access waveform, method, and apparatus
CN102904629B (zh) 一种参数捷变tdma通信方法
CN102065032B (zh) 基于高空平台半再生式信号处理的移动通信系统及方法
CN104967472A (zh) 全双工双向译码转发中继的最优功率分配和中继部署方法
WO2018067392A1 (en) Method and system in a satellite network for offering subscriber service levels based on signal fade by adaptive modulation and coding.
KR101938113B1 (ko) 협력적 비직교다중접속 상향링크에서 조직적 직접 및 중계전송 연계기술
US11159263B2 (en) Overlapped TDM/TDMA satellite return communications
RU2791000C1 (ru) Способ выделения ресурса и доступа в открытых беспроводных каналах
US11177871B2 (en) Control signaling for the relay scenarios
US11601212B2 (en) CDMA-IA network concept of operations and media access control (MAC) layer
Yang et al. Next generation half-duplex common data link
Ahmed et al. Performance of multi-channel MAC incorporating opportunistic cooperative diversity
Damanik et al. Optimization info rate using APSK modulation scheme for delivery GSM ABIS over satellite communications
Meng et al. Fixed full duplex relaying for wireless broadband communication
Jabbari Cost-effective networking via digital satellite communications
Ilcev Analyses of time division multiple access (TDMA) schemes for global mobile satellite communications (GMSC)
Harbison et al. Long range inter-band radio with the processed surrogate satellite waveform
Tekbıyık et al. The usage of relay-aided communication techniques in LTE networks: Layer 3 relaying
CN116800304A (zh) 一种基于hplc双模通信传输方法
Ilcev Implementation of multiple access techniques applicable for maritime satellite communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022101776

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 20846074

Country of ref document: EP

Kind code of ref document: A1