WO2021018076A1 - 静压轴承供气系统、制冷设备 - Google Patents

静压轴承供气系统、制冷设备 Download PDF

Info

Publication number
WO2021018076A1
WO2021018076A1 PCT/CN2020/104749 CN2020104749W WO2021018076A1 WO 2021018076 A1 WO2021018076 A1 WO 2021018076A1 CN 2020104749 W CN2020104749 W CN 2020104749W WO 2021018076 A1 WO2021018076 A1 WO 2021018076A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air supply
static pressure
supply system
supply pipe
Prior art date
Application number
PCT/CN2020/104749
Other languages
English (en)
French (fr)
Inventor
尹泳
俞国新
劳春峰
朱万朋
李思茹
殷纪强
韩聪
Original Assignee
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔智能技术研发有限公司
Publication of WO2021018076A1 publication Critical patent/WO2021018076A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Definitions

  • This application relates to the technical field of home appliances, such as a static pressure bearing air supply system and refrigeration equipment.
  • centrifugal compressors must use bearings to support the rotating shaft, ball bearings, friction loss is large, heat is serious, and high speed cannot be achieved.
  • the electronic structure of magnetic bearings is very complicated and the manufacturing cost is high.
  • Hydrostatic bearings use refrigerants instead of lubricating oil and friction Low loss can reach high speed, in addition, the mechanical structure is simple and the manufacturing cost is low.
  • this kind of static pressure bearing supplies air refrigerant as a lubricant, it can be divided into three air supply methods: liquid refrigerant, gas-liquid refrigerant, and gaseous refrigerant according to the state. The refrigerant passes through the small holes provided in the bearing and is in the bearing and the rotating shaft.
  • the static pressure bearing is usually supplied with gas-liquid two-state refrigerant.
  • the pressure of the fluid model of the bearing is low, and the supporting force is low, which leads to the problem of insufficient support of the rotating shaft.
  • the gasification pressure of the refrigerant will suddenly rise, causing the shaft to collide with the bearing and cause bearing damage.
  • the use of a gas-liquid refrigerant as a lubricant has the disadvantage of greater friction loss due to the greater viscosity of the liquid refrigerant. Therefore, at this stage, pumps are often used to pressurize and heating tanks are used to convert liquid refrigerant into gaseous refrigerant.
  • the embodiments of the present disclosure provide a static pressure bearing air supply system and refrigeration equipment to solve the technical problems of complex structure and high manufacturing cost at this stage.
  • the static pressure bearing air supply system includes: a compressor with a refrigerant outlet and a static pressure bearing; an air supply pipe connecting the refrigerant outlet and the air inlet of the static pressure bearing and is provided with a filter; and the refrigerant outlet
  • the discharged refrigerant enters the air supply pipe, passes through the filter, and enters the air inlet of the hydrostatic bearing.
  • the refrigeration equipment includes: the static pressure bearing air supply system of any one of the above embodiments.
  • the gas-liquid refrigerant discharged from the refrigerant outlet of the compressor is directly filtered to remove impurities and then supplied to the static pressure bearing to support the shaft in the static pressure bearing.
  • the refrigerant outlet of the refrigerant outlet discharges the single-gas refrigerant, and the refrigerant discharged from the refrigerant outlet is filtered to remove impurities and directly supplied to the static pressure bearing. Since the refrigerant discharged from the refrigerant outlet has a high pressure and is a single gas, it can be directly used to support the static pressure. Pressing the shaft in the bearing eliminates the use of pumps and heating tanks, simplifies the structure, reduces manufacturing costs, and eliminates the pump pressurization link and heating and gasification link, which can reduce energy consumption and become more energy-saving and environmentally friendly.
  • Figure 1 is a schematic structural diagram of a hydrostatic bearing air supply system provided by an embodiment of the present disclosure
  • Figure 2 is another structural schematic diagram of the hydrostatic bearing air supply system provided by an embodiment of the present disclosure.
  • Fig. 3 is another structural schematic diagram of the hydrostatic bearing air supply system provided by an embodiment of the present disclosure.
  • Compressor 101, refrigerant outlet; 102, static pressure bearing; 200, air supply pipe; 201, flow control valve; 202, bypass pipe; 300, filter; 400, refrigerant heater; 401, check valve; 500, booster device; 600, condenser; 601, refrigerant pipe; 602, solenoid valve.
  • the embodiment of the present disclosure provides a hydrostatic bearing air supply system.
  • Fig. 1 shows a structure of a hydrostatic bearing air supply system provided by an embodiment of the present disclosure.
  • the static pressure bearing 102 air supply system includes: a compressor 100 having a refrigerant outlet 101 and a static pressure bearing 102; an air supply pipe 200 that communicates the refrigerant outlet 101 and the air inlet of the static pressure bearing 102, and is provided with Refrigerant heater 400; the refrigerant discharged from the refrigerant outlet 101 enters the air supply pipe 200 and enters the air inlet of the static pressure bearing 102 through the refrigerant heater 400.
  • the refrigerant in both gas and liquid states is discharged from the refrigerant outlet 101 of the compressor 100, and the liquid refrigerant is heated by the refrigerant heater 400 to vaporize the liquid refrigerant and increase the pressure. Directly supply the static pressure bearing 102. After the compressor 100 runs stably, the single gaseous refrigerant is discharged from the refrigerant outlet 101 of the compressor 100.
  • the refrigerant heater 400 can stop heating, and the refrigerant discharged from the refrigerant outlet 101 is directly supplied to the static pressure bearing 102 Because the refrigerant discharged from the refrigerant outlet 101 has a high pressure and is in a single gas state, it does not need to be pressurized and can be directly used to support the rotating shaft in the static pressure bearing 102, remove the pump pressurization link, simplify the structure, reduce manufacturing costs, and Reducing the time for pressurization and heating and gasification can reduce energy consumption and become more energy-saving and environmentally friendly.
  • the refrigerant heater 400 is a device commonly used in the art for heating and vaporizing unvaporized liquid refrigerant.
  • the refrigerant heater 400 is a heating tank, and the heating tank has an electric heating function.
  • the liquid refrigerant can be vaporized by heating, and the tank can equalize the pressure to make the pressure more stable.
  • the air inlet of the refrigerant heater 400 is provided with a check valve 401.
  • a check valve 401 can prevent the refrigerant from flowing back and causing the air supply to the hydrostatic bearing 102 to be unstable.
  • the air inlet of the refrigerant heater 400 is provided with a check valve 401 means that the check valve 401 is directly arranged in the air inlet of the refrigerant heater 400 or arranged on a pipe connected to the air inlet of the refrigerant heater 400 And a position closer to the refrigerant heater 400.
  • the flow regulating valve 201 is installed between the air outlet of the refrigerant heater 400 and the air inlet of the static pressure bearing 102.
  • the flow regulating valve 201 is installed between the air outlet of the refrigerant heater 400 and the air inlet of the static pressure bearing 102 to be aligned The pressure adjusts the flow of the passing refrigerant, and the air supply to the hydrostatic bearing 102 is more stable.
  • a filter 300 connected to the air supply pipe 200 and configured to filter the refrigerant passing through the air supply pipe 200.
  • impurities in the refrigerant are filtered to prevent the narrow parts such as the air supply holes in the hydrostatic bearing 102 from being blocked, which affects the stability of the hydrostatic bearing 102.
  • the filter 300 is disposed between the refrigerant outlet 101 and the air inlet of the refrigerant heater 400.
  • the refrigerant is filtered before the refrigerant enters the refrigerant heater 400 and other components to remove impurities in the refrigerant, prevent the impurities in the refrigerant from affecting the refrigerant heater 400 and other components, and improve the stability of air supply .
  • the filter 300 is arranged at any position on the air supply pipe 200 between the refrigerant outlet 101 and the air inlet of the refrigerant heater 400 and is connected to the air supply pipe 200.
  • the installation position of the filter 300 can be reasonably selected according to the installation space, which is convenient for spatial arrangement.
  • it further includes: a bypass pipe 202 connected to the air supply pipe 200 in parallel with the refrigerant heater 400.
  • the refrigerant can directly enter the static pressure bearing 102 without passing through the refrigerant heater 400, which is convenient for the refrigerant to pass through the bypass pipe 202 directly after the compressor 100 works stably. Enter the hydrostatic bearing 102 and supply air to the hydrostatic bearing 102 stably.
  • the bypass pipe 202 and the refrigerant heater 400 are connected in parallel to the air supply pipe 200 through a three-way valve, where the three-way valve includes: an air inlet connected to the air supply pipe 200; two air outlets, one of which is connected to the bypass The through pipe 202 is in communication, and the other is in communication with the air inlet of the refrigerant heater 400.
  • the flow direction of the refrigerant is controlled by the three-way valve.
  • the three-way valve can be connected to the air supply pipe 200 and the air inlet of the refrigerant heater 400, so that the refrigerant passes through the refrigerant heater 400.
  • the static pressure bearing 102 After deheating and gasification, it enters the static pressure bearing 102 to increase the air supply pressure, so that the static pressure bearing 102 can operate stably.
  • the compressor 100 starts for a period of time, the operation of the compressor 100 is stable.
  • the refrigerant discharged from the refrigerant outlet 101 of the compressor 100 It is a single gas and the pressure is high.
  • the three-way valve is connected to the air supply pipe 200 and the bypass pipe 202.
  • the refrigerant directly enters the hydrostatic bearing 102 to support the rotating shaft in the hydrostatic bearing 102 to improve the hydrostatic bearing 102 in various stages. Stability of operation.
  • the passage of the three-way valve is controlled by the controller.
  • the controller can control the three-way valve to connect the air supply pipe 200 with the air inlet of the refrigerant heater 400 within a preset time after the compressor 100 is started. After time, the three-way valve is controlled to connect the air supply pipe 200 with the bypass pipe 202.
  • the controller adopts conventional controllers in this field.
  • Fig. 2 shows another structure of the hydrostatic bearing air supply system provided by the embodiment of the present disclosure.
  • the static pressure bearing 102 air supply system includes: a compressor 100 having a refrigerant outlet 101 and a static pressure bearing 102; an air supply pipe 200 that communicates the refrigerant outlet 101 and the air inlet of the static pressure bearing 102, and is provided with The supercharging device 500; the refrigerant discharged from the refrigerant outlet 101 enters the air supply pipe 200 through the supercharging device 500 and enters the air inlet of the static pressure bearing 102.
  • the refrigerant in both gas and liquid states is discharged from the refrigerant outlet 101 of the compressor 100, and the pressure of the refrigerant is boosted by the boosting device 500, and then directly supplied to the hydrostatic bearing 102. It can support the rotating shaft in the static pressure bearing 102.
  • the single-gas refrigerant is discharged from the refrigerant outlet 101 of the compressor 100.
  • the booster device 500 can stop pressurizing and remove the refrigerant discharged from the refrigerant outlet 101 After filtering, it is directly supplied to the hydrostatic bearing 102.
  • the refrigerant discharged from the refrigerant outlet 101 has a high pressure and is monogas, it does not need to be heated and vaporized. It can be directly used to support the rotating shaft in the hydrostatic bearing 102 to remove the heating and vaporization of the heating tank. Links, simplify the structure, reduce manufacturing costs, and reduce the heating and gasification links and the time for the refrigerant pressurization, which can reduce energy consumption and become more energy-saving and environmentally friendly.
  • the booster device 500 is a booster pump.
  • the existing mature booster pump is used to boost the refrigerant passing through the air supply pipe 200 to increase the pressure of the refrigerant, the operation is stable, and the cost is bottomed.
  • the supercharging device 500 is an ultra-compact compressor.
  • the excellent characteristics of the ultra-compact compressor are used to improve the stability of supercharging the refrigerant supplied by the hydrostatic bearing 102;
  • the ultra-compact compressor has the following characteristics: stable operation and medium-sized compressor
  • the suction, compression and discharge of the gas working medium are completed within two rotations of the eccentric wheel shaft, but because the rolling piston and the sliding plate form the left and right working chambers, suction, compression and exhaust
  • the process is carried out at the same time, so for the entire ultra-compact compressor, an effective working cycle is still completed in each revolution of the eccentric shaft, which can make the operation smooth; in the ultra-compact compressor with higher efficiency, suction, compression and discharge
  • the air process is carried out in the working chambers on both sides of the slide plate at the same time.
  • No suction valve or additional suction and exhaust muffler is needed, which reduces the flow resistance loss during the suction and exhaust process. Its indicating efficiency is generally higher than that of reciprocating piston compression.
  • the height of the machine 100 is 30%-40%; the compact, ultra-small compressor is directly rotated and compressed by the cooperation of a cylindrical cylinder and a rolling piston for rotary motion, without a motion conversion mechanism that converts rotary motion into reciprocating motion , Its parts are few, especially the wearing parts, the structure is simple, the volume is small, the weight is light, 1/3 less than the parts of the general reciprocating piston compressor 100, the volume is 40%-50%, and the weight is about half light; Brush motor driven, ultra-small compressors are driven by a brushless DC motor.
  • the brushless DC motor has a fast response, large starting torque, and can provide rated torque performance from zero speed to rated speed. It is easy to achieve super Variable speed and frequency conversion control of small compressors, and can be powered by batteries, on-board power supplies, civil power grids, solar energy, etc., which enhances the adaptability of the system.
  • the filter 300 is disposed between the refrigerant outlet 101 and the air inlet of the supercharging device 500.
  • the refrigerant is filtered before it enters the supercharger 500 and other components to remove impurities in the refrigerant, prevent the impurities in the refrigerant from affecting the supercharger 500 and other components, and improve the stability of the gas supply .
  • the filter 300 is arranged at any position on the air supply pipe 200 between the refrigerant outlet 101 and the air inlet of the supercharging device 500 and is connected to the air supply pipe 200.
  • the installation position of the filter 300 can be reasonably selected according to the installation space, which is convenient for spatial arrangement.
  • the air inlet and/or the air outlet of the supercharging device 500 are provided with a flow regulating valve 201 configured to regulate the flow of the refrigerant passing through the supercharging device 500.
  • the flow rate of the refrigerant passing through the supercharging device 500 is adjusted to prevent the pressure of the refrigerant from being unstable after passing through the supercharging device 500, resulting in unstable air supply to the hydrostatic bearing 102.
  • the air inlet and/or air outlet of the supercharging device 500 is one or two of the air inlet of the supercharging device 500 and the air outlet of the supercharging device 500, that is, it may be the air inlet of the supercharging device 500
  • the port may also be the air outlet of the supercharging device 500, or the air inlet of the supercharging device 500 and the air outlet of the supercharging device 500.
  • it further includes: a bypass pipe 202 connected to the air supply pipe 200 in parallel with the booster device 500.
  • the refrigerant can directly enter the static pressure bearing 102 without passing through the supercharging device 500, which is convenient for the refrigerant to enter the static pressure bearing 102 through the bypass pipe 202 after the compressor 100 works stably.
  • the pressure bearing 102 supplies air to the static pressure bearing 102 stably.
  • bypass pipe 202, the air supply pipe 200, and the refrigerant pipe 601 are ordinary refrigerant pipelines, and the same structure can be adopted.
  • the bypass pipe 202 and the supercharging device 500 are connected in parallel to the air supply pipe 200 through a three-way valve, where the three-way valve includes: an air inlet, which is connected to the air supply pipe 200; and two air outlets, one of which is connected to the bypass The through pipe 202 is in communication, and the other is in communication with the air inlet of the supercharging device 500.
  • the flow direction of the refrigerant is controlled by a three-way valve.
  • the three-way valve can be connected to the air supply pipe 200 and the air inlet of the booster device 500 so that the refrigerant passes through the booster device 500.
  • the compressor 100 After being pressurized, it enters the static pressure bearing 102 to increase the air supply pressure, so that the static pressure bearing 102 can operate stably.
  • the compressor 100 After the compressor 100 starts for a period of time, the compressor 100 operates stably.
  • the refrigerant discharged from the refrigerant outlet 101 of the compressor 100 is Single gas and high pressure.
  • the three-way valve is connected to the air supply pipe 200 and the bypass pipe 202.
  • the refrigerant directly enters the hydrostatic bearing 102 to support the rotating shaft in the hydrostatic bearing 102 to improve the operation of the hydrostatic bearing 102 in all stages The stability.
  • the passage of the three-way valve is controlled by the controller.
  • the controller can control the three-way valve to connect the air supply pipe 200 with the air inlet of the booster 500 within a preset time after the compressor 100 is started. After time, the three-way valve is controlled to connect the air supply pipe 200 with the bypass pipe 202.
  • the controller adopts conventional controllers in this field.
  • a flow regulating valve 201 is provided on the bypass pipe 202 and is configured to regulate the flow of the refrigerant passing through the bypass pipe 202.
  • the amount of refrigerant entering the static pressure bearing 102 through the bypass pipe 202 is controlled by the flow regulating valve 201, which facilitates stable air supply to the static pressure bearing 102.
  • both the bypass pipe 202 and the branch where the booster device 500 is located are provided with a flow regulating valve 201 configured to regulate the flow of the refrigerant passing through the booster device 500 and the bypass pipe 202.
  • a flow regulating valve 201 configured to regulate the flow of the refrigerant passing through the booster device 500 and the bypass pipe 202.
  • the branch where the supercharging device 500 is located is a part of the pipeline where the refrigerant does not pass through the bypass pipe 202 in the parallel structure of the bypass pipe 202 and the supercharging device 500.
  • the air inlet and air outlet of the supercharging device 500 are connected to the air supply pipe 200 in parallel with the bypass pipe 202 through a certain length of pipeline, then the branch where the supercharging device 500 is located includes the supercharging device 500 and its air inlet A certain length of pipeline with the air outlet.
  • a refrigerant heating device 400 is provided on the bypass pipe 202.
  • the refrigerant passing through the bypass pipe 202 can be heated to vaporize it, and the static pressure bearing 102 can be supplied more stably.
  • a refrigerant heating device 400 is provided on the bypass pipe 202 and further includes a second bypass pipe.
  • the second bypass pipe is connected to the air supply pipe 200 in parallel with the bypass pipe 202 and the supercharging device 500.
  • the refrigerant can directly enter the air inlet of the hydrostatic bearing 102 without passing through the supercharging device 500 and the bypass pipe 202, and the air supply is more stable.
  • Fig. 3 shows another structure of the hydrostatic bearing air supply system provided by the embodiment of the present disclosure.
  • the static pressure bearing 102 air supply system includes: a compressor 100 having a refrigerant outlet 101 and a static pressure bearing 102; an air supply pipe 200 that communicates the refrigerant outlet 101 and the air inlet of the static pressure bearing 102, and is provided with Filter 300; The refrigerant discharged from the refrigerant outlet 101 enters the air supply pipe 200 and enters the air inlet of the static pressure bearing 102 through the filter 300.
  • the gas-liquid refrigerant discharged from the refrigerant outlet 101 of the compressor 100 is directly filtered to remove impurities, and then supplied to the hydrostatic bearing 102 to support the inside of the hydrostatic bearing 102
  • the single-gas refrigerant is discharged from the refrigerant outlet 101 of the compressor 100, and the refrigerant discharged from the refrigerant outlet 101 is filtered to remove impurities and directly supplied to the hydrostatic bearing 102.
  • a flow regulating valve 201 connected to the air supply pipe 200 and configured to adjust the flow of the refrigerant passing through the air supply pipe 200.
  • the flow rate of the refrigerant passing through the air supply pipe 200 is adjusted to maintain the stability of the flow rate of the refrigerant, thereby improving the stability of the air supply to the hydrostatic bearing 102.
  • the flow regulating valve 201 is a speed regulating valve, which is formed by a fixed differential pressure reducing valve and a throttle valve in series.
  • the speed control valve can maintain a constant flow rate of the refrigerant passing through regardless of changes in the pressure of the air supply pipe 200, thereby improving the stability of the air supply to the hydrostatic bearing 102.
  • the speed control valve is a pressure-compensated throttle valve. It is composed of a fixed differential pressure reducing valve and a throttle valve in series. The pressure before and after the throttle valve is led to the right and left ends of the pressure reducing valve core respectively.
  • the hydraulic pressure acting on the left end of the pressure reducing valve core increases, and the valve core moves to the right, and the pressure reducing port Increasing, the pressure drop decreases, and the pressure drop increases, so that the pressure difference of the throttle valve remains unchanged; and vice versa.
  • the flow rate of the speed control valve is constant.
  • the pressure difference between the inlet and outlet of the throttle valve can be kept at a constant value when the load pressure changes. In this way, after the orifice area is adjusted, no matter how the load pressure changes, the speed control valve can keep the flow rate through the throttle valve unchanged.
  • the flow regulating valve 201 is installed between the filter 300 and the air inlet of the static pressure bearing 102.
  • the refrigerant is filtered by the filter 300 and then enters the flow regulating valve 201, preventing impurities in the refrigerant from blocking the flow regulating valve 201, causing damage to the flow regulating valve 201, and affecting the static pressure bearing 102 Stability of air supply.
  • the flow regulating valve 201 is arranged at any position on the air supply pipe 200 between the filter 300 and the air inlet of the static pressure bearing 102.
  • the installation position of the flow regulating valve 201 can be reasonably selected according to the installation space, which is convenient for spatial arrangement.
  • the air outlet of the static pressure bearing 102 communicates with the air inlet of the compressor 100.
  • the refrigerant discharged from the static pressure bearing 102 is directly passed into the air inlet of the compressor 100.
  • the negative pressure generated by the air inlet of the compressor 100 can be used to increase the inlet pressure of the static pressure bearing 102.
  • the refrigerant pipeline is simplified and the cost is reduced.
  • the air outlet of the static pressure bearing 102 is directly connected to the air inlet of the compressor 100 through a pipeline.
  • the pipeline is simplified and the overall structure is simpler.
  • it further includes a condenser 600, the air inlet of which is in communication with the refrigerant outlet 101 through a refrigerant pipe 601; and the air supply pipe 200 is in communication with the refrigerant pipe 601.
  • the refrigerant can be introduced into the air supply pipe 200 at any point between the refrigerant outlet 101 of the compressor 100 and the air inlet of the condenser 600, simplifying the pipeline structure and lifting the air supply pipe 200 into the hydrostatic bearing 102 The pressure of the air inlet.
  • the refrigerant pipe 601 is provided with a connection port and the air supply pipe 200 is directly connected to the connection port.
  • the air supply pipe 200 is directly connected to the refrigerant pipe 601, and the structure is simple.
  • a solenoid valve 602 is provided at the connection between the air inlet of the condenser 600 and the refrigerant pipe 601.
  • the passage of the refrigerant into the condenser 600 can be closed by the solenoid valve 602.
  • the refrigerant is given priority to enter the air supply pipe 200 to supply air to the hydrostatic bearing 102 to increase the air supply pressure. , So that the hydrostatic bearing 102 operates more stably at the stage when the compressor 100 is just started.
  • the refrigerant outlet 101 is divided into two or more parts, one of which is in communication with the air supply pipe 200.
  • the outlet of the refrigerant is directly divided into two or more parts, which is more convenient when connecting the air supply pipe 200 and facilitates the disassembly and maintenance of the air supply pipe 200.
  • the refrigerant outlet 101 is divided into two parts, one of which is in communication with the air supply pipe 200, and the other part is in communication with the air inlet of the condenser 600 through the refrigerant pipe 601.
  • the refrigerant outlet 101 is split, and the structure is simple and stable.
  • the refrigerant outlet 101 communicates with one port of the three-way pipe, and is configured to divide the refrigerant outlet 101 into two parts, one of which communicates with the air supply pipe 200.
  • the three-way pipe is adopted and the refrigerant discharged from the refrigerant outlet 101 is divided, and the structure is more stable and reliable.
  • the refrigerant outlet 101 is divided into three parts, one part is connected to the air supply pipe 200, the other part is connected to the inlet of the condenser 600 through the refrigerant pipe 601, and the remaining part can be connected to the other condenser 600 through the other refrigerant pipe 601.
  • the air inlet is supplied with air.
  • the refrigerant outlet 101 is in communication with the air inlet of the gas dividing valve, and the gas dividing valve has two or more outlets to divide the refrigerant outlet 101 into two or more parts.
  • the refrigerant discharged from the refrigerant outlet 101 is directly distributed through the gas distribution valve, which facilitates adjustment of the amount of refrigerant entering the air supply pipe 200, and makes the refrigerant supply to the hydrostatic bearing 102 more stable and easy to adjust.
  • an air distribution valve is a valve body commonly used in the art to divide air and water flows.
  • it further includes a bypass pipe 202 connected in parallel to the air supply pipe 200 and provided with a refrigerant heating device 400 or a supercharging device 500.
  • the refrigerant is heated and vaporized by the refrigerant heating device 400 to increase the pressure, or the refrigerant is pressurized by the booster device 500, and then the hydrostatic bearing 102 is provided with high-pressure refrigerant to improve the operation stability of the hydrostatic bearing 102 Sex.
  • the refrigerant can have three passages into the hydrostatic bearing 102, and it can be supplied to the hydrostatic bearing 102 through one or more of the supercharging device 500, the bypass pipe 202 and the air supply pipe 200 according to the situation.
  • the gas supply is more stable.
  • the embodiment of the present disclosure also discloses a refrigeration equipment.
  • the refrigeration equipment includes the hydrostatic bearing air supply system of any one of the above embodiments.

Abstract

一种静压轴承(102)供气系统,包括:压缩机(100),具有冷媒出口(101)和静压轴承(102);供气管(200),连通冷媒出口(101)和静压轴承(102)的进气口,并设有过滤器(300);冷媒出口(101)排出的冷媒进入供气管(200)经过过滤器(300)进入静压轴承(102)的进气口。一种制冷设备,包括:静压轴承(102)供气系统。

Description

静压轴承供气系统、制冷设备
本申请基于申请号为201910695347.5、申请日为2019年07月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及家电技术领域,例如涉及一种静压轴承供气系统、制冷设备。
背景技术
目前,离心压缩机必须使用轴承来支撑转轴,滚珠轴承,摩擦损失大发热严重,无法实现高转速,磁浮轴承电子式结构非常复杂,制造成本高,静压轴承因使用冷媒来代替润滑油,摩擦损失小可达到高速,另外机械结构简单,制造成本低。此类静压轴承供气冷媒作为润滑剂的情况,根据状态可分为液态冷媒、气液两态冷媒、气态冷媒三种供气方式,冷媒通过在轴承上设置的小孔,在轴承与转轴的间隙中以螺旋形流动并以冷媒压力来支撑转轴。现阶段通常给静压轴承供气液两态冷媒,轴承流体模压力小,支撑力低,导致无法充分支撑转轴的问题出现。而且当液态冷媒供给静压轴承的时候,会因为冷媒气化压力突然上升,导致转轴与轴承相撞产生轴承破损的问题。同样,使用气液两态冷媒作为润滑剂,因液态冷媒粘性较大,也会有摩擦损失较大的缺点。因此现阶段多使用泵加压以及加热罐将液态冷媒转换为气态冷媒。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
使用泵以及加热罐等,结构复杂,同时制造成本升高。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种静压轴承供气系统、制冷设备,以解决现阶段结构复杂,制造成本升高的技术问题。
在一些实施例中,所述静压轴承供气系统包括:压缩机,具有冷媒出口和静压轴承;供气管,连通冷媒出口和静压轴承的进气口,并设有过滤器;冷媒出口排出的冷媒进入供气管经过过滤器进入静压轴承的进气口。
在一些实施例中,所述制冷设备包括:上述实施例任一项的静压轴承供气系统。
本公开实施例提供的一种静压轴承供气系统、制冷设备,可以实现以下技术效果:
压缩机运行稳定前的短暂时间,直接将从压缩机的冷媒出口排出气液两态的冷媒过滤 去除杂质后供给静压轴承,支撑静压轴承内的转轴,压缩机运行稳定后,从压缩机的冷媒出口排出单气态的冷媒,将由冷媒出口排出的冷媒过滤去除杂质后直接供给静压轴承,由于冷媒出口排出的冷媒压力较高且为单气态,因此不需要增压可直接用于支撑静压轴承内的转轴,去除泵和加热罐的使用,简化结构,降低制造成本,并且去除泵加压环节和加热气化环节,可降低能耗,更加节能环保。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的静压轴承供气系统的一个结构示意图;
图2是本公开实施例提供的静压轴承供气系统的另一个结构示意图;
图3是本公开实施例提供的静压轴承供气系统的另一个结构示意图。
附图标记:
100、压缩机;101、冷媒出口;102、静压轴承;200、供气管;201、流量调节阀;202、旁通管;300、过滤器;400、冷媒加热器;401、止回阀;500、增压装置;600、冷凝器;601、冷媒管;602、电磁阀。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例提供了一种静压轴承供气系统。
图1示出了本公开实施例提供的静压轴承供气系统的一个结构。
在一些实施例中,静压轴承102供气系统包括:压缩机100,具有冷媒出口101和静压轴承102;供气管200,连通冷媒出口101和静压轴承102的进气口,并设有冷媒加热器400;冷媒出口101排出的冷媒进入供气管200经过冷媒加热器400进入静压轴承102的进气口。
采用该可选实施例,在压缩机100运行稳定前,从压缩机100的冷媒出口101排出气液两态的冷媒,经过冷媒加热器400的加热将其中的液态冷媒气化并提升压力,然后直接供给静压轴承102,在压缩机100运行稳定后,从压缩机100的冷媒出口101排出单气态的冷媒,冷媒加热器400可停止加热,将由冷媒出口101排出的冷媒直接供给静压轴承 102,由于冷媒出口101排出的冷媒压力较高且为单气态,因此不需要增压,可直接用于支撑静压轴承102内的转轴,去除泵加压的环节,简化结构,降低制造成本,并且减少加压环节以及加热气化的时间,可降低能耗,更加节能环保。
可选地,冷媒加热器400为本领域常用的用于将未气化的液态冷媒进行加热使其气化的装置。
可选地,冷媒加热器400为加热罐,加热罐具有电加热功能。采用该可选实施例,通过加热可将液态冷媒气化,并且罐可均衡压力,使压力更平稳。
可选地,冷媒加热器400的进气口设有止回阀401。采用该可选实施例,在冷媒加热器400工作时,部分冷媒会在冷媒加热器400内蒸发气化,导致冷媒加热器400内的气压增高,通过在冷媒加热器400的进气口处设置止回阀401,可以防止冷媒逆流,造成对静压轴承102供气不稳定的情况。
可选地,冷媒加热器400的进气口设有止回阀401是指止回阀401直接设置在冷媒加热器400的进气口内或者设置在与冷媒加热器400进气口连接的管上且距离冷媒加热器400较近的位置。
冷媒可选地,流量调节阀201安装在冷媒加热器400的出气口与静压轴承102的进气口之间。采用该可选实施例,由于冷媒加热器400内液体冷媒气化会导致压力的变化,将流量调节阀201安装在冷媒加热器400的出气口与静压轴承102的进气口之间可对压力对经过的冷媒流量进行调节,对静压轴承102的供气更稳定。
可选地,还包括:过滤器300,连通于供气管200上,被配置为对经过供气管200的冷媒进行过滤。采用该可选实施例,对冷媒中的杂质进行过滤,防止堵塞静压轴承102内的供气孔等较窄的部分,影响静压轴承102的稳定性。
可选地,过滤器300设置于冷媒出口101与冷媒加热器400的进气口之间。采用该可选实施例,在冷媒进入冷媒加热器400等部件之前先对冷媒进行过滤,去除冷媒内的杂质,防止冷媒内的杂质对冷媒加热器400等部件造成影响,提高供气的稳定性。
可选地,过滤器300设置于冷媒出口101与冷媒加热器400的进气口之间的供气管200上的任一位置,并连通在供气管200上。采用该可选实施例,可根据安装空间合理的选择过滤器300的安装位置,便于空间排布。
可选地,还包括:旁通管202,与冷媒加热器400并联在供气管200上。采用该可选实施例,使冷媒可以不经过冷媒加热器400直接进入静压轴承102内,便于在压缩机100工作稳定后,不启用冷媒加热器400的情况下冷媒经过旁通管202之直接进入静压轴承102,稳定的对静压轴承102供气。
可选地,旁通管202与冷媒加热器400并联在供气管200上是指,供气管200路经过旁通管202与冷媒加热器400处时分为两路,一路经过旁通管202,另一路经过冷媒加热器400,两路在分别经过旁通管202和冷媒加热器400后再汇合在一起。
可选地,旁通管202与冷媒加热器400通过三通阀并联在供气管200上,其中三通阀 包括:一个进气口,与供气管200连通;两个出气口,其中一个与旁通管202连通,另一个与冷媒加热器400的进气口连通。采用该可选实施例,通过三通阀控制冷媒的流向,在压缩机100刚启动时可使三通阀连通供气管200与冷媒加热器400的进气口,使冷媒经过冷媒加热器400的解热气化后进入静压轴承102,提高供气压力,使静压轴承102能够稳定运行,压缩机100启动一段时间后压缩机100的运行稳定,这时压缩机100的冷媒出口101排出的冷媒为单气态且压力较高,此时使三通阀连通供气管200路与旁通管202,冷媒直接进入静压轴承102,支撑静压轴承102内的转轴,提高静压轴承102在各个阶段运行的稳定性。
可选地,三通阀的通路由控制器进行控制,控制器可在压缩机100启动后的预设时间内控制三通阀将供气管200与冷媒加热器400的进气口连通,预设时间后控制三通阀将供气管200路与旁通管202连通。其中控制器采用本领域的常规控制器。
图2示出了本公开实施例提供的静压轴承供气系统的另一个结构。
在一些实施例中,静压轴承102供气系统包括:压缩机100,具有冷媒出口101和静压轴承102;供气管200,连通冷媒出口101和静压轴承102的进气口,并设有增压装置500;冷媒出口101排出的冷媒进入供气管200经过增压装置500进入静压轴承102的进气口。
采用该可选实施例,在压缩机100运行稳定前,从压缩机100的冷媒出口101排出气液两态的冷媒,经过增压装置500的增压提升冷媒的压力,然后直接供给静压轴承102,可支撑静压轴承102内的转轴,在压缩机100运行稳定后,从压缩机100的冷媒出口101排出单气态的冷媒,增压装置500可停止加压,将由冷媒出口101排出的冷媒过滤后直接供给静压轴承102,由于冷媒出口101排出的冷媒压力较高且为单气态,因此不需要加热气化可直接用于支撑静压轴承102内的转轴,去除加热罐的加热气化环节,简化结构,降低制造成本,并且减少加热气化环节以及冷媒增压的时间,可降低能耗,更加节能环保。
可选地,增压装置500为增压泵。采用该可选实施例,利用现有技术成熟的增压泵对经过供气管200的冷媒进行增压,增加冷媒的压力,运行稳定,且成本交底。
可选地,增压装置500为超小型压缩机。采用该可选实施例,利用超小型压缩机的优良特性,提高对静压轴承102供气的冷媒进行增压的稳定性;其中超小型压缩机具有如下特性:运行平稳、超小型压缩机中,对于某一个工作腔而言,气体工质的吸入、压缩和排除是在偏心轮轴转动两周内完成的,但是由于滚动活塞和滑板组成左右两侧的工作腔,吸气、压缩及排气过程是同时进行的,那么对于整个超小型压缩机而言,偏心轮轴每转中仍完成一个有效的工作循环,可以使得运行平稳;效率较高、超小型压缩机中,吸气、压缩及排气过程是在滑板两边的工作腔中同时进行,不需要吸气阀门,也不需要额外的吸排气消声器,降低了吸排气过程中的流动阻力损失,其指示效率一般比往复式活塞压缩机100高30%-40%;结构紧凑、超小型压缩机是由圆筒形气缸和作回转运动的滚动活塞相互配合而直接进行旋转压缩,不需要将旋转运动转化为往复运动的运动转换机构,其零部件少, 尤其是易损件少,结构简单,体积小,重量轻,比一般往复活塞压缩机100的零件少1/3,体积小40%-50%,重量约轻一半;无刷电机驱动、超小型压缩机由直流无刷电机作为原动机,无刷直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,易于实现超小型压缩机的变转速变频控制,并且可以使用电池、车载电源、民用电网、太阳能等供电,增强了系统的适应性。
可选地,过滤器300设置于冷媒出口101与增压装置500的进气口之间。采用该可选实施例,在冷媒进入增压装置500等部件之前先对冷媒进行过滤,去除冷媒内的杂质,防止冷媒内的杂质对增压装置500等部件造成影响,提高供气的稳定性。
可选地,过滤器300设置于冷媒出口101与增压装置500的进气口之间的供气管200上的任一位置,并连通在供气管200上。采用该可选实施例,可根据安装空间合理的选择过滤器300的安装位置,便于空间排布。
可选地,增压装置500的进气口和/或出气口设有流量调节阀201,被配置为调节经过增压装置500的冷媒的流量。采用该可选实施例,对经过增压装置500的冷媒的流量进行调节,防止冷媒经过增压装置500后压力不稳定,造成对静压轴承102的供气不稳定。
可选地,增压装置500的进气口和/或出气口为增压装置500的进气口和增压装置500的出气口中的一个或两个,即可以是增压装置500的进气口,也可以是增压装置500的出气口,还可以是增压装置500的进气口和增压装置500的出气口。
可选地,还包括:旁通管202,与增压装置500并联在供气管200上。采用该可选实施例,使冷媒可以不经过增压装置500直接进入静压轴承102内,便于在压缩机100工作稳定后,不启用增压装置500的情况下冷媒经过旁通管202进入静压轴承102,稳定的对静压轴承102供气。
可选地,旁通管202与增压装置500并联在供气管200上是指,供气管200路经过旁通管202与增压装置500处时分为两路,一路经过旁通管202,另一路经过增压装置500,两路在分别经过旁通管202和增压装置500后再汇合在一起。
可选地,旁通管202、供气管200以及冷媒管601为普通冷媒管路,可与采用相同结构。
可选地,旁通管202与增压装置500通过三通阀并联在供气管200上,其中三通阀包括:一个进气口,与供气管200连通;两个出气口,其中一个与旁通管202连通,另一个与增压装置500的进气口连通。采用该可选实施例,通过三通阀控制冷媒的流向,在压缩机100刚启动时可使三通阀连通供气管200与增压装置500的进气口,使冷媒经过增压装置500的加压后进入静压轴承102,提高供气压力,使静压轴承102能够稳定运行,压缩机100启动一段时间后压缩机100的运行稳定,这时压缩机100的冷媒出口101排出的冷媒为单气态且压力较高,此时使三通阀连通供气管200路与旁通管202,冷媒直接进入静压轴承102,支撑静压轴承102内的转轴,提高静压轴承102在各个阶段运行的稳定性。
可选地,三通阀的通路由控制器进行控制,控制器可在压缩机100启动后的预设时间 内控制三通阀将供气管200与增压装置500的进气口连通,预设时间后控制三通阀将供气管200路与旁通管202连通。其中控制器采用本领域的常规控制器。
可选地,旁通管202上设有流量调节阀201,被配置为调节经过旁通管202的冷媒的流量。采用该可选实施例,通过流量调节阀201控制经过旁通管202进入静压轴承102的冷媒量,便于对静压轴承102进行稳定供气。
可选地,旁通管202和增压装置500所在的支路上均设有流量调节阀201,被配置为调节经过增压装置500以及经过旁通管202的冷媒的流量。采用该可选实施例,对经过增压装置500和经过旁通管202的冷媒流量均进行调节,精确的控制最终进入到静压轴承102的冷媒量,使静压轴承102的运行更稳定。
可选地,增压装置500所在的支路为旁通管202与增压装置500并联结构中冷媒不经过旁通管202的部分管路。例如增压装置500的进气口和出气口均通过一定长度的管路与旁通管202并联在供气管200上,则增压装置500所在的支路包括增压装置500以及其进气口和出气口的一定长度的管路。
可选地,所述旁通管202上设有冷媒加热装置400。采用该可选实施例,可对通过旁通管202的冷媒进行加热,使其气化,更稳定的给静压轴承102供气。
可选地,旁通管202上设有冷媒加热装置400,且还包括第二旁通管,第二旁通管与旁通管202和增压装置500并联在供气管200上。采用该可选实施例,使冷媒可以不经过增压装置500和旁通管202直接进入静压轴承102的进气口,供气更稳定。
图3示出了本公开实施例提供的静压轴承供气系统的另一个结构。
在一些实施例中,静压轴承102供气系统包括:压缩机100,具有冷媒出口101和静压轴承102;供气管200,连通冷媒出口101和静压轴承102的进气口,并设有过滤器300;冷媒出口101排出的冷媒进入供气管200经过过滤器300进入静压轴承102的进气口。
采用该可选实施例,压缩机100运行稳定前的短暂时间,直接将从压缩机100的冷媒出口101排出气液两态的冷媒过滤去除杂质后供给静压轴承102,支撑静压轴承102内的转轴,压缩机100运行稳定后,从压缩机100的冷媒出口101排出单气态的冷媒,将由冷媒出口101排出的冷媒过滤去除杂质后直接供给静压轴承102,由于冷媒出口101排出的冷媒压力较高且为单气态,因此不需要增压可直接用于支撑静压轴承102内的转轴,去除泵和加热罐的使用,简化结构,降低制造成本,并且去除泵加压环节和加热气化环节,可降低能耗,更加节能环保。
可选地,还包括:流量调节阀201,连通于供气管200上,被配置为调节经过供气管200的冷媒的流量。采用该可选实施例,调节经过供气管200的冷媒的流量,保持冷媒的流量的稳定,进而提高对静压轴承102供气的稳定性。
可选地,流量调节阀201为调速阀,调速阀由定差减压阀和节流阀串联形成。采用该可选实施例,调速阀可保持无论供气管200的压力如何变化,始终保持恒定的通过的冷媒的流量不变,提高对静压轴承102供气的稳定性。
可选地,调速阀是进行了压力补偿的节流阀。它由定差减压阀和节流阀串联而成。节流阀前、后的压力分别引到减压阀阀芯右、左两端,当负载压力增大,于是作用在减压阀芯左端的液压力增大,阀芯右移,减压口加大,压降减小,使也增大,从而使节流阀的压差保持不变;反之亦然。这样就使调速阀的流量恒定不变。在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变。
可选地,流量调节阀201安装在过滤器300与静压轴承102的进气口之间。采用该可选实施例,使冷媒先由过滤器300进行过滤后再进入流量调节阀201内,避免冷媒内的杂质对堵塞流量调节阀201,造成流量调节阀201损坏,进而影响对静压轴承102供气的稳定性。
可选地,流量调节阀201设置于过滤器300与静压轴承102的进气口之间的供气管200上的任一位置。采用该可选实施例,可根据安装空间合理的选择流量调节阀201的安装位置,便于空间排布。
可选地,静压轴承102的出气口与压缩机100的进气口连通。采用该可选实施例,将由静压轴承102排出的冷媒直接通入压缩机100的进气口内,一方面可利用压缩机100进气口产生的负压增加静压轴承102的进气压力,另一方面简化冷媒管路,降低成本。
可选地,静压轴承102的出气口通过管路直接连接到压缩机100的进气口内。采用该可选实施例,简化管路,使整体结构更简单。
可选地,还包括:冷凝器600,其进气口通过冷媒管601与冷媒出口101连通;供气管200与冷媒管601连通。采用该可选实施例,可在压缩机100的冷媒出口101与冷凝器600的进气口中间的任一点将冷媒输入供气管200内,简化管路结构,提升通过供气管200进入静压轴承102进气口的压力。
可选地,冷媒管601上设有连接口供气管200直接与连接口连通。采用该可选实施例,直接将供气管200连接到冷媒管601上,结构简单。
可选地,冷凝器600的进气口与冷媒管601连接处设有电磁阀602。采用该可选实施例,可通过电磁阀602关闭冷媒进入冷凝器600的通道,在压缩机100刚启动尚未稳定前,优先使冷媒进入供气管200给静压轴承102供气,提高供气压力,使静压轴承102在压缩机100刚启动的阶段运行更加稳定。
可选地,冷媒出口101分为两部分或多部分,其中一部分与供气管200连通。采用该可选实施例,直接将冷媒的出口分为两部分或多个部分,在连接供气管200时更加方便并且方便供气管200的拆卸维修。
可选地,冷媒出口101分为两部分,其中一部分与供气管200连通,另一部分通过冷媒管601与冷凝器600的进气口连通。采用该可选实施例,对冷媒出口101部位分流,结构简单并且稳定。
可选地,冷媒出口101与三通管的一个口连通,被配置为将冷媒出口101分为两部分, 其中一部分与供气管200连通。采用该可选实施例,采用三通管及对冷媒出口101排出的冷媒进行分流,结构更稳定可靠。
可选地,冷媒出口101分为三部分,其中一部分与供气管200连通,另一部分通过冷媒管601与冷凝器600的进气口连通,余下一部分可通过其他冷媒管601对其他的冷凝器600的进气口供气。采用该可选实施例,在一个压缩机100给两个冷凝器600供气时供气管200路的连接更加方便。
可选地,冷媒出口101与分气阀的进气口连通,分气阀具有两个或多个出气口将冷媒出口101分为两部分或多部分。采用该可选实施例,直接通过分气阀对冷媒出口101排出的冷媒进行分配,便于调节进入供气管200的冷媒量,使冷媒对静压轴承102的供气更稳定,且便于调节。
可选地,分气阀本领域常用的一种对气流水流等进行分路的阀体。
可选地,还包括,旁通管202,并联在供气管200上,且设有冷媒加热装置400或者增压装置500。采用该可选实施例,通过冷媒加热装置400对冷媒加热气化提高压力,或者通过增压装置500对冷媒进行加压,进而给静压轴承102提供高压冷媒,提高静压轴承102运行的稳定性。
可选地,还包括,旁通管202和第二旁通管,均并联在供气管200上,且第二旁通管与旁通管202中的一个设有冷媒加热装置400另一个上设有增压装置500并联在供气管200上。采用该可选实施例,使冷媒可以有三条进入静压轴承102的通路,根据情况选择经过增压装置500、旁通管202和供气管200中的一个或一个以上给静压轴承102进行供气,供气更稳定。
本公开实施例还公开了一种制冷设备。
在一些实施例中,制冷设备包括:上述实施例任一项的静压轴承供气系统。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本申请的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的 装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。

Claims (10)

  1. 一种静压轴承供气系统,其特征在于,包括:
    压缩机,具有冷媒出口和静压轴承;
    供气管,连通所述冷媒出口和静压轴承的进气口,并设有过滤器;所述冷媒出口排出的冷媒进入所述供气管经过所述过滤器进入所述静压轴承的进气口。
  2. 根据权利要求1所述的静压轴承供气系统,其特征在于,还包括:
    流量调节阀,连通于所述供气管上,被配置为调节经过所述供气管的冷媒的流量。
  3. 根据权利要求2所述的静压轴承供气系统,其特征在于,流量调节阀为调速阀,所述调速阀由定差减压阀和节流阀串联形成。
  4. 根据权利要求2所述的静压轴承供气系统,其特征在于,所述流量调节阀安装在所述过滤器与所述静压轴承的进气口之间。
  5. 根据权利要求1所述的静压轴承供气系统,其特征在于,所述静压轴承的出气口与所述压缩机的进气口连通。
  6. 根据权利要求1至5任一项所述的静压轴承供气系统,其特征在于,还包括:
    冷凝器,其进气口通过冷媒管与所述冷媒出口连通;所述供气管与所述冷媒管连通。
  7. 根据权利要求6所述的静压轴承供气系统,其特征在于,所述冷凝器的进气口与所述冷媒管连接处设有电磁阀。
  8. 根据权利要求1至5任一项所述的静压轴承供气系统,其特征在于,所述冷媒出口分为两部分或多部分,其中一部分与所述供气管连通。
  9. 根据权利要求8所述的静压轴承供气系统,其特征在于,所述冷媒出口与分气阀的进气口连通,所述分气阀具有两个或多个出气口将所述冷媒出口分为两部分或多部分。
  10. 一种制冷设备,其特征在于,包括如权利要求1至9任一项所述的静压轴承供气系统。
PCT/CN2020/104749 2019-07-30 2020-07-27 静压轴承供气系统、制冷设备 WO2021018076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910695347.5A CN112302989A (zh) 2019-07-30 2019-07-30 静压轴承供气系统、制冷设备
CN201910695347.5 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021018076A1 true WO2021018076A1 (zh) 2021-02-04

Family

ID=74229492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104749 WO2021018076A1 (zh) 2019-07-30 2020-07-27 静压轴承供气系统、制冷设备

Country Status (2)

Country Link
CN (1) CN112302989A (zh)
WO (1) WO2021018076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959122B (zh) * 2021-09-16 2023-03-31 青岛海尔空调电子有限公司 制冷系统、用于制冷系统的控制方法、控制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923732A (en) * 1960-05-27 1963-04-18 Atomic Energy Authority Uk Improvements in or relating to free piston compressors with gas bearings
CN203655662U (zh) * 2014-01-03 2014-06-18 顾发华 双级离心压缩机
CN205714830U (zh) * 2016-06-28 2016-11-23 杭州万辰机电科技有限公司 离心压缩机
CN109838940A (zh) * 2017-11-27 2019-06-04 北京航空航天大学 一种自冷却自润滑的封闭式热泵/制冷系统
CN210660711U (zh) * 2019-07-30 2020-06-02 青岛海尔智能技术研发有限公司 静压轴承供气系统、制冷设备
CN210660712U (zh) * 2019-07-30 2020-06-02 青岛海尔智能技术研发有限公司 静压轴承供气系统、制冷设备
CN210949243U (zh) * 2019-07-30 2020-07-07 青岛海尔智能技术研发有限公司 静压轴承供气系统、制冷设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923732A (en) * 1960-05-27 1963-04-18 Atomic Energy Authority Uk Improvements in or relating to free piston compressors with gas bearings
CN203655662U (zh) * 2014-01-03 2014-06-18 顾发华 双级离心压缩机
CN205714830U (zh) * 2016-06-28 2016-11-23 杭州万辰机电科技有限公司 离心压缩机
CN109838940A (zh) * 2017-11-27 2019-06-04 北京航空航天大学 一种自冷却自润滑的封闭式热泵/制冷系统
CN210660711U (zh) * 2019-07-30 2020-06-02 青岛海尔智能技术研发有限公司 静压轴承供气系统、制冷设备
CN210660712U (zh) * 2019-07-30 2020-06-02 青岛海尔智能技术研发有限公司 静压轴承供气系统、制冷设备
CN210949243U (zh) * 2019-07-30 2020-07-07 青岛海尔智能技术研发有限公司 静压轴承供气系统、制冷设备

Also Published As

Publication number Publication date
CN112302989A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN210660711U (zh) 静压轴承供气系统、制冷设备
CN102022332B (zh) 双缸旋转压缩机及其控制方法
WO2021018079A1 (zh) 静压轴承供气系统、制冷设备
CN100445651C (zh) 可变频调节工作容量的模块化组合制冷装置
CN102889210B (zh) 双缸双模压缩机
CN210949243U (zh) 静压轴承供气系统、制冷设备
CN210660712U (zh) 静压轴承供气系统、制冷设备
WO2021018076A1 (zh) 静压轴承供气系统、制冷设备
CN105443384B (zh) 压缩机及其控制方法和空调器
JP2017516951A (ja) 流体動力学的な流体クラッチを備えた多段式の圧縮機システム
CN105221432A (zh) 具有有机朗肯循环的螺杆压缩机系统
CN212318358U (zh) 压缩机用气体轴承的供气系统及制冷系统
CN209246462U (zh) 压缩机的电机冷却回路、制冷系统及空调
CN112302991A (zh) 静压轴承供气系统、制冷设备
CN205225742U (zh) 一种具有有机朗肯循环的螺杆压缩机系统
CN113883600B (zh) 一种空调双压缩机制冷系统及空调
CN105910339A (zh) 一种双螺杆压缩机补气压力控制系统及方法
CN114198922B (zh) 压缩机的供液系统
US20220341632A1 (en) Low compression ratio refrigeration system with low-pressure booster
CN201943953U (zh) 带有启动卸载和输气量调节的滚动转子压缩机
CN2735254Y (zh) 可变频调节工作容量的模块化组合制冷装置
CN101691863B (zh) 一种降耗变排量回转压缩机
CN111486609B (zh) 一种空调系统和控制方法
CN103307817B (zh) 一种涡旋并联压缩冷凝机组
CN103147986B (zh) 双级增焓压缩机及具有其的空调器和热泵热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848536

Country of ref document: EP

Kind code of ref document: A1