WO2021018006A1 - 一种报文处理方法及设备 - Google Patents

一种报文处理方法及设备 Download PDF

Info

Publication number
WO2021018006A1
WO2021018006A1 PCT/CN2020/103878 CN2020103878W WO2021018006A1 WO 2021018006 A1 WO2021018006 A1 WO 2021018006A1 CN 2020103878 W CN2020103878 W CN 2020103878W WO 2021018006 A1 WO2021018006 A1 WO 2021018006A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
message
mounted terminal
far
time
Prior art date
Application number
PCT/CN2020/103878
Other languages
English (en)
French (fr)
Inventor
张�浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021018006A1 publication Critical patent/WO2021018006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • This application relates to the field of intelligent transportation, and in particular to a message processing method and device.
  • the workload for vehicles to complete signature verification of received messages varies greatly.
  • a single vehicle may receive V2X from 200 to 300 surrounding vehicles in one second. Messages, the number of messages may reach more than 3000.
  • the V2X system of the vehicle may not be able to meet such huge data verification performance requirements, which may cause congestion of the V2X data link system of the vehicle, and cause the V2X application scenario experience to experience timeout failure And other hazards, causing serious risks to the user's driving safety intelligent reminder (scenario below).
  • NXP's verification chip SXF5400 claimed to support 2000 ECDSA verification calculation performance per second
  • AUTOTALK's CARTON2 chip Group declared to support 2500 ECDSA verification calculation performance per second
  • the hardware device completes the data verification operation, does not occupy the core CPU load or computing power To achieve real-time verification performance goals.
  • the present application provides a message processing method and device, which can reduce the number of security verifications of V2X messages by a vehicle-mounted terminal, improve the timeliness of security verification in a message queue, and enhance the reliability of vehicle communication.
  • the embodiments of the present application provide a message processing method, which is applied to an Internet of Vehicles system.
  • the Internet of Vehicles system includes at least two vehicle-mounted terminals.
  • the method includes: the first vehicle-mounted terminal of the host vehicle receives the message from the distant vehicle.
  • the first vehicle-mounted terminal of the second vehicle connects the V2X message of all things, and then the first vehicle-mounted terminal predicts the first travel trajectory of the distant vehicle based on the first V2X message; the first vehicle-mounted terminal predicts the first travel trajectory of the distant vehicle and the main vehicle’s
  • the first driving trajectory determines the first minimum distance between the host vehicle and the far vehicle within the first time period from the first moment; finally, when the first minimum distance is less than or equal to the first threshold, the first vehicle-mounted terminal will respond to the first V2X
  • the message undergoes security verification.
  • the vehicle-mounted terminal discards the first V2X message, that is, does not perform security verification on the first V2X message.
  • the first moment may be the current moment, or a certain moment before the current moment.
  • the above-mentioned method can reduce the number of security verifications of V2X messages by the vehicle terminal, improve the timeliness of security verification in the message queue, and enhance the reliability of vehicle communication.
  • the first vehicle-mounted terminal receives the second V2X message from the second vehicle-mounted terminal; the first vehicle-mounted terminal predicts the second travel trajectory of the distant vehicle according to the second V2X message; The second travel trajectory of the vehicle and the second travel trajectory of the host vehicle determine the second minimum distance between the host vehicle and the far vehicle within the first time period from the second moment.
  • the first vehicle-mounted terminal discards the second V2X message, that is, no security verification is performed on the second V2X message.
  • the method provided in the embodiments of the present application can further filter V2X messages, reduce the number of security verifications, and improve the timeliness of message processing in the message queue.
  • the first vehicle-mounted terminal performs security verification on the second V2X message.
  • the first vehicle-mounted terminal when the second minimum distance is less than or equal to the second threshold, performs security verification on the second V2X message.
  • the far vehicle can be regarded as a far vehicle in a strongly associated virtual area.
  • the far vehicle in the strongly associated virtual area has the highest level of danger to the host vehicle.
  • V2X messages are verified for safety. This method can ensure timely safety verification for messages from distant vehicles with a high degree of threat and improve the safety of vehicle driving.
  • the first V2X message includes: the abscissa and ordinate, heading angle, speed, and yaw rate of the far vehicle.
  • the first vehicle-mounted terminal determines the curvature of the travel path of the far vehicle according to the speed and yaw rate of the far vehicle.
  • the first travel trajectory of the far vehicle predicted by the first vehicle terminal according to the first V2X message meets the requirements of the following formula:
  • x 0 ′ is the abscissa of the far vehicle in the first V2X message
  • y 0 ′ is the ordinate of the far vehicle in the first V2X message
  • x 2(t) is the horizontal coordinate of the far vehicle at time t Coordinates
  • y 2(t) is the ordinate of the far vehicle at time t
  • v t ′ is the speed of the far vehicle
  • R′ is the curvature of the travel path of the far vehicle
  • ⁇ ′ is the far vehicle in the first V2X message The heading angle.
  • the first vehicle-mounted terminal can accurately predict the travel trajectory of the distant vehicle according to the foregoing method.
  • the first driving trajectory of the main vehicle meets the requirements of the following formula:
  • x 0 is the initial abscissa of the host vehicle
  • y 0 is the initial ordinate of the host vehicle
  • x 1(t) is the abscissa of the host vehicle at time t
  • y 1(t) is the host vehicle at time t
  • v t is the speed of the main vehicle
  • v t and v t ′ are the speeds in the same direction
  • R is the curvature of the travel path of the main vehicle
  • R is determined according to the speed and yaw rate of the main vehicle
  • is The heading angle of the main vehicle
  • the first vehicle-mounted terminal determines that the distance between the host vehicle and the host vehicle meets the requirements of the following formula according to the first travel trajectory of the distant vehicle and the first travel trajectory of the host vehicle:
  • the first vehicle-mounted terminal takes the minimum value of the distance D (t) to obtain the first minimum distance between the host vehicle and the distant vehicle within the first time period from the first moment.
  • the first vehicle-mounted terminal can accurately predict the minimum distance between the long-distance vehicle and the main vehicle in the second time period in the future according to the foregoing method.
  • the second threshold is equal to
  • the first threshold is equal to
  • the braking response time of, n is a positive number greater than or equal to 1.
  • the embodiments of the present application provide a message processing method, which is applied to an Internet of Vehicles system.
  • the Internet of Vehicles system includes at least two vehicle terminals and a TCU server.
  • the method includes: the TCU server receives the first vehicle of the main vehicle The V2X message broadcast by the terminal and the first V2X message broadcast by the second on-board terminal of the distant vehicle; the TCU server according to the V2X message broadcast by the first on-board terminal of the main vehicle and the first V2X message broadcast by the second on-board terminal of the remote vehicle The V2X message predicts the first trajectory of the host vehicle and the first trajectory of the distant vehicle.
  • the TCU server determines the first minimum distance between the long vehicle and the main vehicle within the first time period of the first time according to the first driving trajectory of the main vehicle and the first traveling trajectory of the long vehicle; when the first minimum distance is less than When it is equal to the first threshold, the TCU server notifies the first vehicle-mounted terminal of the host vehicle to perform safety verification on the first V2X message of the remote vehicle.
  • the first vehicle-mounted terminal of the host vehicle is notified to discard the first V2X message, that is, no safety verification is performed on the first V2X message.
  • this method can reduce the number of security verifications of V2X messages by the vehicle terminal, improve the timeliness of security verification in the message queue, and enhance the reliability of vehicle communication. Especially when a user drives a car on a road with complicated road conditions or on a road with heavy traffic, the safety of driving can be improved.
  • the TCU server receives the V2X message broadcasted by the first in-vehicle terminal of the main vehicle and the second V2X message broadcasted by the second in-vehicle terminal of the distant vehicle; then the TCU server broadcasts according to the first in-vehicle terminal
  • the second V2X message broadcast by the second vehicle terminal and the second V2X message broadcast by the second vehicle-mounted terminal predict the second travel trajectory of the main vehicle and the second travel trajectory of the distant vehicle.
  • the TCU server determines the second minimum distance between the long vehicle and the main vehicle within the first time period of the second time according to the second driving trajectory of the main vehicle and the second traveling trajectory of the long vehicle; when the second minimum distance When the first minimum distance is less than or equal to the first threshold and greater than the second threshold, and the time interval between the second time and the first time is less than or equal to the second duration, the TCU server notifies the first vehicle-mounted terminal of the host vehicle to discard the first The second V2X message, that is, no security verification is performed on the second V2X message.
  • the method provided in the embodiments of the present application can further filter V2X messages, reduce the number of security verifications, and improve the timeliness of message processing in the message queue.
  • the TCU server when the second minimum distance and the first minimum distance are both less than or equal to the first threshold and greater than the second threshold, and the time interval between the second time and the first time is greater than the second duration, The TCU server notifies the first vehicle-mounted terminal of the host vehicle to perform safety verification on the second V2X message of the remote vehicle.
  • the TCU server when the second minimum distance is less than or equal to the second threshold, notifies the first vehicle-mounted terminal of the host vehicle to perform safety verification on the second V2X message of the remote vehicle.
  • the above method when a user drives a car on a road with complex road conditions or on a road with heavy traffic, the above method can ensure that the V2X message of the distant vehicle that poses a threat to the host vehicle is timely and safely verified, which can improve the driving performance. safety.
  • the first V2X message includes: the abscissa and ordinate, heading angle, speed, and yaw rate of the far vehicle.
  • the TCU server determines the curvature of the travel path of the far vehicle according to the speed and yaw rate of the far vehicle;
  • the first travel trajectory of the far vehicle predicted by the TCU server according to the first V2X message meets the requirements of the following formula:
  • x 0 ′ is the abscissa of the far vehicle in the first V2X message
  • y 0 ′ is the ordinate of the far vehicle in the first V2X message
  • x 2(t) is the horizontal coordinate of the far vehicle at time t Coordinates
  • y 2(t) is the ordinate of the far vehicle at time t
  • v t ′ is the speed of the far vehicle
  • R′ is the curvature of the travel path of the far vehicle
  • ⁇ ′ is the far vehicle in the first V2X message The heading angle.
  • the TCU server can accurately predict the travel trajectory of the distant vehicle according to the above method.
  • the first driving trajectory of the main vehicle satisfies the following formula:
  • x 0 is the initial abscissa of the host vehicle at the first moment
  • y 0 is the initial ordinate of the host vehicle at the first moment
  • x 1(t) is the abscissa of the host vehicle at time t
  • y 1(t ) The ordinate of the host vehicle at time t
  • v t is the speed of the host vehicle
  • v t and v t ′ are the speeds in the same direction
  • R is the curvature of the travel path of the host vehicle
  • R is based on the speed and
  • the yaw rate is determined
  • is the heading angle of the main vehicle
  • the TCU server determines the first minimum distance between the far vehicle and the host vehicle within the first time period of the first time according to the first driving trajectory of the host vehicle and the first driving trajectory of the far vehicle, including:
  • the TCU server determines that the distance between the host vehicle and the host vehicle meets the requirements of the following formula according to the first travel trajectory of the distant vehicle and the first travel trajectory of the host vehicle:
  • the TCU server takes the minimum value of the distance D (t) , and obtains the first minimum distance between the host vehicle and the distant vehicle within the first time period from the first moment.
  • the second threshold is equal to
  • the first threshold is equal to
  • T is the driver's braking response time
  • n is a positive number greater than or equal to 1.
  • an embodiment of the present application provides a vehicle-mounted terminal including a processor and a memory.
  • the memory is used to store one or more computer programs; when the one or more computer programs stored in the memory are executed by the processor, the vehicle-mounted terminal can implement any one of the possible design methods in any of the foregoing aspects.
  • an embodiment of the present application further provides a device, which includes a module/unit that executes any one of the possible design methods in any of the foregoing aspects.
  • modules/units can be realized by hardware, or by hardware executing corresponding software.
  • an embodiment of the present application provides a TCU server, including a processor and a memory.
  • the memory is used to store one or more computer programs; when the one or more computer programs stored in the memory are executed by the processor, the vehicle-mounted terminal can implement any one of the possible design methods in any of the foregoing aspects.
  • an embodiment of the present application further provides a device, which includes a module/unit that executes any one of the possible design methods in any of the foregoing aspects.
  • modules/units can be realized by hardware, or by hardware executing corresponding software.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium includes a computer program.
  • the computer program runs on a vehicle-mounted terminal, the vehicle-mounted terminal executes any of the above aspects. Any one of the possible design methods.
  • the embodiments of the present application also provide a method that includes a computer program product, which when the computer program product runs on a terminal, causes the vehicle-mounted terminal to execute any one of the possible designs in any of the foregoing aspects.
  • FIG. 1 is a schematic diagram of a car networking scenario provided by an embodiment of the application
  • FIG. 2A is a schematic structural diagram of a vehicle-mounted terminal provided by an embodiment of this application.
  • 2B is a schematic diagram of the assembly structure of the vehicle-mounted terminal provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a message processing method provided by an embodiment of this application.
  • 4A is a schematic diagram of a driving scene provided by an embodiment of this application.
  • FIG. 4B is a schematic diagram of a driving track provided by an embodiment of this application.
  • FIG. 5A is a schematic diagram of a vehicle terminal interface provided by an embodiment of the application.
  • FIG. 5B is a schematic diagram of virtual area division provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another message processing method provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another message processing method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another car networking scenario provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of another message processing method provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another vehicle-mounted terminal provided by an embodiment of the application.
  • the vehicle-mounted terminal may be a vehicle-mounted electronic control unit (ECU), etc., a vehicle-mounted computer, a vehicle-mounted cruise system, and a vehicle-mounted communication box (telematics box, T-BOX).
  • ECU electronice control unit
  • T-BOX vehicle-mounted communication box
  • the driving state information of the vehicle refers to data such as the position, heading, speed, acceleration, steering angle, angular velocity, angular acceleration, vehicle size, and weight of the vehicle.
  • V2X Vehicle to X
  • V2X Vehicle to X
  • V2X Vehicle to X
  • V2X Vehicle to X
  • V2V Vehicle to vehicle
  • V2P Vehicle-to-pedestrian
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • V2X enables communication between vehicles and external infrastructure to obtain real-time road condition information, pedestrian information and a series of traffic information, improve driving safety, reduce congestion, improve traffic efficiency, and provide on-board entertainment information.
  • At least one of the embodiments of the present application includes one or more; wherein, multiple refers to greater than or equal to two.
  • words such as “first” and “second” are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor can it be understood as indicating Or imply the order.
  • the present application provides an Internet of Vehicles system.
  • the architecture of the Internet of Vehicles system is shown in FIG. 1, and includes three vehicles 100 and a traffic control unit (TCU) server 200.
  • TCU traffic control unit
  • Each vehicle is equipped with an on-board terminal.
  • a communication connection can be established between cars 100.
  • the communication connection between the cars 100 can be established through V2X communication technology.
  • LTE-V2X communication technology has two communication methods: direct connection (LTE-V-Direct) and cellular (LTE-V-Cell).
  • Direct connection refers to the direct communication between the car and the workshop.
  • the PC5 interface is introduced in the 3rd generation partnership project (3rd generation partnership project, 3GPP) version 12 (Rel-12) device to device (Device to Device, D2D) project between the vehicle device and the vehicle device.
  • 3rd generation partnership project, 3GPP 3rd generation partnership project, 3GPP version 12
  • D2D Device to Device
  • Direct communication interface Neighboring vehicle equipment can transmit data through direct links within the effective communication range of PC5, without forwarding through central nodes (such as base stations), or transmitting information through traditional cellular links. Fast and convenient.
  • the Uu interface is the interface between the vehicle-mounted terminal and/or roadside unit and the base station.
  • the vehicle-mounted terminal and/or roadside unit can transmit information to the base station and then the base station forwards the information to other vehicle-mounted terminals and/or roadside units. Realize car networking communication.
  • the vehicle-mounted terminal in each vehicle 100 sends V2X messages by broadcasting.
  • the first vehicle-mounted terminal of the main vehicle receives the V2X message of the second vehicle-mounted terminal of the distant vehicle
  • the first vehicle-mounted terminal receives the V2X message from the V2X
  • the minimum distance is less than or equal to the set threshold
  • the first vehicle-mounted terminal verifies the V2X message. Otherwise, the V2X message is discarded, that is, no security verification is performed on the V2X message.
  • the TCU server 200 can be installed independently, or can be combined with the network elements of the communication network.
  • the TCU server 200 is deployed in a roadside base station.
  • the TCU server 200 and the car 100 exchange information based on a communication network (such as a wireless cellular network, etc.).
  • the TCU server 200 in this application can receive the V2X message reported by the on-board terminal of at least one car 100, determine the far vehicle that poses a threat to the host vehicle based on the V2X message, and notify the first on-board terminal of the first vehicle to The first vehicle-mounted terminal verifies the V2X message of the far vehicle that poses a threat.
  • the TCU server 200 may receive V2X messages reported by vehicles and drive test facilities within a set geographic area, screen out target far vehicles that pose a threat to the host vehicle, and notify the identification of the far vehicle obtained by the screening to the first vehicle
  • the first vehicle-mounted terminal, the first vehicle-mounted terminal performs security verification on the V2X message corresponding to the target far vehicle identifier.
  • FIG. 2A shows a structural diagram of a possible vehicle-mounted terminal.
  • the vehicle-mounted terminal mainly includes: a processor 101, a memory 102, and a transceiver 103.
  • the memory 102 generally includes internal memory and external memory.
  • the memory may be random access memory (RAM), double rate random access memory (DDR RAM), read only memory (ROM), or high-speed cache (CACHE).
  • the external storage can be a hard disk, an optical disk, a universal serial bus (USB), a flash memory (FLASH), a floppy disk or a tape drive, etc.
  • the memory 102 is used to store computer programs (including various firmware, operating systems, etc.) and other data. For example, in the present application, the memory 102 may be used to store the processing algorithm of the V2X message.
  • the processor 101 is configured to read a computer program in the memory 102, and then execute a method defined by the computer program. For example, the processor 101 may read the processing algorithm of the V2X message in the memory 102, and run the algorithm, so as to filter the V2X message received by the transceiver 103.
  • the processor 101 may include one or more general-purpose processors, and may also include one or more DSPs (digital signal processors, digital signal processors), which are used to perform related operations to implement the Technical solutions.
  • the processor 101 may include a sensor data collection unit 1011, a location information collection unit 1012, a vehicle data collection unit 1013, an information calculation unit 1014, and an information security processing unit 1015. among them:
  • the sensor data acquisition unit 1011 is used to collect data from various sensors.
  • the sensors include inertial navigation, air pressure, temperature, camera and other sensors.
  • it can also include camera, radar (ultrasonic, infrared, millimeter wave, laser), mileage ⁇
  • the location information collection unit 1012 is used to obtain location data of the vehicle from GPS.
  • the vehicle data collection unit 1013 is used to collect vehicle driving status information through the CAN bus.
  • the information includes: tire pressure, brake operating status, engine operating status, vehicle speed, vehicle type, fuel consumption, etc.
  • the information calculation unit 1014 is used to determine the vehicle where the vehicle terminal is located based on the sensor data collected by the sensor data collection unit 1011, the location data collected by the location information collection unit 1012, and the vehicle driving state information collected by the vehicle data collection unit 1013 According to the V2X message received by the transceiver 103, the traveling trajectory of the distant vehicle is determined, and the minimum distance between the main vehicle and the distant vehicle is determined according to the traveling trajectory of the main vehicle and the distant vehicle. The final information calculation unit 1014 filters the V2X message according to the minimum distance.
  • the information security processing unit 1015 is used to verify the signature of the filtered message.
  • the transceiver 103 is used to implement wireless communication with other devices (such as other vehicle-mounted devices or servers) in the communication system, and receive or send data. For example, receiving or broadcasting V2X messages.
  • the transceiver 103 may communicate with other devices through LTE-V2X communication technology. It should be noted that the transceiver 103 may also use other communication technologies to communicate with other devices, which is not limited in the embodiment of the present application.
  • the transceiver 103 may include: LTE-V RFIC (radio frequency layer), LTE-V MAC (medium access control layer), LTE-V access Layer (access layer), LTE-V network stack (network stack) Layer), LTE-V receiving unit, etc.
  • LTE-V RFIC radio frequency layer
  • LTE-V MAC medium access control layer
  • LTE-V access Layer access layer
  • LTE-V network stack network stack
  • LTE-V receiving unit etc.
  • the vehicle-mounted device may also include components such as sensors, GPS, display devices, input devices, power supplies, and antennas.
  • vehicle-mounted device shown in FIG. 1 does not constitute a limitation on the vehicle-mounted device.
  • vehicle-mounted device provided in the embodiment of the present application may include more or less components than those shown in the figure, or a combination of certain components. Some components, or different component arrangements.
  • the vehicle includes a T-BOX and an antenna, and the T-BOX broadcasts V2X messages through the antenna.
  • the built-in antenna of the vehicle-mounted T-BOX cannot meet the demand, consider installing an external RTK antenna on the top of the vehicle.
  • the external RTK antenna and the vehicle-mounted T-BOX/OBD communication can also use a Bluetooth interface or a USB wired interface.
  • the T-BOX screens the messages received by the antenna according to the above method, and performs security verification on the screened messages.
  • the TCU server receives the V2X message broadcast by the vehicle-mounted terminal in the set space area, and determines the response to the host vehicle based on the travel trajectory of the far vehicle and the host vehicle within the set area corresponding to the host vehicle.
  • the target far vehicle that constitutes a threat, and the identification of the target far vehicle are notified to the host vehicle so that the host vehicle can safely verify the V2X message of the target far vehicle.
  • an embodiment of the present application provides a message processing method, which can be applied to a vehicle networking system including at least two vehicle-mounted terminals, and the method can be executed by the vehicle-mounted terminal, as shown in FIG. 3 Shown.
  • Step 301 The first vehicle-mounted terminal of the host vehicle receives a first V2X message from the second vehicle-mounted terminal of the remote vehicle.
  • the four vehicles shown in FIG. 4A are equipped with vehicle-mounted terminals, and the vehicle-mounted terminal of each vehicle periodically sends V2X messages, and the vehicle-mounted terminal in vehicle A can receive the set area (for example, FIG. 4A (Circular area) V2X messages from on-board terminals of other vehicles.
  • the V2X message can carry vehicle-mounted information such as vehicle terminal identification, location information, speed information, curvature of the driving path, and heading angle information.
  • each vehicle-mounted terminal has a unique vehicle-mounted terminal identifier, which is pre-configured by the vehicle-mounted terminal manufacturer.
  • the vehicle-mounted terminal can collect vehicle driving state information through the vehicle data collection unit 1013 in FIG. 2A, and collect data from sensors such as air pressure, temperature, and camera through the sensor data collection unit 1011, or the vehicle-mounted terminal can collect data through the position information collection unit 1012. Information such as the route and destination of the vehicle.
  • the vehicle-mounted terminal generates and transmits V2X messages including the above-mentioned vehicle-mounted information.
  • the vehicle-mounted information in the V2X message is shown in Table 1.
  • On-board information Symbol of car information/unit of car information Value of vehicle information (example) quality m/kg 3200 speed km/h 80 position degree (121.70, 31.19) Moment of inertia J/kg*m2 9500 Front wheelbase a/m 1.2 Rear wheelbase b/m 1.7 Front wheel cornering stiffness C f /N*rad-1 190000 Rear wheel cornering stiffness C r /N*rad-1 210000
  • Step 302 The first vehicle-mounted terminal predicts the first travel trajectory of the far vehicle according to the first V2X message.
  • the first vehicle-mounted terminal determines according to the above information according to the following formula [1] and formula [2] The first trajectory of the far vehicle.
  • x 0 ′ is the abscissa of the far vehicle in the first V2X message
  • y 0 ′ is the ordinate of the far vehicle in the first V2X message
  • x 2(t) is the horizontal coordinate of the far vehicle at time t Coordinate
  • y 2(t) is the ordinate of the far vehicle at time t
  • v t ′ is the speed of the far vehicle
  • R′ is the curvature of the travel path of the far vehicle carried in the first V2X message
  • ⁇ ′ is the A heading angle of the far vehicle carried in the V2X message.
  • the first vehicle-mounted terminal predicts the travel trajectory of the far vehicle as shown in the travel trajectory B of FIG. 4B.
  • Step 303 The first vehicle-mounted terminal determines the first minimum distance between the host vehicle and the distant vehicle within the first time length of the first time according to the first travel trajectory of the distant vehicle and the first travel trajectory of the host vehicle.
  • the first moment may be the current moment or a moment before the current moment.
  • the first vehicle-mounted terminal collects the location of the host vehicle at the first moment through the location information collection unit 1012, and the first vehicle-mounted terminal collects the travel speed and status information of the host vehicle through the vehicle data collection unit 1013 to determine the travel trajectory of the host vehicle.
  • the first vehicle-mounted terminal determines the driving track of the main vehicle according to the navigation route.
  • the driving trajectory of the main vehicle satisfies the following formula [3] and formula [4].
  • x 0 is the initial abscissa of the host vehicle at the first moment
  • y 0 is the initial ordinate of the host vehicle at the first moment
  • x 1(t) is the abscissa of the host vehicle at time t
  • y 1(t ) The ordinate of the host vehicle at time t
  • v t is the speed of the host vehicle
  • R is the curvature of the travel path of the host vehicle
  • is the heading angle of the host vehicle.
  • v t and v t ′ are velocity components in the same direction, as shown in Figure 4B, v t and v t ′ are both velocity components in the same x-axis direction, or v t and v t ′ are both y The velocity component in the axis direction.
  • the first vehicle-mounted terminal predicts the driving trajectory of the host vehicle as shown in the driving trajectory A of FIG. 4B.
  • the first vehicle-mounted terminal determines that the distance D (t) between the host vehicle and the distant vehicle satisfies the following formula [5].
  • the first vehicle-mounted terminal takes the minimum value of the formula [5] to obtain the distance at the first moment The first minimum distance between the main vehicle and the far vehicle in the first time period.
  • the first minimum distance between the main vehicle and the far vehicle refers to the minimum distance in the x-axis direction; when v t and When v t ′ are all velocity components in the same y-axis direction, the first minimum distance between the host vehicle and the far vehicle refers to the minimum distance in the y-axis direction.
  • the first vehicle-mounted terminal predicts according to formula [5] that within 5 seconds from the current moment, the minimum distance in the x-axis direction between the host vehicle and the distant vehicle is shown in FIG. 4B The minimum distance D.
  • Step 304 When the first minimum distance is less than or equal to the first threshold, the first vehicle-mounted terminal performs security verification on the first V2X message.
  • Trigger condition 1 When v t and v t ′ are both speed components in the same x-axis direction, the minimum distance between the host vehicle and the distant vehicle in the x-axis direction is less than or equal to the first threshold; trigger condition 2: When both v t and v t ′ are speed components in the same y-axis direction, the minimum distance in the y-axis direction between the host vehicle and the far vehicle is less than or equal to the first threshold.
  • the first in-vehicle device after the first in-vehicle device performs safety verification on the first V2X message, it determines the distant vehicle that may collide according to the first minimum distance, and generates warning information related to the distant vehicle.
  • the warning sign is displayed on the display of the disk or the vehicle terminal, or the vehicle terminal voices the warning information.
  • the display 501 of the on-board terminal in vehicle A displays warning information, or the vehicle gives a voice warning through a speaker, "A truck will appear at the front junction after about 20 seconds, please slow down! .
  • the first in-vehicle device when the first minimum distance is greater than the first threshold, discards the first V2X message, that is, does not perform security verification on the first V2X message. That is, the first in-vehicle device does not perform security verification on the first V2X message.
  • the embodiments of the present application can reduce the number of times the first vehicle-mounted terminal verifies the received V2X message to a certain extent, improve the timeliness of the security verification of the V2X message in the message queue, and enhance the reliability of vehicle-mounted communication .
  • this method can improve the timeliness of information interaction between adjacent vehicles and improve driving safety.
  • costs can be saved to a certain extent.
  • the first vehicle-mounted terminal when the first vehicle-mounted terminal subsequently receives the second V2X message from the second vehicle-mounted terminal, the first vehicle-mounted terminal predicts the second travel trajectory of the distant vehicle again according to the second V2X message, and then According to the second travel trajectory of the far vehicle and the second travel trajectory of the host vehicle, the second minimum distance between the host vehicle and the far vehicle within the first time length from the second moment is determined again.
  • the second minimum distance and the first minimum distance are both less than or equal to the first threshold and greater than the second threshold, and the time interval between the second time and the first time is less than or equal to the second duration, the second V2X packet is discarded, That is, no security verification is performed on the second V2X message.
  • This method can further filter V2X messages, reduce the number of security verifications, and improve the timeliness of message processing in the message queue.
  • the vehicular terminal can divide the distant vehicle around the vehicular terminal into three virtual areas according to the relationship between the minimum distance between the host vehicle and the distant vehicle and the first and second thresholds.
  • the three virtual areas are respectively strong Associated virtual area, weakly associated virtual area and unassociated virtual area.
  • the circular area 01 where the main vehicle A is located is a strongly associated virtual area
  • the ring adjacent to the strongly associated virtual area is 02 a weakly associated virtual area
  • the outermost ring 03 is an unassociated virtual area.
  • the position of the main vehicle is the distance between point O and point A of the boundary of the circular area 01 is the second threshold, and the position of the main vehicle is the boundary of the circle adjacent to the strongly associated virtual area at point O
  • the distance between points B is the first threshold.
  • the first vehicle-mounted terminal of the host vehicle divides the remote vehicle into a strongly associated virtual area, And verify the safety of the V2X message from the distant vehicle; when the minimum distance between the distant vehicle and the host vehicle is less than or equal to the first threshold and greater than the second threshold, the risk level of the remote vehicle to the host vehicle is normal, and the host vehicle
  • the first vehicle-mounted terminal of divides the far vehicle into the weakly associated virtual area, and periodically performs security verification on the far vehicle’s V2X message, that is, if within a cycle, the far vehicle is always divided into the weakly associated virtual area , Then only one V2X message from the far vehicle is verified for safety; when the minimum distance between the far vehicle and the host vehicle is greater than the first threshold, the remote vehicle has the lowest risk to the host vehicle, and the host vehicle’s first The vehicle-mounted terminal divides the far vehicle into
  • the magnitude of the first threshold and the second threshold is related to the absolute value of the speed difference between the host vehicle and the far vehicle.
  • the first threshold is equal to
  • the second threshold is equal to
  • the speed component in the axial direction, or both v t and v t ′ are the speed components in the y-axis direction
  • T is the braking response time of the driver, and n is a positive number greater than or equal to 1.
  • the default value of n is 2.5, the value of n can be dynamically adjusted, the value of n can be from 1.5 to 3.5, the default value of T is 5 seconds, and the value of T ranges from 3 seconds to 10 seconds.
  • D the minimum distance between the far vehicle and the host vehicle
  • the relationship between the three virtual areas and the above-mentioned first threshold and second threshold is shown in Table 2.
  • the first threshold and the second threshold are the safe distance between vehicles, which are related to the driving speed of the host vehicle.
  • the first threshold is about 100 meters and the second threshold is about 50 meters; when the speed of the main vehicle is above 60km/h, the first threshold is about 80 meters, and the second threshold is about 80 meters. It is about 40 meters; when the speed of the main vehicle is above 50km/h, the first threshold is about 50 meters and the second threshold is about 30 meters.
  • Vehicle A receives the V2X message of vehicle B.
  • Vehicle A predicts the trajectory of vehicle B based on the V2X message, and then vehicle A based on its own driving
  • the trajectory and the driving trajectory of vehicle B determine the minimum distance D between vehicle A and vehicle B within the set time.
  • the speed of vehicle A in the y-axis direction is V A
  • the speed of vehicle B in the y-axis direction is V B
  • T is the driver’s braking response time
  • the first threshold is equal to
  • vehicle A determines that the risk level of vehicle B is low, and vehicle A does not verify the safety of the V2X message of vehicle B, and discards it directly, that is, the V2X message is not Document for security verification.
  • the far vehicle in this scene can be regarded as the far vehicle in the unrelated virtual area in Figure 5B.
  • the V2X packets of the far vehicle in the unrelated virtual area are filtered out by the above method, so the road is congested In traffic conditions, the processing pressure of the host vehicle for safety verification of V2X messages is reduced, which improves the timeliness of V2X message processing, thereby improving driving safety.
  • vehicle A predicts the trajectory of vehicle C based on the V2X message, and then vehicle A based on its own trajectory and the trajectory of vehicle C, Determine the minimum distance D between vehicle A and vehicle C within the set time.
  • the speed of vehicle A in the y-axis direction is V A
  • the speed of vehicle C in the y-axis direction is V C
  • T is the driver’s braking response time
  • the first threshold is equal to
  • the second threshold is equal to
  • vehicle A determines that the danger level of vehicle C is medium, and vehicle A Perform security verification on the V2X message of vehicle C.
  • the vehicle A sets a default second duration (for example, 30 seconds) for the vehicle C, wherein the specific value of the second duration is related to the speed difference between the vehicle A and the vehicle C. If the vehicle A receives the V2X message from the vehicle C at the second moment, and according to the above method, it is determined that the danger level of the vehicle C is a medium level according to the V2X message. In a possible embodiment, when the time interval between the second time and the first time is less than or equal to the second time period, the vehicle A discards the V2X message received at the second time, that is, does not report the V2X message. Document for security verification.
  • a default second duration for example, 30 seconds
  • the vehicle A when the time interval between the second time and the first time is greater than the second time period, the vehicle A performs safety verification on the V2X message received at the second time.
  • the far vehicle in this scene can be regarded as the far vehicle in the weakly associated virtual area in Fig. 5B.
  • the far vehicle in the weakly associated virtual area has a general hazard to the host vehicle.
  • the host vehicle periodically checks according to the above method.
  • the far vehicle’s V2X message is safely verified, that is, if the far vehicle is always divided into the weakly associated virtual area within a cycle, then only one V2X message from the far vehicle will be safely verified.
  • This method can reduce The safety verification times of the main vehicle to the message of the distant vehicle in the weakly associated area, and improve the timeliness of message processing in the message queue.
  • vehicle A predicts the trajectory of vehicle D based on the V2X message, and then vehicle A according to its own trajectory and the trajectory of vehicle D, Determine the minimum distance D between vehicle A and vehicle D within the set time.
  • the speed of vehicle A in the y-axis direction is V A
  • the speed of vehicle D in the y-axis direction is V D
  • T is the driver’s braking response time
  • the first threshold is equal to
  • the second threshold is equal to
  • the vehicle-mounted terminal of the vehicle A determines that D ⁇
  • the distant vehicle in this scene can be regarded as the distant vehicle in the strongly associated virtual area in Figure 5B.
  • the distant vehicle in the strongly associated virtual area poses the highest risk to the host vehicle.
  • the host vehicle responds to the host vehicle in real time according to the above method.
  • the safety verification of the V2X message of the distant vehicle can ensure timely safety verification of the message of the distant vehicle with a high degree of threat, and the driving safety of the vehicle can be improved.
  • the embodiments of the present application can greatly reduce the number of safety verifications of V2X messages by vehicle A without reducing the performance of sports safety warnings (the reduction rate is related to the actual driving conditions of each vehicle on the road, such as vehicle A.
  • the existing technology requires a signature verification capability of 3,600 times per second, and the embodiment of the application can reduce the signature verification capability to 20 times per second), so the timeliness of security verification in the message queue can be improved, and the in-vehicle communication can be enhanced Reliability, significantly improves the performance of the car networking system.
  • step 601 the transceiver 103 of the main vehicle T-BOX receives the first V2X message from the distant vehicle T-BOX.
  • the first V2X message of the far vehicle T-BOX includes vehicle-mounted information such as vehicle-mounted terminal identification, location information, speed information, curvature of the travel path, and heading angle information.
  • vehicle-mounted information such as vehicle-mounted terminal identification, location information, speed information, curvature of the travel path, and heading angle information.
  • step 602a the information calculation unit 1014 of the processor in the main vehicle T-BOX obtains the first V2X message from the transceiver 103.
  • the information calculation unit 1014 of the processor in the main vehicle T-BOX obtains sensor data from the sensor data collection unit 1011, obtains the location information of the main vehicle from the location information collection unit 1012, and obtains it from the vehicle data collection unit 1013 The driving status information of the host vehicle.
  • steps 602b to 602d may also be executed before step 601, or simultaneously with step 601.
  • step 603 the information calculation unit 1014 calculates the travel trajectory of the far vehicle according to the first V2X message, and calculates the travel trajectory of the host vehicle according to the acquired data. Finally, the information calculation unit 1014 takes the minimum value of the formula [5], and determines the first minimum distance within the first time length from the first moment. For the calculation method of the driving trajectory, refer to step 302 and step 303 in FIG. 3, which will not be repeated here.
  • Step 604a When the first minimum distance is greater than the first threshold (for example, the first threshold is
  • the computing unit 1014 notifies the information security processing unit 1015 to discard the first V2X message, that is, no security verification is performed on the V2X message.
  • the first threshold for example, the first threshold is
  • the far vehicle in this case can be regarded as the far vehicle in the unrelated virtual area in Figure 5B.
  • the V2X packets of the far vehicle in the unrelated virtual area are filtered out by the above method, so the road is congested In traffic conditions, the processing pressure of the host vehicle for safety verification of V2X messages is reduced, which improves the timeliness of V2X message processing, thereby improving driving safety.
  • Step 604b When the first minimum distance is less than or equal to the second threshold (for example, the second threshold is
  • the unit 1014 notifies the information security processing unit 1015 to perform security verification on the first V2X message.
  • Step 605b After receiving the notification message, the information security processing unit 1015 performs security verification on the first V2X message.
  • the far vehicle in the second case can be regarded as the far vehicle in the strongly associated virtual area in Figure 5B.
  • the far vehicle in the strongly associated virtual area has the highest level of danger to the host vehicle.
  • the host vehicle will respond in real time according to the above method.
  • the safety verification of the V2X message of the distant vehicle is performed. This method can ensure the number of times of safety verification of the message of the distant vehicle in time, and improve the driving safety of the vehicle.
  • Step 604c When the first minimum distance is less than or equal to the first threshold and greater than the second threshold, that is, when the far vehicle is divided into the weakly associated virtual area, the information computing unit 1014 notifies the information security processing unit 1015 to send the first V2X message Perform security verification.
  • Step 605c after receiving the notification message, the information security processing unit 1015 performs security verification on the first V2X message.
  • step 606 the transceiver 103 of the main vehicle T-BOX receives the second V2X message from the distant vehicle T-BOX at the second time.
  • the second time is later than the first time.
  • the second V2X message of the far vehicle T-BOX includes vehicle-mounted information such as vehicle terminal identification, location information, speed information, curvature of the travel path, and heading angle information.
  • Step 607a the information calculation unit 1014 of the processor in the main vehicle T-BOX obtains the second V2X message from the transceiver 103.
  • Steps 607b to 607d are the same as the above steps 602b to 602d.
  • step 608 the information calculation unit 1014 calculates the travel trajectory of the far vehicle according to the second V2X message, and calculates the travel trajectory of the host vehicle according to the acquired data. Finally, the information calculation unit 1014 takes the minimum value of the formula [5], and determines the second minimum distance within the first time length from the second time. For the calculation method of the driving trajectory, refer to step 302 and step 303 in FIG. 3, which will not be repeated here.
  • the far vehicle in this case three can be regarded as the far vehicle in the weakly associated virtual area in Figure 5B.
  • the far vehicle in the weakly associated virtual area has the highest level of danger to the host vehicle.
  • the host vehicle responds in real time according to the above method.
  • the V2X message of the distant vehicle is safely verified. This method can ensure that the message of the distant vehicle in the weakly-associated virtual area is timely verified for safety, thereby improving the safety of vehicle driving.
  • Step 609 When the second minimum distance and the first minimum distance are both less than or equal to the first threshold and greater than the second threshold, that is, when the far vehicle is divided into the weakly associated virtual area 02 again, the information computing unit 1014 notifies the information security processing The unit 1015 discards the second V2X message.
  • Step 610 After receiving the notification message, the information security processing unit 1015 discards the second V2X message, that is, does not perform security verification on the second V2X message.
  • the far vehicle in this case 4 can be regarded as the far vehicle in the weakly associated virtual area in Fig. 5B, that is, if the far vehicle is always divided into the weakly associated virtual area in a cycle, only the far vehicle from the weakly associated virtual area
  • the safety verification of a V2X message of a distant vehicle is performed. This method can reduce the number of times of security verification of the message of the distant vehicle in the weakly associated area by the main vehicle, and improve the timeliness of processing the message in the message queue.
  • the embodiments of the present application can reduce the number of times the first vehicle-mounted terminal verifies the received V2X message to a certain extent, improve the timeliness of security verification in the message queue, and enhance the reliability of vehicle-mounted communication. Especially when the traffic road is congested, this method can improve the timeliness of information interaction between adjacent vehicles and improve driving safety.
  • the embodiment of the present application also provides a message processing method, which can be applied to a car networking system including at least two vehicle-mounted terminals.
  • the method can be executed by the TCU server.
  • the specific steps are as follows.
  • Step 701 the TCU server the V2X message broadcasted by the first vehicle-mounted terminal of the main vehicle and the first V2X message broadcasted by the second vehicle-mounted terminal of the distant vehicle.
  • the TCU server establishes a communication connection with the main vehicle in advance, the TCU server receives the V2X message broadcasted by the first vehicle-mounted terminal of the main vehicle, and the TCU server receives the communication from the second vehicle-mounted terminal of the remote vehicle.
  • the first V2X message may also include other long distance vehicles, which are not shown in FIG. 8.
  • the specific content of the V2X message please refer to the description of step 301, which will not be repeated here.
  • step 702 the TCU server predicts the first travel trajectory of the host vehicle and the first travel of the remote vehicle based on the V2X message broadcast by the first vehicle terminal of the host vehicle and the first V2X message broadcast by the second vehicle terminal of the remote vehicle Track.
  • Step 703 The TCU server determines the first minimum distance between the long vehicle and the main vehicle within the first time period of the first time according to the first travel trajectory of the host vehicle and the first travel trajectory of the long vehicle.
  • the TCU server receives the V2X message of the main vehicle and the first V2X message of the distant vehicle, and the TCU server calculates the first trajectory of the main vehicle and the distance of the distant vehicle according to the method shown in step 302.
  • the first driving track, and the TCU server calculates the first minimum distance according to the method shown in step 303.
  • Step 704 When the first minimum distance is less than or equal to the first threshold, the TCU server notifies the first vehicle-mounted terminal of the host vehicle to perform safety verification on the first V2X message of the remote vehicle.
  • the method for determining the first threshold can refer to the description of step 304, which will not be repeated here.
  • the TCU server sends a notification message through the communication connection with the first vehicle-mounted terminal of the host vehicle, and the notification message is used to instruct the first vehicle-mounted terminal to perform security verification on the first V2X message.
  • the TCU server when the first minimum distance is greater than the first threshold, notifies the first vehicle-mounted terminal of the host vehicle to discard the first V2X message. That is, the first in-vehicle device does not perform security verification on the first V2X message.
  • the embodiments of the present application can reduce to a certain extent the number of times the first vehicle-mounted terminal verifies the received V2X message, improve the timeliness of security verification in the message queue, and enhance the reliability of vehicle-mounted communication. Especially when the traffic road is congested, this method can improve the timeliness of information interaction between adjacent vehicles and improve driving safety.
  • the TCU server when the TCU server subsequently receives the V2X message from the main vehicle and the second V2X message from the second vehicle terminal, the TCU server predicts the second travel of the distant vehicle again according to the second V2X message Trajectory, and predict the second driving trajectory of the host vehicle, and then according to the second driving trajectory of the far vehicle and the second driving trajectory of the host vehicle, determine again the distance between the host vehicle and the far The second smallest distance.
  • the TCU server informs the host vehicle of the A vehicle-mounted terminal discards the second V2X message.
  • This method can further filter V2X messages, reduce the number of security verifications of the first vehicle-mounted terminal, and improve the timeliness of processing the messages in the message queue of the first vehicle-mounted terminal.
  • the TCU server when the first minimum distance is less than or equal to the second threshold, the TCU server may mark the danger level of the far vehicle as a high risk level; when the first minimum distance is greater than the second threshold and less than or equal to the first When the threshold is set, the TCU server may mark the danger level of the far vehicle as a medium-risk level; when the first minimum distance is greater than or equal to the first threshold, the TCU server may mark the danger level of the far vehicle as a low-risk level. Based on this identification method, the TCU service can divide the N far vehicles within the set area corresponding to the main vehicle into three virtual areas as shown in FIG. 5B. The specific division method can be referred to the above description.
  • the TCU server may send the far vehicle identifier in the strongly associated virtual area with a high risk level and the far vehicle identifier in the weakly associated virtual area with a general risk level to the first vehicle of the main vehicle.
  • the first vehicle-mounted terminal can perform security verification on the V2X message corresponding to the identifier of the vehicle-mounted terminal of the target distant vehicle, and other V2X messages are discarded by the first vehicle-mounted terminal.
  • the magnitude of the first threshold and the second threshold is related to the absolute value of the speed difference between the host vehicle and the far vehicle.
  • the first threshold is equal to
  • the second threshold is equal to
  • the speed component in the axial direction, or both v t and v t ′ are the speed components in the y-axis direction
  • T is the braking response time of the driver
  • n is a positive number greater than or equal to 1.
  • the default value of n is 2.5
  • the value of n can be from 1.5 to 3.5
  • the default value of T is 5 seconds
  • the value of n can be dynamically adjusted.
  • the main vehicle determines that it is within the unit time
  • the ratio of the number of V2X messages broadcast by the set of distant vehicles of the middle danger level to the total number of V2X messages broadcast by N vehicles within a unit time is greater than 10%
  • the value of n can be reduced by 0.1 , For example, decrease from 2.5 to 2.4, and keep the value of n of 2.4 unchanged in one unit time.
  • the main vehicle determines that the number of V2X messages broadcast by the set of distant vehicles with the dangerous level in the unit time is equal to the total number of V2X messages broadcast by all N vehicles in the unit time.
  • the proportion is greater than 10%
  • the value of n can continue to decrease from 2.4 to 2.3.
  • the main vehicle determines the proportion of the number of V2X messages broadcast by the set of distant vehicles with a dangerous level within a unit time due to the decrease of n to the total number of V2X messages broadcast by all N vehicles within a unit time
  • it is less than 6% increase the value of n.
  • the minimum value of n shall not be lower than 1.5, and the maximum value shall not be greater than 3.5.
  • Step 901 The TCU server receives V2X messages broadcast by at least two vehicle-mounted terminals.
  • At least two vehicle-mounted terminals include the first vehicle-mounted terminal of the host vehicle and the second vehicle-mounted terminal of the distant vehicle.
  • the V2X message includes vehicle-mounted information such as vehicle terminal identification, location information, speed information, curvature of the travel path and heading angle information.
  • the TCU server predicts the first travel trajectory of the host vehicle and the first travel of the remote vehicle based on the V2X message broadcast by the first vehicle terminal of the host vehicle and the first V2X message broadcast by the second vehicle terminal of the remote vehicle Trajectory; according to the first travel trajectory of the host vehicle and the first travel trajectory of the far vehicle, determine the first minimum distance between the far vehicle and the host vehicle within the first time period from the first moment.
  • step 903 the TCU server determines whether the first minimum distance is less than or equal to the first threshold, if not, step 904 is executed, otherwise, step 905 is executed.
  • the first threshold may be determined according to the speed of the host vehicle and the far vehicle in the same direction.
  • Step 904 When the first minimum distance is greater than the first threshold, the TCU server notifies the first vehicle-mounted terminal of the host vehicle to discard the first V2X message.
  • Step 905 When the first minimum distance is less than or equal to the first threshold, the TCU server notifies the first vehicle-mounted terminal of the host vehicle to perform safety verification on the first V2X message of the remote vehicle.
  • Step 906 the TCU server subsequently receives the V2X message from the main vehicle and the second V2X message from the second vehicle terminal.
  • the TCU server predicts the first travel trajectory of the host vehicle and the first travel trajectory of the distant vehicle based on the V2X message broadcast by the first vehicle terminal and the second V2X message broadcast by the second vehicle terminal;
  • the first travel trajectory of the host vehicle and the first travel trajectory of the far vehicle determine the second minimum distance between the far vehicle and the host vehicle within the first time period from the second moment.
  • Step 908 When the TCU server determines whether the second minimum distance and the first minimum distance are both less than or equal to the first threshold and greater than the second threshold, and the time interval between the second time and the first time is greater than the second time length , If yes, go to step 909, otherwise go to step 910.
  • step 909 the TCU server notifies the first vehicle-mounted terminal of the host vehicle to discard the second V2X message.
  • step 910 the TCU server notifies the first vehicle-mounted terminal of the host vehicle to perform security verification on the second V2X message of the remote vehicle.
  • the embodiments of the present application can reduce the number of security verifications of V2X messages by the vehicle terminal, improve the timeliness of security verification in the message queue, and enhance the reliability of vehicle communication. Especially when a user drives a car on a road with complicated road conditions or on a road with heavy traffic, the safety of driving can be improved.
  • the embodiments of the present application disclose a vehicle-mounted terminal.
  • the vehicle-mounted terminal may include a touch screen 1001, where the touch screen 1001 includes a touch panel 1007 and a display screen 1008
  • One or more processors 1002; memory 1003; one or more application programs (not shown); and one or more computer programs 1004, sensors 1005, and the aforementioned devices may be connected through one or more communication buses 1006.
  • the one or more computer programs 1004 are stored in the aforementioned memory 1003 and are configured to be executed by the one or more processors 1002, the one or more computer programs 1004 include instructions, and the aforementioned instructions can be used for execution as shown in FIG. 3.
  • the embodiments of the present application also provide a computer storage medium, the computer storage medium stores computer instructions, and when the computer instructions run on the vehicle-mounted terminal, the vehicle-mounted terminal executes the above-mentioned related method steps to implement the message processing in the above-mentioned embodiment method.
  • the embodiments of the present application also provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the above-mentioned related steps to implement the message processing method in the above-mentioned embodiment.
  • the embodiments of the present application also provide a device.
  • the device may specifically be a chip, component or module.
  • the device may include a connected processor and a memory; wherein the memory is used to store computer execution instructions.
  • the processor can execute the computer-executable instructions stored in the memory, so that the chip executes the response method of the touch screen in the foregoing method embodiments.
  • the vehicle-mounted terminal, computer storage medium, computer program product, or chip provided in the embodiments of the present application are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding method provided above. The beneficial effects of the method are not repeated here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be discarded or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (read only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请实施例提供一种报文处理方法及设备,该方法可以降低车载终端对V2X报文的安全验证次数,提高了消息队列中的安全验证的及时性,增强了车载通信的可靠性。该方法包括:主车的第一车载终端接收来自远车的第二车载终端的第一V2X报文,然后第一车载终端根据第一V2X报文预测远车的第一行驶轨迹。进一步地,第一车载终端根据远车的第一行驶轨迹和主车的第二行驶轨迹,确定在距离第一时刻的第一时长内主车和远车之间的第一最小距离;当第一最小距离小于等于第一阈值时,第一车载终端对第一V2X报文进行安全验证。

Description

一种报文处理方法及设备
相关申请的交叉引用
本申请要求在2019年07月31日提交中国专利局、申请号为201910704741.0、申请名称为“一种报文处理方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能交通领域,尤其涉及一种报文处理方法及设备。
背景技术
目前,伴随着经济发展和人们生活水平的提高,道路上的车辆的数量与日俱增。特别是在经济发达的城镇区域,车辆数量的增长尤为明显。
不同的车辆密度环境中,车辆完成对接收报文消息进行签名验证的工作负载差异很大,在极端拥堵的场景中,单台车可能在一秒钟接收到来自周边200到300台车的V2X报文消息,消息数量可能达到3000条以上,此时本车的V2X系统可能完全无法胜任如此巨大的数据验签性能需求,可能导致本车V2X数据链系统拥塞,引发V2X应用场景体验出现超时失效等危害,对用户的驾驶安全智能提醒造成严重风险(如下图场景)。
现有技术通过内置高性能数据验签硬件芯片来加速运算能力来满足极限场景,典型的方案如NXP的验签芯片SXF5400(宣称支持每秒2000次ECDSA验签计算性能),AUTOTALK公司的CARTON2芯片组(宣称支持每秒2500次的ECDSA验签计算性能),通过软件将待验签数据发送给相关硬件设备,由该硬件设备完成对数据的验签操作,不占用核心CPU的负载或算力来达成实时验签性能目标。
但是性能的安全加解密硬件陈本昂贵,道路在极端拥堵场景下,远远超出目前2000~2500条/秒的安全硬件验签加速能力,完全依靠高性能硬件解决这一问题并不现实。
发明内容
本申请提供一种报文处理方法及设备,该方法可以降低车载终端对V2X报文的安全验证次数,提高了消息队列中的安全验证的及时性,增强了车载通信的可靠性。
第一方面,本申请实施例提供了一种报文处理方法,应用于车联网系统,该车联网系统包括至少两个车载终端,该方法包括:主车的第一车载终端接收来自远车的第二车载终端的第一车联万物V2X报文,然后第一车载终端根据第一V2X报文预测远车的第一行驶轨迹;第一车载终端根据远车的第一行驶轨迹和主车的第一行驶轨迹,确定在距离第一时刻的第一时长内主车和远车之间的第一最小距离;最终当第一最小距离小于等于第一阈值时,第一车载终端对第一V2X报文进行安全验证。当第一最小距离大于第一阈值时,车载终端丢弃第一V2X报文,即不对第一V2X报文进行安全验证。其中,第一时刻可以是当前时刻,也可以当前时刻之前的某个时刻。
本申请实施例中,上述方法可以降低车载终端对V2X报文的安全验证次数,提高了消 息队列中的安全验证的及时性,增强了车载通信的可靠性。
在一种可能的设计中,第一车载终端接收来自第二车载终端的第二V2X报文;第一车载终端根据第二V2X报文预测远车的第二行驶轨迹;第一车载终端根据远车的第二行驶轨迹和主车的第二行驶轨迹,确定在距离第二时刻的第一时长内主车和远车之间的第二最小距离。
当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,且第二时刻与第一时刻之间的时间间隔小于等于第二时长时,第一车载终端丢弃第二V2X报文,即不对第二V2X报文进行安全验证。
本申请实施例提供的方法可以进一步过滤V2X报文,减少安全验证次数,提高消息队列中报文处理的及时性。
在一种可能的设计中,当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,且第二时刻与第一时刻之间的时间间隔大于第二时长时,第一车载终端对第二V2X报文进行安全验证。
在一种可能的设计中,当第二最小距离小于等于第二阈值时,第一车载终端对第二V2X报文进行安全验证。
本申请实施例中,该远车可以看作是强关联虚拟区域中的远车,强关联虚拟区域中的远车对主车的危险级别最高,主车按照上述方法实时地对该远车的V2X报文进行安全验证,该方法可以保证及时对威胁程度高的远车的报文进行安全验证,提高车辆驾驶的安全性。
在一种可能的设计中,第一V2X报文包括:远车的横坐标和纵坐标、航向角、速度和偏航率。第一车载终端根据远车的速度和偏航率,确定出远车的行驶路径的曲率。
第一车载终端根据第一V2X报文预测得到的远车的第一行驶轨迹满足如下公式要求:
Figure PCTCN2020103878-appb-000001
Figure PCTCN2020103878-appb-000002
其中,x 0′为第一V2X报文中的远车的横坐标,y 0′为第一V2X报文中的远车的纵坐标,x 2(t)为远车在时刻t时的横坐标,y 2(t)为远车在时刻t时的纵坐标,v t′为远车的速度,R′为远车的行驶路径的曲率,θ′为第一V2X报文中的远车的航向角。
本申请实施例中,第一车载终端按照上述方法可以准确地预测远车的行驶轨迹。
在一种可能的设计中,主车的第一行驶轨迹满足如下公式要求:
Figure PCTCN2020103878-appb-000003
Figure PCTCN2020103878-appb-000004
其中,x 0为主车的初始横坐标,y 0为主车的初始纵坐标,x 1(t)为主车在时刻t时的横坐标,y 1(t)为主车在时刻t时的纵坐标,v t为主车的速度,v t与v t′为同一方向的速度,R为主车的行驶路径的曲率,R是根据主车的速度和偏航率确定的,θ为主车的航向角;
然后第一车载终端根据远车的第一行驶轨迹和主车的第一行驶轨迹,确定主车和远车之间的距离满足如下公式要求:
Figure PCTCN2020103878-appb-000005
然后,第一车载终端对距离D (t)取最小值,得到在距离第一时刻的第一时长段内主车和远车之间的第一最小距离。
本申请实施例中,第一车载终端按照上述方法可以准确地预测在未来第二时长内远车和主车之间的最小距离。
在一种可能的设计中,第二阈值等于|(v t-v t′)|×T,第一阈值等于|(v t-v t′)|×n×T;其中,T为驾驶员的制动反映时长,n为大于或等于1的正数。
第二方面,本申请实施例提供了一种报文处理方法,应用于车联网系统,该车联网系统包括至少两个车载终端和TCU服务器,该方法包括:TCU服务器接收主车的第一车载终端广播的V2X报文和远车的第二车载终端广播的第一V2X报文;TCU服务器根据主车的第一车载终端广播的V2X报文,以及远车的第二车载终端广播的第一V2X报文,预测主车的第一行驶轨迹和远车的第一行驶轨迹。
然后TCU服务器根据主车的第一行驶轨迹和远车的第一行驶轨迹,确定在距离第一时刻的第一时长内远车与主车之间的第一最小距离;当第一最小距离小于等于第一阈值时,TCU服务器通知主车的第一车载终端对远车的第一V2X报文进行安全验证。当第一最小距离大于第一阈值时,通知主车的第一车载终端丢弃第一V2X报文,即不对第一V2X报文进行安全验证。
本申请实施例中,该方法可以降低车载终端对V2X报文的安全验证次数,提高了消息队列中的安全验证的及时性,增强了车载通信的可靠性。尤其当用户驾驶汽车在路况复杂的道路,或者在交通拥挤的道路上,可以提高行车的安全性。
在一种可能的设计中,TCU服务器接收来自主车的第一车载终端广播的V2X报文,以及远车的第二车载终端广播的第二V2X报文;然后TCU服务器根据第一车载终端广播的V2X报文和第二车载终端广播的第二V2X报文,预测主车的第二行驶轨迹和远车的第二行驶轨迹。
接着,TCU服务器根据主车的第二行驶轨迹和远车的第二行驶轨迹,确定在距离第二时刻的第一时长内远车与主车之间的第二最小距离;当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,且第二时刻与第一时刻之间的时间间隔小于等于第二时长时,TCU服务器通知主车的第一车载终端丢弃第二V2X报文,即不对第二V2X报文进行安全验证。
本申请实施例提供的方法可以进一步过滤V2X报文,减少安全验证次数,提高消息队列中报文处理的及时性。
在一种可能的设计中,当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,且第二时刻与第一时刻之间的时间间隔大于第二时长时,TCU服务器通知主车的第一车载终端对远车的第二V2X报文进行安全验证。
在一种可能的设计中,当第二最小距离小于等于第二阈值时,TCU服务器通知主车的第一车载终端对远车的第二V2X报文进行安全验证。
本申请实施例中,当用户驾驶汽车在路况复杂的道路,或者在交通拥挤的道路上,上述方法可以保证对主车构成威胁的远车的V2X报文及时地被安全验证,可以提高行车的安全性。
在一种可能的设计中,第一V2X报文包括:远车的横坐标和纵坐标、航向角、速度和偏航率。TCU服务器根据远车的速度和偏航率,确定出远车的行驶路径的曲率;
TCU服务器根据第一V2X报文预测得到的远车的第一行驶轨迹满足如下公式要求:
Figure PCTCN2020103878-appb-000006
Figure PCTCN2020103878-appb-000007
其中,x 0′为第一V2X报文中的远车的横坐标,y 0′为第一V2X报文中的远车的纵坐标,x 2(t)为远车在时刻t时的横坐标,y 2(t)为远车在时刻t时的纵坐标,v t′为远车的速度,R′为远车的行驶路径的曲率,θ′为第一V2X报文中的远车的航向角。
本申请实施例中,TCU服务器按照上述方法可以准确地预测远车的行驶轨迹。
在一种可能的设计中,主车的第一行驶轨迹满足如下公式:
Figure PCTCN2020103878-appb-000008
Figure PCTCN2020103878-appb-000009
其中,x 0为主车在第一时刻的初始横坐标,y 0为主车在第一时刻的初始纵坐标,x 1(t)为主车在时刻t时的横坐标,y 1(t)为主车在时刻t时的纵坐标,v t为主车的速度,v t与v t′为同一方向的速度,R为主车的行驶路径的曲率,R是根据主车的速度和偏航率确定的,θ为主车的航向角;
TCU服务器根据主车的第一行驶轨迹和远车的第一行驶轨迹,确定在距离第一时刻的第一时长内远车与主车之间的第一最小距离,包括:
TCU服务器根据远车的第一行驶轨迹和主车的第一行驶轨迹,确定主车和远车之间的距离满足如下公式要求:
Figure PCTCN2020103878-appb-000010
TCU服务器对距离D (t)取最小值,得到在距离第一时刻的第一时长段内主车和远车之间的第一最小距离。
在一种可能的设计中,第二阈值等于|(v t-v t′)|×T,第一阈值等于|(v t-v t′)|×n×T;
其中,T为驾驶员的制动反映时长,n为大于或等于1的正数。
第三方面,本申请实施例提供一种车载终端,包括处理器和存储器。其中,存储器用于存储一个或多个计算机程序;当存储器存储的一个或多个计算机程序被处理器执行时,使得该车载终端能够实现上述任一方面的任意一种可能的设计的方法。
第四方面,本申请实施例还提供一种装置,该装置包括执行上述任一方面的任意一种可能的设计的方法的模块/单元。这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第五方面,本申请实施例提供一种TCU服务器,包括处理器和存储器。其中,存储器用于存储一个或多个计算机程序;当存储器存储的一个或多个计算机程序被处理器执行时,使得该车载终端能够实现上述任一方面的任意一种可能的设计的方法。
第六方面,本申请实施例还提供一种装置,该装置包括执行上述任一方面的任意一种可能的设计的方法的模块/单元。这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介 质包括计算机程序,当计算机程序在车载终端上运行时,使得所述车载终端执行上述任一方面的任意一种可能的设计的方法。
第八方面,本申请实施例还提供一种包含计算机程序产品,当所述计算机程序产品在终端上运行时,使得所述车载终端执行上述任一方面的任意一种可能的设计的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的一种车联网场景示意图;
图2A为本申请实施例提供的一种车载终端的结构示意图;
图2B为本申请实施例提供的车载终端的装配结构示意图;
图3为本申请实施例提供的一种报文处理方法流程示意图;
图4A为本申请实施例提供的一种行驶场景示意图;
图4B为本申请实施例提供的一种行驶轨迹示意图;
图5A为本申请实施例提供的一种车载终端界面示意图;
图5B为本申请实施例提供的虚拟区域划分示意图;
图6为本申请实施例提供的另一种报文处理方法示意图;
图7为本申请实施例提供的另一种报文处理方法示意图;
图8为本申请实施例提供的另一种车联网场景示意图;
图9为本申请实施例提供的另一种报文处理方法示意图;
图10为本申请实施例提供的另一种车载终端的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
为了便于理解,示例性的给出了与本申请相关概念的说明以供参考,如下所示:
1)车载终端可以是车载电子控制单元(electronic control unit,ECU)等、车载电脑、车载巡航系统、车载通信盒(telematics box,T-BOX)。
2)车辆的行驶状态信息,指的是车辆的位置、头指向、速度、加速度、转向角度、角速度、角加速度、车辆尺寸、重量等数据。
3)车联万物(vehicle to X,V2X):未来智能交通运输系统的关键技术。其中,V代表车辆,X代表任何与车交互信息的对象,例如包括车、人、交通路侧基础设施和网络,因此,V2X交互的信息模式可以包括车到车(vehicle to vehicle,V2V)、车到人(vehicle to pedestrian,V2P)、车到基础设施(vehicle to infrastructure,V2I)和车到网络(vehicle to network,V2N)的交互等。V2X使得车与车、车与外部基础设施之间能够通信,从而获得实时路况信息、行人信息等一系列交通信息,提高驾驶安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。
本申请实施例涉及的至少一个,包括一个或者多个;其中,多个是指大于或者等于两个。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请提供一种车联网系统,示例性地,该车联网系统的架构如图1所示,包括三辆 汽车100和交通控制单元(traffic control unit,TCU)服务器200。其中每辆汽车均安装有车载终端。
在该车联网系统中,汽车100之间可以建立通信连接。例如,汽车100之间可通过V2X通信技术建立通信连接。目前,LTE-V2X通信技术有两种通信方式:直连式(LTE-V-Direct)和蜂窝式(LTE-V-Cell)。
直连式指的是车与车间直接通信。其中,PC5接口是在第三代合作伙伴计划(3rd generation partnership project,3GPP)版本12(Rel-12)的设备到设备(Device to Device,D2D)项目中引入的车载设备到车载设备之间的直接通信接口。邻近的车载设备之间可以在PC5的有效通信范围内通过直连链路进行数据传输,不需要通过中心节点(例如基站)进行转发,也不需要通过传统的蜂窝链路进行信息传输,通信较为快捷便利。
蜂窝式指的是利用基站作为控制中心,实现汽车的接入和组网。其中,Uu接口是车载终端和/或路侧单元与基站之间的接口,车载终端和/或路侧单元可以通过将信息传给基站再由基站转发给其他车载终端和/或路侧单元来实现车联网通信。
本申请实施例中,每辆100中的车载终端通过广播的方式发送V2X报文,当主车的第一车载终端接收到远车的第二车载终端的V2X报文时,第一车载终端从V2X报文中获取远车的状态数据,确定在设定时间内远车与主车之间的最小距离,当最小距离小于等于设定阈值时,第一车载终端才对该V2X报文进行验证,否则,则丢弃该V2X报文,即不对该V2X报文进行安全验证。
TCU服务器200,作为功能实体可以独立设置,也可以与通信网络的网元合设,例如,将TCU服务器200部署在路侧基站中。TCU服务器200与汽车100之间基于通信网络(例如无线蜂窝网络等)进行信息的交互。本申请中的TCU服务器200能够接收至少一个汽车100的车载终端所上报的V2X报文,根据V2X报文确定对主车构成威胁的远车,并通知至第一车辆的第一车载终端,以便于第一车载终端对构成威胁的远车的V2X报文进行验证。例如,TCU服务器200可以接收设定地理范围内的车辆和路测设施上报的V2X报文,筛选出对主车构成威胁的目标远车,并将筛选得到的远车标识通知给第一车辆的第一车载终端,第一车载终端对目标远车标识对应的V2X报文进行安全验证。
图2A示出了一种可能的车载终端的结构图。如图2A所示,该车载终端主要包括:处理器101、存储器102、收发器103。
存储器102一般包括内存和外存。内存可以为随机存储器(random access memory,RAM)、双倍速率随机存储器(DDR RAM)、只读存储器(read only memory,ROM)或者高速缓存器(CACHE)等。外存可以为硬盘、光盘、通用串行总线(universal serial bus,USB)、闪存(FLASH)、软盘或磁带机等。存储器102用于存储计算机程序(包含各种固件、操作系统等)和其他数据。例如,在本申请中,存储器102可用于保存V2X报文的处理算法等。
处理器101用于读取存储器102中的计算机程序,然后执行计算机程序定义的方法。例如处理器101可以读取所述存储器102中的V2X报文的处理算法,并运行该算法,以实现对收发器103所接收的V2X报文进行过滤。
可选的,处理器101可以包括一个或多个通用处理器,还可以包括一个或多个DSP(digital signal processor,数字信号处理器),用于执行相关操作,以实现本申请实施例所提供的技术方案。在本申请中,处理器101可以包括传感器数据采集单元1011、位置信息 采集单元1012、车辆数据采集单元1013,信息计算单元1014、信息安全处理单元1015。其中:
传感器数据采集单元1011用于采集各个传感器的数据,其中传感器包括惯性导航、气压、温度、摄影头等传感器,可选的,也可以包括摄影头、雷达(超声波、红外、毫米波、激光)、里程计等。
位置信息采集单元1012用于从GPS获取车辆的位置数据。
车辆数据采集单元1013,用于通过CAN总线采集车辆行驶状态信息,信息包括:胎压,刹车运转状况,引擎运转状况,车速,车辆类型,油耗情况等。
信息计算单元1014,用于根据传感器数据采集单元1011所采集的传感器的数据、位置信息采集单元1012所采集的位置数据,以及车辆数据采集单元1013所采集的车辆行驶状态信息,确定车载终端所在车辆的行驶轨迹,并根据收发器103所接收的V2X报文确定远车的行驶轨迹,根据主车和远车的行驶轨迹,确定主车和远车之间的最小距离。最终信息计算单元1014根据最小距离对V2X报文进行过滤。
信息安全处理单元1015,用于对过滤后的报文进行验证签名。
收发器103用于实现与通信系统中的其他设备(例如其他车载设备或服务器)等进行无线通信,接收或发送数据。例如,接收或广播V2X消息报文等。可选的,收发器103可以通过LTE-V2X通信技术,与其他设备进行通信。需要说明的是,收发器103也可以采用其它通信技术,与其它设备进行通信,本申请实施例对此不作限定。
可选的,收发器103中可以包括:LTE-V RFIC(射频层)、LTE-V MAC(介质访问控制层)、LTE-V access Layer(接入层)、LTE-V network stack(网络堆栈层)、LTE-V接收单元等。
可选的,车载设备还可以包括:传感器、GPS、显示设备、输入设备、电源、天线等部件。
本领域技术人员可以理解,图1中示出的车载设备的结构并不构成对车载设备的限定,本申请实施例提供的车载设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图2B所示,车辆中包括T-BOX和天线,并且T-BOX通过天线向外广播V2X报文。可选地,如果车载T-BOX的内置天线无法满足需求,可考虑在车辆的顶部安装外置RTK天线,外置RTK天线和车载T-BOX/OBD通讯也可利用蓝牙接口或USB有线接口。在一种可能的实施例中,T-BOX按照上述方法对天线所接收的报文进行筛选,并对筛选后的报文进行安全验证。在另一种可能的实施例中,TCU服务器接收设定空间区域内车载终端广播的V2X报文,并根据主车对应的设定区域范围内远车和主车的行驶轨迹,确定对主车构成威胁的目标远车,并将目标远车的标识通知至主车,以便于主车对目标远车的V2X报文进行安全验证。
基于图2A和图2B所示的车载终端,本申请实施例提供一种报文处理方法,该方法可以应用于包括至少两个车载终端车联网系统,该方法可以由车载终端执行,如图3所示。
步骤301,主车的第一车载终端接收来自远车的第二车载终端的第一V2X报文。
示例性地,图4A所示的四个车辆中均设有车载终端,每个车辆的车载终端均周期性地发送V2X报文,车辆A中的车载终端可以接收到设定区域(例如图4A圆形区域)范围 内来自其它车辆的车载终端的V2X报文。V2X报文中可以携带车载终端标识、位置信息、速度信息、行驶路径的曲率和航向角信息等车载信息。需要说明的是,每个车载终端具有唯一的车载终端标识,该标识由车载终端厂商预先配置。
具体地,车载终端可以通过图2A中的车辆数据采集单元1013采集车辆行驶状态信息,以及通过传感器数据采集单元1011采集气压、温度、摄影头等传感器的数据,或者车载终端通过位置信息采集单元1012采集车辆的行驶路线目的地等信息。车载终端生成和发送包括上述车载信息的V2X报文。
举例来说,V2X报文中的车载信息如表1所示。
表1
车载信息 车载信息的符号/车载信息的单位 车载信息的数值(举例)
质量 m/kg 3200
速度 km/h 80
位置 (121.70,31.19)
转动惯量 J/kg*m2 9500
前轮轴距 a/m 1.2
后轮轴距 b/m 1.7
前轮侧偏刚度 C f/N*rad-1 190000
后轮侧偏刚度 C r/N*rad-1 210000
步骤302,第一车载终端根据第一V2X报文预测远车的第一行驶轨迹。
具体来说,当第一V2X报文中包括远车的位置信息、速度信息、行驶路径的曲率和航向角时,第一车载终端根据上述信息按照如下公式[1]和公式[2]确定出远车的第一行驶轨迹。
Figure PCTCN2020103878-appb-000011
Figure PCTCN2020103878-appb-000012
其中,x 0′为第一V2X报文中的远车的横坐标,y 0′为第一V2X报文中的远车的纵坐标,x 2(t)为远车在时刻t时的横坐标,y 2(t)为远车在时刻t时的纵坐标,v t′为远车的速度,R′为第一V2X报文中携带的远车的行驶路径的曲率,θ′为第一V2X报文中携带的远车的航向角。
示例性地,如图4B所示,第一车载终端预测远车的行驶轨迹如图4B的行驶轨迹B。
步骤303,第一车载终端根据远车的第一行驶轨迹和主车的第一行驶轨迹,确定在距离第一时刻的第一时长内主车和远车之间的第一最小距离。
其中,第一时刻可以是当前时刻或当前时刻之前的某个时刻。具体来说,第一车载终端通过位置信息采集单元1012采集主车在第一时刻的位置,第一车载终端通过车辆数据采集单元1013采集主车的行驶速度和状态信息,确定主车的行驶轨迹,或者第一车载终端根据导航路线确定主车的行驶轨迹。其中,主车的行驶轨迹满足如下公式[3]和公式[4]。
Figure PCTCN2020103878-appb-000013
Figure PCTCN2020103878-appb-000014
其中,x 0为主车在第一时刻的初始横坐标,y 0为主车在第一时刻的初始纵坐标,x 1(t)为主车在时刻t时的横坐标,y 1(t)为主车在时刻t时的纵坐标,v t为主车的速度,R为主车的行驶路径的曲率,θ为主车的航向角。需要说明的是,v t和v t′为同一方向的速度分量,如图4B所示,v t和v t′均为同x轴方向的速度分量,或者v t和v t′均为y轴方向的速度分量。
示例性地,如图4B所示,第一车载终端预测主车的行驶轨迹如图4B的行驶轨迹A。
进一步,第一车载终端根据上述公式,确定主车和远车之间的距离D (t)满足如下公式[5],第一车载终端对公式[5]取最小值,得到在距离第一时刻的第一时长内主车和远车之间的第一最小距离。
Figure PCTCN2020103878-appb-000015
需要说明的是,当v t和v t′均为同x轴方向的速度分量时,主车和远车之间的第一最小距离指的是x轴方向上的最小距离;当v t和v t′均为同y轴方向的速度分量时,主车和远车之间的第一最小距离指的是y轴方向上的最小距离。
示例性地,如图4B所示,第一车载终端根据公式[5]预测出在距离当前时刻的5秒时间内,主车和远车之间的x轴方向上的最小距离如图4B中最小距离D。
步骤304,当第一最小距离小于等于第一阈值时,第一车载终端对第一V2X报文进行安全验证。
也就是说,如下两个触发条件中的至少一个触发条件满足时,第一车载终端对第一V2X报文进行安全验证。其中:触发条件一:当v t和v t′均为同x轴方向的速度分量时,主车和远车之间在x轴方向上的最小距离小于等于第一阈值;触发条件二:当v t和v t′均为同y轴方向的速度分量时,主车和远车之间在y轴方向上的最小距离小于等于第一阈值。
在一种可能的实施例中,第一车载设备对第一V2X报文进行安全验证之后,根据第一最小距离确定可能发生碰撞的远车,生成与该远车相关的告警信息,车辆的仪表盘或车载终端的显示器上显示告警标志,或者车载终端语音播放告警信息。示例性地,如图5A所示,车辆A中车载终端的显示器501显示告警信息,或者车辆通过扬声器进行语音告警“大约经过20秒在前方交汇口处会出现一辆卡车,请及时减速!”。
在另一种可能的实施例中,当第一最小距离大于第一阈值时,第一车载设备丢弃该第一V2X报文,即不对该第一V2X报文进行安全验证。也就是说,第一车载设备不对第一V2X报文进行安全验证。
可见,本申请实施例可以一定程度上降低第一车载终端对所接收的V2X报文进行验证的次数,提高了消息队列中的V2X报文的安全验证的及时性,增强了车载通信的可靠性。尤其当交通道路发生拥挤时,该方法可以提高相邻车辆之间的信息交互的及时性,提高了驾驶安全性。另外,与现有的解决方案相比,一定程度上可以节省成本。
在一种可能的实施例中,当第一车载终端后续接收来自第二车载终端的第二V2X报文时,第一车载终端根据第二V2X报文再次预测远车的第二行驶轨迹,然后根据远车的第二行驶轨迹和主车的第二行驶轨迹,再次确定在距离第二时刻的第一时长内主车和远车之间的第二最小距离。当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,且第二时刻与第一时刻之间的时间间隔小于等于第二时长时,丢弃第二V2X报文,即不对该第二V2X报文进行安全验证。该方法可以进一步过滤V2X报文,减少安全验证次数,提高消息队列中报文处理的及时性。
示例性地,车载终端可以根据主车和远车之间的最小距离与第一阈值和第二阈值的关系,将车载终端周围的远车划分至三个虚拟区域,三个虚拟区域分别为强关联虚拟区域、弱关联虚拟区域和无关联虚拟区域。如图5B所示,主车A所在的圆形区域01为强关联虚拟区域,与强关联虚拟区域相邻的圆环为02弱关联虚拟区域,最外侧的圆环03为无关联虚拟区域。示意性地,主车所在的位置为O点与圆形区域01的边界A点之间的距离为第二阈值,主车所在的位置为O点与强关联虚拟区域相邻的圆环的边界B点之间的距离为第一阈值。
需要说明的是,这三个区域不是以相对主车的距离的远近范围划分的,而是以远车对主车的危险级别划分的。
具体地,当远车和主车之间的最小距离小于等于第二阈值时,该远车对主车的危险级别最高,主车的第一车载终端将该远车划分至强关联虚拟区域,并且对来自该远车的V2X报文进行安全验证;当远车和主车之间的最小距离小于等于第一阈值且大于第二阈值时,该远车对主车的危险级别一般,主车的第一车载终端将该远车划分至弱关联虚拟区域,并且周期性地对该远车的V2X报文进行安全验证,即若在一个周期内,该远车始终被划分至弱关联虚拟区域,则仅对来自该远车的一个V2X报文进行安全验证;当远车和主车之间的最小距离大于第一阈值时,该远车对主车的危险级别最低,主车的第一车载终端将该远车划分至无关联虚拟区域,并且丢弃来自该远车的V2X报文,即不对该V2X报文进行安全验证。
在一种可能的实施例中,第一阈值和第二阈值的大小与主车和远车之间的速度差的绝对值相关。示例性地,第一阈值等于|(v t-v t′)|×n×T,第二阈值等于|(v t-v t′)|×T,其中v t和v t′均为x轴方向的速度分量,或者v t和v t′均为y轴方向的速度分量,T为驾驶员的制动反映时长,n为大于或等于1的正数。一般地,n的默认取值为2.5,n的值可以动态调整,n取值可以从1.5至3.5,T的默认取值为5秒,T的取值范围从3秒至10秒。假设远车和主车之间的最小距离用D表征,那么三个虚拟区域和上述第一阈值和第二阈值的关系如表2所示。
表2
危险级别 虚拟区域
D≤|(v t-v t′)|×T 强关联虚拟区域
|(v t-v t′)|×T<D≤|(v t-v t′)|×n×T 弱关联虚拟区域
D>|(v t-v t′)|×n×T 无关联虚拟区域
需要说明的是,当速度差为零时,第一阈值和第二阈值为安全车距,与主车的行驶速度相关。例如,当主车的车速在100km/h以上时,第一阈值约为100米,第二阈值约为50米;当主车的车速为60km/h以上,第一阈值约为80米,第二阈值约为40米;当主车的车速为50km/h以上,第一阈值约为50米,第二阈值约为30米。
假设图4A中的车辆均支持V2X通信,并且每个车载设备均以10HZ的频率广播V2X报文。假设图4A所示的高速公路当前为同向三车道,驾驶员小明所驾驶的车辆A被堵在高速公路的中间车道,每个车道均发生交通拥堵,拥堵的密度大概为每12米有2辆车,则单车道在720米路段内聚集车辆数量约为120辆,三个车道的车辆总数量约360辆车。若车辆A能够接收到前后约3百米~4百米的车辆所广播的V2X报文,那么车辆A每秒将接收到约3600条V2X报文,如果车辆A的车载设备对3600条V2X报文全部都进行安全 验证,那么消息队列中的V2X报文很可能出现堵塞。为此,本申请实施例结合如下附图和具体的应用场景,对上述报文处理方法进行举例说明。
场景一
如图4A所示,假设车辆A为主车,车辆B为远车,车辆A接收车辆B的V2X报文,车辆A根据该V2X报文预测车辆B的行驶轨迹,然后车辆A根据自身的行驶轨迹和车辆B的行驶轨迹,确定在设定时间内车辆A与车辆B之间的最小距离D。假设车辆A在y轴方向的速度为V A,车辆B在y轴方向的速度为V B、T为驾驶员的制动反映时长,那么第一阈值等于|(V B-V A)|×n×T。如果车辆A的车载终端确定该最小距离D大于第一阈值,因此车辆A确定车辆B的危险级别为低级别,车辆A不对车辆B的V2X报文进行安全验证,直接丢弃,即不对该V2X报文进行安全验证。
可见,该场景中的远车可以看作是图5B中的无关联虚拟区域中的远车,无关联虚拟区域中的远车的V2X报文通过上述方法被过滤掉了,所以在道路拥堵的交通状况下,主车对V2X报文进行安全验证的处理压力被减轻,提高了V2X报文处理的及时性,进而提高了驾驶安全性。
场景二
如图4A所示,假设车辆A在第一时刻接收车辆C的V2X报文,车辆A根据该V2X报文预测车辆C的行驶轨迹,然后车辆A根据自身的行驶轨迹和车辆C的行驶轨迹,确定在设定时间内车辆A与车辆C之间的最小距离D。假设车辆A在y轴方向的速度为V A,车辆C在y轴方向的速度为V C、T为驾驶员的制动反映时长,那么第一阈值等于|(V C-V A)|×n×T,第二阈值等于|(V C-V A)|×T。如果车辆A的车载终端确定|(V C-V A)|×T<D≤|(V C-V A)|×n×T,那么车辆A确定车辆C的危险级别为中等级别,车辆A对车辆C的V2X报文进行安全验证。
进一步的,车辆A为车辆C设定一个默认的第二时长(例如30秒),其中第二时长的具体取值与车辆A和车辆C之间的速度差相关。若车辆A在第二时刻接收到来自车辆C的V2X报文,且按照上述方法根据该V2X报文确定车辆C的危险级别为中等级别。在一种可能的实施例中,当第二时刻与第一时刻之间的时间间隔小于等于该第二时长时,车辆A丢弃在第二时刻所接收的该V2X报文,即不对该V2X报文进行安全验证。
在另一种可能的实施例中,当第二时刻与第一时刻之间的时间间隔大于该第二时长时,车辆A对第二时刻所接收的该V2X报文进行安全验证。
可见,该场景中的远车可以看作是图5B中的弱关联虚拟区域中的远车,弱关联虚拟区域中的远车对主车的危险级别一般,主车按照上述方法周期性地对该远车的V2X报文进行安全验证,即若在一个周期内,该远车始终被划分至弱关联虚拟区域,则仅对来自该远车的一个V2X报文进行安全验证,该方法可以减少主车对弱关联区域的远车的报文的安全验证次数,提高消息队列中报文处理的及时性。
场景三
如图4A所示,假设车辆A在第一时刻接收车辆D的V2X报文,车辆A根据该V2X报文预测车辆D的行驶轨迹,然后车辆A根据自身的行驶轨迹和车辆D的行驶轨迹,确定在设定时间内车辆A与车辆D之间的最小距离D。假设车辆A在y轴方向的速度为V A,车辆D在y轴方向的速度为V D、T为驾驶员的制动反映时长,那么第一阈值等于|(V D-V A)|×n×T,第二阈值等于|(V D-V A)|×T。如果车辆A的车载终端确定 D≤|(V D-V A)|×T,那么车辆A确定车辆D的危险级别为高级别,车辆A对车辆D的V2X报文进行安全验证。
可见,该场景中的远车可以看作是图5B中的强关联虚拟区域中的远车,强关联虚拟区域中的远车对主车的危险级别最高,主车按照上述方法实时地对该远车的V2X报文进行安全验证,该方法可以保证及时对威胁程度高的远车的报文进行安全验证,提高车辆驾驶的安全性。
从上述场景可以得出,本申请实施例可以在不降低运动安全预警性能的前提下,大幅度降低车辆A对V2X报文的安全验证次数(降低率与实际路面各车辆行驶情况有关,例如车辆A采用现有技术需要3600次/秒的验签能力,本申请实施例可以减小至20次/秒的验签能力),所以可以提高消息队列中的安全验证的及时性,增强车载通信的可靠性,显著改善车联网系统的性能。
本申请实施例进一步结合图6对上述报文处理方法进行系统性阐述,具体步骤如下。
步骤601,主车T-BOX的收发器103接收来自远车T-BOX的第一V2X报文。
示例性地,远车T-BOX的第一V2X报文包括车载终端标识、位置信息、速度信息、行驶路径的曲率和航向角信息等车载信息。
步骤602a,主车T-BOX中的处理器的信息计算单元1014从收发器103获取第一V2X报文。
步骤602b至步骤602d,主车T-BOX中的处理器的信息计算单元1014从传感器数据采集单元1011获取传感器数据,从位置信息采集单元1012获取主车的位置信息,从车辆数据采集单元1013获取主车的行驶状态信息。
需要说明的是,步骤602b至步骤602d也可以在步骤601之前执行,或者与步骤601同时执行。
步骤603,信息计算单元1014根据第一V2X报文计算远车的行驶轨迹,以及根据所获取的数据计算主车的行驶轨迹。最终,信息计算单元1014对公式[5]取最小值,确定出距离第一时刻的第一时长内的第一最小距离。其中,行驶轨迹的计算方式可以参见图3中的步骤302和步骤303,此处不再赘述。
情况一
步骤604a,当第一最小距离大于第一阈值(例如第一阈值为|(v t-v t′)|×n×T)时,即该远车被划分至无关联虚拟区域中时,信息计算单元1014通知信息安全处理单元1015丢弃该第一V2X报文,即不对该V2X报文进行安全验证。
可见,该情况一中的远车可以看作是图5B中的无关联虚拟区域中的远车,无关联虚拟区域中的远车的V2X报文通过上述方法被过滤掉了,所以在道路拥堵的交通状况下,主车对V2X报文进行安全验证的处理压力被减轻,提高了V2X报文处理的及时性,进而提高了驾驶安全性。
情况二
步骤604b,当第一最小距离小于等于第二阈值时(例如第二阈值为|(v t-v t′)|×T),即该远车被划分至强关联虚拟区域中时,信息计算单元1014通知信息安全处理单元1015对第一V2X报文进行安全验证。
步骤605b,信息安全处理单元1015接收到通知消息后,对第一V2X报文进行安全验证。
可见,该情况二中的远车可以看作是图5B中的强关联虚拟区域中的远车,强关联虚拟区域中的远车对主车的危险级别最高,主车按照上述方法实时地对该远车的V2X报文进行安全验证,该方法可以保证及时对远车的报文的安全验证次数,提高车辆驾驶的安全性。
情况三
步骤604c,当第一最小距离小于等于第一阈值且大于第二阈值时,即该远车被划分至弱关联虚拟区域中时,信息计算单元1014通知信息安全处理单元1015对第一V2X报文进行安全验证。
步骤605c,信息安全处理单元1015接收到通知消息后,对第一V2X报文进行安全验证。
步骤606,主车T-BOX的收发器103在第二时刻接收来自远车T-BOX的第二V2X报文。
其中,第二时刻晚于第一时刻,示例性地,远车T-BOX的第二V2X报文包括车载终端标识、位置信息、速度信息、行驶路径的曲率和航向角信息等车载信息。
步骤607a,主车T-BOX中的处理器的信息计算单元1014从收发器103获取第二V2X报文。
步骤607b至步骤607d,同上述步骤602b至步骤602d。
步骤608,信息计算单元1014根据第二V2X报文计算远车的行驶轨迹,以及根据所获取的数据计算主车的行驶轨迹。最终,信息计算单元1014对公式[5]取最小值,确定出距离第二时刻的第一时长内的第二最小距离。其中,行驶轨迹的计算方式可以参见图3中的步骤302和步骤303,此处不再赘述。
可见,该情况三中的远车可以看作是图5B中的弱关联虚拟区域中的远车,弱关联虚拟区域中的远车对主车的危险级别最高,主车按照上述方法实时地对该远车的V2X报文进行安全验证,该方法可以保证及时对弱关联虚拟区域中的远车的报文进行安全验证,提高车辆驾驶的安全性。
情况四
步骤609,当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,即该远车再次被划分至弱关联虚拟区域02中时,信息计算单元1014通知信息安全处理单元1015丢弃第二V2X报文。
步骤610,信息安全处理单元1015接收到通知消息后,丢弃该第二V2X报文,即不对第二V2X报文进行安全验证。
可见,该情况四中的远车可以看作是图5B中的弱关联虚拟区域中的远车,即若在一个周期内,该远车始终被划分至弱关联虚拟区域,则仅对来自该远车的一个V2X报文进行安全验证,该方法可以减少主车对弱关联区域的远车的报文的安全验证次数,提高消息队列中报文处理的及时性。
综上所述,本申请实施例可以一定程度上降低第一车载终端对所接收的V2X报文进行验证的次数,提高了消息队列中的安全验证的及时性,增强了车载通信的可靠性。尤其当交通道路发生拥挤时,该方法可以提高相邻车辆之间的信息交互的及时性,提高了驾驶安全性。
如图7所示,本申请实施例还提供一种报文处理方法,该方法可以应用于包括至少两 个车载终端车联网系统,该方法可以由TCU服务器执行,具体步骤如下。
步骤701,TCU服务器主车的第一车载终端广播的V2X报文和远车的第二车载终端广播的第一V2X报文。
示例性地,如图8所示,TCU服务器预先与主车建立通信连接,TCU服务器接收来自主车的第一车载终端广播的V2X报文,以及TCU服务器接收来自远车的第二车载终端的第一V2X报文。需要说明的是,图8所示的车辆网系统还可以包括其它远车,图8中并未示出。其中,V2X报文的具体内容可以参照步骤301的描述,在此不再重复赘述。
步骤702,TCU服务器根据主车的第一车载终端广播的V2X报文,以及远车的第二车载终端广播的第一V2X报文,预测主车的第一行驶轨迹和远车的第一行驶轨迹。
步骤703,TCU服务器根据主车的第一行驶轨迹和远车的第一行驶轨迹,确定在距离第一时刻的第一时长内远车与主车之间的第一最小距离。
示例性,如图8所示,TCU服务器接收主车的V2X报文和远车的第一V2X报文,TCU服务器按照步骤302所示的方法计算出主车的第一行驶轨迹和远车的第一行驶轨迹,进而TCU服务器按照步骤303所示的方法计算出第一最小距离。
步骤704,当第一最小距离小于等于第一阈值时,TCU服务器通知主车的第一车载终端对远车的第一V2X报文进行安全验证。
其中,第一阈值的确定方式可以参照步骤304的描述,在此不再重复赘述。
示例性地,TCU服务器通过与主车的第一车载终端之间的通信连接发送通知消息,该通知消息用于指示第一车载终端对第一V2X报文进行安全验证。
在另一种可能的实施例中,当第一最小距离大于第一阈值时,TCU服务器通知主车的第一车载终端丢弃该第一V2X报文。也就是说,第一车载设备不对第一V2X报文进行安全验证。
可见,本申请实施例可以一定程度上降低第一车载终端对所接收的V2X报文进行验证的次数,提高了消息队列中的安全验证的及时性,增强了车载通信的可靠性。尤其当交通道路发生拥挤时,该方法可以提高相邻车辆之间的信息交互的及时性,提高了驾驶安全性。
在一种可能的实施例中,当TCU服务器后续接收来自主车的V2X报文和第二车载终端的第二V2X报文时,TCU服务器根据第二V2X报文再次预测远车的第二行驶轨迹,以及预测主车的第二行驶轨迹,然后根据远车的第二行驶轨迹和主车的第二行驶轨迹,再次确定在距离第二时刻的第一时长内主车和远车之间的第二最小距离。当第二最小距离和第一最小距离均小于等于第一阈值且大于第二阈值时,且第二时刻与第一时刻之间的时间间隔小于等于第二时长时,TCU服务器通知主车的第一车载终端丢弃第二V2X报文。该方法可以进一步过滤V2X报文,减少第一车载终端的安全验证次数,提高第一车载终端的消息队列中报文处理的及时性。
在一种可能的实施例中,当第一最小距离小于等于第二阈值时,TCU服务器可以标记远车的危险级别为高危险级别;当第一最小距离大于第二阈值,且小于等于第一阈值时,TCU服务器可以标记远车的危险级别为中危险级别;当第一最小距离大于等于第一阈值时,TCU服务器可以标记远车的危险级别为低危险级别。基于这一标识方式,TCU服务可以对主车对应的设定区域范围内的N个远车划分至如图5B所示的三个虚拟区域。具体划分方法可以参见上文描述。
进一步的,在一种可能的实施例中,TCU服务器可以将高危险级别的强关联虚拟区域 中的远车标识和一般危险级别的弱关联虚拟区域中的远车标识发送至主车的第一车载终端,第一车载终端可以对目标远车的车载终端的标识对应V2X报文进行安全验证,而其它V2X报文则被第一车载终端丢弃。
在一种可能的实施例中,第一阈值和第二阈值的大小与主车和远车之间的速度差的绝对值相关。示例性地,第一阈值等于|(v t-v t′)|×n×T,第二阈值等于|(v t-v t′)|×T,其中v t和v t′均为x轴方向的速度分量,或者v t和v t′均为y轴方向的速度分量,T为驾驶员的制动反映时长,n为大于或等于1的正数。一般地,n的默认取值为2.5,n的值可以动态调整,n取值可以从1.5至3.5,T的默认取值为5秒,T的取值范围从3秒至10秒。
另外,在一种可能的实施例中,第一阈值等于|(v t-v t′)|×n×T时,n的取值可以动态调整、示例性地,当主车确定在单位时间内对中危险级别的远车集合所广播的V2X报文的数量与单位时间内N个远车的所有广播的V2X报文的总数量的占比大于10%时,n的取值可减小0.1,例如从2.5减小至2.4,并在一个单元时间内维持n的取值2.4不变。假设在下一个单元时间内,主车确定发现在单位时间内对中危险级别的远车集合所广播的V2X报文的数量与单位时间内N个远车的所有广播的V2X报文的总数量的占比大于10%时,n的取值可以从2.4继续减小至2.3。当主车确定因n的减小导致在单位时间内对中危险级别的远车集合所广播的V2X报文的数量与单位时间内N个远车的所有广播的V2X报文的总数量的占比不足6%时,则增大n的取值。需要说明的是,一般n的最小值不得低于1.5,最大值不得大于3.5。
为了更加系统地描述上述通信应方法,本申请实施例进一步结合图9所示的通信系统进行详细阐述。
步骤901,TCU服务器接收至少两个车载终端广播的V2X报文。
其中,至少两个车载终端包括主车的第一车载终端和远车的第二车载终端,V2X报文包括车载终端标识、位置信息、速度信息、行驶路径的曲率和航向角信息等车载信息。
步骤902,TCU服务器根据主车的第一车载终端广播的V2X报文,以及远车的第二车载终端广播的第一V2X报文,预测主车的第一行驶轨迹和远车的第一行驶轨迹;根据主车的第一行驶轨迹和远车的第一行驶轨迹,确定在距离第一时刻的第一时长内远车与主车之间的第一最小距离。
步骤903,TCU服务器判断第一最小距离是否小于等于第一阈值,若否,则执行步骤904,否则执行步骤905。
其中,第一阈值可以根据主车和远车同一方向的速度确定。
步骤904,当第一最小距离大于第一阈值时,TCU服务器通知主车的第一车载终端丢弃该第一V2X报文。
步骤905,当第一最小距离小于等于第一阈值时,TCU服务器通知主车的第一车载终端对远车的第一V2X报文进行安全验证。
步骤906,TCU服务器后续接收来自主车的V2X报文和第二车载终端的第二V2X报文。
步骤907,TCU服务器根据第一车载终端广播的V2X报文和第二车载终端广播的第二V2X报文,预测主车的第一行驶轨迹和所述远车的第一行驶轨迹;TCU服务器根据主车的第一行驶轨迹和远车的第一行驶轨迹,确定在距离第二时刻的第一时长内远车与主车之间的第二最小距离。
步骤908,TCU服务器判断第二最小距离和第一最小距离是否均小于等于所述第一阈值且大于所述第二阈值时,且第二时刻与第一时刻之间的时间间隔大于第二时长,若是,则执行步骤909,否则执行步骤910。
步骤909,TCU服务器通知主车的第一车载终端丢弃该第二V2X报文。
步骤910,TCU服务器通知主车的第一车载终端对远车的第二V2X报文进行安全验证。
本申请实施例可以降低车载终端对V2X报文的安全验证次数,提高了消息队列中的安全验证的及时性,增强了车载通信的可靠性。尤其当用户驾驶汽车在路况复杂的道路,或者在交通拥挤的道路上,可以提高行车的安全性。
在本申请的另一些实施例中,本申请实施例公开了一种车载终端,如图10所示,该车载终端可以包括:触摸屏1001,其中,该触摸屏1001包括触控面板1007和显示屏1008;一个或多个处理器1002;存储器1003;一个或多个应用程序(未示出);以及一个或多个计算机程序1004,传感器1005、上述各器件可以通过一个或多个通信总线1006连接。其中该一个或多个计算机程序1004被存储在上述存储器1003中并被配置为被该一个或多个处理器1002执行,该一个或多个计算机程序1004包括指令,上述指令可以用于执行如图3、图6至图7相应实施例中的各个步骤。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在车载终端上运行时,使得车载终端执行上述相关方法步骤实现上述实施例中的报文处理方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的报文处理方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的触摸屏的响应方法。
其中,本申请实施例提供的车载终端、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以丢弃,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其他的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种报文处理方法,应用于车联网系统,所述车联网系统包括至少两个车载终端,其特征在于,该方法包括:
    主车的第一车载终端接收来自远车的第二车载终端的第一车联万物V2X报文;
    所述第一车载终端根据所述第一V2X报文预测所述远车的第一行驶轨迹;
    所述第一车载终端根据所述远车的第一行驶轨迹和所述主车的第一行驶轨迹,确定在距离第一时刻的第一时长内所述主车和所述远车之间的第一最小距离;
    当所述第一最小距离小于等于第一阈值时,所述第一车载终端对所述第一V2X报文进行安全验证。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    当所述第一最小距离大于所述第一阈值时,丢弃所述第一V2X报文。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一车载终端接收来自所述第二车载终端的第二V2X报文;
    所述第一车载终端根据所述第二V2X报文预测所述远车的第二行驶轨迹;
    所述第一车载终端根据所述远车的第二行驶轨迹和主车的第二行驶轨迹,确定在距离第二时刻的第一时长内所述主车和所述远车之间的第二最小距离,所述第二时刻晚于所述第一时刻;
    当所述第二最小距离和所述第一最小距离均小于等于所述第一阈值且大于第二阈值时,且所述第二时刻与所述第一时刻之间的时间间隔小于等于第二时长时,丢弃所述第二V2X报文。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    当所述第二最小距离和所述第一最小距离均小于等于所述第一阈值且大于所述第二阈值时,且所述第二时刻与所述第一时刻之间的时间间隔大于第二时长时,所述第一车载终端对所述第二V2X报文进行安全验证。
  5. 根据权利要求3所述的方法,其特征在于,还包括:
    当所述第二最小距离小于等于所述第二阈值时,所述第一车载终端对所述第二V2X报文进行安全验证。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一V2X报文包括:所述远车的横坐标和纵坐标、航向角、速度和偏航率;
    所述第一车载终端根据所述第一V2X报文预测所述远车的第一行驶轨迹,包括:
    所述第一车载终端根据所述远车的速度和偏航率,确定出所述远车的行驶路径的曲率;
    所述第一车载终端根据所述第一V2X报文预测得到的所述远车的第一行驶轨迹满足如下公式要求:
    Figure PCTCN2020103878-appb-100001
    Figure PCTCN2020103878-appb-100002
    其中,x 0′为所述第一V2X报文中的所述远车的横坐标,y 0′为所述第一V2X报文中的所述远车的纵坐标,x 2(t)为所述远车在时刻t时的横坐标,y 2(t)为所述远车在时刻t时的 纵坐标,v t′为所述远车的速度,R′为所述远车的行驶路径的曲率,θ′为所述第一V2X报文中的所述远车的航向角。
  7. 根据权利要求6所述的方法,其特征在于,所述主车的第一行驶轨迹满足如下公式要求:
    Figure PCTCN2020103878-appb-100003
    Figure PCTCN2020103878-appb-100004
    其中,x 0为所述主车的初始横坐标,y 0为所述主车的初始纵坐标,x 1(t)为所述主车在时刻t时的横坐标,y 1(t)为所述主车在时刻t时的纵坐标,v t为所述主车的速度,v t与v t′为同一方向的速度,R为所述主车的行驶路径的曲率,R是根据所述主车的速度和偏航率确定的,θ为所述主车的航向角;
    所述第一车载终端根据所述远车的第一行驶轨迹和主车的第一行驶轨迹,确定在距离所述第一时刻的第一时长内所述主车和所述远车之间的第一最小距离,包括:
    所述第一车载终端根据所述远车的第一行驶轨迹和主车的第一行驶轨迹,确定所述主车和所述远车之间的距离满足如下公式要求:
    Figure PCTCN2020103878-appb-100005
    所述第一车载终端对所述距离D (t)取最小值,得到在距离所述第一时刻的第一时长段内所述主车和所述远车之间的第一最小距离。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二阈值等于|(v t-v t′)|×T,所述第一阈值等于|(v t-v t′)|×n×T;
    其中,T为驾驶员的制动反映时长,n为大于或等于1的正数。
  9. 一种报文处理方法,应用于车联网系统,所述车联网系统包括至少两个车载终端和交通控制单元TCU服务器,其特征在于,该方法包括:
    所述TCU服务器接收主车的第一车载终端广播的V2X报文和远车的第二车载终端广播的第一V2X报文;
    所述TCU服务器根据所述主车的第一车载终端广播的V2X报文,以及所述远车的第二车载终端广播的第一V2X报文,预测主车的第一行驶轨迹和所述远车的第一行驶轨迹;
    所述TCU服务器根据所述主车的第一行驶轨迹和所述远车的第一行驶轨迹,确定在距离第一时刻的第一时长内所述远车与所述主车之间的第一最小距离;
    当所述第一最小距离小于等于第一阈值时,所述TCU服务器通知所述主车的第一车载终端对所述远车的第一V2X报文进行安全验证。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    当所述第一最小距离大于所述第一阈值时,通知所述主车的第一车载终端丢弃所述第一V2X报文。
  11. 根据权利要求9或10所述的方法,其特征在于,还包括:
    所述TCU服务器接收来自所述主车的第一车载终端广播的V2X报文,以及所述远车的第二车载终端广播的第二V2X报文;
    所述TCU服务器根据所述第一车载终端广播的V2X报文和所述第二车载终端广播的 第二V2X报文,预测主车的第二行驶轨迹和所述远车的第二行驶轨迹;
    所述TCU服务器根据所述主车的第二行驶轨迹和所述远车的第二行驶轨迹,确定在距离第二时刻的所述第一时长内所述远车与所述主车之间的第二最小距离,所述第二时刻晚于所述第一时刻;
    当所述第二最小距离和所述第一最小距离均小于等于所述第一阈值且大于第二阈值时,且所述第二时刻与所述第一时刻之间的时间间隔小于等于第二时长时,所述TCU服务器通知所述主车的第一车载终端丢弃所述第二V2X报文。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    当所述第二最小距离和所述第一最小距离均小于等于所述第一阈值且大于所述第二阈值时,且所述第二时刻与所述第一时刻之间的时间间隔大于第二时长时,所述TCU服务器通知所述主车的第一车载终端对所述远车的第二V2X报文进行安全验证。
  13. 根据权利要求11所述的方法,其特征在于,还包括:
    当所述第二最小距离小于等于所述第二阈值时,所述TCU服务器通知所述主车的第一车载终端对所述远车的第二V2X报文进行安全验证。
  14. 根据权利要求9至12任一项所述的方法,其特征在于,所述第一V2X报文包括:所述远车的横坐标和纵坐标、航向角、速度和偏航率;
    所述TCU服务器根据所述第二车载终端广播的第一V2X报文,预测所述远车的第一行驶轨迹,包括:
    所述TCU服务器根据所述远车的速度和偏航率,确定出所述远车的行驶路径的曲率;
    所述TCU服务器根据所述第一V2X报文预测得到的所述远车的第一行驶轨迹满足如下公式要求:
    Figure PCTCN2020103878-appb-100006
    Figure PCTCN2020103878-appb-100007
    其中,x 0′为所述第一V2X报文中的所述远车的横坐标,y 0′为所述第一V2X报文中的所述远车的纵坐标,x 2(t)为所述远车在时刻t时的横坐标,y 2(t)为所述远车在时刻t时的纵坐标,v t′为所述远车的速度,R′为所述远车的行驶路径的曲率,θ′为所述第一V2X报文中的所述远车的航向角。
  15. 根据权利要求13所述的方法,其特征在于,所述主车的第一行驶轨迹满足如下公式:
    Figure PCTCN2020103878-appb-100008
    Figure PCTCN2020103878-appb-100009
    其中,x 0为所述主车在所述第一时刻的初始横坐标,y 0为所述主车在所述第一时刻的初始纵坐标,x 1(t)为所述主车在时刻t时的横坐标,y 1(t)为所述主车在时刻t时的纵坐标,v t为所述主车的速度,v t与v t′为同一方向的速度,R为所述主车的行驶路径的曲率,R是根据所述主车的速度和偏航率确定的,θ为所述主车的航向角;
    所述TCU服务器根据所述主车的第一行驶轨迹和所述远车的第一行驶轨迹,确定在距离所述第一时刻的第一时长内所述远车与所述主车之间的第一最小距离,包括:
    所述TCU服务器根据所述远车的第一行驶轨迹和主车的第一行驶轨迹,确定所述主车和所述远车之间的距离满足如下公式要求:
    Figure PCTCN2020103878-appb-100010
    所述TCU服务器对所述距离D (t)取最小值,得到在距离所述第一时刻的第一时长段内所述主车和所述远车之间的第一最小距离。
  16. 根据权利要求13或14所述的方法,其特征在于,所述第二阈值等于|(v t-v t′)|×T,所述第一阈值等于|(v t-v t′)|×n×T;
    其中,T为驾驶员的制动反映时长,n为大于或等于1的正数。
  17. 一种车载终端,其特征在于,包括处理器和存储器;
    所述存储器用于存储一个或多个计算机程序;
    当所述存储器存储的一个或多个计算机程序被所述处理器执行时,使得所述车载终端执行如权利要求1至8任一项所述的方法。
  18. 一种TCU服务器,其特征在于,包括处理器和存储器;
    所述存储器用于存储一个或多个计算机程序;
    当所述存储器存储的一个或多个计算机程序被所述处理器执行时,使得所述TCU服务器执行如权利要求9至16任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机程序在车载终端上运行时,使得所述车载终端执行如权利要求1至8任一项所述的报文处理方法。
  20. 一种芯片,其特征在于,所述芯片与存储器耦合,用于执行所述存储器中存储的计算机程序,以执行如权利要求1至8任一项所述的方法,或者9至16任一项所述的报文处理方法。
PCT/CN2020/103878 2019-07-31 2020-07-23 一种报文处理方法及设备 WO2021018006A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910704741.0A CN112399347B (zh) 2019-07-31 2019-07-31 一种报文处理方法及设备
CN201910704741.0 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021018006A1 true WO2021018006A1 (zh) 2021-02-04

Family

ID=74229155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103878 WO2021018006A1 (zh) 2019-07-31 2020-07-23 一种报文处理方法及设备

Country Status (2)

Country Link
CN (1) CN112399347B (zh)
WO (1) WO2021018006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230094360A1 (en) * 2021-09-29 2023-03-30 Continental Automotive Systems, Inc. Method and electronic vehicle system for processing v2x messages

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795008B (zh) * 2021-03-29 2022-08-02 荣耀终端有限公司 V2x验签方法、装置、电子设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509474A (zh) * 2011-11-09 2012-06-20 深圳市伊爱高新技术开发有限公司 一种车与车自动防碰撞系统及方法
US20150170522A1 (en) * 2013-12-17 2015-06-18 Hyundai Motor Company Method for transmitting traffic information using vehicle to vehicle communication
CN105303886A (zh) * 2014-06-17 2016-02-03 中国移动通信集团公司 交通信息的预警处理方法、装置、终端及预警服务器
CN106601001A (zh) * 2015-10-16 2017-04-26 普天信息技术有限公司 一种车辆通信方法及系统
CN106971625A (zh) * 2017-04-28 2017-07-21 重庆长安汽车股份有限公司 一种基于dsrc通信的异常车辆预警方法
CN109003467A (zh) * 2017-06-07 2018-12-14 华为技术有限公司 一种防止车辆碰撞的方法、装置及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204880B4 (de) * 2011-03-29 2019-08-14 Continental Teves Ag & Co. Ohg Verfahren und Fahrzeug-zu-X-Kommunikationssystem zur selektiven Prüfung von Datensicherheitssequenzen empfangener Fahrzeug-zu-X-Botschaften
EP3039843B1 (de) * 2013-08-26 2023-01-11 Continental Automotive Technologies GmbH Filterverfahren zur anpassung einer rechenlast
DE102013226530A1 (de) * 2013-12-18 2015-06-18 Continental Teves Ag & Co. Ohg Verfahren zur Klassifikation einer empfangenen Fahrzeug-zu-X-Botschaft
DE102015207050A1 (de) * 2015-04-17 2016-10-20 Continental Teves Ag & Co. Ohg Verfahren zum Bestimmen einer Kanallast und Verfahren zum Einstellen einer Vorverarbeitung in einer Fahr-zeug-zu-X-Kommunikation, Fahrzeug-zu-X-Kommunikationssystem und computerlesbares Speichermedium
CN105611503B (zh) * 2015-12-30 2020-01-14 东软集团股份有限公司 一种车载网络环境下的信息通信方法及系统
US10417906B2 (en) * 2016-12-23 2019-09-17 Here Global B.V. Lane level traffic information and navigation
KR102215325B1 (ko) * 2017-02-28 2021-02-15 현대자동차주식회사 차량의 위치 추정 장치 및 방법과 이를 이용한 차량
CN107618503B (zh) * 2017-08-29 2019-07-23 广州小鹏汽车科技有限公司 一种自动泊车控制方法及系统
CN107979812B (zh) * 2017-11-23 2020-06-19 重庆车辆检测研究院有限公司 Adas与v2v结合的超视距感知与发布方法及系统
CN109195162B (zh) * 2018-10-12 2020-05-08 暨南大学 一种车联网中聚合两种信任评估的消息可靠性评估方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102509474A (zh) * 2011-11-09 2012-06-20 深圳市伊爱高新技术开发有限公司 一种车与车自动防碰撞系统及方法
US20150170522A1 (en) * 2013-12-17 2015-06-18 Hyundai Motor Company Method for transmitting traffic information using vehicle to vehicle communication
CN105303886A (zh) * 2014-06-17 2016-02-03 中国移动通信集团公司 交通信息的预警处理方法、装置、终端及预警服务器
CN106601001A (zh) * 2015-10-16 2017-04-26 普天信息技术有限公司 一种车辆通信方法及系统
CN106971625A (zh) * 2017-04-28 2017-07-21 重庆长安汽车股份有限公司 一种基于dsrc通信的异常车辆预警方法
CN109003467A (zh) * 2017-06-07 2018-12-14 华为技术有限公司 一种防止车辆碰撞的方法、装置及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230094360A1 (en) * 2021-09-29 2023-03-30 Continental Automotive Systems, Inc. Method and electronic vehicle system for processing v2x messages

Also Published As

Publication number Publication date
CN112399347B (zh) 2022-04-05
CN112399347A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
US11538344B2 (en) Method for handling case of detecting unauthorized frame transmitted over onboard network
US10902726B2 (en) Rogue vehicle detection and avoidance
US20200209871A1 (en) Method and Apparatus for Analyzing Driving Risk and Sending Risk Data
Gao et al. An empirical study of DSRC V2V performance in truck platooning scenarios
US9221463B2 (en) Automatic speed controllable vehicle and method for controlling speed thereof
JP7437892B2 (ja) レンジ外ビークルのための中間ビークルリピータ
Sou Modeling emergency messaging for car accident over dichotomized headway model in vehicular ad-hoc networks
US20150170429A1 (en) Method, computer-readable storage device and apparatus for exchanging vehicle information
EP2276012B1 (en) Method for transmission power control in vehicle-to-vehicle communication
WO2021018006A1 (zh) 一种报文处理方法及设备
CN108153854B (zh) 弯道分类方法、路侧单元、车载终端及电子设备
KR20130141923A (ko) 차량간 통신에서의 혼잡 제어 장치 및 방법
CN114248799A (zh) 车辆到一切消息的不当行为检测
Zhou et al. Arve: Augmented reality applications in vehicle to edge networks
Huang et al. An early collision warning algorithm for vehicles based on V2V communication
CN113498017A (zh) 用于支持车辆对万物通信的装置和方法以及包括该装置的系统
Yang et al. An intersection collision warning system using Wi-Fi smartphones in VANET
US10667295B2 (en) Method for Internet of Vehicles (IoV) electric traffic sign information broadcast with Quality of Service (QoS) guaranteed mechanism based on conflict detection
Yang et al. Generating routes for autonomous driving in vehicle-to-infrastructure communications
US20230156621A1 (en) Roadside unit Message Transmission Management
CN114245340A (zh) 基于c-v2x的城市道路车路协同云控车辆引导系统
CN102480777A (zh) 动态无线传输功率控制方法与系统
KR102635088B1 (ko) 차량 통신 데이터의 패킷 필터링 방법 및 그를 수행하는 차량용 통신 단말 장치
TWI719617B (zh) 基於距離判斷之封包過濾方法及其系統
Huang et al. A collision pre-warning algorithm based on V2V communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846241

Country of ref document: EP

Kind code of ref document: A1