WO2021017875A1 - 传输控制方法和装置 - Google Patents

传输控制方法和装置 Download PDF

Info

Publication number
WO2021017875A1
WO2021017875A1 PCT/CN2020/102417 CN2020102417W WO2021017875A1 WO 2021017875 A1 WO2021017875 A1 WO 2021017875A1 CN 2020102417 W CN2020102417 W CN 2020102417W WO 2021017875 A1 WO2021017875 A1 WO 2021017875A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
data
access network
slave
uplink
Prior art date
Application number
PCT/CN2020/102417
Other languages
English (en)
French (fr)
Inventor
黄曲芳
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017875A1 publication Critical patent/WO2021017875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to a transmission control method and device.
  • the traditional industrial control field realizes automatic control through wired connection, but the deployment method of wired connection makes the cable deployment and maintenance cost relatively high, and due to the limitation of the cable, the mobility of the controlled terminal is poor. For this reason, industrial control that uses wireless transmission instead of wired connection has attracted more and more attention, and how to adapt wireless transmission to industrial control has become an urgent problem to be solved.
  • the embodiments of the present application provide a transmission control method and device, so that wireless transmission is suitable for industrial control.
  • a transmission control method including: an access network device obtains transmission interval information, where the transmission interval information is used to indicate a time interval; and the access network device allocates uplink resources to a first terminal device, wherein The time interval is used by the access network device to determine the allocation time of the uplink resource or used by the first terminal device to determine the time for the uplink resource to be used for transmission; the access network device is in the uplink resource Receiving uplink data from the first terminal device.
  • a transmission control device which includes units or means for performing each step of the first aspect above.
  • a transmission control device which includes a processor and an interface circuit.
  • the processor is configured to communicate with other devices through the interface circuit and execute the method provided in the first aspect above.
  • the processor includes one or more.
  • a transmission control device including a processor, configured to call a program stored in a memory to execute the method provided in the above first aspect.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • a computer program is provided, and when the program is called by a processor, the method provided in the above first aspect is executed.
  • the access network equipment After the access network equipment receives the downlink data from the main station and sends the downlink data to the terminal device, it can be expected that after a period of time, the terminal device will have uplink data to be transmitted.
  • the access network device simplifies the scheduling accordingly.
  • the time interval indicated by the transmission interval information is used to schedule uplink resources in advance, or the transmission time interval information is used to indicate the time domain starting position of the terminal's uplink resources so that the terminal device can transmit uplink data. In this way, the transmission delay can be reduced and the data transmission can be improved. s efficiency.
  • the access network device receives downlink data, where the downlink data includes data from the master station to at least one slave station, and the uplink data includes data from at least one slave station to the master station, and at least one slave station includes the first The slave station, the first slave station is connected to the first terminal device; the access network device sends downlink data to the first terminal device.
  • the first slave station serves as the entrance and exit of at least one slave station (slave station group) relative to the wireless network, which can save the demand for terminal devices and reduce hardware costs.
  • the time interval includes: the time interval between the uplink data reaching the first slave station or the first terminal device and the downlink data reaching the first slave station or the first terminal device; or, the uplink data reaching the first slave station or the first terminal device And the time interval between the departure of the downlink data from the master station; or the time interval between the arrival of the uplink data at the first slave station or the first terminal device and the departure of the data packet corresponding to the downlink data from the first slave station or the first terminal device; or, the uplink The time interval between the data leaving the first slave station or the first terminal device and the downlink data reaching the first slave station or the first terminal device; or, the time interval between the uplink data leaving the first slave station or the first terminal device and the downlink data leaving the master station Time interval; or, the time interval between the uplink data leaving the first slave station or the first terminal device and the data packet corresponding to the downlink data leaving the first slave station or the first terminal device.
  • the access network equipment should start the timer for sending downlink data.
  • the duration of the timer is set according to the time interval.
  • the duration of the timer is less than or equal to the time interval, and the access network equipment allocates the uplink to the first terminal device.
  • the resource includes: the access network device sends the authorization information of the uplink resource to the first terminal device when the timer expires or when the timer expires from a preset time.
  • the access network equipment wirelessly waits for the scheduling request of the terminal, and allocates uplink resources to the first terminal device when it is expected to transmit uplink data according to the time interval, which reduces signaling interaction and improves transmission efficiency.
  • the time when the access network device determines the frequency domain position of the uplink resource before the time interval expires is closer to the actual uplink transmission time, and the transmission performance is better.
  • the access network device sends transmission interval information or adjusted transmission interval information to the first terminal device, where the adjusted transmission interval information is used to indicate the adjusted time interval and is used by the first terminal device to determine the uplink The time the resource is used for transmission.
  • allocating uplink resources by the access network device to the first terminal device includes: when the access network device sends downlink data to the first terminal device, sending authorization information of the uplink resource to the first terminal device; or, the access network After sending the downlink data to the first terminal device and before the time interval expires, the device sends the authorization information of the uplink resource to the first terminal device; or, the access network device pre-configures the uplink resource to the first terminal device.
  • the access network device notifies the first terminal device of the time interval or the adjusted time interval, and the first terminal device can determine the start time of the uplink resource accordingly, and then use the uplink resource allocated by the access network device to transmit the uplink data. Thereby reducing the transmission delay and improving the data transmission efficiency.
  • downlink scheduling sending downlink data to the first terminal device
  • uplink scheduling is performed at the same time, and uplink resources are prepared in advance, which reduces transmission delay and improves resource efficiency. Utilization rate.
  • the time when the access network device determines the frequency domain position of the uplink resource before the time interval expires is closer to the actual uplink transmission time, and the transmission performance is better.
  • the access network device receives downlink data and sends the downlink data to the second terminal device.
  • the downlink data includes data from the master station to multiple slave stations
  • the uplink data includes data from multiple slave stations to the master station.
  • the multiple slave stations include a first slave station and a second slave station.
  • the terminal device is connected, and the second slave station is connected to the second terminal device.
  • the first slave station and the second slave station serve as the egress and entrance of multiple slave stations (slave station group) to the wireless network, which can save the distance of uplink data in the slave group, reduce transmission delay, and make the terminal device less effective.
  • the demand is not high, reducing hardware costs.
  • the time interval includes: the time interval between the uplink data reaching the first slave station or the first terminal device and the downlink data reaching the second slave station or the second terminal device; or, the uplink data reaching the first slave station or the first terminal device And the time interval between the departure of the downlink data from the master station; or the time interval between the arrival of the uplink data at the first slave station or the first terminal device and the departure of the data packet corresponding to the downlink data from the second slave station or the second terminal device; or, the uplink The time interval between the data leaving the first slave station or the first terminal device and the downlink data reaching the second slave station or the second terminal device; or, the time interval between the uplink data leaving the first slave station or the first terminal device and the downlink data leaving the master station Time interval; or, the time interval between the uplink data leaving the first slave station or the first terminal device and the data packet corresponding to the downlink data leaving the second slave station or the second terminal device.
  • the access network device should start a timer for sending downlink data.
  • the duration of the timer is set according to the time interval.
  • the duration of the timer is less than or equal to the preset duration of the time interval, and the access network device sends a message to the first terminal.
  • the apparatus allocating uplink resources includes: the access network device sends the uplink resource authorization information to the first terminal device when the timer expires or when the timer expires from a preset time.
  • the access network equipment wirelessly waits for the scheduling request of the terminal, and allocates uplink resources to the first terminal device when it is expected to transmit uplink data according to the time interval, which reduces signaling interaction and improves transmission efficiency.
  • the time when the access network device determines the frequency domain position of the uplink resource before the time interval expires is closer to the actual uplink transmission time, and the transmission performance is better.
  • the access network device sends transmission interval information or adjusted transmission interval information to the first terminal device, where the adjusted transmission interval information is used to indicate the adjusted time interval and is used by the first terminal device to determine the uplink The time the resource is used for transmission.
  • the allocation of uplink resources by the access network device to the first terminal device includes: when the access network device sends downlink data to the second terminal device, sending authorization information for uplink resources to the first terminal device; or, the access network After sending the downlink data to the second terminal device and before the time interval expires, the device sends the authorization information of the uplink resource to the first terminal device; or, the access network device pre-configures the uplink resource to the first terminal device.
  • the access network device notifies the first terminal device of the time interval or the adjusted time interval, and the first terminal device can determine the start time of the uplink resource accordingly, and then use the uplink resource allocated by the access network device to transmit the uplink data. Thereby reducing the transmission delay and improving the data transmission efficiency.
  • downlink scheduling sending downlink data to the first terminal device
  • uplink scheduling is performed at the same time, and uplink resources are prepared in advance, which reduces transmission delay and improves resource efficiency. Utilization rate.
  • the time when the access network device determines the frequency domain position of the uplink resource before the time interval expires is closer to the actual uplink transmission time, and the transmission performance is better.
  • the access network device may also allocate a first identification to the first terminal device and a second identification to the second terminal device, where the first identification Used for uplink resource allocation, and the second identifier is used for downlink data reception.
  • the first identifier and the second identifier are the same.
  • the access network equipment can use the downlink control information (DCI) scrambled by the same RNTI to realize the downlink resource allocation of downlink data and the uplink resource allocation of uplink data, and the first terminal device and the second terminal device do not need to monitor other RNTI.
  • DCI downlink control information
  • the access network device may also receive indication information, where the indication information is used to indicate the size difference between the uplink data and the downlink data or the downlink data and the uplink data Or used to indicate the size difference between uplink data and downlink data corresponding to one slave station or the size difference between downlink data and uplink data corresponding to one slave station. Further, the access network equipment allocates uplink resources to the first terminal device according to the size difference indicated by the indication information.
  • the uplink resources allocated by the access network equipment can match the size of the uplink data, reducing resource waste and improving resource utilization.
  • the first terminal device is connected to the first slave station in the slave station group, and the access network device may receive timing information from the first terminal device; and The timing information is sent to other terminal devices connected to other slave stations in the slave station group.
  • the access network device may receive timing information from the first terminal device; and The timing information is sent to other terminal devices connected to other slave stations in the slave station group.
  • other slave stations in the slave station group can obtain timing information from the access network equipment, the timing process is simplified, and the time required for clock synchronization is reduced.
  • the access network device may also send timing information to the core network device.
  • the core network equipment can notify the master station of the timing information to realize further clock synchronization of the master station.
  • the first terminal device is connected to the first slave station in the slave station group, and the access network device may assign an identifier to the first terminal device. Used for the first terminal device to send timing information; in addition, the access network equipment assigns identification to other terminal devices connected to other slave stations in the slave station group, and the identification is used for other terminal devices to receive timing information from the first terminal device .
  • the access network equipment assigns identification to other terminal devices connected to other slave stations in the slave station group, and the identification is used for other terminal devices to receive timing information from the first terminal device .
  • other slave stations in the slave station group can obtain timing information from the first slave station, the timing process is simplified, and the time required for clock synchronization is reduced.
  • a transmission control method including: a terminal device obtains uplink resources, and receives transmission interval information from an access network device, the transmission interval information is used to indicate a time interval, and the time interval is used to determine the uplink resource Time used for transmission; and the terminal device uses the uplink resource to send uplink data at a time determined according to the time interval.
  • a transmission control device which includes units or means for performing each step of the second aspect above.
  • a transmission control device including a processor and an interface circuit, where the processor is used to communicate with other devices through the interface circuit and execute the method provided in the second aspect above.
  • the processor includes one or more.
  • a transmission control device including a processor, configured to call a program stored in a memory to execute the method provided in the second aspect above.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the terminal device receives downlink data from the access network device, where the downlink data includes data from a master station to at least one slave station, and the uplink data includes data from at least one slave station to the master station, and the terminal device is connected to at least one slave station.
  • the time interval includes: the time interval between uplink data reaching the first slave station or terminal device and downlink data reaching the first slave station or terminal device; or, uplink data reaching the first slave station or terminal device and downlink data from the master station Or the time interval for the uplink data to arrive at the first slave station or terminal device and the time interval for the data packet corresponding to the downlink data to leave the first slave station or terminal device; or, the uplink data leaves the first slave station or terminal device and The time interval for the downlink data to reach the first slave station or terminal device; or the time interval for the uplink data to leave the first slave station or terminal device and the time interval for the downlink data to leave the master station; or, the uplink data to leave the first slave station or terminal device and The time interval for the data packet corresponding to the downlink data to leave the first slave station or terminal device.
  • the terminal device acquiring the uplink resource includes: when the terminal device receives the downlink data, acquiring the authorization information of the uplink resource from the access network device; or, after the terminal device receives the downlink data and before the time interval expires , Obtain the authorization information of the uplink resource from the access network equipment; or, the terminal device obtains the pre-configuration information of the uplink resource.
  • the downlink data includes data from the master station to multiple slave stations
  • the uplink data includes data from multiple slave stations to the master station.
  • the multiple slave stations include the first slave station and the second slave station.
  • a slave station is connected to the terminal device, the terminal device is the first terminal device, and the second slave station is connected to the second terminal device.
  • the time interval includes: the time interval between the uplink data reaching the first slave station or the first terminal device and the downlink data reaching the second slave station or the second terminal device; or, the uplink data reaching the first slave station or the first terminal device And the time interval between the departure of the downlink data from the master station; or the time interval between the arrival of the uplink data at the first slave station or the first terminal device and the departure of the data packet corresponding to the downlink data from the second slave station or the second terminal device; or, the uplink The time interval between the data leaving the first slave station or the first terminal device and the downlink data reaching the second slave station or the second terminal device; or, the time interval between the uplink data leaving the first slave station or the first terminal device and the downlink data leaving the master station Time interval; or, the time interval between the uplink data leaving the first slave station or the first terminal device and the data packet corresponding to the downlink data leaving the second slave station or the second terminal device.
  • the terminal device receives the first identifier from the access network device, and the first identifier is used for uplink resource allocation.
  • the first identifier is the same as the second identifier used for receiving downlink data.
  • the terminal device does not trigger a buffer status report, and/or a scheduling request.
  • the terminal device may also send timing information to the access network device.
  • the terminal device may also send timing information to other terminal devices.
  • a clock synchronization method including: a second slave station obtains timing information from a first slave station, the timing information is used to indicate the time corresponding to a moment in the clock of the first slave station; This timing information adjusts the clock of the second slave station.
  • a clock synchronization device which includes units or means for performing the steps of the third aspect above.
  • a clock synchronization device including a processor and an interface circuit.
  • the processor is used to communicate with other devices through the interface circuit and execute the method provided in the third aspect above.
  • the processor includes one or more.
  • a clock synchronization device including a processor, configured to call a program stored in a memory to execute the method provided in the above third aspect.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the terminal device corresponding to the second slave station receives an identifier from the access network device or the first slave station; and receives the timing information on the resource allocated through the scrambled control channel of the identifier.
  • the terminal device corresponding to the second slave station receives the logical channel identifier from the access network device or the first slave station; and receives the timing information on the logical channel corresponding to the logical channel identifier.
  • the terminal device corresponding to the second slave station receives the flow identification from the access network device or the first slave station; and receives the timing information on the flow corresponding to the flow identification.
  • a method for transmitting timing information including: an access network device receives timing information from a first terminal device or other access network devices, where the timing information is used to indicate a first slave connected to the first terminal device Stand at the time corresponding to a moment; the access network device transmits the timing information to the target device.
  • timing information transmission device which includes units or means for executing each step of the third aspect above.
  • a timing information transmission device including a processor and an interface circuit.
  • the processor is used to communicate with other devices through the interface circuit and execute the method provided in the fourth aspect above.
  • the processor includes one or more.
  • a timing information transmission device including a processor, configured to call a program stored in a memory to execute the method provided in the above fourth aspect.
  • the memory can be located inside the device or outside the device.
  • the processor includes one or more.
  • the target device is a core network device or another access network device.
  • the target device is a terminal device connected to other slave stations in the slave station group where the first slave station is located.
  • the access network device allocates an identifier to the first terminal device; and receives the timing information on the resource allocated through the scrambled control channel of the identifier.
  • the access network device allocates a logical channel identifier to the first terminal device; and receives the timing information on a logical channel corresponding to the logical channel identifier.
  • the access network device allocates a flow identifier to the first terminal device; and receives the timing information through a flow corresponding to the flow identifier.
  • the slave station where the master clock is located notifies the master station of its own clock information, and the master station notifies other slave stations of the clock information.
  • This clock synchronization method is more complicated and requires more time to complete the clock synchronization.
  • the third and fourth aspects above provide clock synchronization methods and timing information transmission methods, which can make other slave stations directly obtain timing information from the slave station where the master clock is located. , Or obtain the timing information from the access network equipment, and perform clock synchronization, so that the clock synchronization is simplified, thereby reducing the time required for clock synchronization.
  • FIG. 1 is a schematic diagram of a traditional Ethernet control automation technology (etherCAT) system and Ethernet frame;
  • etherCAT Ethernet control automation technology
  • Figure 2 is a schematic diagram of another traditional etherCAT system and ether frame
  • Figure 3 is a schematic diagram of a conventional control system
  • FIG. 4 is a schematic diagram of a control system provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another control system provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a wireless communication network provided by an embodiment of the application applied to a control network
  • FIG. 7 is a schematic diagram of a transmission control method provided by an embodiment of the application.
  • 8A is a schematic diagram of another transmission control method provided by an embodiment of the application.
  • FIG. 8B is a schematic diagram of a time interval provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of yet another transmission control method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another wireless communication network provided by an embodiment of the application applied to a control network;
  • FIG. 11A is a schematic diagram of another time interval provided by an embodiment of this application.
  • FIG. 11B is a schematic diagram of yet another transmission control method provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of yet another transmission control method provided by an embodiment of this application.
  • Figure 13 is a schematic diagram of clock synchronization in an existing control system
  • FIG. 15 is a schematic diagram of a clock synchronization method provided by an embodiment of this application.
  • 16 is a schematic diagram of another clock synchronization method provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of a transmission control device provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of a transmission control device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of an access network device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 21 is a schematic structural diagram of a core network device provided by an embodiment of this application.
  • the traditional industrial control field realizes automation control through wired connection.
  • ether control automation technology etherCAT
  • the traditional etherCAT system includes a master and multiple slaves. They Wired connection between.
  • Figure 1 is a schematic diagram of a traditional etherCAT system and an Ethernet frame.
  • the etherCAT system includes a master (master) and a slave (slave).
  • three slaves are taken as an example, denoted as Slave1 ⁇ 3. More or less slaves are similar. Repeat it again.
  • the lines in the figure indicate the direction of data flow in the etherCAT system.
  • the data starts from the master and flows through Slave 1, Slave 2, and Slave 3 in turn; when returning, it goes from Slave 3, passes through Slave 2, Slave 1, and finally returns to the master.
  • the data structure is in the form of an Ethernet frame.
  • the Ethernet frame includes an Ethernet header and an Ethernet frame load.
  • the Ethernet negative frame load includes data of one or more slaves, such as the data of Slaves 1 to 3 in the figure.
  • the data of the slave has a slave ID (slave ID) before it, which is used to identify the ownership of the subsequent data.
  • the Ethernet frame starts from the master and carries the data of Slaves 1 to 3, and three slave identifiers are used to indicate its belonging in the Ethernet frame load, as shown in the data structure of reference point A.
  • the Ethernet frame passes through Slave1, Slave1 reads its own data, and then writes the data it wants to send to the master in the same position of the Ethernet frame, that is, the position of L1 in the figure.
  • the Ethernet frame reaches the reference point B, the data corresponding to Salve1 has been replaced with the data sent by Slave1 to the master, and the data corresponding to Slave 2 and Slave3 is still the data sent by the master to the slave.
  • the slave fetches data from the Ethernet frame, it puts in the data.
  • the length of the fetched data and the length of the put data can be configured in advance.
  • Another way to achieve this is that when the ether frame passes for the first time, the slave takes data from it, and when the ether frame passes for the second time, the slave puts the data into the ether frame, as shown in Figure 2.
  • the data in the ether frame is the data sent by the master to the slave
  • the data in the ether frame is the data sent by the slave to the master.
  • TSN wired time-sensitive network
  • FIG. 4 is a schematic diagram of a control system provided by an embodiment of the application.
  • the wireless network is used to realize the transmission between master and Slave1, and the wireless network ensures that the transmission delay fluctuation between master and Slave1 is within a small range, so as to realize the dedicated use between master and Slave1
  • the cable connection has a similar effect. In this way, a more flexible physical connection can be achieved between master and slave. Furthermore, the wired connection between slaves can be cancelled, and wireless transmission can be used to replace wired transmission, thereby realizing completely flexible deployment.
  • FIG. 5 is a schematic diagram of another control system provided by an embodiment of the application. As shown in Figure 5, the master communicates with each slave through the wireless network.
  • FIG. 6 is a schematic diagram of a wireless communication network applied to a control network according to an embodiment of the application.
  • the terminal 610 accesses a wireless network through a wireless interface (for example, an air interface) to communicate with other devices, such as a master, through the wireless network.
  • the wireless network includes a radio access network (RAN) 620 and a core network (CN) 630.
  • the RAN 620 is used to connect the terminal 610 to the wireless network
  • the CN630 is used to manage the terminal and provide other equipment. Communication gateway.
  • the terminal can be a device with wireless communication function, which can be connected to the slave in the above control system through an adapter to receive the data sent by the master to the slave through the wireless network and send it to the slave, or send the data from the slave to the master through the wireless network Send to master.
  • the terminal can be integrated with the slave on a physical entity.
  • Slave1 in Figure 4 or a slave in Figure 5 can integrate components with wireless communication functions (for example, chips). At this time, the slave integrates wireless communication functions. And the function of the industrial control terminal to perform operations according to instructions.
  • each slave can communicate with the master through the wireless network.
  • each slave is connected to the terminal through an adapter.
  • each slave can integrate a wireless communication function component (for example, a chip) to access a wireless network through a wireless interface.
  • the above two connection methods can be combined.
  • the terminal is also called a terminal device or user equipment (UE), which is a device with a wireless communication function and can be connected to a slave, and is called a terminal device in the following embodiments.
  • the terminal device may be integrated with the slave.
  • the terminal device may refer to a device integrated with a wireless communication function in a physical entity that integrates the terminal device and the slave, such as a chip or a system on a chip.
  • Terminal devices may include wireless terminals in industrial control, or terminals with similar requirements in other control systems, such as wireless terminals in self-driving (self-driving) and remote medical surgery (remote medical surgery).
  • Wireless terminals wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • An access network device is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal device to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the access network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device or integrated into the baseband device. Or part of the remote part is integrated in the baseband device.
  • the RAN may include a baseband device and a radio frequency device, where the radio frequency device may be arranged remotely relative to the baseband device, for example, a remote radio unit (RRU) may be arranged remotely relative to the BBU.
  • RRU remote radio unit
  • the control plane protocol layer structure may include the radio resource control (RRC) layer, the packet data convergence protocol (PDCP) layer, the radio link control (RLC) layer, and the media interface. Access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • the user plane protocol layer structure can include the functions of the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation protocol (SDAP) layer .
  • SDAP service data adaptation protocol
  • the functions of these protocol layers can be implemented by one node or multiple nodes; for example, in an evolution structure, the RAN can include a centralized unit (CU) and a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • Each DU can be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by delay. The functions that need to meet the delay requirements for processing time are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the radio frequency device can be remote, not placed in the DU, can also be integrated in the DU, or part of the remote part is integrated in the DU, and there is no restriction here.
  • control plane (CP) and the user plane (UP) of the CU can also be separated and realized by dividing them into different entities, namely the control plane CU entity (CU-CP entity) and the user plane CU entity (CU-UP entity) ).
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU through the DU.
  • the DU may directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal or CU. If the following embodiments involve the transmission of such signaling between the DU and the terminal, at this time, the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal, or converted from received PHY layer signaling. Under this architecture, the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency.
  • the access network device may be a CU node, or a DU node, or a RAN device including a CU node and a DU node.
  • the devices in the following embodiments of the present application may be located in different devices according to the functions they implement.
  • the data transmitted between the master and the slave is realized through the wireless network.
  • the embodiments of the present application consider that industrial control has high requirements for data transmission delay, and propose a scheduling method to make this scheduling method more suitable for the requirements of the control network, so that the efficiency of data transmission is greatly improved.
  • the Ethernet frame sent by the master enters Slave 1 through the wireless network, passes through Slave2-Slave3-slave2-slave1, and then returns to the master through the wireless network. It can be seen that after the RAN receives the downlink data sent by the master and sends the downlink data to the terminal device, after a period of time, the terminal device will transmit the uplink data to the RAN, and the RAN can simplify scheduling accordingly and improve the efficiency of data transmission.
  • FIG. 7 is a schematic diagram of a transmission control method according to an embodiment of the application. As shown in Figure 7, the method includes the following steps:
  • the access network device obtains transmission interval information, where the transmission interval information is used to indicate a time interval (T_gap).
  • the time interval may be the time interval between the corresponding uplink transmission and the downlink transmission, or the time interval between the transmission of uplink data and the transmission of downlink data corresponding to the uplink data.
  • the time of uplink transmission (or transmission of uplink data) may be the time of arrival or departure of uplink data
  • the time of downlink transmission and transmission of downlink data may be the time of arrival or departure of downlink data.
  • the corresponding uplink transmission and downlink transmission means that the transmitted data packet has data in different directions at the corresponding two ends.
  • the downlink data includes data from the master to at least one slave
  • the uplink data includes data from at least one slave to the master.
  • the uplink data of a slave can be loaded into the corresponding position in the data packet of the downlink data of the same slave, and the size of the uplink data and the downlink data of the same slave can be the same or different.
  • the time interval is the time interval between the uplink data reaching Slave 1 and the downlink data reaching Slave 1; alternatively, the time interval is the time interval between the uplink data reaching Slave 1 and the downlink data leaving the master; or, the time interval is the uplink The time interval between the data arriving at Slave 1 and the data packet corresponding to the downlink data leaving Slave 1; or, the time interval is the time interval between the uplink data leaving Slave 1 and the downlink data reaching Slave 1; or the time interval is the uplink data leaving Slave 1 and the downlink The time interval between data leaving the master; or, the time interval is the time interval between uplink data leaving Slave 1 and the data packet corresponding to downlink data leaving Slave 1.
  • Slave 1 refers to the entrance and exit of a slave group connected to the wireless network, that is, the slave connected to the terminal device. If there are multiple slaves in the slave group, the remaining slaves are directly or indirectly connected to Slave 1.
  • the data packet corresponding to the downlink data refers to a data packet that does not include the data sent by the master to Slave 1, where the data packet may include the data sent by Slave 1 to the master, or may not include the data sent by Slave 1 to the master.
  • the time interval is the time interval between the uplink data arriving at Slave n and the downlink data reaching Slave 1; or, the time interval is the time interval between uplink data reaching Slave and the downlink data leaving the master; or, the time interval is The time interval between the uplink data arriving at Slave n and the data packet corresponding to the downlink data leaving Slave 1; alternatively, the time interval is the time interval between uplink data leaving Slave n and the downlink data reaching Slave 1; or, the time interval is the uplink data leaving Slave n and The time interval for the downlink data to leave the master; or, the time interval is the time interval for the uplink data to leave the Slave and the data packet corresponding to the downlink data to leave the Slave 1.
  • Slave n and Slave 1 refer to the exit and entrance of a slave group connected to the wireless network, that is, the slave connected to the terminal device. If there is one slave in the slave group, then Slave n and Slave 1 are the same slave; if this There are multiple slaves in the slave group, and the remaining slaves are directly or indirectly wired to Slave 1 and Slave n.
  • the data packet corresponding to the downlink data refers to a data packet that does not include the data sent by the master to Slave 1, where the data packet may include the data sent by Slave 1 to the master, or may not include the data sent by Slave 1 to the master. Where n is a positive integer.
  • the data transmitted by the master to the slave is called downlink data
  • the data transmitted by the slave to the master is called uplink data.
  • the master sends downlink data to the slave through the wireless network.
  • the downlink data is sent to the terminal device through the CN device and the access network device.
  • the terminal device can send the downlink data to the slave through the adapter, or the terminal device and the slave are integrated on a physical entity.
  • the terminal device sends the downlink data to the slave through the local interface.
  • the access network device can obtain the transmission interval information from the master.
  • the master can determine the time interval according to the operation, administration and maintenance (OAM) configuration, and can also determine the time interval according to the previous measurement information, for example, according to the previous uplink data and downlink data arriving and leaving related nodes (such as master, Slave 1, one or more of Slave n) determines the time interval.
  • OAM operation, administration and maintenance
  • the master may send the determined transmission interval information to the CN device of the wireless network, and the CN device sends the transmission interval information to the access network device.
  • the access network equipment can also calculate the previous measurement information to determine the time interval, for example, determine the time interval according to the time of the previous uplink data and downlink data arriving and leaving the relevant node (for example, one or more of master, Slave 1, and Slave n) .
  • the CN device may forward the transmission interval information to the access network device without parsing the message or data packet; it may also send the transmission interval information to the access network device after obtaining the transmission interval information through analysis.
  • CN equipment does not parse messages or data packets, but can encrypt messages or data packets.
  • the CN device analyzes the data packet, can re-encapsulate the transmission interval information, and can also send it to the access network device together with other information.
  • the above method also includes: S701: The CN device receives transmission interval information from the master, and sends the transmission interval information to the access network device.
  • the access network device After the access network device obtains the transmission interval information from the CN device, it can schedule uplink resources according to the time interval indicated by the transmission interval information for the terminal device to send uplink data; or, it can send the transmission interval information to the terminal device for use
  • the terminal device determines the time when the uplink resource is used to send the uplink data, and the access network equipment may also adjust the time interval and send transmission interval information indicating the adjusted time interval to the terminal device to determine the uplink resource used to send the uplink data. time.
  • the above methods also include:
  • S720 The access network device allocates uplink resources to the terminal device, and the time interval indicated by the above transmission interval information is used for the access network device to determine the uplink resource allocation time or for the terminal device to determine the uplink resource time for transmission.
  • the access network equipment receives uplink data from the terminal device on the uplink resource.
  • the access network equipment does not need to wait for the scheduling request of the terminal device, but expects that when the time interval expires, the terminal device has uplink data to be transmitted, so resource allocation or resource scheduling is completed in advance, so that the terminal device can upload in time Uplink data reduces the scheduling delay and improves the efficiency of data transmission.
  • the access network device transmits uplink data to the master. Specifically, it can be sent to the master through the CN device. In the following embodiments, these two steps are not shown, but these two steps may be included.
  • the uplink data in the above embodiment may include data from at least one slave station to the master station.
  • the access network equipment receives downlink data from the master, the downlink data includes data from the master station to at least one slave station, and the corresponding uplink data includes data from at least one slave station to the master station.
  • At least one slave station includes a slave station and the The terminal device is connected.
  • the slave station is called the first slave station, and the terminal device connected to the first slave station is called the first terminal device.
  • the first slave station may be Slave 1. Downlink data and uplink data are carried in Ethernet frames.
  • the Ethernet frame carrying the downlink data After the Ethernet frame carrying the downlink data enters Slave 1, after a period of time, the Ethernet frame will carry When the uplink data returns to Slave 1, the terminal device connected to Slave 1 will transmit uplink data to the access network device. Therefore, the access network device can schedule uplink resources in advance according to the time interval indicated by the transmission interval information to facilitate the terminal device The uplink data is transmitted without waiting for the scheduling request of the terminal device to perform uplink resource allocation. In this way, the delay can be reduced and the efficiency of data transmission can be improved.
  • FIG. 8A is a schematic diagram of another transmission control method according to an embodiment of the application.
  • the reception of downlink data and the transmission of uplink data are implemented by the same terminal device.
  • the method includes the following steps:
  • S801 The master sends transmission interval information to the wireless network.
  • S802 The master sends downlink (DL) data to the wireless network.
  • DL downlink
  • the transmission interval information is used to indicate the time interval (T_gap), which can also be referred to as the transmission interval or the uplink and downlink transmission interval.
  • the time interval refers to the time interval between the uplink data reaching Slave 1 and the downlink data reaching Slave 1; or, the time interval is The time interval between the uplink data reaching Slave 1 and the downlink data leaving the master; or, the time interval is the time interval between the uplink data reaching Slave 1 and the data packet corresponding to the downlink data leaving Slave 1, or the time interval is the uplink data leaving Slave 1 and The time interval for the downlink data to reach Slave 1; or, the time interval is the time interval between the uplink data leaving Slave 1 and the downlink data leaving the master; or, the time interval is the uplink data leaving Slave 1 and the data packet corresponding to the downlink data leaving Slave 1.
  • Slave 1 refers to the entrance and exit of a slave group connected to the wireless network, that is, the slave connected to the terminal device. If there are multiple slaves in the slave group, the remaining slaves are directly or indirectly connected to Slave 1. Since the transmission delay between the terminal device and the slave through the adapter or the local interface is very small and can be ignored, the Slave 1 in the description of the time interval can be replaced with a terminal device connected to Slave 1.
  • FIG. 8B is a schematic diagram of a time interval provided by an embodiment of this application.
  • T0 is the time when the master sends downlink data to Slave 1, that is, the time when the downlink data leaves the master.
  • T1 is the time when Slave 1 receives the downlink data from the master, that is, the time when the downlink data reaches Slave1.
  • T2 is the time when Slave 1 processes the data and sends the data to Slave2, that is, the time when the downlink data leaves Slave1.
  • the downlink data has been taken away by the Slave and may be put into the uplink data of Slave 1, that is, does not include Slave1.
  • Downlink data is the time when the master sends downlink data to Slave 1, that is, the time when the downlink data leaves the master.
  • T3 is the time when Slave 1 receives the uplink data from Slave 2, that is, the time when the uplink data reaches Slave 1
  • T4 is the time when Slave 1 processes the uplink data and sends it to the master, that is, the time when the uplink data leaves Slave 1.
  • the uplink data can be sent to the master in the Ethernet frame (or data packet) when the Ethernet frame (or data packet) returns to the slave, then the above T3 can also be the uplink data The time when the corresponding data packet arrives at Slave1, and the data packet corresponding to the uplink data does not include the data sent by Slave 1 to the master.
  • the time interval may be the time interval between T3 and T0, T3 and T1, or T3 and T2, or the time interval between T4 and T0, T4 and T1, or T4 and T2.
  • the method for the master to determine the time interval is the same as in the above embodiment, and will not be repeated here.
  • the master informs the access network equipment in the wireless network of the time interval information through signaling.
  • the transmission interval information is used to indicate the size of the time interval.
  • the transmission interval information can be sent to the access network equipment through the CN equipment, such as the access and mobility management function (AMF) entity, or through other CN equipment is sent, this application is not restricted.
  • the access network device can determine the time interval by itself, and the above step S801 can be omitted. The following embodiments are similar.
  • steps S801 and S802 have no sequence requirements, and can be combined into one step, that is, DL data and transmission interval information can be transmitted through the same message. DL data and transmission interval information can also be transmitted through different messages.
  • the master may notify the access network equipment of the transmission interval information when the service is established, or may notify the access network equipment of the transmission interval information during the service process, which is not limited by this application.
  • the master initiates a service establishment request to the wireless network, and the transmission interval information can be sent to the CN in the wireless network through the service establishment request message Device, the CN device receives the service establishment request message, triggers service bearer establishment based on the service establishment request message, and can send transmission interval information to the access network device through the bearer establishment request message during the bearer establishment process.
  • the master notifies the transmission interval information to the access network device during the process of transmitting service data to the wireless network, that is, sending the transmission while sending DL data. Interval information.
  • the CN device receives the transmission interval information from the master, and sends the transmission interval information to the access network device (S830).
  • S820 The CN device receives DL data from the master, and sends the DL data to the access network device (S840).
  • the above steps S810 and S820 do not have a sequence requirement, and can be combined into one step, that is, the CN device can send DL data and transmission interval information through the same message or different messages, that is, DL data and transmission interval information can be simultaneously transmitted to the access network
  • the device may also not be transmitted to the access network device at the same time.
  • the access network equipment receives DL data and transmission interval information from the CN equipment, and allocates uplink resources to the terminal device before the transmission interval indicated by the transmission interval information arrives.
  • the terminal device performs uplink data transmission according to the uplink resources allocated by the access network equipment.
  • the access network equipment does not need to wait for the scheduling request of the terminal device, but expects that when the transmission interval expires, the terminal device has uplink data to be transmitted, so the resource allocation (or resource scheduling) is completed in advance, so that the terminal device can be timely
  • the uploading of uplink data reduces the scheduling delay and improves the efficiency of data transmission.
  • the access network device uses the transmission interval information to allocate uplink resources to the terminal after a preset time. At this time, the access network device does not need to send the transmission interval information to the terminal device, but only needs to provide the information before the transmission interval expires.
  • the terminal allocates uplink resources. Please continue to refer to Figure 8A, the above method also includes:
  • S830 The access network device sends DL data to the terminal device.
  • S840 The access network device allocates uplink resources according to the time interval.
  • the access network device determines the time for allocating the foregoing resources according to the time interval, and allocates the uplink resources at the determined time. Alternatively, the access network device allocates uplink resources to the terminal device before the time interval indicated by the transmission interval information arrives, or within the transmission interval from which DL data is sent as a starting point.
  • the access network equipment receives the downlink data and sends the downlink data to the terminal device.
  • the access network device starts a timer when sending downlink data to the terminal device.
  • the duration of the timer is less than the time interval and less than the preset duration of the time interval.
  • the difference between the time interval and the timer duration (that is, the preset duration) is based on the transmission delay between the access network device and the terminal device or the transmission delay and processing time between the access network device and the terminal device. Delayed confirmation.
  • the timer can be a hardware-implemented timer or a software-implemented timer. For example, a timer with a preset duration is started, and the preset duration can be understood as the duration of the timer.
  • the access network equipment allocates uplink resources to the terminal device for the terminal device to transmit the uplink data returned from the slave.
  • the access network device starts a timer while sending downlink data to the terminal device.
  • the duration of the timer is set according to the time interval, for example, it can be equal to the time interval, or a value within a time range including the time interval, that is, the time interval ⁇ X, where X is the time value, and the unit can be symbol or time slot (slot), transmission time interval (TTI), subframe, or milliseconds, etc., which can be set as needed.
  • the timer can be a hardware-implemented timer or a software-implemented timer. For example, a timer with a preset duration is started, and the preset duration can be understood as the duration of the timer.
  • the access network device allocates uplink resources to the terminal device for the terminal device to transmit the uplink data returned from the slave.
  • the preset time can be determined according to the [transmission delay between the access network equipment and the terminal device].
  • the above resource allocation process is a dynamic resource allocation process.
  • the access network equipment allocates uplink resources to the terminal device, which can be realized by sending authorization information of the uplink resource to the terminal device, and the authorization information can be carried in the physical downlink control channel (PDCCH) in the downlink control information (DCI).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • the terminal device obtains uplink resources from the access network equipment, and uses the uplink resources to send uplink (UL) data.
  • the terminal device receives authorization information of the uplink resource from the access network device, and uses the uplink resource to send the uplink data when the time interval (T_gap) expires.
  • the expiration of the time interval in the embodiment of the present application refers to receiving the authorization information of the uplink resource within a time range including the time interval.
  • the terminal device does not know that the time interval expires, the authorization information of the uplink resource indicates
  • the terminal device can perform uplink data transmission in the time unit that starts at this moment.
  • the time unit is, for example, a symbol, a time slot (slot), a transmission time interval (TTI), or a subframe, etc. ,
  • the terminal device can perform uplink data transmission at this time.
  • the terminal device receives downlink data from the access network device, and in the transmission interval starting from the received downlink data, that is, before the time interval expires, obtains authorization information for uplink resources from the access network device, and uses the uplink resource to send uplink data.
  • the terminal device after receiving the downlink data, the terminal device starts to enter the sleep mode, the sleep time is less than the transmission interval, and then the terminal wakes up or enters the active mode to receive the authorization information of the uplink resources allocated by the access network equipment, and Use the uplink resource to send uplink data. In this way, the terminal can save energy consumption.
  • the access network equipment does not notify the terminal device of the time interval, but allocates uplink resources to the terminal according to the time interval, that is, allocates uplink resources to the terminal device before the time interval expires.
  • Another implementation manner is: the access network equipment notifies the terminal device of the time interval, and allocates uplink resources to the terminal device in advance, and the terminal device determines the time to use the uplink resource to send uplink data according to the time interval.
  • FIG. 9 is a schematic diagram of another transmission control method provided by an embodiment of the application. As shown in Figure 9, the method includes the following steps:
  • S901 The master sends transmission interval information.
  • S902 The master sends DL data.
  • the CN device receives the transmission interval information from the master, and sends the transmission interval information to the access network device.
  • the CN device receives the DL data from the master, and sends the DL data to the access network device.
  • Steps S901 to S920 are the same as the description of steps S801 to S820 above, and will not be repeated here.
  • the access network device sends transmission interval information or adjusted transmission interval information to the terminal device.
  • the access network equipment can directly forward the received transmission interval information to the terminal device, or it can adjust the adjusted time interval (T_gap1) by itself according to the time interval (T_gap) indicated by the transmission interval information, and will indicate the adjustment of T_gap1
  • the subsequent transmission interval information is sent to the terminal device.
  • the time length of T_gap is 5.3987ms
  • the transmission unit of the wireless interface is 1ms
  • the adjusted T_gap1 is 6ms
  • the time length of T_gap is 5.3987ms
  • the transmission unit of the wireless interface is 0.5ms
  • the adjusted T_gap1 is 5.5ms.
  • the transmission interval information in the above step S910 is called the first transmission interval information
  • the transmission interval information indicating the adjusted time interval (T_gap1) is called the second transmission interval information
  • the transmission interval information in step S930 It may be the first transmission interval information or the second transmission interval information.
  • the terminal device After the access network device sends the transmission interval information to the terminal device, the terminal device can determine the time for transmitting the uplink data according to the time interval (T_gap or T_gap1) indicated by the transmission interval information.
  • the access network device sends DL data to the terminal device.
  • the access network device may send transmission interval information to the terminal device during the service data transmission process, that is, send the transmission interval information while sending DL data. That is, the above steps S930 and S940 are performed simultaneously.
  • the access network device can configure the transmission interval information to the terminal device before the DL data transmission, for example, through a radio resource control (RRC) message or a media access control element (media access control control element, MAC CE), or downlink control information (DCI) configures the transmission interval information to the terminal device.
  • RRC radio resource control
  • MAC CE media access control element
  • DCI downlink control information
  • the transmission interval information in S930 above can be notified once, and after each step S940, that is, each time the terminal device receives downlink data, it transmits uplink data after the time interval; or, the transmission interval information notified by S930 only It is valid for one S940, and the transmission interval information received by the terminal device is only used for one uplink data transmission.
  • the transmission interval information can be sent together with the downlink data.
  • the terminal device receives the DL data, and after a certain time, it will receive the UL data corresponding to the DL data, and can determine the transmission time of the uplink data according to the time interval (T_gap or T_gap1), that is, perform the following steps:
  • the terminal device sends uplink (UL) data to the access network device according to the time interval (T_gap or T_gap1).
  • the uplink resource for sending uplink data can be pre-configured to the terminal by the access network device, and the uplink resource can be allocated through physical layer signaling.
  • the access network device sends DL data to the terminal device, it sends the authorization information of the uplink resource to the terminal device, so that it can be determined that there is subsequent uplink data to be sent while downlink scheduling, so as to perform uplink scheduling at the same time and prepare in advance Good resources reduce transmission delay and improve resource utilization.
  • T_gap or T_gap1 expires
  • the access network device sends DL data to the terminal device and before the time interval (T_gap or T_gap1) expires, it sends the uplink resource authorization information to the terminal device.
  • T_gap or T_gap1 the time interval
  • the above uplink resources are allocated to the terminal device in a dynamic scheduling manner.
  • the uplink resources can also be allocated to the terminal device in a semi-static or static configuration manner.
  • uplink resources can be allocated through high-level signaling.
  • the access network device is sending an RRC message to the terminal device.
  • the RRC message includes the configuration information of the uplink resource and is used to indicate the frequency domain position or time-frequency position of the uplink resource. .
  • the access network device does not know when the downlink data arrives, and the transmission of uplink data is bound to the downlink data. Therefore, only the frequency domain position and time domain position of the uplink resource can be allocated.
  • the position is inferred from the time when the downlink data is sent.
  • the access network equipment already knows the arrival time of the downlink data, such as 15:32:48 seconds and 785ms, one downlink data every 5ms, and the time interval is 2ms, the access network equipment can be configured through RRC: from 15 Starting at 787ms at 32 minutes and 48 seconds, there is a time-frequency position of the uplink data every 5ms.
  • the usage mode of the uplink resource that is, the transmission mode of uplink data, such as: modulation and coding scheme (MCS), and/or whether to perform frequency hopping (hopping), etc.
  • MCS modulation and coding scheme
  • hopping frequency hopping
  • the master can also determine the size difference between the corresponding uplink data and downlink data (or downlink data and uplink data), and notify the access network device of the size difference for connection
  • the network access device determines the size of the uplink resource allocated to the terminal device.
  • the master can determine the size of the uplink data according to the type of uplink data, and then determine the size difference between the uplink data and the downlink data. For example, when the master knows that the size of the downlink data is 50B, the downlink data requires the slave to measure the temperature, and the temperature report requires 20B ; For another example, when the downlink data size is 60B, the downlink data requires the slave to measure the pressure, and the pressure report requires 25B, where B is a byte.
  • the above method further includes: the master sends instruction information to the wireless network, where the instruction information is used to indicate the size difference between the corresponding uplink data and the downlink data or the size difference between the corresponding downlink data and the uplink data.
  • the instruction information can be sent by the master to the CN device, and sent to the access network device through the CN device, and can be sent simultaneously with the transmission interval information, that is, carried in the same message, or sent separately.
  • the access network equipment receives the indication information, and allocates uplink resources to the terminal device according to the size difference indicated by the indication information. At this time, the allocated uplink resources can match the size of the uplink data, reducing resource waste and improving resource utilization.
  • the size difference can be positive, then the uplink data is greater than the downlink data, and the size difference can be negative, and the uplink data is smaller than the downlink data.
  • the difference can be zero, and the uplink data is equal to the downlink data.
  • the indication information may not be sent, so that the default uplink data and the downlink data have the same size. If the payload size is different, the uplink data and the downlink data can be kept the same size by patching.
  • the size difference can be positive, then the downlink data is larger than the uplink data, and the size difference can be negative, and the downlink data is smaller than the uplink data.
  • the size difference can be zero, then the downlink data is equal to the uplink data.
  • the indication information may not be sent, so that the default uplink data and the downlink data have the same size. If the payload size is different, the uplink data and the downlink data can be kept the same size through padding.
  • the indication information is used to indicate the size difference between uplink data and downlink data or the size difference between downlink data and uplink data.
  • the uplink data and downlink data here refer to the uplink data of all slaves in a slave group.
  • downlink data, that is, the difference can be the size difference of the entire Ethernet frame or the load of the Ethernet frame, that is, the size difference of the sum of all slave data in the entire slave group.
  • the indication information may be used to indicate the size difference between the data corresponding to a slave in the uplink data and the downlink data or the size difference between the data corresponding to a slave in the downlink data and the uplink data, that is, one slave corresponds to The size difference between the uplink data and the downlink data (or downlink data and uplink data).
  • the data of each slave has the same uplink data size and the same downlink data size. In this way, the entire slave group can be determined according to the data size difference of a slave The difference in data size.
  • the access network equipment can expect the terminal device to transmit uplink data after a period of time, the access network equipment can allocate resources for the terminal device in advance. Therefore, for the terminal device, when the uplink data arrives At the access layer, the buffer status report (BSR) may not be triggered, or the scheduling request (SR) may not be triggered.
  • whether the terminal device triggers the BSR is configurable, and further whether to trigger the SR is configurable.
  • the access network device may send a configuration information element indicating whether the terminal device triggers the BSR to the terminal device, and/or send a configuration information element indicating whether the terminal device triggers the SR to the terminal device.
  • the same configuration cell can be used to indicate whether the terminal device triggers the BSR and SR. Or, it may only indicate whether the terminal device triggers the BSR, and the terminal device does not trigger the SR because no BSR is triggered. Or, it may only indicate whether the terminal device triggers the SR, and the terminal device does not trigger the BSR by default.
  • the access network equipment when the access network equipment allocates uplink resources to the terminal device, it only considers that the slave on the terminal device side will transmit the uplink data to the master after receiving the downlink data, so the allocated uplink resources may only be enough for the terminal device. Transmit the corresponding uplink data, that is, the returned Ethernet frame. Based on this consideration, the terminal device does not transmit other service data on the uplink resource. That is, for the uplink data returned by the slave, the access network device configures a dedicated logical channel for transmitting the uplink data. The allocation of uplink resources is performed on the logical channel, so the uplink resource is not used to transmit data on other logical channels. , It does not transmit other control information elements, such as media access control control element (MAC CE).
  • MAC CE media access control control element
  • the uplink data packet generated by the terminal device may not include MAC subheader information.
  • the access network device configures the logical channel or control cell used for transmission by the uplink resource, and the terminal device transmits according to the configuration of the access network device.
  • the downlink data enters from Slave 1, and the uplink data comes out from Slave 1.
  • the Ethernet frame enters from Slave 1 and exits from Slave 1.
  • Slave 3 can Directly send the uplink data to the access network device, further reducing the transmission delay and improving the data transmission efficiency.
  • FIG. 10 is a schematic diagram of another wireless communication network applied to a control network according to an embodiment of the application.
  • Slave 3 is also equipped with a terminal device 640.
  • the terminal device 640 can be connected to Slave 3 through an adapter, or it can be integrated with Slave 3 in a physical entity and connected through a local interface.
  • Slave 1 and Slave 3 are the entrance and exit of one slave described in the above embodiment, and they are connected to different terminal devices.
  • Slave1 and Slave3 can also be connected to the same terminal device.
  • the master can determine the time interval, for example, the time difference between the time when the Ethernet frame enters Slave 1 and the time when it leaves Slave 3 (or other time differences in the following embodiments), and informs the access network device of the time interval, so that the access network device can Based on this, the time to allocate uplink resources to the terminal device 640 is determined or the time interval is notified to the terminal device 640 so that the terminal device 640 determines the time to use the uplink resource for transmission.
  • the difference between this embodiment and the above embodiments is that the allocation of uplink resources and the transmission objects of downlink data are different, and other implementation processes are similar to the above embodiments.
  • the embodiment of the present application does not limit the number of slaves in the slave group.
  • the slave group includes multiple slaves
  • the downlink data includes data from the master to multiple slaves
  • the uplink data includes data from multiple slaves to the master.
  • the multiple slaves include the first slave and the second slave, and the first slave and the second slave A terminal device is connected, the second slave is connected to the second terminal device, and the access network device sends downlink data to the second terminal device.
  • the time interval may be: the time interval is the time interval between the uplink data reaching the first slave and the downlink data reaching the second slave; or the time interval is the time between the uplink data reaching the first slave and the downlink data leaving the master station Interval; or, the time interval is the time interval between the uplink data reaching the first slave and the data packet corresponding to the downlink data leaving the second slave; or, the time interval is the time interval between the uplink data leaving the first slave and the downlink data reaching the second slave Or, the time interval is the time interval between the uplink data leaving the first slave and the downlink data leaving the master; or, the time interval is the time interval between the uplink data leaving the first slave and the data packet corresponding to the downlink data leaving the second slave.
  • the first slave and the second slave refer to the exit and entrance of a slave group connected to the wireless network, that is, the slave connected to the terminal device. If there are other slaves in the slave group, the other slaves are directly or indirectly connected to the first One slave and second slave. Since the transmission delay between the terminal device and the slave through the adapter or the local interface is very small and can be ignored, therefore, the first slave and the second slave in the above description of the time interval can be replaced with the first slave and the second slave.
  • the first terminal device and the second terminal device may be the same.
  • FIG. 11A is a schematic diagram of another time interval provided by an embodiment of the application.
  • T0 is the time when the master sends downlink data to Slave 1 (corresponding to the second slave), that is, the time when the downlink data leaves the master.
  • T1 is the time when Slave 1 receives the downlink data from the master, that is, the time when the downlink data reaches Slave1.
  • T2 is the time when Slave 1 processes the data and sends the data to Slave2, that is, the time when the downlink data leaves Slave1.
  • the downlink data has been taken away by the Slave and may be put into the uplink data of Slave 1, that is, does not include Slave1.
  • Downlink data is the time when the master sends downlink data to Slave 1 (corresponding to the second slave), that is, the time when the downlink data leaves the master.
  • T1 is the time when Slave 1 receives the downlink data from the master, that is, the time when the downlink data
  • T3 is the time when Slave 3 (corresponding to the first slave) receives uplink data from Slave 2, that is, the time when the uplink data reaches Slave 3
  • T4 is the time when Slave 3 processes the uplink data and sends it to the master, that is, the time when the uplink data leaves Slave 3.
  • Slave 3 and Slave 1 correspond to the above first slave and second slave respectively, and the slave group may also include other slaves.
  • the time interval may be the time interval between T3 and T0, T3 and T1, or T3 and T2, or the time interval between T4 and T0, T4 and T1, or T4 and T2.
  • FIG. 11B is a schematic diagram of another transmission control method provided by an embodiment of the application. It is similar to the embodiment shown in FIG. 8A, except that the allocation of uplink resources and the transmission object of downlink data are different. As shown in FIG. 11B, the method includes:
  • S1101 The master sends transmission interval information.
  • S1102 The master sends DL data.
  • the CN device receives the transmission interval information from the master, and sends the transmission interval information to the access network device.
  • S1120 The CN device receives DL data from the master and sends the DL data to the access network device.
  • Steps S1101 to S1120 are the same as the description of steps S801 to S820 above, and will not be repeated here.
  • the access network device allocates a first identifier to the first terminal device, where the first identifier is used for allocation of uplink resources.
  • the access network device allocates a second identifier to the second terminal device, where the second identifier is used for receiving downlink data.
  • the first identifier and the second identifier may be the same identifier, for example, the same radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • the access network equipment can use the same RNTI scrambled DCI to realize the downlink resource allocation of downlink data and the uplink resource allocation of uplink data, and the first terminal device and the second terminal device do not need to monitor other RNTIs.
  • the first identifier and the second identifier may also be different identifiers, for example, different RNTIs.
  • the access network equipment may notify the first terminal device to use the first identifier to receive the authorization information of the uplink resource through the RRC message or the MAC CE, and notify the second terminal device to use the second identifier to receive the downlink data.
  • the first identifier is used for uplink resource allocation
  • the second identifier is used for downlink data reception.
  • the above first identifier used for uplink resource allocation means that the first identifier is dedicated to uplink resource allocation
  • the second identifier is used for downlink data reception means that the second identifier is dedicated to downlink data reception.
  • the access network device sends downlink (DL) data to the second terminal device.
  • DL downlink
  • the access network equipment After the access network equipment receives the downlink data from the master, it sends the downlink data to the second terminal device.
  • the second terminal device addresses the downlink data through the second identifier.
  • the second The terminal device only uses the identifier to receive downlink data, and does not receive the allocation of uplink resources.
  • S1160 The access network equipment allocates uplink resources to the first terminal device.
  • the access network device After the access network device sends the downlink data to the second terminal device, it knows that the first terminal device will have uplink data transmission after the time interval, so it can allocate the uplink resources to the first terminal device in advance through the first identifier.
  • a terminal device uses the uplink resource to transmit uplink data.
  • the first terminal device only uses the identifier to receive uplink resource allocation, and is not used to receive downlink data.
  • the first terminal device can sleep for a period of time, and then monitor the uplink resources allocated by the access network device for it, which will not be repeated here. .
  • the first terminal device obtains an uplink resource, and uses the uplink resource to send uplink (UL) data.
  • UL uplink
  • the access network device receives the uplink data on the uplink resource, and then transmits the uplink data to the master.
  • FIG. 12 is a schematic diagram of another transmission control method provided by an embodiment of the application. It is similar to the embodiment shown in Fig. 9, except that the allocation of uplink resources and the transmission object of downlink data are different. As shown in Fig. 12, the method includes:
  • S1201 The master sends transmission interval information.
  • S1202 The master sends DL data.
  • the CN device receives the transmission interval information from the master, and sends the transmission interval information to the access network device.
  • the CN device receives the DL data from the master and sends the DL data to the access network device.
  • Steps S1201 to S1220 are the same as the description of steps S801 to S820 above, and will not be repeated here.
  • the access network device sends transmission interval information or adjusted transmission interval information to the first terminal device.
  • the access network device allocates a first identifier to the first terminal device, where the first identifier is used for uplink resource allocation.
  • the access network device allocates a second identifier to the second terminal device, where the second identifier is used for receiving downlink data.
  • the description about the first identifier and the second identifier is the same as the embodiment shown in FIG. 11B.
  • the first identification may not be allocated to the first terminal device.
  • the access network device sends downlink (DL) data to the second terminal device.
  • DL downlink
  • the terminal device sends uplink (UL) data to the access network device according to the time interval (T_gap or T_gap1).
  • the master notifies the access network equipment of the transmission interval information, so that the access network equipment can use the time interval indicated by the transmission interval information to determine the time to allocate uplink resources or the time interval or the adjusted time
  • the terminal device is notified at intervals so that the terminal device can determine the uplink transmission time accordingly.
  • the access network device does not need to wait for the uplink data to arrive at the terminal device and trigger the terminal device to request resources from the access network device, and can allocate the terminal device in advance
  • Uplink resources can reduce time delay and improve the efficiency of data transmission, making data transmission more suitable for industrial control.
  • each node In etherCAT, the clocks of each node are synchronized, that is, the master and each slave maintain a clock, usually based on the clock of Slave 1, and the clocks of other nodes are required to be adjusted to the same clock as Slave 1. .
  • FIG 13 it is also described with three slaves as an example, and more or less slaves are similar. As shown in Figure 13:
  • the master and each slave maintain a clock. Initially, these clocks are not synchronized.
  • the master first sends a synchronization message, which includes the time value, such as "April 26, 2019, 18:32:28, 298 milliseconds, 350 nanoseconds, Beijing time".
  • the master records the time T0.
  • the synchronization message goes through Slave 1, Slave 2.
  • the three slaves respectively record the time when the synchronization message has passed, namely T1, T2, and T3.
  • T1' of slave 1 the time T1' of slave 1
  • T0' of master the time value it recorded.
  • each slave tells the master the time value it recorded.
  • the master calculates the transmission delay between each slave. such as:
  • the master calculates the delay of the data packet from slave1 to slave 2, slave 3, and master, and notifies the corresponding slave of these delay values. After Slave2 and Slave3 receive this delay value, they can adjust the clock they maintain to be the same as Slave1.
  • This method can be used in the above embodiments to determine the time interval indicated by the transmission interval information.
  • Slave1 where the master clock is located notifies the master of its own clock information, as shown by line 141 in the figure; master notifies Slave2 (as shown by line 142 in the figure) and Slave 3 (as shown by line 143 in the figure) of clock information.
  • This clock synchronization method is more complicated and requires more time to complete clock synchronization. Therefore, the following embodiments of the present application improve the clock synchronization method, simplify it, and reduce the time required for clock synchronization. In addition, the following embodiments can be combined with the above embodiments to make the wireless network more suitable for industrial control networks.
  • the timing information of Slave1 can be directly transmitted by Slave 1 to other slaves; or, Slave1 can be transmitted to the access network equipment through the terminal device, and then transmitted by the access network equipment to other slaves; or, Slave1 can be transmitted through
  • the terminal device is transmitted to the access network equipment, and then transmitted from the access network equipment to the CN equipment, and then transmitted from the CN equipment to other slaves.
  • Time service information is also called clock information, which refers to the time information corresponding to the clock at a time.
  • the clock of Slave 1 is used as the master clock, and the other slaves and masters also have their own clocks, which are called slave clocks.
  • Slave 1 reads its own clock at a certain moment and obtains the time value of this moment, such as 18:32:28, Beijing time, April 26, 2019, 298 milliseconds and 350 nanoseconds.
  • the time value information is the timing information .
  • UE terminal device
  • the slave through an adapter as an example, but this embodiment is not limited to this, and may also be integrated in an internal connection of a physical entity.
  • FIG. 15 is a schematic diagram of a clock synchronization method provided by an embodiment of the application.
  • the timing information can be divided into two channels, one is transmitted from Slave 1 to the master via the wireless network, and the other is transmitted from Slave 1 to Slave 2 and Slave 3.
  • the method includes the following steps:
  • the access network equipment allocates an identifier to the first terminal device UE1 corresponding to the first slave station Slave 1, and the identifier is used for timing information.
  • the above identifier may be RNTI, for example, RNTI 1.
  • the RNTI 1 is a dedicated RNTI, that is, the timing information dedicated to Slave 1.
  • the timing information can be distinguished from other data or information according to the RNTI1, so there is no need to allocate a dedicated logical channel for the timing information.
  • the access network device can configure a logical channel for UE1.
  • the logical channel is used for transmission of timing information. For the access network device, it is used to receive timing information, and for UE1, it is used to transmit timing information.
  • Information at this time, the above method further includes the following step S1520.
  • the access network device configures a logical channel LCH1 for UE1, and the logical channel LCH1 is used for transmission of timing information.
  • the access network equipment it is used to receive timing information, and for UE1, it is used to send timing information.
  • the access network device may add a logical channel identifier (LCID) to the configuration information of the radio bearer (RB) to configure the logical channel corresponding to the RB where the timing information is located.
  • LCID logical channel identifier
  • RB radio bearer
  • the access network device may configure a flow for UE1, which is used for transmission of timing information, for the access network device, for receiving timing information, and for UE1, for sending timing information.
  • the access network device may allocate a flow identifier to UE1, and the flow indicated by the flow identifier is used for transmission of timing information.
  • the identifier can be filled in the SDAP header, and the receiver reads the stream identifier in the SDAP header, and determines the received information as timing information according to the stream identifier.
  • the access network equipment can only be configured with logical channels or streams for the transmission of timing information, or can be configured with logical channels and streams for the transmission of timing information at the same time.
  • S1530 The access network device assigns identifiers to UEs corresponding to other slaves in the slave group (or slave chain) where Slave 1 is located, such as UE2 and UE3.
  • This identifier is used for timing information and can be assigned the same identifier as in S1510. That is, the above identifier is notified to the UE corresponding to other slaves in the slave group (or slave chain) where Slave 1 is located. In this way, the UEs corresponding to other slaves in the slave group where Slave 1 is located all use the identifier (RNTI 1) to receive the resources allocated by the access network device.
  • the identifier can be sent to the UE through a broadcast message or a dedicated RRC message.
  • a dedicated RRC message refers to an RRC message dedicated to configuring the UE, and can also be called a point-to-point RRC message.
  • the access network device may configure a logical channel for UE2 and UE3 (S1540), and the logical channel is used for transmission of timing information.
  • the configuration method is the same as the above step S1520, and can be the same logical channel LCH1 as in S1520. That is, the access network device notifies the UE timing information corresponding to other slaves in the slave group where Slave 1 is transmitted through the logical channel LCH1.
  • S1550 The access network device allocates resources.
  • the access network equipment allocates resources to UE1 through the control channel scrambled with the above identifier (RNTI1), and UE2 and UE3 also use the identifier to monitor the control channel and learn the above resources.
  • RNTI1 the above identifier
  • UE1 sends a scheduling request (SR) to an access network device, and the access network device learns that UE1 has uplink data transmission based on the SR.
  • the UE1 may indicate to the access network device that the uplink data to be transmitted is timing information, and the indication may be an explicit indication, for example, sending instruction information to instruct the UE1 to transmit the timing information.
  • the indication may be an implicit indication, which indicates that UE1 is to transmit timing information through resources or other transmission elements.
  • the access network device may allocate dedicated SR resources to the UE1, so that the access network device can learn that the uplink data to be transmitted by the UE1 is timing information by sending the SR resources.
  • the above resources can be semi-statically allocated or statically allocated resources, and the resources can be resources that appear periodically, so Slave1 periodically generates timing information and sends it to other UEs through UE1.
  • the access network device can configure the parameters of the resource through an RRC message, and after the configuration, the resource is in the activated state; or, after the configuration, the access network device sends an activation instruction, To activate the resource.
  • S1560 Slave1 generates timing information.
  • S1570 UE1 transmits timing information.
  • UE1 transmits timing information through the resources allocated by the above access network equipment.
  • the resource can be an uplink resource or a sidelink resource, and UE2 and UE3 can monitor and read timing information on the resource.
  • UE2 and UE3 identify that the received information is timing information through RNTI1.
  • UE2 and UE3 acquire resources through RNTI1, and identify that the received information is timing information through LCH1, that is, through RNTI and logic
  • the combination of channels identifies that the received information is timing information.
  • the resource is obtained through RNTI1, and the UE2 and UE3 identify the timing information through the flow identifier. Then, UE2 and UE3 send the timing information to Slave 2 and Slave 3 through the adapter, respectively.
  • the above processing is equivalent to directly receiving timing information from the access network device.
  • S1580 Slave 2 and Slave 3 receive timing information, and adjust the local clock according to the timing information.
  • slave 2 and slave 3 do not need to compensate for the transmission time of timing information in the wireless network. For example, if the timing information indicates that the clock of Slave1 is T0, then Slave 2 and Slave 3 also adjust the clock to T0.
  • Slave 2 and Slave 3 obtain the timing information directly from Slave 1, which reduces the load on the wireless network, and since the physical locations of slave 2 and slave 3 are relatively close to slave 1, slave 2 and slave 3 receive timing information. After information, there is no need to do delay compensation, and the timing accuracy is high. In addition, the time required for clock synchronization is also reduced, and the efficiency of clock synchronization is improved.
  • the access network device can also receive timing information through the above resources, and similarly, the received information can be identified as timing information through RNTI1 (LCH1 or flow identifier). Then the access network equipment sends the timing information to the CN equipment, and then transmits it to the master through the CN equipment.
  • the adapter on the CN side compensates for the transmission time of the timing information in the wireless network, so that the master's clock is synchronized with the clock on slave1.
  • the master can also maintain the clock by itself, because when the master sends an operation instruction to the slave, it only cares about whether each slave executes the operation instruction at the same time, and does not care about the common time at which each slave executes the operation instruction.
  • the master only cares about whether each slave executes the operation instructions in a specific order, and does not care at which specific time each slave executes the operation instructions. For example, Slave 1 performed operations at 18:32:28, April 26, 2019, 298 milliseconds and 350 nanoseconds, and Slave 2 performed operations at 18:32:28, April 26, 2019, 298 milliseconds, and 360 nanoseconds.
  • Slave 1 performs the operation at 18:32:28, April 26, 2019, 375 milliseconds and 350 nanoseconds
  • Slave 2 performs the operation at 18:32:28, April 26, 2019, 375 milliseconds and 360 nanoseconds
  • the access network device may not receive the timing information sent by the UE1, and there is no need to transmit the timing information to the master.
  • Slave 2 and Slave 3 do not need to compensate for the transmission time of the timing information in the wireless network. Therefore, when Slave 1 generates the timing information "only to Slave 2 and Slave 3", the timing information may not be added. Wireless network timestamp. If the timing information packet generated by Slave 1 is sent to both Slave 2 and Slave 3, as well as to the access network equipment or other nodes that need delay compensation, Slave 1 adds a wireless network timestamp to the timing information. In another implementation, the timing information generated by Slave 1 always does not have a wireless network timestamp, and the timestamp is increased by the party receiving the timing information.
  • timing information with added wireless network timestamp can be used as a hybrid automatic repeat request (HARQ) retransmission. If the time service information sent does not increase the wireless network time stamp, this "time service information without the wireless network time stamp" cannot be used for HARQ retransmission.
  • HARQ hybrid automatic repeat request
  • the timing information is directly transmitted from Slave 1 to other slaves in the slave group where Slave 1 is located, such as Slave 2 and Slave 3, which impose higher requirements on the transmission of Slave 1, and Slave 1 requires higher transmission power. , May need to be retransmitted to transmit correctly. Therefore, in the following embodiments, Slave 1 transmits the timing information to the access network device, and the access network device forwards it to other slaves in the slave group where Slave 1 is located.
  • FIG. 16 is a schematic diagram of another clock synchronization method provided by an embodiment of the application. As shown in Figure 16, the method includes the following steps:
  • the access network equipment allocates an identifier to the first terminal device UE1 corresponding to the first slave station Slave 1, and the identifier is used for timing information.
  • the access network device configures a logical channel LCH1 for UE1, and the logical channel LCH1 is used for transmission of timing information.
  • S1630 The access network device allocates resources for UE1.
  • S1640 Slave1 generates timing information.
  • S1610, S1620, S1630, and S1640 is the same as the description of the above embodiments S1510, S1520, S1550, and S1560, and will not be repeated here.
  • S1650 UE1 transmits timing information to the access network device.
  • the UE1 obtains the resource allocated by the access network device according to the identifier allocated by the access network device, and uses the resource to transmit timing information.
  • the access network device executes the above step S1620, that is, the logical channel LCH1 is allocated to UE1 for transmission of timing information, UE1 transmits timing information through LCH1.
  • the access network equipment sends timing information to the terminal devices UE2 and UE3 connected to other slaves (for example, Slave 2 and Slave 3) in the slave group where Slave 1 belongs.
  • the access network device notifies Slave 2 and Slave 3 of the timing information in a point-to-point manner.
  • a method similar to that shown in Figure 15 can be used by assigning identifiers or logical channels to Slave 2 and Slave 3 or assigning In a streaming mode, the resource or logical channel where the timing information is located is notified to the UE.
  • the access network device can notify Slave 2 and Slave 3 of the timing information through broadcast or multicast. At this time, the access network device can notify the UE of the broadcast or multicast transmission method in advance, for example, in the following information One or more of: RNTI used for broadcasting, resource used, logical channel used.
  • the RNTI and the resources used for broadcasting are notified, so that the UE can address the broadcast message through the RNTI and the resources used. Or, notify the logical channel and resource used for broadcasting, so that the UE can address the broadcast message through the logical channel and resource used. Or, notify the logical channel used for broadcasting, so that the UE can address the broadcast message through the logical channel. Alternatively, the resource used by the broadcast is notified, so that the UE can address the broadcast message through the used resource.
  • S1670 Slave 2 and Slave 3 receive timing information, and adjust the local clock according to the timing information.
  • Slave 2 and slave 3 are synchronized with the access network equipment in advance to maintain a common time value, which is called wireless network clock synchronization.
  • the terminal connected to Save 1 reads the time of the wireless network clock at that moment, and attaches it to the timing information;
  • Slave 2 and Slave 3 receive the timing information, the terminal connected to the The UE connected to Slave 3 also reads the time of the wireless network clock at the time of reception.
  • Slave 2 and Slave 3 subtract the time of the wireless network clock read by themselves from the time of the wireless network clock written by Slave1 attached to the timing information to obtain the transmission delay of the timing information. Then use the similar compensation method in the above embodiment to calculate the time corresponding to the current moment.
  • the access network device sends the timing information to the CN device, and then transmits it to the master through the CN device.
  • the adapter on the CN side compensates for the transmission time of the timing information in the wireless network, so that the clock of the master is synchronized with the clock on the slave1.
  • this embodiment can reduce the requirements on the terminal device and simplify the design of the terminal device.
  • the identifiers of Slave 2 and Slave 1 are assigned by the access network equipment.
  • the identifiers are assigned by Slave1 or the terminal device connected to Slave 1, that is, Slave1 or the terminal device connected to Slave 1.
  • the assigned identifier may be the same as the identifier assigned to itself by the access network device.
  • the identifier assigned to each slave is pre-agreed, for example, stipulated in the agreement.
  • the access network device can send timing information to other access network devices.
  • the access network device can obtain timing information from other access network devices, that is, the timing information is obtained from UE1 in the above embodiment.
  • the information process can be replaced by the access network device obtaining timing information from other access network devices, and the access network device and other access network devices are located in the same TSN domain.
  • Slave 1 transmits the timing information to the access network device, and the access network device forwards it to other slaves in the slave group where Slave 1 is located.
  • the access network equipment needs to identify the timing information. If the timing information uses a dedicated RNTI or a dedicated logical channel for transmission, the access network equipment can distinguish the timing information from other data or information. If the timing information and other data are transmitted using the same logical channel, the access network device needs to use other methods to identify the timing information. Therefore, in another embodiment, the access network device can send the timing information to other data.
  • the access network device or CN device is forwarded by the CN device to other slaves in the slave group where Slave 1 belongs.
  • the timing information can be sent to other access network equipment in the same TSN.
  • the timing information is for TSN domain A and sent to the access network equipment A1 and A2 in TSN domain A;
  • the information is from TSN domain B and is sent to access network devices B1, B2, and B3 in TSN domain B.
  • the configuration of the TSN domain can be based on the granularity of the access network device or the cell.
  • the access network device recognizes the timing information, and transmits the timing information to other slaves in the slave group where Slave 1 belongs.
  • the timing information passes through the access network device, the access network device does not analyze it.
  • the timing information shares logical channels with other data or information, simplifying the design of the access network equipment.
  • the timing information of Slave1 can be directly transmitted by Slave 1 to other slaves; or, Slave1 can be transmitted to the access network equipment through the terminal device, and then transmitted by the access network equipment to other slaves; or, Slave1 can pass through
  • the terminal device is transmitted to the access network equipment, and then transmitted from the access network equipment to the CN equipment, and then transmitted from the CN equipment to other slaves.
  • the transmission path of the timing information can be shortened, and the efficiency of clock synchronization is improved.
  • the clock of Slave1 is used as the master clock, and other slaves perform clock synchronization with Slave1.
  • other slave clocks can also be used as the master clock, such as Slave 2 or Slave 3.
  • the master can maintain the clock by itself, and the timing information does not need to be transmitted to the master.
  • a device for implementing any of the above methods.
  • a device is provided that includes units (or means) for implementing each step performed by the terminal device in any of the above methods.
  • another device is also provided, including a unit (or means) for implementing each step performed by the access network device in any of the above methods.
  • another device is also provided, including a unit (or means) for implementing each step executed by the core network device in any of the above methods.
  • FIG. 17 is a schematic diagram of a transmission control device provided by an embodiment of the application.
  • the device is used to access network equipment.
  • the device 1700 includes an acquisition unit 1710, a distribution unit 1720, and a first communication unit 1730.
  • the acquiring unit 1710 is used for transmitting interval information
  • the allocation unit 1720 is used for allocating uplink resources to the first terminal device
  • the first communication unit 1730 is used for receiving uplink data from the first terminal device on the uplink resources.
  • the transmission interval information is used to indicate a time interval
  • the time interval is used for the access network device to determine the uplink resource allocation time or for the first terminal device to determine the uplink resource time for transmission.
  • the obtaining unit 1710 may determine the time interval locally and generate transmission interval information, or may obtain the transmission interval information from the master station.
  • the device 1700 may also include a second communication unit 1740, configured to receive downlink data from the master station. And through the first communication unit 1730, the downlink data is sent to the first terminal device or the second terminal device.
  • the first communication unit 1730 is further configured to send transmission interval information or adjusted transmission interval information to the first terminal device.
  • the first communication unit 1730 is used for communication with a terminal device (for example, a first terminal device or a second terminal device), and the second communication unit 1740 is used for communication with other network devices, such as communication with a CN device. Then the information or data sent to the terminal device or the information or data received from the terminal device in the above embodiment can be sent or received through the first communication unit 1730. In the above embodiment, the information or data sent from the master station (or CN device) or to the master station (or CN device) can be sent or received through the second communication unit 1740. The specific details will not be described again, and the above embodiments can be referred to. In addition, the downlink data, uplink data, time interval, etc., the allocation method of uplink resources, etc.
  • the apparatus 1700 may also include a third communication unit for communicating with other access network equipment.
  • the information or data sent from or to other access network equipment can pass through the third communication unit.
  • the communication unit sends or receives, which will not be repeated here.
  • FIG. 18 is a schematic diagram of a transmission control device provided by an embodiment of the application.
  • the device is used in a terminal device.
  • the device 1800 includes a receiving unit 1810, a determining unit 1820, and a sending unit 1830.
  • the receiving unit 1810 is used to obtain uplink resources and is used to receive transmission interval information from the access network device, where the transmission interval information is used to indicate a time interval;
  • the determining unit 1820 is used to determine the time when the uplink resource is used for transmission according to the time interval;
  • the sending unit 1830 is configured to use uplink resources to send uplink data according to the determined time.
  • the receiving unit 1810 is also used to receive downlink data from the access network device.
  • the downlink data, uplink data, time interval, etc., and the manner of obtaining uplink resources are also the same as those in the above embodiment, and will not be repeated here.
  • other interactive information or data between the device and the access network device is the same as in the above embodiment, and will not be repeated here.
  • the device may also include a unit that does not trigger a buffer status report, and/or a scheduling request.
  • each unit in the device can be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units can be implemented by the integrated logic circuit of the hardware in the processor element or implemented in the form of software calling through the processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 19 is a schematic structural diagram of an access network device according to an embodiment of the application.
  • the access network device is used to implement the operation of the access network device in the above embodiment.
  • the access network equipment includes: an antenna 1910, a radio frequency device 1920, and a baseband device 1930.
  • the antenna 1910 is connected to the radio frequency device 1920.
  • the radio frequency device 1920 receives the information sent by the terminal device through the antenna 1910, and sends the information sent by the terminal device to the baseband device 1930 for processing.
  • the baseband device 1930 processes the information of the terminal device and sends it to the radio frequency device 1920.
  • the radio frequency device 1920 processes the information of the terminal device and sends it to the terminal device via the antenna 1910.
  • the baseband device 1930 may include one or more processing elements 1931, for example, a main control CPU and other integrated circuits.
  • the baseband device 1930 may also include a storage element 1932 and an interface 1933.
  • the storage element 1932 is used to store programs and data; the interface 1933 is used to exchange information with the radio frequency device 1920.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for access network equipment may be located in the baseband apparatus 1930.
  • the above apparatus for access network equipment may be a chip on the baseband apparatus 1930, and the chip includes at least one processing element and an interface circuit. In performing each step of any method performed by the above access network equipment, the interface circuit is used to communicate with other devices.
  • the unit for the access network equipment to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the access network equipment includes a processing element and a storage element, and the processing element calls the storage element to store To execute the method executed by the access network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the access network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, such as : One or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the access network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip to implement the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above access network device; or, at least one integrated circuit can be integrated in the chip to implement The method executed by the above access network device; or, it can be combined with the above implementation.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for an access network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the access network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the access network device in the first way: calling the program stored in the storage element; or in the second way: through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the access network device are executed in a manner of combining instructions; of course, part or all of the steps executed by the above access network device may also be executed in combination with the first method and the second manner.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 20 is a schematic structural diagram of a terminal device according to an embodiment of the application.
  • the terminal device is used to implement the operation of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 2010, a radio frequency part 2020, and a signal processing part 2030.
  • the antenna 2010 is connected to the radio frequency part 2020.
  • the radio frequency part 2020 receives the information sent by the access network device through the antenna 2010, and sends the information sent by the access network device to the signal processing part 2030 for processing.
  • the signal processing part 2030 processes the information of the terminal device and sends it to the radio frequency part 2020
  • the radio frequency part 2020 processes the information of the terminal device and sends it to the access network equipment via the antenna 2010.
  • the signal processing part 2030 is used to realize the processing of each communication protocol layer of the data.
  • the signal processing part 2030 may be a subsystem of the terminal device, and the terminal device may also include other subsystems, such as a central processing subsystem, which is used to process the operating system and application layer of the terminal device; The system is used to realize the connection with other equipment.
  • the signal processing part 2030 may be a separately provided chip.
  • the above device may be located in the signal processing part 2030.
  • the signal processing part 2030 may include one or more processing elements 2031, for example, a main control CPU and other integrated circuits.
  • the signal processing part 2030 may further include a storage element 2032 and an interface circuit 2033.
  • the storage element 2032 is used to store data and programs.
  • the program used to execute the method performed by the terminal device in the above method may or may not be stored in the storage element 2032, for example, stored in a memory other than the signal processing part 2030 During use, the signal processing part 2030 loads the program into the cache for use.
  • the interface circuit 2033 is used to communicate with the device.
  • the above device may be located in the signal processing part 2030, and the signal processing part 2030 may be realized by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method executed by the above terminal device.
  • the circuit is used to communicate with other devices.
  • the unit that implements each step in the above method can be implemented in the form of a processing element scheduler.
  • the device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above method embodiments.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the signal processing part 2030, where the processing elements may be integrated circuits, for example : One or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC chip is used to implement the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, at least one integrated circuit can be integrated in the chip to implement the above terminal
  • the method executed by the device or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the terminal device provided in the above method embodiment.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device may also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 21 is a schematic structural diagram of a core network device provided by an embodiment of this application, which is used to implement the operation of the core network device in the above embodiment.
  • the core network device includes: a processor 2110, a memory 2120, and an interface 2130, and the processor 2110, a memory 2120, and the interface 2130 are connected in signal.
  • the method executed by the core network device in the above embodiment may be implemented by the processor 2110 calling a program stored in the memory 2120. That is, the apparatus for the core network device includes a memory and a processor, and the memory is used to store a program, and the program is called by the processor to execute the method executed by the core network device in the above method embodiment.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU.
  • the apparatus for the core network device may be realized by one or more integrated circuits configured to implement the above method. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例一种传输控制方法,用于工业控制中,可以提前调度上行资源,以便终端装置传输上行数据,而无需等待终端装置的调度请求再进行上行资源分配,如此,可以降低时延,提高数据传输的效率。该方法包括:接入网设备获取传输间隔信息,所述传输间隔信息用于指示时间间隔;接入网设备向第一终端装置分配上行资源,其中所述时间间隔用于接入网设备确定所述上行资源的分配时间或用于第一终端装置确定所述上行资源用于传输的时间;接入网设备在所述上行资源上从第一终端装置接收上行数据。

Description

传输控制方法和装置
本申请要求于2019年08月01日提交中国专利局、申请号为201910707795.2、申请名称为“传输控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种传输控制方法和装置。
背景技术
传统的工业控制领域通过有线连接来实现自动化控制,但有线连接的部署方式使得线缆部署和维护成本比较高,且由于受到线缆的限制,被控制端的移动性差。为此,采用无线传输方式代替有线连接方式的工业控制获得了越来越广泛的关注,进而如何使无线传输方式适用工业控制,成为亟待解决的问题。
发明内容
本申请实施例提供一种传输控制方法和装置,使得无线传输适用于工业控制。
第一方面,提供一种传输控制方法,包括:接入网设备获取传输间隔信息,所述传输间隔信息用于指示时间间隔;所述接入网设备向第一终端装置分配上行资源,其中所述时间间隔用于所述接入网设备确定所述上行资源的分配时间或用于所述第一终端装置确定所述上行资源用于传输的时间;所述接入网设备在所述上行资源上从所述第一终端装置接收上行数据。
此外,提供一种传输控制装置,包括用于执行以上第一方面各个步骤的单元或手段(means)。
此外,提供一种传输控制装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上第一方面提供的方法。该处理器包括一个或多个。
此外,提供一种传输控制装置,包括处理器,用于调用存储器中存储的程序,以执行以上第一方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
此外,提供一种计算机程序,该程序在被处理器调用时,以上第一方面提供的方法被执行。
此外,提供一种计算机可读存储介质,包括以上程序。
接入网设备在接收到来自主站的下行数据,并将下行数据发送给终端装置之后,可以预料到经过一段时间,终端装置会有上行数据待传输,接入网设备据此简化调度,根据传输间隔信息指示的时间间隔,来提前调度上行资源,或者利用传输时间间隔信息来指示终端上行资源的时域起始位置,以便终端装置传输上行数据,如此,可以降低传输时延,提高数据传输的效率。
在一种实现中,接入网设备接收下行数据,其中,下行数据包括主站到至少一个 从站的数据,且上行数据包括至少一个从站到主站的数据,至少一个从站包括第一从站,第一从站与第一终端装置连接;接入网设备向第一终端装置发送下行数据。
如此,第一从站作为至少一个从站(从站组)相对无线网络的入口和出口,可以节省终端装置的需求量,减少硬件成本。
此时,时间间隔包括:上行数据到达第一从站或第一终端装置和下行数据到达第一从站或第一终端装置的时间间隔;或者,上行数据到达第一从站或第一终端装置和下行数据从主站离开的时间间隔;或者,上行数据到达第一从站或第一终端装置和下行数据对应的数据包的离开第一从站或第一终端装置的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据到达第一从站或第一终端装置的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据从主站离开的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据对应的数据包离开第一从站或第一终端装置的时间间隔。
可选的,接入网设备应下行数据的发送开启定时器,该定时器的时长根据时间间隔设定,定时器的时长小于或等于时间间隔,且接入网设备向第一终端装置分配上行资源,包括:接入网设备在定时器到期或在定时器距离预设时间到期时,向第一终端装置发送上行资源的授权信息。
如此,接入网设备无线等待终端的调度请求,根据时间间隔在预计第一终端装置有上行数据传输时,为其分配上行资源,减少了信令交互,提高了传输效率。且接入网设备在时间间隔到期之前确定上行资源的频域位置的时刻,更贴近实际的上行传输时刻,传输性能更好。
可选的,接入网设备向第一终端装置发送传输间隔信息或调整后的传输间隔信息,其中调整后的传输间隔信息用于指示调整后的时间间隔,且用于第一终端装置确定上行资源用于传输的时间。
此时,接入网设备向第一终端装置分配上行资源,包括:接入网设备在向第一终端装置发送下行数据时,向第一终端装置发送上行资源的授权信息;或者,接入网设备在向第一终端装置发送下行数据之后,且在时间间隔到期之前,向第一终端装置发送上行资源的授权信息;或者,接入网设备向第一终端装置预配置上行资源。
如此,接入网设备将时间间隔或调整后的时间间隔通知第一终端装置,第一终端装置可以据此确定上行资源的起始时刻,进而利用接入网设备分配的上行资源传输上行数据,从而减少了传输时延,提高了数据传输效率。进一步的,在下行调度(向第一终端装置发送下行数据)的同时可以确定后续存在上行数据待发送,从而同时进行上行调度,提前准备好上行资源,减少了传输时延,又提高了资源的利用率。或者,接入网设备在时间间隔到期之前确定上行资源的频域位置的时刻,更贴近实际的上行传输时刻,传输性能更好。
在另一种实现中,接入网设备接收下行数据,并向第二终端装置发送所述下行数据。该下行数据包括主站到多个从站的数据,且上行数据包括多个从站到主站的数据,多个从站包括第一从站和第二从站,第一从站与第一终端装置连接,第二从站与所述第二终端装置连接。
如此,第一从站和第二从站作为多个从站(从站组)相对无线网络的出口和入口, 可以节省上行数据在slave组内的路程,减少传输时延,且对终端装置的需求量也不高,减少硬件成本。
此时,时间间隔包括:上行数据到达第一从站或第一终端装置和下行数据到达第二从站或第二终端装置的时间间隔;或者,上行数据到达第一从站或第一终端装置和下行数据从主站离开的时间间隔;或者,上行数据到达第一从站或第一终端装置和下行数据对应的数据包的离开第二从站或第二终端装置的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据到达第二从站或第二终端装置的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据从主站离开的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据对应的数据包离开第二从站或第二终端装置的时间间隔。
可选的,接入网设备应下行数据的发送开启定时器,该定时器的时长根据时间间隔设定,定时器的时长小于或等于时间间隔预设时长,且接入网设备向第一终端装置分配上行资源,包括:接入网设备在定时器到期或在定时器距离预设时间到期时,向第一终端装置发送上行资源的授权信息。
如此,接入网设备无线等待终端的调度请求,根据时间间隔在预计第一终端装置有上行数据传输时,为其分配上行资源,减少了信令交互,提高了传输效率。且接入网设备在时间间隔到期之前确定上行资源的频域位置的时刻,更贴近实际的上行传输时刻,传输性能更好。
可选的,接入网设备向第一终端装置发送传输间隔信息或调整后的传输间隔信息,其中调整后的传输间隔信息用于指示调整后的时间间隔,且用于第一终端装置确定上行资源用于传输的时间。
此时,接入网设备向第一终端装置分配上行资源,包括:接入网设备在向第二终端装置发送下行数据时,向第一终端装置发送上行资源的授权信息;或者,接入网设备在向第二终端装置发送下行数据之后,且在时间间隔到期之前,向第一终端装置发送上行资源的授权信息;或者,接入网设备向第一终端装置预配置上行资源。
如此,接入网设备将时间间隔或调整后的时间间隔通知第一终端装置,第一终端装置可以据此确定上行资源的起始时刻,进而利用接入网设备分配的上行资源传输上行数据,从而减少了传输时延,提高了数据传输效率。进一步的,在下行调度(向第一终端装置发送下行数据)的同时可以确定后续存在上行数据待发送,从而同时进行上行调度,提前准备好上行资源,减少了传输时延,又提高了资源的利用率。或者,接入网设备在时间间隔到期之前确定上行资源的频域位置的时刻,更贴近实际的上行传输时刻,传输性能更好。
可选的,在以上第一方面或第一方面的各种实现中,接入网设备还可以向第一终端装置分配第一标识,且向第二终端装置分配第二标识,其中第一标识用于上行资源的分配,第二标识用于下行数据的接收。
可选的,第一标识和第二标识相同。如此,接入网设备可以使用同一个RNTI加扰的下行控制信息(DCI),实现下行数据的下行资源和上行数据的上行资源分配,第一终端装置和第二终端装置也不需要额外监听其它的RNTI。
可选的,在以上第一方面或第一方面的各种实现中,接入网设备还可以接收指示 信息,该指示信息用于指示上行数据和下行数据的大小差值或下行数据和上行数据的大小差值,或者用于指示上行数据和下行数据中一个从站对应的数据的大小差值或下行数据和上行数据中一个从站对应的数据的大小差值。进一步的,接入网设备根据该指示信息指示的大小差值,向第一终端装置分配上行资源。
如此,接入网设备分配的上行资源可以与上行数据大小匹配,减少资源浪费,提高资源利用率。
可选的,在以上第一方面或第一方面的各种实现中,第一终端装置与从站组内的第一从站连接,接入网设备可以从第一终端装置接收授时信息;并将该授时信息发送给与从站组内的其它从站连接的其它终端装置。如此,从站组内的其他从站可以从接入网设备获取授时信息,授时过程得以简化,减少时钟同步所需的时间。
进一步的,接入网设备还可以将授时信息发送给核心网设备。如此,核心网设备可以将授时信息通知主站,实现主站的进一步时钟同步。
可选的,在以上第一方面或第一方面的各种实现中,第一终端装置与从站组内的第一从站连接,接入网设备可以向第一终端装置分配标识,该标识用于第一终端装置发送授时信息;此外,接入网设备向与该从站组内的其它从站连接的其它终端装置分配标识,该标识用于其它终端装置从第一终端装置接收授时信息。如此,从站组内的其他从站可以从第一从站获取授时信息,授时过程得以简化,减少时钟同步所需的时间。
第二方面,提供一种传输控制方法,包括:终端装置获取上行资源,并从接入网设备接收传输间隔信息,该传输间隔信息用于指示时间间隔,且所述时间间隔用于确定上行资源用于传输的时间;进而终端装置在根据时间间隔确定的时间利用所述上行资源发送上行数据。
此外,提供一种传输控制装置,包括用于执行以上第二方面各个步骤的单元或手段(means)。
此外,提供一种传输控制装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上第二方面提供的方法。该处理器包括一个或多个。
此外,提供一种传输控制装置,包括处理器,用于调用存储器中存储的程序,以执行以上第二方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
此外,提供一种计算机程序,该程序在被处理器调用时,以上第二方面提供的方法被执行。
此外,提供一种计算机可读存储介质,包括以上程序。
在一种实现中,终端装置从接入网设备接收下行数据,其中,下行数据包括主站到至少一个从站的数据,且上行数据包括至少一个从站到主站的数据,终端装置与至少一个从站中的第一从站连接。
此时,时间间隔包括:上行数据到达第一从站或终端装置和下行数据到达第一从站或终端装置的时间间隔;或者,上行数据到达第一从站或终端装置和下行数据从主站离开的时间间隔;或者,上行数据到达第一从站或终端装置和下行数据对应的数据包的离开第一从站或终端装置的时间间隔;或者,上行数据离开第一从站或终端装置 和下行数据到达第一从站或终端装置的时间间隔;或者,上行数据离开第一从站或终端装置和下行数据从主站离开的时间间隔;或者,上行数据离开第一从站或终端装置和下行数据对应的数据包离开第一从站或终端装置的时间间隔。
可选的,终端装置获取上行资源,包括:终端装置在接收下行数据时,获取来自接入网设备的上行资源的授权信息;或者,终端装置在接收下行数据之后,且在时间间隔到期之前,获取来自接入网设备的上行资源的授权信息;或者,终端装置获取上行资源的预配置信息。
在另一种实现中,下行数据包括主站到多个从站的数据,且上行数据包括多个从站到主站的数据,多个从站包括第一从站和第二从站,第一从站与该终端装置连接,该终端装置为第一终端装置,第二从站与第二终端装置连接。
此时,时间间隔包括:上行数据到达第一从站或第一终端装置和下行数据到达第二从站或第二终端装置的时间间隔;或者,上行数据到达第一从站或第一终端装置和下行数据从主站离开的时间间隔;或者,上行数据到达第一从站或第一终端装置和下行数据对应的数据包的离开第二从站或第二终端装置的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据到达第二从站或第二终端装置的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据从主站离开的时间间隔;或者,上行数据离开第一从站或第一终端装置和下行数据对应的数据包离开第二从站或第二终端装置的时间间隔。
可选的,在以上第二方面或第二方面的各种实现中,终端装置从接入网设备接收第一标识,第一标识用于上行资源的分配。
可选的,第一标识和用于下行数据接收的第二标识相同。
可选的,在以上第二方面或第二方面的各种实现中,终端装置不触发缓存状态报告,和/或,调度请求。
可选的,在以上第二方面或第二方面的各种实现中,终端装置还可以向接入网设备发送授时信息。
可选的,在以上第二方面或第二方面的各种实现中,终端装置还可以向其它终端装置发送授时信息。
该第二方面及其各种实现的效果同以上第一方面的描述,在此不再赘述。
第三方面,提供一种时钟同步方法,包括:第二从站从第一从站获取授时信息,该授时信息用于指示第一从站的时钟在一时刻对应的时间;第二从站根据该授时信息,调整第二从站的时钟。
此外,提供一种时钟同步装置,包括用于执行以上第三方面各个步骤的单元或手段(means)。
此外,提供一种时钟同步装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上第三方面提供的方法。该处理器包括一个或多个。
此外,提供一种时钟同步装置,包括处理器,用于调用存储器中存储的程序,以执行以上第三方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
此外,提供一种计算机程序,该程序在被处理器调用时,以上第三方面提供的方 法被执行。
此外,提供一种计算机可读存储介质,包括以上程序。
可选的,第二从站对应的终端装置从接入网设备或第一从站接收标识;且在通过该标识的加扰的控制信道分配的资源上接收所述授时信息。
可选的,第二从站对应的终端装置从接入网设备或第一从站接收逻辑信道标识;且在该逻辑信道标识的对应的逻辑信道上接收所述授时信息。
可选的,第二从站对应的终端装置从接入网设备或第一从站接收流标识;且在该流标识的对应的流上接收所述授时信息。
第四方面,提供一种授时信息传输方法,包括:接入网设备从第一终端装置或其它接入网设备接收授时信息,所述授时信息用于指示与第一终端装置连接的第一从站在一时刻对应的时间;接入网设备将该授时信息传输给目标设备。
此外,提供一种授时信息传输装置,包括用于执行以上第三方面各个步骤的单元或手段(means)。
此外,提供一种授时信息传输装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上第四方面提供的方法。该处理器包括一个或多个。
此外,提供一种授时信息传输装置,包括处理器,用于调用存储器中存储的程序,以执行以上第四方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器包括一个或多个。
此外,提供一种计算机程序,该程序在被处理器调用时,以上第四方面提供的方法被执行。
此外,提供一种计算机可读存储介质,包括以上程序。
可选的,该目标设备为核心网设备或另一接入网设备。
可选的,该目标设备为第一从站所在的从站组中其它从站连接的终端装置。
可选的,接入网设备为所述第一终端装置分配标识;在通过所述标识的加扰的控制信道分配的资源上接收所述授时信息。
可选的,接入网设备为第一终端装置分配逻辑信道标识;在通过逻辑信道标识对应的逻辑信道接收所述授时信息。
可选的,接入网设备为第一终端装置分配流标识;在通过流标识对应的流接收所述授时信息。
现有时钟同步过程中,主时钟所在的从站将自己的时钟信息通知主站,由主站将时钟信息通知其它从站。这种时钟同步方法,比较复杂,需要更多时间来完成时钟同步,以上第三、四方面提供时钟同步方法和授时信息传输方法,可以使得其它从站直接从主时钟所在的从站获得授时信息,或者从接入网设备获得授时信息,进行时钟同步,使得时钟同步更加简化,进而减少时钟同步所需的时间。
附图说明
图1为一种传统的太网控制自动化技术(etherCAT)系统及以太帧的示意图;
图2为另一种传统的etherCAT系统及以太帧的示意图;
图3为一种传统的控制系统的示意图;
图4为本申请实施例提供的一种控制系统的示意图;
图5为本申请实施例提供的另一种控制系统的示意图;
图6为本申请实施例提供的一种无线通信网络应用于控制网络的示意图;
图7为本申请实施例提供的一种传输控制方法的示意图;
图8A为本申请实施例提供的另一种传输控制方法的示意图;
图8B为本申请实施例提供的一种时间间隔的示意图;
图9为本申请实施例提供的又一种传输控制方法的示意图;
图10为本申请实施例提供的另一种无线通信网络应用于控制网络的示意图;
图11A为本申请实施例提供的另一种时间间隔的示意图;
图11B为本申请实施例提供的又一种传输控制方法的示意图;
图12为本申请实施例提供的又一种传输控制方法的示意图;
图13为一种现有的控制系统中时钟同步的示意图;
图14为另一种现有的控制系统中时钟同步的示意图;
图15为本申请实施例提供的一种时钟同步方法的示意图;
图16为本申请实施例提供的另一种时钟同步方法的示意图;
图17为本申请实施例提供的一种传输控制装置的示意图;
图18为本申请实施例提供的一种传输控制装置的示意图;
图19为本申请实施例提供的一种接入网设备的结构示意图;
图20为本申请实施例提供的一种终端装置的结构示意图;
图21为本申请实施例提供的一种核心网设备的结构示意图。
具体实施方式
传统的工业控制领域通过有线连接来实现自动化控制,以以太网控制自动化技术(ether control automation technology,etherCAT)为例,传统的etherCAT系统包括主站(master)和多个从站(slave),它们之间通过有线连接。请参考图1,其为一种传统的etherCAT系统及以太帧的示意图。如图1所示,该etherCAT系统包括主站(master)和从站(slave),在此以三个从站为例,表示为Slave1~3,更多或更少从站与之类似,不再赘述。图中线条表示数据在etherCAT系统中的流动方向。数据从master出发,依次流经Slave 1、Slave 2、Slave 3;返回时,从Slave 3,经过Slave 2、Slave 1,最后回到master。其中,数据结构是以太帧的形式,以太帧包括以太头和以太帧负荷,以太负帧荷包括一个或多个slave的数据,比如图中的Slave1~3的数据(data)。slave的数据之前具有slave的标识(slave ID),用于标识其后数据的归属。
下面结合附图描述以太帧在数据流动过程中的变化。以太帧从master出发,携带了Slave1~3的数据,且在以太帧负荷中分别用三个slave的标识指示其归属,如图中参考点A的数据结构。以太帧经过Slave1,Slave 1将自己的数据读出,再把自己要发给master的数据写入以太帧的同一位置,即图中L1的位置。以太帧到参考点B时,Salve1对应的数据已经被替换成了Slave1发给master的数据,Slave 2和Slave3对应的数据,还是master发给slave的数据。当以太帧经过Slave2和Slave3时,Slave2和 Slave3也执行类似的处理,如此在参考点C,以太帧中的两个数据域,即位置L1和L2是slave发给master的数据;在参考点D时,以太帧中的三个数据域,即位置L1~L3是slave发给master的数据。以太帧回程经过Slave2和Slave1时,Slave2和Slave1不对数据做任何处理,所以参考点D、E、F的以太帧帧承载的数据相同。
在以上流程中,slave从以太帧中取出数据的同时,放入数据,取出的数据长度和放入的数据长度可以是预先配置好的。另一种实现方式是以太帧初次经过时,slave从中取出数据,以太帧第二次经过时,slave将数据放入以太帧,如图2所示。其中,在参考点A到C中,以太帧中的数据是master发送给slave的数据,在参考点D到F,以太帧中的数据是slave发给master的数据。
随着etherCAT的演进,可以利用有线的时间敏感型网络(time sensitive network,TSN)来实现master到Slave1之间的传输,如图3所示。由TSN来保证master和Slave1之间的传输时延波动在很小的范围内,从而实现master与Slave1之间使用专用线缆连接类似的效果。这样master和slave之间就可以实现物理上的灵活连接了。
随着无线技术的演进,期望利用无线网络实现master到Slave1之间的传输。请参考图4,其为本申请实施例提供的一种控制系统的示意图。如图4所示,利用无线网络实现master和Slave1之间的传输,并由无线网络来保证master和Slave1之间的传输时延波动在很小的范围内,从而实现master与Slave1之间使用专用线缆连接类似的效果。如此,master和slave之间可以实现更加灵活的物理连接。进一步的,可以取消slave之间的有线连接,彻底实现用无线传输取代有线传输,进而实现完全灵活的部署。请参考图5,其为本申请实施例提供的另一种控制系统的示意图。如图5所示,master通过无线网络跟各个slave进行通信。
请参考图6,其为本申请实施例提供的一种无线通信网络应用于控制网络的示意图。如图6所示,终端610通过无线接口(例如空口)接入到无线网络,以通过无线网络跟其它设备通信,例如master。该无线网络包括无线接入网(radio access network,RAN)620和核心网(CN)630,其中RAN 620用于将终端610接入到无线网络,CN630用于对终端进行管理并提供与其它设备通信的网关。终端可以为具有无线通信功能的设备,其可以通过适配器与以上控制系统中的slave连接,以通过无线网络接收master发送给slave的数据并发送给slave,或者将slave发送给master的数据通过无线网络发送给master。终端可以跟slave集成在一个物理实体上,例如图4中的Slave1或图5中的某个slave上可以集成具有无线通信的功能的元件(例如,芯片),此时,slave集成有无线通信功能和工业控制终端的按指令执行操作的功能。
以上控制网络中,利用无线网络取代master和slave之间的接口,slave之间仍然采用有线接口。在另一种控制网络中,同样利用无线网络取代master和slave之间的接口,每个slave都可以通过无线网络与master通信,即图5所示的结构中,每个slave都通过适配器连接终端,或者,每个slave都可以集成无线通信功能的元件(例如,芯片),以通过无线接口接入无线网络。在又一种控制网络中,可以结合以上两种连接方式,部分slave通过无线网络与master通信,其余slave与无线连接master的slave建立有线连接,例如,将slave分组,每个组内有一个slave,例如Slave 1,通过无线网络与master通信,剩余的slave与该Slave 1建立有线连接,该slave组又可以称为 slave链。
在本申请实施例中,终端又称之为终端装置或用户设备(user equipment,UE),为具有无线通信功能的装置,且可以与slave连接,以下实施例中称为终端装置。该终端装置可以与slave集成在一起,此时该终端装置可以指集成有终端装置和slave的物理实体中的集成有无线通信功能的装置,例如芯片或片上系统。终端装置可以包括工业控制(industrial control)中的无线终端,也可以为其它控制系统中有类似需求的终端,例如无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。
接入网设备是无线网络中的设备,例如将终端装置接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
在一种网络架构中,RAN包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成基带装置中,或者部分拉远部分集成在基带装置中。例如,RAN可以包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。这些协议层的功能可以由一个节点实现,或者可以由多个节点实现;例如,在一种演进结构中,RAN可以包括集中单元(centralized unit,CU)和分布单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处 理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
可选的,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
可选的,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。以下实施例中如果涉及这种信令在DU和终端之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频发送的。
当采用以上CU-DU的结构时,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点的RAN设备。
本申请以下实施例中的装置,根据其实现的功能,可以位于不同的设备。
在工业控制引入无线网络之后,master和slave之间传输的数据通过无线网络实现。本申请实施例考虑到工业控制对数据传输时延的要求较高,提出一种调度方法,使得这种调度方法更加适合控制网络的需求,使得数据传输的效率获得更大的提升。
参照以上图1和图2关于以太帧的描述,master发送的以太帧经过无线网络进入Slave 1,经过Slave2-Slave3-slave2-slave1之后,再经过无线网络返回master。可见,RAN接收master发送的下行数据,将下行数据发送给终端装置之后,经过一段时间,终端装置会有上行数据传输给RAN,RAN可以据此简化调度,提高数据传输的效率。
请参考图7,其为本申请实施例提供的一种传输控制方法的示意图。如图7所示,该方法包括如下步骤:
S710:接入网设备获取传输间隔信息,该传输间隔信息用于指示时间间隔(T_gap)。
该时间间隔可以是对应的上行传输和下行传输之间的时间间隔,或者说上行数据的传输和该上行数据对应的下行数据的传输之间的时间间隔。其中,上行传输(或者上行数据的传输)的时间可以是上行数据到达或离开的时间,或者下行传输和下行数据的传输的时间可以是下行行数据到达或离开的时间。且对应的上行传输和下行传输是指传输的数据包具有相应两端不同方向的数据,例如,下行数据包括master到至少一个slave的数据,且上行数据包括至少一个slave到master的数据。可选的,一个slave的上行数据可以装入同一slave的下行数据在数据包中的对应位置,且同一slave的上行数据和下行数据的大小可以相同,也可以不同。
在一种实现中,时间间隔为上行数据到达Slave 1和下行数据到达Slave 1的时间间隔;或者,时间间隔为上行数据到达Slave 1和下行数据从master离开的时间间隔;或者,时间间隔为上行数据到达Slave 1和下行数据对应的数据包离开Slave 1的时间间隔;或者,时间间隔为上行数据离开Slave 1和下行数据到达Slave 1的时间间隔;或者,时间间隔为上行数据离开Slave 1和下行数据从master离开的时间间隔;或者,时间间隔为上行数据离开Slave 1和下行数据对应的数据包离开Slave 1的时间间隔。 Slave 1是指一个slave组中与无线网络连接的入口和出口,即与终端装置连接的slave,如果该slave组中有多个slave,则其余slave直接或间接有线连接于Slave 1。下行数据对应的数据包是指不包括master发送给Slave 1的数据的数据包,其中该数据包可以包括Slave 1发送给master的数据,也可以不包括Slave 1发送给master的数据。
在另一种实现中,时间间隔为上行数据到达Slave n和下行数据到达Slave 1的时间间隔;或者,时间间隔为上行数据到达Slave n和下行数据从master离开的时间间隔;或者,时间间隔为上行数据到达Slave n和下行数据对应的数据包离开Slave 1的时间间隔;或者,时间间隔为上行数据离开Slave n和下行数据到达Slave 1的时间间隔;或者,时间间隔为上行数据离开Slave n和下行数据从master离开的时间间隔;或者,时间间隔为上行数据离开Slave n和下行数据对应的数据包离开Slave 1的时间间隔。Slave n和Slave 1是指一个slave组中与无线网络连接的出口和入口,即与终端装置连接的slave,如果该slave组中有一个slave,则Slave n和Slave 1为同一个slave;如果该slave组中有多个slave,则其余slave直接或间接有线连接于Slave 1和Slave n。下行数据对应的数据包是指不包括master发送给Slave 1的数据的数据包,其中该数据包可以包括Slave 1发送给master的数据,也可以不包括Slave 1发送给master的数据。其中n为正整数。
本申请实施例中,master向slave传输的数据称为下行数据,slave向master传输的数据称为上行数据。master通过无线网络向slave发送下行数据,该下行数据通过CN设备和接入网设备发送给终端装置,终端装置可以通过适配器将下行数据发送给slave,或者终端装置和slave集成在一个物理实体上,终端装置通过本地接口将下行数据发送给slave。
接入网设备可以从master获取传输间隔信息。master可以根据操作、管理和维护(operation,administration and maintenance,OAM)配置确定时间间隔,也可以根据之前的测量信息确定时间间隔,例如根据之前上行数据和下行数据到达和离开相关节点(例如master,Slave 1,Slave n中的一个或多个)的时间确定时间间隔。master可以将确定的传输间隔信息发送给无线网络的CN设备,CN设备将该传输间隔信息发送给接入网设备。接入网设备也可以自己统计之前的测量信息确定时间间隔,例如根据之前上行数据和下行数据到达和离开相关节点(例如master,Slave 1,Slave n中的一个或多个)的时间确定时间间隔。CN设备可以不解析消息或数据包而将传输间隔信息转发给接入网设备;也可以解析得到传输间隔信息后,将传输间隔信息发送给接入网设备。CN设备不解析消息或数据包,但可以对消息或数据包进行加密处理。CN设备解析数据包,可以将传输间隔信息重新封装,还可以与其它信息一起发送给接入网设备。
此时,以上方法还包括:S701:CN设备从master接收传输间隔信息,并将传输间隔信息发送给接入网设备。
接入网设备从CN设备获取传输间隔信息之后,可以根据该传输间隔信息指示的时间间隔调度上行资源,用于终端装置发送上行数据;或者,可以将该传输间隔信息发送给终端装置,用于终端装置确定上行资源用于发送上行数据的时间,接入网设备也可以调整时间间隔,将指示调整后的时间间隔的传输间隔信息发送给终端装置,用 于确定上行资源用于发送上行数据的时间。
即以上方法还包括:
S720:接入网设备向终端装置分配上行资源,以上传输间隔信息指示的时间间隔用于接入网设备确定上行资源的分配时间或用于终端装置确定上行资源用于传输的时间。
S730:接入网设备在上行资源上从终端装置接收上行数据。
如此,接入网设备无需等待终端装置的调度请求,而是预期到在时间间隔到期时,终端装置有上行数据待传输,故而提前完成了资源分配或资源调度,使得终端装置可以及时的上传上行数据,减少了调度时延,提高了数据传输的效率。
S740-S750:接入网设备向master传输上行数据,具体,可以通过CN设备发送给master。以下实施例中,这两步未示出,但可以包括这两步。
以上实施例中的上行数据可以包括至少一个从站到主站的数据。接入网设备接收来自master的下行数据,该下行数据包括主站到至少一个从站的数据,对应的上行数据包括至少一个从站到主站的数据,至少一个从站包括一个从站与该终端装置连接,将该从站称为第一从站,与第一从站连接的终端装置称为第一终端装置。参照图1和图2所示,该第一从站可以为Slave 1,下行数据和上行数据承载在以太帧中,承载下行数据的以太帧进入Slave 1之后,经过一段时间,该以太帧会承载上行数据返回到Slave 1,则与Slave 1连接的终端装置会有上行数据传输给接入网设备,因此接入网设备可以根据传输间隔信息指示的时间间隔,来提前调度上行资源,以便终端装置传输上行数据,而无需等待终端装置的调度请求再进行上行资源分配,如此,可以降低时延,提高数据传输的效率。
请参考图8A,其为本申请实施例提供的另一种传输控制方法的示意图。在本实施例中,下行数据的接收和上行数据的发送通过同一终端装置实现。如图8A所示,该方法包括如下步骤:
S801:master向无线网络发送传输间隔信息。
S802:master向无线网络发送发送下行(DL)数据。
传输间隔信息用于指示时间间隔(T_gap),又可以称为传输间隔或上下行传输间隔,该时间间隔是指:上行数据到达Slave 1和下行数据到达Slave 1的时间间隔;或者,时间间隔为上行数据到达Slave 1和下行数据从master离开的时间间隔;或者,时间间隔为上行数据到达Slave 1和下行数据对应的数据包离开Slave 1的时间间隔;或者,时间间隔为上行数据离开Slave 1和下行数据到达Slave 1的时间间隔;或者,时间间隔为上行数据离开Slave 1和下行数据从master离开的时间间隔;或者,时间间隔为上行数据离开Slave 1和下行数据对应的数据包离开Slave 1的时间间隔。Slave 1是指一个slave组中与无线网络连接的入口和出口,即与终端装置连接的slave,如果该slave组中有多个slave,则其余slave直接或间接有线连接于Slave 1。由于终端装置通过适配器或本地接口与slave之间的传输延迟很小,可以忽略不计,因此,时间间隔的描述中的Slave 1可以替换为与Slave 1连接的终端装置。
请参考图8B,其为本申请实施例提供的一种时间间隔的示意图。如图8B所示,T0为master向Slave 1发送下行数据的时间,即下行数据离开master的时间。T1为 Slave 1从master接收下行数据的时间,即下行数据到达Slave1的时间。T2为Slave 1处理完数据,将数据发送给Slave2的时间,即下行数据离开Slave1的时间,此时的下行数据已经被Slave取走,并可能放入Slave 1的上行数据,即不包括Slave1的下行数据。T3为Slave 1从Slave 2接收上行数据的时间,即上行数据到达Slave1的时间,T4为Slave 1处理完上行数据,发送给master的时间,即上行数据离开Slave 1的时间。在一种可能实现中,上行数据可以在以太帧(或数据包)返回到slave时,slave才将自己发送给master的数据写入以太帧(或数据包),则以上T3还可以为上行数据对应的数据包到达Slave1的时间,上行数据对应的数据包不包括Slave 1发送给master的数据。则,时间间隔可以是T3和T0,T3和T1,或T3和T2之间的时间间隔,或者,T4和T0,T4和T1,或T4和T2之间的时间间隔。
master确定时间间隔的方法同以上实施例,在此不再赘述。master确定了时间间隔之后,将时间间隔信息通过信令通知给无线网络中的接入网设备。传输间隔信息用于指示时间间隔的大小,该传输间隔信息可以通过CN设备,例如接入和移动性管理功能(access and mobility management function,AMF)实体,发送给接入网设备,也可以通过其它CN设备发送,本申请不做限制。此外,接入网设备可以自己确定时间间隔,以上步骤S801可以省略。以下实施例与之类似。
以上步骤S801和S802没有先后顺序要求,且可以合并为一个步骤,即DL数据和传输间隔信息可以通过相同的消息传输。DL数据和传输间隔信息也可以通过不同的消息传输。例如,master可以在业务建立时将传输间隔信息通知给接入网设备,也可以在业务过程中将传输间隔信息通知给接入网设备,本申请不予限制。以业务建立时将传输间隔信息通知给接入网设备为例,一种可能的实现为:master向无线网络发起业务建立请求,可以通过业务建立请求消息将传输间隔信息发送给无线网络中的CN设备,CN设备接收业务建立请求消息,基于该业务建立请求消息,触发业务承载建立,且可以在承载建立过程中,通过承载建立请求消息将传输间隔信息发送给接入网设备。以在业务过程中将传输间隔信息通知给接入网设备为例,master在向无线网络传输业务数据的过程中,将传输间隔信息通知给接入网设备,即在发送DL数据的同时发送传输间隔信息。
S810:CN设备从master接收传输间隔信息,并将传输间隔信息发送给接入网设备(S830)。
S820:CN设备从master接收DL数据,并将DL数据发送给接入网设备(S840)。
以上步骤S810和S820没有先后顺序要求,可以合并为一个步骤,即CN设备可以通过相同的消息或不同的消息发送DL数据和传输间隔信息,即DL数据和传输间隔信息可以同时传输给接入网设备,也可以不同时传输给接入网设备。接入网设备从CN设备接收DL数据和传输间隔信息,并在传输间隔信息指示的传输间隔到达之前,向终端装置分配上行资源。终端装置根据接入网设备分配的上行资源进行上行数据传输。如此,接入网设备无需等待终端装置的调度请求,而是预期到在传输间隔到期时,终端装置有上行数据待传输,故而提前完成了资源分配(或资源调度),使得终端装置可以及时的上传上行数据,减少了调度时延,提高了数据传输的效率。
在一种实现中,接入网设备利用传输间隔信息在预设时间之后为终端分配上行资 源,此时接入网设备无需将传输间隔信息发送给终端装置,只需要在传输间隔到期之前为终端分配上行资源。请继续参考图8A,以上方法还包括:
S830:接入网设备向终端装置发送DL数据。
S840:接入网设备根据时间间隔分配上行资源。
接入网设备根据时间间隔确定分配上述资源的时间,且在确定的时间分配上行资源。或者,接入网设备在传输间隔信息指示的时间间隔到达之前,或者从发送DL数据作为起点的传输间隔内,向终端装置分配上行资源。
接入网设备接收到下行数据,并向终端装置发送该下行数据。在一种实现中,接入网设备在向终端装置发送下行数据时启动一个定时器。该定时器的时长小于时间间隔,且小于该时间间隔预设时长。可选的,该时间间隔与定时器时长的差(即预设时长)根据接入网设备和终端装置之间的传输时延或接入网设备和终端装置之间的传输时延和处理时延确定。该定时器可以为硬件实现的定时器,也可以为软件实现的定时器,例如开启一个预设时长的计时,该预设时长即可以理解为定时器的时长。当定时器到期时,接入网设备为终端装置分配上行资源,供终端装置传输从slave返回的上行数据。
在另一种实现中,接入网设备在向终端装置发送下行数据的同时启动一个定时器。该定时器的时长根据时间间隔设定,例如可以等于时间间隔,或者在包括时间间隔在内的一个时间范围内取值,即时间间隔±X,X为时间值,单位可以是符号、时隙(slot)、传输时间间隔(transmission time interval,TTI)、子帧、或毫秒等,其可以根据需要设定。该定时器可以为硬件实现的定时器,也可以为软件实现的定时器,例如开启一个预设时长的计时,该预设时长即可以理解为定时器的时长。当定时器快到期,例如距离预设时间到期时,接入网设备为终端装置分配上行资源,供终端装置传输从slave返回的上行数据。其中预设时间可以根据【接入网设备和终端装置之间的传输时延】确定。
可选的,以上资源分配过程为动态资源分配过程,接入网设备向终端装置分配上行资源,可以通过向终端装置发送上行资源的授权信息来实现,且该授权信息可以携带在物理下行控制信道(PDCCH)上的下行控制信息(DCI)中。
S850:终端装置从接入网设备获取上行资源,并利用上行资源发送上行(UL)数据。
例如,终端装置从接入网设备接收上行资源的授权信息,并利用该上行资源在时间间隔(T_gap)到期时发送上行数据。本申请实施例中的时间间隔到期是指在包括时间间隔在内的一个时间范围内收到上行资源的授权信息,终端装置虽然不知道时间间隔到期,但是由于上行资源的授权信息指示了上行资源的起始时刻,则终端装置可以在此刻开始的时间单元上进行上行数据传输,时间单元例如是符号、时隙(slot)、传输时间间隔(transmission time interval,TTI)、或子帧等,终端装置可以在此时进行上行数据传输。
终端装置从接入网设备接收下行数据,且从接收下行数据作为起点的传输间隔内,即在时间间隔到期之前,从接入网设备获取上行资源的授权信息,并利用该上行资源发送上行数据。在一种实现中,终端装置在接收到下行数据之后,开始进入睡眠模式, 睡眠时间小于传输间隔,随后终端醒来或进入激活模式,以接收接入网设备分配的上行资源的授权信息,并利用该上行资源发送上行数据。如此,终端可以节省能量消耗。
在以上实施例中,接入网设备没有把时间间隔通知终端装置,而是根据时间间隔为终端分配上行资源,即在时间间隔到期之前为终端装置分配上行资源。另一种实现方式是:接入网设备把时间间隔通知终端装置,并为终端装置提前分配上行资源,终端装置根据时间间隔确定利用该上行资源发送上行数据的时间。
请参考图9,其为本申请实施例提供的又一种传输控制方法的示意图。如图9所示,该方法包括如下步骤:
S901:master发送传输间隔信息。
S902:master发送DL数据。
S910:CN设备从master接收传输间隔信息,并将传输间隔信息发送给接入网设备。
S920:CN设备从master接收DL数据,并将DL数据发送给接入网设备。
步骤S901至S920同以上步骤S801至S820的描述,在此不再赘述。
S930:接入网设备向终端装置发送传输间隔信息或调整后的传输间隔信息。
接入网设备可以将收到的传输间隔信息直接转发给终端装置,也可以根据该传输间隔信息指示的时间间隔(T_gap)自行调整得到调整后的时间间隔(T_gap1),并将指示T_gap1的调整后的传输间隔信息发送给终端装置。例如,T_gap的时间长度为5.3987ms,无线接口的传输单位是1ms,所以调整后的T_gap1为6ms;再如,T_gap的时间长度为5.3987ms,无线接口的传输单位是0.5ms,所以调整后的T_gap1为5.5ms。为了区分,将以上步骤S910中的传输间隔信息称为第一传输间隔信息,将指示调整后的时间间隔(T_gap1)的传输间隔信息称为第二传输间隔信息,则步骤S930中的传输间隔信息可以为第一传输间隔信息或第二传输间隔信息。
接入网设备向终端装置发送传输间隔信息之后,终端装置可以根据该传输间隔信息指示的时间间隔(T_gap或T_gap1),确定传输上行数据的时间。
S940:接入网设备向终端装置发送DL数据。
接入网设备可以在业务数据传输过程中向终端装置发送传输间隔信息,即在发送DL数据的同时发送传输间隔信息。即以上步骤S930和S940同时进行。或者,接入网设备可以在DL数据传输之前就将传输间隔信息配置给终端装置,例如可以通过无线资源控制(radio resource control,RRC)消息,或者媒体接入控制元素(media access control control element,MAC CE),或者下行控制信息(DCI)将传输间隔信息配置给终端装置。
以上S930中的传输间隔信息可以是一次性通知的,之后每次步骤S940之后,即终端装置每次收到下行数据之后,都在时间间隔后传输上行数据;或者,S930通知的传输间隔信息只针对一次S940有效,终端装置接收的传输间隔信息只用于一次上行数据的传输,可选的,可以将传输间隔信息和下行数据一起发送。
终端装置接收DL数据,且在一定时间之后,会接收到该DL数据对应的UL数据,且根据时间间隔(T_gap或T_gap1)可以确定该上行数据的传输时间,即执行以下步骤:
S950:终端装置根据时间间隔(T_gap或T_gap1)向接入网设备发送上行(UL)数据。
发送上行数据的上行资源可以由接入网设备预先配置给终端,且该上行资源可以通过物理层信令分配。例如,接入网设备在向终端装置发送DL数据时,向终端装置发送该上行资源的授权信息,如此可以在下行调度的同时可以确定后续存在上行数据待发送,从而同时进行上行调度,提前准备好资源,减少了传输时延,又提高了资源的利用率。再如,接入网设备在向终端装置发送DL数据之后,且在时间间隔(T_gap或T_gap1)到期之前,向终端装置发送上行资源的授权信息。相比以上方式,接入网设备确定上行资源的频域位置的时刻,更贴近实际的上行传输时刻,所以传输性能更好。
以上上行资源通过动态调度的方式分配给终端装置,此外,上行资源还可以通过半静态或静态配置的方式配置给终端装置。例如,上行资源可以通过高层信令分配,此时,例如接入网设备在向终端装置发送RRC消息,该RRC消息包括上行资源的配置信息,用于指示上行资源的频域位置或时频位置。在进行RRC配置时,一种情况,接入网设备还不知道下行数据什么时候到达,而上行数据的发送是与下行数据绑定的,所以,可以只分配上行资源的频域位置,时域位置由下行数据的发送时刻推断。另一种情况,接入网设备已经知道下行数据的到达时刻,比如15点32分48秒785ms开始,每5ms一个下行数据,而时间间隔是2ms,接入网设备可以通过RRC配置:从15点32分48秒787ms开始,每5ms一个上行数据的时频位置。此外,还可以指示该上行资源的使用方式,即上行数据的传输方式,比如:调制和编码方案(modulation and coding scheme,MCS),和/或,是否进行跳频(hopping)等。此时,上行资源的分配过程与下行数据的传输过程没有先后要求。此外,配置的上行资源可以在时间间隔到期时即处于可用状态,或者也可以由接入网设备根据时间间隔在时间间隔到期时激活该上行资源。本申请实施例不做限制。
可选的,在以上任一实施例中,master还可以确定对应的上行数据和下行数据(或下行数据和上行数据)的大小差值,并将该大小差值通知接入网设备,供接入网设备确定为终端装置分配的上行资源的大小。master可以根据上行数据的类型确定上行数据的大小,进而确定上行数据和下行数据的大小差值,例如master知道下行数据大小为50B时,该下行数据是要求slave测量温度,而温度的上报需要20B;再如,下行数据大小为60B时,该下行数据是要求slave测量压强,而压强的上报需要25B,其中B为字节。则以上方法还包括:master向无线网络发送指示信息,该指示信息用于指示对应的上行数据和下行数据的大小差值或对应的下行数据和上行数据的大小差值。该指示信息可以由master发送给CN设备,并通过CN设备发送给接入网设备,且可以与传输间隔信息同时发送,即携带在同一消息中,也可以分别发送。接入网设备接收该指示信息,根据该指示信息指示的大小差值,向终端装置分配上行资源。此时分配的上行资源可以与上行数据大小匹配,减少资源浪费,提高资源利用率。
当指示信息用于指示对应的上行数据和下行数据的大小差值时,该大小差值可以正,则上行数据大于下行数据,该大小差值可以为负,则上行数据小于下行数据,该大小差值可以为零,则上行数据等于下行数据。其中上行数据和下行数据大小相同时, 该指示信息可以不发送,从而默认上行数据和下行数据大小相同,如果有用负载大小不同,可以通过打补丁(padding)保持上行数据和下行数据大小相同。类似的,当指示信息用于指示对应的下行数据和上行数据的大小差值时,该大小差值可以正,则下行数据大于上行数据,该大小差值可以为负,则下行数据小于上行数据,该大小差值可以为零,则下行数据等于上行数据。其中上行数据和下行数据大小相同时,该指示信息可以不发送,从而默认上行数据和下行数据大小相同,如果有用负载大小不同,可以通过打补丁(padding)保持上行数据和下行数据大小相同。
在以上实施例中,指示信息用于指示上行数据和下行数据的大小差值或下行数据和上行数据的大小差值,这里的上行数据和下行数据是指一个slave组内的所有slave的上行数据和下行数据,即该差值可以为整个以太帧或以太帧负载的大小差值,即整个slave组内所有slave数据总和的大小差值。在其它实施例中,指示信息可以用于指示上行数据和下行数据中一个slave对应的数据的大小差值或下行数据和上行数据中一个slave对应的数据的大小差值,即可以为一个slave对应的上行数据和下行数据(或下行数据和上行数据)的大小差值,此时各个slave的数据上行数据大小相同,下行数据大小相同,如此可以根据一个slave的数据大小差值,确定整个slave组的数据大小差值。
在以上各个实施例中,由于接入网设备可以预期终端装置在一段时间之后有上行数据传输,因此接入网设备可以提前为终端装置分配资源,因此,对于终端装置来说,当上行数据到达接入层时,可以不触发缓存状态报告(BSR),也可以不触发调度请求(SR)。在一种实现中,终端装置是否触发BSR是可以配置的,进一步的是否触发SR是可以配置的。接入网设备可以向终端装置发送指示终端装置是否触发BSR的配置信元,和/或,向终端装置发送指示终端装置是否触发SR的配置信元。其中,可以用同一个配置信元指示终端装置是否触发BSR和SR。或者,可以仅指示终端装置是否触发BSR,进而终端装置由于没有BSR被触发,进而不触发SR。或者,可以仅指示终端装置是否触发SR,进而终端装置默认不触发BSR。
在以上各个实施例中,由于接入网设备为终端装置分配上行资源时,只考虑到终端装置侧的slave收到下行数据后要传给master上行数据,所以分配的上行资源可能只够终端装置传输对应的上行数据,即返回的以太帧。基于这种考虑,终端装置在该上行资源上不传输其它业务数据。即,针对slave返回的上行数据,接入网设备配置专门的逻辑信道,用于传输该上行数据,上行资源的分配是针对该逻辑信道进行的,因此该上行资源不用于传输其它逻辑信道的数据,也不传输其它控制信元,例如媒体接入控制元素(media access control control element,MAC CE)。此时,终端装置生成的上行数据包可以不包括MAC子头信息。或者,接入网设备配置该上行资源用于传输的逻辑信道或控制信元,终端装置根据接入网设备的配置进行传输。
在以上实施例中,下行数据从Slave 1进入,上行数据从Slave 1出来,请参考图1和图2,即以太帧从Slave 1进入,从Slave 1出来。这种方式的好处在于不用改变slave的行为,可以兼容现有的工业控制系统。从图1和图2可以看出,以太帧从Slave 3出来之后,再次经过Slave 1和Slave 2时,Slave 1和Slave 2不做任何处理,所以在本申请另一实施例中,Slave 3可以直接将上行数据发送给接入网设备,进一步减少传 输时延,提高数据传输效率。
请参考图10,其为本申请实施例提供的另一种无线通信网络应用于控制网络的示意图。其与图6所示的系统的区别在于,Slave 3也配置有终端装置640,该终端装置640可以通过适配器与Slave3连接,也可以和Slave3集成在一个物理实体中,通过本地接口连接。关于系统的其它描述可以参照以上图6所示的实施例的描述,在此不再赘述。在本实施例中,Slave1和Slave 3为以上实施例中描述到的一个slave中的入口和出口,且分别连接不同的终端装置。在另一种部署中,Slave1和Slave 3也可以连接相同的终端装置。
master可以确定时间间隔,例如,以太帧进入Slave 1的时间和从Slave 3出来的时间差(或以下实施例中的其它时间差),并将该时间间隔通知接入网设备,如此接入网设备可以据此确定为终端装置640分配上行资源的时间或将时间间隔通知终端装置640,以便终端装置640确定使用上行资源进行传输的时间。本实施例与以上实施例的区别在于,上行资源的分配和下行数据的传输对象不同,而其它实现过程与以上实施例类似。
另外,本申请实施例对slave组内slave的数量不做限定。当slave组中包括多个slave时,下行数据包括master到多个slave的数据,且上行数据包括多个slave到master的数据,多个slave包括第一slave和第二slave,第一slave与第一终端装置连接,第二slave与第二终端装置连接,接入网设备向第二终端装置发送下行数据。此时,时间间隔可以为:所述时间间隔为上行数据到达第一slave和下行数据到达第二slave的时间间隔;或者,时间间隔为上行数据到达第一slave和下行数据从主站离开的时间间隔;或者,时间间隔为上行数据到达第一slave和下行数据对应的数据包的离开第二slave的时间间隔;或者,时间间隔为上行数据离开第一slave和下行数据到达第二slave的时间间隔;或者,时间间隔为上行数据离开第一slave和下行数据从master离开的时间间隔;或者,时间间隔为上行数据离开第一slave和下行数据对应的数据包离开第二slave的时间间隔。第一slave和第二slave是指一个slave组中与无线网络连接的出口和入口,即与终端装置连接的slave,如果该slave组中还有其它slave,则其它slave直接或间接有线连接于第一slave和第二slave。由于终端装置通过适配器或本地接口与slave之间的传输延迟很小,可以忽略不计,因此,以上时间间隔的描述中的第一slave和第二slave可以替换为与第一slave和第二slave连接的第一终端装置和第二终端装置。可选的,第一终端装置与第二终端装置可以相同。
请参考图11A,其为本申请实施例提供的另一种时间间隔的示意图。如图11A所示,T0为master向Slave 1(对应第二slave)发送下行数据的时间,即下行数据离开master的时间。T1为Slave 1从master接收下行数据的时间,即下行数据到达Slave1的时间。T2为Slave 1处理完数据,将数据发送给Slave2的时间,即下行数据离开Slave1的时间,此时的下行数据已经被Slave取走,并可能放入Slave 1的上行数据,即不包括Slave1的下行数据。T3为Slave 3(对应第一slave)从Slave 2接收上行数据的时间,即上行数据到达Slave3的时间,T4为Slave 3处理完上行数据,发送给master的时间,即上行数据离开Slave 3的时间。Slave 3和Slave 1分别对应以上第一slave和第二slave,且该slave组内还可以包括其它slave。时间间隔可以是T3和T0,T3和 T1,或T3和T2之间的时间间隔,或者,T4和T0,T4和T1,或T4和T2之间的时间间隔。
下面结合图11B进行描述。
请参考图11B,其为本申请实施例提供的另一种传输控制方法的示意图。其与图8A所示的实施例类似,只是上行资源的分配和下行数据的传输对象不同,如图11B所示,该方法包括:
S1101:master发送传输间隔信息。
S1102:master发送DL数据。
S1110:CN设备从master接收传输间隔信息,并将传输间隔信息发送给接入网设备。
S1120:CN设备从master接收DL数据,并将DL数据发送给接入网设备。
步骤S1101至S1120同以上步骤S801至S820的描述,在此不再赘述。
S1130:接入网设备向第一终端装置分配第一标识,其中,第一标识用于上行资源的分配。
S1140:接入网设备向第二终端装置分配第二标识,其中,第二标识用于下行数据的接收。
其中,第一标识和第二标识可以为相同的标识,例如相同的无线网络临时标识(radio network temporary identifier,RNTI)。如此,接入网设备可以使用同一个RNTI加扰的DCI,实现下行数据的下行资源和上行数据的上行资源分配,第一终端装置和第二终端装置也不需要额外监听其它的RNTI。第一标识和第二标识也可以为不同的标识,例如不同的RNTI。此外,接入网设备可以通过RRC消息或MAC CE通知第一终端装置利用第一标识接收上行资源的授权信息,通知第二终端装置利用第二标识接收下行数据。或者,可以预先约定好该第一标识用于上行资源的分配,第二标识用于下行数据的接收。以上第一标识用于上行资源的分配是指该第一标识专用于上行资源的分配,第二标识用于下行数据的接收是指该第二标识专用于下行数据的接收。
S1150:接入网设备向第二终端装置发送下行(DL)数据。
接入网设备接收到来自master的下行数据后,向第二终端装置发送该下行数据,第二终端装置通过第二标识寻址该下行数据,当第一标识和第二标识相同时,第二终端装置只用该标识接收下行数据,不接收上行资源的分配。
S1160:接入网设备向第一终端装置分配上行资源。
接入网设备向第二终端装置发送下行数据之后,知道再过时间间隔这段时间,第一终端装置会有上行数据传输,因此可以提前通过第一标识为第一终端装置分配上行资源,第一终端装置使用该上行资源传输上行数据。此外,当第一标识和第二标识相同时,第一终端装置只用该标识接收上行资源分配,不用于接收下行数据。
关于具体的资源分配方式可以参照图8A所示的实施例,且通过该实施例,第一终端装置可以休眠一段时间后,再监听接入网设备为其分配的上行资源,在此不再赘述。
S1170:第一终端装置获取上行资源,利用该上行资源发送上行(UL)数据。
接入网设备在该上行资源上接收上行数据,再将该上行数据传输给master。
请参考图12,其为本申请实施例提供的又一种传输控制方法的示意图。其与图9所示的实施例类似,只是上行资源的分配和下行数据的传输对象不同,如图12所示,该方法包括:
S1201:master发送传输间隔信息。
S1202:master发送DL数据。
S1210:CN设备从master接收传输间隔信息,并将传输间隔信息发送给接入网设备。
S1220:CN设备从master接收DL数据,并将DL数据发送给接入网设备。
步骤S1201至S1220同以上步骤S801至S820的描述,在此不再赘述。
S1230:接入网设备向第一终端装置发送传输间隔信息或调整后的传输间隔信息。
S1240:接入网设备向第一终端装置分配第一标识,其中,第一标识用于上行资源的分配。
S1250:接入网设备向第二终端装置分配第二标识,其中,第二标识用于下行数据的接收。
关于第一标识和第二标识的描述同图11B所示的实施例。此外,在上行资源的分配为接入网设备预配置上行资源时,可以不向第一终端装置分配第一标识。
S1260:接入网设备向第二终端装置发送下行(DL)数据。
S1270:终端装置根据时间间隔(T_gap或T_gap1)向接入网设备发送上行(UL)数据。
关于以各步骤的具体描述可以参照图9所示的实施例,在此不再赘述。
在以上各个实施例中,master将传输间隔信息通知接入网设备,如此接入网设备可以利用该传输间隔信息指示的时间间隔来确定分配上行资源的时间或者将该时间间隔或调整后的时间间隔通知终端装置,如此终端装置可以据此来确定上行传输的时间,如此,接入网设备无需等待上行数据到达终端装置并触发终端装置向接入网设备请求资源,便可以提前为终端装置分配上行资源,如此可以减少时延,提高数据传输的效率,使得数据传输更加适合工业控制。
在etherCAT中,各个节点的时钟同步,也就是说,master和每个slave都维护了一个时钟,通常以Slave 1的时钟为准,要求其它的节点的时钟都要调整到与Slave 1的时钟相同。参照图13,其同样以3个slave为例进行描述,更多或更少的slave与之类似。如图13图所示:
master和各个slave都维护一个时钟,起初,这些时钟是不同步的。master先发出一个同步消息,该消息包括时间值,比如“北京时间2019年4月26日18时32分28秒298毫秒350纳秒”,同时master记录时间T0,该同步消息经过Slave 1、Slave 2、Slave 3时,三个slave分别记录同步消息经过自己的时间,即T1、T2、T3。当同步消息从slave 3返回时,再分别记录该消息经过slave 2的时间T2’,经过slave 1的时间T1’,经过master的时间T0’。随后,各个slave分别把自己记录的时间值告诉master。master通过计算,得出每个slave之间的传输时延。比如:
-slave 1和slave2之间的时延,是[(T1’ T1)-(T2’ T2)]/2
-slave 1和slave3之间的时延,是(T1’ T1)/2
-slave 1和master之间的时延,是(T1’ T1)+[(T0’ T0)-(T1’ T1)]/2
通过以上计算,master算出了从slave1出发的数据包,到达slave 2、slave 3、master的时延,将这些时延值通知对应的slave。Slave2和slave 3收到这个时延值后,就能将自己维护的时钟调整得跟Slave1一样了。
该方法可以用于以上实施例中确定传输间隔信息指示的时间间隔。
无线网络应用于工业控制的架构时,采用透明时钟的方式达到时钟同步。如果采用图5所示的架构,时钟同步方法的示意图如图14所示:
主时钟所在的Slave1将自己的时钟信息通知master,如图中线条141所示;master将时钟信息通知Slave2(图中线条142所示)和Slave 3(图中线条143所示)。这种时钟同步方法,比较复杂,需要更多时间来完成时钟同步,因此本申请以下实施例改进了该时钟同步方法,使之更加简化,且减少时钟同步所需的时间。且以下实施例可以与以上实施例结合,使得无线网络更加适用于工业控制网络。
在以下实施例中,Slave1的授时信息可以直接由Slave 1传输给其它slave;或者,由Slave1通过终端装置传输给接入网设备,再由接入网设备传输给其它slave;或者,由Slave1通过终端装置传输给接入网设备,再由接入网设备传输给CN设备,再由CN设备传输给其它slave。如此相对于图14所示的方法,授时信息的传输路径得以缩短,提高了时钟同步的效率。授时信息又称为时钟信息,是指时钟在一时刻对应的时间信息,例如,Slave 1的时钟作为主时钟,其它slave和master也各自有时钟,称为从时钟。Slave 1在某一时刻读取自己的时钟,获得这一时刻的时间值,如北京时间2019年4月26日18时32分28秒298毫秒350纳秒,该时间值的信息即为授时信息。
下面结合附图描述以上各种方式的具体实现,且在以下实施例中以三个slave为例进行描述,更多或更少slave与之类似。且以下实施例均以终端装置(以下表示为UE)与slave之间通过适配器连接为例,但本实施例不以此为限,也可以通过集成在一个物理实体的内部连接。
请参考图15,其为本申请实施例提供的一种时钟同步方法的示意图。在本实施例中考虑到slave在物理距离上比较近,所以可以让授时信息分两路,一路从Slave 1经过无线网络传输到master,一路从Slave 1传输给Slave 2和Slave 3。如图15所示,该方法包括如下步骤:
S1510:接入网设备为第一从站Slave 1对应的第一终端装置UE1分配标识,该标识用于授时信息。
以上标识可以为RNTI,例如RNTI 1。在一种实现中,该RNTI 1为专用RNTI,即专用于Slave 1的授时信息。授时信息可以根据该RNTI 1与其它数据或信息区分开,如此无需为授时信息分配专用的逻辑信道。在另一种实现中,接入网设备可以为UE 1配置逻辑信道,该逻辑信道用于授时信息的传输,对于接入网设备来讲用于接收授时信息,对于UE1来讲用于发送授时信息,此时以上方法还包括以下步骤S1520。
S1520:接入网设备为UE1配置逻辑信道LCH1,该逻辑信道LCH1用于授时信息的传输。对于接入网设备来讲用于接收授时信息,对于UE1来讲用于发送授时信息。
接入网设备可以在无线承载(RB)的配置信息中增加逻辑信道标识(LCID),来配置授时信息所在的RB对应的逻辑信道。如此,RNTI可以复用于其它功能,进而 节约RNTI。
可选的,接入网设备可以为UE1配置流,该流用于授时信息的传输,对于接入网设备来讲用于接收授时信息,对于UE1来讲用于发送授时信息。具体的,接入网设备可以为UE1分配流标识,该流标识指示的流用于授时信息的传输。对于授时信息的发送方,可以在SDAP头中填入该标识,接收方读取SDAP头中的流标识,根据流标识确定接收的信息为授时信息。
接入网设备可以只配置逻辑信道或流,用于授时信息的传输,也可以同时配置逻辑信道和流用于授时信息的传输。
S1530:接入网设备为Slave 1所在的slave组(或slave链)上其它slave对应的UE,例如UE2和UE3,分配标识。
该标识用于授时信息,可以分配与S1510中相同的标识。即将以上标识通知给Slave 1所在的slave组(或slave链)上其它slave对应的UE。如此,Slave 1所在的slave组中其它slave对应的UE都利用该标识(RNTI 1)接收接入网设备分配的资源。该标识可以通过广播消息或者专用RRC消息发送给UE。专用RRC消息是指专用于配置该UE的RRC消息,又可以称为点对点的RRC消息。可选的,接入网设备可以为UE2和UE3配置逻辑信道(S1540),该逻辑信道用于授时信息的传输。配置方式同以上步骤S1520,且可以与S1520中相同的逻辑信道LCH1。即接入网设备通知Slave 1所在的slave组中其它slave对应的UE授时信息通过逻辑信道LCH1传输。
S1550:接入网设备分配资源。
接入网设备通过以上标识(RNTI1)加扰的控制信道为UE1分配资源,UE2和UE3也利用该标识监听控制信道,获知以上资源。
在一种资源分配中,UE1向接入网设备发送调度请求(SR),接入网设备基于该SR获知UE1有上行数据传输。UE1可以向接入网设备指示其要传输的上行数据是授时信息,该指示可以为显性指示,例如发送指示信息,指示UE1要传输授时信息。该指示可以为隐性指示,通过资源或其它传输元素指示UE1要传输授时信息。例如,接入网设备可以为UE1分配专用的SR资源,以便接入网设备通过发送SR的资源来获知该UE1要传输的上行数据是授时信息。在一种资源分配中,以上资源可以半静态分配或静态分配的资源,该资源可以为周期性出现的资源,如此Slave1定期生成授时信息,并通过UE1发送给其它UE。半静态或静态分配的资源,可以由接入网设备通过RRC消息配置该资源的参数,并在配置之后,该资源即处于激活状态;或者,在配置之后,由接入网设备发送激活指令,来激活该资源。
S1560:Slave1生成授时信息。
该步骤与以上各步骤之间没有先后顺序要求,且该授时信息可以周期生成。
S1570:UE1传输授时信息。
UE1通过以上接入网设备分配的资源传输授时信息。该资源可以为上行资源或侧行(sidelink)资源,UE2和UE3可以在该资源上监听并读取授时信息。一种实现中,UE2和UE3通过RNTI1识别接收到的信息是授时信息,另一种实现中,UE2和UE3通过RNTI1获取资源,且通过LCH1识别接收到的信息是授时信息,即通过RNTI和逻辑信道的组合识别接收到的信息是授时信息。另一种实现中,通过RNTI1获取资源, UE2和UE3通过流标识识别授时信息。而后,UE2和UE3将授时信息通过适配器分别送交Slave 2和Slave 3。对UE2和UE3来说,以上处理等同于从接入网设备直接收到授时信息。
S1580:Slave 2和Slave 3接收授时信息,并根据授时信息调整本地时钟。
由于Slave 2和Slave 3与slave 1的物理位置比较接近,所以slave 2和slave 3无需对授时信息在无线网络中的传输时间进行补偿。例如,授时信息指示Slave1的时钟为T0,则Slave 2和Slave 3也将时钟调整为T0。
在以上实施例中,Slave 2和slave 3直接从Slave 1获取授时信息,减少了无线网络的负荷,且由于slave 2和slave 3与slave 1的物理位置比较接近,slave 2和slave 3收到授时信息后,不需要做时延补偿,授时精度高。此外,也减少了时钟同步所需的时间,提高了时钟同步的效率。
可选的,接入网设备也可以通过以上资源接收授时信息,同样的可以通过RNTI1(LCH1或流标识)识别接收到的信息为授时信息。而后接入网设备将授时信息发送给CN设备,通过CN设备传到master。CN侧的适配器将授时信息在无线网络中的传输时间进行补偿,从而使master的时钟与slave1上的时钟达到同步,例如授时信息指示Slave1的时钟为T0,T1=T0+t0,即CN设备认为自己收到该授时信息的时刻对应的时间值是T0+t0。当然,master也可以自行维护时钟,因为,master向slave发出操作指令时,只关心各个slave是否同时执行操作指令,不关心各个slave是在哪一个共同的时刻执行操作指令的。另一种场景下,master只关心各个slave是否按特定顺序执行操作指令,不关心各个slave是在哪一个具体的时刻执行操作指令的。比如,Slave 1在2019年4月26日18时32分28秒298毫秒350纳秒执行操作,Slave 2在2019年4月26日18时32分28秒298毫秒360纳秒执行操作,对master是可以接受的;Slave 1在2019年4月26日18时32分28秒375毫秒350纳秒执行操作,Slave 2在2019年4月26日18时32分28秒375毫秒360纳秒执行操作,对master也是可以接受的。此时接入网设备可以不接收UE1发送的授时信息,进而无需将该授时信息传输给master。
以上实施例中,Slave 2和Slave 3无需对授时信息在无线网络中的传输时间进行补偿,所以,Slave 1生成“只发给Slave 2和Slave 3”的授时信息时,可以不对该授时信息增加无线网络时间戳。如果Slave 1生成的授时信息包既发给Slave 2和Slave 3,也发给接入网设备,或其它要做时延补偿的节点,Slave 1对该授时信息增加无线网络时间戳。另一种实现中,Slave 1生成的授时信息,总是没有无线网络时间戳,时间戳由接收授时信息的一方来增加。对于Slave 2和Slave 3,与Slave 1距离很近,所以无需增加时间戳;对于接入网设备,收到授时信息后,为该授时信息增加无线网络时间戳后再转发到其它接入网设备和/或核心网设备。
对Slave 1,如果发出的授时信息是增加了无线网络时间戳的,则这个“增加了无线网络时间戳的授时信息”可以做混合自动重传请求(hybrid automatic repeat request,HARQ)重传。如果发出的授时信息是没有增加无线网络时间戳的,则这个“未增加无线网络时间戳的授时信息”不能做HARQ重传。
以上实施例中,授时信息直接从Slave 1传到Slave 1所在slave组内的其它slave, 例如Slave 2和Slave 3,对Slave1的传输提出了较高的要求,Slave 1所需的传输功率较高,可能需要重传才能正确传输。因此,在以下实施例中,Slave 1将授时信息传输给接入网设备,由接入网设备转发给Slave 1所在slave组内的其它slave。
请参考图16,其为本申请实施例提供的另一种时钟同步方法的示意图。如图16所示,该方法包括如下步骤:
S1610:接入网设备为第一从站Slave 1对应的第一终端装置UE1分配标识,该标识用于授时信息。
S1620:接入网设备为UE1配置逻辑信道LCH1,该逻辑信道LCH1用于授时信息的传输。
S1630:接入网设备为UE1分配资源。
S1640:Slave1生成授时信息。
关于S1610、S1620、S1630和S1640的描述同以上实施例S1510、S1520、S1550和S1560的描述,在此不再赘述。
S1650:UE1向接入网设备传输授时信息。
UE1根据接入网设备分配的标识获取接入网设备分配的资源,利用该资源传输授时信息。当接入网设备执行了以上步骤S1620,即为UE1分配了逻辑信道LCH1,用于授时信息的传输时,UE1通过LCH1传输授时信息。
S1660:接入网设备向Slave 1所在slave组内的其它slave(例如Slave 2和Slave 3)连接的终端装置UE2和UE3发送授时信息。
一种实现中,接入网设备通过点对点的方式分别向Slave 2和Slave 3通知授时信息,此时可以采用与图15类似的方式,通过向Slave 2和Slave 3分配标识或分配逻辑信道或分配流的方式来将授时信息所在的资源或逻辑信道通知给UE。另一种实现中,接入网设备可以通过广播或组播的方式向Slave 2和Slave 3通知授时信息,此时接入网设备可以预先通知UE广播或组播的传输方式,例如以下信息中的一个或多个:广播所用的RNTI,使用的资源,使用的逻辑信道。例如,通知广播所用的RNTI和使用的资源,如此UE可以通过该RNTI和使用的资源寻址广播消息。或者,通知广播所用的逻辑信道和使用的资源,如此UE可以通过该逻辑信道和使用的资源寻址广播消息。或者,通知广播所用的逻辑信道,如此UE可以通过该逻辑信道寻址广播消息。或者,通知广播使用的资源,如此UE可以通过使用的资源寻址广播消息。
S1670:Slave 2和Slave 3接收授时信息,并根据授时信息调整本地时钟。
Slave2和slave 3预先跟接入网设备同步,维护一个共同的时间值,称为无线网络时钟同步。Slave 1发出授时信息时,与Save 1相连接的终端读出那一时刻的无线网络时钟的时间,附着在授时信息上;Slave 2和Slave 3收到授时信息的那一时刻,与Slave 2和Slave 3相连接的UE也读出接收时刻的无线网络时钟的时间。Slave 2和Slave 3将自己读出的无线网络时钟的时间,与授时信息里附着的、Slave1写的无线网络时钟的时间相减,得到授时信息的传输时延。再使用以上实施例类似的补偿方式,计算当前时刻所对应的时间。
同以上实施例,可选的,接入网设备将授时信息发送给CN设备,通过CN设备 传到master。CN侧的适配器将授时信息在无线网络中的传输时间进行补偿,从而使master的时钟与slave1上的时钟达到同步。
本实施例相对于图15所示的实施例,可以降低对终端装置的要求,简化终端装置的设计。
以上实施例中,Slave 2和Slave 1的标识由接入网设备分配,在另一种实现中,该标识由Slave1或与Slave 1连接的终端装置分配,即Slave1或与Slave 1连接的终端装置为其它slave分配标识。分配的标识可以与接入网设备分配给自己的标识相同。或者,分配给各个slave的标识是预先约定好的,例如协议规定好的。
在又一种实现中,接入网设备可以将授时信息发送给其它接入网设备,类似的,接入网设备可以从其它接入网设备获取授时信息,即以上实施例中从UE1获取授时信息的过程可以替换为接入网设备从其它接入网设备获取授时信息,该接入网设备与其它接入网设备位于相同的TSN域。
在以上实施例中,Slave 1将授时信息传输给接入网设备,由接入网设备转发给Slave 1所在slave组内的其它slave。此时,接入网设备需要识别授时信息,如果授时信息采用专用的RNTI,或者采用专用的逻辑信道进行传输,则接入网设备可以将授时信息与其它数据或信息区分开来。如果将授时信息与其它数据采用相同的逻辑信道进行传输,此时接入网设备需要借助其它方式来识别授时信息,因此,在另一实施例中,接入网设备可以将授时信息发送给其它接入网设备或CN设备,由CN设备转发给Slave 1所在slave组内的其它slave。其中据接入网设备可以将授时信息发送给同一个TSN与内的其它接入网设备,例如:授时信息是TSN域A的,发给TSN域A内的接入网设备A1、A2;授时信息是TSN域B的,发给TSN域B内的接入网设备B1、B2、B3。TSN域的配置可以以接入网设备为粒度,也可以以小区为粒度。如此,由接入网设备识别出授时信息,从而将授时信息传输给Slave 1所在slave组内的其它slave,此时授时信息虽然经过接入网设备,但接入网设备不进行解析。此时,授时信息与其它数据或信息共用逻辑信道,简化接入网设备的设计。
在以上实施例中,Slave1的授时信息可以直接由Slave 1传输给其它slave;或者,由Slave1通过终端装置传输给接入网设备,再由接入网设备传输给其它slave;或者,由Slave1通过终端装置传输给接入网设备,再由接入网设备传输给CN设备,再由CN设备传输给其它slave。如此相对于图14所示的方法,授时信息的传输路径得以缩短,提高了时钟同步的效率。且以上实施例中以Slave1的时钟作为主时钟,其它slave相对于Slave1进行时钟同步。在其它实施例中,也可以其它slave的时钟作为主时钟,例如Slave 2或Slave 3。此外,同以上描述,master可以自行维护时钟,此时授时信息无需传输给master。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中终端装置所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中接入网设备所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中核心网设备所执行的各个步骤的单元(或手段)。
例如,请参考图17,其为本申请实施例提供的一种传输控制装置的示意图。该装 置用于接入网设备,如图17所示,该装置1700包括获取单元1710,分配单元1720,和第一通信单元1730。其中获取单元1710用于传输间隔信息,分配单元1720用于向第一终端装置分配上行资源,第一通信单元1730用于在上行资源上从第一终端装置接收上行数据。传输间隔信息用于指示时间间隔,且时间间隔用于接入网设备确定上行资源的分配时间或用于第一终端装置确定上行资源用于传输的时间。获取单元1710可以在本地确定时间间隔,并生成传输间隔信息,也可以从主站获取传输间隔信息。
该装置1700还可以包括第二通信单元1740,用于接收来自主站的下行数据。并通过第一通信单元1730向第一终端装置或第二终端装置发送下行数据。可选的,第一通信单元1730还用于向第一终端装置发送传输间隔信息或调整后的传输间隔信息。
第一通信单元1730用于与终端装置(例如第一终端装置或第二终端装置)之间的通信,第二通信单元1740用于与其它网络设备的通信,例如与CN设备的通信。则以上实施例中发送给终端装置的信息或数据或者从终端装置接收的信息或数据,可以通过第一通信单元1730进行发送或接收。以上实施例中从主站(或CN设备)或发送给主站(或CN设备)的信息或数据,可以通过第二通信单元1740进行发送或接收。具体细节不再描述,可以参照以上实施例。此外,关于下行数据,上行数据,时间间隔等,关于上行资源的分配方式等也同以上实施例,在此不再赘述。此外,该装置1700还可以包括第三通信单元,用于与其它接入网设备通信,以上实施例中从其它接入网设备或发送给其它接入网设备的信息或数据,可以通过第三通信单元进行发送或接收,在此不再赘述。
例如,请参考图18,其为本申请实施例提供的一种传输控制装置的示意图。该装置用于终端装置,如图18所示,该装置1800包括接收单元1810,确定单元1820和发送单元1830。其中接收单元1810用于获取上行资源,且用于从接入网设备接收传输间隔信息,该传输间隔信息用于指示时间间隔;确定单元1820用于根据时间间隔确定上行资源用于传输的时间;发送单元1830用于根据确定的时间利用上行资源发送上行数据。
接收单元1810还用于从接入网设备接收下行数据。
关于下行数据,上行数据,时间间隔等,关于上行资源的获取方式等也同以上实施例,在此不再赘述。且关于该装置和接入网设备之间的其它交互信息或数据同以上实施例,在此不再赘述。进一步的,该装置还可以包括不触发缓存状态报告,和/或,调度请求的单元。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软 件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元(例如接收单元或通信单元)是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元(例如发送单元或通信单元)是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图19,其为本申请实施例提供的一种接入网设备的结构示意图。该接入网设备用于实现以上实施例中接入网设备的操作。如图19所示,该接入网设备包括:天线1910、射频装置1920、基带装置1930。天线1910与射频装置1920连接。在上行方向上,射频装置1920通过天线1910接收终端装置发送的信息,将终端装置发送的信息发送给基带装置1930进行处理。在下行方向上,基带装置1930对终端装置的信息进行处理,并发送给射频装置1920,射频装置1920对终端装置的信息进行处理后经过天线1910发送给终端装置。
基带装置1930可以包括一个或多个处理元件1931,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1930还可以包括存储元件1932和接口1933,存储元件1932用于存储程序和数据;接口1933用于与射频装置1920交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于接入网设备的装置可以位于基带装置1930,例如,以上用于接入网设备的装置可以为基带装置1930上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上接入网设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,接入网设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于接入网设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中接入网设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,接入网设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
接入网设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现 以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上接入网设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上接入网设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于接入网设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种接入网设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行接入网设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行接入网设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上接入网设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图20,其为本申请实施例提供的一种终端装置的结构示意图。该终端装置用于实现以上实施例中终端装置的操作。如图20所示,该终端装置包括:天线2010、射频部分2020、信号处理部分2030。天线2010与射频部分2020连接。在下行方向上,射频部分2020通过天线2010接收接入网设备发送的信息,将接入网设备发送的信息发送给信号处理部分2030进行处理。在上行方向上,信号处理部分2030对终端装置的信息进行处理,并发送给射频部分2020,射频部分2020对终端装置的信息进行处理后经过天线2010发送给接入网设备。
信号处理部分2030用于实现对数据各通信协议层的处理。信号处理部分2030可以为该终端装置的一个子系统,则该终端装置还可以包括其它子系统,例如中央处理子系统,用于实现对终端装置操作系统以及应用层的处理;再如,周边子系统用于实现与其它设备的连接。信号处理部分2030可以为单独设置的芯片。可选的,以上的装置可以位于信号处理部分2030。
信号处理部分2030可以包括一个或多个处理元件2031,例如,包括一个主控CPU和其它集成电路。此外,该信号处理部分2030还可以包括存储元件2032和接口电路2033。存储元件2032用于存储数据和程序,用于执行以上方法中终端装置所执行的方法的程序可能存储,也可能不存储于该存储元件2032中,例如,存储于信号处理部分2030之外的存储器中,使用时信号处理部分2030加载该程序到缓存中进行使用。接口电路2033用于与装置通信。以上装置可以位于信号处理部分2030,该信号处理部分2030可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端装置执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如该装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端装置执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端装置所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端装置执行的方法。
在又一种实现中,终端装置实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于信号处理部分2030上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端装置执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端装置执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端装置执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端装置执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端装置执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端装置执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图21,其为本申请实施例提供的一种核心网设备的结构示意图,用于实现以上实施例中核心网设备的操作。如图21所示,该核心网设备包括:处理器2110,存储器2120,和接口2130,处理器2110、存储器2120和接口2130信号连接。
以上实施例中核心网设备执行的方法可以通过处理器2110调用存储器2120中存储的程序来实现。即,用于核心网设备的装置包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中的核心网设备执行的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。用于核心网设备的装置可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (35)

  1. 一种传输控制方法,其特征在于,包括:
    接入网设备获取传输间隔信息,所述传输间隔信息用于指示时间间隔;
    所述接入网设备向第一终端装置分配上行资源,其中所述时间间隔用于所述接入网设备确定所述上行资源的分配时间或用于所述第一终端装置确定所述上行资源用于传输的时间;
    所述接入网设备在所述上行资源上从所述第一终端装置接收上行数据。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述接入网设备接收下行数据,其中,所述下行数据包括主站到至少一个从站的数据,且所述上行数据包括所述至少一个从站到所述主站的数据,所述至少一个从站包括第一从站,所述第一从站与所述第一终端装置连接;
    所述接入网设备向所述第一终端装置发送所述下行数据。
  3. 根据权利要求2所述的方法,其特征在于,所述时间间隔包括:
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据到达所述第一从站或所述第一终端装置的时间间隔;或者,
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据对应的数据包的离开所述第一从站或所述第一终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据到达所述第一从站或所述第一终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据对应的数据包离开所述第一从站或所述第一终端装置的时间间隔。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    所述接入网设备应所述下行数据的发送开启定时器,所述定时器的时长根据所述时间间隔设定,所述定时器的时长小于或等于所述时间间隔,且所述接入网设备向第一终端装置分配上行资源,包括:
    所述接入网设备在所述定时器到期或在所述定时器距离预设时间到期时,向所述第一终端装置发送所述上行资源的授权信息。
  5. 根据权利要求3所述的方法,其特征在于,还包括:
    所述接入网设备向所述第一终端装置发送所述传输间隔信息或调整后的传输间隔信息,其中所述调整后的传输间隔信息用于指示调整后的所述时间间隔,且用于所述第一终端装置确定所述上行资源用于传输的时间。
  6. 根据权利要求5所述的方法,其特征在于,所述接入网设备向第一终端装置分配上行资源,包括:
    所述接入网设备在向所述第一终端装置发送所述下行数据时,向所述第一终端装置发送所述上行资源的授权信息;或者,
    所述接入网设备在向所述第一终端装置发送所述下行数据之后,且在所述时间间隔到期之前,向所述第一终端装置发送所述上行资源的授权信息;或者,
    所述接入网设备向所述第一终端装置预配置所述上行资源。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    所述接入网设备接收下行数据,所述下行数据包括主站到多个从站的数据,且所述上行数据包括所述多个从站到所述主站的数据,所述多个从站包括第一从站和第二从站,所述第一从站与所述第一终端装置连接,所述第二从站与所述第二终端装置连接;
    所述接入网设备向所述第二终端装置发送所述下行数据。
  8. 根据权利要求7所述的方法,其特征在于,所述时间间隔包括:
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据到达所述第二从站或所述第二终端装置的时间间隔;或者,
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据对应的数据包的离开所述第二从站或所述第二终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据到达所述第二从站或所述第二终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据对应的数据包离开所述第二从站或所述第二终端装置的时间间隔。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述接入网设备应所述下行数据的发送开启定时器,所述定时器的时长根据所述时间间隔设定,所述定时器的时长小于或等于所述时间间隔预设时长,且所述接入网设备向第一终端装置分配上行资源,包括:
    所述接入网设备在所述定时器到期或在所述定时器距离预设时间到期时,向所述第一终端装置发送所述上行资源的授权信息。
  10. 根据权利要求8所述的方法,其特征在于,还包括:
    所述接入网设备向所述第一终端装置发送所述传输间隔信息或调整后的传输间隔信息,其中所述调整后的传输间隔信息用于指示调整后的所述时间间隔,且用于所述第一终端装置确定所述上行资源用于传输的时间。
  11. 根据权利要求10所述的方法,其特征在于,所述接入网设备向第一终端装置分配上行资源,包括:
    所述接入网设备在向所述第二终端装置发送所述下行数据时,向所述第一终端装置发送所述上行资源的授权信息;或者,
    所述接入网设备在向所述第二终端装置发送所述下行数据之后,且在所述时间间隔到期之前,向所述第一终端装置发送所述上行资源的授权信息;或者,
    所述接入网设备向所述第一终端装置预配置所述上行资源。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    所述接入网设备向所述第一终端装置分配第一标识,且向所述第二终端装置分配第二标识,其中所述第一标识用于所述上行资源的分配,所述第二标识用于所述下行数据的接收。
  13. 根据权利要求12所述的方法,其特征在于,所述第一标识和所述第二标识相同。
  14. 根据权利要求2至13任一项所述的方法,其特征在于,还包括:
    所述接入网设备接收指示信息,所述指示信息用于指示所述上行数据和所述下行 数据的大小差值或所述下行数据和所述上行数据的大小差值,或者用于指示所述上行数据和所述下行数据中一个从站对应的数据的大小差值或所述下行数据和所述上行数据中一个从站对应的数据的大小差值;
    所述接入网设备向第一终端装置分配上行资源,包括:
    所述接入网设备根据所述指示信息指示的大小差值,向所述第一终端装置分配上行资源。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述第一终端装置与从站组内的第一从站连接,所述方法还包括:
    所述接入网设备从所述第一终端装置接收授时信息;
    所述接入网设备将所述授时信息发送给与所述从站组内的其它从站连接的其它终端装置。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    所述接入网设备将所述授时信息发送给核心网设备。
  17. 根据权利要求1至14任一项所述的方法,其特征在于,所述第一终端装置与从站组内的第一从站连接,所述方法还包括:
    所述接入网设备向所述第一终端装置分配标识,所述标识用于所述第一终端装置发送授时信息;
    所述接入网设备向与所述从站组内的其它从站连接的其它终端装置分配所述标识,所述标识用于所述其它终端装置从所述第一终端装置接收所述授时信息。
  18. 一种传输控制方法,其特征在于,包括:
    终端装置获取上行资源;
    所述终端装置从接入网设备接收传输间隔信息,所述传输间隔信息用于指示时间间隔,且所述时间间隔用于确定所述上行资源用于传输的时间;
    所述终端装置在根据所述时间间隔确定的时间利用所述上行资源发送上行数据。
  19. 根据权利要求18所述的方法,其特征在于,还包括:
    所述终端装置从所述接入网设备接收下行数据,其中,所述下行数据包括主站到至少一个从站的数据,且所述上行数据包括所述至少一个从站到所述主站的数据,所述终端装置与所述至少一个从站中的第一从站连接。
  20. 根据权利要求19所述的方法,其特征在于,所述时间间隔包括:
    所述上行数据到达所述第一从站或所述终端装置和所述下行数据到达所述第一从站或所述终端装置的时间间隔;或者,
    所述上行数据到达所述第一从站或所述终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据到达所述第一从站或所述终端装置和所述下行数据对应的数据包的离开所述第一从站或所述终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述终端装置和所述下行数据到达所述第一从站或所述终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据离开所述第一从站或所述终端装置和所述下行数据对应的数据包离开所述第一从站或所述终端装置的时间间隔。
  21. 根据权利要求19或20所述的方法,其特征在于,所述终端装置获取上行资源,包括:
    所述终端装置在接收所述下行数据时,获取来自所述接入网设备的所述上行资源 的授权信息;或者,
    所述终端装置在接收所述下行数据之后,且在所述时间间隔到期之前,获取来自所述接入网设备的所述上行资源的授权信息;或者,
    所述终端装置获取所述上行资源的预配置信息。
  22. 根据权利要求18所述的方法,其特征在于,所述下行数据包括主站到多个从站的数据,且所述上行数据包括所述多个从站到所述主站的数据,所述多个从站包括第一从站和第二从站,所述第一从站与所述终端装置连接,所述终端装置为第一终端装置,所述第二从站与第二终端装置连接。
  23. 根据权利要求22所述的方法,其特征在于,所述时间间隔包括:
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据到达所述第二从站或所述第二终端装置的时间间隔;或者,
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据到达所述第一从站或所述第一终端装置和所述下行数据对应的数据包的离开所述第二从站或所述第二终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据到达所述第二从站或所述第二终端装置的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据从主站离开的时间间隔;或者,
    所述上行数据离开所述第一从站或所述第一终端装置和所述下行数据对应的数据包离开所述第二从站或所述第二终端装置的时间间隔。
  24. 根据权利要求22或23所述的方法,其特征在于,还包括:
    所述终端装置从所述接入网设备接收第一标识,所述第一标识用于所述上行资源的分配。
  25. 根据权利要求24所述的方法,其特征在于,所述第一标识和用于所述下行数据接收的第二标识相同。
  26. 根据权利要求18至25任一项所述的方法,其特征在于,所述终端装置不触发缓存状态报告,和/或,调度请求。
  27. 根据权利要求18至26任一项所述的方法,其特征在于,还包括:
    所述终端装置向所述接入网设备发送授时信息。
  28. 根据权利要求18至27任一项所述的方法,其特征在于,还包括:
    所述终端装置向其它终端装置发送授时信息。
  29. 一种传输控制装置,其特征在于,包括:用于执行权利要求1至17任一项所述的各个步骤的单元。
  30. 一种传输控制装置,其特征在于,包括:处理器,用于调用存储器中的程序,以执行权利要求1至17任一项所述的方法。
  31. 一种传输控制装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求1至17任一项所述的方法。
  32. 一种传输控制装置,其特征在于,包括:用于执行权利要求18至28任一项所述的各个步骤的单元。
  33. 一种传输控制装置,其特征在于,包括:处理器,用于调用存储器中的程序,以执行权利要求18至28任一项所述的方法。
  34. 一种传输控制装置,其特征在于,包括:处理器和接口电路,所述接口电路用于与其它装置通信,所述处理器用于执行权利要求18至28任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1至28任一项所述的方法被执行。
PCT/CN2020/102417 2019-08-01 2020-07-16 传输控制方法和装置 WO2021017875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910707795.2A CN112312536A (zh) 2019-08-01 2019-08-01 传输控制方法和装置
CN201910707795.2 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021017875A1 true WO2021017875A1 (zh) 2021-02-04

Family

ID=74230137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102417 WO2021017875A1 (zh) 2019-08-01 2020-07-16 传输控制方法和装置

Country Status (2)

Country Link
CN (1) CN112312536A (zh)
WO (1) WO2021017875A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190617A (zh) * 2021-04-06 2022-10-14 华为技术有限公司 用于资源确定的方法及装置
CN114995985B (zh) * 2022-08-02 2023-01-17 阿里巴巴(中国)有限公司 资源调度方法、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302513A (zh) * 2017-06-04 2017-10-27 西安征途网络科技有限公司 适用于tdd sc‑fde的宽带无线传输系统的物理层帧结构
CN108604962A (zh) * 2016-01-25 2018-09-28 高通股份有限公司 用于共享射频频带中的上行链路信道的描述符信道设计
US20190053274A1 (en) * 2016-01-27 2019-02-14 Lg Electronics Inc. Method for receiving downlink signal, in wireless communication system supporting unlicensed band, and device for supporting same
CN109451794A (zh) * 2017-07-19 2019-03-08 北京小米移动软件有限公司 传输信息的方法及装置
CN110036657A (zh) * 2016-09-26 2019-07-19 诺基亚通信公司 通信系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE241880T1 (de) * 2000-04-28 2003-06-15 Cit Alcatel Verfahren, mobiles endgerät und basisstation zur zuteilung von betriebsmitteln in einem geteilten kanal
MY156150A (en) * 2009-12-22 2016-01-15 Interdigital Patent Holdings Group-based machine to machine communication
KR101876784B1 (ko) * 2011-08-03 2018-07-10 폴테 코포레이션 감소된 감쇠 rf 기술을 이용하여 오브젝트들을 거리 측정 및 추적할 때의 다중―경로 저감
CN104378778B (zh) * 2013-08-16 2018-06-01 普天信息技术研究院有限公司 物联网中主从站之间进行通信的方法、系统及转换网关
EP2846603A3 (en) * 2013-08-30 2015-06-03 Vodafone IP Licensing limited Reducing the number of radio interfaces by using a mobile terminal as signalling relay for other mobile terminals
CN108768573B (zh) * 2018-04-13 2020-02-21 北京东土科技股份有限公司 一种时钟同步方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604962A (zh) * 2016-01-25 2018-09-28 高通股份有限公司 用于共享射频频带中的上行链路信道的描述符信道设计
US20190053274A1 (en) * 2016-01-27 2019-02-14 Lg Electronics Inc. Method for receiving downlink signal, in wireless communication system supporting unlicensed band, and device for supporting same
CN110036657A (zh) * 2016-09-26 2019-07-19 诺基亚通信公司 通信系统
CN107302513A (zh) * 2017-06-04 2017-10-27 西安征途网络科技有限公司 适用于tdd sc‑fde的宽带无线传输系统的物理层帧结构
CN109451794A (zh) * 2017-07-19 2019-03-08 北京小米移动软件有限公司 传输信息的方法及装置

Also Published As

Publication number Publication date
CN112312536A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US10455446B2 (en) Method for triggering a sidelink buffer status reporting in a D2D communication system and device therefor
JP6371466B2 (ja) D2d通信システムにおけるバッファ状態報告のための優先順位処理方法及びそのための装置
WO2018094872A1 (zh) sidelink资源调度方法、装置和系统
WO2019104685A1 (zh) 通信方法和通信设备
WO2017124941A1 (zh) 传输数据的方法、用户设备和基站
WO2013134952A1 (zh) 调度请求资源配置方法、设备及系统
US10939455B2 (en) Method for allocating priorities to a logical channel group implicitly in a D2D communication system and device therefor
KR20140109893A (ko) 반이중 및 전이중을 위한 통신 장치 및 방법
US20140293840A1 (en) Telecommunications apparatus and methods for half-duplex and full-duplex
JP2023526735A (ja) Tci状態のアクティブ化及びコードポイントからtci状態へのマッピングのためのシステム及び方法
US11564230B2 (en) Method and apparatus for supporting fully-distributed time-sensitive networking in mobile communication system
JP2023521639A (ja) 通信装置および基地局
WO2021017875A1 (zh) 传输控制方法和装置
US20220217758A1 (en) Devices and methods for cross-slot scheduling adaption
US20220022093A1 (en) Method and apparatus for buffer status report enhancement
US20220022219A1 (en) Method and apparatus for scheduling uplink transmission
US20220303902A1 (en) User equipment involved in monitoring the downlink control channel
CN117561781A (zh) 无线通信方法、终端设备和网络设备
WO2021062704A1 (zh) 获取侧行链路资源的方法和装置
CN114667768A (zh) 用户设备和调度节点
US20150031378A1 (en) Method for performing connection management in a mobile communication network, user terminal and base station
KR20230158100A (ko) 다수의 슬롯들에 걸친 tb를 위한 자원 결정
WO2014169726A1 (zh) 数据传输方法及装置
EP2983419B1 (en) Mobile communication system, base station, and user terminal
US20160044739A1 (en) Base station, user terminal, and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847297

Country of ref document: EP

Kind code of ref document: A1