WO2021017574A1 - 一种红外线滤波器 - Google Patents

一种红外线滤波器 Download PDF

Info

Publication number
WO2021017574A1
WO2021017574A1 PCT/CN2020/089997 CN2020089997W WO2021017574A1 WO 2021017574 A1 WO2021017574 A1 WO 2021017574A1 CN 2020089997 W CN2020089997 W CN 2020089997W WO 2021017574 A1 WO2021017574 A1 WO 2021017574A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
infrared
inner conductor
attenuator
output end
Prior art date
Application number
PCT/CN2020/089997
Other languages
English (en)
French (fr)
Inventor
于扬
陆聆
刘银银
余同心
Original Assignee
南京大学
南京乾海通信技术有限公司
安徽毅信微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学, 南京乾海通信技术有限公司, 安徽毅信微电子技术有限公司 filed Critical 南京大学
Publication of WO2021017574A1 publication Critical patent/WO2021017574A1/zh
Priority to ZA2021/10812A priority Critical patent/ZA202110812B/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the invention belongs to the technical field of microwave radio frequency communication, and specifically relates to an infrared filter.
  • quantum computing relies on the manipulation of fragile quantum states, which are very sensitive to unnecessary effects in the environment. It is very important to isolate the interference of the surrounding environment from the qubit to maintain the stability of the quantum state.
  • qubits are not perfect or isolated, and the stability of the quantum state will degrade over time.
  • Noise in the environment leaks into the qubit system through unnecessary coupling between electrons and parasitic phonons or photons.
  • Adding a filter to the signal path to filter out these parasitic phonons or photons can achieve the purpose of protecting the qubits.
  • the purpose of the present invention is to provide a filter with a shape similar to an adapter to filter out the infrared light that will produce bad quasi-particles in the signal path when the microwave communication system is working.
  • An infrared filter includes an input end, an output end, a filter cavity, and a filter assembly.
  • the filter assembly is arranged inside the filter cavity.
  • the filter assembly includes an inner conductor. Infrared absorbing material, both ends of the inner conductor are fixedly supported with the filter cavity through an insulating medium, the input end and the output end are respectively arranged on both sides of the filter cavity and pass through an attenuator and The inner conductor is connected.
  • the joint between the input end and the output end may be one or more of SMA, N and DIN.
  • the insulating medium may be made of polytetrafluoroethylene.
  • the infrared absorbing material may be composed of silicon carbide powder.
  • the inner conductor is made of beryllium bronze.
  • the attenuator selects an attenuation value according to application requirements.
  • this kind of infrared filter adopts a high-matching infrared absorbing material with a suitable dielectric constant as the main body of the filter, which can effectively absorb infrared waves in the microwave communication transmission path; and adopts an attenuator
  • the technology makes the infrared filter's port standing wave index in the microwave frequency band very good, and easy to produce, assemble and debug, the device is small in size, and the performance is stable, which can well meet the needs of current related systems.
  • Fig. 1 is a front sectional view of the front of the present invention.
  • an infrared filter includes an input terminal 1, an output terminal 2 and a filter cavity 3 in which an inner conductor 7, a filter component 8 and an attenuator 6 are provided.
  • the infrared absorbing material 4 uses silicon carbide powder.
  • the two ends of the filter assembly 8 are supported by the insulating medium 5 of polytetrafluoroethylene material.
  • the inner conductor 7 is made of beryllium bronze material.
  • both ends of the filter cavity 3 are provided with an input terminal 1 and an output terminal 2.
  • SMA connectors are preferred in the present invention.
  • the input terminal 1 and the output terminal 2 are connected by an inner conductor 7.
  • a specially configured filter assembly 8 is arranged inside the cavity, and the infrared absorbing material 4 is fixed in the filter assembly 8 via the PTFE insulating medium 5 on both sides to form the main functional part of the filter.
  • An attenuator 6 is arranged between the two ends of the wave absorbing component and the joint to form the entire infrared filter.
  • the infrared filter specially configured infrared absorbing material is made into an integrated component, which makes the filter easy to produce and assemble.
  • Attenuators are provided at both ends of the component, and the attenuation value can be selected according to application requirements. Due to the addition of the attenuator, the standing wave performance of the entire filter in the microwave frequency band (S ⁇ C ⁇ X ⁇ Ku) is very good, and the influence of the discontinuity of the middle infrared absorption material on the transmission performance of the entire filter in the microwave frequency band is It is greatly reduced, and the entire filter structure is made of copper material, and the structure is very stable and reliable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种红外线滤波器,包括输入端(1)、输出端(2)、滤波器腔体(3)、滤波组件(8),输入端(1)和输出端(2)都是SMA接头,滤波器腔体(3)内设置有内导体(7)、滤波组件(8)及衰减器(6),这种红外滤波器采用合适介电常数的高匹配的红外线吸波材料作为滤波器的主体,可以有效地吸收掉微波通信传输路径中夹杂的红外波;采用加衰减器技术,使得红外线滤波器在微波频段的端口驻波指标非常好,且易于生产装配调试,器件体积小,性能稳定,能够很好地满足目前相关系统的需求。

Description

一种红外线滤波器 技术领域
本发明属于微波射频通讯技术领域,具体涉及一种红外线滤波器。
背景技术:
最近几年,使用超导量子比特来进行模拟与数字量子计算已经成为现实。实验量子计算领域正在实现一台能比经典计算机以指数级快速度解决某一类问题的机器方面取得稳步进展。然而,量子计算依赖于对脆弱的量子态的操纵,量子态对环境中不必要的影响是非常敏感的。将周围环境的干扰与量子比特隔离开来保持量子态的稳定显得非常重要。
在实验环境中,量子比特不是完美或者孤立的,量子态的稳定性随着时间的推移也会退化。环境中的噪声通过电子和寄生声子或光子之间不必要的耦合而泄漏到量子比特系统中。在信号通路上加入滤波器把这些寄生声子或者光子滤除即可达到保护量子比特的目的。
发明内容
本发明的目的在于提供一种外形类似转接器的滤波器来滤除微波通信系统工作时信号通路中会产生不良准粒子的红外光。
一种红外线滤波器,包括输入端、输出端、滤波器腔体和滤波组件,所述滤波组件设于所述滤波器腔体内部,所述滤波组件包括内导体,所述内导体内部设有红外线吸收材料,所述内导体的两端通过绝 缘介质与所述滤波器腔体固定支撑,所述输入端和所述输出端分别设于所述滤波器腔体的两侧并通过衰减器与所述内导体连接。
优选的,所述输入端和所述输出端的接头可以是SMA、N和DIN中的一种或者多种形式。
优选的,所述绝缘介质可以由聚四氟乙烯构成。
优选的,所述红外线吸收材料可以由碳化硅粉末构成。
优选的,所述内导体由铍青铜构成。
优选的,所述衰减器根据应用需求选取衰减数值。
本发明的优点在于:该种红外线滤波器,采用合适介电常数的高匹配的红外线吸波材料作为滤波器的主体,可以有效地吸收掉微波通信传输路径中夹杂的红外波;采用加衰减器技术,使得该红外线滤波器在微波频段的端口驻波指标非常好,且易于生产装配调试,器件体积小,性能稳定,能够很好地满足目前相关系统的需求。
附图说明
图1为本发明的正面的主视剖面图。
其中:1-输入端,2-输出端,3-滤波器腔体,4-红外线吸收材料,5-绝缘介质,6-衰减器,7-内导体,8-滤波组件。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如图1所示,一种红外线滤波器,包括输入端1、输出端2和滤 波器腔体3,所述滤波器腔体3中设置有内导体7、滤波组件8和衰减器6。
值得注意的是,所述滤波器输入端1和输出端2采用SMA接头。
在本实施例中,所述红外线吸收材料4采用碳化硅粉末。
在本实施例中,所述滤波组件8的两端采用聚四氟乙烯材料绝缘介质5作支撑。
在本实施例中,所述内导体7采用铍青铜材料加工。
其中,滤波器腔体3两端设置有输入端1和输出端2,为减小体积,本发明优选SMA接头。输入端1和输出端2由内导体7相连接。腔体内部设置有经过特殊配置的滤波组件8,红外线吸收材料4经两边的聚四氟乙烯绝缘介质5固定于滤波组件8内,形成该滤波器的主要功能部件。吸波组件两端与接头之间各设置有一个衰减器6构成了整个红外线滤波器。
基于上述,该种红外线滤波器,特殊配置的红外线吸收材料做成了集成化的组件,使得滤波器易于生产装配,组件两端设置有衰减器,可以根据应用需求选取衰减数值。由于加入了衰减器,整个滤波器在微波频段(S\C\X\Ku)的驻波性能非常优秀,中间红外线吸收材料部分的不连续性对整个滤波器在微波频段的传输性能的影响被大大降低,且整个滤波器结构件均采用铜材加工,结构非常稳定可靠。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同 于本发明的范围内的改变均被本发明包含。

Claims (6)

  1. 一种红外线滤波器,其特征在于,包括输入端、输出端、滤波器腔体和滤波组件,所述滤波组件设于所述滤波器腔体内部,所述滤波组件包括内导体,所述内导体内部设有红外线吸收材料,所述内导体的两端通过绝缘介质与所述滤波器腔体固定支撑,所述输入端和所述输出端分别设于所述滤波器腔体的两侧并通过衰减器与所述内导体连接。
  2. 根据权利要求1所述的一种红外线滤波器,其特征在于:所述输入端和所述输出端的接头可以是SMA、N和DIN中的一种或者多种形式。
  3. 根据权利要求1所述的一种红外线滤波器,其特征在于:所述绝缘介质可以由聚四氟乙烯构成。
  4. 根据权利要求1所述的一种红外线滤波器,其特征在于:所述红外线吸收材料可以由碳化硅粉末构成。
  5. 根据权利要求1所述的一种红外线滤波器,其特征在于:所述内导体由铍青铜构成。
  6. 根据权利要求1所述的一种红外线滤波器,其特征在于:所述衰减器根据应用需求选取衰减数值。
PCT/CN2020/089997 2019-07-26 2020-05-13 一种红外线滤波器 WO2021017574A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/10812A ZA202110812B (en) 2019-07-26 2021-12-22 Infrared filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910680129.4A CN112305652A (zh) 2019-07-26 2019-07-26 一种红外线滤波器
CN201910680129.4 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021017574A1 true WO2021017574A1 (zh) 2021-02-04

Family

ID=74229987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089997 WO2021017574A1 (zh) 2019-07-26 2020-05-13 一种红外线滤波器

Country Status (3)

Country Link
CN (1) CN112305652A (zh)
WO (1) WO2021017574A1 (zh)
ZA (1) ZA202110812B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230056242A1 (en) * 2021-08-17 2023-02-23 Fermi Research Alliance, Llc Epoxy-Based Infrared Filter Assembly and Associated Fabrication Devices and Method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410597A (zh) * 2021-05-12 2021-09-17 中国电子科技集团公司第十六研究所 一种低温红外滤波器
CN116706481B (zh) * 2023-08-07 2023-11-03 合肥国家实验室 吸收式滤波器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969549A (zh) * 2012-11-27 2013-03-13 张家港保税区灿勤科技有限公司 新型腔体介质腔体滤波器
CN103131285A (zh) * 2013-04-03 2013-06-05 上海海事大学 一种光热转换涂料组合物及其制备方法
CN104485496A (zh) * 2014-12-19 2015-04-01 云南云天化股份有限公司 用于滤波器腔体的材料及滤波器腔体
JP5691690B2 (ja) * 2011-03-15 2015-04-01 旭硝子株式会社 近赤外線吸収部材
US20170091646A1 (en) * 2015-09-28 2017-03-30 International Business Machines Corporation High fidelity and high efficiency qubit readout scheme
US20170090080A1 (en) * 2015-09-28 2017-03-30 International Business Machines Corporation Low-loss infrared filter for microwave measurement which integrates a distributed bragg reflector into a microwave transmission line
CN106992345A (zh) * 2017-06-07 2017-07-28 深圳市威富通讯技术有限公司 腔体滤波器
CN206698217U (zh) * 2017-04-10 2017-12-01 丽羽电子股份有限公司 可有效滤除电源干扰的射频信号处理模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309151A (ja) * 2005-03-28 2006-11-09 Seiko Epson Corp 光学ローパスフィルタ
JP4432119B2 (ja) * 2005-09-15 2010-03-17 大同特殊鋼株式会社 バンドパスフィルター
CN104716409A (zh) * 2013-12-17 2015-06-17 天津市康丰达石油工程有限公司 一种可调节宽带滤波器装置
CN105977586A (zh) * 2016-06-23 2016-09-28 江苏华灿电讯股份有限公司 一种低频超带宽滤波器
CN208723059U (zh) * 2019-01-30 2019-04-09 苏州捷频电子科技有限公司 陶瓷电介质滤波器和双工器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691690B2 (ja) * 2011-03-15 2015-04-01 旭硝子株式会社 近赤外線吸収部材
CN102969549A (zh) * 2012-11-27 2013-03-13 张家港保税区灿勤科技有限公司 新型腔体介质腔体滤波器
CN103131285A (zh) * 2013-04-03 2013-06-05 上海海事大学 一种光热转换涂料组合物及其制备方法
CN104485496A (zh) * 2014-12-19 2015-04-01 云南云天化股份有限公司 用于滤波器腔体的材料及滤波器腔体
US20170091646A1 (en) * 2015-09-28 2017-03-30 International Business Machines Corporation High fidelity and high efficiency qubit readout scheme
US20170090080A1 (en) * 2015-09-28 2017-03-30 International Business Machines Corporation Low-loss infrared filter for microwave measurement which integrates a distributed bragg reflector into a microwave transmission line
CN206698217U (zh) * 2017-04-10 2017-12-01 丽羽电子股份有限公司 可有效滤除电源干扰的射频信号处理模块
CN106992345A (zh) * 2017-06-07 2017-07-28 深圳市威富通讯技术有限公司 腔体滤波器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230056242A1 (en) * 2021-08-17 2023-02-23 Fermi Research Alliance, Llc Epoxy-Based Infrared Filter Assembly and Associated Fabrication Devices and Method
US11880053B2 (en) * 2021-08-17 2024-01-23 Fermi Research Alliance, Llc Epoxy-based infrared filter assembly and associated fabrication devices and method

Also Published As

Publication number Publication date
ZA202110812B (en) 2022-03-30
CN112305652A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021017574A1 (zh) 一种红外线滤波器
Zhou et al. 9.8 Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless
CN104953225A (zh) 一种具有滤波功能的平衡式分支线耦合器
Khani et al. Compact microstrip lowpass filter with wide stopband and sharp roll-off
KR100867129B1 (ko) Rf 스위치
JPH07235803A (ja) 同軸形高電力用低域フィルタ
CN112103602B (zh) 一种宽带高频法拉第隔离器
CN106936403A (zh) 一种基于缺陷地结构的超宽带幅度均衡器
KR102591621B1 (ko) 고주파 전력 결합기
CN206388829U (zh) 一种30瓦功率40GHz毫米波固定衰减器
CN116454573A (zh) 一种紧凑双端吸收带通滤波器
CN116706481B (zh) 吸收式滤波器
CN104051831A (zh) 一种小型化超宽带滤波器
CN112002975B (zh) 基于双螺旋谐振器和缺陷地结构的小型化均衡器
CN110277617B (zh) 基于不等分混合电桥结构的宽带小型化均衡器
Wei et al. A novel highly selective UWB bandpass filter using quad-mode stub-loaded resonator
Aseeri et al. Compact Microstrip Lowpass Filter with Low Insertion Loss for UWB Medical Applications
CN104466319A (zh) 一种阶梯阻抗发夹式谐振器加载开路线的双模滤波器
CN104183893A (zh) 一种带状线结构的多级微波巴伦滤波器
Thirumalaivasan et al. Development of Compact Ultra-Wideband (UWB) microstrip bandpass filter
Meng et al. A low-loss dual-band negative group delay circuit with flexible design
US10122057B2 (en) Bandwidth increase method for differential passive elements
Peláez et al. Novel common mode suppression network for the transformation of single‐ended to balanced filters
Sharma et al. Coplanar waveguide narrow bandpass filter using shunt open stub for ‘S’band applications
CN109167127B (zh) 一种基于绝热空间电磁耦合的低温微波滤波系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846913

Country of ref document: EP

Kind code of ref document: A1