WO2021017152A1 - 一种超轻型卫星便携站 - Google Patents

一种超轻型卫星便携站 Download PDF

Info

Publication number
WO2021017152A1
WO2021017152A1 PCT/CN2019/109041 CN2019109041W WO2021017152A1 WO 2021017152 A1 WO2021017152 A1 WO 2021017152A1 CN 2019109041 W CN2019109041 W CN 2019109041W WO 2021017152 A1 WO2021017152 A1 WO 2021017152A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
pitch
azimuth
fine
transmission mechanism
Prior art date
Application number
PCT/CN2019/109041
Other languages
English (en)
French (fr)
Inventor
鞠正峰
李玮
裘德龙
李文明
Original Assignee
南京中网卫星通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中网卫星通信股份有限公司 filed Critical 南京中网卫星通信股份有限公司
Priority to GB2010490.7A priority Critical patent/GB2594104B/en
Publication of WO2021017152A1 publication Critical patent/WO2021017152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1235Collapsible supports; Means for erecting a rigid antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • H01Q15/161Collapsible reflectors
    • H01Q15/162Collapsible reflectors composed of a plurality of rigid panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations

Definitions

  • This application relates to the technical field of communication satellites, in particular to an ultra-light portable satellite station.
  • offset-fed satellite antennas generally adopt a box structure, as shown in Figure 1:
  • the entire antenna is generally composed of antenna plane 1-1, feed bracket 1-2, feed system, azimuth and pitch transmission component 1- 4.
  • the electrical box 1-3, the windproof bracket 1-6, the handle 1-5 and other components are composed.
  • the electrical box body and the azimuth and pitch transmission components are installed on the bottom of the antenna structure, and the antenna feed system is installed on the azimuth and pitch transmission components of the antenna. .
  • This kind of antenna structure meets normal communication needs, and has the advantages of compact size after storage, large electrical box, and a variety of built-in communication devices. But there are certain disadvantages:
  • the electrical box is at the bottom of the antenna, so it does not have the ability to wading
  • the feeder support part contains power amplifiers, radio frequency and other equipment that are heavy, and there is no corresponding counterweight on the back of the antenna surface. Therefore, the center of the pitch rotation part is offset from the front end, and a larger reducer and motor are required for pitch rotation;
  • the antenna electrical box is at the front of the antenna, and it is easy to be exposed to direct sunlight when the temperature is high in summer, which will cause the temperature in the box to rise abnormally and cause the communication equipment to malfunction;
  • the antenna surface adopts the multi-petal buckle assembly method, and there is a certain assembly time when the antenna is erected.
  • the weight is heavy, which cannot meet the needs of increasingly miniaturized antennas.
  • this antenna structure is generally used in large-capacity broadband communications.
  • FIG. 2 Chinese Patent Publication No. CN104518271A "a portable automatic finder system" adopts a forward-fed antenna structure, as shown in Figure 2:
  • This solution uses a quadrupod as the supporting structure, and the azimuth and pitch transmission structure is placed on the quadrupod 2- On 1, the antenna surface 2-2 adopts a petal-like multi-lobe assembly solution, and the power amplifier RF system 2-3 is placed behind the antenna surface.
  • This solution has the following advantages: it enhances the wading ability of the antenna; avoids the electrical box from being directly exposed to the sun; and the pitching center of gravity is closer to the axis of rotation. But there are also certain disadvantages:
  • the antenna surface is generally assembled with eight petals, and the antenna surface assembly takes a long time;
  • the antenna surface feed rod needs to be disassembled when storing, and it needs to be screwed on the center plate of the antenna surface when in use;
  • the overall structure of the antenna is heavy, it can only be carried in a box, and cannot be carried. It is inconvenient to carry in complex terrain such as mountainous areas;
  • the control box is small in size and can only place the control part and drive part of the antenna itself, and there is no space for built-in modems and other business equipment.
  • the purpose of this application is to overcome the deficiencies in the prior art and provide an ultra-light portable satellite station with small size, light weight, and high use and installation efficiency.
  • An ultra-light portable satellite station includes an antenna assembly and a support frame.
  • the antenna assembly includes an antenna surface, a feed support, a pitch transmission mechanism, and an azimuth transmission mechanism.
  • the back of the antenna surface is integrally provided with an electrical box.
  • the feed support is located on both sides of the antenna plane, the feed support is connected to the pitch transmission mechanism, the pitch transmission mechanism is connected to the azimuth transmission mechanism, and the azimuth transmission mechanism is connected to the support frame through a quick assembly mechanism.
  • the front side of the RF transceiver component is connected with the RF transceiver component and the secondary reflective surface at a fixed angle through the RF transceiver component limit rod.
  • the feed support is also connected with a feed and a polarization transmission mechanism, the feed is connected with a duplexer, the receiving end of the duplexer is connected with a down-conversion amplifier, and the transmitting end of the duplexer is connected with Frequency conversion amplifier.
  • the antenna plane is formed by hingedly connecting three antenna panels through an antenna plane folding hinge.
  • the antenna surface includes a main antenna surface, two auxiliary antenna surfaces, an antenna surface folding hinge and a locking buckle.
  • the two auxiliary antenna surfaces are arranged on both sides of the main antenna surface, and the auxiliary antenna surfaces are folded by the antenna surface.
  • the hinge and the locking hasp are connected to the main antenna surface;
  • the antenna plane folding hinge includes a folding hinge fixing part and a folding hinge rotating part; one end of the folding hinge fixing part is connected to one end of the folding hinge rotating part through a hinge shaft; the fixing nut is sleeved on the hinge shaft near the hinge One end of the folding hinge fixing part; a damping washer is sleeved on the hinge shaft, and the damping washer is located between the folding hinge fixing part and the folding hinge rotating part;
  • the auxiliary antenna surface is connected to the end of the folding hinge rotating part away from the hinge shaft; the end of the folding hinge fixing part matched with the folding hinge rotating part is connected to the main antenna surface, and the end away from the hinge shaft.
  • the support frame includes a support rod mounting seat, a plurality of support rods are hinged on the support rod mounting seat, and a gas spring is connected between each support rod and the support rod mounting seat.
  • the lower surface of the support rod mounting seat is provided with a connecting rod, one end of each gas spring is hinged with the bottom edge of the connecting rod, and the other end is connected with the support rod by a connecting piece and a bolt.
  • the azimuth transmission mechanism includes a coarse azimuth adjustment shaft sleeve, a coarse azimuth adjustment shaft, a coarse azimuth locking knob, a fine azimuth reduction gearbox, a fine azimuth adjustment motor, and a fine azimuth manual knob;
  • the upper surface of the support rod mounting seat is provided with an antenna transmission connector, the azimuth coarse adjustment shaft is connected with the antenna transmission connector through a thread, and the azimuth coarse adjustment shaft sleeve is provided with an azimuth coarse adjustment locking knob;
  • the azimuth coarse adjustment shaft sleeve is also provided with an azimuth fine-adjustment gearbox
  • the azimuth fine-adjustment gearbox is a worm gear transmission structure
  • one end of the azimuth fine-adjustment gearbox is connected with an azimuth fine-tuning manual knob
  • the other end of the worm is connected with an azimuth fine-tuning A motor
  • the upper part of the fine azimuth reduction gearbox is connected with a pitch transmission mechanism.
  • a windproof support rod is also connected to the support frame, one end of the windproof support rod is connected with the support rod by a shaft pin, and the other end is connected with the support rod by a fixed screw.
  • the pitch transmission mechanism includes a pitch coarse adjustment shaft sleeve, a pitch coarse adjustment locking knob, a pitch fine adjustment reduction box, a pitch fine adjustment motor, a pitch fine adjustment manual knob, a pitch coarse adjustment angle limit screw, and a pitch output shaft;
  • the pitch fine adjustment reduction box is a worm gear transmission structure, one end of the worm is connected with a pitch fine adjustment manual knob, the other end of the worm is connected with a pitch fine adjustment motor, and the worm gear output hole in the pitch fine adjustment reduction box is connected with a pitch output shaft through a key,
  • the pitch output shaft is fixed to the main antenna surface by the pitch coarse adjustment angle limit screw.
  • the secondary reflective surface and the feed source support are connected by a secondary reflective surface rotation axis, and a limit mechanism and a locking mechanism are also provided between the secondary reflective surface and the feed source support.
  • the polarization transmission mechanism includes a polarization rotation motor and an angle sensor.
  • an antenna controller, a satellite modem and other built-in equipment are installed in the electrical box, and an electrical box cover and a heat sink are also provided on the electrical box.
  • the antenna surface adopts 0.75m equivalent Gregorian antenna surface, which is compatible with KU/KA frequency bands, and realizes the communication of KU and KA frequency bands by replacing radio frequency components of different frequency bands;
  • the antenna base bracket adopts the carbon fiber support frame structure, which reduces the weight while ensuring the strength, and has a wading depth of about 15cm;
  • the antenna azimuth rotation adopts a wide range of angle quick adjustment and azimuth angle manual fine-tuning or electric fine-tuning structure, which can greatly shorten the alignment time.
  • angle quick adjustment and azimuth angle manual fine-tuning or electric fine-tuning structure which can greatly shorten the alignment time.
  • the antenna pitch rotation also adopts a wide range of angle quick adjustment and pitch manual fine-tuning or electric fine-tuning structure.
  • angle quick adjustment and pitch manual fine-tuning or electric fine-tuning structure When adjusting the angle, first quickly rotate the pitch angle to the theoretical pitch angle position, lock the rapid adjustment structure, and then manually or electric fine-tune to the satellite.
  • the antenna surface adopts a folding hinge design, which eliminates the traditional multi-lobe assembly link, greatly saves the installation time and enhances the integrity of the antenna.
  • the antenna controller, satellite modem and built-in equipment are placed on the back of the antenna surface to avoid direct sunlight and optimize the weight of the antenna.
  • Figure 1 is a three-dimensional view of a general box-type offset-fed antenna
  • Figure 2 is a three-dimensional view of a general forward-fed antenna
  • Figure 3 is a perspective view of the overall working state of an ultralight portable satellite station
  • Figure 4 is a perspective view of the storage state of the support frame
  • Figure 5 is a perspective view of the support frame in an expanded state
  • Figure 6 is a perspective view of the antenna assembly in a storage state
  • Figure 7 is a perspective view of the assembled state of the antenna assembly and the support frame
  • Figure 8 is a partial perspective view of the azimuth and pitch transmission structure
  • Figure 9 is a sectional view of the azimuth and pitch transmission structure
  • Figure 10 is a partial perspective view of the polarization transmission structure
  • FIG. 11 is a schematic diagram of the deployment of the antenna surface
  • Fig. 12 is a schematic diagram of the structure of the antenna surface folding hinge.
  • the supporting frame 1 in this application is preferably a tripod.
  • Figure 3 is a perspective view of the overall working state of an ultralight portable satellite station
  • Fig. 10 is a partial perspective view of the polarization transmission structure.
  • the ultra-light portable satellite station described in this application takes an equivalent 0.75m Ku-band antenna as an example, and the antenna surface 6 adopts a 0.75m equivalent Gregorian antenna surface 6, which is compatible KU/KA two frequency bands, by replacing the radio frequency components of different frequency bands to realize the communication of KU and KA frequency bands, the structure is mainly aluminum and carbon fiber.
  • the ultra-light satellite portable station in this application includes an antenna assembly 11 and a support frame 1.
  • the antenna assembly 11 includes an antenna surface 6, a feed support 10, a pitch transmission mechanism 4, and an azimuth transmission mechanism 3.
  • the back of the antenna surface 6 is integrated
  • the feed support 10 is located on both sides of the antenna surface 6, the feed support 10 is connected with the pitch transmission mechanism 4, the pitch transmission mechanism 4 is connected with the azimuth transmission mechanism 3, and the azimuth transmission mechanism 3 is connected to the support frame through the quick assembly mechanism 1 is connected, the front of the antenna surface 6 is connected at a fixed angle with the RF transceiver component 8 and the sub-reflecting surface 9 through the RF transceiver component limit rod 7, and the RF transceiver component 8 is connected with a feed 19 and a polarization transmission mechanism.
  • the polarization transmission mechanism includes a polarization rotation motor 17 and an angle sensor 18.
  • the polarization rotation motor 17 drives the feed source 19 to make a rotation movement, and the angle sensor 18 plays an angle feedback function.
  • the support frame 1 in this embodiment adopts a carbon fiber support frame structure, which reduces the weight while ensuring the strength.
  • An electrical box 5 is installed on the back of the antenna.
  • the antenna controller, satellite modem and other built-in equipment are installed in the electrical box 5.
  • the antenna controller, satellite modem and built-in equipment are placed on the back of the antenna surface 6, avoiding direct sunlight and optimization
  • the counterweight of the antenna is also provided with an electric box cover to protect the equipment in the electric box 5.
  • the antenna surface 6 in this embodiment is hinged by three antenna panels 13 through antenna surface folding hinges 12, that is, it includes the main antenna surface and the panels on both sides. Under the action of the connecting piece, it can be flipped and folded above the main antenna surface. When flipping, the flipping sequence of the panels on both sides is arbitrary.
  • the antenna surface 6 adopts a folding hinge design, which eliminates the traditional multi-lobe assembly link and greatly saves erection. Time and enhance the integrity of the antenna.
  • the antenna surface 6 includes a main antenna surface 131, two auxiliary antenna surfaces 132, an antenna surface folding hinge 12 and a locking hasp 133, and two auxiliary antenna surfaces 132 Are arranged on both sides of the main antenna surface 131, and the auxiliary antenna surface 132 is connected to the main antenna surface 131 through an antenna surface folding hinge 12 and a locking hasp 133;
  • the two secondary antenna surfaces 132 can be turned over to one end surface of the main antenna surface 131 through the antenna surface folding hinge 12.
  • the two auxiliary antenna surfaces 132 can be flipped from one end surface of the main antenna surface 131 to both sides of the main antenna surface 131 by folding the hinge 12, and then the two auxiliary antenna surfaces 132 can be paired with the locking hasp 133.
  • the relative positions of the antenna surface 132 and the main antenna surface 131 are fixed.
  • the embodiment of the application avoids the assembling link, and has the characteristics of fast deployment speed and simple operation.
  • the locking hasp 133 includes a locking hasp sub-component and a locking hasp female matching the locking hasp sub-component.
  • the locking hasp sub-part is arranged on the auxiliary antenna surface 132, and the main antenna surface 131 is provided with a locking hasp female part matching the locking hasp sub-part, or the locking hasp female part is arranged on the auxiliary antenna surface 132 ,
  • the main antenna surface 131 is provided with a locking hasp sub-part that matches the locking hasp female.
  • the number of the locking buckles 133 is two, and the two locking buckles 133 are respectively arranged at the midpoint of the connection between the main antenna surface 131 and the two auxiliary antenna surfaces 132.
  • the number of locking buckles 133 in this application is at least two, and the specific number is not limited here.
  • the antenna surface folding hinge 12 includes a folding hinge fixing part 121 and a folding hinge rotating part 122; one end of the folding hinge fixing part 121 is connected to one end of the folding hinge rotating part 122 through a hinge shaft 123
  • the fixing nut 124 is sleeved at one end of the hinge shaft 123 close to the folding hinge fixing part 121; the hinge shaft 123 is sleeved with a damping washer 125, and the damping washer 125 is located in the folding hinge fixing part 121 And the folding hinge rotating member 122;
  • the folding hinge fixing part 121 and the folding hinge rotating part 122 can be relatively rotated around the hinge shaft 123, and the damping washer 125 can prevent the folding hinge fixing part 121 and the folding hinge rotating part 122 from being connected Attrition.
  • the auxiliary antenna surface 132 is connected to the end of the folding hinge rotating part 122 away from the hinge shaft 123; the end of the folding hinge fixing part 121 matching the folding hinge rotating part 122 and the end away from the hinge rotating shaft 123 and the main antenna surface 131 connections.
  • the number of the antenna plane folding hinges 12 is four, and the folding hinge fixing members 121 of the four antenna plane folding hinges 12 are respectively connected to the four corners of the main antenna plane 131.
  • Four folding hinge rotating parts 122 matched with the folding hinge fixing parts 121 are respectively arranged on the two auxiliary antenna surfaces 132 respectively.
  • 4 is a perspective view of the storage state of the support frame 1;
  • FIG. 5 is a perspective view of the unfolded state of the support frame 1;
  • the support frame 1 in this embodiment includes a support rod mounting seat.
  • a number of support rods are hinged on the support rod mounting seat.
  • a gas spring 101 is connected between the rod mounts; the lower surface of the support rod mount is provided with a connecting rod, one end of each gas spring 101 is hinged with the bottom edge of the connecting rod, and the other end is connected to the support rod through a connecting piece and bolt Connection; when the support frame 1 is taken out of the bag, it is in the state of Figure 4.
  • the support frame 1 When the strap of the support frame 1 is loosened, the support frame 1 is automatically expanded under the action of several gas springs 101 until the maximum stroke of the gas spring 101 So far, the support frame 1 is fully unfolded, and a strap is connected to the support frame 1. After the support frame 1 is rolled up, the support frame 1 can be bound by the strap to the state shown in Figure 4. In this case, the support frame 1 The collection is more convenient and takes up less space.
  • a windproof support rod 2 is connected to the support frame 1.
  • One end of the windproof support rod 2 is connected to the support rod by a shaft pin, and the other end is fixed to the support rod.
  • the screw 103 is connected, a connecting piece is provided on the support rod through a bolt and nut, and a connecting hole is opened on the connecting piece for connecting with the fixing screw 103.
  • the support frame 1 is in the state of FIG. 4 when taken out of the bag, and a pair of windproof support rods are fixed on the support frame 1 by the windproof support rod 2 fixing screws 103.
  • the windproof support rod 2 in this embodiment is a telescopic rod, which includes two sections of support rods, and the two sections of support rods are connected by a telescopic lock nut 102.
  • Figure 8 is a partial perspective view of the azimuth and pitch transmission structure
  • Figure 9 is a sectional view of the azimuth and pitch transmission structure
  • the azimuth transmission mechanism 3 includes a coarse azimuth adjustment bushing 302, a coarse azimuth adjustment shaft 306, a coarse azimuth locking knob 301, a fine azimuth reduction gearbox 304, a fine azimuth motor 305 and a fine azimuth manual knob 303;
  • the upper surface of the support rod mounting seat is provided with an antenna transmission connector 104, the azimuth coarse adjustment shaft 306 is connected with the antenna transmission connector 104 through threads, and the azimuth coarse adjustment shaft sleeve 302 is provided with an azimuth coarse adjustment locking knob 301;
  • the azimuth coarse adjustment shaft sleeve 302 is also provided with an azimuth fine-adjusting gearbox 304.
  • the azimuth fine-adjusting gearbox 304 is a worm gear transmission structure.
  • One end of the azimuth fine-adjusting gearbox 304 is connected with an azimuth fine adjustment manual knob 303, and the other end of the worm is connected with an azimuth Fine-tune the motor 305.
  • the upper part of the azimuth fine-adjusting gearbox 304 is connected to the pitch transmission mechanism 4, and the azimuth fine-adjusting motor 305 in this embodiment is a DC geared motor.
  • the pitch transmission mechanism 4 includes a pitch coarse adjustment bushing 402, a pitch coarse adjustment locking knob 401, a pitch fine adjustment reduction box 403, a pitch fine adjustment motor 405, a pitch fine adjustment manual knob 404, a pitch coarse adjustment angle limit screw 406, and a pitch output shaft 407 ;
  • the pitch fine adjustment reduction box 403 can rotate freely in the pitch coarse adjustment bushing 402 to achieve the purpose of pitch coarse adjustment.
  • the pitch coarse adjustment bushing 402 is provided with a pitch coarse adjustment angle limit screw 406, and the pitch coarse adjustment angle limit screw 406 starts.
  • the pitch coarse adjustment sleeve 402 is provided with a pitch coarse adjustment locking knob 401.
  • the pitch coarse adjustment locking knob 401 can hold the pitch fine adjustment reduction box 403 and the pitch coarse adjustment sleeve 402. Fix tightly.
  • the pitch fine-tuning gearbox 403 is connected with a pitch fine-tuning manual knob 404, and the other end of the worm is connected with a pitch fine-tuning motor 405.
  • the pitch fine-tuning motor 405 in this embodiment is a DC geared motor.
  • the worm gear output hole in the pitch fine adjustment reduction box 403 is connected with a pitch output shaft 407 through a key, and the pitch output shaft 407 is fixed to the main antenna surface by a pitch coarse adjustment angle limit screw 406.
  • the secondary reflective surface 9 and the feed support 10 in this embodiment are connected by the secondary reflective surface rotation shaft 21, and the secondary reflective surface 9 is connected to the feed support
  • a limit mechanism and a locking mechanism are also arranged between 10; with this structure, when in use, the secondary reflective surface 9 rotates around the secondary reflective surface rotation axis 21 to the working position, and is locked by the locking mechanism.
  • the secondary reflective surface 9 rotates around the secondary reflective surface rotation axis 21 to a position parallel to the feed support 10
  • the secondary reflective surface 9 can be attached to the antenna surface 6, that is, the storage position, which reduces the storage volume.
  • the antenna assembly 11 When the antenna assembly 11 is taken out of the backpack, the state is shown in Figure 6. As shown in Figure 7, the antenna assembly 11 is connected to the support frame 1, and the antenna surface 6 can be unfolded to perform the satellite alignment operation.
  • the two windproof support rods 2 on the support frame 1 are fixed on the back of the antenna surface 6 by the windproof support rod fixing screws 103.
  • this application has the advantages of light weight, fast aligning speed, and convenient erection. Only after connecting the support frame 1 and the antenna assembly 11, the aligning and communication can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请涉及通信卫星技术领域,尤其是一种超轻型卫星便携站;包括天线组件和支撑架,所述天线组件包括天线面、馈源支架、俯仰传动机构和方位传动机构,所述天线面的背面一体化设置有电气箱,所述馈源支架位于天线面的两侧,所述馈源支架与俯仰传动机构连接,所述俯仰传动机构与方位传动机构连接,所述方位传动机构通过快装机构与支撑架连接,所述天线面的正面通过射频收发组件限位拉杆与射频收发组件和副反射面呈固定夹角连接;天线控制器和卫星调制解调器和内置设备等放置在天线面的背部,避免了太阳的直晒和优化了天线的配重;天线面采用折叠铰链式设计,免去了传统的多瓣拼装环节,大大节省了架设时间和增强了天线的整体性。

Description

一种超轻型卫星便携站
本申请要求在2019年7月26日提交中国专利局、申请号为201910681884.4、发明名称为“一种超轻型卫星便携站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信卫星技术领域,尤其涉及一种超轻型卫星便携站。
背景技术
在现有应用中,偏馈式卫星天线一般采用箱式结构,如图1所示:整个天线一般由天线面1-1、馈源支架1-2、馈源系统、方位俯仰传动部件1-4、电气箱1-3、防风支架1-6、提手1-5等部件组成,电气箱体、方位俯仰传动部件安装在天线结构底板上,天馈系统安装在天线的方位俯仰传动部件上。此种天线结构满足正常的通信需要,有收藏后体积紧凑、电气箱体积大能内置多款通信机等优点。但存在一定的缺点:
1.电气箱在天线底部,因此不具备涉水能力;
2.馈源支架部分含有功放、射频等设备重量较重,而天线面背部没有相应的配重,因此俯仰转动部分中心偏前端,俯仰转动时就需要用更大的减速器和电机;
3.天线电气箱在天线前端,在夏季气温高时容易受到太阳的直接暴晒,导致箱体内温度异常升高,导致通信设备故障;
4.天线面采用多瓣搭扣拼装方式,天线架设时有一定的拼装时间。
5.重量较重,不能满足天线日益小型化背负的需要。
综上所述,此种天线结构一般用在大容量宽带通信的场合。
中国专利公开号为CN104518271A的“一种便携式自动寻星系统”采用正馈式天线结构,如图2所示:此方案采用四脚架作为支撑结构,方位俯仰传动结构放置在四脚架2-1上,天线面2-2采用花瓣式多瓣拼装方案,功放射频系统2-3放置在天线面背后。此种方案有如下优点:增强了天线的涉水能力;避免电气箱被太阳直晒;俯仰重心离转动轴较近等优点。但也存在一定的缺点:
1.天线面一般采用八瓣拼装,天线面拼装架设时间较长;
2.天线面馈源杆在收藏时需要拆卸,在使用时需要用螺纹连接在天线面中心盘上;
3.天线整体结构较重,只能装箱携行,不能背负,在山区等复杂地形携带不方便;
4.方位、俯仰手动调整结构速度较慢,没有快速角度调整和角度微调结构;
控制箱体积较小,只能放置天线自身的控制部分和驱动部分,没有内置调制解调器和其他业务设备的空间。
发明内容
本申请的目的是:克服现有技术中的不足,提供一种体积小、质量轻、使用安装效率高的超轻型卫星便携站。
为解决上述技术问题,本申请采用的技术方案如下:
一种超轻型卫星便携站,包括天线组件和支撑架,所述天线组件包括天线面、馈源支架、俯仰传动机构、方位传动机构,所述天线面的背面一体化设置有电气箱,所述馈源支架位于天线面的两侧,所述馈源支架与俯仰传动机构连接,所述俯仰传动机构与方位传动机构连接,所述方位传动机构通过快装机构与支撑架连接,所述天线面的正面通过射频收发组件限位拉杆与射频收发组件和副反射面呈固定夹角连接,
所述馈源支架上还连接有馈源和极化传动机构,所述馈源连接有双工器,所述双工器的接收端连接有下变频放大器,双工器的发射端连接有上变频放大器。
进一步的,所述天线面由三块天线面板通过天线面折叠铰链铰接而成。
进一步的,所述天线面包括主天线面、两个副天线面、天线面折叠铰链和锁定搭扣,两个副天线面设置在主天线面的两侧,所述副天线面通过天线面折叠铰链和锁定搭扣与所述主天线面连接;
所述天线面折叠铰链包括折叠铰链固定件和折叠铰链转动件;所述折叠铰链固定件的一端通过铰链转轴与所述折叠铰链转动件的一端连接;所述固定螺母套设在铰链转轴靠近所述折叠铰链固定件的一端;所述铰链转轴上套设有阻尼垫片,且阻尼垫片位于所述折叠铰链固定件和折叠铰链转动件之间;
所述副天线面和折叠铰链转动件上的远离所述铰链转轴的一端连接;与折叠铰链 转动件匹配的折叠铰链固定件上远离铰链转轴的一端和所述主天线面连接。
进一步的,所述支撑架包括支撑杆安装座,所述支撑杆安装座上铰接有若干支撑杆,每根支撑杆与支撑杆安装座之间连接有气弹簧。
进一步的,所述支撑杆安装座的下表面设置有连接杆,每根气弹簧的一端与连接杆的底部边缘铰接,另一端与支撑杆之间通过连接片和螺栓连接。
进一步的,所述方位传动机构包括方位粗调轴套、方位粗调轴、方位粗调锁紧旋钮、方位微调减速箱、方位微调电机和方位微调手动旋钮;
所述支撑杆安装座的上表面设置有天线传动连接件,所述方位粗调轴通过螺纹与天线传动连接件连接,方位粗调轴套上设置有方位粗调锁紧旋钮;
所述方位粗调轴套上还设置有方位微调减速箱,方位微调减速箱为蜗轮蜗杆传动结构,所述方位微调减速箱的蜗杆一端连接有方位微调手动旋钮,蜗杆的另一端连接有方位微调电机,所述方位微调减速箱的上部连接俯仰传动机构。
进一步的,所述支撑架上还连接有防风支撑杆,所述防风支撑杆的一端与支撑杆之间通过轴销连接,另一端与支撑杆之间通过固定螺丝连接。
进一步的,所述俯仰传动机构包括俯仰粗调轴套、俯仰粗调锁紧旋钮、俯仰微调减速箱、俯仰微调电机、俯仰微调手动旋钮、俯仰粗调角度限位螺钉、俯仰输出轴;
所述俯仰微调减速箱为蜗轮蜗杆传动结构,所述蜗杆一端连接有俯仰微调手动旋钮,蜗杆的另一端连接有俯仰微调电机,俯仰微调减速箱中的蜗轮输出孔通过键连接有俯仰输出轴,俯仰输出轴通过俯仰粗调角度限位螺钉与主天线面固定。
进一步的,所述副反射面与馈源支架之间通过副反射面旋转轴连接,所述副反射面与馈源支架之间还设置有限位机构和锁止机构。
进一步的,所述极化传动机构包括极化转动电机和角度传感器。
进一步的,所述电气箱内安装天线控制器、卫星调制解调器和其余内置设备,电气箱上还设有电气箱盖和散热装置。
采用本申请的技术方案的有益效果是:
1.天线面采用0.75m等效格里高利天线面,兼容KU/KA两种频段,通过更换不同频段的射频组件来实现KU和KA频段的通信;
2.天线底座支架采用碳纤维支撑架结构,在保证强度的同时又减轻了重量,而且具备15cm左右的涉水深度;
3.天线方位转动采用大范围角度快速调整和方位角手动微调或电动微调结构,能够大大缩短对星时间。角度调整时先将方位角快速转动至理论方位角附近,将快速调整结构锁紧,然后手动或电动微调至对准卫星。
4.天线俯仰转动同样采用大范围角度快速调整和俯仰手动微调或电动微调结构。角度调整时先将俯仰角快速转动至理论俯仰角位置,将快速调整结构锁紧,然后手动或电动微调至对准卫星。
5.天线面采用折叠铰链式设计,免去了传统的多瓣拼装环节,大大节省了架设时间和增强了天线的整体性。
6.天线控制器和卫星调制解调器和内置设备等放置在天线面的背部,避免了太阳的直晒和优化了天线的配重。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一般箱式偏馈天线的三维立体图;
图2为一般正馈天线的三维立体图;
图3为一种超轻型卫星便携站的整体工作状态立体图;
图4为支撑架的收藏状态立体图;
图5为支撑架的展开状态立体图;
图6为天线组件收藏状态的立体图;
图7为天线组件和支撑架的组装状态立体图;
图8为方位、俯仰传动结构的局部立体图;
图9为方位、俯仰传动结构的剖视图;
图10为极化传动结构的局部立体图;
图11为天线面的展开示意图;
图12为天线面折叠铰链的结构示意图。
图中:1支撑架,101气弹簧,102锁紧螺母,103固定螺丝,104天线传动连接件,2防风支撑杆,3方位传动机构,301方位粗调锁紧旋钮,302方位粗调轴套,303方位微调手动旋钮,304方位微调减速箱,305方位微调电机,306方位粗调轴,4俯仰传动机构,401俯仰粗调锁紧旋钮,402俯仰粗调轴套,403俯仰微调减速箱,404俯仰微调手动旋钮,405俯仰微调电机,406俯仰粗调角度限位螺钉,407俯仰输出轴,5电气箱,6天线面,7射频收发组件限位拉杆,8射频收发组件,9副反射面,10馈源支架,11天线组件,12天线面折叠铰链,121折叠铰链固定件,122折叠铰链转动件,123铰链转轴,124固定螺母,125阻尼垫片,13天线面板,131主天线面、132副天线面,133锁定搭扣,14上变频放大器,15旋转关节,16双工器,17极化转动电机,18角度传感器,19馈源,20下变频放大器,21副反射面旋转轴。
具体实施方式
现在结合附图对本申请作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本申请的基本结构,因此其仅显示与本申请有关的构成。
请参阅图3-图12。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”等的用语,亦仅为便于叙述的明了,而非用以限定本申请可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本申请可实施的范畴。
本申请中的支撑架1优选为三脚架。
图3为一种超轻型卫星便携站的整体工作状态立体图;
图10为极化传动结构的局部立体图。
如图3和图10所示,本申请所述的一种超轻型卫星便携站,以等效0.75米Ku波段天线为实施例,天线面6采用0.75m等效格里高利天线面6,兼容KU/KA两种频段,通过更换不同频段的射频组件来实现KU和KA频段的通信,其结构主要以铝材和 碳纤维为主。
本申请中的超轻型卫星便携站,包括天线组件11和支撑架1,天线组件11包括天线面6、馈源支架10、俯仰传动机构4和方位传动机构3,天线面6的背面一体化设置有电气箱5,馈源支架10位于天线面6的两侧,馈源支架10与俯仰传动机构4连接,俯仰传动机构4与方位传动机构3连接,方位传动机构3通过快装机构与支撑架1连接,天线面6的正面通过射频收发组件限位拉杆7与射频收发组件8和副反射面9呈固定夹角连接,射频收发组件8上连接有馈源19和极化传动机构,馈源19连接有双工器16,双工器16的接收端连接有下变频放大器20,双工器16的发射端通过旋转关节15、波导连接有上变频放大器14。极化传动机构包括极化转动电机17和角度传感器18,极化转动电机17驱动馈源19做旋转运动,角度传感器18起到角度反馈作用。
工作原理:对星操作时先用手转动整个天线组件11,使方位传动机构3围绕支撑架1做左右转动,当天线根据天线面6背部显示屏上数据转动至理论方位角时,锁紧旋钮,至此方位粗调完成;方位粗调完成后再用手上下转动整个天线组件11,使俯仰传动机构4围绕俯仰粗调轴套402做上下转动,当天线根据天线面6背部显示屏上数据转动至理论俯仰角时,锁紧旋钮,至此俯仰粗调完成。支撑架1起到支撑整个天线的作用,能提供大约15cm左右的涉水深度。本实施例中的支撑架1采用碳纤维支撑架结构,在保证强度的同时又减轻了重量。在天线背面设置电气箱5,电气箱5内安装天线控制器、卫星调制解调器和其余内置设备,天线控制器和卫星调制解调器和内置设备等放置在天线面6的背部,避免了太阳的直晒和优化了天线的配重。电气箱5上还设有电气箱盖,可以保护电气箱5内的设备。
为了减少整个装置的架设时间,本实施例中的所述天线面6由三块天线面板13通过天线面折叠铰链12铰接而成,即包括主天线面和两侧的面板,两侧的面板在连接件的作用下,可以翻转折叠在主天线面的上方,翻转时,两侧面板的翻转顺序随意,天线面6采用折叠铰链式设计,免去了传统的多瓣拼装环节,大大节省了架设时间和增强了天线的整体性。
在一种可能的实现方式中,如图11所示,所述天线面6包括主天线面131、两个副天线面132、天线面折叠铰链12和锁定搭扣133,两个副天线面132设置在主天线面131的两侧,所述副天线面132通过天线面折叠铰链12和锁定搭扣133与所述主天线面131连接;
需要说明的是,在未架设时,两个副天线面132可以通过天线面折叠铰链12翻转至所述主天线面131的一端面上。在架设时,可以通过折叠铰链12将两个副天线面132从主天线面131的一端面上,翻转至位于所述主天线面131的两侧,然后可以利用锁定搭扣133对两个副天线面132和主天线面131的相对位置进行固定。本申请实施例避免了拼装环节,具有展开速度快,操作简单的特点。
在一些实施例中,所述锁定搭扣133包括锁定搭扣子件和与锁定搭扣子件相匹配的锁定搭扣母件。
其中,将锁定搭扣子件设置在副天线面132上,在主天线面131上设置有与锁定搭扣子件匹配的锁定搭扣母件,或者将锁定搭扣母件设置在副天线面132上,在主天线面131上设置有与锁定搭扣母件匹配的锁定搭扣子件。
本申请实施例中,所述锁定搭扣133的数量为两个,两个锁定搭扣133分别设置在所述主天线面131与两个副天线面132连接处的中点。本申请中所述锁定搭扣133的数量至少为两个,具体数量在此不做限制。
如图12所示,所述天线面折叠铰链12包括折叠铰链固定件121和折叠铰链转动件122;所述折叠铰链固定件121的一端通过铰链转轴123与所述折叠铰链转动件122的一端连接;所述固定螺母124套设在铰链转轴123靠近所述折叠铰链固定件121的一端;所述铰链转轴123上套设有阻尼垫片125,且阻尼垫片125位于所述折叠铰链固定件121和折叠铰链转动件122之间;
在使用时,所述折叠铰链固定件121和折叠铰链转动件122可以围绕所述铰链转轴123相对转动,所述阻尼垫片125可以防止所述折叠铰链固定件121和折叠铰链转动件122的连接处的磨损。
所述副天线面132和折叠铰链转动件122上的远离所述铰链转轴123的一端连接;与折叠铰链转动件122匹配的折叠铰链固定件121上远离铰链转轴123的一端和所述主天线面131连接。
本申请实施例中,所述天线面折叠铰链12的数量为四个,四个所述天线面折叠铰链12的折叠铰链固定件121分别与所述主天线面131的四角连接。四个与折叠铰链固定件121匹配的折叠铰链转动件122分别对应设置在两个副天线面132上。图4为支撑架1的收藏状态立体图;
图5为支撑架1的展开状态立体图;
如图4、图5所示,为了提高支撑架1的使用便利性,本实施例中的支撑架1包括支撑杆安装座,支撑杆安装座上铰接有若干支撑杆,每根支撑杆与支撑杆安装座之间连接有气弹簧101;支撑杆安装座的下表面设置有连接杆,每根气弹簧101的一端与连接杆的底部边缘铰接,另一端与支撑杆之间通过连接片和螺栓连接;支撑架1从包内拿出时为图4状态,当松开支撑架1的捆轧带后,支撑架1在若干气弹簧101的作用下自动展开,一直到气弹簧101的最大行程为止,至此支撑架1整体展开完成,支撑架1上还连接有一个绑带,支撑架1收卷起来后,可以通过绑带将支撑架1束缚住呈图4状态,这样的话,支撑架1的收藏更方便,占用空间小。
为了提高整个装置在使用过程中的抗风刮强度,支撑架1上连接有防风支撑杆2,防风支撑杆2的一端与支撑杆之间通过轴销连接,另一端与支撑杆之间通过固定螺丝103连接,支撑杆上通过螺栓螺帽设置有连接片,连接片上开有连接孔用于与固定螺丝103连接。支撑架1从包内拿出时为图4状态,一对防风支撑杆通过防风支撑杆2固定螺丝103固定在支撑架1上。当整个装置打开安装后,防风支撑杆2的另一端通过固定螺丝103与天线背面连接,从而将天线背面等其他装置稳定的固定在支撑架1上,在狂风等恶劣天气下,卫星便携站也能正常使用。本实施例中的防风支撑杆2为伸缩杆,包括两段支撑杆,两段支撑杆之间通过伸缩锁紧螺母102连接。
图8为方位、俯仰传动结构的局部立体图;
图9为方位、俯仰传动结构的剖视图;
如图8和图9所示,方位传动机构3包括方位粗调轴套302、方位粗调轴306、方位粗调锁紧旋钮301、方位微调减速箱304、方位微调电机305和方位微调手动旋钮303;
支撑杆安装座的上表面设置有天线传动连接件104,方位粗调轴306通过螺纹与天线传动连接件104连接,方位粗调轴套302上设置有方位粗调锁紧旋钮301;
方位粗调轴套302上还设置有方位微调减速箱304,方位微调减速箱304为蜗轮蜗杆传动结构,方位微调减速箱304的蜗杆一端连接有方位微调手动旋钮303,蜗杆的另一端连接有方位微调电机305。方位微调减速箱304的上部连接俯仰传动机构4,本实施例中的方位微调电机305为直流减速电机。
俯仰传动机构4包括俯仰粗调轴套402、俯仰粗调锁紧旋钮401、俯仰微调减速箱403、俯仰微调电机405、俯仰微调手动旋钮404、俯仰粗调角度限位螺钉406、俯 仰输出轴407;
俯仰微调减速箱403可以在俯仰粗调轴套402中自由转动达到俯仰粗调的目的,俯仰粗调轴套402上设有俯仰粗调角度限位螺钉406,俯仰粗调角度限位螺钉406起到限制俯仰粗调角度的作用,俯仰粗调轴套402上设有俯仰粗调锁紧旋钮401,俯仰粗调锁紧旋钮401可以将俯仰微调减速箱403与俯仰粗调轴套402之间抱紧固定。
俯仰微调减速箱403的蜗杆一端连接有俯仰微调手动旋钮404,蜗杆的另一端连接有俯仰微调电机405,本实施例中的俯仰微调电机405为直流减速电机。俯仰微调减速箱403中的蜗轮输出孔通过键连接有俯仰输出轴407,俯仰输出轴407通过俯仰粗调角度限位螺钉406与主天线面固定。
如图10所示,为了进一步提高卫星便携站的收藏便利性,本实施例中的副反射面9与馈源支架10之间通过副反射面旋转轴21连接,副反射面9与馈源支架10之间还设置有限位机构和锁止机构;采用此结构,使用时,副反射面9绕副反射面旋转轴21旋转至工作位,通过锁止机构锁定,当需要将便携卫星站收藏起来时,副反射面9绕副反射面旋转轴21旋转至与馈源支架10平行的位置,副反射面9就可以贴着天线面6,即收藏位,减少了收藏体积。
天线组件11从背包中拿出时如图6所示状态,如图7所示将天线组件11与支撑架1连接,展开天线面6即可即可进行对星操作,对星操作完成后将支撑架1上两根防风支撑杆2通过防风支撑杆固定螺丝103固定在天线面6背部即可。
综上所述:本申请具有重量轻,对星速度快,架设方便,仅需将支撑架1与天线组件11连接后即可进行对星和通信工作。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种超轻型卫星便携站,其特征在于:包括天线组件和支撑架,所述天线组件包括天线面、馈源支架、俯仰传动机构和方位传动机构,所述天线面的背面一体化设置有电气箱,所述馈源支架位于天线面的两侧,所述馈源支架与俯仰传动机构连接,所述俯仰传动机构与方位传动机构连接,所述方位传动机构通过快装机构与支撑架连接,所述天线面的正面通过射频收发组件限位拉杆与射频收发组件和副反射面呈固定夹角连接;
    所述馈源支架上还连接有馈源和极化传动机构,所述馈源连接有双工器,所述双工器的接收端连接有下变频放大器,双工器的发射端连接有上变频放大器。
  2. 根据权利要求1所述的一种超轻型卫星便携站,其特征在于:所述天线面由三块天线面板通过天线面折叠铰链铰接而成。
  3. 根据权利要求2所述的一种超轻型卫星便携站,其特征在于,所述天线面包括主天线面、两个副天线面、天线面折叠铰链和锁定搭扣,两个副天线面设置在主天线面的两侧,所述副天线面通过天线面折叠铰链和锁定搭扣与所述主天线面连接;
    所述天线面折叠铰链包括折叠铰链固定件和折叠铰链转动件;所述折叠铰链固定件的一端通过铰链转轴与所述折叠铰链转动件的一端连接;所述固定螺母套设在铰链转轴靠近所述折叠铰链固定件的一端;所述铰链转轴上套设有阻尼垫片,且阻尼垫片位于所述折叠铰链固定件和折叠铰链转动件之间;
    所述副天线面和折叠铰链转动件上的远离所述铰链转轴的一端连接;与折叠铰链转动件匹配的折叠铰链固定件上远离铰链转轴的一端和所述主天线面连接。
  4. 根据权利要求1所述的一种超轻型卫星便携站,其特征在于:所述支撑架包括支撑杆安装座,所述支撑杆安装座上铰接有若干支撑杆,每根支撑杆与支撑杆安装座之间连接有气弹簧。
  5. 根据权利要求4所述的一种超轻型卫星便携站,其特征在于:所述支撑杆安装座的下表面设置有连接杆,每根气弹簧的一端与连接杆的底部边缘铰接,另一端与支撑杆之间通过连接片和螺栓连接。
  6. 根据权利要求4所述的一种超轻型卫星便携站,其特征在于:所述方位传动机构包括方位粗调轴套、方位粗调轴、方位粗调锁紧旋钮、方位微调减速箱、 方位微调电机和方位微调手动旋钮;
    所述支撑杆安装座的上表面设置有天线传动连接件,所述方位粗调轴通过螺纹与天线传动连接件连接,方位粗调轴套上设置有方位粗调锁紧旋钮;
    所述方位粗调轴套上还设置有方位微调减速箱,方位微调减速箱为蜗轮蜗杆传动结构,所述方位微调减速箱的蜗杆一端连接有方位微调手动旋钮,所述方位微调减速箱的蜗杆的另一端连接有方位微调电机,所述方位微调减速箱的上部连接俯仰传动机构。
  7. 根据权利要求1所述的一种超轻型卫星便携站,其特征在于:所述支撑架上还连接有防风支撑杆,所述防风支撑杆的一端与支撑杆之间通过轴销连接,另一端与支撑杆之间通过固定螺丝连接。
  8. 根据权利要求1所述的一种超轻型卫星便携站,其特征在于:所述俯仰传动机构包括俯仰粗调轴套、俯仰粗调锁紧旋钮、俯仰微调减速箱、俯仰微调电机、俯仰微调手动旋钮、俯仰粗调角度限位螺钉、俯仰输出轴;
    所述俯仰微调减速箱为蜗轮蜗杆传动结构,所述俯仰微调减速箱的蜗杆一端连接有俯仰微调手动旋钮,俯仰微调减速箱的蜗杆的另一端连接有俯仰微调电机,俯仰微调减速箱中的蜗轮输出孔通过键连接有俯仰输出轴,俯仰输出轴通过俯仰粗调角度限位螺钉与主天线面固定。
  9. 根据权利要求1所述的一种超轻型卫星便携站,其特征在于:所述副反射面与馈源支架之间通过副反射面旋转轴连接,所述副反射面与馈源支架之间还设置有限位机构和锁止机构。
  10. 根据权利要求1所述的一种超轻型卫星便携站,其特征在于:所述电气箱内包括天线控制器和卫星调制解调器,电气箱上还设有电气箱盖和散热装置。
PCT/CN2019/109041 2019-07-26 2019-09-29 一种超轻型卫星便携站 WO2021017152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2010490.7A GB2594104B (en) 2019-07-26 2019-09-29 Ultralight portable satellite station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910681884.4A CN110311230B (zh) 2019-07-26 2019-07-26 一种超轻型卫星便携站
CN201910681884.4 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021017152A1 true WO2021017152A1 (zh) 2021-02-04

Family

ID=68081925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109041 WO2021017152A1 (zh) 2019-07-26 2019-09-29 一种超轻型卫星便携站

Country Status (2)

Country Link
CN (1) CN110311230B (zh)
WO (1) WO2021017152A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890633B (zh) * 2019-12-10 2020-12-25 哈尔滨工业大学 一种偏馈双反射面折叠天线机构
CN114137573A (zh) * 2021-09-16 2022-03-04 北京微纳星空科技有限公司 一种卫星测控站及卫星测控方法、设备及存储介质
CN114744416B (zh) * 2022-06-10 2022-09-27 南京中网卫星通信股份有限公司 一种快速更换ku或ka通信组件的天线及其更换方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983902A (zh) * 2012-11-30 2013-03-20 西安欧赛通信科技有限公司 1米2后馈型全自动便携式应急卫星通信天伺系统
CN103490173A (zh) * 2013-09-30 2014-01-01 无锡华信雷达工程有限责任公司 便携式碳纤维双反卫星通信天线
US20140118196A1 (en) * 2012-10-25 2014-05-01 Pulse Finland Oy Modular cell antenna apparatus and methods
CN205564955U (zh) * 2016-04-25 2016-09-07 王凯 一种新式卫星接收天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01001304A (es) * 1998-08-06 2005-09-08 Veritran Inc Transmisiones epiciclicas infinitamente variables.
CN102868023B (zh) * 2012-09-21 2016-01-06 广州寰坤通信科技发展有限公司 一种卫星天线俯仰调节装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140118196A1 (en) * 2012-10-25 2014-05-01 Pulse Finland Oy Modular cell antenna apparatus and methods
CN102983902A (zh) * 2012-11-30 2013-03-20 西安欧赛通信科技有限公司 1米2后馈型全自动便携式应急卫星通信天伺系统
CN103490173A (zh) * 2013-09-30 2014-01-01 无锡华信雷达工程有限责任公司 便携式碳纤维双反卫星通信天线
CN205564955U (zh) * 2016-04-25 2016-09-07 王凯 一种新式卫星接收天线

Also Published As

Publication number Publication date
CN110311230A (zh) 2019-10-08
CN110311230B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2021017152A1 (zh) 一种超轻型卫星便携站
US5487791A (en) Stowable and self-deployable parallelogram-type panel array
KR920009225B1 (ko) 휴대용 위성 수신 안테나 장치
CN113086248A (zh) 一种具有剪叉式展开机构的柔性太阳翼
WO2021115139A1 (zh) 一种电控天线调节系统
RU190369U1 (ru) Антенное устройство спутниковой связи
GB2594104A (en) Ultralight satellite portable station
CN113548201B (zh) 一种扇形太阳翼重复展开收拢锁定机构
CN114614232A (zh) 一种天线折展机构
US4314253A (en) Portable folding microwave antenna
CN202997031U (zh) 一种天线折叠结构
WO2014198224A1 (zh) 一体式及可拆分便携式卫星通信站
CN210805979U (zh) 一种卫星便携站的支撑架
CN114744416B (zh) 一种快速更换ku或ka通信组件的天线及其更换方法
CN220272725U (zh) 一种便携式天线
CN218770038U (zh) 箱式便携站天线结构
CN113964527A (zh) 一种Ku/Ka双频共用的手动便携通信天线
CN110085963A (zh) 一种可展开刚性反射面天线
CN219458025U (zh) 一种Ku扩展频段高通量的自动平板卫星天线
CN112503476B (zh) 一种地下空间阳光传导装置
CN110994129A (zh) 短波多信道化自动勘察分析处理系统设备
CN117878566A (zh) 一种高精度平面天线展开装置
CN220210330U (zh) 一种折叠式光伏板支架
CN216563552U (zh) 天线旋转调节机构及天线组件
CN114649664B (zh) 一种可折叠式抛物面天线

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202010490

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20190929

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939431

Country of ref document: EP

Kind code of ref document: A1