WO2021115139A1 - 一种电控天线调节系统 - Google Patents

一种电控天线调节系统 Download PDF

Info

Publication number
WO2021115139A1
WO2021115139A1 PCT/CN2020/132224 CN2020132224W WO2021115139A1 WO 2021115139 A1 WO2021115139 A1 WO 2021115139A1 CN 2020132224 W CN2020132224 W CN 2020132224W WO 2021115139 A1 WO2021115139 A1 WO 2021115139A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
fixing member
push rod
hinge axis
hinged
Prior art date
Application number
PCT/CN2020/132224
Other languages
English (en)
French (fr)
Inventor
王繁
付岷
陈宇
Original Assignee
王繁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王繁 filed Critical 王繁
Publication of WO2021115139A1 publication Critical patent/WO2021115139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/005Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using remotely controlled antenna positioning or scanning

Definitions

  • the present invention relates to the technical field of mobile communication, in particular to an electronically controlled antenna adjustment system.
  • base station antennas should be selected reasonably according to actual conditions such as network coverage requirements, traffic distribution, anti-interference requirements, and network service quality.
  • Base station antenna settings need to focus on parameters such as downtilt angle, direction angle, antenna height, antenna diversity distance, and isolation distance.
  • the traditional antenna clamps the holding pole through a screw fastening structure, and by adjusting the tightness of the holding pole, the antenna can rotate around the holding pole to adjust the horizontal angle.
  • the pitch angle can be adjusted.
  • it needs to climb up to high altitude and work manually, and the adjustment efficiency is very low.
  • it is very difficult to adjust the horizontal angle with this structure, and it is difficult to complete it by one person.
  • 5G antennas are different from traditional antennas, usually weighing 50KG, which is 3-5 times that of traditional antennas; one person cannot do it independently, manual operation is difficult, and because 5G antennas require high angular accuracy, the adjustment frequency is large. , Manual operation cannot effectively meet the demand.
  • Cipheral Patent Document CN206059663U discloses an antenna angle adjustment device, which includes an azimuth angle adjustment device and a downward inclination angle adjustment device.
  • the upper and lower clamp components are fixedly installed on the pole.
  • the downward inclination angle adjustment device includes a first fixing seat and a second A mounting seat and a second mounting seat.
  • the first fixing seat and the second mounting seat are respectively hinged on the upper and lower clamp components to realize vertical rotation.
  • One end of the first mounting seat is hinged to the other end of the first fixing seat.
  • the azimuth angle adjusting device includes an upper rotating mounting plate and a lower rotating mounting plate, the upper rotating mounting plate is hinged with the first mounting base, and the lower rotating mounting plate is hinged with the second mounting base, thereby realizing horizontal rotation.
  • the horizontal angle of the antenna is adjusted by the azimuth angle adjusting device, and the pitch angle is adjusted by the downtilt angle adjusting device.
  • the axis of the azimuth angle adjustment device also forms an angle with the ground.
  • the azimuth angle adjustment device does not move in the horizontal plane when the antenna is rotated, resulting in the azimuth angle adjustment device. Lose the purpose of adjusting position.
  • the design scheme of the present invention is as follows:
  • An electronically controlled antenna adjustment system includes: a first connection structure, including a first fixing member and a telescopic arm, the first fixing member is detachably connected to the holding pole, and one end of the telescopic arm is connected to the first fixing member
  • the first hinge axis is hinged, the first hinge axis is perpendicular to the ground, the other end of the telescopic arm is hinged with the antenna on the second hinge axis, and the second hinge axis is parallel to the ground
  • the second connection structure includes a second fixing The second fixing member is located below the first fixing member and is detachably connected to the holding rod, one end of the connecting arm is hinged with the second fixing member on a third hinge axis, the The third hinge axis is perpendicular to the ground, the other end of the connecting arm is hinged with the antenna on the fourth hinge axis, and the fourth hinge axis is parallel to the ground
  • the electronic control system is connected to the first connecting structure and the ground respectively.
  • the second connecting structure
  • the telescopic arm includes a first arm and a second arm hinged to a fifth hinge axis, the first arm is hinged to the first fixing member, the second arm is hinged to the antenna, and further includes The first push rod connected to the electronic control system is connected to the first arm and the second arm respectively.
  • the push rod is in a contracted state, the telescopic arm is retracted, and when the push rod is extended, the The telescopic boom is unfolded.
  • the first arm includes a straight arm member and a horizontal rotating member, the horizontal rotating member and the first fixing member are hinged to the first hinge shaft, and the straight arm member is hinged to the horizontal rotating member
  • the seventh hinge axis is parallel to the ground, and the straight arm member is hinged with the fifth hinge axis.
  • a relief groove is provided on the first arm or the second arm, which is used to make way for the first push rod to avoid the telescopic arm and the first push rod when the telescopic arm is retracted. Rod interference.
  • a push rod support structure is provided on the first arm or the second arm provided with the relief groove, and the push rod support structure is provided on the side close to the fifth hinge axis, and is not provided with The direction of the second arm or the first arm of the relief groove extends.
  • it further includes a second push rod connected to the electronic control system, both ends of which are respectively connected to the first fixing member and the telescopic arm, or respectively connected to the second fixing member and the connecting arm
  • the connection is used to drive the telescopic arm or the connecting arm to rotate around an axis.
  • one end of the second push rod is rotatably connected with the first fixing member or the second fixing member, and the other end is hinged with the corresponding telescopic arm or the connecting arm at a sixth hinge axis.
  • the second push rod and the connecting arm or the telescopic arm form a crank connecting rod structure, and one end of the second push rod is slidably connected to the first fixing member or the second fixing member , The other end is hinged with the corresponding telescopic arm or the connecting arm on the sixth hinge axis.
  • the electronic control system includes an angle feedback mechanism for measuring the elevation angle and azimuth angle of the antenna.
  • the angle feedback mechanism includes a gyroscope provided on the antenna for obtaining the elevation angle of the antenna.
  • the angle feedback mechanism includes an azimuth angle sensor arranged on the third articulated shaft, and the azimuth angle sensor measures the change of the relative position between the connecting arm and the third articulated shaft.
  • the electronic control system includes a wireless control module for returning the data acquired by the angle feedback mechanism to the console, and receiving control instructions from the console to operate the antenna movement.
  • it also includes a self-locking device for locking the relative position of each component after the angle is determined.
  • An electronically controlled antenna adjustment system includes: a first connection structure, including a first fixing member and a telescopic arm, the first fixing member is detachably connected to the holding pole, and one end of the telescopic arm is connected to the telescopic arm.
  • the first fixing member is hinged on a first hinge axis, the first hinge axis is perpendicular to the ground, the other end of the telescopic arm is hinged with the antenna on a second hinge axis, the second hinge axis is parallel to the ground;
  • the second connection The structure includes a second fixing member and a connecting arm. The second fixing member is located below the first fixing member and is detachably connected to the holding pole.
  • One end of the connecting arm is connected to the second fixing member on the third
  • the hinge axis is hinged, the third hinge axis is perpendicular to the ground, the other end of the connecting arm is hinged with the antenna on the fourth hinge axis, the fourth hinge axis is parallel to the ground;
  • the electronic control system is connected to the
  • the first connecting structure and the second connecting structure are connected to control the telescopic arm and/or the connecting arm to swing in the horizontal direction, and control the telescopic arm to drive the upper part of the antenna to approach or move away from the Pole.
  • the telescopic arm and the connecting arm can swing left and right in the horizontal direction to achieve azimuth adjustment; the telescopic arm can make the upper part of the antenna close to or away from the pole, and the connecting arm makes the lower part of the antenna
  • the distance from the pole holding rod remains unchanged, and the pitch angle adjustment is realized. Since the first articulated axis and the third articulated axis are fixedly arranged in this solution and are always perpendicular to the ground, the adjustment range of the azimuth angle will not change with the change of the pitch angle, which also overcomes the resulting problem.
  • the azimuth adjustment function loses its original purpose.
  • the telescopic arm includes a first arm and a second arm hinged to a fifth hinge axis, the first arm is hinged to the first fixing member, the The second arm is hinged to the antenna and further includes a first push rod connected to the electric control system.
  • the push rod is connected to the first arm and the second arm respectively.
  • a push rod is used to drive the telescopic arm to move, thereby forming a triangular structure, eliminating the problem of stress concentration at the fifth articulated axis, and making the structure stable while keeping the length of the telescopic arm adjustable.
  • the first arm includes a straight arm member and a horizontal rotating member, the horizontal rotating member and the first fixing member are hinged on the first hinge shaft, so The straight arm member and the horizontal rotating member are hinged to a seventh hinge axis, the seventh hinge axis is parallel to the ground, and the straight arm member is hinged to the fifth hinge axis.
  • the contact surface between the horizontal rotating member and the first fixing member is a flat surface.
  • An electronically controlled antenna adjustment system provided by the present invention is provided with a relief slot on the first arm or the second arm, which is used to make way for the first push rod and avoid the telescopic arm.
  • the telescopic arm interferes with the first push rod. Due to the limitation of the minimum volume of the push rod, in order to avoid the interference of the push rod when the telescopic arm is retracted, a relief slot is opened at the corresponding position for the telescopic arm to pass through.
  • An electronically controlled antenna adjustment system provided by the present invention is provided with a push rod support structure on the first arm or the second arm provided with the relief groove, and the push rod support structure is arranged close to the fifth hinge.
  • One side of the shaft extends in a direction away from the second arm or the first arm that is not provided with the relief groove.
  • the push rod supporting structure is used to provide a connecting fulcrum for the push rod passing through the relief groove.
  • An electronically controlled antenna adjustment system provided by the present invention further includes a second push rod connected to the electronic control system, both ends of which are respectively connected to the first fixing member and the telescopic arm, or to
  • the second fixing member is connected to the connecting arm, and is used to drive the telescopic arm or the connecting arm to rotate around an axis.
  • the second push rod, the second fixing part, and the connecting arm form a triangle in structure.
  • the use of push rods to control the rotation of the connecting arm makes the structure more stable, so as to meet the needs of 5G, such as heavy-weight antennas. Demand.
  • An electronically controlled antenna adjustment system provided by the present invention may be that one end of the second push rod is rotatably connected to the first fixing member or the second fixing member, and the other end is connected to the corresponding telescopic
  • the arm or the connecting arm is hinged on the sixth hinge axis. This solution ensures that the second push rod, the second fixing member, and the connecting arm form a triangle in structure, and 2 of the 3 vertices are fixed, so the structure is stable.
  • An electronically controlled antenna adjustment system may also be that the second push rod and the connecting arm or the telescopic arm form a crank connecting rod structure, and one end of the second push rod is connected to the The first fixing part or the second fixing part can be slidably connected with each other, and the other end is hinged with the corresponding telescopic arm or the connecting arm on a sixth hinge axis.
  • this solution can achieve a larger and larger azimuth angle adjustment, but due to the degree of freedom in the sliding direction between the second push rod and the second fixing member, it is not as stable as the foregoing solution in terms of stability.
  • An electronically controlled antenna adjustment system provided by the present invention includes an angle feedback mechanism, including a gyroscope provided on the antenna for obtaining the elevation angle of the antenna, and the angle further includes An azimuth sensor on the third articulated shaft, the azimuth sensor measures the change in the relative position between the connecting arm and the third articulated shaft.
  • the electronic control system includes a wireless control module, which is used to return the data obtained by the angle feedback mechanism to the console, and receive control instructions from the console to operate the antenna movement.
  • the gyroscope transmits data in real time, and the refresh frequency is not Below 50Hz.
  • This solution has a reset mode and a calibration mode, combined with the structure size of the bracket, and realizes the basic adjustment of the angle in two dimensions by calibrating the intrinsic function of the bracket angle and the telescopic distance of the stepping motor push rod.
  • cooperate with the gyroscope to grasp the real-time angle status of the bracket at any time, feedback the data to the console and judge and analyze the current angle, and use the feedback measurement to control the motor action by the approach of continuous approaching to achieve the real angle set by the console, and The real azimuth and pitch angles at this time are reflected on the host computer interface, and the angle information is transmitted in real time to reduce errors.
  • An electronically controlled antenna adjustment system provided by the present invention also includes a self-locking device for locking the relative position of each component after the angle is determined, keeping the adjusted angle unchanged, and not being affected by factors such as the environment and its own weight. It can also solve the problem of insufficient structural stability when using the crank connecting rod solution.
  • An electronically controlled antenna adjustment system provided by the present invention is packaged in a semi-closed metal box with a gap, and the metal box has one side of the gap for placing exposed hardware interfaces, One side of the hardware notch is recessed, and the notch is downward during installation.
  • anti-interference design is adopted in the circuit board design, and spatial isolation, electrical isolation, noise suppression circuits, filter circuits, watchdog circuits, multilayer circuit boards, and shielding are used comprehensively Means such as cover to improve the anti-interference ability of the system.
  • the metal shielding package can be used in the field environment. It is waterproof and resistant to high-frequency electromagnetic radiation, and can protect its data stable and reliable.
  • Figure 1 is a schematic structural diagram of the retracted state of the electronically controlled antenna adjustment system of the present invention
  • Fig. 2 is a schematic diagram of the structure of a certain unfolded state of the electronically controlled antenna adjustment system of the present invention
  • Figure 3 is an exploded view of the installation relationship at the third hinge axis of the present invention.
  • Figures 1 and 2 show an electronically controlled antenna adjustment system provided by the present invention, including: a first connection structure, including a first fixing member 1 and a telescopic arm, the first fixing member 1 and the pole 4 are detachably connected, One end of the telescopic arm is hinged with the first fixing member 1 on the first hinge axis 5, the first hinge axis 5 is perpendicular to the ground, the other end of the telescopic arm is hinged with the antenna on the second hinge axis 6, and the second hinge axis 6 is parallel to the ground;
  • the arm includes a first arm 2 and a second arm 3 hinged to the fifth hinge axis 12.
  • the first arm 2 is hinged to the first fixing member 1, and the first arm 2 includes a straight arm member and a horizontal rotating member.
  • the horizontal rotating member and the second arm A fixed part is hinged to the first hinge axis
  • the straight arm part and the horizontal rotating part are hinged to the seventh hinge axis 18, the seventh hinge axis 18 is parallel to the ground
  • the straight arm part is hinged to the fifth hinge axis 12
  • the antenna hinged connection also includes a first push rod 13 connected to the electric control system.
  • the push rods are connected to the first arm 2 and the second arm 3 respectively.
  • the volume and weight of the antenna will increase with the increase in demand, and the volume of the existing antenna can reach tens of kilograms. If gear transmission is used, the bending moment is relatively large when the telescopic arm is extended, and the stress is concentrated at the fifth hinge axis 12.
  • This solution uses a push rod to drive the telescopic arm to move, thereby forming a triangular structure, eliminating the problem of stress concentration at the fifth articulated shaft 12, and making the structure stable while keeping the length of the telescopic arm adjustable.
  • a relief slot 14 is provided on the first arm 2 to make way for the first push rod 13 to avoid interference between the telescopic arm and the first push rod 13 when the telescopic arm is retracted.
  • a relief slot 14 is opened at the corresponding position for the telescopic arm to pass through.
  • a push rod support structure 15 is provided on the first arm 2 provided with the relief groove 14.
  • the push rod support structure 15 is provided on the side close to the fifth hinge shaft 12 and is directed away from the first arm 2 which is not provided with the relief groove 14.
  • the two arms 3 extend in the direction.
  • the push rod supporting structure 15 is used to provide a connecting fulcrum for the push rod passing through the relief groove 14.
  • the relief groove 14 and the push rod support structure 15 can also be provided on the second arm 3, so the connection direction of the first push rod 13 can be adjusted adaptively.
  • the second fixing member 7 is located below the first fixing member 1 and is detachably connected to the holding pole 4.
  • One end of the connecting arm 8 is connected to the second fixing member 7
  • the third hinge axis 9 is hinged, the third hinge axis 9 is perpendicular to the ground, the other end of the connecting arm 8 is hinged with the antenna on the fourth hinge axis 10, and the fourth hinge axis 10 is parallel to the ground; the electronic control system is connected to the first
  • the structure is connected to the second connecting structure for controlling the connecting arm 8 to swing in the horizontal direction, and controlling the telescopic arm to drive the upper part of the antenna to approach or move away from the holding pole 4.
  • the telescopic arm and the connecting arm 8 can swing left and right in the horizontal direction to realize the azimuth adjustment; the telescopic arm can make the upper part of the antenna close to or away from the pole 4, and the connecting arm 8 keeps the distance between the lower part of the antenna and the pole 4 constant, realizing Pitch angle adjustment.
  • It also includes a second push rod 16 connected to the electric control system, which is respectively connected to the second fixing member 7 and the connecting arm 8 for driving the connecting arm 8 to rotate around the axis.
  • the two ends of the second push rod 16 can also be connected to the first fixing member 1 and the telescopic arm respectively, which can also function to adjust the azimuth angle.
  • the second push rod 16, the second fixing part 7, and the connecting arm 8 form a triangle in structure.
  • the push rod is used to control the rotation of the connecting arm 8 to make the structure more stable, so as to meet the requirements of 5G, for example.
  • the demand for heavy weight antennas One end of the second push rod 16 is rotatably connected with the second fixing member 7, and the other end is hinged with the corresponding connecting arm 8 on the sixth hinge shaft 17.
  • This solution ensures that the second push rod 16, the second fixing member 7, and the connecting arm 8 form a triangle in structure, and two of the three vertices are fixed, so the structure is stable.
  • the second push rod 16 and the connecting arm 8 or the telescopic arm constitute a crank connecting rod structure, and one end of the second push rod 16 is slidable and rotatable with the first fixing member 1 or the second fixing member 7 The other end is hinged with the corresponding telescopic arm or the connecting arm 8 on the sixth hinge axis 17.
  • this solution can achieve a larger and larger azimuth angle adjustment, but due to the degree of freedom in the sliding direction between the second push rod 16 and the second fixing member 7, it is not as stable as the foregoing solution in terms of stability.
  • the adjustment range of the azimuth angle will not change with the change of the pitch angle, and the resulting azimuth angle is also overcome The problem that the adjustment function loses its original purpose.
  • the electronic control system includes an angle feedback mechanism, including a gyroscope set on the antenna to obtain the elevation angle of the antenna, and also includes an azimuth sensor set on the third hinge axis 9, as shown in Figure 3, the azimuth sensor measures
  • the electronic control system includes a wireless control module for returning the data obtained by the gyroscope to the console, and receiving control commands from the console to operate the antenna movement.
  • the gyroscope is real-time When transmitting data, the refresh frequency should not be lower than 50Hz.
  • This solution has a reset mode and a calibration mode, combined with the structure size of the bracket, and realizes the basic adjustment of the angle in two dimensions by calibrating the intrinsic function of the bracket angle and the telescopic distance of the stepping motor push rod.
  • cooperate with the gyroscope to grasp the real-time angle status of the bracket at any time, feedback the data to the console and judge and analyze the current angle, and use the feedback measurement to control the motor action by the approach of continuous approaching to achieve the real angle set by the console, and The real azimuth and pitch angles at this time are reflected on the host computer interface, and the angle information is transmitted in real time to reduce errors.
  • the electronic control system is encapsulated in a semi-closed metal box 11 with a notch.
  • the side of the metal box 11 with the notch is used to place the exposed hardware interface.
  • the side of the hardware notch is recessed, and the notch is downward during installation. Can play a role in preventing rain and snow and shielding electromagnetic interference.
  • anti-interference design is adopted in the circuit board design, and spatial isolation, electrical isolation, noise suppression circuits, filter circuits, watchdog circuits, multilayer circuit boards, and shielding are used comprehensively Means such as cover to improve the anti-interference ability of the system.
  • the metal shielding package can be used in the field environment. It is waterproof and resistant to high-frequency electromagnetic radiation, and can protect its data stable and reliable.
  • the second connecting piece is also marked with a scale around the third hinge axis 9, as an alternative, to facilitate manual angle adjustment.
  • This device has high load-bearing characteristics, a stable load of 70KG, and good wind resistance.
  • the antenna When the antenna is hung on the windward side of 0.5m 2 , it can resist 16-level wind with a wind pressure of 2.0KN/m 2 .

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明提供的一种电控天线调节系统,包括:第一连接结构,包括第一固定件和伸缩臂,所述伸缩臂一端与所述第一固定件于第一铰接轴铰接,所述第一铰接轴垂直于地面,所述伸缩臂另一端与天线于第二铰接轴铰接,所述第二铰接轴平行于地面;第二连接结构,包括第二固定件和连接臂,所述连接臂一端与所述第二固定件于第三铰接轴铰接,所述第三铰接轴垂直于地面,所述连接臂的另一端与所述天线于第四铰接轴铰接,所述第四铰接轴平行于地面。由于所述第一铰接轴与所述第三铰接轴在本方案中固定设置,始终垂直于地面,因此方位角的调节区间不会随着俯仰角的变化而变化,也克服了由此引发的方位角调节功能失去原有目的的问题。

Description

一种电控天线调节系统 技术领域
本发明涉及移动通信技术领域,具体涉及一种电控天线调节系统。
背景技术
在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。基站天线设置需要重点考虑下倾角、方向角、天线挂高、天线分集距离和隔离距离等参数。
通信基站天线通过调节俯仰角度和水平角度来实现网络的覆盖效果是常规的优化手段。传统的天线通过螺旋紧固结构夹紧抱杆,通过调节与抱杆的松紧,从而使得天线可以绕抱杆转动,调节水平角。通过上方的俯仰角调节结构,可以进行俯仰角的调节。但是其调节时,需要人工爬到高空手动作业,调节效率很低。并且这种结构调节水平角十分困难,单人难以完成。随着5G通信基站的建设,5G天线与传统天线不同,通常重量50KG,是传统天线的3-5倍;一人无法独立完成,手动操作困难,且由于5G天线对于角度精度要求高,调整频率大,手动操作无法有效满足需求。
目前自动调节的方式多数以天线内部集成电调模块,使天线可以进行0-12°的俯仰角度调整,但不具备水平角度调整。电动调节远程调节的方案都因为种种问题没有具备使用条件。中国专利文献CN206059663U公开了 一种天线角度调节设备,该设备包括方位角调节装置和下倾角调节装置,上下两个夹码组件固定安装在抱杆上,下倾角调节装置包括第一固定座、第一安装座、以及第二安装座,第一固定座和第二安装座分别铰接在上下两个夹码组件上,实现竖直方向的转动。第一安装座的一端与第一固定座的另一端铰接。方位角调节装置包括上转动安装板和下转动安装板,上转动安装板与第一安装座铰接,下转动安装板与第二安装座铰接,从而实现水平方向的转动。在对天线进行调节时,通过方位角调节装置实现天线的水平角度调节,通过下倾角调节装置实现俯仰角度的调节。然而其存在严重缺陷:该方案中当下倾角调节装置伸展后,方位角调节装置的转轴也随之与地面形成夹角,方位角调节装置控制天线转动时并非在水平面内运动,导致方位角调节装置丧失调节方位的目的。
发明内容
因此,为了克服现有技术中电动调节天线角度调节装置存在的方位角调节装置受到俯仰角调节装置运动的影响,不能实现调节方位功能的问题,从而提供一种在能够正确实现方位角和俯仰角调节的电控天线调节系统。
本发明的设计方案如下:
一种电控天线调节系统,包括:第一连接结构,包括第一固定件和伸缩臂,所述第一固定件与抱杆可拆卸连接,所述伸缩臂一端与所述第一固定件于第一铰接轴铰接,所述第一铰接轴垂直于地面,所述伸缩臂另一端与天线于第二铰接轴铰接,所述第二铰接轴平行于地面;第二连接结构,包括第二固定件和连接臂,所述第二固定件位于所述第一固定件下方,与所述抱杆可拆卸连接,所述连接臂一端与所述第二固定件于第三铰接轴铰 接,所述第三铰接轴垂直于地面,所述连接臂的另一端与所述天线于第四铰接轴铰接,所述第四铰接轴平行于地面;电控系统,分别与所述第一连接结构和所述第二连接结构连接,用于控制所述伸缩臂和/或所述连接臂在水平方向上摆动,以及控制所述伸缩臂带动所述天线的上部靠近或远离所述抱杆。
优选的,所述伸缩臂包括铰接于第五铰接轴的第一臂和第二臂,所述第一臂与所述第一固定件铰接,所述第二臂与所述天线铰接,还包括与所述电控系统连接的第一推杆,推杆分别和所述第一臂、所述第二臂连接,推杆收缩状态时,所述伸缩臂收起,推杆伸展时,所述伸缩臂展开。
优选的,所述第一臂包括直臂件和水平旋转件,所述水平旋转件与所述第一固定件铰接于所述第一铰接轴,所述直臂件与所述水平旋转件铰接于第七铰接轴,所述第七铰接轴平行于地面,所述直臂件与所述第五铰接轴铰接。
优选的,所述第一臂或所述第二臂上设有让位槽,用于为所述第一推杆让位,避免在所述伸缩臂收起时伸缩臂和所述第一推杆干涉。
优选的,在设有所述让位槽的第一臂或第二臂上设有推杆支撑结构,推杆支撑结构设于靠近所述第五铰接轴的一侧,并向远离不设有所述让位槽的第二臂或第一臂的方向延伸。
优选的,还包括与所述电控系统连接的第二推杆,其两端分别与所述第一固定件和所述伸缩臂连接,或分别与所述第二固定件和所述连接臂连接,用于驱动所述伸缩臂或所述连接臂绕轴转动。
优选的,所述第二推杆一端与所述第一固定件或所述第二固定件可转 动连接,另一端与对应的所述伸缩臂或所述连接臂于第六铰接轴铰接。
优选的,所述第二推杆与所述连接臂或所述伸缩臂构成曲柄连杆结构,所述第二推杆一端与所述第一固定件或所述第二固定件可滑动转动连接,另一端与对应的所述伸缩臂或所述连接臂于第六铰接轴铰接。
优选的,所述电控系统包括角度反馈机构,用于测量所述天线的俯仰角和方位角。
优选的,所述角度反馈机构包括设于所述天线上的陀螺仪,用于获取天线的俯仰角。
优选的,所述角度反馈机构包括设于所述第三铰接轴上的方位角传感器,所述方位角传感器测量所述连接臂与所述第三铰接轴之间相对位置的变化。
优选的,所述电控系统包括无线控制模块,用于将所述角度反馈机构获取的数据返回给控制台,并接收所述控制台的控制指令操作天线运动。
优选的,还包括自锁装置,用于在角度确定后锁定各部件的相对位置。
本发明技术方案,具有如下优点:
1、本发明提供的一种电控天线调节系统,包括:第一连接结构,包括第一固定件和伸缩臂,所述第一固定件与抱杆可拆卸连接,所述伸缩臂一端与所述第一固定件于第一铰接轴铰接,所述第一铰接轴垂直于地面,所述伸缩臂另一端与天线于第二铰接轴铰接,所述第二铰接轴平行于地面;第二连接结构,包括第二固定件和连接臂,所述第二固定件位于所述第一固定件下方,与所述抱杆可拆卸连接,所述连接臂一端与所述第二固定件于第三铰接轴铰接,所述第三铰接轴垂直于地面,所述连接臂的另一端与 所述天线于第四铰接轴铰接,所述第四铰接轴平行于地面;电控系统,分别与所述第一连接结构和所述第二连接结构连接,用于控制所述伸缩臂和/或所述连接臂在水平方向上摆动,以及控制所述伸缩臂带动所述天线的上部靠近或远离所述抱杆。所述伸缩臂和所述连接臂可以沿水平方向左右摆动,实现方位角调节;所述伸缩臂可以使所述天线的上部靠近或远离所述抱杆,所述连接臂使所述天线的下部与所述抱杆的距离保持不变,实现俯仰角调节。由于所述第一铰接轴与所述第三铰接轴在本方案中固定设置,始终垂直于地面,因此方位角的调节区间不会随着俯仰角的变化而变化,也克服了由此引发的方位角调节功能失去原有目的的问题。
2、本发明提供的一种电控天线调节系统,所述伸缩臂包括铰接于第五铰接轴的第一臂和第二臂,所述第一臂与所述第一固定件铰接,所述第二臂与所述天线铰接,还包括与所述电控系统连接的第一推杆,推杆分别和所述第一臂、所述第二臂连接,推杆收缩状态时,所述伸缩臂收起,推杆伸展时,所述伸缩臂展开。天线的体积和重量也会随着需求的提高而提高,现有天线重量可达几十公斤,同时迎风面积大,风压大。若采用齿轮传动等方式,当伸缩臂伸展时弯矩较大,且在第五铰接轴处应力集中。本方案采用推杆来驱动所述伸缩臂运动,从而形成了三角形结构,并且消除了在第五铰接轴处的应力集中的问题,在保持伸缩臂长度可调的同时使结构稳固。
3、本发明提供的一种电控天线调节系统,所述第一臂包括直臂件和水平旋转件,所述水平旋转件与所述第一固定件铰接于所述第一铰接轴,所述直臂件与所述水平旋转件铰接于第七铰接轴,所述第七铰接轴平行于地 面,所述直臂件与所述第五铰接轴铰接。所述水平旋转件与所述第一固定件的接触面为平面,在所述伸缩臂绕轴旋转时,水平旋转件使旋转稳固,同时也为安装第一推杆提供了空间。
4、本发明提供的一种电控天线调节系统,所述第一臂或所述第二臂上设有让位槽,用于为所述第一推杆让位,避免在所述伸缩臂收起时伸缩臂和所述第一推杆干涉。由于推杆的最小体积存在限制,为了使伸缩臂收起时不受到推杆的干涉,在对应位置开设让位槽,供伸缩臂穿过。
5、本发明提供的一种电控天线调节系统,在设有所述让位槽的第一臂或第二臂上设有推杆支撑结构,推杆支撑结构设于靠近所述第五铰接轴的一侧,并向远离不设有所述让位槽的第二臂或第一臂的方向延伸。该推杆支撑结构用于为从所述让位槽穿过的推杆提供连接支点。
6、本发明提供的一种电控天线调节系统,还包括与所述电控系统连接的第二推杆,其两端分别与所述第一固定件和所述伸缩臂连接,或分别与所述第二固定件和所述连接臂连接,用于驱动所述伸缩臂或所述连接臂绕轴转动。第二推杆、第二固定件、连接臂三者在结构上形成三角形,相比于实用其他传动方式,使用推杆来控制连接臂转动使结构更加稳固,从而满足例如5G需求的大重量天线的需求。
7、本发明提供的一种电控天线调节系统,可以是,所述第二推杆一端与所述第一固定件或所述第二固定件可转动连接,另一端与对应的所述伸缩臂或所述连接臂于第六铰接轴铰接。该方案保证了第二推杆、第二固定件、连接臂三者在结构上形成三角形,且3个顶点中的2个是固定的,因此结构稳固。
8、本发明提供的一种电控天线调节系统,还可以是,所述第二推杆与所述连接臂或所述伸缩臂构成曲柄连杆结构,所述第二推杆一端与所述第一固定件或所述第二固定件可滑动转动连接,另一端与对应的所述伸缩臂或所述连接臂于第六铰接轴铰接。相比于前述方案,本方案可以实现更大大角度的方位角调节,但由于第二推杆与第二固定件之间存在滑动方向的自由度,在稳固方面不及前述方案。
9、本发明提供的一种电控天线调节系统,所述电控系统包括角度反馈机构,包括设于所述天线上的陀螺仪,用于获取天线的俯仰角,所述角度还包括设于所述第三铰接轴上的方位角传感器,所述方位角传感器测量所述连接臂与所述第三铰接轴之间相对位置的变化。所述电控系统包括无线控制模块,用于将所述角度反馈机构获取的数据返回给控制台,并接收所述控制台的控制指令操作天线运动,所述陀螺仪实时传输数据,刷新频率不低于50Hz。本方案具备复位模式与校准模式,结合支架结构尺寸,通过标定支架角度与步进电机推杆伸缩距离的内在函数实现两个维度上角度的基本调节。为进一步减少角度偏差,配合陀螺仪随时掌握支架的实时角度状态,反馈数据给控制台并对当前角度进行判断分析,利用反馈测量不断逼近的方式控制电机动作,达到控制台设置的真实角度,并在上位机界面反映此时真实的方位角和俯仰角,角度信息实时传输,减少误差。
10、本发明提供的一种电控天线调节系统,还包括自锁装置,用于在角度确定后锁定各部件的相对位置,保持调节后的角度不变,不受环境及其自重等因素的影响,也可解决使用曲柄连杆方案时结构稳固性不足的问题。
11、本发明提供的一种电控天线调节系统,所述电控系统封装于具有缺口的半封闭的金属盒,所述金属盒具有所述缺口的一侧用于摆放外露的硬件接口,所述硬件缺口一侧做凹陷处理,安装时所述缺口向下。可起到防雨雪和屏蔽电磁干扰的作用。对于电路中的干扰源和易受干扰的元器件,在电路板设计中采用抗干扰设计,综合采用空间隔离、电气隔离、噪声抑制电路、滤波电路、看门狗电路、多层电路板、屏蔽罩等手段提高系统的抗干扰能力金属屏蔽封装,能够在野外环境使用,防水、抗高频电磁辐射,能够保护其数据稳定可靠。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的电控天线调节系统收缩状态结构示意图;
图2为本发明的电控天线调节系统某一展开状态结构示意图;
图3为本发明的第三铰接轴处安装关系爆炸图。
附图标记说明:
1-第一固定件;2-第一臂;3-第二臂;4-抱杆;5-第一铰接轴;6-第二铰接轴;7-第二固定件;8-连接臂;9-第三铰接轴;10-第四铰接轴;11-金属盒;12-第五铰接轴;13-第一推杆;14-让位槽;15-推杆支撑结构;16-第二推杆;17-第六铰接轴;18-第七铰接轴。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1和图2示出了本发明提供的一种电控天线调节系统,包括:第一连接结构,包括第一固定件1和伸缩臂,第一固定件1与抱杆4可拆卸连接,伸缩臂一端与第一固定件1于第一铰接轴5铰接,第一铰接轴5垂直 于地面,伸缩臂另一端与天线于第二铰接轴6铰接,第二铰接轴6平行于地面;伸缩臂包括铰接于第五铰接轴12的第一臂2和第二臂3,第一臂2与第一固定件1铰接,第一臂2包括直臂件和水平旋转件,水平旋转件与第一固定件铰接于第一铰接轴,直臂件与水平旋转件铰接于第七铰接轴18,第七铰接轴18平行于地面,直臂件与第五铰接轴12铰接,第二臂3与天线铰接,还包括与电控系统连接的第一推杆13,推杆分别和第一臂2、第二臂3连接,推杆收缩状态时,伸缩臂收起,推杆伸展时,伸缩臂展开。天线的体积和重量也会随着需求的提高而提高,现有天线体积可达几十公斤。若采用齿轮传动等方式,当伸缩臂伸展时弯矩较大,且在第五铰接轴12处应力集中。本方案采用推杆来驱动伸缩臂运动,从而形成了三角形结构,并且消除了在第五铰接轴12处的应力集中的问题,在保持伸缩臂长度可调的同时使结构稳固。第一臂2上设有让位槽14,用于为第一推杆13让位,避免在伸缩臂收起时伸缩臂和第一推杆13干涉。由于推杆的最小体积存在限制,为了使伸缩臂收起时不受到推杆的干涉,在对应位置开设让位槽14,供伸缩臂穿过。在设有让位槽14的第一臂2上设有推杆支撑结构15,推杆支撑结构15设于靠近第五铰接轴12的一侧,并向远离不设有让位槽14的第二臂3的方向延伸。该推杆支撑结构15用于为从让位槽14穿过的推杆提供连接支点。当然,让位槽14和推杆支撑结构15也可以设在第二臂3上,那么第一推杆13的连接方向做适应性调整即可。
还具有第二连接结构,包括第二固定件7和连接臂8,第二固定件7位于第一固定件1下方,与抱杆4可拆卸连接,连接臂8一端与第二固定件7于第三铰接轴9铰接,第三铰接轴9垂直于地面,连接臂8的另一端与天 线于第四铰接轴10铰接,第四铰接轴10平行于地面;电控系统,分别与第一连接结构和第二连接结构连接,用于控制连接臂8在水平方向上摆动,以及控制伸缩臂带动天线的上部靠近或远离抱杆4。伸缩臂和连接臂8可以沿水平方向左右摆动,实现方位角调节;伸缩臂可以使天线的上部靠近或远离抱杆4,连接臂8使天线的下部与抱杆4的距离保持不变,实现俯仰角调节。还包括与电控系统连接的第二推杆16,分别与第二固定件7和连接臂8连接,用于驱动连接臂8绕轴转动。当然,第二推杆16的两端也可以分别与第一固定件1和伸缩臂连接,同样可以起到调节方位角的功能。第二推杆16、第二固定件7、连接臂8三者在结构上形成三角形,相比于实用其他传动方式,使用推杆来控制连接臂8转动使结构更加稳固,从而满足例如5G需求的大重量天线的需求。第二推杆16一端与第二固定件7可转动连接,另一端与对应的连接臂8于第六铰接轴17铰接。该方案保证了第二推杆16、第二固定件7、连接臂8三者在结构上形成三角形,且3个顶点中的2个是固定的,因此结构稳固。作为另一种实施方式,还可以是,第二推杆16与连接臂8或伸缩臂构成曲柄连杆结构,第二推杆16一端与第一固定件1或第二固定件7可滑动转动连接,另一端与对应的伸缩臂或连接臂8于第六铰接轴17铰接。相比于前述方案,本方案可以实现更大大角度的方位角调节,但由于第二推杆16与第二固定件7之间存在滑动方向的自由度,在稳固方面不及前述方案。由于第一铰接轴5与第三铰接轴9在本方案中固定设置,始终垂直于地面,因此方位角的调节区间不会随着俯仰角的变化而变化,也克服了由此引发的方位角调节功能失去原有目的的问题。
电控系统包括角度反馈机构,包括设于天线上的陀螺仪,用于获取天线的俯仰角,还包括设于第三铰接轴9上的方位角传感器,如图3所示,方位角传感器测量连接臂与第三铰接轴9之间相对位置的变化,电控系统包括无线控制模块,用于将陀螺仪获取的数据返回给控制台,并接收控制台的控制指令操作天线运动,陀螺仪实时传输数据,刷新频率不低于50Hz。本方案具备复位模式与校准模式,结合支架结构尺寸,通过标定支架角度与步进电机推杆伸缩距离的内在函数实现两个维度上角度的基本调节。为进一步减少角度偏差,配合陀螺仪随时掌握支架的实时角度状态,反馈数据给控制台并对当前角度进行判断分析,利用反馈测量不断逼近的方式控制电机动作,达到控制台设置的真实角度,并在上位机界面反映此时真实的方位角和俯仰角,角度信息实时传输,减少误差。还包括自锁装置,用于在角度确定后锁定各部件的相对位置,保持调节后的角度不变,不受环境及其自重等因素的影响,也可解决使用曲柄连杆方案时结构稳固性不足的问题。电控系统封装于具有缺口的半封闭的金属盒11,金属盒11具有缺口的一侧用于摆放外露的硬件接口,硬件缺口一侧做凹陷处理,安装时缺口向下。可起到防雨雪和屏蔽电磁干扰的作用。对于电路中的干扰源和易受干扰的元器件,在电路板设计中采用抗干扰设计,综合采用空间隔离、电气隔离、噪声抑制电路、滤波电路、看门狗电路、多层电路板、屏蔽罩等手段提高系统的抗干扰能力金属屏蔽封装,能够在野外环境使用,防水、抗高频电磁辐射,能够保护其数据稳定可靠。在第二连接件上还围绕第三铰接轴9标设有刻度,作为备选,方便人为进行角度调节。
本装置具有高承载特点,稳定负载70KG,同时具备良好的抗风能力, 在挂在天线迎风面为0.5m 2的情况下,可以抵抗16级风,风压2.0KN/m 2
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (13)

  1. 一种电控天线调节系统,其特征在于,包括:
    第一连接结构,包括第一固定件(1)和伸缩臂,所述第一固定件(1)与抱杆(4)可拆卸连接,所述伸缩臂一端与所述第一固定件(1)于第一铰接轴(5)铰接,所述第一铰接轴(5)垂直于地面,所述伸缩臂另一端与天线于第二铰接轴(6)铰接,所述第二铰接轴(6)平行于地面;
    第二连接结构,包括第二固定件(7)和连接臂(8),所述第二固定件(7)位于所述第一固定件(1)下方,与所述抱杆(4)可拆卸连接,所述连接臂(8)一端与所述第二固定件(7)于第三铰接轴(9)铰接,所述第三铰接轴(9)垂直于地面,所述连接臂(8)的另一端与所述天线于第四铰接轴(10)铰接,所述第四铰接轴(10)平行于地面;
    电控系统,分别与所述第一连接结构和所述第二连接结构连接,用于控制所述伸缩臂和/或所述连接臂(8)在水平方向上摆动,以及控制所述伸缩臂带动所述天线的上部靠近或远离所述抱杆(4)。
  2. 根据权利要求1中所述的电控天线调节系统,其特征在于,所述伸缩臂包括铰接于第五铰接轴(12)的第一臂(2)和第二臂(3),所述第一臂(2)与所述第一固定件(1)铰接,所述第二臂(3)与所述天线铰接,还包括与所述电控系统连接的第一推杆(13),推杆分别和所述第一臂(2)、所述第二臂(3)连接,推杆收缩状态时,所述伸缩臂收起,推杆伸展时,所述伸缩臂展开。
  3. 根据权利要求2中所述的电控天线调节系统,其特征在于,所述第一臂(2)包括直臂件和水平旋转件,所述水平旋转件与所述第一固定件铰 接于所述第一铰接轴,所述直臂件与所述水平旋转件铰接于第七铰接轴(18),所述第七铰接轴(18)平行于地面,所述直臂件与所述第五铰接轴(12)铰接。
  4. 根据权利要求2中所述的电控天线调节系统,其特征在于,所述第一臂(2)或所述第二臂(3)上设有让位槽(14),用于为所述第一推杆(13)让位,避免在所述伸缩臂收起时伸缩臂和所述第一推杆(13)干涉。
  5. 根据权利要求3中所述的电控天线调节系统,其特征在于,在设有所述让位槽(14)的第一臂(2)或第二臂(3)上设有推杆支撑结构(15),推杆支撑结构(15)设于靠近所述第五铰接轴(12)的一侧,并向远离不设有所述让位槽(14)的第二臂(3)或第一臂(2)的方向延伸。
  6. 根据权利要求1-5任一项中所述的电控天线调节系统,其特征在于,还包括与所述电控系统连接的第二推杆(16),其两端分别与所述第一固定件(1)和所述伸缩臂连接,或分别与所述第二固定件(7)和所述连接臂(8)连接,用于驱动所述伸缩臂或所述连接臂(8)绕轴转动。
  7. 根据权利要求6中所述的电控天线调节系统,其特征在于,所述第二推杆(16)一端与所述第一固定件(1)或所述第二固定件(7)可转动连接,另一端与对应的所述伸缩臂或所述连接臂(8)于第六铰接轴(17)铰接。
  8. 根据权利要求6中所述的电控天线调节系统,其特征在于,所述第二推杆(16)与所述连接臂(8)或所述伸缩臂构成曲柄连杆结构,所述第二推杆(16)一端与所述第一固定件(1)或所述第二固定件(7)可滑动转动连接,另一端与对应的所述伸缩臂或所述连接臂(8)于第六铰接轴(17) 铰接。
  9. 根据权利要求1中所述的电控天线调节系统,其特征在于,所述电控系统包括角度反馈机构,用于测量所述天线的俯仰角和方位角。
  10. 根据权利要求9中所述的电控天线调节系统,其特征在于,所述角度反馈机构包括设于所述天线上的陀螺仪,用于获取天线的俯仰角。
  11. 根据权利要求9中所述的电控天线调节系统,其特征在于,所述角度反馈机构包括设于所述第三铰接轴(9)上的方位角传感器,所述方位角传感器测量所述连接臂与所述第三铰接轴(9)之间相对位置的变化。
  12. 根据权利要求9中所述的电控天线调节系统,其特征在于,所述电控系统包括无线控制模块,用于将所述角度反馈机构获取的数据返回给控制台,并接收所述控制台的控制指令操作天线运动。
  13. 根据权利要求1中所述的电控天线调节系统,其特征在于,还包括自锁装置,用于在角度确定后锁定各部件的相对位置。
PCT/CN2020/132224 2019-12-10 2020-11-27 一种电控天线调节系统 WO2021115139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911259378.2A CN110829028A (zh) 2019-12-10 2019-12-10 一种电控天线调节系统
CN201911259378.2 2019-12-10

Publications (1)

Publication Number Publication Date
WO2021115139A1 true WO2021115139A1 (zh) 2021-06-17

Family

ID=69544368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132224 WO2021115139A1 (zh) 2019-12-10 2020-11-27 一种电控天线调节系统

Country Status (2)

Country Link
CN (1) CN110829028A (zh)
WO (1) WO2021115139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620738A (en) * 2022-07-18 2024-01-24 Kolokotronis Dimitris Antenna mounting and rotational positioning apparatus and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110829028A (zh) * 2019-12-10 2020-02-21 王繁 一种电控天线调节系统
CN113314825A (zh) * 2020-02-27 2021-08-27 中兴通讯股份有限公司 天线安装装置和天线设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779441A (zh) * 2015-04-16 2015-07-15 湖南中亿通信科技有限公司 用于基站的天线自动控制装置
CN206412476U (zh) * 2017-01-27 2017-08-15 周世勃 一种双自由度天线姿态电动调整装置
CN206673117U (zh) * 2017-04-28 2017-11-24 北京富尔信和技术有限公司 一种天线管理与控制系统
CN109659696A (zh) * 2018-12-17 2019-04-19 京信通信系统(中国)有限公司 天线、用于调节天线水平方位角的调节装置及传动机构
US20190334636A1 (en) * 2018-04-27 2019-10-31 Commscope Technologies Llc Calibration circuits for beam-forming antennas and related base station antennas
CN110829028A (zh) * 2019-12-10 2020-02-21 王繁 一种电控天线调节系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779441A (zh) * 2015-04-16 2015-07-15 湖南中亿通信科技有限公司 用于基站的天线自动控制装置
CN206412476U (zh) * 2017-01-27 2017-08-15 周世勃 一种双自由度天线姿态电动调整装置
CN206673117U (zh) * 2017-04-28 2017-11-24 北京富尔信和技术有限公司 一种天线管理与控制系统
US20190334636A1 (en) * 2018-04-27 2019-10-31 Commscope Technologies Llc Calibration circuits for beam-forming antennas and related base station antennas
CN109659696A (zh) * 2018-12-17 2019-04-19 京信通信系统(中国)有限公司 天线、用于调节天线水平方位角的调节装置及传动机构
CN110829028A (zh) * 2019-12-10 2020-02-21 王繁 一种电控天线调节系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2620738A (en) * 2022-07-18 2024-01-24 Kolokotronis Dimitris Antenna mounting and rotational positioning apparatus and method

Also Published As

Publication number Publication date
CN110829028A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021115139A1 (zh) 一种电控天线调节系统
US9972906B2 (en) Two-way antenna mounting bracket and assembly with independently adjustable electromechanical antenna tilt and azimuthal steering for beam reshaping
US11380987B2 (en) Antenna-integrated base station apparatus and antenna fixing equipment of mobile communication network
KR101879400B1 (ko) 장거리 레이더의 확장 가능한 안테나 장치 및 이의 접이식 안테나 구조와 설치 방법
US11539127B2 (en) Wireless telecommunication antenna mount and control system
CN111146559A (zh) 一种便携式卫星通信天线装置及使用方法
WO2018049838A1 (zh) 天线角度调节设备
CN201607498U (zh) 一种多功能天线支撑三脚架
US8890756B2 (en) Multi-point driving device for general purpose base station antenna
JP2013507806A (ja) アンテナ・マスト・システム及び取付装置
WO2018013602A2 (en) Wireless telecommunication antenna mount and control system
US20110267231A1 (en) Cellular Antenna Phase Shifter Positioning Using Motorized Torque Lever
CN111007467B (zh) 一种无源二面角外定标器
CN211475394U (zh) 调平机构及视觉成像系统
CN210897634U (zh) 一种电控天线调节系统
WO2009032586A2 (en) Antenna orientation sensor and method for determining orientation
CN106711607B (zh) 一种天线方位角的远程测量方法、装置及网管系统
EP4415159A1 (en) Antenna mounting apparatus
CN102496780A (zh) 一种具有通用性和非线性的基站天线多维角度调节方法
CN210835229U (zh) 一种用于地基InSAR的检校装置
CN212373683U (zh) 一种通用飞机起落架安装工装
CN110224213B (zh) 基于物联网的移动通信天线支架及工作方法
CN219658964U (zh) 楼宇区用大覆盖范围基站天线
CN216872237U (zh) 一种用于天线的铝型材结构
CN219779202U (zh) 天线角度调节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900235

Country of ref document: EP

Kind code of ref document: A1