WO2021017000A1 - 获取仪表读数的方法、装置、存储器、处理器和终端 - Google Patents

获取仪表读数的方法、装置、存储器、处理器和终端 Download PDF

Info

Publication number
WO2021017000A1
WO2021017000A1 PCT/CN2019/098917 CN2019098917W WO2021017000A1 WO 2021017000 A1 WO2021017000 A1 WO 2021017000A1 CN 2019098917 W CN2019098917 W CN 2019098917W WO 2021017000 A1 WO2021017000 A1 WO 2021017000A1
Authority
WO
WIPO (PCT)
Prior art keywords
meter
image
angle
scale line
reading
Prior art date
Application number
PCT/CN2019/098917
Other languages
English (en)
French (fr)
Inventor
康剑
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2019/098917 priority Critical patent/WO2021017000A1/zh
Publication of WO2021017000A1 publication Critical patent/WO2021017000A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • This application relates to the field of factory control. Specifically, this application relates to a method, device, memory, processor, and terminal for obtaining meter readings.
  • the meter reflects the status of the equipment in the factory and the various statuses detected by the sensors.
  • the embodiments of the present application provide a method, a device, a memory, a processor, and a terminal for obtaining meter readings, so as to at least solve the problem of not being able to quickly and effectively locate a meter and obtain meter readings in the prior art.
  • a method for obtaining meter readings including: acquiring an image of the meter; detecting the scale line and pointer of the meter in the image; based on the maximum value and minimum value of the range of the meter and the dial of the meter.
  • the angle between the scale line of the largest value and the scale line of the smallest value determines the unit value corresponding to each unit angle; the reading angle corresponding to the reading is determined based on the angle between the pointer and the scale line of the smallest value; and the reading angle is based on The unit value corresponding to each unit angle determines the reading of the meter.
  • the reading of the meter can be obtained by automatically analyzing and processing the image after the image of the meter is acquired, saving time and manpower for reading the meter reading.
  • the method according to the exemplary embodiment of the present application further includes: before acquiring the image of the meter, acquiring an identifier image including an identifier that uniquely identifies the meter, wherein the identifier is associated with meter information of the meter, and the meter information indicates The maximum value and the minimum value of the range and the angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter; detect the identifier to obtain the meter information based on the association between the identifier and the meter information; and The angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter determines the angle between the scale line of the maximum value and the scale line of the minimum value.
  • the meter information further indicates the position of the meter
  • the method further includes: determining a camera position for taking an image of the meter according to the position of the meter; and moving the camera to the camera position for taking the image of the meter.
  • detecting the scale line and pointer of the meter includes: determining the circular edge and center of the meter in the image; determining the scale line of the meter arranged in the circular edge of the meter in the image; and in the image Determine the pointer of the meter, where the straight line closest to the center of the meter in the image represents the pointer of the meter.
  • the image of the meter is processed to obtain information for determining the meter reading.
  • the method according to the exemplary embodiment of the present application further includes, after acquiring the image of the meter and before detecting the scale line and pointer of the meter: identifying the meter area of the meter in the image and the area outside the meter; and removing the outside of the meter from the image And reserve the instrument area of the instrument.
  • an apparatus for obtaining meter readings including: a camera configured to obtain an image of the meter; a detection module configured to detect the scale line and pointer of the meter in the image; and processing
  • the device is configured to determine the unit value corresponding to each unit angle based on the maximum value and the minimum value of the range of the meter and the angle between the scale line of the maximum value and the scale line of the minimum value in the dial of the meter; The angle between the scale lines of the smallest value determines the reading angle corresponding to the reading; and the reading of the meter is determined based on the reading angle and the unit value corresponding to each unit angle.
  • the reading of the meter can be obtained by automatically analyzing and processing the image after the image of the meter is acquired, saving time and manpower for reading the meter reading.
  • the camera is further configured to acquire an identifier image including an identifier that uniquely identifies the meter before acquiring the image of the meter, wherein the identifier is associated with meter information of the meter, and the meter information indicates the meter
  • the detection module is also configured to detect the identifier according to the association between the identifier and the meter information Obtain meter information
  • the processor is further configured to determine the angle between the scale line of the maximum value and the scale line of the minimum value based on the angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter.
  • the meter information further indicates the position of the meter
  • the device further includes: a camera position determination module configured to determine a camera position for taking an image of the meter according to the position of the meter; and a camera movement module configured to To move the camera to the camera position for taking images of the meter.
  • detecting the scale line and pointer of the meter includes: determining the ring edge and center of the meter in the image by the detection module; determining the scale of the meter arranged in the ring edge of the meter in the image by the detection module Line; and the pointer of the meter is determined in the image by the detection module, where the straight line closest to the center of the meter in the image represents the pointer of the meter.
  • the image of the meter is processed to obtain information for determining the meter reading.
  • the device further includes a meter area determination module, and the meter area determination module is configured to: after acquiring the image of the meter and before detecting the scale line and pointer of the meter: The outside area; and remove the outside area of the instrument from the image and keep the instrument area of the instrument.
  • a storage medium is further provided, the storage medium includes a stored program, and the device where the storage medium is located is controlled to execute the method according to any one of the foregoing when the program runs.
  • a processor is further provided, and the processor is configured to run a program, wherein the method according to any one of the foregoing is executed when the program is running.
  • a terminal including: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to Executed by one or more processors, one or more programs include methods for executing any one of the above.
  • a computer program product is also provided.
  • the computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, enable at least one processor Perform the method according to any of the above.
  • the reading of the meter can be obtained by automatically analyzing and processing the image after the image of the meter is acquired, saving time and manpower for reading the meter reading.
  • a technical solution is provided to automatically determine the position of the meter and obtain the meter image, and use the image detection to identify the reading of the meter, so as to at least solve the technical problem of not being able to quickly and effectively locate the meter and obtain the meter reading.
  • Fig. 1 is a flowchart of a method for obtaining meter readings according to an embodiment of the present application
  • Fig. 2 is a flowchart of a method according to an exemplary embodiment of the present application
  • Fig. 3 is a flowchart of a method according to an exemplary embodiment of the present application.
  • Fig. 4 is a schematic diagram of an image of a meter according to an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram of a dial divided in an image of a meter according to an exemplary embodiment of the present application
  • FIG. 6 is a schematic diagram of the range of the reading angle indicated by the pointer in the image of the meter according to the exemplary embodiment of the present application;
  • Fig. 7 is a schematic diagram of meter information according to an exemplary embodiment of the present application.
  • Fig. 8 is a schematic diagram of a method according to an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram showing the pointer of the meter according to the exemplary embodiment of the present application in a straight line;
  • 10A is a schematic diagram of an image including a meter area of a meter and an area outside the meter according to an exemplary embodiment of the present application;
  • 10B is a schematic diagram of an image of a meter area including only meters according to an exemplary embodiment of the present application
  • Fig. 11 is a schematic diagram of a device for obtaining meter readings according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of an apparatus for obtaining meter readings according to an exemplary embodiment of the present application.
  • Instrument area determination module
  • a process, method, system, product or device that includes a series of steps or modules or units is not necessarily limited to clearly listed Instead, those steps or modules or units listed may include other steps or modules or units that are not clearly listed or are inherent to these processes, methods, products, or equipment.
  • a method for obtaining meter readings is provided.
  • Fig. 1 is a flowchart of a method for obtaining meter readings according to an embodiment of the present application.
  • the method for obtaining meter readings according to the embodiment of the present application includes: in step S101, obtaining an image of the meter. Then in step S103, the scale line and pointer of the meter are detected in the image. Next, in step S105, the unit value corresponding to each unit angle is determined based on the maximum value and the minimum value of the range of the meter and the angle between the scale line of the maximum value and the scale line of the minimum value in the dial of the meter.
  • step S107 the reading angle corresponding to the reading is determined based on the angle between the pointer and the scale line of the minimum value.
  • step S109 the reading of the meter is determined based on the unit value corresponding to the reading angle and each unit angle.
  • the image of the meter acquired in step S101 is shown in FIG. 4, where the meter has a circular dial, and the numerical value of the range of the meter and the corresponding scale are arranged in a ring on the dial.
  • the meter may be a meter that indicates the status of the associated instrument.
  • the scale line and pointer in the meter shown in FIG. 4 are detected.
  • FIG. 4 the image of the meter acquired in step S101 is shown in FIG. 4, where the meter has a circular dial, and the numerical value of the range of the meter and the corresponding scale are arranged in a ring on the dial.
  • the meter may be a meter that indicates the status of the associated instrument.
  • the scale line and pointer in the meter shown in FIG. 4 are detected.
  • FIG. 5 is a schematic diagram of a dial divided in an image of a meter according to an exemplary embodiment of the present application, as shown in FIG. 5, which schematically shows that the dial is divided equally according to unit angles, and the entire angle range of the dial It is 360°, and every 10° is regarded as a division, and each division in the plurality of divisions corresponds to the unit value of the unit angle, that is, each division corresponds to “a value of every 10°”.
  • the reading of the meter corresponds to the angle of the pointer of the meter.
  • the angle corresponding to the meter reading can be determined by measuring the angle between the pointer and the scale line of the smallest value of the meter's range.
  • the angle corresponding to the meter reading is multiplied by each
  • the unit value corresponding to a unit angle can determine the meter reading indicated by the pointer.
  • Fig. 6 is a schematic diagram of the range of the reading angle indicated by the pointer in the image of the meter according to the exemplary embodiment of the present application.
  • the reading angle corresponding to the reading is determined based on the angle between the pointer and the scale line of the minimum value.
  • the range of the meter is 0-100.
  • the minimum value 0 has an angle of min° in the dial, and the maximum value of 100 is max°. Therefore, the angle range corresponding to the range of 0-100 is from min°-max°.
  • the angle range is divided into multiple divisions. Each division corresponds to the unit angle, and the unit value corresponding to the unit angle is (100-0)/(max°-min°), that is, "the value per unit angle".
  • the reading of the instrument as shown in Figure 6 is: value° ⁇ (100-0)/( max°-min°).
  • the reading of the instrument should be: the minimum value of the instrument + value° ⁇ (the maximum value of the instrument-the minimum value of the instrument)/(max°-min °).
  • the reading of the meter can be obtained by automatically analyzing and processing the image after acquiring the image of the meter, saving reading Time and manpower to take meter readings.
  • Fig. 2 is a flowchart of a method according to an exemplary embodiment of the present application.
  • the method according to the exemplary embodiment of the present application further includes: step S201, before acquiring the image of the meter, acquiring an identifier image that includes an identifier that uniquely identifies the meter, wherein the identifier and the meter of the meter The information is related, and the meter information indicates the maximum value and the minimum value of the range of the meter and the angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter.
  • the identifier is detected to obtain meter information based on the association between the identifier and the meter information.
  • step S205 the angle between the scale line of the maximum value and the scale line of the minimum value is determined based on the angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter.
  • the identifier may be a QR code.
  • Each meter is provided with a separate QR code, and the meter is associated with the QR code. Scan the QR code to know the database of the meter, so as to obtain information such as the type, manufacturer, and appearance of the meter.
  • the QR code does not have to be set on the meter, but can be set in an easily accessible location, but the location of the meter still needs to be set according to the actual use environment and requirements.
  • Fig. 3 is a flowchart of a method according to an exemplary embodiment of the present application.
  • step S301 before acquiring the image of the meter, an identifier image including an identifier that uniquely identifies the meter is acquired, wherein the identifier is associated with meter information of the meter .
  • the meter information indicates the maximum value and the minimum value of the range of the meter and the angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter.
  • the meter information also indicates the position of the meter.
  • step S303 the camera position for shooting the image of the meter is determined according to the position of the meter.
  • step S305 the camera is moved to the camera position for taking an image of the meter.
  • Fig. 7 is a schematic diagram of meter information according to an exemplary embodiment of the present application.
  • the meter information includes two columns of data "Key” and "Value", which respectively represent the name and corresponding value of the meter information.
  • the meter information includes the meter name, meter location, meter shape, meter picture, the maximum and minimum values of the meter range, and the angle values corresponding to the maximum and minimum values of the meter range.
  • the meter information of the meter can be used to identify the meter, and the angle value corresponding to the maximum and minimum values of the meter range and the maximum and minimum values of the meter range can be used to determine the reading of the meter according to the above method.
  • the position information of the meter includes, for example, the physical positioning of the meter, the relative height of the suspension, and the horizontal angle of the meter.
  • detailed location information can help graphic acquisition tools (such as a mobile device with a camera) to quickly locate the meter and find the meter and the shooting location of the image of the meter, to obtain a clearer and more complete meter image.
  • Fig. 8 is a schematic diagram of a method according to an exemplary embodiment of the present application.
  • 801 is the boundary or wall of the environment where the meter is installed
  • 803 is the mobile channel
  • 807 is the robot carrying the camera, traveling in the mobile channel 803 and looking for the QR code of the meter along the way.
  • the robot 807 After the robot 807 starts from the charging position 805 and starts to travel in the moving channel 803, it scans the QR code 813 along the way, and obtains meter information according to the QR code 813, as shown in FIG. 7.
  • the method for obtaining meter readings in the application embodiment can determine the reading of the meter 813'.
  • the robot 807 continues to travel in the moving channel 803, scans the QR code 815, and moves the camera to take a meter image of the associated meter 815'.
  • the robot 807 continues to travel in the moving channel 803, scans the QR code 811, and moves the camera to take a meter image of the associated meter 811'.
  • the camera-carrying robot can be guided to the position of the meter according to the position information obtained by the scanned QR code, and the current complete picture of the meter can be taken by the camera carried by the robot according to the specific height and angle information of the meter. , Which makes it possible to automatically find QR codes and meters in the environment, and achieve automatic acquisition of meter readings.
  • detecting the scale line and pointer of the meter includes: determining the circular edge and center of the meter in the image; determining the scale line of the meter arranged in the circular edge of the meter in the image; and in the image Determine the pointer of the meter, where the straight line closest to the center of the meter in the image represents the pointer of the meter.
  • 9 is a schematic diagram showing the pointer of the meter according to the exemplary embodiment of the present application in a straight line. As shown in Figure 9, the straight line closest to the center of the meter determined during the image processing represents the pointer of the meter.
  • the data represented by the meter is determined by the following methods:
  • the circular contour and center of the meter can be identified by Hough transform-ring detection.
  • the lines identified in B are in the circular profile of the meter identified in A, and the length of the scale line is within a certain error range of the circular radius of the circular profile, and the two ends of the line of the pointer are within the profile of the meter .
  • C identify the line indicating the pointer of the meter determined in B. This line is the straight line closest to the center of the circular profile. Moreover, the straight lines of the first scale and the last scale of the meter are both within the range of the circular contour of the meter.
  • the image of the meter is processed to obtain information for determining the meter reading.
  • the method according to the exemplary embodiment of the present application further includes, after acquiring the image of the meter and before detecting the scale line and pointer of the meter: identifying the meter area of the meter in the image and the area outside the meter; and removing the outside of the meter from the image And reserve the instrument area of the instrument.
  • FIG. 10A is a schematic diagram of an image including a meter area of a meter and an area outside the meter according to an exemplary embodiment of the present application.
  • FIG. 10B is a schematic diagram of an image of a meter area including only meters according to an exemplary embodiment of the present application.
  • the image of the instrument taken by the camera at the shooting position may contain unnecessary image information other than the information for identifying the reading of the instrument. Therefore, before identifying the scale line and pointer of the instrument, exclude the image of the area outside of these unnecessary instruments. Information, leaving only the meter area including the meter.
  • Deep learning and neural network technology can be used to perform pre-model training on meters, which can be used to identify meters in images and help determine meter regions. In this way, it is possible to improve the accuracy of processing the information of the meter image and reduce the amount of data processed for obtaining meter readings.
  • a device for obtaining meter readings is also provided.
  • Fig. 11 is a schematic diagram of a device for obtaining meter readings according to an embodiment of the present application.
  • the apparatus 1 for obtaining meter readings according to an embodiment of the present application includes: a camera 101 configured to obtain an image of the meter; a detection module 103 configured to detect the scale line and pointer of the meter in the image; and The processor 105 is configured to determine the unit value corresponding to each unit angle based on the maximum value and the minimum value of the range of the meter and the angle between the scale line of the maximum value and the scale line of the minimum value in the dial of the meter; The angle between the pointer and the scale line of the minimum value determines the reading angle corresponding to the reading; and the reading of the meter is determined based on the reading angle and the unit value corresponding to each unit angle.
  • the reading of the meter can be obtained by automatically analyzing and processing the image after the image of the meter
  • the camera 101 is further configured to acquire an identifier image including an identifier that uniquely identifies the meter before acquiring the image of the meter, wherein the identifier is associated with meter information of the meter, and the meter information indicates The maximum value and minimum value of the range of the meter and the angle of the scale line of the maximum value and the angle of the scale line of the minimum value in the dial of the meter.
  • the detection module 103 is also configured to detect the identifier to obtain meter information according to the association between the identifier and the meter information.
  • the processor 105 is also configured to determine the minimum value and the angle of the scale line of the maximum value in the dial of the meter.
  • the angle of the scale line determines the angle between the scale line of the maximum value and the scale line of the minimum value. In this way, it is possible to determine information such as the range, value, and scale line of the meter whose image is to be acquired before acquiring the image of the meter.
  • the meter information also indicates the position of the meter
  • the apparatus 1 for obtaining meter readings further includes: a camera position determination module 107 configured to determine the camera position for taking the image of the meter according to the position of the meter; and
  • the camera moving module 109 is configured to move the camera to the camera position for taking an image of the meter.
  • detecting the scale line and pointer of the meter includes: determining the ring edge and center of the meter in the image by the detection module; determining the scale of the meter arranged in the ring edge of the meter in the image by the detection module Line; and the pointer of the meter is determined in the image by the detection module, where the straight line closest to the center of the meter in the image represents the pointer of the meter. In this way, the image of the meter is processed to obtain information for determining the meter reading.
  • the device 1 further includes a meter area determination module 111, which is configured to identify the meter area of the meter in the image after acquiring the image of the meter and before detecting the scale line and pointer of the meter And the area outside the meter, and remove the area outside the meter from the image and keep the meter area of the meter.
  • a meter area determination module 111 which is configured to identify the meter area of the meter in the image after acquiring the image of the meter and before detecting the scale line and pointer of the meter And the area outside the meter, and remove the area outside the meter from the image and keep the meter area of the meter.
  • the apparatus for obtaining meter readings according to the embodiment of the present application executes the method for obtaining meter readings according to the embodiment of the present application, which will not be repeated here.
  • a storage medium is further provided, the storage medium includes a stored program, and the device where the storage medium is located is controlled to execute the method according to any one of the foregoing when the program runs.
  • a processor is also provided, and the processor is configured to run a program, wherein the method according to the above is executed when the program is running.
  • a terminal including: one or more processors, a memory, and one or more programs, wherein the one or more programs are stored in the memory and configured to Executed by one or more processors, one or more programs are included for executing the method according to the above.
  • a computer program product is also provided.
  • the computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, enable at least one processor Perform the method according to the above.
  • the technical solution of the present application can automatically analyze and process the image after acquiring the image of the instrument to obtain the reading of the instrument, which saves time and manpower for reading the instrument reading.
  • AI/perception/deep learning to realize the image recognition of the instrument image, it can realize the automatic identification of the instrument and the automatic reading of the instrument reading, reducing or even eliminating the need for manual reading of the instrument reading, reducing manpower and other costs.
  • the technical solution of the present application can automatically find the position of the meter and obtain the photo of the meter through the robot, which can further improve the degree of automation and production efficiency.
  • the disclosed technical content can be implemented in other ways.
  • the above-described device embodiments are merely illustrative, for example, the division of the units or modules is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or modules or components. Can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, modules or units, and may be in electrical or other forms.
  • the units or modules described as separate parts may or may not be physically separate, and the parts displayed as units or modules may or may not be physical units or modules, that is, they may be located in one place, or they may be distributed to Multiple network units or modules. Some or all of the units or modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional unit or module in each embodiment of the present application can be integrated into one processing unit or module, or each unit or module can exist alone physically, or two or more units or modules can be integrated into one. Unit or module.
  • the above-mentioned integrated units or modules can be implemented in the form of hardware or software functional units or modules.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code .

Abstract

获取仪表读数的方法、装置、存储器、处理器和终端。该方法包括:获取仪表的图像(S101);在图像中检测仪表的刻度线和指针(S103);在基于仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线与最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值(S105);基于指针与最小数值的刻度线之间的角度确定与读数对应的读数角度(S107);基于读数角度与每一个单位角度对应的单位数值确定仪表的读数(S109)。本方法能够实现自动化定位仪表并获取仪表读数,节省了读取仪表读数的人力和时间。

Description

获取仪表读数的方法、装置、存储器、处理器和终端 技术领域
本申请涉及工厂控制领域。具体地,本申请涉及获取仪表读数的方法、装置、存储器、处理器和终端。
背景技术
在工厂等环境中安装有各种仪表。仪表反应了工厂中的设备的状态以及传感器检测的各类状态。
读取仪表数值虽然很简单,但是在不同时间为了检查仪表状态,读取大量仪表的数值是耗时和耗费人力的。在现有的工厂中,手动抄表和人工检查仪表数值的方式效率低下。
目前,缺乏在工厂中自动读取仪表数值的技术。
发明内容
本申请实施例提供了获取仪表读数的方法、装置、存储器、处理器和终端,以至少解决现有技术中不能快速有效地定位仪表以及获取仪表读数的问题。
根据本申请实施例的一个方面,提供了获取仪表读数的方法,包括:获取仪表的图像;在图像中检测仪表的刻度线和指针;基于仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线与最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值;基于指针与最小数值的刻度线之间的角度确定与读数对应的读数角度;以及基于读数角度与每一个单位角度对应的单位数值确定仪表的读数。
以这样的方式,能够在获取仪表的图像之后通过自动对图像进行分析和处理获取仪表的读数,节省了读取仪表读数的时间和人力。
根据本申请的示例性实施例的方法还包括:在获取仪表的图像之前,获取包括唯一识别仪表的识别符的识别符图像,其中,识别符与仪表的仪表信息相关联,仪表信息指示仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度;检测识别符以根据识别符与仪表信息之间的关联获取仪表信息;以及基于在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的 角度确定最大数值的刻度线与最小数值的刻度线之间的角度。
以这样的方式,能够在获取仪表的图像之前确定要获取图像的仪表的量程、数值和刻度线等用于确定仪表读数的信息。
根据本申请的示例性实施例,仪表信息还指示仪表的位置,并且方法还包括:根据仪表的位置确定拍摄仪表的图像的相机位置;以及将相机移动到相机位置以用于拍摄仪表的图像。
以这样的方式,能够在获取仪表的图像前获取仪表的位置信息并将相机移动到拍摄仪表图像的相机位置,实现相机拍摄位置的自动化控制。
根据本申请的示例性实施例,检测仪表的刻度线和指针包括:在图像中确定仪表的环形边缘和中心;在图像中确定在仪表的环形边缘内排列的仪表的刻度线;以及在图像中确定仪表的指针,其中,图像中最接近仪表的中心的直线代表仪表的指针。
以这样的方式,处理仪表的图像以获得用于确定仪表读数的信息。
根据本申请的示例性实施例的方法还包括在获取仪表的图像之后且检测仪表的刻度线和指针之前:识别图像中仪表的仪表区域和仪表之外的区域;以及在图像中去除仪表之外的区域并保留仪表的仪表区域。
以这样的方式,能够提高处理仪表图像的信息的精确度并且减少获取仪表读数的处理的数据量。
根据本申请实施例的另一方面,还提供了获取仪表读数的装置,包括:相机,被配置为获取仪表的图像;检测模块,被配置为在图像中检测仪表的刻度线和指针;以及处理器,被配置为:基于仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线与最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值;基于指针与最小数值的刻度线之间的角度确定与读数对应的读数角度;以及基于读数角度与每一个单位角度对应的单位数值确定仪表的读数。
以这样的方式,能够在获取仪表的图像之后通过自动对图像进行分析和处理获取仪表的读数,节省了读取仪表读数的时间和人力。
根据本申请的示例性实施例,相机还被配置为在获取仪表的图像之前,获取包括唯一识别仪表的识别符的识别符图像,其中,识别符与仪表的仪表信息相关联,仪表信息指示仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度;检测模块还被配置为检测识别符以根据识别符与仪 表信息之间的关联获取仪表信息;并且处理器还被配置为基于在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度确定最大数值的刻度线与最小数值的刻度线之间的角度。
以这样的方式,能够在获取仪表的图像之前确定要获取图像的仪表的量程、数值和刻度线等用于确定仪表读数的信息。
根据本申请的示例性实施例,仪表信息还指示仪表的位置,并且装置还包括:相机位置确定模块,被配置为根据仪表的位置确定拍摄仪表的图像的相机位置;以及相机移动模块,被配置为将相机移动到相机位置以用于拍摄仪表的图像。
以这样的方式,能够在获取仪表的图像前获取仪表的位置信息并将相机移动到拍摄仪表图像的相机位置,实现相机拍摄位置的自动化控制。
根据本申请的示例性实施例,检测仪表的刻度线和指针包括:通过检测模块在图像中确定仪表的环形边缘和中心;通过检测模块在图像中确定在仪表的环形边缘内排列的仪表的刻度线;以及通过检测模块在图像中确定仪表的指针,其中,图像中最接近仪表的中心的直线代表仪表的指针。
以这样的方式,处理仪表的图像以获得用于确定仪表读数的信息。
根据本申请的示例性实施例,装置还包括仪表区域确定模块,仪表区域确定模块被配置为在获取仪表的图像之后且检测仪表的刻度线和指针之前:识别图像中仪表的仪表区域和仪表之外的区域;以及在图像中去除仪表之外的区域并保留仪表的仪表区域。
以这样的方式,能够提高处理仪表图像的信息的精确度并且减少获取仪表读数的处理的数据量。
根据本申请实施例的另一方面,还提供了存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在的设备执行根据上述任意一项的方法。
根据本申请实施例的另一方面,还提供了处理器,处理器用于运行程序,其中,程序运行时执行根据上述任意一项的方法。
根据本申请实施例的另一方面,还提供了终端,包括:一个或多个处理器、存储器、以及一个或多个程序,其中,一个或多个程序被存储在存储器中,并且被配置为由一个或多个处理器执行,一个或多个程序包括用于执行根据上述任意一项的方法。
根据本申请实施例的另一方面,还提供了计算机程序产品,计算机程序产品被有 形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时使至少一个处理器执行根据上述任一项的方法。
以这样的方式,能够在获取仪表的图像之后通过自动对图像进行分析和处理获取仪表的读数,节省了读取仪表读数的时间和人力。
在本申请实施例中,提供了自动确定仪表的位置并获取仪表图像,使用对图像的检测识别仪表的读数的技术方案,以至少解决不能快速有效地定位仪表以及获取仪表读数的技术问题,实现了节省读取大量仪表的读数的时间和人力的技术效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的获取仪表读数的方法的流程图;
图2是根据本申请的示例性实施例的方法的流程图;
图3是根据本申请的示例性实施例的方法的流程图;
图4是根据本申请的示例性实施例的仪表的图像的示意图;
图5是根据本申请的示例性实施例的仪表的图像中被分划的表盘的示意图;
图6是根据本申请的示例性实施例的仪表的图像中指针所指示的读数角度的范围的示意图;
图7是根据本申请的示例性实施例的仪表信息的示意图;
图8是根据本申请的示例性实施例的方法的示意图;
图9是以直线示出根据本申请的示例性实施例的仪表的指针的示意图;
图10A是根据本申请的示例性实施例的包括仪表的仪表区域和仪表之外的区域的图像的示意图;
图10B是根据本申请的示例性实施例的仅包括仪表的仪表区域的图像的示意图;
图11是根据本申请实施例的获取仪表读数的装置的示意图;
图12是根据本申请示例性实施例的获取仪表读数的装置的示意图。
附图文字说明
S101~S109、S201~S205、S301~S305:步骤;
801:设有仪表的环境的边界或者墙壁;
803:移动通道;
805:充电位置;
807:机器人
811、813、815:QR码;
811’、813’、815’:仪表;
1:获取仪表读数的装置;
101:相机;
103:检测模块;
105:处理器;
107:相机位置确定模块;
109:相机移动模块;
111:仪表区域确定模块。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块或单元的过 程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块或单元。
根据本申请实施例,提供了获取仪表读数的方法。图1是根据本申请实施例的获取仪表读数的方法的流程图。如图1所示,根据本申请实施例的获取仪表读数的方法包括:在步骤S101,获取仪表的图像。然后在步骤S103,在图像中检测仪表的刻度线和指针。接下来,在步骤S105,在基于仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线与最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值。接下来,在步骤S107,基于指针与最小数值的刻度线之间的角度确定与读数对应的读数角度。接下来,在步骤S109,基于读数角度与每一个单位角度对应的单位数值确定仪表的读数。
例如,在步骤S101中获取的仪表图像如图4所示,其中,仪表具有圆形的表盘,仪表的量程的数值以及对应的刻度以环形布置在表盘中。仪表可以是指示相关联的仪器的状态的仪表。在步骤S103检测如图4所示的仪表中的刻度线和指针。例如,在步骤S105中确定仪表的表盘中最大数值的刻度线与最小数值的刻度线之间的角度确定量程的角度范围,进而确定每一个单位角度对应的单位数值。图5是根据本申请的示例性实施例的仪表的图像中被分划的表盘的示意图,如图5所示,其中示意性地示出了表盘被按照单位角度进行平均划分,表盘整个角度范围为360°,每10°作为一个划分,多个划分中的每个划分对应于单位角度的单位数值,即,每个划分对应于“每10°的数值”。可以理解,仪表的读数与仪表的指针的角度是对应的,通过测量指针与仪表的量程的最小数值的刻度线之间的角度可以确定仪表读数对应的角度,将仪表读数对应的角度乘以每一个单位角度对应的单位数值,即可确定指针所指示的仪表读数。
图6是根据本申请的示例性实施例的仪表的图像中指针所指示的读数角度的范围的示意图。例如,在图6中,基于指针与最小数值的刻度线之间的角度确定与读数对应的读数角度。在图6示出的实例中,仪表的量程为0-100。最小数值0在表盘中的角度为min°,最大数值100的max°,因此,0-100的量程所对应的角度范围为从min°-max°,将该角度范围平均分为多个划分,每个划分对应单位角度,单位角度对应的单位数值为(100-0)/(max°-min°),即“每单位角度的数值”。如果确定仪表的指针所指示的角度(指针的角度与最小值刻度的角度的角度差)为value°,那么,如图6所示的仪表的读数为:value°×(100-0)/(max°-min°)。此外,可以理解,对于量程的最小值不是0的仪表,该仪表的读数应当为:该仪表的最小值+value°×(该仪表的最大值-该仪表的最小值)/(max°-min°)。以这样的方式,通过分析 仪表的图像,基于仪表的量程范围、最大数值和最小数值与指针的角度,能够在获取仪表的图像之后通过自动对图像进行分析和处理获取仪表的读数,节省了读取仪表读数的时间和人力。
图2是根据本申请的示例性实施例的方法的流程图。如图2所示,根据本申请的示例性实施例的方法还包括:步骤S201,在获取仪表的图像之前,获取包括唯一识别仪表的识别符的识别符图像,其中,识别符与仪表的仪表信息相关联,仪表信息指示仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度。接下来,在步骤S203,检测识别符以根据识别符与仪表信息之间的关联获取仪表信息。接下来,在步骤S205,基于在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度确定最大数值的刻度线与最小数值的刻度线之间的角度。
例如,识别符可以是QR码。每个仪表设置有单独的QR码,仪表与QR码两者关联,扫描该QR码可知该仪表的数据库,从而获取例如仪表的类型、制造商、外观等信息。QR码不必须设置在仪表上,而是可以设置在容易访问的位置,但仪表的位置仍然需要根据实际使用环境和需求设置。
图3是根据本申请的示例性实施例的方法的流程图。如图3所示,根据本申请的示例性实施例,在步骤S301,在获取仪表的图像之前,获取包括唯一识别仪表的识别符的识别符图像,其中,识别符与仪表的仪表信息相关联,仪表信息指示仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度,仪表信息还指示仪表的位置。在步骤S303,根据仪表的位置确定拍摄仪表的图像的相机位置。在步骤S305,将相机移动到相机位置以用于拍摄仪表的图像。
图7是根据本申请的示例性实施例的仪表信息的示意图。如图7所示,仪表信息包括“Key”和“Value”两列数据,分别表示仪表信息的名称和对应的值。仪表信息包括仪表名称、仪表位置、仪表形状、仪表图片、仪表量程的最大值、最小值以及仪表量程的最大值、最小值所对应的角度值。仪表的仪表信息可以用于识别该仪表,以及根据仪表的量程的最大值、最小值以及仪表量程的最大值、最小值所对应的角度值根据如上方法确定仪表的读数。
仪表的位置信息例如包括仪表的物理定位、悬架的相对高度、仪表的水平角度等。在仪表所在的环境中,详细的位置信息可以帮助图形采集工具(例如设有相机的能移动的装置)快速定位仪表并找到仪表以及拍摄仪表的图像的拍摄位置,获得更清晰、更完整的仪表图像。
图8是根据本申请的示例性实施例的方法的示意图。如图8所示,801是设有仪表的环境的边界或者墙壁,803是移动通道,807是携带相机的机器人,在移动通道803中行进并沿途寻找仪表的QR码。机器人807从充电位置805出发开始在移动通道803中行进后,沿途扫描到QR码813,根据QR码813获取仪表信息,如图7所示。然后根据仪表信息确定与QR码813关联的仪表813’的位置,将携带的相机移动到拍摄仪表813’的拍摄位置,拍摄813’的仪表图像,结合如图7所示的仪表信息以及据本申请实施例的获取仪表读数的方法可以确定仪表813’的读数。机器人807继续在移动通道803中行进,扫描QR码815,并移动相机以拍摄相关联的仪表815’的仪表图像。机器人807继续在移动通道803中行进,扫描QR码811,并移动相机以拍摄相关联的仪表811’的仪表图像。如此方式,在实际应用中,可以根据扫描的QR码获得的位置信息引导携带相机的机器人到达仪表的位置,并根据仪表的具体的高度、角度信息,通过机器人携带的相机拍摄仪表当前的完整图片,使得能够自动寻找环境中的QR码和仪表,实现自动获取仪表读数。
以这样的方式,能够在获取仪表的图像之前确定要获取图像的仪表的量程、数值和刻度线等用于确定仪表读数的信息,能够在获取仪表的图像前获取仪表的位置信息并将相机移动到拍摄仪表图像的相机位置,实现相机拍摄位置的自动化控制。
根据本申请的示例性实施例,检测仪表的刻度线和指针包括:在图像中确定仪表的环形边缘和中心;在图像中确定在仪表的环形边缘内排列的仪表的刻度线;以及在图像中确定仪表的指针,其中,图像中最接近仪表的中心的直线代表仪表的指针。图9是以直线示出根据本申请的示例性实施例的仪表的指针的示意图。如图9所示,在进行图像处理的过程中所确定的最接近仪表的中心的直线代表仪表的指针。
具体地,仪表所表示的数据由以下方法确定:
A,仪表的圆形轮廓和中心可以通过霍夫变换-环形检测来识别。
B,通过霍夫变换-线检测,识别仪表的表盘中的直线,例如环形围绕仪表中心排列的刻度线和指针。
在B中识别的这些线在A中识别的仪表的圆形轮廓中,并且刻度线的长度在圆形轮廓的圆形半径的一定的误差范围内,指针的线的两端在仪表的轮廓内。
C,识别在B中确定的表示仪表指针的线。该线是最接近圆形轮廓的中心的直线。并且,仪表的第一个刻度和最后一个刻度的直线均在仪表的圆形轮廓的范围内。
以这样的方式,处理仪表的图像以获得用于确定仪表读数的信息。
根据本申请的示例性实施例的方法还包括在获取仪表的图像之后且检测仪表的刻度线和指针之前:识别图像中仪表的仪表区域和仪表之外的区域;以及在图像中去除仪表之外的区域并保留仪表的仪表区域。
图10A是根据本申请的示例性实施例的包括仪表的仪表区域和仪表之外的区域的图像的示意图。图10B是根据本申请的示例性实施例的仅包括仪表的仪表区域的图像的示意图。相机在拍摄位置拍摄的仪表的图像可能包含识别仪表读数的信息之外的不需要的图像信息,因此,在识别仪表的刻度线和指针等之前,排除这些不需要的仪表之外的区域的图像信息,仅留下包括仪表的仪表区域。可以通过深度学习和神经网络技术,执行关于仪表的预建模训练(pre-model training),从而用于识别图像中的仪表,帮助确定仪表区域。以这样的方式,能够提高处理仪表图像的信息的精确度并且减少获取仪表读数的处理的数据量。
根据本申请实施,还提供了获取仪表读数的装置。图11是根据本申请实施例的获取仪表读数的装置的示意图。如图11所示,根据本申请实施例的获取仪表读数的装置1包括:相机101,被配置为获取仪表的图像;检测模块103,被配置为在图像中检测仪表的刻度线和指针;以及处理器105,被配置为:基于仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线与最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值;基于指针与最小数值的刻度线之间的角度确定与读数对应的读数角度;以及基于读数角度与每一个单位角度对应的单位数值确定仪表的读数。以这样的方式,能够在获取仪表的图像之后通过自动对图像进行分析和处理获取仪表的读数,节省了读取仪表读数的时间和人力。
根据本申请的示例性实施例,相机101还被配置为在获取仪表的图像之前,获取包括唯一识别仪表的识别符的识别符图像,其中,识别符与仪表的仪表信息相关联,仪表信息指示仪表的量程的最大数值和最小数值以及在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度。检测模块103还被配置为检测识别符以根据识别符与仪表信息之间的关联获取仪表信息.并且处理器105还被配置为基于在仪表的表盘中最大数值的刻度线的角度和最小数值的刻度线的角度确定最大数值的刻度线与最小数值的刻度线之间的角度。以这样的方式,能够在获取仪表的图像之前确定要获取图像的仪表的量程、数值和刻度线等用于确定仪表读数的信息。
根据本申请的示例性实施例,仪表信息还指示仪表的位置,并且获取仪表读数的装置1还包括:相机位置确定模块107,被配置为根据仪表的位置确定拍摄仪表的图像的相机位置;以及相机移动模块109,被配置为将相机移动到相机位置以用于拍摄仪表的图像。以这样的方式,能够在获取仪表的图像前获取仪表的位置信息并将相机 移动到拍摄仪表图像的相机位置,实现相机拍摄位置的自动化控制。
根据本申请的示例性实施例,检测仪表的刻度线和指针包括:通过检测模块在图像中确定仪表的环形边缘和中心;通过检测模块在图像中确定在仪表的环形边缘内排列的仪表的刻度线;以及通过检测模块在图像中确定仪表的指针,其中,图像中最接近仪表的中心的直线代表仪表的指针。以这样的方式,处理仪表的图像以获得用于确定仪表读数的信息。
根据本申请的示例性实施例,装置1还包括仪表区域确定模块111,仪表区域确定模块111被配置为在获取仪表的图像之后且检测仪表的刻度线和指针之前:识别图像中仪表的仪表区域和仪表之外的区域,以及在图像中去除仪表之外的区域并保留仪表的仪表区域。以这样的方式,能够提高处理仪表图像的信息的精确度并且减少获取仪表读数的处理的数据量。
根据本申请实施例的获取仪表读数的装置执行根据本申请实施例的获取仪表读数的方法,在此不再赘述。
根据本申请实施例的另一方面,还提供了存储介质,存储介质包括存储的程序,其中,在程序运行时控制存储介质所在的设备执行根据上述任意一项的方法。
根据本申请实施例的另一方面,还提供了处理器,处理器用于运行程序,其中,程序运行时执行根据上述的方法。
根据本申请实施例的另一方面,还提供了终端,包括:一个或多个处理器、存储器、以及一个或多个程序,其中,一个或多个程序被存储在存储器中,并且被配置为由一个或多个处理器执行,一个或多个程序包括用于执行根据上述的方法。
根据本申请实施例的另一方面,还提供了计算机程序产品,计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时使至少一个处理器执行根据上述的方法。
本申请技术方案能够在获取仪表的图像之后通过自动对图像进行分析和处理获取仪表的读数,节省了读取仪表读数的时间和人力。通过AI/感知/深度学习实现仪表图像的图像识别,可以实现仪表的自动识别和仪表读数的自动读取,减少甚至消除对人工读取仪表读数的需要,减少人力和其他成本。本申请的技术方案可以通过机器人自动找到仪表的位置并获取仪表的照片,可以进一步改善自动化程度和生产效率。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元或模块可以是或者也可以不是物理上分开的,作为单元或模块显示的部件可以是或者也可以不是物理单元或模块,即可以位于一个地方,或者也可以分布到多个网络单元或模块上。可以根据实际的需要选择其中的部分或者全部单元或模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元或模块可以集成在一个处理单元或模块中,也可以是各个单元或模块单独物理存在,也可以两个或两个以上单元或模块集成在一个单元或模块中。上述集成的单元或模块既可以采用硬件的形式实现,也可以采用软件功能单元或模块的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (14)

  1. 获取仪表读数的方法,其特征在于,包括:
    获取仪表的图像;
    在所述图像中检测所述仪表的刻度线和指针;
    基于所述仪表的量程的最大数值和最小数值以及在所述仪表的表盘中所述最大数值的刻度线与所述最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值;
    基于所述指针与所述最小数值的刻度线之间的角度确定与读数对应的读数角度;以及
    基于所述读数角度与每一个单位角度对应的单位数值确定所述仪表的读数。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    在获取仪表的图像之前,获取包括唯一识别所述仪表的识别符的识别符图像,其中,所述识别符与所述仪表的仪表信息相关联,所述仪表信息指示所述仪表的量程的最大数值和最小数值以及在所述仪表的表盘中所述最大数值的刻度线的角度和所述最小数值的刻度线的角度;
    检测所述识别符以根据所述识别符与所述仪表信息之间的关联获取所述仪表信息;以及
    基于在所述仪表的表盘中所述最大数值的刻度线的角度和所述最小数值的刻度线的角度确定所述最大数值的刻度线与所述最小数值的刻度线之间的角度。
  3. 根据权利要求2所述的方法,其特征在于,所述仪表信息还指示所述仪表的位置,并且
    所述方法还包括:
    根据所述仪表的位置确定拍摄所述仪表的图像的相机位置;以及
    将相机移动到所述相机位置以用于拍摄所述仪表的图像。
  4. 根据权利要求1所述的方法,其特征在于,检测所述仪表的刻度线和指针包括:
    在所述图像中确定所述仪表的环形边缘和中心;
    在所述图像中确定在所述仪表的环形边缘内排列的所述仪表的刻度线;以及
    在所述图像中确定所述仪表的指针,其中,所述图像中最接近所述仪表的中心的直线代表所述仪表的指针。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,还包括在获取仪表的图像之后且检测所述仪表的刻度线和指针之前:
    识别所述图像中所述仪表的仪表区域和所述仪表之外的区域;以及
    在所述图像中去除所述仪表之外的区域并保留所述仪表的仪表区域。
  6. 获取仪表读数的装置,其特征在于,包括:
    相机(101),被配置为获取仪表的图像;
    检测模块(103),被配置为在所述图像中检测所述仪表的刻度线和指针;以及
    处理器(105),被配置为:
    基于所述仪表的量程的最大数值和最小数值以及在所述仪表的表盘中所述最大数值的刻度线与所述最小数值的刻度线之间的角度确定每一个单位角度对应的单位数值;
    基于所述指针与所述最小数值的刻度线之间的角度确定与读数对应的读数角度;以及
    基于所述读数角度与每一个单位角度对应的单位数值确定所述仪表的读数。
  7. 根据权利要求6所述的装置,其特征在于:
    所述相机(101)还被配置为在获取仪表的图像之前,获取包括唯一识别所述仪表的识别符的识别符图像,其中,所述识别符与所述仪表的仪表信息相关联,所述仪表信息指示所述仪表的量程的最大数值和最小数值以及在所述仪表的表盘中所述最大数值的刻度线的角度和所述最小数值的刻度线的角度;
    所述检测模块(103)还被配置为检测所述识别符以根据所述识别符与所述仪表信息之间的关联获取所述仪表信息;并且
    所述处理器(105)还被配置为基于在所述仪表的表盘中所述最大数值的刻度线的角度和所述最小数值的刻度线的角度确定所述最大数值的刻度线与所述最小 数值的刻度线之间的角度。
  8. 根据权利要求7所述的装置,其特征在于,所述仪表信息还指示所述仪表的位置,并且
    所述装置还包括:
    相机位置确定模块(107),被配置为根据所述仪表的位置确定拍摄所述仪表的图像的相机位置;以及
    相机移动模块(109),被配置为将相机(101)移动到所述相机位置以用于拍摄所述仪表的图像。
  9. 根据权利要求6所述的装置,其特征在于,检测所述仪表的刻度线和指针包括:
    通过所述检测模块在所述图像中确定所述仪表的环形边缘和中心;
    通过所述检测模块在所述图像中确定在所述仪表的环形边缘内排列的所述仪表的刻度线;以及
    通过所述检测模块在所述图像中确定所述仪表的指针,其中,所述图像中最接近所述仪表的中心的直线代表所述仪表的指针。
  10. 根据权利要求6至9中任一项所述的装置,其特征在于,所述装置还包括仪表区域确定模块(111),所述仪表区域确定模块被配置为在获取仪表的图像之后且检测所述仪表的刻度线和指针之前:
    识别所述图像中所述仪表的仪表区域和所述仪表之外的区域;以及
    在所述图像中去除所述仪表之外的区域并保留所述仪表的仪表区域。
  11. 存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时控制所述存储介质所在的设备执行根据权利要求1至5中任意一项所述的方法。
  12. 处理器,其特征在于,所述处理器用于运行程序,其中,所述程序运行时执行根据权利要求1至5中任意一项所述的方法。
  13. 终端,包括:一个或多个处理器、存储器、以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行根据权利要求1至5中任意一项所述的方法。
  14. 计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1至5中任一项所述的方法。
PCT/CN2019/098917 2019-08-01 2019-08-01 获取仪表读数的方法、装置、存储器、处理器和终端 WO2021017000A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098917 WO2021017000A1 (zh) 2019-08-01 2019-08-01 获取仪表读数的方法、装置、存储器、处理器和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098917 WO2021017000A1 (zh) 2019-08-01 2019-08-01 获取仪表读数的方法、装置、存储器、处理器和终端

Publications (1)

Publication Number Publication Date
WO2021017000A1 true WO2021017000A1 (zh) 2021-02-04

Family

ID=74229949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098917 WO2021017000A1 (zh) 2019-08-01 2019-08-01 获取仪表读数的方法、装置、存储器、处理器和终端

Country Status (1)

Country Link
WO (1) WO2021017000A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113408542A (zh) * 2021-05-25 2021-09-17 深圳市富能新能源科技有限公司 指针仪表读数的识别方法、系统、设备及计算机存储介质
CN113408551A (zh) * 2021-05-25 2021-09-17 深圳市富能新能源科技有限公司 指针仪表读数的识别方法、系统、设备及计算机存储介质
CN114279624A (zh) * 2021-12-28 2022-04-05 广东电网有限责任公司 一种指针转换数字远程传输信号的表盘装置
CN116380149A (zh) * 2023-04-07 2023-07-04 深圳市兴源智能仪表股份有限公司 一种仪表码盘转动测试方法、系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620682A (zh) * 2008-06-30 2010-01-06 汉王科技股份有限公司 一种指针式仪表读数自动识别的方法及系统
CN101660932A (zh) * 2009-06-15 2010-03-03 浙江大学 一种指针式汽车仪表自动校验方法
CN102799867A (zh) * 2012-07-09 2012-11-28 哈尔滨工业大学 基于图像处理的仪表指针转角识别方法
CN103148881A (zh) * 2013-02-06 2013-06-12 广东电网公司电力科学研究院 利用视频自动对指针式仪表进行读数的方法及装置
CN104392206A (zh) * 2014-10-24 2015-03-04 南京航空航天大学 一种指针式仪表读数自动识别的图像处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620682A (zh) * 2008-06-30 2010-01-06 汉王科技股份有限公司 一种指针式仪表读数自动识别的方法及系统
CN101660932A (zh) * 2009-06-15 2010-03-03 浙江大学 一种指针式汽车仪表自动校验方法
CN102799867A (zh) * 2012-07-09 2012-11-28 哈尔滨工业大学 基于图像处理的仪表指针转角识别方法
CN103148881A (zh) * 2013-02-06 2013-06-12 广东电网公司电力科学研究院 利用视频自动对指针式仪表进行读数的方法及装置
CN104392206A (zh) * 2014-10-24 2015-03-04 南京航空航天大学 一种指针式仪表读数自动识别的图像处理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113408542A (zh) * 2021-05-25 2021-09-17 深圳市富能新能源科技有限公司 指针仪表读数的识别方法、系统、设备及计算机存储介质
CN113408551A (zh) * 2021-05-25 2021-09-17 深圳市富能新能源科技有限公司 指针仪表读数的识别方法、系统、设备及计算机存储介质
CN114279624A (zh) * 2021-12-28 2022-04-05 广东电网有限责任公司 一种指针转换数字远程传输信号的表盘装置
CN116380149A (zh) * 2023-04-07 2023-07-04 深圳市兴源智能仪表股份有限公司 一种仪表码盘转动测试方法、系统
CN116380149B (zh) * 2023-04-07 2024-02-02 深圳市兴源智能仪表股份有限公司 一种仪表码盘转动测试方法、系统

Similar Documents

Publication Publication Date Title
WO2021017000A1 (zh) 获取仪表读数的方法、装置、存储器、处理器和终端
CN110659636B (zh) 基于深度学习的指针式仪表读数识别方法
CN112115893A (zh) 仪表盘指针读数识别方法、装置、计算机设备及存储介质
CN100559131C (zh) 一种指针式仪表自动检定方法
EP3220353B1 (en) Image processing apparatus, image processing method, and recording medium
CN108955901B (zh) 一种红外测温方法、系统及终端设备
CN109685764B (zh) 产品定位方法、装置及终端设备
CN111027531A (zh) 指针式仪表信息识别方法、装置及电子设备
Lauridsen et al. Reading circular analogue gauges using digital image processing
CN114881955A (zh) 基于切片的环状点云缺陷提取方法、装置、设备存储介质
CN113269193A (zh) 指针式表计的示数读取方法、装置及存储介质
JP2014203311A (ja) 画像処理装置、画像処理方法、およびプログラム
CN111353502A (zh) 数字表识别方法、装置以及电子设备
US9569661B2 (en) Apparatus and method for neck and shoulder landmark detection
JP5683695B2 (ja) 資産管理システム、操作端末、及び資産管理方法
CN113050022A (zh) 一种基于旋转天线的图像定位方法、装置及终端设备
CN116612461A (zh) 一种基于目标检测的指针式仪表全过程自动读数方法
CN113811908A (zh) 用于确定生产设备的生产周期的方法和装置
CN115512343A (zh) 一种圆形指针式仪表校正和读数识别方法
CN111275693B (zh) 一种图像中物体的计数方法、计数装置及可读存储介质
CN114255458A (zh) 一种巡检场景下指针仪表读数的识别方法与系统
CN113191351B (zh) 数字电表的示数识别方法及装置、模型训练方法及装置
CN111046878B (zh) 一种数据处理方法、装置及计算机存储介质和计算机
CN112435210B (zh) 一种环形器件的质量检测方法及装置
CN108805121A (zh) 一种车牌检测定位方法、装置、设备及计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939711

Country of ref document: EP

Kind code of ref document: A1