WO2021016862A1 - 一种水下通信方法及装置 - Google Patents

一种水下通信方法及装置 Download PDF

Info

Publication number
WO2021016862A1
WO2021016862A1 PCT/CN2019/098379 CN2019098379W WO2021016862A1 WO 2021016862 A1 WO2021016862 A1 WO 2021016862A1 CN 2019098379 W CN2019098379 W CN 2019098379W WO 2021016862 A1 WO2021016862 A1 WO 2021016862A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound field
vortex sound
vortex
preset
information
Prior art date
Application number
PCT/CN2019/098379
Other languages
English (en)
French (fr)
Inventor
蔡飞燕
郑海荣
祝雪丰
马腾
李永川
沈亚西
杨晔
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2019/098379 priority Critical patent/WO2021016862A1/zh
Priority to CN201910828512.XA priority patent/CN110730042B/zh
Priority to PCT/CN2019/105430 priority patent/WO2021017111A1/zh
Publication of WO2021016862A1 publication Critical patent/WO2021016862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy

Definitions

  • This application belongs to the field of computer application technology, and in particular relates to an underwater communication method and device.
  • the ocean is a very important area for human survival activities. With the further development of human civilization, the consumption of resources by civilization has increased dramatically. To maintain the further development of civilization, it is necessary to understand, develop and utilize marine resources. Acoustic waves are the only signals that can travel long distances in the form of radiation in the ocean, and underwater acoustic communication is one of the important technologies that need to be addressed in the development of the ocean.
  • the principle of hydroacoustic communication is to use the hydroacoustic transducer to send out sound waves that carry information, which are conducted through the ocean to the hydroacoustic receiving transducer and converted into electrical signals, and the information content is restored through signal and information processing.
  • time-division multiplexing and frequency-division multiplexing processing methods are commonly used at present.
  • the main principle is based on encoding information in carrier waves in different time periods or different frequency ranges.
  • the frequency or time degree of freedom is generally used as the base vector of the codec, but as the amount of information increases, only the frequency or time degree of freedom is used as the base vector of the codec, and the total channel capacity is limited.
  • the transmitted signal is aliased in the frequency or time dimension, the decoded signal will have greater distortion. Therefore, the encoding and decoding methods in the prior art have greater signal distortion during the transmission process.
  • the embodiments of the present application provide an underwater communication method and device to solve the problem that the encoding and decoding methods in the prior art are prone to large signal distortion during transmission.
  • the first aspect of the embodiments of the present application provides an underwater communication method, including:
  • the emission information of the vortex sound field signal pass the electrical signal information through a preset excitation transducer to generate the vortex sound field signal;
  • the vortex sound field signal is sent to a preset receiving device.
  • the second aspect of the embodiments of the present application provides an underwater communication method, including:
  • the emission information of the vortex sound field signal is decoded and reconstructed to obtain the electrical signal information corresponding to the vortex sound field signal.
  • a third aspect of the embodiments of the present application provides a transmitting device, including:
  • the determining unit is configured to determine the emission information of the vortex sound field signal corresponding to the electrical signal information according to a preset way of generating the vortex sound field;
  • the sound field unit is used to generate the vortex sound field signal by passing the electrical signal information through a preset excitation transducer according to the emission information of the vortex sound field signal;
  • the sending unit is used to send the vortex sound field signal to a preset receiving device.
  • the fourth aspect of the embodiments of the present application provides a transmitting device, which includes a processor, an input device, an output device, and a memory.
  • the processor, input device, output device, and memory are connected to each other, wherein the memory is used for
  • the storage support device executes computer readable instructions for the above method, the computer readable instructions include program instructions, and the processor is configured to invoke the program instructions to execute the method of the first aspect described above.
  • the fifth aspect of the embodiments of the present application provides a computer-readable storage medium that stores computer-readable instructions, the computer-readable instructions including program instructions, and the program instructions when executed by a processor
  • the processor is caused to execute the method of the first aspect described above.
  • a sixth aspect of the embodiments of the present application provides a receiving device, including:
  • the receiving unit is used to receive the vortex sound field signal sent by the sending device
  • the ring energy unit is used to pass the vortex sound field signal through a preset excitation transducer to obtain the emission information of the vortex sound field signal;
  • the reconstruction unit is configured to decode and reconstruct the emission information of the vortex sound field signal according to a preset information decoding and reconstruction mode, to obtain the electrical signal information corresponding to the vortex sound field signal.
  • a seventh aspect of the embodiments of the present application provides a receiving device, including: a processor, an input device, an output device, and a memory.
  • the processor, input device, output device, and memory are connected to each other, wherein the memory is used for
  • the storage support device executes computer readable instructions for the above method, the computer readable instructions include program instructions, and the processor is configured to invoke the program instructions to execute the method of the above second aspect.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium that stores computer-readable instructions.
  • the computer-readable instructions include program instructions.
  • the processor is caused to execute the method of the second aspect described above.
  • the electric signal information to be sent By generating the electric signal information to be sent; determining the emission information of the vortex sound field signal corresponding to the electric signal information according to the preset vortex sound field generation mode; according to the emission information of the vortex sound field signal, converting the electric signal
  • the information generates the vortex sound field signal through a preset excitation transducer; and sends the vortex sound field signal to a preset receiving device.
  • Propagation reduces the distortion of the signal transmitted underwater in the encoding and decoding process.
  • FIG. 1 is a flowchart of an underwater communication method provided by Embodiment 1 of the present application.
  • Figure 2 is the area array transducer used in the experiment provided in the first embodiment of the application
  • FIG. 3 is a diagram of the emission phases of vortex sound fields with different topological charges provided by Embodiment 1 of the present application;
  • FIG. 4 is a schematic diagram of the amplitude and phase of a cross-section perpendicular to the propagation direction of the vortex acoustic field with different topological charges provided in the first embodiment of the present application;
  • FIG. 5 is a flowchart of the underwater communication method provided in Embodiment 2 of the present application.
  • FIG. 6 is a flowchart of underwater communication between a transmitting device and a receiving device according to Embodiment 2 of the present application;
  • FIG. 7 is a schematic diagram of the arrangement and shape of the area array transducer unit provided in the second embodiment of the present application.
  • FIG. 8 is a schematic diagram of orthogonality of vortex sound fields of different orders provided in the second embodiment of the present application.
  • FIG. 9 is a schematic diagram of the sound intensity amplitude distribution of numbers 0-9 obtained theoretically and experimentally according to Embodiment 2 of the present application.
  • FIG. 11 is a schematic diagram of signal decoding of an area array transducer according to Embodiment 2 of the present application.
  • FIG. 12 is a schematic diagram of a transmitting device provided in Embodiment 3 of the present application.
  • FIG. 13 is a schematic diagram of a transmitting device provided in Embodiment 4 of the present application.
  • FIG. 14 is a schematic diagram of a receiving device provided in Embodiment 5 of the present application.
  • FIG. 15 is a schematic diagram of a receiving device provided in Embodiment 6 of the present application.
  • FIG. 1 is a flowchart of an underwater communication method provided in Embodiment 1 of the present application.
  • the execution subject of the underwater communication method in this embodiment is a device with underwater communication function, such as a transmitting device.
  • the underwater communication method as shown in the figure may include the following steps:
  • S101 Generate electrical signal information to be sent.
  • the ocean is a very important area for human survival activities. With the further development of human civilization, the consumption of resources by civilization has increased dramatically. To maintain the further development of civilization, it is necessary to understand, develop and utilize marine resources.
  • Acoustic wave is the only signal that can travel long distances in the form of radiation in the ocean, and underwater acoustic communication is one of the important technologies that need to be addressed in the development of the ocean.
  • the principle of hydroacoustic communication is to use the hydroacoustic transducer to send out sound waves that carry information, which are conducted through the ocean to the hydroacoustic receiving transducer and converted into electrical signals, and the information content is restored through signal and information processing.
  • the orbital angular momentum in the vortex sound field can be used as a new degree of freedom independent of time and frequency, becoming a new choice for expanding the capacity of acoustic communication signal transmission channels.
  • This embodiment proposes an array structure based on orbital angular momentum long-distance underwater communication and an excitation method thereof, and provides a new sound field realization method for realizing underwater communication based on the vortex sound field.
  • the electric signal information to be sent is generated. Since non-electric physical quantities can be easily converted into electrical signals by various sensors, and electrical signals are easy to transmit and control, it becomes the most widely used signal.
  • Electrical signal refers to the voltage or current that changes with time, so it can be expressed as a function of time in mathematical description, and its waveform can be drawn.
  • the information to be transmitted is generated in the form of electrical signals.
  • S102 Determine the emission information of the vortex sound field signal corresponding to the electrical signal information according to a preset way of generating the vortex sound field.
  • the currently proposed vortex acoustic communications are based on transducers or acoustic artificial structures in the air, and cannot be directly applied to the water environment.
  • the array structure of the vortex sound field long-distance underwater communication and its excitation method proposed in this embodiment is an array structure designed based on the water environment, which can directly generate and receive the vortex sound field, and can truly realize dynamic, efficient, and large-capacity acoustic information transmission.
  • the vortex sound field in this embodiment refers to a sound field with a spiral phase, which can be expressed mathematically as:
  • step S102 may specifically include steps S1021 to S1022:
  • S1021 Determine the emission phase and amplitude of each element in the vortex sound field signal corresponding to the electrical signal information according to preset generation methods of the vortex sound field with different topological charges.
  • step S1021 may include:
  • the amplitude of each element in the vortex sound field signal corresponding to the electrical signal information is a preset constant; in the preset manner of generating the vortex sound field with different topological charges, the vortex corresponding to the electrical signal information
  • the emission phase of each element in the rotating sound field signal is:
  • ⁇ OAM is used to represent the emission phase of each array element
  • l is used to represent the topological charge of the vortex sound field corresponding to the array element
  • r are used to represent the polar angle and polar diameter of each element in the polar coordinates with the center of the vortex as the pole
  • is used to represent the curl of the vortex.
  • FIG. 2 is the area array transducer used in the experiment provided in the first embodiment of the application. It is an area array transducer with a square array of 16*16 array elements, and the working center frequency is 1 MHz.
  • the excitation and receiving system in this embodiment selects the Verasonics Vantage 256 system excitation system, which can realize independent control of the transmission phase and amplitude of each element. Calculate the emission phase and amplitude of each element according to the following formula:
  • ⁇ OAM is used to represent the emission phase of each array element
  • l is used to represent the topological charge of the vortex sound field corresponding to the array element
  • r are used to represent the polar angle and polar diameter of each element in the polar coordinates with the center of the vortex as the pole
  • is used to represent the curl of the vortex
  • A represents the emission amplitude of each element, which is A constant, that is, the emission amplitudes of all elements are the same.
  • FIG. 3 is the emission phase diagram of the vortex sound field with different topological charges provided in the first embodiment of the application.
  • FIG. 4 together.
  • FIG. 4 is a schematic diagram of the amplitude and phase of a cross-section perpendicular to the propagation direction of the vortex sound field with different topological charges provided in the first embodiment of the application.
  • S1022 Determine the intensity and phase of any vortex sound field in the vortex sound field signal corresponding to the electrical signal information according to a preset manner of generating any vortex sound field.
  • step S1022 may include:
  • the intensity of any vortex sound field in the vortex sound field signal corresponding to the electrical signal information is:
  • I 1 to I 8 are used to represent the strength of vortex fields of different topological charges
  • the phase of any vortex sound field in the vortex sound field signal corresponding to the electrical signal information is:
  • the topological charge number vortex sound field of -4 to -1, and 1 to 4 can be used as the basic mode, and the phase of any signal can be calculated as:
  • the sound field intensity of any signal is:
  • the American Standard Code for Information Interchange code corresponding to the number "1" is (American Standard Code for Information Interchange, ASCII) 00010001, so the -1 mode and the 4 mode vortex sound field are superimposed to be the sound field shape corresponding to the number 1.
  • the preset excitation transducer used in this embodiment generates a single or multiple vortex sound fields with different topological charge numbers.
  • a 16*16 area array transducer is used to independently control the phase and amplitude of each element to generate a single Or multiple vortex sound fields with different topological charges. Therefore, the area array transducer, that is, the excitation transducer, can also be used as a receiving system to receive and detect the information-carrying vortex sound field.
  • S104 Send the vortex sound field signal to a preset receiving device.
  • the vortex sound field signal is sent underwater to a preset receiving device.
  • the vortex sound field generated or received by the underwater array transducer of this embodiment can be directly used for underwater communication.
  • the University of California proposed an acoustic orbital angular momentum communication technology based on an active transducer array. The principle is to generate a sound vortex field containing 8 topological charges through a phased array composed of 64 loudspeakers radiating a composite vortex state coded signal, and use another acoustic phased array to receive and sum up at the receiving end. demodulation.
  • its transducer is a low-frequency micro-horn that propagates in the air, and the sound field generation method is not suitable for underwater communication.
  • Nanjing University is based on the use of acoustic resonance metamaterials to realize the addition and subtraction cascade transportation of the acoustic orbital angular momentum. Its sound source transducer uses only a single acoustic microphone, and the related experiments are done in airborne sound. However, due to its special acoustic structure and conductive sound field need to be realized in an acoustic rigid structure, it is difficult to achieve similar functions in an underwater acoustic system under current experimental conditions. In this embodiment, an underwater array transducer is used to generate or receive any vortex sound field to realize the core sound field propagation of vortex sound communication.
  • step S104 may include: loading at least two independent and non-interfering vortex sound field signals in the preset frequency band; and sending the vortex sound field signals loaded with the at least two vortex sound field signal frequency bands to the pre-set frequency band. Set the receiving device.
  • the topological charge is defined as the number of times the wavefront is twisted within the propagation distance of a wavelength. The larger the value of
  • the vortex sound fields of different topological charges are orthogonal to each other because Therefore, the orthogonality between the vortex sound fields of different topological charges can be used to realize the simultaneous transmission of multiple independent and non-interfering signals in the same frequency band, which will greatly improve the utilization rate of the spectrum and the communication rate, and also improve The channel capacity of the communication signal.
  • the electric signal information to be transmitted is generated; the emission information of the vortex sound field signal corresponding to the electric signal information is determined according to the preset vortex sound field generation method; and the emission information of the vortex sound field signal is determined according to the emission information of the vortex sound field signal.
  • the electrical signal information generates the vortex sound field signal through a preset excitation transducer; and sends the vortex sound field signal to a preset receiving device.
  • FIG. 5 is a flowchart of an underwater communication method provided in Embodiment 2 of the present application.
  • the execution subject of the underwater communication method in this embodiment is a device with underwater communication functions, such as a receiving device.
  • the receiving device in this embodiment and the transmitting device in the first embodiment process signals in the signal communication process one by one. Correspondingly, its functions are not described here.
  • the underwater communication method as shown in the figure may include the following steps:
  • S501 Receive the vortex sound field signal sent by the sending device.
  • an underwater array transducer is used to generate or receive any vortex sound field to realize the core sound field propagation of vortex sound communication.
  • the area array converter of this embodiment is a device that converts sound energy into electric energy or electric energy into sound energy.
  • Microphones, speakers and earphones in electroacoustic engineering are the most typical devices that convert between electric energy and sound energy. Collectively referred to as electroacoustic transducers.
  • FIG. 6 is a flowchart of underwater communication between the transmitting device and the receiving device provided in this embodiment.
  • the information electrical signal is generated at the transmitting device end, and the information electrical signal is passed through the preset transducer to obtain N transducer elements, and then the N transducer elements Encode and transmit the vortex sound field signal, and transmit the vortex sound field signal to the receiving end.
  • the acoustic vortex code is received by the receiving device to obtain N transducer elements, and finally these transducer elements are decoded to obtain the original electrical signal information.
  • This is the transmitting device and The communication interaction mode between the receiving devices in the second embodiment.
  • FIG. 7 is a schematic diagram of the arrangement and shape of the area array transducer unit provided in the second embodiment.
  • the area array transducer of this embodiment can be a planar array or a curved surface array, and the arrangement of the area array units can be a rectangular coordinate arrangement, a polar coordinate arrangement, or a spiral arrangement.
  • the planar circular array 1 the planar circular array 2 of the array elements, and the arc surface array of the array elements.
  • the working frequency of the area array transducer of this embodiment is the working frequency of underwater acoustic communication 10 Hz-5 MHz.
  • S502 Pass the vortex sound field signal through a preset excitation transducer to obtain emission information of the vortex sound field signal.
  • the preset excitation transducer is used to generate a single or multiple vortex sound fields with different topological charge numbers.
  • a 16*16 area array transducer can be used to independently control the phase and phase of each element. Amplitude, producing single or multiple vortex sound fields with different topological charges. Therefore, the area array transducer, that is, the excitation transducer, can also be used as a receiving system to receive and detect the information-carrying vortex sound field. After receiving the vortex sound field signal, the vortex sound field signal is passed through the preset excitation transducer to obtain the emission information of the vortex sound field signal.
  • S503 According to a preset information decoding and reconstruction mode, decode and reconstruct the emission information of the vortex sound field signal to obtain electrical signal information corresponding to the vortex sound field signal.
  • the area array transducer at the receiving end is used to directly receive the intensity and phase of the propagating sound field, and to internally interact with the vortex field with topological charges of -4, -3, -2, -1, 1, 2, 3, and 4.
  • Product operation can decode and reconstruct the information of the spiral pattern, obtain electrical signals, and realize information communication.
  • Figure 8 is a schematic diagram of the orthogonality of the vortex sound fields of different orders provided in the second embodiment of the application.
  • (a) is the simulation result
  • (b) is the experimental result.
  • the plane axis represents the vortex field OAM corresponding to different topological charges
  • the vertical axis is used to represent the orthogonality parameter.
  • FIG. 9 is a schematic diagram of the sound intensity amplitude distribution of numbers 0-9 obtained theoretically and experimentally provided in the second embodiment of the application, and the color depth of the pixels in the image is used to indicate the size of the sound intensity amplitude;
  • FIG. 10 is an embodiment of the application 2.
  • FIG. 11 is a schematic diagram of the signal decoding of the area array transducer provided in the second embodiment of the application, where (a) is the simulation As a result, (b) is the experimental result, where the plane axis represents the vortex field OAM corresponding to different topological charges, and the vertical axis represents the signal strength.
  • the process of decoding the letter "Nature" signal by the receiving area array transducer is The received sound field signal is internally producted with the vortex sound field of different topological charges to obtain the signal strength of each topological charge vortex field, and the information can be decoded.
  • the vortex sound field signal sent by the transmitting device is received; the vortex sound field signal is passed through a preset excitation transducer to obtain the emission information of the vortex sound field signal; and the reconstruction method is decoded according to the preset information , Decoding and reconstructing the emission information of the vortex sound field signal to obtain the electrical signal information corresponding to the vortex sound field signal.
  • the electrical signal information corresponding to the vortex sound field signal is obtained.
  • the core sound field propagation of vortex acoustic communication reduces the distortion of the signal transmitted underwater in the encoding and decoding process.
  • FIG. 12 is a schematic diagram of a transmitting device provided in Embodiment 3 of the present application.
  • the units included in the transmitting device are used to execute the steps in the embodiment corresponding to FIG. 1.
  • only the parts related to this embodiment are shown.
  • the transmitting device 1200 of this embodiment includes:
  • the generating unit 1201 is configured to generate electric signal information to be sent
  • the determining unit 1202 is configured to determine the emission information of the vortex sound field signal corresponding to the electrical signal information according to a preset way of generating the vortex sound field;
  • the sound field unit 1203 is used to generate the vortex sound field signal by passing the electrical signal information through a preset excitation transducer according to the emission information of the vortex sound field signal;
  • the sending unit 1204 is configured to send the vortex sound field signal to a preset receiving device.
  • the determining unit 1202 includes:
  • the first determining unit is configured to determine the emission phase and amplitude of each element in the vortex sound field signal corresponding to the electrical signal information according to preset generation methods of the vortex sound field with different topological charges; or
  • the second determining unit is configured to determine the intensity and phase of any vortex sound field in the vortex sound field signal corresponding to the electrical signal information according to a preset manner of generating any vortex sound field.
  • the sending unit 1204 includes:
  • the loading unit is used to load at least two independent and non-interfering vortex sound field signals in a preset frequency band;
  • the carrier wave sending unit is used to send the vortex sound field signal loaded with the frequency bands of the at least two vortex sound field signals to a preset receiving device.
  • the amplitude of each element in the vortex sound field signal corresponding to the electrical signal information is a preset constant; in the preset manner of generating the vortex sound field with different topological charges, the electrical signal information
  • the emission phase of each element in the corresponding vortex sound field signal is:
  • ⁇ OAM is used to represent the emission phase of each array element
  • l is used to represent the topological charge of the vortex sound field corresponding to the array element
  • r are used to represent the polar angle and polar diameter of each element in the polar coordinates with the center of the vortex as the pole
  • is used to represent the curl of the vortex.
  • the intensity of any vortex sound field in the vortex sound field signal corresponding to the electrical signal information is:
  • I 1 to I 8 are used to represent the strength of vortex fields of different topological charges
  • the phase of any vortex sound field in the vortex sound field signal corresponding to the electrical signal information is:
  • the electric signal information to be transmitted is generated; the emission information of the vortex sound field signal corresponding to the electric signal information is determined according to the preset vortex sound field generation method; and the emission information of the vortex sound field signal is determined according to the emission information of the vortex sound field signal.
  • the electrical signal information generates the vortex sound field signal through a preset excitation transducer; and sends the vortex sound field signal to a preset receiving device.
  • FIG. 13 is a schematic diagram of a transmitting device provided in Embodiment 4 of the present application.
  • the transmitting device 13 of this embodiment includes: a processor 1300, a memory 1301, and computer-readable instructions 1303 stored in the processor 1302 and running on the processor 1301.
  • the steps in the above embodiments of the underwater communication method are implemented, such as steps 101 to 104 shown in FIG. 1.
  • the processor 1301 executes the computer-readable instruction 1303
  • the functions of the units in the foregoing device embodiments such as the functions of the units 1201 to 1204 shown in FIG. 12, are implemented.
  • the computer-readable instructions 1303 may be divided into one or more modules/units, and the one or more modules/units are stored in the processor 1302 and executed by the processor 1301 To complete this application.
  • the one or more modules/units may be a series of computer-readable instruction instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer-readable instruction 1303 in the transmitting device 13.
  • the transmitting device 13 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the transmitting device may include, but is not limited to, a processor 1301 and a processor 1302.
  • FIG. 13 is only an example of the launching device 13 and does not constitute a limitation on the launching device 13. It may include more or less components than shown, or a combination of certain components, or different components.
  • the transmitting device may also include input and output devices, network access devices, buses, etc.
  • the so-called processor 1301 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor 1302 may be an internal storage unit of the transmitting device 13, such as a hard disk or a memory of the transmitting device 13.
  • the processor 1302 may also be an external storage device of the transmitting device 13, such as a plug-in hard disk equipped on the transmitting device 13, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) ) Card, Flash Card (FC), etc.
  • the processor 1302 may also include both an internal storage unit of the transmitting device 13 and an external storage device.
  • the processor 1302 is configured to store the computer-readable instructions and other programs and data required by the transmitting device.
  • the processor 1302 may also be used to temporarily store data that has been output or will be output.
  • FIG. 14 is a schematic diagram of a receiving device provided in Embodiment 5 of the present application.
  • the units included in the receiving device are used to execute the steps in the embodiment corresponding to FIG. 5.
  • the receiving device 1400 in this embodiment includes:
  • the receiving unit 1401 is used to receive the vortex sound field signal sent by the sending device
  • the transducer unit 1402 is configured to pass the vortex sound field signal through a preset excitation transducer to obtain emission information of the vortex sound field signal;
  • the reconstruction unit 1403 is configured to decode and reconstruct the emission information of the vortex sound field signal according to a preset information decoding and reconstruction mode, to obtain the electrical signal information corresponding to the vortex sound field signal.
  • the vortex sound field signal sent by the transmitting device is received; the vortex sound field signal is passed through a preset excitation transducer to obtain the emission information of the vortex sound field signal; and the reconstruction method is decoded according to the preset information , Decoding and reconstructing the emission information of the vortex sound field signal to obtain the electrical signal information corresponding to the vortex sound field signal.
  • the electrical signal information corresponding to the vortex sound field signal is obtained.
  • the core sound field propagation of vortex acoustic communication reduces the distortion of the signal transmitted underwater in the encoding and decoding process.
  • FIG. 15 is a schematic diagram of a receiving device provided in Embodiment 6 of the present application.
  • the receiving device 15 of this embodiment includes a processor 1501, a processor 1502, and computer readable instructions 1503 stored in the processor 1502 and capable of running on the processor 1501.
  • the processor 1501 executes the computer-readable instruction 1503
  • the steps in the above embodiments of the underwater communication method are implemented, for example, steps 501 to 503 shown in FIG. 5.
  • the processor 1501 executes the computer-readable instruction 1503
  • the function of each module/unit in the foregoing device embodiments for example, the function of the units 1401 to 1403 shown in FIG. 14 is realized.
  • the computer-readable instruction 1503 may be divided into one or more modules/units, and the one or more modules/units are stored in the processor 1502 and executed by the processor 1501 To complete this application.
  • the one or more modules/units may be a series of computer-readable instruction instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer-readable instruction 1503 in the receiving device 15.
  • the receiving device 15 may include, but is not limited to, a processor 1501 and a processor 1502. Those skilled in the art can understand that FIG. 15 is only an example of the receiving device 15 and does not constitute a limitation on the transmitting device 15. It may include more or fewer components than shown in the figure, or a combination of certain components, or different components.
  • the transmitting device may also include input and output devices, network access devices, buses, etc.
  • the so-called processor 1501 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the processor 1502 may be an internal storage unit of the receiving device 15, for example, a hard disk or a memory of the receiving device 15.
  • the processor 1502 may also be an external storage device of the receiving device 15, such as a plug-in hard disk equipped on the receiving device 15, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) ) Card, Flash Card (FC), etc.
  • the processor 1502 may also include both an internal storage unit of the receiving device 15 and an external storage device.
  • the processor 1502 is configured to store the computer readable instructions and other programs and data required by the receiving device.
  • the processor 1502 can also be used to temporarily store data that has been output or will be output.
  • the computer-readable storage medium may be the internal storage unit of the terminal described in any of the foregoing embodiments, such as the hard disk or memory of the terminal.
  • the computer-readable storage medium may also be an external storage device of the terminal, such as a plug-in hard disk equipped on the terminal, a smart memory card (Smart Media Card, SMC), or a Secure Digital (SD) card , Flash Card, etc.
  • the computer-readable storage medium may also include both an internal storage unit of the terminal and an external storage device.
  • the computer-readable storage medium is used to store the computer-readable instructions and other programs and data required by the terminal.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.
  • the disclosed terminal and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • U disk mobile hard disk
  • read-only memory Read-Only Memory
  • RAM random access memory
  • magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本申请适用于计算机应用技术领域,提供了水下通信方法及装置,包括:通过生成待发送的电信号信息;根据预设的涡旋声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;将所述涡旋声场信号发送至预设的接收装置。通过根据预设的涡旋声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下面阵换能器产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。

Description

一种水下通信方法及装置 技术领域
本申请属于计算机应用技术领域,尤其涉及一种水下通信方法及装置。
背景技术
海洋是人类生存活动十分重要的领域,随着人类文明的进一步发展,人类对资源的消费急剧增长,要维持人类的进一步发展,就必须了解、开发和利用海洋资源。声波是唯一能在海洋中以辐射形式远距离传播的信号,水声通讯是开发海洋需要解决的重要技术之一。水声通讯的原理是利用水声换能器发出携带信息的声波,通过海洋传导至水声接收换能器并将其转化为电信号,经过信号与信息处理,还原信息内容。
为了提高通讯信号的信道容量,目前普遍采用时分多路复用和频分多路复用的处理方法,其主要原理是基于将信息编码在不同时间段或不同频率范围的载体波中。现有技术中一般通过频率或时间自由度作为编解码的基矢,但是随着信息量的增大,仅使用频率或时间自由度作为编解码的基矢,信道总容量是有限的。此外,若所传输的信号在频率或时间维度发生混叠,将会导致解码后的信号有较大失真,因此,现有技术中的编解码方式在传输过程中信号的失真较大。
技术问题
有鉴于此,本申请实施例提供了水下通信方法及装置,以解决现有技术中的编解码方式在传输过程中容易出现信号失真较大的问题。
技术解决方案
本申请实施例的第一方面提供了一种水下通信方法,包括:
生成待发送的电信号信息;
根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
将所述涡旋声场信号发送至预设的接收装置。
本申请实施例的第二方面提供了一种水下通信方法,包括:
接收发送装置发送的涡旋声场信号;
将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。
本申请实施例的第三方面提供了一种发射装置,包括:
生成单元,用于生成待发送的电信号信息;
确定单元,用于根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
声场单元,用于根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
发送单元,用于将所述涡旋声场信号发送至预设的接收装置。
本申请实施例的第四方面提供了一种发射装置,包括:处理器、输入设备、输出设备 和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储支持装置执行上述方法的计算机可读指令,所述计算机可读指令包括程序指令,所述处理器被配置用于调用所述程序指令,执行上述第一方面的方法。
本申请实施例的第五方面提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机可读指令,所述计算机可读指令包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第一方面的方法。
本申请实施例的第六方面提供了一种接收装置,包括:
接收单元,用于接收发送装置发送的涡旋声场信号;
环能单元,用于将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
重构单元,用于根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。
本申请实施例的第七方面提供了一种接收装置,包括:处理器、输入设备、输出设备和存储器,所述处理器、输入设备、输出设备和存储器相互连接,其中,所述存储器用于存储支持装置执行上述方法的计算机可读指令,所述计算机可读指令包括程序指令,所述处理器被配置用于调用所述程序指令,执行上述第二方面的方法。
本申请实施例的第八方面提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机可读指令,所述计算机可读指令包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第二方面的方法。
有益效果
本申请实施例与现有技术相比存在的有益效果是:
通过生成待发送的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;将所述涡旋声场信号发送至预设的接收装置。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下面阵换能器产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的水下通信方法的流程图;
图2是本申请实施例一提供的实验所用面阵换能器;
图3是本申请实施例一提供的不同拓扑荷数涡旋声场的发射相位图;
图4是本申请实施例一提供的不同拓扑荷数涡旋声场垂直于传播方向的一截面的幅度和相位示意图;
图5是本申请实施例二提供的水下通信方法的流程图;
图6是本申请实施例二提供的发射装置与接收装置在水下通信的流程图;
图7是本申请实施例二提供的面阵换能器单元排列形状示意图;
图8是本申请实施例二提供的不同阶数涡旋声场的正交性示意图;
图9是本申请实施例二提供的理论和实验获得的数字0-9的声强幅度分布示意图;
图10是本申请实施例二提供的理论和实验获得的数字0-9的声场相位分布示意图;
图11是本申请实施例二提供的面阵换能器信号解码示意图;
图12是本申请实施例三提供的发射装置的示意图;
图13是本申请实施例四提供的发射装置的示意图;
图14是本申请实施例五提供的接收装置的示意图;
图15是本申请实施例六提供的接收装置的示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
实施例1
参见图1,图1是本申请实施例一提供的一种水下通信方法的流程图。本实施例中水下通信方法的执行主体为具有水下通信功能的装置,如发射装置。如图所示的水下通信方法可以包括以下步骤:
S101:生成待发送的电信号信息。
海洋是人类生存活动十分重要的领域,随着人类文明的进一步发展,人类对资源的消费急剧增长,要维持人类的进一步发展,就必须了解、开发和利用海洋资源。声波是唯一能在海洋中以辐射形式远距离传播的信号,水声通讯是开发海洋需要解决的重要技术之一。水声通讯的原理是利用水声换能器发出携带信息的声波,通过海洋传导至水声接收换能器并将其转化为电信号,经过信号与信息处理,还原信息内容。
涡旋声场中的轨道角动量可作为独立于时间和频率的新自由度,成为扩充声学通讯信号传输信道容量的全新选择。本实施例提出一种基于轨道角动量远距离水下通信的阵列结构及其激励方法,为实现基于涡旋声场的水下通讯提供新的声场实现手段。
在水下传输信号时,生成待发送的电信号信息。由于非电的物理量可以通过各种传感器较容易地转换成电信号,而电信号又容易传送和控制,所以使其成为应用最广的信号。电信号是指随着时间而变化的电压或电流,因此在数学描述上可将它表示为时间的函数,并可画出其波形。本实施例中通过电信号的形式生成要传输的信息。
S102:根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息。
当前提出的涡旋声通信都是基于空气中的换能器或声人工结构,无法直接应用到水环境中。本实施例提出的涡旋声场远距离水下通信的阵列结构及其激励方法,是基于水环境设 计的阵列结构,能够直接产生和接收涡旋声场,可以真正实现动态、高效、大容量声信息传输。
本实施例中的涡旋声场是指具有螺旋形相位的声场,数学上可表示为:
p(r)=p(r,z)e -ikze ,这里
Figure PCTCN2019098379-appb-000001
用于表示声束的波矢量,p(r,z)用于表示z处的声场径向分布,φ=mθ用于表示螺旋相位,θ用于表示方位角大小,m恒为整数,用于表示拓扑荷数或涡旋场的阶数。本实施例中拓扑荷数用于表示一个波长的传播距离内波阵面发生扭转的次数,|m|取值越大,表示波阵面沿着轴旋转得越快;m取正数或负数,表示其扭转方向是正向或反向。
进一步的,步骤S102可以具体包括步骤S1021~S1022:
S1021:根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中各个阵元的发射相位和幅度。
本实施例中预设有不同拓扑荷数的涡旋声场中各个阵元的产生方式,具体的,步骤S1021可以包括:
所述电信号信息对应的涡旋声场信号中各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应的涡旋声场信号中各个阵元的发射相位为:
Figure PCTCN2019098379-appb-000002
其中,θ OAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,
Figure PCTCN2019098379-appb-000003
和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度。
请一并参阅图2,图2为本申请实施例一提供的实验所用面阵换能器,其为16*16阵元正方排列的面阵换能器,工作中心频率在1MHz。本实施例中的激励和接收系统选用Verasonics Vantage 256 system激励系统,该系统可以实现独立控制每一个阵元的发射相位和幅值。按照如下公式计算每一个阵元的发射相位和幅值:
Figure PCTCN2019098379-appb-000004
A=cons tan t;
其中,θ OAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,
Figure PCTCN2019098379-appb-000005
和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度;A代表每个阵元的发射幅值,是一个常数,即所有阵元的发射幅值都是相同的。
利用系统相应地激励换能器,就能够产生不同拓扑荷数涡旋声场。请一并参阅图3,图3为本申请实施例一提供的不同拓扑荷数涡旋声场的发射相位图,图3用不同的像素颜色表示了拓扑荷数I=1、-1、4以及-4的情况下,涡旋声场的发射相位,其中,不同像素的颜色深度用于表示不同的相位大小,x和y分别用于表示涡旋声场中不同方向对应的像素位。请一并参阅图4,图4为本申请实施例一提供的不同拓扑荷数涡旋声场垂直于传播方向的一截面的幅度和相位示意图,图4用不同的像素颜色表示了拓扑荷数I=+1、-1、+2、-2、+3、-3、+4以及-4时,涡旋声场垂直于传播方向的一截面幅度和相位变化情况,其中,不同像素的颜色深度用于表示不同的幅度大小和相位大小。
S1022:根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中任意涡旋声场的强度和相位。
本实施例中预设有任意涡旋声场信号中任意涡旋声场的产生方式,具体的,步骤S1022可以包括:
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的强度为:
Figure PCTCN2019098379-appb-000006
其中,
Figure PCTCN2019098379-appb-000007
分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I 1~I 8分别用于表示不同拓扑荷数的涡旋场的强度;
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的相位为:
Figure PCTCN2019098379-appb-000008
具体的,由于不同拓扑荷数的涡旋声场之间相互正交,因为
Figure PCTCN2019098379-appb-000009
因此可以利用不同拓扑荷数的涡旋声场之间的彼此正交性,实现同一频带同时传输多路彼此独立、互不干扰的信号,将极大提升频谱的利用率和通信速率。例如,可以将-4到-1,和1到4的拓扑荷数涡旋声场作为基本模式,计算任意信号的相位为:
Figure PCTCN2019098379-appb-000010
任意信号的声场强度为:
Figure PCTCN2019098379-appb-000011
如数字“1”对应的美国信息交换标准代码编码为(American Standard Code for Information Interchange,ASCII)为00010001,因此其-1模式和4模式涡旋声场叠加后即为数字1对应的声场形态。
S103:根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号。
本实施例中采用的预设的激励换能器生成单个或多个不同拓扑荷数涡旋声场,例如采用16*16面阵换能器,通过独立控制每一阵元的相位和幅度,产生单个或多个不同拓扑荷数涡旋声场。因此,该面阵换能器,即激励换能器也可以作为接收系统,接受并检测携带信息的涡旋声场。
S104:将所述涡旋声场信号发送至预设的接收装置。
在生成涡旋声场信号之后,将涡旋声场信号通过水下发送至预设的接收装置。本实施例的水下面阵换能器产生或接收的涡旋声场是可以直接用于水下通讯。加州大学提出了一种基于有源换能器阵列的声学轨道角动量通信技术。其原理是通过一个由64个扬声器辐射出复合涡旋态编码的信号组成的相控阵产生包含8个拓扑荷数的声涡旋场,并在接收端用另一个声学相控阵进行接收和解调。然而其换能器是空气中传播的低频微喇叭,该声场的产生方式无法适用于水下通讯。南京大学基于利用声学共振型超构材料实现对声学轨道角动量的加减级联运输,其声源换能器仅使用单个声学麦克风,相关实验是在空气声中完成。但由于其 声学特殊结构以及传导声场需要在声学刚性结构中实现,在当前实验条件下,水声系统中很难实现相似功能。本实施例利用水下面阵换能器产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播。
进一步的,步骤S104可以包括:在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的接收装置。
具体的,涡旋声场是指具有螺旋形相位的声场,数学上可表示为p(r)=p(r,z)e -ikze ,这里
Figure PCTCN2019098379-appb-000012
是声束的波矢量,p(r,z)是z处的声场径向分布,φ=mθ是螺旋相位,θ是方位角大小,m恒为整数的拓扑荷数或涡旋场的阶数。拓扑荷数定义为一个波长的传播距离内波阵面发生扭转的次数,|m|取值越大,表示波阵面沿着轴旋转得越快;m取正数或负数,表示其扭转方向是正向或反向。不同拓扑荷数的涡旋声场之间相互正交,因为
Figure PCTCN2019098379-appb-000013
因此可以利用不同拓扑荷数的涡旋声场之间的彼此正交性,实现同一频带同时传输多路彼此独立、互不干扰的信号,将极大提升频谱的利用率和通信速率,也提高了通讯信号的信道容量。
上述方案,通过生成待发送的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;将所述涡旋声场信号发送至预设的接收装置。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下面阵换能器产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。
实施例2
参见图5,图5是本申请实施例二提供的一种水下通信方法的流程图。本实施例中水下通信方法的执行主体为具有水下通信功能的装置,如接收装置,本实施例中接收装置与实施例一中的发射装置在信号通信过程中对信号的处理手段一一对应,此处对其功能不做赘述。如图所示的水下通信方法可以包括以下步骤:
S501:接收发送装置发送的涡旋声场信号。
本实施例利用水下面阵换能器产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传播。本实施例的面阵转换器是把声能转换成电能或电能转换成声能的器件,电声工程中的传声器、扬声器和耳机是最典型的电能、声能之间相互变换的器些器件统称为电声换能器。通过接收装置中的面阵换能器,可以接收发射装置发射的涡旋声场信号。
请一并参阅图6所示,图6为本实施例中提供的发射装置与接收装置在水下通信的流程图。根据图6中的示例,本实施例中通过在发射装置端产生信息电信号,将信息电信号通过预设的换能器得到N个换能器阵元,之后将N个换能器阵元编码为涡旋声场信号并进行发射,将涡旋声场信号传输至接收端。在接收端端通过接收装置接收声涡旋编码,得到N各换能器阵元,最后将这些换能器阵元进行解码,得到原来的电信号信息,此为实施例一中的发射装置和实施例二中的接收装置之间的通信交互方式。
图7为实施例二提供的面阵换能器单元排列形状示意图。如图所示,本实施例的面阵换能器可以是平面阵,也可以是弧面阵,面阵单元的排列可以是直角坐标排列、极坐标排列、或螺旋排列等。例如图7中的阵元平面圆形排列1、阵元平面圆形排列2以及阵元弧面排列。本实施例的面阵换能器的工作频率为水下声通讯的工作频率10Hz-5MHz。
S502:将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息。
在实施例一中,采用的预设的激励换能器生成单个或多个不同拓扑荷数涡旋声场,例如,可采用16*16面阵换能器,通过独立控制每一阵元的相位和幅度,产生单个或多个不同拓扑荷数涡旋声场。因此,该面阵换能器,即激励换能器也可以作为接收系统,接受并检测携带信息的涡旋声场。在接收到涡旋声场信号之后,将涡旋声场信号通过预设的激励换能器,得到涡旋声场信号的发射信息。
S503:根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。
利用在接收端的面阵换能器直接接收传播声场的强度和相位,并分别与拓扑荷数为-4,-3,-2,-1,1,2,3以及4的涡旋场进行内积运算,实现对对螺旋模式的信息解码重构,获得电信号,实现信息通讯。
本实施例已经经过模拟和实验验证,结果可行。首先我们理论和实验验证了不同阶数涡旋声场的正交性,请一并参阅图8所示,图8为本申请实施例二提供的不同阶数涡旋声场的正交性示意图,其中(a)为模拟结果,(b)为实验结果。其中,平面轴分别表示不同拓扑荷数对应的涡旋场OAM,竖轴用于表示正交性参数。
进一步理论和实验分别获得的数字0-9的声场强度和相位图,请一并参阅附图。其中,图9为本申请实施例二提供的理论和实验获得的数字0-9的声强幅度分布示意图,图像中的像素颜色深浅用于表示声强幅度的大小;图10为本申请实施例二提供的理论和实验获得的数字0-9的声场相位分布示意图,图像中的像素颜色深浅用于表示声场相位的大小。此外,我们对接收到的涡旋信号进行解码,获得字母“Nature”信息,理论与实验吻合;图11为本申请实施例二提供的面阵换能器信号解码示意图,其中(a)为模拟结果,(b)为实验结果,其中平面轴分别表示不同拓扑荷数对应的涡旋场OAM,竖轴用于表示信号强度,利用接受面阵换能器对字母“Nature”信号进行解码过程就是将接受到的声场信号与不同拓扑荷数涡旋声场进行内积,获得各个拓扑荷数涡旋场的信号强度,即可解码信息。
上述方案,通过接收发送装置发送的涡旋声场信号;将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下面阵换能器解码重构,得到涡旋声场信号对应的电信号信息,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。
实施例3
参见图12,图12是本申请实施例三提供的一种发射装置的示意图。发射装置包括的各单元用于执行图1对应的实施例中的各步骤。具体请参阅图1对应的实施例中的相关描述。 为了便于说明,仅示出了与本实施例相关的部分。本实施例的发射装置1200包括:
生成单元1201,用于生成待发送的电信号信息;
确定单元1202,用于根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
声场单元1203,用于根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
发送单元1204,用于将所述涡旋声场信号发送至预设的接收装置。
进一步的,所述确定单元1202包括:
第一确定单元,用于根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中各个阵元的发射相位和幅度;或
第二确定单元,用于根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中任意涡旋声场的强度和相位。
进一步的,所述发送单元1204包括:
加载单元,用于在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;
载波发送单元,用于将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的接收装置。
进一步的,所述电信号信息对应的涡旋声场信号中各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应的涡旋声场信号中各个阵元的发射相位为:
Figure PCTCN2019098379-appb-000014
其中,θ OAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,
Figure PCTCN2019098379-appb-000015
和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度。
进一步的,所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的强度为:
Figure PCTCN2019098379-appb-000016
其中,
Figure PCTCN2019098379-appb-000017
分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I 1~I 8分别用于表示不同拓扑荷数的涡旋场的强度;
所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的相位为:
Figure PCTCN2019098379-appb-000018
上述方案,通过生成待发送的电信号信息;根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;将所述涡旋声场信号发送至预设的接收装置。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下面阵换能器产生或接收任意涡旋声场,实现涡旋声通讯的核心声场传 播,降低了水下传输的信号在编解码过程中的失真。
实施例4
图13是本申请实施例四提供的发射装置的示意图。如图13所示,该实施例的发射装置13包括:处理器1300、存储器1301以及存储在所述处理器1302中并可在所述处理器1301上运行的计算机可读指令1303。所述处理器1301执行所述计算机可读指令1303时实现上述各个水下通信方法实施例中的步骤,例如图1所示的步骤101至104。或者,所述处理器1301执行所述计算机可读指令1303时实现上述各装置实施例中各单元的功能,例如图12所示单元1201至1204的功能。
示例性的,所述计算机可读指令1303可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述处理器1302中,并由所述处理器1301执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机可读指令指令段,该指令段用于描述所述计算机可读指令1303在所述发射装置13中的执行过程。
所述发射装置13可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述发射装置可包括,但不仅限于,处理器1301、处理器1302。本领域技术人员可以理解,图13仅仅是发射装置13的示例,并不构成对发射装置13的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述发射装置还可以包括输入输出设备、网络接入设备、总线等。
所称处理器1301可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述处理器1302可以是所述发射装置13的内部存储单元,例如发射装置13的硬盘或内存。所述处理器1302也可以是所述发射装置13的外部存储设备,例如所述发射装置13上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card,FC)等。进一步地,所述处理器1302还可以既包括所述发射装置13的内部存储单元也包括外部存储设备。所述处理器1302用于存储所述计算机可读指令以及所述发射装置所需的其他程序和数据。所述处理器1302还可以用于暂时地存储已经输出或者将要输出的数据。
实施例5
参见图14,图14是本申请实施例五提供的一种接收装置的示意图。接收装置包括的各单元用于执行图5对应的实施例中的各步骤。具体请参阅图5对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。本实施例的接收装置1400包括:
接收单元1401,用于接收发送装置发送的涡旋声场信号;
换能单元1402,用于将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
重构单元1403,用于根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息 进行解码重构,得到所述涡旋声场信号对应的电信号信息。
上述方案,通过接收发送装置发送的涡旋声场信号;将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。通过根据预设的旋涡声场产生方式,确定电信号信息对应的涡旋声场信号的发射信息,通过预设的水下面阵换能器解码重构,得到涡旋声场信号对应的电信号信息,实现涡旋声通讯的核心声场传播,降低了水下传输的信号在编解码过程中的失真。
图15是本申请实施例六提供的接收装置的示意图。如图15所示,该实施例的接收装置15包括:处理器1501、处理器1502以及存储在所述处理器1502中并可在所述处理器1501上运行的计算机可读指令1503。所述处理器1501执行所述计算机可读指令1503时实现上述各个水下通信方法实施例中的步骤,例如图5所示的步骤501至503。或者,所述处理器1501执行所述计算机可读指令1503时实现上述各装置实施例中各模块/单元的功能,例如图14所示单元1401至1403的功能。
示例性的,所述计算机可读指令1503可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述处理器1502中,并由所述处理器1501执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机可读指令指令段,该指令段用于描述所述计算机可读指令1503在所述接收装置15中的执行过程。
所述接收装置15可以包括,但不仅限于,处理器1501、处理器1502。本领域技术人员可以理解,图15仅仅是接收装置15的示例,并不构成对发射装置15的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述发射装置还可以包括输入输出设备、网络接入设备、总线等。
所称处理器1501可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述处理器1502可以是所述接收装置15的内部存储单元,例如接收装置15的硬盘或内存。所述处理器1502也可以是所述接收装置15的外部存储设备,例如所述接收装置15上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card,FC)等。进一步地,所述处理器1502还可以既包括所述接收装置15的内部存储单元也包括外部存储设备。所述处理器1502用于存储所述计算机可读指令以及所述接收装置所需的其他程序和数据。所述处理器1502还可以用于暂时地存储已经输出或者将要输出的数据。
所述计算机可读存储介质可以是前述任一实施例所述的终端的内部存储单元,例如终端的硬盘或内存。所述计算机可读存储介质也可以是所述终端的外部存储设备,例如所述终端上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述计算机可读存储介质还可以既包括所述终端的内部存储单元也包括外部存储设备。所述计算机可读存储介质用于存储所述计算机可 读指令及所述终端所需的其他程序和数据。所述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的终端和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的终端和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种水下通信方法,其特征在于,包括:
    生成待发送的电信号信息;
    根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
    根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
    将所述涡旋声场信号发送至预设的接收装置。
  2. 如权利要求1所述的水下通信方法,其特征在于,所述根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息,包括:
    根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中各个阵元的发射相位和幅度;或
    根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中任意涡旋声场的强度和相位。
  3. 如权利要求2所述的水下通信方法,其特征在于,所述将所述涡旋声场信号发送至预设的接收装置,包括:
    在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;
    将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的接收装置。
  4. 如权利要求2所述的水下通信方法,其特征在于,所述电信号信息对应的涡旋声场信号中各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应的涡旋声场信号中各个阵元的发射相位为:
    Figure PCTCN2019098379-appb-100001
    其中,θ OAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,
    Figure PCTCN2019098379-appb-100002
    和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于 表示涡旋的旋度。
  5. 如权利要求2所述的水下通信方法,其特征在于,所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的强度为:
    Figure PCTCN2019098379-appb-100003
    其中,
    Figure PCTCN2019098379-appb-100004
    分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I 1~I 8分别用于表示不同拓扑荷数的涡旋场的强度;
    所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的相位为:
    Figure PCTCN2019098379-appb-100005
  6. 一种水下通信方法,其特征在于,包括:
    接收发送装置发送的涡旋声场信号;
    将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
    根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。
  7. 一种发射装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,其特征在于,所述处理器执行所述计算机可读指令时实现:
    生成待发送的电信号信息;
    根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
    根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
    将所述涡旋声场信号发送至预设的接收装置。
  8. 如权利要求7所述的水下通信方法,其特征在于,所述根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息,包括:
    根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中各个阵元的发射相位和幅度;或
    根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中任意涡旋声场的强度和相位。
  9. 如权利要求8所述的水下通信方法,其特征在于,所述将所述涡旋声场信号发送至预设的接收装置,包括:
    在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;
    将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的接收装置。
  10. 如权利要求8所述的水下通信方法,其特征在于,所述电信号信息对应的涡旋声场信号中各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应的涡旋声场信号中各个阵元的发射相位为:
    Figure PCTCN2019098379-appb-100006
    其中,θ OAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,
    Figure PCTCN2019098379-appb-100007
    和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于表示涡旋的旋度。
  11. 如权利要求8所述的水下通信方法,其特征在于,所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的强度为:
    Figure PCTCN2019098379-appb-100008
    其中,
    Figure PCTCN2019098379-appb-100009
    分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I 1~I 8分别用于表示不同拓扑荷数的涡旋场的强度;
    所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的相位为:
    Figure PCTCN2019098379-appb-100010
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现:
    生成待发送的电信号信息;
    根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
    根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
    将所述涡旋声场信号发送至预设的接收装置。
  13. 如权利要求12所述的水下通信方法,其特征在于,所述根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息,包括:
    根据预设的不同拓扑荷数的涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中各个阵元的发射相位和幅度;或
    根据预设的任意涡旋声场的产生方式,确定所述电信号信息对应的涡旋声场信号中任意涡旋声场的强度和相位。
  14. 如权利要求13所述的水下通信方法,其特征在于,所述将所述涡旋声场信号发送至预设的接收装置,包括:
    在预设的频带中加载至少两路彼此独立、互不干扰的涡旋声场信号;
    将加载所述至少两路涡旋声场信号频带的涡旋声场信号发送至预设的接收装置。
  15. 如权利要求13所述的水下通信方法,其特征在于,所述电信号信息对应的涡旋声场信号中各个阵元的幅度为预先设定的常数;所述预设的不同拓扑荷数的涡旋声场的产生方式中,所述电信号信息对应的涡旋声场信号中各个阵元的发射相位为:
    Figure PCTCN2019098379-appb-100011
    其中,θ OAM用于表示每个阵元的发射相位,l用于表示所述阵元对应的涡旋声场的拓扑荷数,
    Figure PCTCN2019098379-appb-100012
    和r分别用于表示每个阵元在以涡旋中心为极点的极坐标下的极角和极径,α用于 表示涡旋的旋度。
  16. 如权利要求13所述的水下通信方法,其特征在于,所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的强度为:
    Figure PCTCN2019098379-appb-100013
    其中,
    Figure PCTCN2019098379-appb-100014
    分别用于表示不同拓扑荷数的涡旋场以涡旋中心为极点的极坐标下的极角;I 1~I 8分别用于表示不同拓扑荷数的涡旋场的强度;
    所述根据预设的任意涡旋声场的产生方式中,电信号信息对应的涡旋声场信号中任意涡旋声场的相位为:
    Figure PCTCN2019098379-appb-100015
  17. 一种发射装置,其特征在于,包括:
    生成单元,用于生成待发送的电信号信息;
    确定单元,用于根据预设的旋涡声场产生方式,确定所述电信号信息对应的涡旋声场信号的发射信息;
    声场单元,用于根据所述涡旋声场信号的发射信息,将所述电信号信息通过预设的激励换能器,产生所述涡旋声场信号;
    发送单元,用于将所述涡旋声场信号发送至预设的接收装置。
  18. 一种接收装置,其特征在于,包括:
    接收单元,用于接收发送装置发送的涡旋声场信号;
    环能单元,用于将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
    重构单元,用于根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。
  19. 一种接收装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机可读指令,其特征在于,所述处理器执行所述计算机可读指令时实现:
    接收发送装置发送的涡旋声场信号;
    将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
    根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到 所述涡旋声场信号对应的电信号信息。
  20. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,其特征在于,所述计算机可读指令被处理器执行时实现:
    接收发送装置发送的涡旋声场信号;
    将所述涡旋声场信号通过预设的激励换能器,得到所述涡旋声场信号的发射信息;
    根据预设的信息解码重构方式,对所述涡旋声场信号的发射信息进行解码重构,得到所述涡旋声场信号对应的电信号信息。
PCT/CN2019/098379 2019-07-30 2019-07-30 一种水下通信方法及装置 WO2021016862A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/098379 WO2021016862A1 (zh) 2019-07-30 2019-07-30 一种水下通信方法及装置
CN201910828512.XA CN110730042B (zh) 2019-07-30 2019-09-03 一种通信方法及装置
PCT/CN2019/105430 WO2021017111A1 (zh) 2019-07-30 2019-09-11 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098379 WO2021016862A1 (zh) 2019-07-30 2019-07-30 一种水下通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021016862A1 true WO2021016862A1 (zh) 2021-02-04

Family

ID=74229635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098379 WO2021016862A1 (zh) 2019-07-30 2019-07-30 一种水下通信方法及装置

Country Status (1)

Country Link
WO (1) WO2021016862A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140257772A1 (en) * 2013-03-06 2014-09-11 Exa Corporation Flow-induced noise source identification
CN107332629A (zh) * 2017-06-27 2017-11-07 南京大学 一种基于声学轨道角动量多路复用的信号传输方法
CN108599871A (zh) * 2018-05-07 2018-09-28 中国科学院声学研究所 一种基于轨道角动量复用技术的水声通信方法及系统
US20190086536A1 (en) * 2017-09-21 2019-03-21 Jeffrey Rogers Underwater acoustic leaky wave antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140257772A1 (en) * 2013-03-06 2014-09-11 Exa Corporation Flow-induced noise source identification
CN107332629A (zh) * 2017-06-27 2017-11-07 南京大学 一种基于声学轨道角动量多路复用的信号传输方法
US20190086536A1 (en) * 2017-09-21 2019-03-21 Jeffrey Rogers Underwater acoustic leaky wave antenna
CN108599871A (zh) * 2018-05-07 2018-09-28 中国科学院声学研究所 一种基于轨道角动量复用技术的水声通信方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO, LU: "Linear phase distribution of acoustical vortices", BASIC SCIENCES, CHINA MASTER’S THESES FULL-TEXT DATABASE, 15 March 2017 (2017-03-15), ISSN: 1674-0246 *

Similar Documents

Publication Publication Date Title
CN108599871B (zh) 一种基于轨道角动量复用技术的水声通信方法及系统
Poletti et al. An approach to generating two zones of silence with application to personal sound systems
US8831248B2 (en) Apparatus with directivity pattern
KR102492100B1 (ko) 중첩에 기초한 파 합성을 위한 장치 및 방법
WO2013000260A1 (zh) 信道信息反馈方法及装置
US20230076260A1 (en) Systems and methods for converting data from int-64 to boolean for computations
CN113382445A (zh) 提高swipt系统安全速率的方法、装置、终端及存储介质
Guasch et al. Far-field directivity of parametric loudspeaker arrays set on curved surfaces
Liu et al. An active control strategy for the scattered sound field control of a rigid sphere
US11041946B2 (en) Model-based protection algorithms
US20180351656A1 (en) Methods, systems, and devices for high throughput acoustic transmission
WO2021017111A1 (zh) 一种通信方法及装置
Kolundžija et al. Baffled circular loudspeaker array with broadband high directivity
Aronov et al. Analysis of unidirectional broadband piezoelectric spherical shell transducers for underwater acoustics
CN108141664B (zh) 用于波束形成阵列中的驱动器单元的波束形成声音的方法和声音装置
WO2021016862A1 (zh) 一种水下通信方法及装置
CN101395956B (zh) 用于扬声器的声音海绵
WO2023038985A1 (en) Systems and methods for converting data from int-64 to boolean for computations
CN112904345B (zh) 定位系统及定位方法
JP2019050492A (ja) フィルタ係数決定装置、フィルタ係数決定方法、プログラム、および音響システム
KR20140011784A (ko) 개인적 위치 방향 스피커 시스템 및 제공방법, 그리고 이를 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체
CN112904347A (zh) 成像系统和方法
CN111408533A (zh) 旋转抛物面换能器的阵列生成方法、阵列载板及换能器
CN112764041A (zh) 成像系统和方法
Poletti et al. Comparison of sound reproduction using higher order loudspeakers and equivalent line arrays in free-field conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940155

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19940155

Country of ref document: EP

Kind code of ref document: A1