WO2021016837A1 - 一种磁性隧道结、制作方法、自旋二极管及存储器 - Google Patents

一种磁性隧道结、制作方法、自旋二极管及存储器 Download PDF

Info

Publication number
WO2021016837A1
WO2021016837A1 PCT/CN2019/098281 CN2019098281W WO2021016837A1 WO 2021016837 A1 WO2021016837 A1 WO 2021016837A1 CN 2019098281 W CN2019098281 W CN 2019098281W WO 2021016837 A1 WO2021016837 A1 WO 2021016837A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
magnetic layer
tunnel junction
magnetization direction
Prior art date
Application number
PCT/CN2019/098281
Other languages
English (en)
French (fr)
Other versions
WO2021016837A8 (zh
Inventor
赵巍胜
周航宇
周家琦
曹凯华
李智
张有光
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to PCT/CN2019/098281 priority Critical patent/WO2021016837A1/zh
Publication of WO2021016837A1 publication Critical patent/WO2021016837A1/zh
Publication of WO2021016837A8 publication Critical patent/WO2021016837A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • This application relates to the technical field of magnetic tunnel junctions, and more specifically, to a magnetic tunnel junction, a manufacturing method, a spin diode, and a memory.
  • Magnetic random access memory has attracted great attention in academic and industrial fields due to its advantages of non-volatility, radiation resistance, and low power consumption.
  • the magnetic tunnel junction (MTJ) is the basic storage unit of MRAM.
  • the core part of the MTJ consists of two magnetic metal layers (such as iron, cobalt, and nickel) and a barrier layer (such as magnesium oxide, aluminum oxide) sandwiched between the two magnetic metal layers.
  • One of the magnetic metal layers is called the first magnetic layer, and its magnetization is fixed.
  • the other magnetic metal layer is called the second magnetic layer, and its magnetization has two stable orientations.
  • MTJ can assume two states, that is, the magnetization directions of the two magnetic layers are parallel (P) or antiparallel (AP), making the MTJ appear in a low-resistance state or a high-resistance state.
  • This effect is called tunneling.
  • the magnetoresistance effect tunnelnel magnetoresistance, TMR).
  • TMR tunnel magnetoresistance
  • the basic principle of MRAM storage is to use the tunneling magnetoresistance effect, that is, the high and low resistance states represent data "0" and "1" respectively.
  • the present application provides a magnetic tunnel junction, a manufacturing method, a spin diode, and a memory.
  • An embodiment of the present application provides a magnetic tunnel junction, including:
  • the first magnetic layer has a fixed magnetization direction
  • the second magnetic layer has a reversible magnetization direction
  • a multilayer barrier layer located between the first magnetic layer and the second magnetic layer and formed of a non-magnetic insulating material
  • the insertion layer is located between any two adjacent barrier layers.
  • it further includes:
  • a heavy metal layer located on the side of the second magnetic layer away from the first magnetic layer
  • the third magnetic layer is located on the side of the heavy metal layer away from the second magnetic layer and has a reversible magnetization direction.
  • it further includes:
  • the magnetic stabilization layer is located on the side of the first magnetic layer away from the second magnetic layer, and is used to stabilize the magnetization direction of the first magnetic layer.
  • the first magnetic layer and/or the second magnetic layer includes at least one of elemental ferromagnetic materials, alloy ferromagnetic materials, and ferromagnetic materials with semi-metal properties.
  • the barrier layer includes at least one of magnesium oxide, aluminum oxide, zinc oxide, hafnium oxide, titanium oxide, silicon oxide, and magnesium aluminate.
  • the insertion layer includes:
  • Non-magnetic metals and insulators are used as insulators.
  • the non-magnetic metal includes: at least one of magnesium, aluminum, zinc, gold, silver, copper, platinum, tantalum, tungsten, and iridium; or
  • the insulator includes at least one of nickel oxide, iron oxide, and cobalt oxide.
  • the magnetically stable layer includes at least one Co material film layer and at least one Pt material film layer.
  • the number of layers of the barrier layer is two, and the number of layers of the insertion layer is one.
  • Another embodiment of the present application provides a method for manufacturing a magnetic tunnel junction, including:
  • the barrier layer being formed of a non-magnetic insulating material
  • the method further includes:
  • An insertion layer is formed on the formed barrier layer exposed to the outside.
  • a spin diode including:
  • the first magnetic layer has a fixed magnetization direction
  • the second magnetic layer has a reversible magnetization direction
  • a multilayer barrier layer located between the first magnetic layer and the second magnetic layer, and formed of a non-magnetic insulating material
  • Insertion layer located between any two adjacent barrier layers
  • the second electrode is coupled to the second magnetic layer.
  • Another embodiment of the present application provides a memory including a memory cell array formed by a plurality of memory cells, wherein each of the memory includes a magnetic tunnel junction, and each of the magnetic tunnel junctions includes: a first magnetic layer having Fixed magnetization direction;
  • the second magnetic layer has a reversible magnetization direction
  • a multilayer barrier layer located between the first magnetic layer and the second magnetic layer and formed of a non-magnetic insulating material
  • the insertion layer is located between any two adjacent barrier layers.
  • This application provides a magnetic tunnel junction, a manufacturing method, a spin diode, and a memory.
  • the proposed method is based on The multi-barrier magnetic tunnel junction, while ensuring high TMR, increases the tunnel polarization current transmittance and reduces RA, thereby reducing device power consumption and improving the reliability of the spin transfer torque inversion process.
  • the magnetic tunnel junction based on multiple barrier layers proposed by the present invention has the characteristics of low power consumption and low write error rate.
  • FIG. 1a shows one of the schematic diagrams of the layer structure of the magnetic tunnel junction in an embodiment of the present application.
  • FIG. 1b shows the second schematic diagram of the layer structure of the magnetic tunnel junction in the embodiment of the present application.
  • FIG. 1c shows the third schematic diagram of the layer structure of the magnetic tunnel junction in the embodiment of the present application.
  • FIG. 2a shows one of the schematic diagrams of the double-barrier layer vertical magnetic anisotropic magnetic tunnel junction writing process of FIG. 1a.
  • Fig. 2b shows the second schematic diagram of the double-barrier layer vertical magnetic anisotropic magnetic tunnel junction writing process in Fig. 1a.
  • Fig. 3a shows one of the schematic diagrams of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer of Fig. 1a.
  • Fig. 3b shows the second schematic diagram of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer of Fig. 1a.
  • FIG. 4a shows one of the schematic diagrams of the perpendicular magnetic anisotropy magnetic tunnel junction writing process of the double barrier layer of the double second magnetic layer of FIG. 1b.
  • FIG. 4b shows the second schematic diagram of the writing process of the perpendicular magnetic anisotropic magnetic tunnel junction of the double barrier layer of the double second magnetic layer of FIG. 1b.
  • Fig. 5a shows one of the schematic diagrams of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer with the magnetic stabilization layer of Fig. 1c being a cobalt-platinum multilayer film.
  • Fig. 5b shows the second schematic diagram of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer with the magnetic stabilization layer of Fig. 1c being a cobalt-platinum multilayer film.
  • the magnetic tunnel junction of STT-MRAM mostly uses a single-barrier second magnetic layer/barrier layer/first magnetic layer system, and a higher TMR value is found in it.
  • the tunnel polarization current transmittance of the MTJ based on the second magnetic layer/barrier layer/first magnetic layer is low, resulting in a high product vector (RA) of junction resistance and junction area and high power consumption. This lower tunneling polarization current transmittance also reduces STT writing reliability.
  • a magnetic tunnel junction in an embodiment of the present application includes: a first magnetic layer having a fixed magnetization direction; a second magnetic layer having a reversible magnetization direction; and a multilayer barrier layer located at Between the first magnetic layer and the second magnetic layer and formed of a non-magnetic insulating material; and an insertion layer located between any two adjacent barrier layers.
  • the magnetic tunnel junction in the embodiment of this aspect aims at the problem of low tunnel polarization current transmittance and large RA based on the traditional single-barrier magnetic tunnel junction MRAM, the magnetic tunnel junction based on multiple barrier layers proposed in this application Under the condition of ensuring high TMR, increase the tunnel polarization current transmittance and reduce RA, thereby reducing the power consumption of the device, and improving the reliability of the spin transfer torque inversion process.
  • the magnetic tunnel junction based on multiple barrier layers proposed by the present invention has the characteristics of low power consumption and low write error rate.
  • the multilayer barrier layer of the present application may include at least two layers, such as 3 layers, 4 layers, and so on.
  • the writing of data utilizes the effect of the spin transfer torque on the second magnetic layer to realize the reversal of the magnetization direction of the second magnetic layer; the reading of data is completed by the tunneling magnetoresistance effect of the multi-barrier magnetic tunnel junction.
  • Figure 1a shows an embodiment of a double barrier layer.
  • the magnetic tunnel junction has a double barrier layer and an insertion layer 3 is arranged between the double barrier layers. That is, the magnetic tunnel junction structure of the double barrier layer is: A magnetic layer 1/first barrier layer 2/insertion layer 3/second barrier layer 4/second magnetic layer 5.
  • the writing of data utilizes the effect of the spin transfer torque on the second magnetic layer 5 to realize the reversal of the magnetization direction of the second magnetic layer 5; the reading of data is completed by the tunneling magnetoresistance effect of the double barrier magnetic tunnel junction.
  • the thickness of the second magnetic layer 5 and the first magnetic layer 1 is the same or different, and is 1-10 nm.
  • the two magnetic layers are composed of magnetic materials, including but not limited to: elementary ferromagnetic materials, such as iron, cobalt, nickel, etc.; or iron-cobalt-nickel alloy materials, such as permalloy, cobalt-iron-boron alloy, iron-platinum alloy, etc. ; Or semi-metallic ferromagnetic materials, such as cobalt-iron-aluminum and other Hessler alloys or half Hessler alloy materials.
  • the structure includes but is not limited to: single-layer film, double-layer film and multilayer film.
  • the thickness of the first barrier layer 2 and the second barrier layer 4 are the same or different, ranging from 0.1 nm to 5 nm.
  • the materials of the first barrier layer 2 and the second barrier layer 4 may be the same or different, and are metal or non-metal oxide.
  • the materials include but are not limited to: magnesium oxide, aluminum oxide, zinc oxide, hafnium oxide, titanium oxide, silicon oxide, magnesium aluminate (MgAl 2 O 4 ), and the like.
  • the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 has a thickness of 0.1-5 nm and is made of non-magnetic metal materials or alloys and insulating materials. Including but not limited to: magnesium, aluminum, zinc, gold, silver, copper, platinum, tantalum, tungsten, iridium and other non-magnetic metals or alloys composed of the above non-magnetic metals; at least among insulators such as nickel oxide, iron oxide, and cobalt oxide One kind.
  • magnesium oxide is selected for the first barrier layer 2 and the second barrier layer 4, and magnesium metal is selected for the insertion layer 3.
  • the device structure is easy to prepare and can effectively reduce the diffusion of the insertion layer during the annealing process to the magnetic tunnel junction. The adverse effects.
  • the first barrier layer 2 and the second barrier layer 4 are magnesium oxide, and the insertion layer 3 is nickel oxide.
  • Nickel oxide has the effect of enhancing the spin current while reducing RA.
  • this aspect can provide the performance of the magnetic tunnel junction in the prior art is to use the insertion layer 3 between the first barrier layer 2 and the second barrier layer 4 to increase the tunneling pole while ensuring high TMR.
  • the current transmittance is reduced, RA is reduced, the power consumption of the device is reduced, and the reliability of the spin transfer torque inversion process is improved. Therefore, the magnetic tunnel junction based on multiple barrier layers proposed in this aspect has the characteristics of low power consumption and low write error rate.
  • Figure 2a shows one of the schematic diagrams of the double-barrier layer perpendicular magnetic anisotropic magnetic tunnel junction writing process in the embodiment of the present application
  • Figure 2b shows the double-barrier layer perpendicular magnetic anisotropy magnetic field in the embodiment of the present application
  • the second schematic diagram of the tunnel junction writing process Changing the direction of the applied current can switch the magnetization direction of the second magnetic layer 5, that is, data "0" and "1" can be written.
  • the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 can increase the tunnel polarization current transmittance, reduce RA, thereby reducing device power consumption, and improving the reliability of the STT flip process.
  • Sex After the data is written through STT, the tunneling magnetoresistance effect of MTJ is used to pass a small current into the magnetic tunnel junction to read the data.
  • the magnetization direction of the second magnetic layer 5 is antiparallel to the magnetization direction of the first magnetic layer 1, that is, when the magnetization direction of the second magnetic layer 5 is downward, it is in a high resistance state; the magnetization direction of the second magnetic layer 5 is the same as that of the first magnetic layer 1.
  • the magnetization direction is parallel, that is, when the magnetization direction of the second magnetic layer 5 is upward, it is in a low resistance state.
  • the second magnetic layer 5 is made of cobalt-iron-boron material with a thickness of 1.2nm; the first barrier layer 2 and the second barrier layer 4 are both made of magnesium oxide The thickness is 0.8nm; the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 is made of simple metal magnesium material with a thickness of 0.4nm; the first magnetic layer 1 is made of cobalt Iron boron material with a thickness of 0.9nm.
  • FIG. 3a shows one of the schematic diagrams of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer in the embodiment of the present application
  • FIG. 3b shows the magnetic anisotropic magnetism in the double barrier layer in the embodiment of the present application.
  • the second schematic diagram of the tunnel junction writing process Changing the direction of the applied current can switch the magnetization direction of the second magnetic layer 5, that is, data "0" and "1" can be written.
  • the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 can increase the tunnel polarization current transmittance, reduce RA, thereby reducing device power consumption, and improving the reliability of the STT flip process.
  • Sex After the data is written through STT, the tunneling magnetoresistance effect of MTJ is used to pass a small current into the magnetic tunnel junction to read the data.
  • the magnetization direction of the second magnetic layer 5 is antiparallel to the magnetization direction of the first magnetic layer 1, that is, when the magnetization direction of the second magnetic layer 5 is to the left, it is in a high resistance state; the magnetization direction of the second magnetic layer 5 is the same as that of the first magnetic layer.
  • the magnetization direction of 1 is parallel, that is, when the magnetization direction of the second magnetic layer 5 is to the right, it is in a low resistance state.
  • the second magnetic layer 5 is made of cobalt-iron-boron material with a thickness of 5nm; the first barrier layer 2 and the second barrier layer 4 are both made of magnesium oxide material , The thickness is 0.8nm; the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 is made of nickel oxide material with a thickness of 0.6nm; the first magnetic layer 1 is made of cobalt iron boron Material with a thickness of 10nm.
  • FIG. 1b which includes a first magnetic layer 1 having a fixed magnetization direction; a second magnetic layer 5 having a reversible magnetization direction Multi-layer barrier layer, located between the first magnetic layer 1 and the second magnetic layer 5, and formed by a non-magnetic insulating material; insertion layer 3, located between any two adjacent barrier layers The heavy metal layer 6, located on the side of the second magnetic layer 5 away from the first magnetic layer 1; and the third magnetic layer 7, located on the side of the heavy metal layer 6 away from the second magnetic layer 5, And has a reversible magnetization direction.
  • Fig. 4a shows one of the schematic diagrams of the double-barrier layer perpendicular magnetic anisotropy magnetic tunnel junction writing process of the double second magnetic layer 5 of Fig. 1b
  • Fig. 4b shows the double second magnetic layer 5 of Fig. 1b
  • the structure of the second magnetic layer 5 of the multilayer film utilizes a second magnetic layer 5 to drive another second magnetic layer 5 to flip. Changing the direction of the applied current can switch the magnetization direction of the second magnetic layer 5, that is, data "0" and "1" can be written.
  • the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 can increase the tunnel polarization current transmittance, reduce RA, thereby reducing device power consumption, and improving the reliability of the STT flip process.
  • Sex After the data is written through STT, the tunneling magnetoresistance effect of MTJ is used to pass a small current into the magnetic tunnel junction to read the data.
  • the magnetization direction of the second magnetic layer 5 is antiparallel to the magnetization direction of the first magnetic layer 1, that is, when the magnetization direction of the second magnetic layer 5 is downward, it is in a high resistance state; the magnetization direction of the second magnetic layer 5 is the same as that of the first magnetic layer 1.
  • the magnetization direction is parallel, that is, when the magnetization direction of the second magnetic layer 5 is upward, it is in a low resistance state.
  • the two second magnetic layers 5 are made of nickel-iron alloy material with a thickness of 1.1 nm; the heavy metal layer 6 inserted into the second magnetic layer 5 is selected heavy metal ruthenium with a thickness of 0.2 nm
  • the first barrier layer 2 is made of magnesium oxide with a thickness of 0.8nm; the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 is made of nickel oxide material with a thickness of 0.5 nm;
  • the second barrier layer 4 is made of magnesium oxide and has a thickness of 0.4 nm.
  • the first magnetic layer 1 is made of iron-platinum alloy material and has a thickness of 0.8 nm.
  • the writing process of the perpendicular magnetic anisotropic magnetic tunnel junction of the double barrier layer including the magnetic stability layer is similar to that of Fig. 2a and Fig. 2b, and those skilled in the art can combine Fig. 2a, Fig. 2b, Fig. 4a and Fig. 4b.
  • the specific implementation of the writing process of the perpendicular magnetic anisotropic magnetic tunnel junction of the double barrier layer including the magnetic stability layer is obtained under the premise of creative work, which will not be detailed here.
  • the improved structure of the above-mentioned embodiment includes a first magnetic layer 1 with a fixed magnetization direction; a second magnetic layer 5 with a reversible magnetization direction Multi-layer barrier layer, located between the first magnetic layer 1 and the second magnetic layer 5, and formed by a non-magnetic insulating material; insertion layer 3, located between any two adjacent barrier layers And a magnetically stable layer 8, located on the side of the first magnetic layer 1 away from the second magnetic layer 5, for stabilizing the magnetization direction of the first magnetic layer 1.
  • the magnetically stable layer 8 has a multilayer material film structure, including at least one Co material film layer and at least one Pt material film layer.
  • Figure 5a shows one of the schematic diagrams of the magnetic anisotropic magnetic tunnel junction writing process in the double barrier layer of the magnetically stable layer 8 of Figure 1c is a cobalt-platinum multilayer film
  • Figure 5b shows the magnetically stable layer of Figure 1c 8 is the second schematic diagram of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer of the cobalt-platinum multilayer film.
  • the cobalt-platinum multilayer film structure stabilizes the magnetization direction of the first magnetic layer 1, and the magnetization direction of the second magnetic layer 5 can be switched by changing the direction of the applied current, and the data "0" and "1" can be written.
  • the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 can increase the tunnel polarization current transmittance, reduce RA, thereby reducing device power consumption, and improving the reliability of the STT flip process.
  • Sex After the data is written through STT, the tunneling magnetoresistance effect of MTJ is used to pass a small current into the magnetic tunnel junction to read the data.
  • the magnetization direction of the second magnetic layer 5 is antiparallel to the magnetization direction of the first magnetic layer 1, that is, when the magnetization direction of the second magnetic layer 5 is to the left, it is in a high resistance state; the magnetization direction of the second magnetic layer 5 is the same as that of the first magnetic layer.
  • the magnetization direction of 1 is parallel, that is, when the magnetization direction of the second magnetic layer 5 is to the right, it is in a low resistance state.
  • the second magnetic layer 5 is made of a cobalt-iron-aluminum Heusler alloy material with a thickness of 4 nm; the first barrier layer 2 and the second barrier layer 4 are both Magnesium oxide material is used with a thickness of 1.2 nm; the insertion layer 3 inserted between the first barrier layer 2 and the second barrier layer 4 is made of metal magnesium material with a thickness of 0.4 nm; the first magnetic layer 1 Cobalt magnetic metal material is used, and the thickness is 3nm; the thickness of the Co and Pt single-layer film in the cobalt-platinum multilayer film structure is both 0.2nm, and the thickness of [Co/Pt] 6 is 2.4nm in total.
  • the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer containing the double second magnetic layer 5 is similar to that of Figs. 3a and 3b, and those skilled in the art are capable of combining Figs. 3a, 3b, 5a, and 5b.
  • the specific implementation of the writing process of the magnetic anisotropic magnetic tunnel junction in the double barrier layer including the double second magnetic layer 5 is obtained without creative work, which will not be detailed here.
  • the magnetic tunnel junction in this aspect increases the tunnel polarization current transmittance and reduces the RA while ensuring high TMR, thereby reducing the power consumption of the device and improving the spin transfer torque inversion process. High reliability, low power consumption and low write error rate.
  • the second aspect of the present application also provides a method for manufacturing a magnetic tunnel junction, including:
  • a spin diode including: a first magnetic layer having a fixed magnetization direction; a second magnetic layer having a reversible magnetization direction; and a multilayer barrier layer located on the first magnetic layer. Between a magnetic layer and the second magnetic layer and formed of a non-magnetic insulating material; an insertion layer, located between any two adjacent barrier layers; a first electrode, coupled to the first magnetic layer And a second electrode, coupled to the second magnetic layer.
  • a memory including a memory cell array formed by a plurality of memory cells, wherein each of the memory includes a magnetic tunnel junction, and each of the magnetic tunnel junctions includes: a first magnetic layer, Having a fixed magnetization direction; a second magnetic layer having a reversible magnetization direction; a multilayer barrier layer located between the first magnetic layer and the second magnetic layer and formed of a non-magnetic insulating material; and inserting Layer, located between any two adjacent barrier layers.

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

本申请提供一种磁性隧道结、制作方法、自旋二极管及存储器,针对基于传统单势垒磁性隧道结MRAM的隧穿极化电流透射率较低、RA较大的问题,本申请提出的基于多势垒层的磁性隧道结,在保证高TMR的情况下,增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高自旋转移矩翻转过程的可靠性。本发明提出的基于多势垒层的磁性隧道结具有低功耗、低写入错误率的特点。

Description

一种磁性隧道结、制作方法、自旋二极管及存储器 技术领域
本申请涉及磁性隧道结技术领域,更具体的,涉及一种磁性隧道结、制作方法、自旋二极管及存储器。
背景技术
磁性随机存储器(magnetic random access memory,MRAM)由于具有非易失性、抗辐照、低功耗等优点,引起了学术与工业领域极大的关注。磁性隧道结(magnetic tunnel junction,MTJ)是磁性随机存储器MRAM的基本存储单元。MTJ的核心部分由两层磁性金属层(如铁、钴、镍)和一个夹在两层磁性金属层之间的势垒层(如氧化镁、氧化铝)组成。其中一个磁性金属层叫做第一磁性层,它的磁化固定不变。另一个磁性金属层叫做第二磁性层,它的磁化有两个稳定的取向。MTJ可呈现两种状态,即两层磁性层磁化方向互相平行(parallel,P)或者互相反平行(antiparallel,AP),使得MTJ出现低阻态或高阻态,这种效应被称为隧穿磁阻效应(tunnel magnetoresistance,TMR)。MRAM存储的基本原理就是利用隧穿磁阻效应,即高低阻态分别表示数据“0”和“1”。
目前STT-MRAM的磁性隧道结多为单壁垒,该结构已经发现了其具有较高的TMR值、隧穿极化电流透射率较低、结电阻与结面积的积矢(RA)较高及功耗较大,降低了STT写入可靠性。
发明内容
为了解决上述不足,本申请提供一种磁性隧道结、制作方法、自旋二极管及存储器。
本申请一个方面实施例提供一种磁性隧道结,包括:
第一磁性层,具有固定磁化方向;
第二磁性层,具有可翻转的磁化方向;
多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;以及
插入层,位于任意相邻的两层势垒层之间。
在某些实施例中,还包括:
重金属层,位于所述第二磁性层远离所述第一磁性层的一侧;以及
第三磁性层,位于所述重金属层远离所述第二磁性层的一侧,并具有可翻转的磁化方向。
在某些实施例中,还包括:
磁稳定层,位于所述第一磁性层远离所述第二磁性层的一侧,用于稳定所述第一磁性层的磁化方向。
在某些实施例中,所述第一磁性层和/或第二磁性层包括:单质铁磁材料、合金铁磁材料、具有半金属性质的铁磁材料中的至少一种。
在某些实施例中,所述势垒层包括:氧化镁、氧化铝、氧化锌、氧化铪、氧化钛、氧化硅、铝酸镁中的至少一种。
在某些实施例中,所述插入层包括:
非磁性金属和绝缘体。
在某些实施例中,所述非磁性金属包括:镁、铝、锌、金、银、铜、铂、钽、钨、铱中的至少一种;或者
所述绝缘体包括:氧化镍、氧化铁、氧化钴中的至少一种。
在某些实施例中,所述磁稳定层包括至少一层Co材料膜层和至少一层Pt材料膜层。
在某些实施例中,所述势垒层的层数为两层,所述插入层的层数为一层。
本申请另一方面实施例提供一种磁性隧道结的制作方法,包括:
形成第一磁性层,所述第一磁性层具有固定磁化方向;
形成多层势垒层,所述势垒层由非磁性绝缘材料形成;
形成第二磁性层,所述第二磁性层具有可翻转的磁化方向;其中,在形成除第一层以外的势垒层之前,所述方法还包括:
在已形成的暴露在外的势垒层上形成插入层。
本申请又一方面实施例提供一种自旋二极管,包括:
第一磁性层,具有固定磁化方向;
第二磁性层,具有可翻转的磁化方向;
多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;
插入层,位于任意相邻的两层势垒层之间;
第一电极,与所述第一磁性层耦接;以及
第二电极,与所述第二磁性层耦接。
本申请又一方面实施例提供一种存储器,包括多个存储单元形成的存储单元阵列,其中每个所述存储包括一磁性隧道结,每个所述磁性隧道结包括:第一磁性层,具有固定磁化方向;
第二磁性层,具有可翻转的磁化方向;
多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;以及
插入层,位于任意相邻的两层势垒层之间。
本申请的有益效果如下:
本申请提供一种磁性隧道结、制作方法、自旋二极管及存储器,针对基于传统单势垒磁性隧道结MRAM的隧穿极化电流透射率较低、RA较大的问题,本申请提出的基于多势垒层的磁性隧道结,在保证高TMR的情况下,增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高自旋转移矩翻转过程的可靠性。本发明提出的基于多势垒层的磁性隧道结具有低功耗、低写入错误率的特点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a示出了本申请实施例中的磁性隧道结的层结构示意图之一。
图1b示出了本申请实施例中的磁性隧道结的层结构示意图之二。
图1c示出了本申请实施例中的磁性隧道结的层结构示意图之三。
图2a示出了图1a的双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之一。
图2b示出了图1a的双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之二。
图3a示出了图1a的双势垒层面内磁各向异性磁性隧道结写入过程的示意图之一。
图3b示出了图1a的双势垒层面内磁各向异性磁性隧道结写入过程的示意图之二。
图4a示出了图1b的双第二磁性层的双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之一。
图4b示出了图1b的双第二磁性层的双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之二。
图5a示出了图1c的磁稳定层为钴铂多层膜的双势垒层面内磁各向异性磁性隧道结写入过程的示意图之一。
图5b示出了图1c的磁稳定层为钴铂多层膜的双势垒层面内磁各向异性磁性隧道结写入过程的示意图之二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前STT-MRAM的磁性隧道结多采用单势垒的第二磁性层/势垒层/第一磁性层体系,并在其中发现了较高的TMR值。但是基于第二磁性层/势垒层/第一磁性层的MTJ的隧穿极化电流透射率较低,导致结电阻与结面积的积矢(RA)较高及功耗较大。这一较低的隧穿极化电流透射率也会降低STT写入可靠性。
为了解决上述问题,本申请一个方面实施例中的一种磁性隧道结,包括:第一磁性层,具有固定磁化方向;第二磁性层,具有可翻转的磁化方向;多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;以及插入层,位于任意相邻的两层势垒层之间。
本方面实施例中的磁性隧道结,针对基于传统单势垒磁性隧道结MRAM的隧穿极化电流透射率较低、RA较大的问题,本申请提出的基于多势垒层的磁性隧道结,在保证高TMR的情况下,增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高自旋转移矩翻转过程的可靠性。本发明提出的基于多势垒层的磁性隧道结具有低功耗、低写入错误率的特点。
可以理解,本申请的多层势垒层可以包括至少两层,例如3层、4层等。数据的写入利用自旋转移矩对第二磁性层的作用,实现第二磁性层的磁化方向翻转;数据的读取利用多势垒磁性隧道结的隧穿磁阻效应完成。
图1a示出的为双势垒层的实施例,该磁性隧道结具有双势垒层,双势垒层之间设有插入层3,即该双势垒层的磁性隧道结结构为:第一磁性层1/第一势垒层2/插入层3/第二势垒层4/第二磁性层5。数据的写入利用自旋转移矩对第二磁性层5的作用,实现第二磁性层5的磁化方向翻转;数据的读取利用双势垒磁性隧道结的隧穿磁阻效应完成。
一些实施例中,所述的第二磁性层5与第一磁性层1,厚度分别相同或不同,为1~10nm。两层磁性层由磁性材料组成,材料包括但仅不限于:单质铁磁材料,如铁、钴、镍等;或铁钴镍合金材料,如坡莫合金、钴铁硼合金、铁铂合金等;或具有半金属性质的铁磁材料,如钴铁铝等赫斯勒合金或半赫斯勒合金材料等。结构包括但不仅限于:单层膜、双层膜及多层膜。
另一些实施例中,所述的第一势垒层2与第二势垒层4,厚度分别相同或不同,为0.1~5nm。第一势垒层2与第二势垒层4的材料可以相同或不同,为金属或非金属氧化物。材料包括但仅不限于:氧化镁、氧化铝、氧化锌、氧化铪、氧化钛、氧化硅、铝酸镁(MgAl 2O 4)等。
又一些实施例中,所述的插入第一势垒层2与第二势垒层4之间的插入层3,厚度为0.1~5nm,由非磁性金属材料或合金以及绝缘材料制成,材料包括但不仅限于:镁、铝、锌、金、银、铜、铂、钽、钨、铱等非磁性金属或以上非磁性金属组成的合金;氧化镍、氧化铁、氧化钴等绝缘体中的至少一种。
优选的,所述第一势垒层2与第二势垒层4选择氧化镁,插入层3选择镁金属,器件结构易于制备,且可有效降低在退火过程中插入层扩散对磁性隧道结产生的不利影响。
优选的,所述第一势垒层2与第二势垒层4选择氧化镁,插入层3选择氧化镍。氧化镍在降低RA的同时起到增强自旋流的效果。
本方面能够提供现有技术中的磁性隧道结的性能的原理在于利用在第一势垒层2与第二势垒层4之间的插入层3,在保证高TMR的同时增加了隧穿极化电流透射率,降低RA,进而降低了器件功耗,同时提高自旋转移矩翻转过程的可靠性。因此,本方面提出的基于多势垒层的磁性隧道结具有低功耗、低写入错误率的特点。
下面结合其他附图对本申请进行详细说明。可以理解,附图中的箭头表示的是磁化方向。
图2a示出了本申请实施例中双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之一,图2b示出了本申请实施例中双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之二。改变施加电流方向可以切换第二磁性层5的磁化方向,即可进行数据“0”和“1”的写入。
在图2a中,当电子从第二磁性层5流入第一磁性层1时,第二磁性层5的磁化方向与第一磁性层1的磁化方向从平行变为反平行,翻转向下。
在图2b中,当电子从第一磁性层1流入第二磁性层5时,第二磁性层5磁化方向与第一磁性层1的磁化方向从反平行变为平行,翻转向上。
该实施例中,插入第一势垒层2与第二势垒层4之间的插入层3可增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高STT翻转过程可靠性。通过STT实现了数据的写入之后,利用MTJ的隧穿磁阻效应,向磁性隧道结中通入一较小电流进行数据的读取。第二磁性层5磁化方向与第一磁性层1的磁化方向反平行,即第二磁性层5磁化方向向下时,为高阻态;第二磁性层5磁化方向与第一磁性层1的磁化方向平行,即第二磁性层5磁化方向向上时,为低阻态。
作为一种具体的结构实例,该实施例中,所述第二磁性层5采用钴铁硼材料,厚度为1.2nm;所述第一势垒层2与第二势垒层4皆采用氧化镁材料,厚度皆为0.8nm;所述插入第一势垒层2与第二势垒层4之间的插入层3采用金属镁单质材料,厚度为0.4nm;所述第一磁性层1采用钴铁硼材料,厚度为0.9nm。
当然此处仅仅示出该实施例的具体尺寸和材料构成的其中一种形式,本领域技术人员可以理解,具体的厚度以及材料的选取不会形成实质性的影响,在不影响本申请的主体构思的前提下,本领域技术人员有能力在不付出创造性劳动的基础上,进行其他厚度以及材料的选取,例如选取第一势垒层2和第二势垒层4的厚度为0.5nm和0.7nm的,材料选取氧化铝等,同理插入层3亦然。
图3a示出了本申请实施例中双势垒层面内磁各向异性磁性隧道结写入过程的示意图之一,图3b示出了本申请实施例中双势垒层面内磁各向异性磁性隧道结写入过程的示意图之二。改变施加电流方向可以切换第二磁性层5的磁化方向,即可进行数据“0”和“1”的写入。
在图3a中,当电子从第二磁性层5流入第一磁性层1时,第二磁性层5的磁化方向与第一磁性层1的磁化方向从平行变为反平行,翻转向左。
在图3b中,当电子从第一磁性层1流入第二磁性层5时,第二磁性层5的磁化方向与第一磁性层1的磁化方向从反平行变为平行,翻转向右。
该实施例中,插入第一势垒层2与第二势垒层4之间的插入层3可增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高STT翻转过程可靠性。通过STT实现了数据的写入之后,利用MTJ的隧穿磁阻效应,向磁性隧道结中通入一较小电流进行数据的读取。第二磁性层5的磁化方向与第一磁性层1的磁化方向反平行,即第二磁性层5磁化方向向左时,为高阻态;第二磁性层5的磁化方向与第一磁性层1的磁化方向平行,即第二磁性层5磁化方向向右时,为低阻态。
作为一种具体的结构实例,该实施例中,所述第二磁性层5采用钴铁硼材料,厚度为5nm;所述第一势垒层2与第二势垒层4皆采用氧化镁材料,厚度皆为0.8nm;所述插入第一势垒层2与第二势垒层4之间的插入层3采用氧化镍材料,厚度为0.6nm;所述第一磁性层1采用钴铁硼材料,厚度为10nm。
当然此处仅仅示出该实施例的具体尺寸和材料构成的其中一种形式,本领域技术人员可以理解,具体的厚度以及材料的选取不会形成实质性的影响,在不影响本申请的主体构思的前提下,本领域技术人员有能力在不付出创造性劳动的基础上,进行其他厚度以及材料的选取,此处不再赘述。
在本方面的另一些实施例中示出了上述实施例的改进结构,如图1b所示,其包括第一磁性层1,具有固定磁化方向;第二磁性层5,具有可翻转的磁化方向;多层势垒层,位于所述第一磁性层1和所述第二磁性层5之间,并由非磁性绝缘材料形成;插入层3,位于任意相邻的两层势垒层之间;重金属层6,位于所述第二磁性层5远离所述第一磁性层1的一侧;以及第三磁性层7,位于所述重金属层6远离所述第二磁性层5的一侧,并具有可翻转的磁化方向。
图4a示出了图1b的双第二磁性层5的双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之一,图4b示出了图1b的双第二磁性层5的双势垒层垂直磁各向异性磁性隧道结写入过程的示意图之二。多层膜第二磁性层5结构利用一层第二磁性层5带动另一层第二磁性层5翻转。改变施加电流方向可以切换第二磁性层5的磁化方向,即可进行数据“0”和“1”的写入。
在图4a中,当电子从第二磁性层5流入第一磁性层1时,第二磁性层5的磁化方向与第一磁性层1的磁化方向从平行变为反平行,翻转向下。
在图4b中,当电子从第一磁性层1流入第二磁性层5时,第二磁性层5磁化方向与第一磁性层1的磁化方向从反平行变为平行,翻转向上。
该实施例中,插入第一势垒层2与第二势垒层4之间的插入层3可增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高STT翻转过程可靠性。通过STT实现了数据的写入之后,利用MTJ的隧穿磁阻效应,向磁性隧道结中通入一较小电流进行数据的读取。第二磁性层5磁化方向与第一磁性层1的磁化方向反平行,即第二磁性层5磁化方向向下时,为高阻态;第二磁性层5磁化方向与第一磁性层1的磁化方向平行,即第二磁性层5磁化方向向上时,为低阻态。
作为一种具体的结构实例,该实施例中,所述两第二磁性层5采用镍铁合金材料,厚度为1.1nm;插入第二磁性层5中的重金属层6选择重金属钌,厚度为0.2nm;所述与第一势垒层2采用氧化镁材料,厚度为0.8nm;所述插入第一势垒层2与第二势垒层4之间的插入层3采用氧化镍材料,厚度为0.5nm;所述第二势垒层4采用氧化镁材料,厚度为0.4nm。所述第一磁性层1采用铁铂合金材料,厚度为0.8nm。
与上述相同的理由,此处仅仅示出该实施例的具体尺寸和材料构成的其中一种形式,此处不予穷举。
包含磁稳定层的双势垒层垂直磁各向异性磁性隧道结的写入过程与图2a和图2b类似,本领域技术人员结合图2a、图2b、图4a以及图4b有能力在不经过创造性劳动的前提下获得包含磁稳定层的双势垒层垂直磁各向异性磁性隧道结的写入过程的具体实施方式,此处不做详述。
在本方面的又一些实施例中示出了上述实施例的改进结构,如图1c所示,其包括第一磁性层1,具有固定磁化方向;第二磁性层5,具有可翻转的磁化方向;多层势垒层,位于所述第一磁性层1和所述第二磁性层5之间,并由非磁性绝缘材料形成;插入层3,位于任意相邻的两层势垒层之间;以及磁稳定层8,位于所述第一磁性层1远离所述第二磁性层5的一侧,用于稳定所述第一磁性层1的磁化方向。
一些实施例中,所述磁稳定层8为多层材料膜结构,包括至少一层Co材料膜层和至少一层Pt材料膜层。
图5a示出了图1c的磁稳定层8为钴铂多层膜的双势垒层面内磁各向异性磁性隧道结写入过程的示意图之一,图5b示出了图1c的磁稳定层8为钴铂多层膜的双势垒层面 内磁各向异性磁性隧道结写入过程的示意图之二。钴铂多层膜结构起到稳定第一磁性层1磁化方向的作用,改变施加电流方向可以切换第二磁性层5的磁化方向,即可进行数据“0”和“1”的写入。
在图5a中,当电子从第二磁性层5流入第一磁性层1时,第二磁性层5的磁化方向与第一磁性层1的磁化方向从平行变为反平行,翻转向左。
在图5b中,当电子从第一磁性层1流入第二磁性层5时,第二磁性层5的磁化方向与第一磁性层1的磁化方向从反平行变为平行,翻转向右。
该实施例中,插入第一势垒层2与第二势垒层4之间的插入层3可增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高STT翻转过程可靠性。通过STT实现了数据的写入之后,利用MTJ的隧穿磁阻效应,向磁性隧道结中通入一较小电流进行数据的读取。第二磁性层5的磁化方向与第一磁性层1的磁化方向反平行,即第二磁性层5磁化方向向左时,为高阻态;第二磁性层5的磁化方向与第一磁性层1的磁化方向平行,即第二磁性层5磁化方向向右时,为低阻态。
作为一种具体的结构实例,该实施例中,所述第二磁性层5采用钴铁铝赫斯勒合金材料,厚度为4nm;所述第一势垒层2与第二势垒层4皆采用氧化镁材料,厚度皆为1.2nm;所述插入第一势垒层2与第二势垒层4之间的插入层3采用金属镁材料,厚度为0.4nm;所述第一磁性层1采用钴磁金属材料,厚度为3nm;钴铂多层膜结构中Co和Pt单层膜厚度皆为0.2nm,[Co/Pt] 6厚度共2.4nm。
与上述相同的理由,此处仅仅示出该实施例的具体尺寸和材料构成的其中一种形式,此处不予穷举。
包含双第二磁性层5的双势垒层面内磁各向异性磁性隧道结的写入过程与图3a和图3b类似,本领域技术人员结合图3a、图3b、图5a以及图5b有能力在不经过创造性劳动的前提下获得包含双第二磁性层5的双势垒层面内磁各向异性磁性隧道结的写入过程的具体实施方式,此处不做详述。
从上述实施例中可以知晓,本方面中的磁性隧道结,在保证高TMR的情况下,增加隧穿极化电流透射率,降低RA,进而降低器件功耗,同时提高自旋转移矩翻转过程的可靠性,具有低功耗、低写入错误率的特点。
本申请第二方面还提供一种磁性隧道结的制作方法,包括:
S1:形成第一磁性层,所述第一磁性层具有固定磁化方向;
S2:形成多层势垒层,所述势垒层由非磁性绝缘材料形成;
S3:形成第二磁性层,所述第二磁性层具有可翻转的磁化方向;其中,在形成除第一层以外的势垒层之前,所述方法还包括:
S4:在已形成的暴露在外的势垒层上形成插入层。
进一步的,本申请又一方面还提供一种自旋二极管,包括:第一磁性层,具有固定磁化方向;第二磁性层,具有可翻转的磁化方向;多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;插入层,位于任意相邻的两层势垒层之间;第一电极,与所述第一磁性层耦接;以及第二电极,与所述第二磁性层耦接。
最后,本申请又一方面还提供一种存储器,包括多个存储单元形成的存储单元阵列,其中每个所述存储包括一磁性隧道结,每个所述磁性隧道结包括:第一磁性层,具有固定磁化方向;第二磁性层,具有可翻转的磁化方向;多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;以及插入层,位于任意相邻的两层势垒层之间。
上述制作方法、自旋二极管以及存储器的技术效果基于本申请前述的磁性隧道结的特性,因此具有对应的使用效果,本申请不做赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。以上所述仅为本说明书实施例的实施例而已,并不用于限制本说明书实施例。对于本领域技术人员来说,本说明书实施例可以有各种更改和变化。凡在本说明书实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书实施例的权利要求范围之内。

Claims (12)

  1. 一种磁性隧道结,其特征在于,包括:
    第一磁性层,具有固定磁化方向;
    第二磁性层,具有可翻转的磁化方向;
    多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;以及
    插入层,位于任意相邻的两层势垒层之间。
  2. 根据权利要求1所述的磁性隧道结,其特征在于,还包括:
    重金属层,位于所述第二磁性层远离所述第一磁性层的一侧;以及
    第三磁性层,位于所述重金属层远离所述第二磁性层的一侧,并具有可翻转的磁化方向。
  3. 根据权利要求1所述的磁性隧道结,其特征在于,还包括:
    磁稳定层,位于所述第一磁性层远离所述第二磁性层的一侧,用于稳定所述第一磁性层的磁化方向。
  4. 根据权利要求1所述的磁性隧道结,其特征在于,所述第一磁性层和/或第二磁性层包括:单质铁磁材料、合金铁磁材料、具有半金属性质的铁磁材料中的至少一种。
  5. 根据权利要求1所述的磁性隧道结,其特征在于,所述势垒层包括:氧化镁、氧化铝、氧化锌、氧化铪、氧化钛、氧化硅、铝酸镁中的至少一种。
  6. 根据权利要求1所述的磁性隧道结,其特征在于,所述插入层包括:
    非磁性金属和绝缘体。
  7. 根据权利要求6所述的磁性隧道结,其特征在于,所述非磁性金属包括:镁、铝、锌、金、银、铜、铂、钽、钨、铱中的至少一种;或者
    所述绝缘体包括:氧化镍、氧化铁、氧化钴中的至少一种。
  8. 根据权利要求3所述的磁性隧道结,其特征在于,所述磁稳定层包括至少一层Co材料膜层和至少一层Pt材料膜层。
  9. 根据权利要求1所述的磁性隧道结,其特征在于,所述势垒层的层数为两层,所述插入层的层数为一层。
  10. 一种磁性隧道结的制作方法,其特征在于,包括:
    形成第一磁性层,所述第一磁性层具有固定磁化方向;
    形成多层势垒层,所述势垒层由非磁性绝缘材料形成;
    形成第二磁性层,所述第二磁性层具有可翻转的磁化方向;其中,在形成除第一层以外的势垒层之前,所述方法还包括:
    在已形成的暴露在外的势垒层上形成插入层。
  11. 一种自旋二极管,其特征在于,包括:
    第一磁性层,具有固定磁化方向;
    第二磁性层,具有可翻转的磁化方向;
    多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;
    插入层,位于任意相邻的两层势垒层之间;
    第一电极,与所述第一磁性层耦接;以及
    第二电极,与所述第二磁性层耦接。
  12. 一种存储器,其特征在于,包括多个存储单元形成的存储单元阵列,其中每个所述存储包括一磁性隧道结,每个所述磁性隧道结包括:第一磁性层,具有固定磁化方向;
    第二磁性层,具有可翻转的磁化方向;
    多层势垒层,位于所述第一磁性层和所述第二磁性层之间,并由非磁性绝缘材料形成;以及
    插入层,位于任意相邻的两层势垒层之间。
PCT/CN2019/098281 2019-07-30 2019-07-30 一种磁性隧道结、制作方法、自旋二极管及存储器 WO2021016837A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098281 WO2021016837A1 (zh) 2019-07-30 2019-07-30 一种磁性隧道结、制作方法、自旋二极管及存储器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098281 WO2021016837A1 (zh) 2019-07-30 2019-07-30 一种磁性隧道结、制作方法、自旋二极管及存储器

Publications (2)

Publication Number Publication Date
WO2021016837A1 true WO2021016837A1 (zh) 2021-02-04
WO2021016837A8 WO2021016837A8 (zh) 2021-02-25

Family

ID=74228429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098281 WO2021016837A1 (zh) 2019-07-30 2019-07-30 一种磁性隧道结、制作方法、自旋二极管及存储器

Country Status (1)

Country Link
WO (1) WO2021016837A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055915A (zh) * 2006-04-11 2007-10-17 中国科学院物理研究所 基于双势垒磁性隧道结的逻辑元件和磁逻辑元件阵列
CN101079469A (zh) * 2006-05-26 2007-11-28 中国科学院物理研究所 一种具有量子效应的MgO双势垒磁性隧道结及其用途
CN103531707A (zh) * 2012-07-03 2014-01-22 中国科学院物理研究所 磁性隧道结
CN106328805A (zh) * 2015-07-02 2017-01-11 中国科学院物理研究所 具有量子效应的磁隧道结及包括其的自旋二极管和晶体管
CN108987031A (zh) * 2018-07-06 2018-12-11 西安交通大学 一种磁性隧道结器件及其磁性随机存储装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055915A (zh) * 2006-04-11 2007-10-17 中国科学院物理研究所 基于双势垒磁性隧道结的逻辑元件和磁逻辑元件阵列
CN101079469A (zh) * 2006-05-26 2007-11-28 中国科学院物理研究所 一种具有量子效应的MgO双势垒磁性隧道结及其用途
CN103531707A (zh) * 2012-07-03 2014-01-22 中国科学院物理研究所 磁性隧道结
CN106328805A (zh) * 2015-07-02 2017-01-11 中国科学院物理研究所 具有量子效应的磁隧道结及包括其的自旋二极管和晶体管
CN108987031A (zh) * 2018-07-06 2018-12-11 西安交通大学 一种磁性隧道结器件及其磁性随机存储装置

Also Published As

Publication number Publication date
WO2021016837A8 (zh) 2021-02-25

Similar Documents

Publication Publication Date Title
US10953319B2 (en) Spin transfer MRAM element having a voltage bias control
JP5867030B2 (ja) 記憶素子、記憶装置
TWI556233B (zh) 以改良的切換來提供混合磁性穿隧接面元件的方法及其系統
TWI530945B (zh) Memory elements and memory devices
US10439133B2 (en) Method and system for providing a magnetic junction having a low damping hybrid free layer
US20130005052A1 (en) Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier
US11776726B2 (en) Dipole-coupled spin-orbit torque structure
JP6244617B2 (ja) 記憶素子、記憶装置、磁気ヘッド
WO2011111473A1 (ja) 磁気抵抗効果素子及び磁気メモリ
CN106953005B (zh) 磁性元件和存储装置
TWI639155B (zh) 儲存元件、儲存裝置及磁頭
TWI487155B (zh) Memory elements and memory devices
JP2013115413A (ja) 記憶素子、記憶装置
WO2014050379A1 (ja) 記憶素子、記憶装置、磁気ヘッド
JP5987613B2 (ja) 記憶素子、記憶装置、磁気ヘッド
WO2013080436A1 (ja) 記憶素子、記憶装置
KR20190104865A (ko) 자기접합 및 하이브리드 캡핑층을 갖는 자기장치, 이를 이용하는 자기메모리 및 자기장치의 제공방법
US20130108889A1 (en) Magnetoresistance Device and Memory Device Including the Magnetoresistance Device
JP2013115400A (ja) 記憶素子、記憶装置
JP2013115399A (ja) 記憶素子、記憶装置
KR20200136903A (ko) 자기 저항 효과 소자 및 자기 메모리
EP2887410A1 (en) Magnetic multilayer stack
US20130286723A1 (en) Magnetic random access memory with field compensating layer and multi-level cell
CN110459674B (zh) 一种磁性隧道结、制作方法、自旋二极管及存储器
JP2013115412A (ja) 記憶素子、記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939351

Country of ref document: EP

Kind code of ref document: A1