WO2021015559A1 - Fmcw 레이더를 이용한 위치 추적 및 호흡 패턴 측정 방법 및 장치 - Google Patents

Fmcw 레이더를 이용한 위치 추적 및 호흡 패턴 측정 방법 및 장치 Download PDF

Info

Publication number
WO2021015559A1
WO2021015559A1 PCT/KR2020/009684 KR2020009684W WO2021015559A1 WO 2021015559 A1 WO2021015559 A1 WO 2021015559A1 KR 2020009684 W KR2020009684 W KR 2020009684W WO 2021015559 A1 WO2021015559 A1 WO 2021015559A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
respiration
heart rate
range bin
target
Prior art date
Application number
PCT/KR2020/009684
Other languages
English (en)
French (fr)
Inventor
정기섭
Original Assignee
(주)비타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)비타 filed Critical (주)비타
Publication of WO2021015559A1 publication Critical patent/WO2021015559A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • the present invention relates to a method and apparatus for tracking a location and measuring a breathing (heartbeat) pattern using an FMCW radar, and more particularly, after determining the location of a subject using an FMCW radar signal, only the biological signal from the distance and azimuth angle is selected. It relates to a method and apparatus for measuring a breathing (heart rate) pattern for determining a breathing pattern or a heart rate pattern by receiving it.
  • Sleep apnea is a serious health care problem that causes accidents due to heart disease, obesity, fatigue and drowsiness, and the number of subjects is increasing due to the increase of the average life expectancy and the increase of the obese population worldwide.
  • polysomnography For the diagnosis of sleep apnea, polysomnography (PSG) is mainly used, and medical institutions that perform polysomnography have installed multiple bio-signal measuring devices including EEG and image monitoring devices in a separate laboratory. It is operated through sleep articles.
  • PSG polysomnography
  • Types of sleep apnea include obstructive apnea, central apnea, and complex apnea.
  • Obstructive sleep apnea refers to a sleep respiration disorder in which frequent arousal and a decrease in blood oxygen saturation concentration are recurring due to impairment of air flow through the upper respiratory tract during sleep.In adults, the respiratory amplitude is at least 10 seconds or longer. It is defined as a case in which a state that is reduced by more than 90% compared to that in an average of one to five times in an hour and at the same time maintains or increases the effort for breathing.
  • central sleep apnea is an apnea symptom that occurs due to various causes of the brain or nervous system, and is defined as a case of apnea for more than 10 seconds and no effort for breathing at the same time.
  • polysomnography is an electroencephalogram during sleep, safety (eye movement), jaw electromyogram, electrocardiogram, leg electromyogram, snoring, chest-abdominal breathing exercise, blood oxygen saturation concentration, respiratory airflow, It is a test that simultaneously records (synchronizes) various physiological signals that appear on the body during sleep, such as body posture, and provides objective data necessary for sleep status evaluation and diagnosis of sleep disorders.
  • the present invention provides a method or apparatus for measuring the respiration or heartbeat state of a subject without attaching an electrode or a sensor to the subject.
  • the present invention is to provide a method or apparatus for measuring a subject's breathing or heartbeat state for a long time (days or months).
  • 20Mhz IF Intermediate Frequency
  • It relates to a location tracking method including the step of selecting a target range bin in which a person is located among targets.
  • It relates to a respiratory heart rate measurement method comprising the step of determining a breathing or heart rate pattern through the frequency spectrum processed over time.
  • the respiration heart rate measurement method and apparatus of the present invention measures the phase change or distance fluctuation of the signal according to the repetition (breathing) of the subject's inhalation and exhalation using the FMCW radar signal, and the heart rate period, and the range in which the target (chest) is located.
  • a breathing pattern or a heart rate pattern can be determined through a frequency spectrum over time in an empty section.
  • signals received in cells other than the range bin section are removed by a spatial filter, and signals received in the range bin section (cell) are removed. It is possible to precisely determine whether or not it is abnormal breathing by expanding the signal strength with the super resolution processing unit.
  • the respiratory heart rate measurement method and apparatus of the present invention is installed in a part of the space where the subject moves or sleeps (e.g., the wall or ceiling, the bed, the surface of the chair or the interior) of the FMCW radar generator, the transceiver, and the signal processor. It is enough to do so, so there is no need to attach a sensor to the subject's body.
  • the method and apparatus for measuring respiratory heart rate of the present invention do not impose any restrictions on the activity of the subject and do not require repeated follow-up management by medical personnel, so that the heart rate or respiration can be measured for a long time (days or months).
  • FIG. 1 is a diagram showing the configuration of a respiratory heart rate measuring apparatus of the present invention.
  • Figure 2 is a flow chart of the heart rate pattern determination of the present invention.
  • 3 is a spectrum of a fast Fourier transform for a digital signal.
  • 5 is a graph showing a fast Fourier spectrum in time and distance in a range bin range in which a target (human chest) is located.
  • FIG. 6 is a graph showing a fast Fourier spectrum in time and phase in a range bin range in which a target (human chest) is located.
  • unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
  • FIG. 1 is a view showing the configuration of the respiratory heart rate measuring apparatus of the present invention
  • Figure 2 is a flow chart of the determination of the respiratory heart rate pattern of the present invention
  • Figure 3 is a spectrum of a fast Fourier transform for a digital signal
  • Figure 4 is a range bin It shows the location (distance, ⁇ ) of the selected target.
  • the position tracking and respiration heart rate measurement apparatus of the present invention includes a signal transmitting and receiving unit 10, a mixer 20, an LP filter 30, an ADC 40, a signal processor 50, and a processor ( 60).
  • the location tracking method of the present invention includes a digital signal conversion step, a fast Fourier transform step, and a range bin selection step.
  • the method of measuring a respiratory heart rate includes a digital signal conversion step, a fast Fourier transform step, a range bin selection step, a frequency spectrum modification step according to time, and a respiratory heart rate pattern determination step.
  • the location tracking and respiratory heart rate measurement device of the present invention may be installed in a space where the subject moves or sleeps.
  • the location tracking and respiration heart rate measurement device of the present invention is a location (for example, on the bed, on the side, etc.) spaced apart by a predetermined distance, such as a bed or a chair (massage chair), or built into the bed or mounted on the outside of the bed Can be.
  • the location tracking and respiratory heart rate measurement method of the present invention is performed using a signal transmission/reception unit 10, a mixer 20, an LP filter 30, an ADC 40, a signal processor 50, and a processor 60. Can be.
  • a multi-channel high-speed FMCW type radar signal is transmitted by the transceiver at predetermined time intervals, an IF signal is generated as a received signal reflected from a target including a person, and converted into a digital signal.
  • an FMCW (Frequency Modulated Continuous Wave) radar is used.
  • the FMCW radar is a radar that continuously emits a frequency modulated signal.
  • the FMCW has a resolution. Is very superior to UWB (Ultra wide band) method (77Ghz FMCW is 3.75cm, 24Ghz UWB is only 60cm)
  • UWB method has two 24Ghz NB and UWB (21.65 ⁇ 26.65GHz).
  • the main elements are required, and the bandwidth of up to 5GHz is provided, and the ISM only provides a bandwidth of 250Mhz, but the 60Ghz FMCW can provide a bandwidth of about 4Ghz.
  • the digital signal conversion step is a step of converting the analog signal that has passed through the signal transmission/reception unit 10, the mixer 20, and the LP filter 30 into digital using an analog-to-digital converter (ADC) 40.
  • ADC analog-to-digital converter
  • the signal transmission/reception unit 10 may include a signal waveform generator 11, a transmission antenna 12, and a reception antenna 13.
  • the transmission antenna 12 transmits a transmission signal corresponding to the signal waveform generated by the signal waveform generator, and the reception antenna 13 receives reflected signals reflected from one or more targets located in front.
  • the mixer 20 receives a transmission signal (ie, a transmission reference signal) from the signal waveform generator 11 and a reflected signal (ie, a reception signal reflected from the target) from the reception antenna 13 and mixes them. It generates an IF (Intermediate Frequency) signal in the 20MHz band.
  • a transmission signal ie, a transmission reference signal
  • a reflected signal ie, a reception signal reflected from the target
  • the LP filter 30 is a filter that passes only a signal with a frequency lower than a specific frequency (cutoff frequency).
  • the LP filter can limit the range of frequencies that can be passed.
  • the signal transmission/reception unit 10, the mixer 20, the LP filter 30, and the ADC 40 may use known devices.
  • the fast Fourier transform step is a step of performing a fast Fourier transform on the digital signal output from the ADC 40.
  • Fast Fourier transform can use a known fast Fourier transform.
  • the signal processing unit 50 may obtain frequency information (signal power) according to a distance through the fast Fourier transform.
  • the signal processing unit may include a spatial filter and a super resolution processing unit.
  • the signal processing unit 50 may plot a frequency spectrum subjected to a fast Fourier transform over time in a range bin range in which a target (a human chest) is located.
  • the control unit may select a range bin in which a target for respiration/heartbeat movement is located through a fast Fourier transformed frequency spectrum.
  • the control unit may include selecting a coordinate at which the biosignal is received as a target range bin.
  • the biosignal may be a signal in which a phase shift of a signal is periodically repeated or a distance to a target is periodically varied.
  • the distance between the transmitting and receiving unit 10 and the target becomes close, and in the case of exhale, the transmitting and receiving unit 10 The distance between the and the target is a little farther than in the case of inhalation.
  • the received signal waveform is phase shifted.
  • 5 shows the phase shift of the received waveform due to the fluctuation of the distance between the transmitting and receiving unit and the chest (target) due to inhalation and exhalation by breathing.
  • the controller can determine whether it is a signal by respiration through a repeated waveform, as well as measure the respiration rate.
  • the controller may determine the heart rate signal and measure the heart rate through the frequency.
  • FIG. 3 is a spectrum of a fast Fourier transform for a digital signal, showing signal strength according to a range (distance).
  • a range for a digital signal
  • two maximum peaks may be continuously generated (at a certain interval) as shown in FIG. 3.
  • the difference between the range (distance) between the inhalation peak and the exhalation peak indicates the exercise distance of the chest (ribs) during the breathing exercise.
  • the control unit may select a range and azimuth angle ⁇ at which two signal peaks to the target are continuously generated as a range bin in which the target is located.
  • the control unit may select and display a range bin in which the target is located even with speed and 3D coordinates (x, y, z).
  • the range bin 4 shows an example of a range bin in which a target is located.
  • the range bin is a radar signal transmitted and received at an arbitrary azimuth and processed for each unit distance, and one range bin (indicated as a cell in the range bin) is formed for each bin space.
  • the step of selecting the range bin in which the target (human's chest) is located is the IF signal or the signal that has passed through the LP filter as a bandwidth filter in the range of 0.1 to 0.6 Hz or 0.8 to 4 Hz.
  • FFT Fast Fourier Transform
  • the bandwidth filter may have a pass frequency band of 0.1 to 0.6 Hz, and in the case of heart rate measurement, a pass frequency band of 0.8 to 4 Hz may be set.
  • the present invention may perform a pre-processing step before the step of selecting a range bean.
  • the pre-processing step is a step of tracking whether it is a target object, a moving person, a sleeping person, or a chest (CHEST) among human parts.
  • FFT fast Fourier transform
  • the processor may determine and remove a signal having a speed of 0 as a fixed target (bed, chair, etc.).
  • the processor may determine and remove it as a moving person or a moving arm or leg.
  • the range bin where the target (human chest) is located can be more accurately selected.
  • the range bean may be selected without a pretreatment step.
  • the spatial filter may remove a signal received in a cell other than a range empty cell (spatial filtering step).
  • the super resolution processing unit may extract a more accurate deep breathing signal by expanding a signal received within the range bin section (cell). That is, the super resolution processing unit can further enlarge the breathing heart rate signal to track unnatural breathing.
  • the super resolution processor may apply a known program or method (upsampling methods, model framework, network design, learning strategy).
  • the signal processing unit 50 may process a frequency spectrum according to time by plotting a peak in a range bin (refer to FIG. 5) in which the target is located over time.
  • the first-order fast Fourier transformed frequency spectrum may be displayed as time and distance by the signal processor.
  • the first-order fast Fourier transformed frequency spectrum may be displayed in terms of time and phase by the signal processor.
  • the signal processing unit may generate the inhalation and exhalation signals of FIG. 3 as a single signal, and may represent the inhalation signals.
  • the respiration signal can be expressed as the intermediate value of the power and distance between the inhalation and exhalation signals.
  • the processor may determine the respiration or heart rate pattern through the frequency spectrum processed according to time, as shown in FIG. 5 or 6.
  • the processor may calculate the heart rate or respiration rate per minute by reading the number of signal peaks to the target. For example, in the case of the frequency spectrum of FIG. 4, since the processor counts 12 peaks per minute, the respiratory rate may be determined as 12 times/minute, and in the case of the frequency spectrum of FIG. 6, the processor is 1 minute Since 11 peaks are counted, the respiratory rate can be determined as 12 times/minute.
  • the processor may determine apnea because the peak width (the distance from the transmitting/receiving unit to the chest, the y-axis in FIG. 7) is reduced by 90% or more and lasts for 10 seconds or more. .
  • the processor may determine that the breathing is low.
  • the processor receives the indoor movement, respiration rate, pulse rate, and amplitude of the reflected and returned wavelength within a specific range (usually within 5 meters) of the target, and the sleep phase (wake, s1, s2, s3) , s4 (deep sleep), REM) can be identified by applying a known convolution neural network (CNN) tool.
  • CNN convolution neural network
  • the present invention plots a fast Fourier transformed frequency spectrum over time to measure respiratory conditions such as respiration rate, heart rate, apnea, or hypopnea, and in addition, it is possible to measure abnormal breathing patterns different from normal breathing patterns. have.
  • abnormal breathing or heartbeat state may be determined through a sudden change (when exceeding a set value) of the average value of the transmitted and received signal peaks.
  • the present invention can detect a vital sign for a plurality of targets (subjects).
  • the present invention can perform multiple biometric recognition by utilizing MIMO (Multiple Input Multiple Output) technology.
  • MIMO Multiple Input Multiple Output
  • the present invention can perform biometric recognition for each number of transmitters (TX).
  • T 1 first output antenna
  • R 1 , R 2 , R 3 , R 4 from the first receiving antenna
  • Fourth monitors the first person's vital signal
  • T 2 second output antenna
  • R 1 , R 2 , R 3 , R 4 can recognize the second person's bio signal. If there are N output antennas (Tn), it is possible to receive and recognize bio signals of N people.
  • the breathing heart rate measurement method and apparatus of the present invention may determine the breathing pattern or heart rate pattern of the subject using the FMCW radar signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Pulmonology (AREA)
  • Power Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은 FMCW 레이더 신호를 이용하여 피험자의 들숨과 날숨의 반복(호흡)에 따른 호흡 패턴 또는 심박 패턴을 결정하는 호흡(심박) 패턴 측정 방법 및 장치에 관한 관한 것이다. 본 발명의 호흡 심박 측정 방법 및 장치는 FMCW 레이더 신호를 이용하여 피험자의 들숨과 날숨의 반복(호흡)에 따른 상기 송수신부와 가슴(흉부)까지의 거리(range)를 측정하고, 상기 거리 범위(레인지 빈)에서의 시간에 따라 처리된 상기 주파수 스펙트럼을 통해 호흡 패턴 또는 심박 패턴을 결정할 수 있다. 따라서, 본 발명의 호흡 심박 측정 방법 및 장치는 FMCW 레이더 발생장치, 송수신부, 신호처리기 등을 피험자가 거동하거나 잠을 자는 공간 중 일부(예를 들면, 벽면이나 천정)에 설치하는 것으로 충분하므로 피험자의 신체에 센서를 부착할 필요가 전혀 없다. 이와 같이, 본 발명의 호흡 심박 측정 방법 및 장치는 피험자의 활동에 어떠한 제약도 주지 않고, 의료진의 반복되는 추적 관리도 필요 없으므로 심박이나 호흡을 장시간(수일이나 수개월) 측정할 수 있다.

Description

FMCW 레이더를 이용한 위치 추적 및 호흡 패턴 측정 방법 및 장치
본 발명은 FMCW 레이더를 이용한 위치 추적 및 호흡(심박) 패턴 측정 방법 및 장치에 관한 것으로서, 보다 상세하게는 FMCW 레이더 신호를 이용하여 피험자의 위치를 파악한 후에 그 거리와 방위각도에서 온 생체 신호만을 선택적으로 수신하여 호흡 패턴 또는 심박 패턴을 결정하는 호흡(심박) 패턴 측정 방법 및 장치에 관한 관한 것이다.
수면 무호흡은 심장질환, 비만, 피로와 졸음에 의한 사고 등을 유발하는 심각한 보건의료 문제이며 세계적으로 평균수명의 증가와 비만인구의 증가로 인하여 그 대상자가 늘어나고 있는 추세이다.
수면 무호흡증의 진단에는 수면다원검사(PSG, polysomnography)가 주로 사용되며, 수면다원검사를 수행하는 의료기관은 별도의 검사실에서 뇌파 등을 포함한 다수의 생체 신호 측정기와 영상 모니터링 기기 등을 설치하고, 별도의 수면기사를 통하여 운영하고 있다.
수면무호흡증의 종류로는 폐쇄성 무호흡(obstructive apnea), 중추성 무호흡(central apnea) 및 복합성 무호흡이 있다. 폐쇄성 수면 무호흡증은 수면 중 상기도를 통한 공기 흐름의 장애로 인하여 잦은 각성과 혈중산소포화 농도의 저하가 반복적으로 나타나는 수면호흡장애를 일컬으며, 성인의 경우 최소한 10초 이상의 기간 동안 호흡 진폭이 기저 호흡 진폭에 비하여 90%이상 감소된 상태가 평균적으로 한 시간에서 다섯 번 이상 나타나면서 동시에 호흡에 대한 노력이 유지되거나 증가되어 있는 경우로 정의된다. 또한, 중추성 수면 무호흡증은 뇌 또는 신경계통의 여러 가지 원인으로 발생하는 무호흡 증세로서 10초 이상 무 호흡이 있으면서 동시에 호흡에 대한 노력이 없는 경우로 정의된다.
이러한, 수면 무호흡증을 진단하는 수면다원검사를 받는 환자는 이러한 특수 목적의 검사실에서 여러 종류의 센서를 몸에 부착하여 수면을 취하여야 하고, 수면다원검사 시스템은 수면 도중에 측정한 각종 생체 신호와 영상 데이터를 분석하여 수면 무호흡 진단에 필요한 정보를 의사에게 제공하고 있다.
좀 더 구체적으로, 수면다원검사란, 수면 중에 뇌파, 안전도(눈동자의 움직임), 턱근전도, 심전도, 다리 근전도, 코골이, 가슴-배 호흡운동, 혈중산소포화농도, 호흡기류(airflow), 몸의 자세 등 수면시 신체에 나타나는 여러 가지 생리적인 신호를 동시기록(동기화)하여 수면상태평가와 수면질환진단에 필요한 객관적인 자료를 제공하는 검사를 말한다.
수면 다원 검사를 위한, 등록특허 10-1864642호에는 상기도 및 흉부 각각에 부착된 전극에 따른 EIT(Electrical Impedance Tomography)를 적용하여 상기도 개폐에 따른 폐 내부의 공기분포를 영상화하여 무호흡 증상을 판단하는 시스템을 제시하고 있다. 수면 다원 검사를 위해, 상기 등록특허는 피험자의 얼굴, 목 둘레에 상기도 전극, 흉부 둘레에 흉부 전극을 부착하여야 하므로 부착된 전극을 장시간 피험자 몸에 부착하여야 하는 불편함, 부착 여부 등을 관리하여야 하는 측정 방법의 어려움이 존재한다. 또한, 상기 등록특허의 방법은 전극이나 센서를 몸에 부착하여야 하므로 장기간(수일이나 수개월) 동안 피험자의 호흡이나 심박 상태를 측정하는 것은 현실적으로 불가능하였다.
본 발명은 전극이나 센서를 피험자에 부착하지 않고 피험자의 호흡이나 심박 상태를 측정하는 방법이나 장치를 제공하는 것이다.
본 발명은 장시간(수일이나 수개월) 동안 피험자의 호흡이나 심박 상태를 측정하는 방법이나 장치를 제공하는 것이다.
하나의 양상에서 본 발명은
송수신부에서 다중 채널 고속 FMCW 형태의 레이더 신호를 소정 시간간격으로 송신하고, 사람을 포함한 표적으로부터 반사되는 수신 신호로 20Mhz대의 IF(Intermediate Frequency) 신호를 생성하고, 이를 디지털 신호로 변환하는 단계 ;
상기 디지털 신호 데이터에 대해 고속 푸리에 변환(FFT)을 수행하는 단계 ;
표적 중 사람이 위치하는 표적 레인지 빈(Range bin)을 선정하는 단계를 포함하는 위치 추적 방법에 관련된다.
다른 양상에서, 본 발명은
송수신부에서 다중 채널 고속 FMCW 형태의 레이더 신호를 소정 시간간격으로 송신하고, 사람을 포함한 표적으로부터 반사되는 수신 신호로 IF 신호를 생성하고, 이를 디지털 신호로 변환하는 단계 ;
상기 디지털 신호 데이터에 대해 고속 푸리에 변환(FFT)을 수행하는 단계 ;
표적 중 사람이 위치하는 레인지 빈(Range bin)을 선정하는 단계 ;
상기 레인지 빈 범위에서 고속 푸리에 변환된 주파수 스펙트럼을 시간에 따라 처리하는 단계 ;
시간에 따라 처리된 상기 주파수 스펙트럼을 통해 호흡 또는 심박 패턴을 결정하는 단계를 포함하는 호흡 심박 측정 방법에 관련된다.
본 발명의 호흡 심박 측정 방법 및 장치는 FMCW 레이더 신호를 이용하여 피험자의 들숨과 날숨의 반복(호흡)에 따른 신호의 위상변화나 거리 변동, 심박 주기를 측정하고, 표적(가슴)이 위치하는 레인지 빈 구간에서 시간에 따른 주파수 스펙트럼을 통해 호흡 패턴 또는 심박 패턴을 결정할 수 있다.
또한, 본 발명은 레인지 빈 구간(cell, 사람 가슴 부위) 이외의 구간(cell)에서 수신되는 신호는 공간필터부(spatial filter)로 제거하고, 레인지 빈 구간(cell) 내에서 수신되는 신호에 대해서는 슈퍼 레졸루션 처리부로 신호 세기를 확대하여 비정상 호흡인지를 정밀하게 판단할 수 있다.
본 발명의 호흡 심박 측정 방법 및 장치는 FMCW 레이더 발생장치, 송수신부, 신호처리기 등을 피험자가 거동하거나 잠을 자는 공간 중 일부(예를 들면, 벽면이나 천정, 침대, 의자 표면이나 내부)에 설치하는 것으로 충분하므로 피험자의 신체에 센서를 부착할 필요가 전혀 없다.
이와 같이, 본 발명의 호흡 심박 측정 방법 및 장치는 피험자의 활동에 어떠한 제약도 주지 않고, 의료진의 반복되는 추적 관리도 필요 없으므로 심박이나 호흡을 장시간(수일이나 수개월) 측정할 수 있다.
도 1은 본 발명의 호흡 심박 측정 장치의 구성을 나타내는 도면이다.
도 2는 본 발명의 호흡 심박 패턴 결정의 순서도이다.
도 3은 디지털 신호에 대한 고속 푸리에 변환의 스펙트럼이다.
도 4는 레인지 빈에서 선정된 표적의 위치(거리, θ)을 도시한 것이다.
도 5는 표적(사람의 가슴)이 위치하는 레인지 빈 범위에서의 고속 푸리에 스펙트럼을 시간과 거리로 나타낸 그래프이다.
도 6은 표적(사람의 가슴)이 위치하는 레인지 빈 범위에서의 고속 푸리에 스펙트럼을 시간과 위상으로 나타낸 그래프이다.
도 7은 무호흡 상태의 주파수 스펙트럼의 예이다.
이하에서, 본 발명의 바람직한 실시 태양을 도면을 들어 설명한다. 그러나 본 발명의 범위는 하기 실시 태양에 대한 설명 또는 도면에 제한되지 아니한다. 즉, 본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 본 명세서에서 기술되는 "포함 한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 명세서에 기재된 "부", "기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 호흡 심박 측정 장치의 구성을 나타내는 도면이고, 도 2는 본 발명의 호흡 심박 패턴 결정의 순서도이고, 도 3은 디지털 신호에 대한 고속 푸리에 변환의 스펙트럼이고, 도 4는 레인지 빈에서 선정된 표적의 위치(거리, θ)을 도시한 것이다.
도 1을 참고하면, 본 발명의 위치추적 및 호흡 심박 측정 장치는 신호 송수신부(10), 믹서(mixer, 20), LP 필터(30), ADC(40), 신호처리기(50) 및 프로세서(60)를 포함한다.
본 발명의 위치 추적 방법은 디지털 신호 변환단계, 고속푸리에 변환 단계, 레인지 빈 선정 단계를 포함한다.
도 2를 참고하면, 본 발명의 호흡 심박 측정 방법은 디지털 신호 변환단계, 고속푸리에 변환 단계, 레인지 빈 선정 단계, 시간에 따라 주파수 스펙트럼 변형 단계, 호흡 심박 패턴 결정 단계를 포함한다.
본 발명의 위치 추적 및 호흡 심박 측정 장치는 피험자가 거동하거나 잠을 자는 공간에 설치될 수 있다. 예를 들면, 본 발명의 위치 추적 및 호흡 심박 측정 장치는 침대 또는 의자(마사지 의자) 등에 소정 거리로 이격된 위치(예를 들면, 침대 위, 측면 등)나, 침대에 내장되거나 침대 외면에 거치될 수 있다.
본 발명의 위치 추적 및 호흡 심박 측정 방법은 신호 송수신부(10), 믹서(mixer, 20), LP 필터(30), ADC(40), 신호처리기(50) 및 프로세서(60)를 이용하여 수행될 수 있다.
상기 디지털 신호 변환 단계는 송수신부에서 다중 채널 고속 FMCW 형태의 레이더 신호를 소정 시간간격으로 송신하고, 사람을 포함한 표적으로부터 반사되는 수신 신호로 IF 신호를 생성하고, 이를 디지털 신호로 변환한다.
본 발명에서는 FMCW((Frequency Modulated Continuous Wave) 레이더를 사용한다. FMCW 레이더는 주파수 변조된 신호를 연속적으로 발사하는 방식의 레이더이다. 침대에서의 환자(표적)의 움직임을 판단할 때, FMCW는 해상도가 UWB(Ultra wide band)방식에 비해 매우 우수하다(77Ghz의 FMCW은 3.75㎝, 24Ghz의 UWB는 60㎝에 불과하다). 또한, UWB방식은 24Ghz NB와 UWB(21.65~26.65GHz)의 2개의 주요 요소가 필요하고, 5GHz까지의 밴드폭을, ISM은 250Mhz의 밴드폭(Bandwidth)만 제공하지만, 60Ghz FMCW는 약 4Ghz의 밴드폭을 제공할 수 있다.
상기 디지털 신호 변환 단계는 신호 송수신부(10), 믹서(mixer, 20), LP 필터(30)를 통과한 아날로그 신호에 대해 아날로그 디지털 컨버터(ADC, 40)를 이용하여 디지털로 변환하는 단계이다.
상기 신호 송수신부(10)는 신호파형 생성부(11), 송신 안테나(12), 수신 안테나(13)을 포함할 수 있다.
송신 안테나(12) 신호파형 생성부에서 생성된 신호 파형에 해당하는 송신신호를 송신하고, 수신 안테나(13)는 전방에 위치하는 하나 이상의 표적들에서 반사된 반사신호를 수신한다.
상기 믹서(20)는 신호파형 생성부(11)로부터 송신신호(즉, 송신기준 신호)를 입력받고, 수신 안테나(13)로부터 반사신호(즉, 표적으로부터 반사된 수신신호)를 입력받아 이들을 혼합한 20Mhz대의 IF(Intermediate Frequency) 신호를 생성한다.
LP 필터(30)는 특정 주파수(cutoff 주파수)보다 낮은 주파수 신호만을 통과시키는 필터이다. LP 필터는 통과 가능한 주파수 범위를 제한할 수 있다.
상기 신호 송수신부(10), 믹서(20), LP 필터(30) 및 ADC(40)는 공지된 장치를 사용할 수 있다.
고속 푸리에 변환 단계는 상기 ADC(40)로부터 출력된 디지털 신호에 대해 고속푸리에 변환(Fast FourierTransform)을 수행하는 단계이다. 고속 푸리에 변환은 공지된 고속 푸리에 변환기를 사용할 수 있다.
상기 신호처리부(50)는 상기 고속 푸리에 변환을 통해 거리에 따른 주파수 정보(신호 파워)를 획득할 수 있다.
상기 신호 처리부는 공간 필터부(spatial filter)와 슈퍼 레졸류션(super resolution) 처리부를 포함할 수 있다.
또한, 신호 처리부(50)는 표적(사람의 가슴, chest)이 위치하는 레인지 빈(range bin) 범위에서 고속 푸리에 변환된 주파수 스펙트럼을 시간에 따라 배치(plot)할 수 있다.
상기 제어부는 고속 푸리에 변환된 주파수 스펙트럼을 통해 호흡/심박동 운동하는 표적이 위치하는 레인지 빈(range bin)을 선정할 수 있다.
상기 제어부는 생체 신호가 수신되는 좌표를 표적 레인지 빈(Range bin)으로 선정하는 단계를 포함할 수 있다.
상기 생체 신호는 신호의 위상변이가 주기적으로 반복되거나 표적까지의 거리 변동이 주기적으로 반복되는 신호일 수 있다.
도 1을 참고하면, 사람이 숨을 들이 쉬는 들숨(inhale)의 경우, 송수신부(10)와 표적(chest)과의 거리는 가까워지고, 숨을 내뱉는 날숨(exhale)의 경우, 송수신부(10)와 표적과의 거리는 들숨의 경우에 비해 좀 더 멀어진다.
송수신부와 표적까지의 거리 변동이 주기적으로 반복되므로, 수신된 신호 파형은 위상(phase) 변이된다. 도 5는 호흡에 의한 들숨과 날숨에 의한 송수신부와 가슴(표적)까지의 거리 변동으로 인해 수신되는 파형의 위상 변이를 보여준다. 도 5를 참고하면, 호흡에 의한 수신 파형의 위상이 주기적으로 변하므로, 상기 제어부는 반복되는 파형을 통해 호흡에 의한 신호인지 판단할 수 있을 뿐만 아니라 호흡수를 측정할 수 있다.
또한, 상기 제어부는 수신된 생체 신호 중 반복되는 파형의 주파수(진동수)가 호흡 신호에 비해 4배 이상 큰 경우 심박신호로 판단하고, 주파수를 통해 심박수를 측정할 수 있다.
도 3은 디지털 신호에 대한 고속 푸리에 변환의 스펙트럼으로서, 레인지(거리)에 따른 신호세기를 보여준다. 사람의 가슴(chest)에 대해 FMCW 레이더를 송수신한 경우, 이를 고속 푸리에 변환하면 도 3과 같이 두 개의 최대 피크가 (일정 간격을 두고) 연속하여 발생될 수 있다. 도 3을 참고하면, 들숨 피크와 날숨 피크 사이의 Range(거리) 차이는 호흡 운동시 가슴(늑골)의 운동거리를 나타낸다.
상기 제어부는 표적까지의 신호 피크 두 개가 연속하여 발생하는 거리(range)와 방위각(θ)을 표적이 위치하는 레인지 빈(Range bin)으로 선정할 수 있다.
상기 제어부는 속도와 3D 좌표(x, y, z)로도 표적이 위치하는 레인지 빈(Range bin)을 선정하여 표시할 수 있다.
도 4는 표적이 위치하는 레인지 빈의 예를 도시한 것이다. 레인지 빈은 임의 방위각으로 송신하여 수신한 레이더 신호를 단위 거리별로 처리한 것으로서, 일정 거리(bin space)별로 하나씩의 레인지 빈(레인지 빈에서의 cell로 표시)이 형성된다.
좀 더 구체적으로, 상기 표적(사람의 가슴)이 위치하는 레인지 빈을 선정하는 단계는 상기 IF 신호나 LP 필터를 통과한 신호를 0.1~0.6Hz 또는 0.8~4Hz 범위의 대역폭 필터(bandpass 필터)로 통과시킨 후 이를 디지털 신호로 변환하는 단계, 상기 디지털 신호 데이터에 대해 고속 푸리에 변환(FFT)을 수행하는 단계 및 표적까지의 신호 피크 두 개가 연속하여 발생하는 거리(range)와 방위각을 레인지 빈(Range bin)으로 선정하는 단계를 포함할 수 있다.
호흡수 측정인 경우, 상기 대역폭 필터는 통과 주파수 대역이 0.1~0.6Hz으로 설정되고, 심박수 측정인 경우, 통과 주파수 대역이 0.8~4Hz 범위로 설정될 수 있다.
한편, 본 발명은 레인지 빈을 선정하는 단계 이전에 전처리 단계를 수행할 수 있다. 상기 전처리 단계는 해당 표적인 사물인지, 움직이는 사람인지, 잠을 자는 사람인지, 사람의 부위 중 가슴(CHEST)인지를 추적하는 단계이다.
상기 전처리 단계에서는 LP 필터를 통과한 신호를 (상기 대역폭 필터 통과 없이) 디지털 신호로 변환하는 단계, 상기 디지털 신호 데이터에 대해 고속 푸리에 변환(FFT)을 수행하는 단계, 1차 고속푸리에 변환된 신호를 2차로 고속푸리에 변환하는 단계, 비표적을 제거하는 단계를 포함할 수 있다.
2차 고속 푸리에 변환 스펙트럼은 표적의 거리와 속도 정보를 제공하므로, 상기 프로세서는 속도가 0인 신호를 고정 표적(침대, 의자 등)으로 판단하여 제거할 수 있다. 또한, 상기 프로세서는 속도가 일정값(예를 들면, 5cm/sec) 이상 인 신호인 경우 움직이는 사람이거나 움직이는 팔이나 다리 부위로 판단하여 제거할 수 있다.
이와 같이, 본 발명은 상기 전처리 단계를 통해 비표적 신호를 먼저 제거 한 후 표적(사람의 가슴)이 위치하는 레인지 빈을 좀 더 정확하게 선정할 수 있다. 다만, 본 발명은 전처리 단계 없이 상기 레인지 빈을 선정할 수도 있다.
상기 공간 필터부(spatial filter)는 레인지 빈 구간(cell) 이외의 구간(cell)에서 수신되는 신호를 제거할 수 있다(공간 필터링 단계).
상기 슈퍼 레졸루션(super resolution) 처리부는 상기 레인지 빈 구간(cell) 내에서 수신되는 신호를 확대하여 좀 더 정확한 심호흡 신호를 추출할 수 있다. 즉, 슈퍼 레졸루션 처리부는 호흡 심박 신호를 더 확대하여 자연스럽지 않은 호흡에 대해서 추적할 수 있다. 슈퍼 레졸류션 처리부는 공지된 프로그램이나 방법(upsampling methods, model framework, network design, learning strategy)을 적용할 수 있다.
신호 처리부(50)는 표적이 위치하는 레인지 빈(도 5 참고) 구간에서의 피크를 시간에 따라 플롯(plot)하여 주파수 스펙트럼을 시간에 따라 처리할 수 있다.
도 5와 같이, 1차 고속푸리에 변환된 주파수 스펙트럼이 상기 신호처리부에 의해 시간과 거리로 표시될 수 있다. 또한, 도 6과 같이, 1차 고속푸리에 변환된 주파수 스펙트럼이 상기 신호처리부에 의해 시간과 위상으로 표시될 수 있다.
한편, 상기 신호 처리부는 도 3의 들숨과 날숨 신호를 하나의 신호로 생성하여 호흡 신호로 나타낼 수 있다. 예를 들면, 호흡 신호는 들숨과 날숨 신호의 거리와 파워의 중간 값으로 나타낼 수 있다.
상기 프로세서는, 도 5 또는 도 6과 같이, 시간에 따라 처리된 상기 주파수 스펙트럼을 통해 상기 호흡 또는 심박 패턴을 결정할 수 있다.
상기 프로세서는 상기 표적까지의 신호 피크 개수를 읽어 분(minute)당 심박수 또는 호흡수를 산정할 수 있다. 예를 들면, 도 4의 주파수 스펙트럼의 경우, 상기 프로세서는 1분에 12개의 피크가 카운팅되므로 호흡수는 12회/분으로 판정될 수 있고, 도 6의 주파수 스펙트럼의 경우, 상기 프로세서는 1분에 11개의 피크가 카운팅되므로 호흡수는 12회/분으로 판정될 수 있다.
도 7은 무호흡 상태의 주파수 스펙트럼의 예이다. 도 7을 참고하면, 상기 프로세서는 피크 폭(송수신부에서부터 가슴까지의 거리, 도 7에서 y축)이 기준 피크 폭에 비해 90% 이상 감소된 상태로 10초 이상 지속되므로 무호흡으로 판단할 수 있다.
또한, 상기 프로세서는 피크 폭(송수신부에서부터 가슴까지의 거리, y축)이 기준 피크 폭에 비해 30% 이상 감소된 상태로 10초 이상 지속되면 저호흡으로 판단할 수 있다.
또한, 상기 프로세서는 표적의 특정범위(대개 5미터 이내)의 실내 움직임, 호흡수, 맥박수, 반사해서 돌아오는 파장의 크기(Amplitude)를 입력 받아, 수면 시 수면 단계(wake, s1, s2, s3, s4(deep sleep), REM)를 공지된 CNN(Convolution neural network) 툴(tool)을 적용하여 파악할 수 있다.
이와 같이, 본 발명은 고속 푸리에 변환된 주파수 스펙트럼을 시간에 따라 플롯하여 호흡수, 심박수, 무호흡 또는 저호흡 등의 호흡 상태를 측정할 수 있고, 이외에도 정상적인 호흡 패턴과 다른 비정상 호흡 패턴을 측정할 수 있다.
본 발명은 앞에서 언급한 방법으로 무호흡이나 저호흡을 판정하는 것 이외에도 송수신된 신호 피크의 평균값의 급격한 변화(설정값 초과하는 경우)를 통해 비정상적인 호흡이나 심박상태를 판정할 수 있다.
또한, 본 발명은 다수의 표적(피험자)에 대한 생체 신호(vital sign)를 검출할 수 있다.
본 발명은 MIMO(Multiple Input Multiple Output) 기술을 활용하여 다수의 생체인식을 할 수 있다. 예를 들면, 본 발명은 송신기(TX) 개수별로 생체인식을 수행할 수 있는데, 2T4R 안테나 설계를 하면 T1(첫번째 출력안테나), R1, R2, R3, R4(수신안테나 첫번째부터 네번째)는 첫번째 사람의 생체신호(VitalSign)를 모니터링하며, T2(두번째 출력안테나), R1, R2, R3, R4는 2번째 사람의 생체신호를 인식할 수 있다. 출력안테나가 N개 이면(Tn), N 명의 생체 신호를 수신하여 인식할 수 있다.
이상에서 본 발명의 바람직한 구현예를 예로 들어 상세하게 설명하였으나, 이러한 설명은 단순히 본 발명의 예시적인 실시예를 설명 및 개시하는 것이다. 당업자는 본 발명의 범위 및 요지로부터 벗어남이 없이 상기 설명 및 첨부 도면으로부터 다양한 변경, 수정 및 변형예가 가능함을 용이하게 인식할 것이다.
본 발명의 호흡 심박 측정 방법 및 장치는 FMCW 레이더 신호를 이용하여 피험자의 호흡 패턴 또는 심박 패턴을 결정할 수 있다.

Claims (4)

  1. 송수신부에서 다중 채널 고속 FMCW 형태의 레이더 신호를 소정 시간간격으로 송신하고, 사람을 포함한 표적으로부터 반사되는 수신 신호로 IF 신호를 생성하고, 이를 디지털 신호로 변환하는 단계 ;
    상기 디지털 신호 데이터에 대해 고속 푸리에 변환(FFT)을 수행하는 단계 ;
    사람 가슴이 위치하는 표적 레인지 빈(Range bin)을 선정하는 단계 ;
    상기 표적 레인지 빈 구간(cell) 이외의 구간(cell)에서 수신되는 신호를 공간필터부(spatial filter)로 제거하는 공간 필터링 단계 ;
    상기 표적 레인지 빈 범위에서 고속 푸리에 변환된 주파수 스펙트럼을 시간에 따라 처리하는 단계 ;
    시간에 따라 처리된 상기 주파수 스펙트럼을 통해 호흡 또는 심박 패턴을 결정하는 단계를 포함하고,
    상기 레인지 빈은 임의 방위각으로 송신하여 수신한 레이더 신호를 단위 거리별로 처리한 것으로서, 일정 거리와 방위각에 따라 하나씩의 레인지 빈(레인지 빈에서 cell로 표시)이 형성되며,
    상기 사람 가슴이 위치하는 표적 레인지 빈(Range bin)을 선정하는 단계는
    상기 IF 신호를 0.1~0.6Hz 또는 0.8~4Hz 범위의 대역폭 필터로 통과시킨 후 이를 디지털 신호로 변환하는 단계 ;
    상기 디지털 신호 데이터에 대해 고속 푸리에 변환(FFT)을 수행하는 단계 ; 및
    생체 신호가 수신되는 좌표를 표적 레인지 빈(Range bin)으로 선정하는 단계를 포함하고,
    상기 생체 신호는 고속 푸리에 변환(FFT)된 신호의 위상변이가 주기적으로 반복되거나 표적까지의 거리 변동이 주기적으로 반복되는 신호이고, 여기서, 표적까지의 거리 변동이 주기적으로 반복되는 상기 신호는 들숨과 날숨의 반복에 따른 두 개의 최대 피크가 연속하여 발생하는 신호인 것들 특징으로 하는 호흡 심박 측정 방법.
  2. 제 1항에 있어서, 상기 호흡 심박 측정방법은 상기 레인지 빈(Range bin) 선정 단계 후에, 상기 레인지 빈 구간(cell) 내에서 수신되는 신호를 슈퍼 레졸루션 처리부로 확대하여 비정상 상태의 호흡을 판정하는 것을 특징으로 하는 호흡 심박 측정방법.
  3. 제 1항에 있어서, 상기 호흡 또는 심박 패턴을 결정하는 단계는
    소정 시간 동안의 신호 피크 개수를 읽어 분(minute)당 심박수 또는 호흡수를 산정하는 단계인 것을 특징으로 하는 호흡 심박 측정방법.
  4. 제 1항에 있어서, 상기 호흡 또는 심박 패턴을 결정하는 단계는
    시간에 대한 피크 폭(송수신부에서부터 가슴까지의 거리, y축)이 기준 피크 폭에 비해 90% 이상 감소된 상태로 10초 이상 지속되면 무호흡으로 판단하고,
    시간에 대한 피크 폭(송수신부에서부터 가슴까지의 거리, y축)이 기준 피크 폭에 비해 30% 이상 감소된 상태로 10초 이상 지속되면 저 호흡으로 판단하는 것을 특징으로 하는 호흡 심박 측정방법.
PCT/KR2020/009684 2019-07-25 2020-07-23 Fmcw 레이더를 이용한 위치 추적 및 호흡 패턴 측정 방법 및 장치 WO2021015559A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0090167 2019-07-25
KR1020190090167A KR102091974B1 (ko) 2019-07-25 2019-07-25 Fmcw 레이더를 이용한 위치 추적 및 호흡(심박) 패턴 측정 방법

Publications (1)

Publication Number Publication Date
WO2021015559A1 true WO2021015559A1 (ko) 2021-01-28

Family

ID=70004422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009684 WO2021015559A1 (ko) 2019-07-25 2020-07-23 Fmcw 레이더를 이용한 위치 추적 및 호흡 패턴 측정 방법 및 장치

Country Status (2)

Country Link
KR (1) KR102091974B1 (ko)
WO (1) WO2021015559A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113616188A (zh) * 2021-08-11 2021-11-09 燕山大学 一种基于不可听声音调频连续波的呼吸监测方法
CN114983373A (zh) * 2022-06-02 2022-09-02 谢俊 一种检测人体心率的方法
CN115153459A (zh) * 2022-04-25 2022-10-11 西南交通大学 一种吸顶式毫米波雷达心跳呼吸检测装置及检测方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091974B1 (ko) * 2019-07-25 2020-03-24 정기섭 Fmcw 레이더를 이용한 위치 추적 및 호흡(심박) 패턴 측정 방법
KR102229999B1 (ko) * 2020-09-28 2021-03-22 주식회사 피플멀티 측정 대상의 가슴 변위를 통한 호흡 측정 장치
GB2600975B (en) 2020-11-13 2024-10-02 Elotec As Optimization of dataset
KR102444685B1 (ko) * 2020-11-18 2022-09-19 숭실대학교 산학협력단 크기와 위상 사이의 코히어런시에 기반한 활력 징후 측정 거리 결정 장치 및 방법
KR102449965B1 (ko) * 2020-11-28 2022-09-30 동서대학교 산학협력단 피플카운팅(People Counting) 및 추적(Tracking)이 가능한 스마트 레이더 시스템
KR102370213B1 (ko) * 2020-12-02 2022-03-04 한국전자기술연구원 비접촉식 심박수 측정 시스템 및 그 방법
CN113017602B (zh) * 2021-02-26 2023-02-07 福州康达八方电子科技有限公司 一种呼吸频率测量方法及体征监测仪
CN113384264B (zh) * 2021-06-11 2023-06-06 森思泰克河北科技有限公司 基于雷达的呼吸频率检测方法及睡眠监测设备
KR102687146B1 (ko) * 2021-12-24 2024-07-22 한국전자기술연구원 생체 신호 감지를 위한 fmcw 레이다 목표물 탐지 측정 방법
KR20230114842A (ko) 2022-01-25 2023-08-02 주식회사 엘케이에스글로벌 생체 모니터링 및 케어 시스템에서의 생체 신호 측정 장치
KR20230114497A (ko) 2022-01-25 2023-08-01 주식회사 엘케이에스글로벌 독거 노인에 대한 돌봄 서비스를 위한 생체 모니터링 및 케어 시스템
KR102654009B1 (ko) 2022-01-25 2024-04-03 주식회사 엘케이에스글로벌 원격 의료를 위한 생체 모니터링 및 케어 시스템에서의 생체 신호 측정 장치용 거치대
KR20230123699A (ko) * 2022-02-17 2023-08-24 주식회사 에이유 비접촉식 생체 신호 측정 시스템 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110008080A (ko) * 2008-04-03 2011-01-25 카이 메디컬, 아이엔씨. 비접촉식 생리학적 모션 센서 및 모션 센서의 사용 방법
KR20150102854A (ko) * 2014-02-28 2015-09-08 한국과학기술원 주파수 변조 및 연속파를 이용한 큐밴드 장거리 레이더 시스템 및 방법
JP2018504166A (ja) * 2014-12-08 2018-02-15 ユニヴァーシティ オブ ワシントン 対象の運動を識別するシステム及び方法
KR20180032980A (ko) * 2016-09-23 2018-04-02 엘지이노텍 주식회사 생체신호 측정 장치 및 이를 이용한 생체신호 측정방법
KR101995966B1 (ko) * 2016-10-27 2019-07-04 비아이에스웍스 주식회사 주파수 분석과 시간 분석을 결합한 호흡 측정 장치 및 방법
KR102091974B1 (ko) * 2019-07-25 2020-03-24 정기섭 Fmcw 레이더를 이용한 위치 추적 및 호흡(심박) 패턴 측정 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110008080A (ko) * 2008-04-03 2011-01-25 카이 메디컬, 아이엔씨. 비접촉식 생리학적 모션 센서 및 모션 센서의 사용 방법
KR20150102854A (ko) * 2014-02-28 2015-09-08 한국과학기술원 주파수 변조 및 연속파를 이용한 큐밴드 장거리 레이더 시스템 및 방법
JP2018504166A (ja) * 2014-12-08 2018-02-15 ユニヴァーシティ オブ ワシントン 対象の運動を識別するシステム及び方法
KR20180032980A (ko) * 2016-09-23 2018-04-02 엘지이노텍 주식회사 생체신호 측정 장치 및 이를 이용한 생체신호 측정방법
KR101995966B1 (ko) * 2016-10-27 2019-07-04 비아이에스웍스 주식회사 주파수 분석과 시간 분석을 결합한 호흡 측정 장치 및 방법
KR102091974B1 (ko) * 2019-07-25 2020-03-24 정기섭 Fmcw 레이더를 이용한 위치 추적 및 호흡(심박) 패턴 측정 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113616188A (zh) * 2021-08-11 2021-11-09 燕山大学 一种基于不可听声音调频连续波的呼吸监测方法
CN113616188B (zh) * 2021-08-11 2022-10-04 燕山大学 一种基于不可听声音调频连续波的呼吸监测方法
CN115153459A (zh) * 2022-04-25 2022-10-11 西南交通大学 一种吸顶式毫米波雷达心跳呼吸检测装置及检测方法
CN114983373A (zh) * 2022-06-02 2022-09-02 谢俊 一种检测人体心率的方法

Also Published As

Publication number Publication date
KR102091974B1 (ko) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2021015559A1 (ko) Fmcw 레이더를 이용한 위치 추적 및 호흡 패턴 측정 방법 및 장치
AU2021225208B2 (en) Anaesthesia and Consciousness Depth Monitoring System
Helfenbein et al. Development of three methods for extracting respiration from the surface ECG: A review
JP6884433B2 (ja) 睡眠無呼吸測定装置及びその方法
CN105072994B (zh) 用于呼吸监测的方法和设备
Vaughn et al. Technical review of polysomnography
US8679034B2 (en) Techniques for prediction and monitoring of clinical episodes
US7314451B2 (en) Techniques for prediction and monitoring of clinical episodes
EP3431001A1 (en) Sleep apnea monitoring system
Pullano et al. Medical devices for pediatric apnea monitoring and therapy: past and new trends
IL100080A (en) A presentation system for determining a person's sleep stages
JP2010110631A (ja) 意識を監視するための方法および装置
CN111603138A (zh) 一种基于毫米波雷达的睡眠呼吸暂停监测系统
Chokroverty et al. Polysomnographic recording technique
Qiu et al. A wearable bioimpedance chest patch for real-time ambulatory respiratory monitoring
Jung et al. Estimation of tidal volume using load cells on a hospital bed
West et al. Continuous monitoring of respiratory variables during sleep by microcomputer
EP1859733B1 (de) Verfahren und Vorrichtung zur Korrelation von Signalen der Atmung des Herz-Kreislauf-Systems
Moradhasel et al. Chin electromyogram, an effectual and useful biosignal for the diagnosis of obstructive sleep apnea
Sharma Radio-Frequency Sensor Applications for Assisted Living
US20240277284A1 (en) Activity state prediction system, activity state prediction method, and program
CN115105035B (zh) 生理特征检测方法、装置、计算机设备和存储介质
Karmakar et al. Wireless Monitoring of Sleep Apnoea Patients
Lee Diagnosis of Obstructive Sleep Apnea Using ECG Sensor Computer-Aided Diagnosis with Portable ECG Recorder and Acceleration Sensors for Detecting Obstructive Sleep Apnea
EP1969999B1 (en) Miniature, wireless apparatus for processing physiological signals and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20844662

Country of ref document: EP

Kind code of ref document: A1