WO2021015302A1 - 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법 - Google Patents

이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법 Download PDF

Info

Publication number
WO2021015302A1
WO2021015302A1 PCT/KR2019/008928 KR2019008928W WO2021015302A1 WO 2021015302 A1 WO2021015302 A1 WO 2021015302A1 KR 2019008928 W KR2019008928 W KR 2019008928W WO 2021015302 A1 WO2021015302 A1 WO 2021015302A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
value
microphones
speaker
ssl
Prior art date
Application number
PCT/KR2019/008928
Other languages
English (en)
French (fr)
Inventor
신원호
맹지찬
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2019/008928 priority Critical patent/WO2021015302A1/ko
Priority to US16/489,690 priority patent/US11565426B2/en
Priority to KR1020190103610A priority patent/KR102647055B1/ko
Publication of WO2021015302A1 publication Critical patent/WO2021015302A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/003Controls for manipulators by means of an audio-responsive input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/801Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/8083Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/025Transducer mountings or cabinet supports enabling variable orientation of transducer of cabinet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]

Definitions

  • the present invention relates to a method for tracking the position of a speaker in a mobile robot and to a mobile robot operating according to the method.
  • robots deployed in airports like this are operated by recognizing the starting words, but since it is an airport with a large number of people coming and going, it is difficult for a robot to know which of these many people called.
  • the speaker's voice can be directly transmitted to the microphone installed in the robot, so it may be easier to find the speaker's location, but there are cases where the speaker's voice cannot be transmitted directly to the tall robot. There is difficulty in finding the location of the speaker.
  • a commonly used method for finding the position of a speaker in a robot is to use the GCC (Generalized Cross Correlation) algorithm.
  • 1 is a diagram for explaining the concept of a GCC algorithm. Assuming that the first microphone mic1 and the second microphone mic2 are on the same line, the first microphone and the second microphone are separated by a first distance d, so the first microphone and the speaker (sound source) The distance between the second microphone and the speaker becomes larger by ⁇ than the distance between them. And, assuming that the speaker is inclined by a first angle ( ⁇ ) with respect to a normal line perpendicular to a straight line connecting the first microphone (mic 1) and the second microphone (mic 2), the angle ( ⁇ ) is a trigonometric method. Since it can be obtained based on, it is possible to track the speaker's direction.
  • such a GCC algorithm is a method of estimating the direction of a speaker by using a time difference (TDOA) of voices input to two microphones.
  • TDOA time difference
  • the robot can include at least two microphones, with two microphones installed at the front and one at the rear, respectively.
  • the microphone installed at the rear of the robot cannot be transmitted because the sound is blocked by the robot, or the pickup rate of the microphone installed at the rear is lowered so that the GCC value cannot be calculated. Since we do not know the direction in which the speaker is located, we cannot estimate the speaker's position.
  • the present invention is to more accurately track the direction in which the speaker is located based on the maneuvering word received from the mobile robot.
  • An embodiment of the present invention relates to a method of searching for a direction in which a starting word is uttered in a mobile robot including first to fourth microphones installed at each corner of a square, and disposed at the first and third vertices in the diagonal direction, respectively.
  • Receiving a starting word through the first and third microphones based on the received starting word, a first reference value of the first microphone and a second reference value of the third microphone, and the obtained first and second microphones 2 Comparing a reference value to select the first microphone, SSL (Sound Source Localization) based on the selected first microphone and the second microphone disposed at a second vertex facing the front in the same manner as the first microphone It includes calculating a value to track the speaker's position.
  • SSL Sound Source Localization
  • the first and second reference values are one of a gain of a microphone, a confidence score (speech recognition rate), and a time taken for the first and third microphones to receive the maneuvering word.
  • the method comprises obtaining a third reference value between the first microphone and a fourth microphone disposed at a fourth vertex and a fourth reference value between the second microphone and the third microphone disposed at the second vertex, respectively, and
  • the step of comparing the third and fourth reference values to select the fourth microphone, and the step of tracking the position of the speaker includes a first microphone based on the first and second microphones among the selected first, second, and fourth microphones.
  • the speaker's position is calculated based on the 1 SSL value and the SSL2 value based on the first and fourth microphones.
  • the method includes determining whether the first SSL value falls within a first angular range, and as a result of the determination, if the first SSL value falls within a first angular range, the first SSL value is transferred to the speaker's position.
  • the method further includes determining, wherein the first angle range is a value preset to an angle at which the first and second microphones can normally receive the speaker based on the center of the robot.
  • the method comprises the steps of determining whether the second SSL value falls within a second angle range, if the first SSL value does not fall within the first angle range, and the determination result, the second SSL value is zero. 2, if within the angular range, further comprising determining the second SSL value as the speaker's position, wherein the second angular range is based on the center of the robot, and the first and fourth microphones normally use the speaker. This is a preset angle that can be received.
  • the square is a rectangle, and a distance between the first and second microphones is shorter than a distance between the first and fourth microphones, and the first angular range is greater than the second angular range.
  • the first angle range is a value set between 270 degrees and 90 degrees
  • the second angle range is a value set between 240 degrees and 310 degrees
  • the first angle range partially overlaps with the second angle range. Is set.
  • the third and fourth reference values are a gain of a microphone, the third reference value is a sum of the gains of the first microphone and the fourth microphone, and the fourth reference value is the second microphone and the third This is the sum of the microphone gains.
  • an artificial robot driven according to the method is also disclosed.
  • one of the front and the rear of the four orientations is selected, and one of the left and right directions is selected, and the direction in which the speaker is located is determined based on the GCC value according to the selected orientation. I can track it accurately.
  • 1 is a diagram for explaining the concept of a GCC algorithm.
  • FIG. 2 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • FIG. 3 is a diagram showing an example of a signal transmission/reception method in a wireless communication system.
  • FIG. 4 shows an example of a basic operation of a user terminal and a 5G network in a 5G communication system.
  • 5 and 6 are views showing functional blocks and appearances of a mobile robot according to an embodiment of the present invention, respectively.
  • FIG. 7 and 8 are views exemplarily explaining an operation when a mobile robot recognizes an activation word.
  • 9 and 10 are diagrams for explaining a method of tracking a direction in which a speaker is located by selecting two microphones respectively disposed before and after based on a received maneuvering word according to an embodiment of the present invention.
  • 9 and 10 are diagrams for explaining a method of tracking a direction in which a speaker is located by selecting two microphones respectively disposed before and after based on a received maneuvering word according to an embodiment of the present invention.
  • 11 and 12 are diagrams for explaining a method of tracking a direction in which a speaker is located by selecting two microphones respectively disposed on the left and right based on the received maneuvering word according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a front and rear first angle range and a left and right second angle range for increasing the recognition rate.
  • AI 5G communication required by the device and / or the AI processor requiring the processed information (5 th generation mobile communication) will be described in paragraphs A through G to paragraph.
  • FIG. 2 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • a device including an AI module is defined as a first communication device (910 in FIG. 1 ), and a processor 911 may perform a detailed AI operation.
  • a 5G network including another device (AI server) that communicates with the AI device may be a second communication device (920 in FIG. 1), and the processor 921 may perform detailed AI operations.
  • the 5G network may be referred to as the first communication device and the AI device may be referred to as the second communication device.
  • the first communication device or the second communication device may be a base station, a network node, a transmission terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, and a connected car.
  • drone Unmanned Aerial Vehicle, UAV
  • AI Artificial Intelligence
  • robot Robot
  • AR Algmented Reality
  • VR Virtual Reality
  • MR Magnetic
  • hologram device public safety device
  • MTC device IoT devices
  • medical devices fintech devices (or financial devices)
  • security devices climate/environment devices, devices related to 5G services, or other devices related to the 4th industrial revolution field.
  • a terminal or user equipment is a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistants (PDA), a portable multimedia player (PMP), a navigation system, and a slate PC.
  • PDA personal digital assistants
  • PMP portable multimedia player
  • slate PC slate PC
  • tablet PC ultrabook
  • wearable device e.g., smartwatch, smart glass
  • head mounted display HMD
  • the HMD may be a display device worn on the head.
  • HMD can be used to implement VR, AR or MR.
  • a drone may be a vehicle that is not human and is flying by a radio control signal.
  • the VR device may include a device that implements an object or a background of a virtual world.
  • the AR device may include a device that connects and implements an object or background of a virtual world, such as an object or background of the real world.
  • the MR device may include a device that combines and implements an object or background of a virtual world, such as an object or background of the real world.
  • the hologram device may include a device that implements a 360-degree stereoscopic image by recording and reproducing stereoscopic information by utilizing an interference phenomenon of light generated by the encounter of two laser lights called holography.
  • the public safety device may include an image relay device or an image device wearable on a user's human body.
  • the MTC device and the IoT device may be devices that do not require direct human intervention or manipulation.
  • the MTC device and the IoT device may include a smart meter, a bending machine, a thermometer, a smart light bulb, a door lock, or various sensors.
  • the medical device may be a device used for the purpose of diagnosing, treating, alleviating, treating or preventing a disease.
  • the medical device may be a device used for the purpose of diagnosing, treating, alleviating or correcting an injury or disorder.
  • a medical device may be a device used for the purpose of examining, replacing or modifying a structure or function.
  • the medical device may be a device used for the purpose of controlling pregnancy.
  • the medical device may include a device for treatment, a device for surgery, a device for (extra-corporeal) diagnosis, a device for hearing aid or a procedure.
  • the security device may be a device installed to prevent a risk that may occur and maintain safety.
  • the security device may be a camera, CCTV, recorder, or black box.
  • the fintech device may be a device capable of providing financial services such as mobile payment.
  • the first communication device 910 and the second communication device 920 include a processor (processor, 911,921), a memory (memory, 914,924), one or more Tx/Rx RF modules (radio frequency modules, 915,925). , Tx processors 912 and 922, Rx processors 913 and 923, and antennas 916 and 926.
  • the Tx/Rx module is also called a transceiver. Each Tx/Rx module 915 transmits a signal through a respective antenna 926.
  • the processor implements the previously salpin functions, processes and/or methods.
  • the processor 921 may be associated with a memory 924 that stores program code and data.
  • the memory may be referred to as a computer-readable medium.
  • the transmission (TX) processor 912 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • the receive (RX) processor implements the various signal processing functions of L1 (ie, the physical layer).
  • the UL (communication from the second communication device to the first communication device) is handled in the first communication device 910 in a manner similar to that described with respect to the receiver function in the second communication device 920.
  • Each Tx/Rx module 925 receives a signal through a respective antenna 926.
  • Each Tx/Rx module provides an RF carrier and information to the RX processor 923.
  • the processor 921 may be associated with a memory 924 that stores program code and data.
  • the memory may be referred to as a computer-readable medium.
  • the first communication device may be a vehicle
  • the second communication device may be a 5G network.
  • FIG. 3 is a diagram showing an example of a signal transmission/reception method in a wireless communication system.
  • the UE when the UE is powered on or newly enters a cell, the UE performs an initial cell search operation such as synchronizing with the BS (S201). To this end, the UE receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the BS, synchronizes with the BS, and obtains information such as cell ID. can do.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the UE may obtain intra-cell broadcast information by receiving a physical broadcast channel (PBCH) from the BS.
  • PBCH physical broadcast channel
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the UE may perform a random access procedure (RACH) for the BS (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and a random access response for the preamble through the PDCCH and the corresponding PDSCH (random access response, RAR) message can be received (S204 and S206).
  • PRACH physical random access channel
  • RAR random access response
  • a contention resolution procedure may be additionally performed.
  • the UE receives PDCCH/PDSCH (S207) and physical uplink shared channel (PUSCH)/physical uplink control channel as a general uplink/downlink signal transmission process.
  • Uplink control channel, PUCCH) transmission (S208) may be performed.
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the UE monitors the set of PDCCH candidates from monitoring opportunities set in one or more control element sets (CORESET) on the serving cell according to the corresponding search space configurations.
  • the set of PDCCH candidates to be monitored by the UE is defined in terms of search space sets, and the search space set may be a common search space set or a UE-specific search space set.
  • the CORESET consists of a set of (physical) resource blocks with a time duration of 1 to 3 OFDM symbols.
  • the network can configure the UE to have multiple CORESETs.
  • the UE monitors PDCCH candidates in one or more search space sets. Here, monitoring means attempting to decode PDCCH candidate(s) in the search space. If the UE succeeds in decoding one of the PDCCH candidates in the discovery space, the UE determines that the PDCCH has been tracked in the corresponding PDCCH candidate, and performs PDSCH reception or PUSCH transmission based on the tracked DCI in the PDCCH.
  • the PDCCH can be used to schedule DL transmissions on the PDSCH and UL transmissions on the PUSCH.
  • the DCI on the PDCCH is a downlink assignment (i.e., downlink grant; DL grant) including at least information on modulation and coding format and resource allocation related to a downlink shared channel, or uplink It includes an uplink grant (UL grant) including modulation and coding format and resource allocation information related to the shared channel.
  • downlink grant i.e., downlink grant; DL grant
  • UL grant uplink grant
  • an initial access (IA) procedure in a 5G communication system will be additionally described.
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • the SSB consists of PSS, SSS and PBCH.
  • the SSB is composed of 4 consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH or PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Cell discovery refers to a process in which the UE acquires time/frequency synchronization of a cell and tracks a cell ID (eg, Physical layer Cell ID, PCI) of the cell.
  • PSS is used to track a cell ID within a cell ID group
  • SSS is used to track a cell ID group.
  • PBCH is used for SSB (time) index tracking and half-frame tracking.
  • 336 cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs. Information on the cell ID group to which the cell ID of the cell belongs is provided/obtained through the SSS of the cell, and information on the cell ID among 336 cells in the cell ID is provided/obtained through the PSS.
  • the SSB is transmitted periodically according to the SSB period.
  • the SSB basic period assumed by the UE during initial cell search is defined as 20 ms. After cell access, the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by the network (eg, BS).
  • SI is divided into a master information block (MIB) and a plurality of system information blocks (SIB). SI other than MIB may be referred to as RMSI (Remaining Minimum System Information).
  • the MIB includes information/parameters for monitoring a PDCCH scheduling a PDSCH carrying a System Information Block1 (SIB1), and is transmitted by the BS through the PBCH of the SSB.
  • SIB1 includes information related to availability and scheduling (eg, transmission period, SI-window size) of the remaining SIBs (hereinafter, SIBx, x is an integer greater than or equal to 2). SIBx is included in the SI message and is transmitted through the PDSCH. Each SI message is transmitted within a periodic time window (ie, SI-window).
  • RA random access
  • the random access process is used for various purposes.
  • the random access procedure may be used for initial network access, handover, and UE-triggered UL data transmission.
  • the UE may acquire UL synchronization and UL transmission resources through a random access process.
  • the random access process is divided into a contention-based random access process and a contention free random access process.
  • the detailed procedure for the contention-based random access process is as follows.
  • the UE may transmit the random access preamble as Msg1 in the random access procedure in the UL through the PRACH.
  • Random access preamble sequences having two different lengths are supported. Long sequence length 839 is applied for subcarrier spacing of 1.25 and 5 kHz, and short sequence length 139 is applied for subcarrier spacing of 15, 30, 60 and 120 kHz.
  • the BS When the BS receives the random access preamble from the UE, the BS transmits a random access response (RAR) message (Msg2) to the UE.
  • RAR random access response
  • the PDCCH for scheduling the PDSCH carrying the RAR is transmitted after being CRC masked with a random access (RA) radio network temporary identifier (RNTI) (RA-RNTI).
  • RA-RNTI random access radio network temporary identifier
  • the UE tracking the PDCCH masked with RA-RNTI may receive the RAR from the PDSCH scheduled by the DCI carried by the PDCCH.
  • the UE checks whether the preamble transmitted by the UE, that is, random access response information for Msg1, is in the RAR.
  • Whether there is random access information for Msg1 transmitted by the UE may be determined based on whether a random access preamble ID for a preamble transmitted by the UE exists. If there is no response to Msg1, the UE may retransmit the RACH preamble within a predetermined number of times while performing power ramping. The UE calculates the PRACH transmission power for retransmission of the preamble based on the most recent path loss and power ramping counter.
  • the UE may transmit UL transmission as Msg3 in a random access procedure on an uplink shared channel based on random access response information.
  • Msg3 may include an RRC connection request and a UE identifier.
  • the network may send Msg4, which may be treated as a contention resolution message on the DL. By receiving Msg4, the UE can enter the RRC connected state.
  • the BM process may be divided into (1) a DL BM process using SSB or CSI-RS and (2) a UL BM process using a sounding reference signal (SRS).
  • each BM process may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
  • CSI channel state information
  • the UE receives a CSI-ResourceConfig IE including CSI-SSB-ResourceSetList for SSB resources used for BM from BS.
  • the RRC parameter csi-SSB-ResourceSetList represents a list of SSB resources used for beam management and reporting in one resource set.
  • the SSB resource set may be set to ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ⁇ .
  • the SSB index may be defined from 0 to 63.
  • the UE receives signals on SSB resources from the BS based on the CSI-SSB-ResourceSetList.
  • the UE reports the best SSBRI and the corresponding RSRP to the BS.
  • the reportQuantity of the CSI-RS reportConfig IE is set to'ssb-Index-RSRP', the UE reports the best SSBRI and corresponding RSRP to the BS.
  • the UE When the UE is configured with CSI-RS resources in the same OFDM symbol(s) as the SSB, and'QCL-TypeD' is applicable, the UE is similarly co-located in terms of'QCL-TypeD' where the CSI-RS and SSB are ( quasi co-located, QCL).
  • QCL-TypeD may mean that QCL is performed between antenna ports in terms of a spatial Rx parameter.
  • the Rx beam determination (or refinement) process of the UE using CSI-RS and the Tx beam sweeping process of the BS are sequentially described.
  • the repetition parameter is set to'ON'
  • the Tx beam sweeping process of the BS is set to'OFF'.
  • the UE receives the NZP CSI-RS resource set IE including the RRC parameter for'repetition' from the BS through RRC signaling.
  • the RRC parameter'repetition' is set to'ON'.
  • the UE repeats signals on the resource(s) in the CSI-RS resource set in which the RRC parameter'repetition' is set to'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the BS Receive.
  • the UE determines its own Rx beam.
  • the UE omits CSI reporting. That is, the UE may omit CSI reporting when the shopping price RRC parameter'repetition' is set to'ON'.
  • the UE receives the NZP CSI-RS resource set IE including the RRC parameter for'repetition' from the BS through RRC signaling.
  • the RRC parameter'repetition' is set to'OFF', and is related to the Tx beam sweeping process of the BS.
  • the UE receives signals on resources in the CSI-RS resource set in which the RRC parameter'repetition' is set to'OFF' through different Tx beams (DL spatial domain transmission filters) of the BS.
  • Tx beams DL spatial domain transmission filters
  • the UE selects (or determines) the best beam.
  • the UE reports the ID (eg, CRI) and related quality information (eg, RSRP) for the selected beam to the BS. That is, when the CSI-RS is transmitted for the BM, the UE reports the CRI and the RSRP for it to the BS.
  • ID eg, CRI
  • RSRP related quality information
  • the UE receives RRC signaling (eg, SRS-Config IE) including a usage parameter set as'beam management' (RRC parameter) from the BS.
  • SRS-Config IE is used for SRS transmission configuration.
  • SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
  • the UE determines Tx beamforming for the SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE.
  • SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beamforming as the beamforming used in SSB, CSI-RS or SRS for each SRS resource.
  • SRS-SpatialRelationInfo is set in the SRS resource, the same beamforming as that used in SSB, CSI-RS or SRS is applied and transmitted. However, if SRS-SpatialRelationInfo is not set in the SRS resource, the UE randomly determines Tx beamforming and transmits the SRS through the determined Tx beamforming.
  • BFR beam failure recovery
  • Radio Link Failure may frequently occur due to rotation, movement, or beamforming blockage of the UE. Therefore, BFR is supported in NR to prevent frequent RLF from occurring. BFR is similar to the radio link failure recovery process, and may be supported when the UE knows the new candidate beam(s).
  • the BS sets beam failure tracking reference signals to the UE, and the UE sets the number of beam failure indications from the physical layer of the UE within a period set by RRC signaling of the BS. When a threshold set by RRC signaling is reached (reach), a beam failure is declared.
  • the UE triggers beam failure recovery by initiating a random access procedure on the PCell; Beam failure recovery is performed by selecting a suitable beam (if the BS has provided dedicated random access resources for certain beams, they are prioritized by the UE). Upon completion of the random access procedure, it is considered that beam failure recovery is complete.
  • URLLC transmission as defined by NR is (1) relatively low traffic size, (2) relatively low arrival rate, (3) extremely low latency requirement (e.g. 0.5, 1ms), (4) It may mean a relatively short transmission duration (eg, 2 OFDM symbols), and (5) transmission of an urgent service/message.
  • transmission for a specific type of traffic e.g., URLLC
  • eMBB previously scheduled transmission
  • eMBB and URLLC services can be scheduled on non-overlapping time/frequency resources, and URLLC transmission can occur on resources scheduled for ongoing eMBB traffic.
  • the eMBB UE may not be able to know whether the PDSCH transmission of the UE is partially punctured, and the UE may not be able to decode the PDSCH due to corrupted coded bits.
  • the NR provides a preemption indication.
  • the preemption indication may be referred to as an interrupted transmission indication.
  • the UE receives the DownlinkPreemption IE through RRC signaling from the BS.
  • the UE is configured with the INT-RNTI provided by the parameter int-RNTI in the DownlinkPreemption IE for monitoring of the PDCCH carrying DCI format 2_1.
  • the UE is additionally configured with a set of serving cells by an INT-ConfigurationPerServing Cell including a set of serving cell indexes provided by servingCellID and a corresponding set of positions for fields in DCI format 2_1 by positionInDCI, and dci-PayloadSize It is set with the information payload size for DCI format 2_1 by, and is set with the indication granularity of time-frequency resources by timeFrequencySect.
  • the UE receives DCI format 2_1 from the BS based on the DownlinkPreemption IE.
  • the UE When the UE tracks the DCI format 2_1 for the serving cell in the set set of serving cells, the UE is the DCI format among the set of PRBs and symbols in the monitoring period last monitoring period to which the DCI format 2_1 belongs. It can be assumed that there is no transmission to the UE in the PRBs and symbols indicated by 2_1. For example, the UE sees that the signal in the time-frequency resource indicated by the preemption is not a DL transmission scheduled to it, and decodes data based on the signals received in the remaining resource regions.
  • Massive Machine Type Communication is one of the 5G scenarios to support hyper-connection services that simultaneously communicate with a large number of UEs.
  • the UE communicates intermittently with a very low transmission rate and mobility. Therefore, mMTC aims at how low cost the UE can be moved for a long time.
  • 3GPP deals with MTC and NB (NarrowBand)-IoT.
  • the mMTC technology has features such as repetitive transmission of PDCCH, PUCCH, physical downlink shared channel (PDSCH), PUSCH, etc., frequency hopping, retuning, and guard period.
  • a PUSCH (or PUCCH (especially, long PUCCH) or PRACH) including specific information and a PDSCH (or PDCCH) including a response to specific information are repeatedly transmitted.
  • Repetitive transmission is performed through frequency hopping, and for repetitive transmission, (RF) retuning is performed in a guard period from a first frequency resource to a second frequency resource, and specific information
  • RF repetitive transmission
  • the response to specific information may be transmitted/received through a narrowband (ex. 6 resource block (RB) or 1 RB).
  • FIG. 4 shows an example of a basic operation of a user terminal and a 5G network in a 5G communication system.
  • the UE transmits specific information transmission to the 5G network (S1). And, the 5G network performs 5G processing on the specific information (S2). Here, 5G processing may include AI processing. Then, the 5G network transmits a response including the AI processing result to the UE (S3).
  • the UE performs an initial access procedure and random access with the 5G network prior to step S1 of FIG. random access) procedure.
  • the UE performs an initial access procedure with the 5G network based on the SSB to obtain DL synchronization and system information.
  • a beam management (BM) process and a beam failure recovery process may be added, and a QCL (quasi-co location) relationship in a process in which the UE receives a signal from the 5G network Can be added.
  • QCL quadsi-co location
  • the UE performs a random access procedure with the 5G network for UL synchronization acquisition and/or UL transmission.
  • the 5G network may transmit a UL grant for scheduling transmission of specific information to the UE. Therefore, the UE transmits specific information to the 5G network based on the UL grant.
  • the 5G network transmits a DL grant for scheduling transmission of a 5G processing result for the specific information to the UE. Accordingly, the 5G network may transmit a response including the AI processing result to the UE based on the DL grant.
  • the UE may receive a DownlinkPreemption IE from the 5G network. And, the UE receives a DCI format 2_1 including a pre-emption indication from the 5G network based on the DownlinkPreemption IE. In addition, the UE does not perform (or expect or assume) reception of eMBB data in the resource (PRB and/or OFDM symbol) indicated by the pre-emption indication. Thereafter, the UE may receive a UL grant from the 5G network when it is necessary to transmit specific information.
  • the UE receives a UL grant from the 5G network to transmit specific information to the 5G network.
  • the UL grant includes information on the number of repetitions for transmission of the specific information, and the specific information may be repeatedly transmitted based on the information on the number of repetitions. That is, the UE transmits specific information to the 5G network based on the UL grant.
  • repetitive transmission of specific information may be performed through frequency hopping, transmission of first specific information may be transmitted in a first frequency resource, and transmission of second specific information may be transmitted in a second frequency resource.
  • the specific information may be transmitted through a narrowband of 6RB (Resource Block) or 1RB (Resource Block).
  • 5 and 6 are views showing functional blocks and appearances of a mobile robot according to an embodiment of the present invention, respectively.
  • the mobile robot 100 may be disposed in an airport or the like to provide a user with patrol, directions, luggage information, airport information, take-off and landing information, terminal information, and the like within the airport.
  • the mobile robot 100 may be connected to a server through the 5G communication technology described above, and transmit and request necessary information to the server and provide it to the user.
  • the mobile robot 100 may directly receive a command from a user.
  • a command may be directly received from a user through an input of touching a display unit provided in the mobile robot 100 or a voice input.
  • the mobile robot 100 activates the voice recognition function in response to the activation word spoken by the user, and the voice command received from the user is an AI processor 111 installed in the mobile robot 100 or 5G communication. It is delivered to the connected server through technology, recognized, and operated to execute a specific command requested by the user.
  • the mobile robot 100 is a robot including a 3D depth sensor, an RGB camera, and Odometry (wheel encoder, gyro sensor, etc.) capable of estimating a driving distance, and may be defined as an autonomous mobile robot 100 that is free to move in a space within an area.
  • Odometry wheel encoder, gyro sensor, etc.
  • the mobile robot 100 includes a processor 110, a power supply unit 120, a communication unit 130, a travel movement unit 140, a user input unit 150, an object recognition unit 160, a location recognition unit 170, an obstacle A recognition unit 180 and an interface unit 190 may be included.
  • the processor 110 includes a microcomputer that manages the power unit 120 including a battery, etc., of the robot hardware, the obstacle recognition unit 180 including various sensors, and the traveling moving unit 140 including a plurality of motors and wheels. Can include.
  • the processor 110 may include an application processor (AP) that performs a function of managing the entire system of the hardware module of the robot.
  • the AP transmits application program movement for driving and user input/output information to the microcomputer side using location information acquired through various sensors to perform movement of a motor or the like.
  • the user input unit 150, the object recognition unit 160, and the location recognition unit 170 may be managed by the AP.
  • the processor 110 may include an AI processor 111.
  • the AI processor 21 may learn a neural network using a program stored in a memory.
  • the AI processor 21 may learn a neural network for recognizing data around the robot.
  • the neural network may include a deep learning model developed from a neural network model.
  • a deep learning model a plurality of network nodes may be located in different layers and exchange data according to a convolutional connection relationship.
  • Examples of neural network models include deep neural networks (DNN), convolutional deep neural networks (CNN), Recurrent Boltzmann Machine (RNN), Restricted Boltzmann Machine (RBM), and deep trust.
  • DNN deep neural networks
  • CNN convolutional deep neural networks
  • RNN Recurrent Boltzmann Machine
  • RBM Restricted Boltzmann Machine
  • It includes various deep learning techniques such as deep belief networks (DBN) and deep Q-network, and can be applied to fields such as computer vision, speech recognition, natural language processing, and speech/signal processing.
  • DNN deep belief networks
  • the robot may implement at least one of voice recognition, object recognition, location recognition, obstacle recognition, and/or movement control by applying a deep learning model through the AI processor 111.
  • the robot may implement at least one of the above-described functions by receiving the AI processing result from an external server through the communication unit.
  • the power supply unit 120 may include a battery driver and a lithium-ion battery.
  • the battery driver can manage the charging and discharging of lithium-ion batteries.
  • Lithium-ion batteries can supply power for robot movement.
  • the lithium-ion battery 122 may be configured by connecting two 24V/102A lithium-ion batteries in parallel.
  • the communication unit 130 not only receives a signal/data from an external input, but also a wireless communication module (not shown) for wireless communication or a tuner (not shown) for tuning broadcast signals according to the design method of the robot 100. City) may further include various additional components.
  • the communication unit 130 may transmit information/data/signal of the robot 100 to the external device. That is, the communication unit 130 is not limited to a configuration that receives a signal from an external device, and may be implemented as an interface capable of bidirectional communication.
  • the communication unit 130 may receive a control signal for selecting a UI from a plurality of control devices.
  • the communication unit 130 is composed of a communication module for known short-range wireless communication such as wireless LAN (WiFi), Bluetooth, IR (Infrared), UWB (Ultra Wideband), Zigbee, or 3G, 4G, LTE , 5G, etc. may be configured as a mobile communication module, may be configured as a known communication port for wired communication.
  • the communication unit 130 may be used for various purposes, such as a command for manipulation of a display and transmission and reception of data.
  • the traveling moving unit 140 may include a wheel motor 142 and a rotation motor 143.
  • the wheel motor 142 may move a plurality of wheels for driving the robot.
  • the rotation motor 143 may be moved for left-right rotation or vertical rotation of the robot's main body or the robot's head portion, or may be moved to change the direction or rotate the wheels of the robot.
  • an additional function of a travel moving unit for performing the specific function may be provided.
  • the user input unit 150 transmits various preset control commands or information to the processor 110 according to a user's manipulation and input.
  • the user input unit 150 may be implemented as a menu key or an input panel installed outside the display device, or a remote controller separated from the robot 100. Alternatively, the user input unit 150 may be implemented integrally with the display unit (not shown). When the display unit is a touch-screen, the user touches an input menu (not shown) displayed on the display unit. A preset command may be transmitted to the processor 110.
  • the user input unit 150 can detect a user's gesture through a sensor that detects the inside of the area and transmit the user's command to the processor 110, and transmits the user's voice command to the processor 110 to perform operations and settings. You may.
  • the object recognition unit 160 may include a 2D camera 161 and an RGBD camera 162.
  • the 2D camera 161 may be a sensor for recognizing a person or an object based on a 2D image.
  • An RGBD camera (Red, Green, Blue, Distance, 162) is for tracking a person or object using captured images with depth data obtained from a camera with RGBD sensors or other similar 3D imaging devices. It can be a sensor.
  • the location recognition unit 170 may include a lidar 171 and a SLAM camera 172.
  • the SLAM camera Simultaneous Localization And Mapping camera, 172 can implement simultaneous location tracking and mapping technology.
  • the robot can track the surrounding environment information using the SLAM camera 172 and process the obtained information to create a map corresponding to the mission execution space and estimate its own absolute position at the same time.
  • the Lidar Light Detection and Ranging: Lidar, 171
  • the location recognition unit 170 may process and process sensing data collected from the rider 171 and the SLAM camera 172, and may be responsible for data management for location recognition of the robot and obstacle recognition.
  • the obstacle recognition unit 180 may include an IR remote control receiver 181, a USS 182, a Cliff PSD 183, an ARS 184, a bumper 185, and an OFS 186.
  • the IR remote control receiver 181 may include a sensor that receives a signal from an infrared (IR) remote control for remotely controlling the robot.
  • the USS (Ultrasonic sensor) 182 may include a sensor for determining a distance between an obstacle and a robot using an ultrasonic signal.
  • the Cliff PSD 183 may include a sensor for detecting a cliff or a cliff in the robot driving range of 360 degrees in all directions.
  • the Attitude Reference System (ARS) 184 may include a sensor capable of tracking the attitude of the robot.
  • ARS Attitude Reference System
  • the ARS 184 may include a sensor consisting of 3 axes of acceleration and 3 axes of gyro for tracking the rotation amount of the robot.
  • the bumper 185 may include a sensor that detects a collision between a robot and an obstacle.
  • a sensor included in the bumper 185 may detect a collision between a robot and an obstacle in a range of 360 degrees.
  • the OFS Optical Flow Sensor, 186) may include a sensor capable of measuring the traveling distance of the robot on various floor surfaces and the phenomenon that the robot rotates when the robot moves.
  • the mobile robot 100 configured as described above may be configured to further include four microphones to recognize a user's voice.
  • the mobile robot 100 of this embodiment may be configured to include first to fourth microphones disposed at each vertex of a quadrangular shape based on a plane.
  • the body of the mobile robot 100 may be configured to have an elliptical shape when viewed in a plan view, and a first microphone (M1) and a second microphone (M2) are disposed in front of the mobile robot 100, and A 3 microphone (M3) and a fourth microphone (M4) may be disposed. Since the body of the mobile robot 100 has an approximately elliptical shape, the first microphone M1 to the fourth microphone have a shape arranged at each vertex of a rectangle.
  • the distance d1 between the first microphone M1 and the second microphone M2 may have a rectangular shape shorter than the distance d2 between the first microphone M1 and the fourth microphone M4.
  • the mobile robot 100 when the speaker 1000 ignites a starting word (high LG) near the mobile robot 100, the mobile robot ( 100) uses a microphone placed in a diagonal direction to select either the front or the rear, and two microphones placed in that direction are selected to track the speaker's position.
  • the mobile robot 100 operates to select a total of 3 microphones by selecting any one of the left and right directions after selecting the front/rear direction, and 2 directions selected based on the selected 3 microphones ( For example, when the front and the left are selected, the first, second, and fourth microphones are selected) to generate SSL values based on a Generalized Cross Correlation (GCC) algorithm to predict the speaker's position.
  • GCC Generalized Cross Correlation
  • 9 and 10 are diagrams for explaining a method of tracking a direction in which a speaker is located by selecting two microphones respectively disposed before and after based on a received maneuvering word according to an embodiment of the present invention.
  • the mobile robot 100 is based on the moving word received through the first and third microphones M1 and M3 arranged in a diagonal direction among the four microphones. Or it operates to select either direction of the rear.
  • step S110 when the speaker 1000 utters a starting word from the front left side, in step S110, the first microphone M1 directly receives the starting word uttered by the speaker, and the third microphone ( M3) can receive indirect sound that is reflected or diffracted rather than direct sound.
  • the processor 110 includes a first reference value G1 of the first microphone M1 and a second reference value of the third microphone M3 based on the starting words received from the first microphone M1 and the third microphone M3.
  • Each of (G2) is calculated.
  • the reference value may be one of a gain of the microphone, a confidence score (voice recognition rate), and a time taken for the first and third microphones to receive the starting word.
  • the processor 110 compares the first reference value and the second reference value to select either the first or third microphone. If the reference value is a microphone gain or speech recognition rate, a microphone with a high value is selected, and if the time taken to receive a starting word, a microphone with a short time is selected.
  • the processor will select the first microphone M1 at this stage.
  • the processor 110 selects two microphones (M1, M2) candidates for the GCC algorithm calculation by selecting a second microphone (M2) arranged adjacent to the first microphone (M1) in the front. .
  • the processor 110 calculates the SSL (Sound Source Localization) value by performing a GCC algorithm calculation based on the first and second microphones M1 and M2 selected as candidates, and as a result, the speaker ( 1000), the position of the speaker can be tracked (S150).
  • SSL Sound Source Localization
  • a sound source localization (SSL) value based on the first microphone and the second microphone may be derived.
  • FIGS. 11 to 13 are diagrams for explaining a method of tracking a direction in which a speaker is located by selecting two microphones respectively disposed on the left and right based on the received maneuvering word according to an embodiment of the present invention.
  • 13 is a diagram illustrating a front and rear first angle range and a left and right second angle range for increasing the recognition rate.
  • step S200 the processor 110 calculates a third reference value H1 based on the first microphone M1 and the fourth microphone M4 disposed on the left side, and is further disposed on the right side.
  • a fourth reference value H2 is calculated based on the second microphone M2 and the third microphone M3.
  • the gain of the microphone receiving the starting word may be preferably used, but is not limited thereto, and the confidence score (voice recognition rate) and the time taken to receive the starting word may also be used as a reference value. .
  • the processor 110 calculates a third reference value H1 in the left direction by summing the gain of the first microphone M1 receiving the starting word and the gain of the fourth microphone M4, and A fourth reference value H2 in the right direction may be calculated by summing the gain and the gain of the third microphone M3 (S210).
  • the processor 110 compares the calculated third and fourth reference values H1 and H4 to select a microphone disposed in a direction having a larger value. If the speaker 1000 is positioned as illustrated in the drawing, the third reference value H1 is greater than the fourth reference value H4, so that the first and fourth microphones M1 and M4 disposed in the left direction can be selected. have.
  • the processor 110 calculates the first SSL value through the GCC algorithm based on the previously selected first and second microphones (M1, M2), and in the next step (S240) Based on the fourth microphones M1 and M4, a second SSL value is calculated through a GCC algorithm operation.
  • the first SSL value is a value based on the front
  • the second SSL value is a value calculated based on the left direction.
  • the processor 110 may track the speaker's position by selecting one of the calculated first and second SSL values that meets a preset condition.
  • the SSL value is a value output by the GCC algorithm calculation result, and may be a value showing an angle. That is, any one of 360 degrees centered on the mobile robot 100 may be an SSL value. For example, if the calculated SSL value is 0 degrees, 90 degrees to the front may indicate the right, 180 degrees to the rear, and 270 degrees to the left.
  • FIG. 13 is a diagram illustrating a condition for selecting first and second SSL values in an example in order to increase the recognition rate.
  • the calculated first and second SSL values may be selected according to a set angle range.
  • the angular range is a value preset according to the direction, and may be an angular range in which a recognition rate is high when the speaker's position is tracked within the angular range.
  • a high recognition rate means a recognition rate of 80% or more.
  • the mobile robot 100 has an elliptical shape that is elongated in front and rear, and the microphone is thus arranged to be wide in front and rear and narrow in left and right.
  • the voice uttered from the front or the rear is picked up in the form of direct sound to the microphone, but the voice uttered from the left or right is picked up in the form of an indirect sound to the microphone, so the recognition rate on the left and right is reduced from the front and the back. May be lower than the recognition rate of
  • the first angle range which is the criterion for selecting the first SSL value
  • the second angle range which is the criterion for selecting the second SSL value
  • the first angle range and the second angle range May be set to partially overlap.
  • the ratio of the width to height of the rectangle in which the four microphones are placed is 1:4
  • the first angle range is 270 degrees to 90 degrees
  • the second angle range is 240 degrees to 310 degrees.
  • the processor 110 may select any one of the first and second SSL values in step S250 in the following order.
  • the processor 110 primarily determines whether the first SSL value calculated based on the front is a value within the first angular range, and the first SSL value is the first If it is an angular range, the first SSL value is selected as the speaker's position, and motion control is performed so that the mobile robot faces in that direction.
  • first SSL value is not the first angle range
  • second SSL value is selected as the speaker's position, and Movement control is performed with the mobile robot facing.
  • the processor 110 returns to the process of newly obtaining the first and second SSL values and newly sets the first and second SSL values. The process of obtaining and comparing the first and second angular ranges is repeated.
  • the above-described present invention can be implemented as a computer-readable code on a medium on which a program is recorded.
  • the computer-readable medium includes all types of recording devices that store data that can be read by a computer system. Examples of computer-readable media include HDD (Hard Disk Drive), SSD (Solid State Disk), SDD (Silicon Disk Drive), ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, etc. There is also a carrier wave (e.g., transmission over the Internet). Therefore, the detailed description above should not be construed as restrictive in all respects and should be considered as illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

Abstract

본 발명의 일 실시예는 사각형의 각 모서리에 설치된 제1 내지 제4 마이크를 포함하는 이동 로봇에서 기동어가 발화된 방향을 탐색하는 방법에 관한 것으로, 대각선 방향의 제1 및 제3 꼭지점에 각각 배치된 제1 및 제3 마이크를 통해서 기동어를 수신하는 단계, 수신된 상기 기동어에 기초해 상기 제1 마이크의 제1 기준값과 상기 제3 마이크의 제2 기준값을 구하고, 구해진 상기 제1 및 제2 기준값을 비교해 상기 제1 마이크를 선택하는 단계, 선택된 상기 제1 마이크와, 상기 제1 마이크와 동일하게 전면을 향하도록 제2 꼭지점에 배치된 상기 제2 마이크를 기준으로 SSL(Sound Source Localization) 값을 계산해 화자의 위치를 추적하는 단계를 포함한다.

Description

이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법
본 발명은 이동 로봇에서 화자의 위치를 추적하는 방법과 이 방법에 따라 동작하는 이동 로봇에 관한 것이다.
최근 공항과 같은 공공 장소에서 이용자들에게 각종 서비스를 보다 효과적으로 제공하기 위하여, 이동 로봇 등이 도입되어 사용되고 있다. 이용자들은 공항에 배치된 로봇을 통해 공항 내 길 안내 서비스, 탑승 정보 안내 서비스, 기타 멀티미디어 컨텐츠 제공 서비스 등과 같은 각종 서비스를 이용할 수 있다.
일반적으로 이처럼 공항에 배치된 로봇은 기동어를 인식해 동작을 하게 되는데, 많은 사람들이 오고 가는 공항이다 보니 로봇 입장에서는 이 많은 사람 중 누가 호출했는지 알기가 쉽지 않은 문제가 있다.
더욱이, 로봇이 작은 경우에는 화자의 음성이 직접적으로 로봇에 설치된 마이크로 전달될 수가 있어, 화자의 위치를 찾는데 수월할 수 있겠으나, 키가 큰 로봇은 화자의 음성이 직접적으로 전달되지 못하는 경우도 발생해 화자의 위치를 찾는데 어려움이 있다.
보다 구체적으로, 로봇에서 화자의 위치를 찾는데 보편적으로 많이 사용되는 방법은 GCC(Generalized Cross Correlation) 알고리즘을 이용하는 것이다. 도 1은 GCC 알고리즘의 개념을 설명하기 위한 도면이다. 제1 마이크(mic1)와 제2 마이크(mic2)가 동일 선상에 있다고 가정했을 때, 제1 마이크와 제2 마이크는 제1 거리(d)만큼 떨어져 있기 때문에, 제1 마이크와 화자(sound source) 사이의 거리보다 제2 마이크와 화자 사이 거리가 λ만큼 크게 된다. 그리고, 제1 마이크(mic 1)와 제2 마이크(mic 2)를 잇는 직선에 수직인 법선에 대해 화자가 제1 각도(θ)만큼 기울어져 있다고 가정하면, 그 각도(θ )는 삼각 함수법에 기초해 구할 수 있기 때문에, 화자의 방향을 추적할 수가 있다.
그런데, 이 같은 GCC 알고리즘은 2개의 마이크에 입력되는 음성의 시간차이(Time Difference Of Arrival; TDOA)를 이용해 화자의 방향을 추정하는 방식이다.
때문에, GCC 알고리즘애 따라 화자의 위치를 추적하려면 표본으로 음성을 수시한 2개의 마이크가 필요하다. 따라서, 2개의 마이크 중 하나에 음성이 제대로 수신되지 못하면 화자의 방향을 추정하는 것이 사실상 불가능할 수가 있다.
한편, 이 같은 문제는 로봇이 커질수록 도드라지게 나타난다. 로봇에는 적어도 2개의 마이크를 포함할 수가 있는데, 2개의 마이크는 각각 전방과 후방에 1개씩 설치된다.
그런데, 화자가 로봇의 정면에서 기동어를 말한 경우에, 로봇의 후방에 설치된 마이크로는 소리가 로봇에 막혀 전달되지 않거나, 또는 후방에 설치된 마이크의 수음률이 떨어져 GCC 값을 산출할 수가 없고 결과적으로 화자가 위치한 방향을 알지 못해, 화자의 위치를 추정할 수가 없다.
본 발명은 전술한 필요성 및/또는 문제점을 해결하는 것을 목적으로 한다.
본 발명은 이동 로봇에서 수음된 기동어 기초해 화자가 위치한 방향을 보다 정확하게 추적하는데 있다.
본 발명의 일 실시예는 사각형의 각 모서리에 설치된 제1 내지 제4 마이크를 포함하는 이동 로봇에서 기동어가 발화된 방향을 탐색하는 방법에 관한 것으로, 대각선 방향의 제1 및 제3 꼭지점에 각각 배치된 제1 및 제3 마이크를 통해서 기동어를 수신하는 단계, 수신된 상기 기동어에 기초해 상기 제1 마이크의 제1 기준값과 상기 제3 마이크의 제2 기준값을 구하고, 구해진 상기 제1 및 제2 기준값을 비교해 상기 제1 마이크를 선택하는 단계, 선택된 상기 제1 마이크와, 상기 제1 마이크와 동일하게 전면을 향하도록 제2 꼭지점에 배치된 상기 제2 마이크를 기준으로 SSL(Sound Source Localization) 값을 계산해 화자의 위치를 추적하는 단계를 포함한다.
상기 제1 및 제2 기준값은 마이크의 게인(gain), confidence score(음성 인식율), 상기 제1 및 제3 마이크가 상기 기동어를 수신하는데 걸린 시간 중 하나이다.
상기 방법은, 상기 제1 마이크와 제 4 꼭지점에 배치된 제4 마이크 사이의 제3 기준값과 제2 꼭지점에 배치된 제2 마이크와 상기 제3 마이크 사이의 제4 기준값을 각각 구하고, 구해진 상기 제3 및 제4 기준값을 비교해 상기 제4 마이크를 선택하는 단계를 더 포함하고, 상기 화자의 위치를 추적하는 단계는, 선택된 제1, 2, 4 마이크 중 제1 및 제2 마이크를 기준으로 한 제1 SSL값과, 제1 및 제4 마이크를 기준으로 한 SSL2 값을 기초로 상기 화자의 위치가 산출된다.
상기 방법은, 상기 제1 SSL 값이 제1 각도 범위 내에 속하는지를 판단하는 단계, 상기 판단 결과, 상기 제1 SSL 값이 제1 각도 범위 내에 속하면, 상기 제1 SSL 값을 상기 화자의 위치로 결정하는 단계를 더 포함하며, 상기 제1 각도 범위는 상기 로봇의 중심을 기준으로 제1 및 제2 마이크가 상기 화자를 정상적으로 수신할 수 있는 각도로 미리 설정된 값이다.
상기 방법은, 상기 판단 결과, 상기 제1 SSL 값이 제1 각도 범위 내에 속하지 않으면, 상기 제2 SSL 값이 제2 각도 범위 내에 속하는지를 판단하는 단계, 상기 판단 결과, 상기 제2 SSL 값이 제2 각도 범위 내에 속하면, 상기 제2 SSL 값을 상기 화자의 위치로 결정하는 단계를 더 포함하고, 상기 제2 각도 범위는 상기 로봇의 중심을 기준으로 제1 및 제4 마이크가 상기 화자를 정상적으로 수신할 수 있는 각도로 미리 설정된 값이다.
상기 사각형은 직사각형으로 상기 제1 및 제2 마이크 사이의 거리가 상기 제1 및 제4 마이크 사이의 거리보다 짧고, 상기 제1 각도 범위는 상기 제2 각도 범위보다 크다.
상기 제1 각도 범위는 270도~ 90도 사이에서 설정된 값이고, 상기 제2 각도 범위는 240도~ 310도 사이에서 설정된 값이며, 상기 제1 각도 범위는 상기 제2 각도 범위와 부분적으로 중첩되도록 설정된다.
상기 제3 및 제4 기준값은 마이크의 게인(gain)이고, 상기 제3 기준값은 상기 제1 마이크와 상기 제4 마이크의 게인을 합한 값이고, 상기 제4 기준값은 상기 제2 마이크와 상기 제3 마이크의 게인을 합 한 값이다.
본 발명의 다른 실시예에서는 상기 방법에 따라 구동하는 인공 로봇 역시 개시한다.
본 발명의 일 실시예에 따르면, 4방위 중 전방과 후방 중 어느 하나의 방위가 선택되고, 또한 좌측과 우측 중 어느 하나의 방위를 선택해, 선택된 방위에 따른 GCC 값에 기초해 화자가 위치한 방향을 정확히 추적할 수가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 GCC 알고리즘의 개념을 설명하기 위한 도면이다.
도 2는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 3은 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 4는 5G 통신 시스템에서 사용자 단말과 5G 네트워크의 기본동작의 일 예를 나타낸다.
도 5 및 도 6은 각각 본 발명의 일 실시예에 따른 이동 로봇의 기능적 블록과 외관을 보여주는 도면이다.
도 7 및 도 8은 이동 로봇이 기동어를 인식했을 때의 동작을 예시적으로 설명하는 도면이다.
도 9 및 도 10은 본 발명의 일 실시예에 따라 수신된 기동어에 기초해 전, 후에 각각 배치된 2개의 마이크를 선택해 화자가 위치한 방향을 추적하는 방법을 설명하는 도면들이다.
도 9 및 도 10은 본 발명의 일 실시예에 따라 수신된 기동어에 기초해 전, 후에 각각 배치된 2개의 마이크를 선택해 화자가 위치한 방향을 추적하는 방법을 설명하는 도면들이다.
도 11 및 도 12는 본 발명의 일 실시예에 따라 수신된 기동어에 기초해 좌, 우에 각각 배치된 2개의 마이크를 선택해 화자가 위치한 방향을 추적하는 방법을 설명하는 도면들이다.
도 13은 인식율을 높이기 위한 전후의 제1 각도 범위와 좌우의 제2 각도 범위를 예시하는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, AI 프로세싱된 정보를 필요로 하는 장치 및/또는 AI 프로세서가 필요로 하는 5G 통신(5 th generation mobile communication)을 단락 A 내지 단락 G를 통해 설명하기로 한다.
A. UE 및 5G 네트워크 블록도 예시
도 2는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 2를 참조하면, AI 모듈을 포함하는 장치(AI 장치)를 제1 통신 장치로 정의(도 1의 910)하고, 프로세서(911)가 AI 상세 동작을 수행할 수 있다.
AI 장치와 통신하는 다른 장치(AI 서버)를 포함하는 5G 네트워크를 제2 통신 장치(도 1의 920)하고, 프로세서(921)가 AI 상세 동작을 수행할 수 있다.
5G 네트워크가 제 1 통신 장치로, AI 장치가 제 2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제 1 통신 장치 또는 상기 제 2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, VR 장치는 가상 세계의 객체 또는 배경 등을 구현하는 장치를 포함할 수 있다. 예를 들어, AR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 연결하여 구현하는 장치를 포함할 수 있다. 예를 들어, MR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 융합하여 구현하는 장치를 포함할 수 있다. 예를 들어, 홀로그램 장치는 홀로그래피라는 두 개의 레이저 광이 만나서 발생하는 빛의 간섭현상을 활용하여, 입체 정보를 기록 및 재생하여 360도 입체 영상을 구현하는 장치를 포함할 수 있다. 예를 들어, 공공 안전 장치는 영상 중계 장치 또는 사용자의 인체에 착용 가능한 영상 장치 등을 포함할 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락 또는 각종 센서 등을 포함할 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 상해 또는 장애를 진단, 치료, 경감 또는 보정할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 임신을 조절할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 진료용 장치, 수술용 장치, (체외) 진단용 장치, 보청기 또는 시술용 장치 등을 포함할 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치일 수 있다. 예를 들어, 보안 장치는 카메라, CCTV, 녹화기(recorder) 또는 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치일 수 있다.
도 2를 참고하면, 제 1 통신 장치(910)와 제 2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
본 발명의 일 실시예에 의하면, 상기 제1 통신 장치는 차량이 될 수 있으며, 상기 제2 통신 장치는 5G 네트워크가 될 수 있다.
B. 무선 통신 시스템에서 신호 송/수신 방법
도 3은 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 3을 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 추적했다고 판단하고, 상기 추적된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 3을 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 추적하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 추적하는데 사용되고, SSS는 셀 ID 그룹을 추적하는데 사용된다. PBCH는 SSB (시간) 인덱스 추적 및 하프-프레임 추적에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 3을 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 추적한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
C. 5G 통신 시스템의 빔 관리(Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고을 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, 쪋}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 추적을 위해, BS는 UE에게 빔 실패 추적 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 추적된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
D. URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 추적하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
E. mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 이동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제 1 주파수 자원에서 제 2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
F. 5G 통신을 이용한 AI 기본 동작
도 4는 5G 통신 시스템에서 사용자 단말과 5G 네트워크의 기본동작의 일 예를 나타낸다.
UE는 특정 정보 전송을 5G 네트워크로 전송한다(S1).그리고, 상기 5G 네트워크는 상기 특정 정보에 대한 5G 프로세싱을 수행한다(S2).여기서, 5G 프로세싱은 AI 프로세싱을 포함할 수 있다. 그리고, 상기 5G 네트워크는 AI 프로세싱 결과를 포함하는 응답을 상기 UE로 전송한다(S3).
G. 5G 통신 시스템에서 사용자 단말과 5G 네트워크 간의 응용 동작
이하, 도 2 및 도 3과 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 AI 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 발명에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 4의 S1 단계 및 S3 단계와 같이, UE가 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, UE는 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, UE는 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, UE가 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, UE는 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다. 그리고, 상기 5G 네트워크는 상기 UE로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 UE는 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 UE로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 UE로 AI 프로세싱 결과를 포함하는 응답을 전송할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, UE가 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, UE는 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, UE는 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, UE는 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, UE는 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 4의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 4의 S1 단계에서, UE는 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 UE는 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
앞서 살핀 5G 통신 기술은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
도 5 및 도 6은 각각 본 발명의 일 실시예에 따른 이동 로봇의 기능적 블록과 외관을 보여주는 도면이다.
일 실시예의 이동 로봇(100)은 공항 등에 배치되어 공항 내에서 순찰, 길 안내, 수화물 안내, 공항 정보, 비행기의 이착륙 정보, 터미널 정보 등을 사용자에게 제공하도록 기능할 수 있다.
이 같은 기능을 위해 이동 로봇(100)은 상술한 5G 통신 기술을 통해 서버와 연결될 수 있고, 필요한 정보를 서버로 전송 및 요청해서 사용자에게 제공할 수가 있다.
이동 로봇(100)은 사용자로부터 직접 명령을 수신할 수 있다. 예를 들어, 이동 로봇(100)에 구비된 디스플레이부를 터치하는 입력 또는 음성 입력 등을 통해 사용자로부터 명령을 직접 수신할 수 있다.
음성 입력된 경우에, 이동 로봇(100)은 사용자가 발화한 기동어에 응답해 음성인식 기능이 활성화되고, 사용자로부터 수신된 음성 명령은 이동 로봇(100)에 설치된 AI 프로세서(111) 또는 5G 통신 기술을 통해 연결된 서버로 전달되고, 인식되어 사용자가 요구한 특정 명령을 수행할 수 있도록 동작한다.
이동 로봇(100)은 3D Depth 센서, RGB 카메라, 주행거리 추정 가능한 Odometry(휠 엔코더, 자이로 센서 등)를 포함한 로봇으로서, 영역 내 공간에서 이동이 자유로운 자율 이동로봇(100)으로 정의될 수 있다.
이동 로봇(100)은 프로세서(110), 전원 공급부(120), 통신부(130), 주행 이동부(140), 사용자 입력부(150), 사물 인식부(160), 위치 인식부(170), 장애물 인식부(180) 및 인터페이스부(190)를 포함할 수 있다.
프로세서(110)는 로봇의 하드웨어 중 배터리 등을 포함하는 전원부(120), 각종 센서들을 포함하는 장애물 인식부(180) 및 복수의 모터 및 휠을 포함하는 주행 이동부(140)를 관리하는 마이컴을 포함할 수 있다.
또한, 프로세서(110)는 로봇의 하드웨어 모듈 전체 시스템을 관리하는 기능을 수행하는 AP(Application Processor)를 포함할 수 있다. 상기 AP는 각종 센서들을 통해 획득된 위치 정보를 이용하여 주행을 위한 응용 프로그램 이동과 사용자 입출력 정보를 마이컴 측으로 전송하여 모터 등의 이동을 수행하도록 한다. 또한, 사용자 입력부(150), 사물 인식부(160), 위치 인식부(170) 등이 AP에 의해 관리될 수 있다.
또한, 프로세서(110)는 AI 프로세서(111)를 포함할 수 있다. 상기 AI 프로세서(21)는 메모리에 저장된 프로그램을 이용하여 신경망을 학습할 수 있다. 특히, AI 프로세서(21)는 로봇 주변의 데이터를 인식하기 위한 신경망을 학습할 수 있다. 여기서 신경망은 신경망 모델에서 발전한 딥러닝 모델을 포함할 수 있다. 딥 러닝 모델에서 복수의 네트워크 노드들은 서로 다른 레이어에 위치하면서 컨볼루션(convolution) 연결 관계에 따라 데이터를 주고 받을 수 있다. 신경망 모델의 예는 심층 신경망(DNN, deep neural networks), 합성곱 신경망(CNN, convolutional deep neural networks), 순환 신경망(RNN, Recurrent Boltzmann Machine), 제한 볼츠만 머신(RBM, Restricted Boltzmann Machine), 심층 신뢰 신경망(DBN, deep belief networks), 심층 Q-네트워크(Deep Q-Network)와 같은 다양한 딥 러닝 기법들을 포함하며, 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용될 수 있다.
상기 로봇은 AI 프로세서(111)를 통한 딥러닝 모델을 적용함으로써, 음성 인식, 사물 인식, 위치 인식, 장애물 인식 및/또는 이동 제어 중 적어도 하나의 기능을 구현할 수 있다. 또한, 상기 로봇은 통신부를 통해 외부 서버로부터 AI 프로세싱 결과를 수신함으로써, 전술한 적어도 하나의 기능을 구현할 수도 있다.
전원부(120)는 배터리 드라이버(battery Driver) 및 리튬-이온 배터리(Li-Ion Battery)를 포함할 수 있다. 배터리 드라이버는 리튬-이온 배터리의 충전과 방전을 관리할 수 있다. 리튬-이온 배터리는 로봇의 이동을 위한 전원을 공급할 수 있다. 리튬-이온 배터리(122)는 24V/102A 리튬-이온 배터리 2개를 병렬로 연결하여 구성될 수 있다.
통신부(130)는 외부입력으로부터의 신호/데이터를 수신하는 구성뿐 아니라, 로봇(100)의 설계 방식에 따라서, 무선 통신을 위한 무선통신모듈(미도시)이나 방송신호의 튜닝을 위한 튜너(미도시)와 같은 다양한 부가적인 구성을 더 포함할 수 있다. 통신부(130)는 외부장치로부터 신호를 수신하는 것 이외에도, 로봇(100)의 정보/데이터/신호를 외부장치에 전송할 수도 있다. 즉, 통신부(130)는 외부장치의 신호를 수신하는 구성으로만 한정할 수 없으며, 양방향 통신이 가능한 인터페이스(interface)로 구현될 수 있다. 통신부(130)는 복수의 제어장치로부터 UI를 선택하기 위한 제어신호를 수신할 수 있다. 통신부(130)는 무선랜 (WiFi), 블루투스(Bluetooth), IR(Infrared), UWB(Ultra Wideband), 지그비(Zigbee) 등 공지의 근거리 무선통신을 위한 통신모듈로 구성되거나, 3G, 4G, LTE, 5G 등의 이동통신 모듈로 구성될 수 있으며, 유선통신을 위한 공지의 통신포트로 구성될 수도 있다. 통신부(130)는 UI를 선택하기 위한 제어신호 이외에, 디스플레이의 조작을 위한 명령, 데이터의 송수신 등 다양한 목적으로 활용될 수 있다.
주행 이동부(140)는 휠 모터(142), 회전 모터(143)를 포함할 수 있다. 휠 모터(142)는 로봇의 주행을 위한 복수 개의 바퀴를 이동시킬 수 있다. 회전 모터(143)는 로봇의 메인 바디 또는 로봇의 헤드부의 좌우 회전, 상하 회전을 위해 이동되거나 로봇의 바퀴의 방향 전환 또는 회전을 위하여 이동될 수 있다.
한편, 특정 기능이 수행되도록 프로그램된 로봇의 경우, 상기 특정 기능을 수행하기 위한 주행 이동부의 추가적인 기능이 제공될 수 있다.
사용자 입력부(150)는 사용자의 조작 및 입력에 따라서 기 설정된 다양한 제어 커맨드 또는 정보를 프로세서(110)에 전달한다. 사용자 입력부(150)는 디스플레이장치 외측에 설치된 메뉴 키(menu-key) 또는 입력 패널(panel)이나, 로봇(100)과 분리 이격된 리모트 컨트롤러(remote controller) 등으로 구현될 수 있다. 또는, 사용자 입력부(150)는 디스플레이부(미도시)와 일체형으로 구현될 수 있는 바, 디스플레이부가 터치스크린(touch-screen)인 경우에 사용자는 디스플레이부에 표시된 입력메뉴(미도시)를 터치함으로써 기 설정된 커맨드를 프로세서(110)에 전달할 수 있다.
사용자 입력부(150)는 영역 내를 감지하는 센서를 통하여 사용자의 제스처를 감지하여 사용자의 명령을 프로세서(110)로 전달할 수 있으며, 사용자의 음성명령을 프로세서(110)로 전달하여 동작 및 설정을 수행할 수도 있다.
사물 인식부(160)는 2D 카메라(161) 및 RGBD 카메라(162)를 포함할 수 있다. 2D 카메라(161)는 2차원 영상을 기반으로 사람 또는 사물을 인식하기 위한 센서일 수 있다. RGBD 카메라(Red, Green, Blue, Distance, 162)는, RGBD 센서들을 갖는 카메라 또는 다른 유사한 3D 이미징 디바이스들로부터 획득되는 깊이(Depth) 데이터를 갖는 캡처된 이미지들을 이용하여 사람 또는 사물을 추적하기 위한 센서일 수 있다.
위치 인식부(170)는 라이더(Lidar, 171) 및 SLAM 카메라(172)를 포함할 수 있다. SLAM 카메라(Simultaneous Localization And Mapping 카메라, 172)는 동시간 위치 추적 및 지도 작성 기술을 구현할 수 있다. 로봇은 SLAM 카메라(172)를 이용하여 주변 환경 정보를 추적하고 얻어진 정보를 가공하여 임무 수행 공간에 대응되는 지도를 작성함과 동시에 자신의 절대 위치를 추정할 수 있다. 라이더(Light Detection and Ranging : Lidar, 171)는 레이저 레이더로서, 레이저 빔을 조사하고 에어로졸에 의해 흡수 혹은 산란된 빛 중 후방 산란된 빛을 수집, 분석하여 위치 인식을 수행하는 센서일 수 있다. 위치 인식부(170)는 라이더(171) 및 SLAM 카메라(172) 등으로부터 수집되는 센싱 데이터를 처리 및 가공하여 로봇의 위치 인식과 장애물 인식을 위한 데이터 관리를 담당할 수 있다.
장애물 인식부(180)는 IR 리모콘 수신부(181), USS(182), Cliff PSD(183), ARS(184), Bumper(185) 및 OFS(186)를 포함할 수 있다. IR 리모콘 수신부(181)는 로봇을 원격 조정하기 위한 IR(Infrared) 리모콘의 신호를 신하는 센서를 포함할 수 있다. USS(Ultrasonic sensor, 182)는 초음파 신호를 이용하여 장애물과 로봇 이의 거리를 판단하기 위한 센서를 포함할 수 있다. Cliff PSD(183)는 360도 전방향의 로봇 주행 범위에서 낭떠러지 또는 절벽 등을 감지하기 위한 센서를 포함할 수 있다. ARS(Attitude Reference System, 184)는 로봇의 자세를 추적할 수 있는 센서를 포함할 수 있다. ARS(184)는 로봇의 회전량 추적을 위한 가속도 3축 및 자이로 3축으로 구성되는 센서를 포함할 수 있다. Bumper(185)는 로봇과 장애물 사이의 충돌을 감지하는 센서를 포함할 수 있다. Bumper(185)에 포함되는 센서는 360도 범위에서 로봇과 장애물 사이의 충돌을 감지할 수 있다. OFS(Optical Flow Sensor, 186)는 로봇의 주행 시 헛바퀴가 도는 현상 및 다양한 바닥 면에서 로봇의 주행거리를 측정할 수 있는 센서를 포함할 수 있다.
이처럼 구성된 이동 로봇(100)은 사용자의 음성을 인식할 수 있도록 4개의 마이크를 더 포함해 구성될 수 있다.
이 실시예의 이동 로봇(100)은 평면을 기준으로 4각형의 각 꼭지점에 배치된 제1 내지 제4 마이크를 포함해 구성될 수 있다.
마이크의 배치에 대해서는 도 7을 가지고 설명한다.
이동 로봇(100)의 몸통은 평면에서 볼 때 타원형의 형상을 갖도록 구성될 수 있고, 이동 로봇(100)의 전면으로 제1 마이크(M1)와 제2 마이크(M2)가 배치되고, 후면으로 제3 마이크(M3)와 제4 마이크(M4)가 배치될 수가 있다. 이동 로봇(100)의 몸통이 대략 타원형 형상을 가지고 있어, 제1 마이크(M1) 내지 제4 마이크는 직사각형의 각 꼭지점에 배치된 형태를 이룬다.
이때, 제1 마이크(M1)와 제2 마이크(M2) 사이의 거리(d1)는 제1 마이크(M1)와 제4 마이크(M4) 사이의 거리(d2)보다 짧은 직사각형 형상을 이룰 수 있다.
도 7 및 도 8에서 예시하는 바처럼, 본원 발명의 일 실시예에 따른 이동 로봇(100)은 화자(1000)가 이동로봇(100) 근처에서 기동어(하이 LG)를 발화하면, 이동 로봇(100)은 대각선 방향으로 배치된 마이크를 이용해 전방 또는 후방 중 어느 한 방향을 선택해 그 방향으로 배치된 2개의 마이크를 선택해 화자의 위치를 추적한다.
또는 이동 로봇(100)은 인식율을 더욱 높이기 위해서 전/후의 방향을 선택한 후에는 좌우의 방향 중 어느 한 방향을 선택해 총 3개의 마이크를 선택하도록 동작하고, 선택된 3 개의 마이크를 기준으로 선택된 2 방향(에를 들어 전방 및 좌측이 선택된 경우 제1, 제2, 제4 마이크가 선택됨) 각각에 대해 GCC(Generalized Cross Correlation) 알고리즘에 기초한 SSL값을 생성해 화자의 위치를 예측하도록 동작할 수 있다.
이하, 이동로봇(100)에서 이처럼 설치된 4개의 마이크를 이용해 어떻게 화자가 위치한 방향을 추적하는지에 대해 설명한다.
도 9 및 도 10은 본 발명의 일 실시예에 따라 수신된 기동어에 기초해 전, 후에 각각 배치된 2개의 마이크를 선택해 화자가 위치한 방향을 추적하는 방법을 설명하는 도면들이다.
본 발명의 일 실시예에 따른 추적 방법에서 이동 로봇(100)은 4개의 마이크 중 대각선 방향으로 배치된 제1 및 제3 마이크(M1, M3)를 통해 수신되는 기동어에 기초해 4 방위 중 전방 또는 후방 중 어느 한 방향을 선택하도록 동작한다.
도 10을 참조해, 화자(1000)가 전방의 왼쪽 측면에서 기동어를 발화한 경우, S110 단계에서 제1 마이크(M1)는 화자가 발화한 기동어를 직접적으로 수신하게 되고, 제3 마이크(M3)는 직접음보다는 반사되거나 회절되어 들어오는 간접음을 수신할 수가 있다.
프로세서(110)는 제1 마이크(M1) 및 제3 마이크(M3)에서 수신된 기동어를 기초로 제1 마이크(M1)의 제1 기준값(G1)과 제3 마이크(M3)의 제2 기준값(G2)을 각각 연산한다. 여기서, 기준값은 마이크의 게인(gain), confidence score(음성 인식율), 제1 및 제3 마이크가 상기 기동어를 수신하는데 걸린 시간 중 하나일 수가 있다.
다음 단계(S120)에서, 프로세서(110)는 제1 기준값과 제2 기준값을 비교해 제1 또는 제3 마이크 중 어느 하나를 선택한다. 만약 기준값이 마이크의 게인이나 음성 인식율이라면 높은 값을 나타낸 마이크를 선택하고, 기동어를 수신하는데 걸린 시간이라면 짧은 시간을 갖는 마이크를 선택하게 된다.
도 10과 같이 화자(1000)가 전면 중 좌측면에 있다면, 제1 마이크(M1)는 직접음을 제3 마이크(M3)는 간접음을 수신하기 때문에 게인이나 음성 인식율이 제3 마이크(M3)보다 제1 마이크(M1)가 커, 이 단계에서 프로세서는 제1 마이크(M1)를 선택할 것이다.
다음 단계(S130)에서 프로세서(110)는 전면으로 제1 마이크(M1)와 이웃하게 배치된 제2 마이크(M2)를 선택해 GCC 알고리즘 연산을 위한 2개의 마이크(M1, M2) 후보를 선택하게 된다.
다음 단계(S140)에서, 프로세서(110)는 후보로 선택된 제1 및 제2 마이크(M1, M2)를 기초로 GCC 알고리즘 연산을 수행해 SSL(Sound Source Localization) 값을 계산하게 되고, 그 결과 화자(1000)의 방향 화자의 위치를 추적할 수가 있다(S150).
여기서, 제2 마이크(M2)는 제1 마이크(M1)로부터 떨어진 거리는 이미 디폴트로 정해진 값이므로, 제1 마이크와 제2 마이크를 기준으로 한 SSL(Sound Source Localization) 값이 도출될 수가 있다.
이하, 도 11 내지 도 13을 참조로, 좌/우 방향 중 화자에 가까운 방향을 도출해 위에서 구한 SSL값과 조합해 인식율을 더욱 높이는 방법에 대해 설명한다. 도 11 및 도 12는 본 발명의 일 실시예에 따라 수신된 기동어에 기초해 좌, 우에 각각 배치된 2개의 마이크를 선택해 화자가 위치한 방향을 추적하는 방법을 설명하는 도면들이다. 도 13은 인식율을 높이기 위한 전후의 제1 각도 범위와 좌우의 제2 각도 범위를 예시하는 도면이다.
이 도면을 참조하면, S200 단계에서, 프로세서(110)는 좌측에 배치된 제1 마이크(M1)와 제4 마이크(M4)를 기초로 제3 기준값(H1)을 연산하고, 또한 우측에 배치된 제2 마이크(M2) 및 제3 마이크(M3)를 기초로 제4 기준값(H2)를 연산한다.
여기서, 제3 및 제4 기준값은 기동어를 수신한 마이크의 게인이 바람직하게 이용될 수 있으나, 이에 한정되는 것은 아니고 confidence score(음성 인식율), 기동어를 수신하는데 걸린 시간 역시 기준값으로 사용될 수 있다.
프로세서(110)는 기동어를 수신한 제1 마이크(M1)의 게인과 제4 마이크(M4)의 게인을 합산해 좌측 방향의 제3 기준값(H1)을 산출하며, 제2 마이크(M2)의 게인과 제3 마이크(M3)의 게인을 합산해 우측 방향의 제4 기준값(H2)를 산출할 수가 있다(S210).
다음 단계(S220)에서, 프로세서(110)는 산출된 제3 및 제4 기준값(H1, H4)을 비교해 더 큰 값을 갖는 방향으로 배치된 마이크를 선택한다. 도면에 예시된 바와 같이 화자(1000)가 위치한다면, 제3 기준값(H1)이 제4 기준값(H4)보다 크게 되어 좌측 방향으로 배치된 제1 및 제4 마이크(M1, M4)가 선택될 수 있다.
다음 단계(S230)에서, 프로세서(110)는 앞서 선택된 제1 및 제2 마이크(M1, M2)를 기준으로 GCC 알고리즘 연산을 통해 제1 SSL 값을 계산하고, 다음 단계(S240)에서 제1 및 제4 마이크(M1, M4)를 기준으로 GCC 알고리즘 연산을 통해 제2 SSL 값을 계산한다. 다시 말해 제1 SSL 값은 전방을 기준으로 한 값이고, 제2 SSL 값은 좌측 방향을 기준으로 계산된 값이다.
다음으로, 프로세서(110)는 계산된 제1 및 제2 SSL 값 중 기 설정된 조건에 부합하는 하나의 값을 선택함으로써 화자의 위치를 추적할 수가 있다.
여기서, SSL 값은 GCC 알고리즘 계산 결과에 의해 출력되는 값으로, 각도를 보여주는 값일 수 있다. 즉, 이동 로봇(100)의 중심으로 한 360도 중 어느 한 각도가 SSL 값이 될 수가 있다. 예를 들어, 계산된 SSL값이 0도이면 전방을 90도는 우측을, 180도이면 후방을, 270도이면 좌측 방향을 각각 나타내는 것일 수 있다.
한편, 도 13은 인식율을 높이기 위해 일 예에서 제1 및 제2 SSL 값을 선택하는 조건을 설명하는 도면이다.
본 발명의 일 예에서, 계산된 제1 및 제2 SSL 값은 설정된 각도 범위에 따라 선택될 수가 있다.
여기서 각도 범위는 방향에 따라 미리 설정된 값으로, 그 각도 범위 안에서 화자의 위치를 추적했을 때 인식율이 높게 나왔던 각도 범위일 수 있다. 여기서 인식율이 높다는 것은 80% 이상의 인식율을 말한다.
한편, 본 발명의 일 실시예에 따른 이동 로봇(100)은 전 후로 긴 타원형 형상을 가지고 있고, 마이크는 이에 따라 앞뒤는 넓고 좌우는 좁게 배치가 된다. 이 경우에, 전방이나 후방에서 발화된 음성은 마이크에 직접음 형태로 수음이 되나, 좌측이나 우측에서 발화된 음성은 마이크에 간접음 형태로 수음이 되어 좌측 및 우측에서의 인식율이 전방 및 후방에서의 인식율보다 떨어질 수가 있다.
이 같은 점을 고려해, 제1 SSL값을 선택하는 기준이 되는 제1 각도 범위는 제2 SSL값을 선택하는 기준이 되는 제2 각도 범위보다 클 수가 있고, 또한 제1 각도 범위와 제2 각도 범위는 일부 중첩되도록 설정될 수 있다. 바람직한 한 형태에서, 4개의 마이크가 배치된 직사각형의 가로 대 세로의 비가 1:4일 때, 제1 각도 범위는 270도~ 90도이고, 제2 각도 범위는 240도~ 310도일 때 만족할 만한 수준의 인식율을 보여줄 수 있다.
이상과 같은 조건을 고려해 프로세서(110)는 S250 단계에서 제1 및 제2 SSL 값 중 어느 하나를 다음과 같은 순서에 의해 선택할 수가 있다.
상술한 바와 같이 전방 또는 후방에 대한 인식율이 좋기 때문에, 프로세서(110)는 1차로 전방을 기준으로 계산된 제1 SSL값이 제1 각도 범위 내의 값인지를 판단해, 제1 SSL값이 제1 각도 범위이면 제1 제1 SSL값을 화자의 위치로 선택하고, 그 방향으로 이동 로봇이 향하게 동작 제어를 한다.
만약, 제1 SSL값이 제1 각도 범위가 아니라면, 제2 SSL값이 제2 각도 범위 내에 속하는지 판단해 제2 각도 범위 내에 속하면 제2 SSL값을 화자의 위치로 선택하고, 선택된 방향으로 이동 로봇이 향하게 동작 제어를 한다.
만약, 제1 및 제2 SSL값이 모두 제1 및 제2 각도 범위 안에 들지 않으면, 프로세서(110)는 새롭게 제1 및 제2 SSL 값을 구하는 과정으로 회귀해 새롭게 제1 및 제2 SSL 값을 구하고 제1 및 제2 각도 범위와 각각 비교하는 과정을 반복한다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있으며, 또한 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (16)

  1. 사각형의 각 모서리에 설치된 제1 내지 제4 마이크를 포함하는 이동 로봇에서 기동어가 발화된 방향을 탐색하는 방법에 관한 것으로,
    대각선 방향의 제1 및 제3 꼭지점에 각각 배치된 제1 및 제3 마이크를 통해서 기동어를 수신하는 단계;
    수신된 상기 기동어에 기초해 상기 제1 마이크의 제1 기준값과 상기 제3 마이크의 제2 기준값을 구하고, 구해진 상기 제1 및 제2 기준값을 비교해 상기 제1 마이크를 선택하는 단계;
    선택된 상기 제1 마이크와, 상기 제1 마이크와 동일하게 전면을 향하도록 제2 꼭지점에 배치된 상기 제2 마이크를 기준으로 SSL(Sound Source Localization) 값을 계산해 화자의 위치를 추적하는 단계;
    를 포함하는 이동 로봇에서 화자의 위치를 탐색하는 방법.
  2. 제1항에 있어서,
    상기 제1 및 제2 기준값은 마이크의 게인(gain), confidence score(음성 인식율), 상기 제1 및 제3 마이크가 상기 기동어를 수신하는데 걸린 시간 중 하나인 이동 로봇에서 화자의 위치를 탐색하는 방법.
  3. 제1항에 있어서,
    상기 제1 마이크와 제 4 꼭지점에 배치된 제4 마이크 사이의 제3 기준값과 제2 꼭지점에 배치된 제2 마이크와 상기 제3 마이크 사이의 제4 기준값을 각각 구하고, 구해진 상기 제3 및 제4 기준값을 비교해 상기 제4 마이크를 선택하는 단계;
    를 더 포함하고,
    상기 화자의 위치를 추적하는 단계는, 선택된 제1, 2, 4 마이크 중 제1 및 제2 마이크를 기준으로 한 제1 SSL값과, 제1 및 제4 마이크를 기준으로 한 SSL2 값을 기초로 상기 화자의 위치가 산출되는 이동 로봇에서 화자의 위치를 탐색하는 방법.
  4. 제3항에 있어서,
    상기 제1 SSL 값이 제1 각도 범위 내에 속하는지를 판단하는 단계; 상기 제1 각도 범위는 상기 로봇의 중심을 기준으로 제1 및 제2 마이크가 상기 화자를 정상적으로 수신할 수 있는 각도로 미리 설정된 값이고,
    상기 판단 결과, 상기 제1 SSL 값이 제1 각도 범위 내에 속하면, 상기 제1 SSL 값을 상기 화자의 위치로 결정하는 단계;
    를 더 포함하는 이동 로봇에서 화자의 위치를 탐색하는 방법.
  5. 제4항에 있어서,
    상기 판단 결과, 상기 제1 SSL 값이 제1 각도 범위 내에 속하지 않으면, 상기 제2 SSL 값이 제2 각도 범위 내에 속하는지를 판단하는 단계; 상기 제2 각도 범위는 상기 로봇의 중심을 기준으로 제1 및 제4 마이크가 상기 화자를 정상적으로 수신할 수 있는 각도로 미리 설정된 값이고
    상기 판단 결과, 상기 제2 SSL 값이 제2 각도 범위 내에 속하면, 상기 제2 SSL 값을 상기 화자의 위치로 결정하는 단계;
    를 더 포함하는 이동 로봇에서 화자의 위치를 탐색하는 방법.
  6. 제5항에 있어서,
    상기 사각형은 직사각형으로 상기 제1 및 제2 마이크 사이의 거리가 상기 제1 및 제4 마이크 사이의 거리보다 짧고,
    상기 제1 각도 범위는 상기 제2 각도 범위보다 큰 이동 로봇에서 화자의 위치를 탐색하는 방법.
  7. 제6항에 있어서,
    상기 제1 각도 범위는 270도~ 90도 사이에서 설정된 값이고, 상기 제2 각도 범위는 240도~ 310도 사이에서 설정된 값이며, 상기 제1 각도 범위는 상기 제2 각도 범위와 부분적으로 중첩되도록 설정된 이동 로봇에서 화자의 위치를 탐색하는 방법.
  8. 제3항에 있어서,
    상기 제3 및 제4 기준값은 마이크의 게인(gain)이고,
    상기 제3 기준값은 상기 제1 마이크와 상기 제4 마이크의 게인을 합한 값이고, 상기 제4 기준값은 상기 제2 마이크와 상기 제3 마이크의 게인을 합 한 값인 이동 로봇에서 화자의 위치를 탐색하는 방법.
  9. 사각형의 각 모서리에 설치된 제1 내지 제4 마이크;
    프로세서;
    상기 프로세서에 의해 실행 가능한 명령어를 저장하는 메모리;를 포함하고,
    상기 프로세서는,
    대각선 방향의 제1 및 제3 꼭지점에 각각 배치된 제1 및 제3 마이크를 통해서 기동어를 수신하고,
    수신된 상기 기동어에 기초해 상기 제1 마이크의 제1 기준값과 상기 제3 마이크의 제2 기준값을 구하고, 구해진 상기 제1 및 제2 기준값을 비교해 상기 제1 마이크를 선택하고,
    선택된 상기 제1 마이크와, 상기 제1 마이크와 동일하게 전면을 향하도록 제2 꼭지점에 배치된 상기 제2 마이크를 기준으로 SSL(Sound Source Localization) 값을 계산해 화자의 위치를 추적하는 이동 로봇.
  10. 제9항에 있어서,
    상기 제1 및 제2 기준값은 마이크의 게인(gain), confidence score(음성 인식율), 상기 제1 및 제3 마이크가 상기 기동어를 수신하는데 걸린 시간 중 하나인 이동 로봇.
  11. 제9항에 있어서,
    상기 프로세서는,
    상기 제1 마이크와 제 4 꼭지점에 배치된 제4 마이크 사이의 제3 기준값과 제2 꼭지점에 배치된 제2 마이크와 상기 제3 마이크 사이의 제4 기준값을 각각 구해 구해진 상기 제3 및 제4 기준값을 비교해 상기 제4 마이크를 선택하고,
    상기 화자의 위치 추적은, 선택된 제1, 2, 4 마이크 중 제1 및 제2 마이크를 기준으로 한 제1 SSL값과, 제1 및 제4 마이크를 기준으로 한 SSL2 값을 기초로 상기 화자의 위치가 산출되는 이동 로봇.
  12. 제11항에 있어서,
    상기 프로세서는,
    상기 제1 SSL 값이 제1 각도 범위 내에 속하는지를 판단하고,
    상기 판단 결과, 상기 제1 SSL 값이 제1 각도 범위 내에 속하면, 상기 제1 SSL 값을 상기 화자의 위치로 결정하며,
    상기 제1 각도 범위는 상기 로봇의 중심을 기준으로 제1 및 제2 마이크가 상기 화자를 정상적으로 수신할 수 있는 각도로 미리 설정된 값인 이동 로봇.
  13. 제12항에 있어서,
    상기 프로세서는,
    상기 판단 결과, 상기 제1 SSL 값이 제1 각도 범위 내에 속하지 않으면, 상기 제2 SSL 값이 제2 각도 범위 내에 속하는지를 판단하고,
    상기 판단 결과, 상기 제2 SSL 값이 제2 각도 범위 내에 속하면, 상기 제2 SSL 값을 상기 화자의 위치로 결정하며,
    상기 제2 각도 범위는 상기 로봇의 중심을 기준으로 제1 및 제4 마이크가 상기 화자를 정상적으로 수신할 수 있는 각도로 미리 설정된 값인 이동 로봇.
  14. 제13항에 있어서,
    상기 사각형은 직사각형으로 상기 제1 및 제2 마이크 사이의 거리가 상기 제1 및 제4 마이크 사이의 거리보다 짧고,
    상기 제1 각도 범위는 상기 제2 각도 범위보다 큰 이동 로봇.
  15. 제14항에 있어서,
    상기 제1 각도 범위는 270도~ 90도 사이에서 설정된 값이고, 상기 제2 각도 범위는 240도~ 310도 사이에서 설정된 값이며, 상기 제1 각도 범위는 상기 제2 각도 범위와 부분적으로 중첩되도록 설정된 이동 로봇.
  16. 제11항에 있어서,
    상기 제3 및 제4 기준값은 마이크의 게인(gain)이고,
    상기 제3 기준값은 상기 제1 마이크와 상기 제4 마이크의 게인을 합한 값이고, 상기 제4 기준값은 상기 제2 마이크와 상기 제3 마이크의 게인을 합 한 값인 이동 로봇.
PCT/KR2019/008928 2019-07-19 2019-07-19 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법 WO2021015302A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2019/008928 WO2021015302A1 (ko) 2019-07-19 2019-07-19 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법
US16/489,690 US11565426B2 (en) 2019-07-19 2019-07-19 Movable robot and method for tracking position of speaker by movable robot
KR1020190103610A KR102647055B1 (ko) 2019-07-19 2019-08-23 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/008928 WO2021015302A1 (ko) 2019-07-19 2019-07-19 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법

Publications (1)

Publication Number Publication Date
WO2021015302A1 true WO2021015302A1 (ko) 2021-01-28

Family

ID=67949348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008928 WO2021015302A1 (ko) 2019-07-19 2019-07-19 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법

Country Status (3)

Country Link
US (1) US11565426B2 (ko)
KR (1) KR102647055B1 (ko)
WO (1) WO2021015302A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098929A (zh) * 2020-01-20 2020-12-18 苏州触达信息技术有限公司 智能设备间的相对角度确定方法、装置、系统和智能设备
FR3121260A1 (fr) * 2021-03-23 2022-09-30 Sagemcom Broadband Sas Procédé de sélection dynamique de microphones

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070061056A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 로봇 환경에서 음원 추적 시스템 및 방법
KR20090116089A (ko) * 2008-05-06 2009-11-11 삼성전자주식회사 로봇의 음원 위치 탐색 방법 및 그 장치
US20100034397A1 (en) * 2006-05-10 2010-02-11 Honda Motor Co., Ltd. Sound source tracking system, method and robot
KR20110121304A (ko) * 2010-04-30 2011-11-07 주식회사 에스원 음원 위치 산출 장치 및 그 방법
KR101645135B1 (ko) * 2015-05-20 2016-08-03 단국대학교 산학협력단 마이크로폰 어레이와 좌표변환 기법을 이용하는 음원 추적 방법 및 시스템

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722347B2 (ja) * 2000-10-02 2011-07-13 中部電力株式会社 音源探査システム
US7039198B2 (en) * 2000-11-10 2006-05-02 Quindi Acoustic source localization system and method
US7039199B2 (en) * 2002-08-26 2006-05-02 Microsoft Corporation System and process for locating a speaker using 360 degree sound source localization
KR101612704B1 (ko) * 2009-10-30 2016-04-18 삼성전자 주식회사 다중음원 위치 추적장치 및 그 방법
KR101767928B1 (ko) * 2012-07-26 2017-08-31 한화테크윈 주식회사 음원 위치 추정 장치 및 방법
GB2517690B (en) * 2013-08-26 2017-02-08 Canon Kk Method and device for localizing sound sources placed within a sound environment comprising ambient noise
CN104464739B (zh) * 2013-09-18 2017-08-11 华为技术有限公司 音频信号处理方法及装置、差分波束形成方法及装置
JP6613503B2 (ja) * 2015-01-15 2019-12-04 本田技研工業株式会社 音源定位装置、音響処理システム、及び音源定位装置の制御方法
KR102549465B1 (ko) * 2016-11-25 2023-06-30 삼성전자주식회사 마이크 파라미터를 조절하는 전자 장치
JP6673276B2 (ja) * 2017-03-28 2020-03-25 カシオ計算機株式会社 音声検出装置、音声検出方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070061056A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 로봇 환경에서 음원 추적 시스템 및 방법
US20100034397A1 (en) * 2006-05-10 2010-02-11 Honda Motor Co., Ltd. Sound source tracking system, method and robot
KR20090116089A (ko) * 2008-05-06 2009-11-11 삼성전자주식회사 로봇의 음원 위치 탐색 방법 및 그 장치
KR20110121304A (ko) * 2010-04-30 2011-11-07 주식회사 에스원 음원 위치 산출 장치 및 그 방법
KR101645135B1 (ko) * 2015-05-20 2016-08-03 단국대학교 산학협력단 마이크로폰 어레이와 좌표변환 기법을 이용하는 음원 추적 방법 및 시스템

Also Published As

Publication number Publication date
US20210354310A1 (en) 2021-11-18
KR102647055B1 (ko) 2024-03-14
US11565426B2 (en) 2023-01-31
KR20190104950A (ko) 2019-09-11

Similar Documents

Publication Publication Date Title
WO2020246632A1 (ko) 자율 주행 차량과 그 제어 방법
US11250869B2 (en) Audio zoom based on speaker detection using lip reading
WO2021025187A1 (ko) 자율주행 차량 해킹 대응 방법 및 그 장치
KR102220950B1 (ko) 자율 주행 시스템에서 차량을 제어하기 위한 방법 및 장치
KR20190104486A (ko) 행동 방향성 인식기반 서비스 요구자 식별 방법
KR20190101332A (ko) 항공 제어 시스템
WO2020241944A1 (ko) 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스
KR20190104016A (ko) 무인 항공 시스템에서 무인 항공 로봇의 움직임을 제어한 촬영 방법 및 이를 지원하기 위한 장치
WO2018066816A1 (ko) 공항용 로봇 및 그의 동작 방법
WO2020256177A1 (ko) 차량 제어 방법
KR20190101923A (ko) 무인 항공 시스템에서 스테이션 인식을 통한 무인 항공 로봇 착륙 방법 및 이를 지원하기 위한 장치
WO2021015302A1 (ko) 이동 로봇 및 이동 로봇에서 화자의 위치를 추적하는 방법
WO2020262737A1 (ko) 지능형 로봇 청소기
WO2021002486A1 (ko) 음성인식 방법 및 그 장치
US20210331798A1 (en) Unmanned aerial robot landing method through station recognition in unmanned aerial system and apparatus for supporting the same
KR20220008399A (ko) 지능형 로봇 디바이스
US11414095B2 (en) Method for controlling vehicle and intelligent computing device for controlling vehicle
KR20210059980A (ko) 차량의 원격 제어방법 및 이를 위한 혼합현실 디바이스 및 차량
WO2020251079A1 (ko) 지능형 세탁기 및 이의 제어방법
KR20190104013A (ko) 무인 항공 시스템에서 무인 항공 로봇의 비행 방법 및 이를 지원하기 위한 장치
WO2020251067A1 (ko) 인공 지능형 냉장고 및 이의 식품 보관 방법
KR20190104014A (ko) 무인 항공 시스템에서 무인 항공 로봇의 자세 제어를 이용한 착륙 방법 및 이를 지원하기 위한 장치
KR102135254B1 (ko) 차량 내 사용자 모니터링을 위한 배경 이미지 생성 방법 및 이를 위한 장치
WO2020251087A1 (ko) 음파 탐지 장치 및 이를 구비한 인공지능형 전자 장치
KR20190104923A (ko) 무인 항공 시스템에서 스테이션 인식을 통한 무인 항공 로봇의 자세 제어 방법 및 이를 지원하기 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938653

Country of ref document: EP

Kind code of ref document: A1