WO2021015131A1 - Light-shielding plate, camera unit, and electronic device - Google Patents

Light-shielding plate, camera unit, and electronic device Download PDF

Info

Publication number
WO2021015131A1
WO2021015131A1 PCT/JP2020/027893 JP2020027893W WO2021015131A1 WO 2021015131 A1 WO2021015131 A1 WO 2021015131A1 JP 2020027893 W JP2020027893 W JP 2020027893W WO 2021015131 A1 WO2021015131 A1 WO 2021015131A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding plate
hole portion
back surface
hole
Prior art date
Application number
PCT/JP2020/027893
Other languages
French (fr)
Japanese (ja)
Inventor
清明 西辻
槙一 島村
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019167432A external-priority patent/JP7095667B2/en
Priority claimed from JP2019167431A external-priority patent/JP7172926B2/en
Priority claimed from JP2019167433A external-priority patent/JP7140079B2/en
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN202080050707.7A priority Critical patent/CN114127629B/en
Priority to KR1020227001189A priority patent/KR102617511B1/en
Publication of WO2021015131A1 publication Critical patent/WO2021015131A1/en
Priority to US17/574,859 priority patent/US20220137270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms

Definitions

  • the present invention relates to a light-shielding plate, a camera unit including a light-shielding plate, and an electronic device including the camera unit.
  • the camera unit of electronic devices is equipped with a light-shielding plate that functions as an aperture for external light. Since a light-shielding plate having a predetermined shape can be easily molded, a resin-made light-shielding plate is often used (see, for example, Patent Document 1). However, since the light-shielding plate made of resin has light transmittance, it allows external light to pass not only through the holes for passing external light but also in the portion that partitions the holes. As described above, since the light shielding by the resin light-shielding plate is not sufficient, a metal light-shielding plate having a higher light-shielding property has begun to be used (see, for example, Patent Document 2).
  • the punching process of punching the metal plate with a die is performed. It is used.
  • the surface of the metal plate is prevented from being deformed or distorted when the metal plate is punched by a die, thereby ensuring accuracy in the dimensions of the product. It is required to punch a metal plate along a direction orthogonal to.
  • the metal plate is formed with a hole having a side surface extending perpendicularly to the surface of the metal plate in a cross section orthogonal to the surface of the metal plate.
  • the metal light-shielding plate has a new problem because the light-shielding plate is made of metal.
  • An object of the present invention is to provide a shading plate, a camera unit, and an electronic device capable of reducing the amount of light reflected by a side surface that partitions a hole so as to pass through the hole.
  • the light-shielding plate for solving the above-mentioned problems is a metal light-shielding plate, which is a front surface located on the incident side of light, a back surface which is a surface opposite to the front surface, and the front surface and the back surface. It is provided with a hole penetrating between them.
  • the hole includes a first hole portion and a second hole portion connected to the first hole portion at the central opening, and the first hole portion extends from the back surface opening on the back surface to the central opening.
  • the second hole portion has a shape that tapers from the back surface toward the front surface, extends from the surface opening on the front surface to the central opening, and has a shape that tapers from the front surface toward the back surface.
  • the size of the front surface opening is larger than the size of the back surface opening.
  • the maximum width of the light-shielding plate in the thickness direction of the light-shielding plate is 7.0 ⁇ m or less.
  • the camera unit for solving the above problems includes the above-mentioned light-shielding plate.
  • An electronic device for solving the above problems includes the above camera unit.
  • the maximum width of the light-shielding plate to be focused is 7.0 ⁇ m or less, so that the area of the side surface that partitions the hole in the vicinity of the central opening is reduced, whereby the hole is formed in the vicinity of the central opening. It is possible to reduce the amount of light reflected on the side surface of the partition. As a result, the amount of light reflected by the side surface that partitions the hole so as to pass through the hole can be reduced.
  • the light-shielding plate for solving the above-mentioned problems is a metal light-shielding plate, which is a front surface located on the incident side of light, a back surface which is a surface opposite to the front surface, and the front surface and the back surface. It is provided with a hole penetrating between them.
  • the hole includes a first hole portion and a second hole portion connected to the first hole portion at the central opening, and the first hole portion extends from the back surface opening on the back surface to the central opening.
  • the second hole portion has a shape that tapers from the back surface toward the front surface, extends from the surface opening on the front surface to the central opening, and has a shape that tapers from the front surface toward the back surface.
  • the size of the front surface opening is larger than the size of the back surface opening.
  • the maximum width of the light-shielding plate in the thickness direction of the light-shielding plate is 30% or less of the thickness of the light-shielding plate.
  • the maximum width of the light-shielding plate in focus is 30% or less of the thickness of the light-shielding plate, so that the area of the side surface that partitions the hole in the vicinity of the central opening is reduced, thereby reducing the central opening. It is possible to reduce the amount of light reflected on the side surface that partitions the hole in the vicinity of. As a result, the amount of light reflected by the side surface that partitions the hole so as to pass through the hole can be reduced.
  • FIG. 5 is a cross-sectional view showing the structure of the light shielding plate shown in FIG. A partially enlarged cross-sectional view showing a part of the cross-sectional view shown in FIG. 2 in an enlarged manner.
  • the process drawing for demonstrating the manufacturing method of the light-shielding plate of 1st Embodiment The process drawing for demonstrating the manufacturing method of the light-shielding plate of 1st Embodiment.
  • FIGS. 1 to 9 A first embodiment of a shading plate, a camera unit, and an electronic device will be described with reference to FIGS. 1 to 9.
  • a light-shielding plate, a method for manufacturing the light-shielding plate, and an embodiment will be described in order.
  • the metal shading plate 10 includes a front surface 10F, a back surface 10R, and a hole 10H.
  • the surface 10F is a surface located on the incident side of light.
  • the back surface 10R is a surface opposite to the front surface 10F.
  • the hole 10H penetrates between the front surface 10F and the back surface 10R.
  • the light-shielding plate 10 is made of stainless steel, for example, but may be made of a metal other than stainless steel.
  • the front surface 10F, the back surface 10R, and the side surface for partitioning the hole 10H are covered with an antireflection film (not shown).
  • the antireflection film has a lower reflectance than the metal forming the light-shielding plate 10, and has a function of absorbing a part of the light irradiated to the antireflection film. Further, even if the light-shielding plate 10 is covered with an antireflection film, the reflection of light on the light-shielding plate 10 cannot be completely eliminated.
  • the light-shielding plate 10 has a circular shape corresponding to the shape of the lens covered by the light-shielding plate 10.
  • the hole 10H has a circular shape corresponding to the shape of the lens with which the hole 10H faces.
  • FIG. 2 shows the structure of the light-shielding plate 10 in a cross section orthogonal to the surface 10F of the light-shielding plate 10.
  • the hole 10H includes a first hole portion 10H1 and a second hole portion 10H2.
  • the first hole portion 10H1 extends from the back surface opening H1R on the back surface 10R to the central opening HC (see FIG. 3).
  • the first hole portion 10H1 has a shape that tapers from the back surface 10R toward the front surface 10F.
  • the second hole portion 10H2 extends from the surface opening H2F on the surface 10F to the central opening HC.
  • the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R.
  • the size of the front opening H2F is larger than the size of the back opening H1R.
  • the second hole portion 10H2 is connected to the first hole portion 10H1 in the central opening HC. That is, the central opening HC is located on the way from the front surface 10F to the back surface 10R in the thickness direction of the light-shielding plate 10.
  • the side surface for partitioning the second hole portion 10H2 in a cross section along a plane orthogonal to the surface 10F, is arcuate, and the center of curvature of the side surface for partitioning the second hole portion 10H2 is the light-shielding plate 10. Located outside. Further, in a cross section along a plane orthogonal to the surface 10F, the side surface for partitioning the first hole portion 10H1 is arcuate, and the center of curvature of the side surface for partitioning the first hole portion 10H1 is located outside the shading plate 10. There is.
  • the diameter of the first hole portion 10H1 is the first diameter DH1
  • the diameter of the second hole portion 10H2 is the second diameter DH2.
  • the first diameter DH1 is set according to the camera unit on which the shading plate 10 is mounted.
  • the first diameter DH1 may be 0.4 mm or more and 1.0 mm or less when the light-shielding plate 10 is mounted on a camera unit of a smartphone, for example.
  • the first diameter DH1 may be 2.0 mm or more and 7.0 mm or less when the light-shielding plate 10 is mounted on, for example, an in-vehicle camera.
  • the percentage (DH1 / DH2 ⁇ 100) of the first diameter DH1 with respect to the second diameter DH2 may be, for example, 80% or more and 99% or less.
  • the shading plate 10 is mounted on a smartphone, a tablet-type personal computer, or a camera unit installed in front of a notebook-type personal computer, the camera unit often shoots a subject at a short distance. Therefore, although the angle of view is large, the light-shielding plate 10 does not require a large inner diameter for the lens to focus on the subject. Further, it is difficult to increase the outer diameter of the light-shielding plate 10 due to the limitation of the space in which the camera unit is arranged. Therefore, the percentage of the first diameter DH1 with respect to the second diameter DH2 may be 80% or more and 90% or less.
  • the shading plate 10 when the shading plate 10 is mounted on the in-vehicle camera, the in-vehicle camera often shoots the subject from a medium distance to a long distance. Therefore, although the angle of view is small, the limitation of the space in which the camera unit is arranged is small, so that the diameter of the lens provided in the camera unit is large. Thereby, in order to collect light in a wide range with respect to the lens, the ratio of the first diameter DH1 to the second diameter DH2 in the light shielding plate 10 may be 90% or more and 99% or less.
  • the ratio of the first diameter DH1 to the second diameter DH2 may be 80% or more and 90% or less in dealing with the case where the angle of view becomes large, and in dealing with the case where the angle of view becomes small.
  • the ratio of the first diameter DH1 to the second diameter DH2 may be 90% or more and 99% or less.
  • the thickness T of the light-shielding plate 10 may be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness T of the light-shielding plate 10 is 10 ⁇ m or more, it is possible to prevent the warp of the metal foil for forming the light-shielding plate 10 from affecting the shape of the light-shielding plate 10. Further, when the thickness T of the light-shielding plate 10 is 100 ⁇ m or less, it is possible to suppress a decrease in etching accuracy when forming the holes 10H.
  • FIG. 3 shows an enlarged part of the cross-sectional structure of the light-shielding plate 10 shown in FIG.
  • the back surface 10R of the light-shielding plate 10 partitions the back surface opening H1R, and the first hole portion 10H1 is connected to the second hole portion 10H2 in the central opening HC.
  • the distance between the back surface 10R and the edge of the central opening HC is the first distance D11.
  • the distance between the surface 10F and the edge of the central opening HC in the thickness direction of the light-shielding plate 10 is the second distance D12.
  • the ratio (D12 / D11) of the second distance D12 to the first distance D11 is 2.5 or more.
  • the central opening HC relatively approaches the back opening H1R.
  • the area on the side surface of the first hole portion 10H1 can be reduced. Therefore, a part of the light incident on the hole 10H from diagonally above the light-shielding plate 10 is reflected on the surface of the lens and then incident on the first hole portion 10H1 to enter the lens LN from the first hole portion 10H1 (FIG. 4). Reflection towards (see) is suppressed.
  • the ratio of the second distance D12 to the first distance D11 (D12 / D11) preferably approaches infinity.
  • the etching solution soaks into the gap between the metal foil for forming the light-shielding plate 10 and the mask formed on the metal foil, and thereby, about submicrons.
  • a first hole portion 10H1 having a depth of, i.e., a first distance D11 is formed. Therefore, for example, when the metal foil has a thickness of 100 ⁇ m, the lower limit of the first distance D11 is about 0.1 ⁇ m. Therefore, the upper limit of the ratio (D12 / D11) of the second distance D12 to the first distance D11 is about 1000.
  • the surface opening H2F has a circular shape when viewed from the viewpoint facing the surface 10F.
  • the side surface that partitions the second hole portion 10H2 when viewed from the viewpoint facing the surface 10F is divided into five equal parts in the radial direction of the surface opening H2F by a surface concentric with respect to the center of the surface opening H2F.
  • the side surfaces that partition the second hole portion 10H2 are the first regions R1 and the second along the direction from the edge of the surface opening H2F to the edge of the central opening HC. It has a region R2, a third region R3, a fourth region R4, and a fifth region R5.
  • the first region R1 is a region including the edge of the surface opening H2F among the side surfaces for partitioning the second hole portion 10H2.
  • the fifth region R5 is a region including the edge of the central opening HC among the side surfaces for partitioning the second hole portion 10H2.
  • the straight line that is, the inclination of the line segment, is the inclination angle at the portion included in each region in the side surface.
  • the angle formed by the first straight line L11 and the surface 10F is the first inclination angle ⁇ 11
  • the angle formed by the second straight line L12 and the surface 10F is the second inclination angle. It is ⁇ 12.
  • the angle formed by the third straight line L13 and the surface 10F is the third inclination angle ⁇ 13
  • the angle formed by the fourth straight line L14 and the surface 10F is the fourth inclination angle. It is ⁇ 14
  • the angle formed by the fifth straight line L15 and the surface 10F in the fifth region R5 is the fifth inclination angle ⁇ 15.
  • the first inclination angle ⁇ 11 of the first region R1 is larger than the inclination angle in the other regions among the side surfaces that partition the second hole portion 10H2. That is, the first inclination angle ⁇ 11 of the first region R1 among the five regions has the maximum size.
  • the first inclination angle ⁇ 11 is larger than each of the second inclination angle ⁇ 12, the third inclination angle ⁇ 13, the fourth inclination angle ⁇ 14, and the fifth inclination angle ⁇ 15.
  • the first inclination angle ⁇ 11 is 50 ° or more and 60 ° or less.
  • the fifth inclination angle ⁇ 15 of the fifth region R5 is larger than the fourth inclination angle ⁇ 14 among the side surfaces that partition the second hole portion 10H2. Further, from the first region R1 to the fourth region R4, the inclination angle in the portion included in each region among the side surfaces for partitioning the second hole portion 10H2 becomes smaller. That is, on the side surface that partitions the second hole portion 10H2, the inclination angle becomes smaller in the order of the first inclination angle ⁇ 11, the second inclination angle ⁇ 12, the third inclination angle ⁇ 13, and the fourth inclination angle ⁇ 14.
  • FIG. 4 shows the cross-sectional structure of the light-shielding plate 10 in this embodiment.
  • FIG. 5 shows a cross-sectional structure in an example in which the side surface for partitioning the hole extends along the direction orthogonal to the surface in the cross section orthogonal to the surface.
  • the first diameter with respect to the thickness of the light-shielding plate is reduced.
  • the second since the ratio (D11 / D12) of the first distance D11 between the front surface 10F and the central opening HC to the second distance D12 between the back surface 10R and the central opening HC is 2.5 or more, the second. It is possible to maintain the size of the hole portion 10H2 to a size that can be tapered from the front surface 10F to the back surface 10R. This makes it possible to reduce the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole 10H. As a result, it is possible to prevent unintended light from entering the lens LN facing the light-shielding plate 10.
  • the first inclination angle ⁇ 11 in the first region R1 is larger than the inclination angle in each of the second region R2 to the fifth region R5. Therefore, it is possible to prevent the diameter of the second hole portion 10H2 from becoming excessively large, and to make it easier for light to be reflected toward the surface 10F of the light-shielding plate 10 in a region other than the first region R1. Since the first inclination angle ⁇ 11 is 50 ° or more and 60 ° or less, in the first region R1 including the surface opening H2F among the side surfaces for partitioning the second hole portion 10H2, toward the surface 10F of the light shielding plate 10. The certainty of reflecting light can be increased.
  • the fifth inclination angle ⁇ 15 of the fifth region R5 is larger than the fourth inclination angle ⁇ 14 of the fourth region R4, so that the fifth inclination angle ⁇ 15 of the fifth region R5 is the fourth of the fourth region R4. 4 It is possible to suppress the expansion of the diameter of the second hole portion 10H2 as compared with the case where it is smaller than the inclination angle ⁇ 14. Further, since the inclination angle in each region becomes smaller from the first region R1 to the fourth region R4, the inclination of the side surface for partitioning the second hole portion 10H2 is the same from the first region R1 to the fourth region R4. The closer to the central opening HC, the easier it is for the light incident on the second hole portion 10H2 to be reflected toward the surface 10F of the light-shielding plate 10.
  • the light incident on the second hole portion 10H2 from diagonally above the surface 10F is reflected on the side surface having an arc shape such that the center of curvature is located outside the light shielding plate 10. Therefore, the specularly reflected light having the highest brightness among the reflected light is reflected along the direction from the arc-shaped side surface toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H is further suppressed.
  • the side surface that partitions the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10. Therefore, as compared with the case where the side surface for partitioning the first hole portion 10H1 has a linear shape, the light incident on the hole from diagonally above the front surface 10F is reflected by the side surface for partitioning the hole 10H in the vicinity of the back surface opening H1R. The amount of light produced can be reduced. As a result, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole can be further reduced.
  • the light incident on the light-shielding plate 100 from the direction orthogonal to the surface 100F was formed on the surface 100F in the same manner as the light incident on the light-shielding plate 10 from the direction orthogonal to the surface 10F. Enter the hole 100H through the opening. Then, the light that has passed through the hole 100H reaches the lens LN by exiting from the opening formed in the back surface 100R.
  • a part of the light incident on the surface 100F from diagonally above the surface 100F is incident on the hole 100H from the opening formed on the surface 100F and is reflected on the side surface for partitioning the hole 100H. Since most of the light incident on the side surface is reflected in the direction of specular reflection, the light incident on the side surface is reflected from the side surface toward the lens LN. As a result, unintended light enters the image pickup unit through the lens LN.
  • One or more of the light-shielding plates 10 described above are provided in the above-mentioned camera unit. Further, the camera unit provided with the light-shielding plate 10 is mounted on various electronic devices.
  • the electronic device including the camera unit may be, for example, a smartphone, a tablet-type personal computer, a notebook-type personal computer, or the like.
  • FIGS. 6 to 9 show the cross-sectional structure of the metal leaf in a specific step in the manufacturing process of the light-shielding plate 10.
  • the ratio of the second diameter DH2 to the thickness of the metal foil is smaller than that of the actual light-shielding plate
  • the ratio of the first diameter DH1 to the thickness of the metal foil is It is smaller than the actual shading plate.
  • the ratio of the first diameter DH1 to the second diameter DH2 is smaller than that of the actual light-shielding plate.
  • FIGS. 6 to 9 for convenience of explanation, only the steps related to the formation of the holes 10H of the light-shielding plate 10 are shown in the steps of manufacturing the light-shielding plate 10.
  • a metal foil 10M for forming the light-shielding plate 10 is prepared.
  • the metal foil 10M is, for example, a stainless steel foil, but as described above, it may be a metal foil formed of a metal other than stainless steel.
  • the thickness of the metal foil 10M is 10 ⁇ m or more and 100 ⁇ m or less. When the thickness of the metal foil 10M is 10 ⁇ m or more, it is possible to prevent the warp of the metal foil 10M from affecting the shape of the light-shielding plate 10. Further, when the thickness of the metal foil 10M is 100 ⁇ m or less, it is possible to suppress a decrease in etching accuracy when forming the holes 10H.
  • the thickness of the metal foil 10M is substantially the same as the thickness of the light-shielding plate 10 manufactured from the metal foil 10M.
  • a resist layer is arranged on the front surface 10MF and the back surface 10MR of the metal foil 10M.
  • the front surface 10MF of the metal foil 10M corresponds to the front surface 10F of the light-shielding plate 10
  • the back surface 10MR of the metal foil 10M corresponds to the back surface 10R of the light-shielding plate 10.
  • the front surface resist layer RF is arranged on the front surface 10MF of the metal foil 10M
  • the back surface resist layer RR is arranged on the back surface 10MR of the metal foil 10M.
  • a dry film resist may be attached as resist layers RF and RR on both the front surface 10 MF and the back surface 10 MR.
  • the resist layers RF and RR may be formed on both the front surface 10MF and the back surface 10 MR by using a coating liquid for forming the resist layers RF and RR.
  • the resist layers RF and RR may be formed by a negative type resist or a positive type resist.
  • a resist mask is formed from the resist layer by exposure and development of the resist layers RF and RR. More specifically, exposure and development of the surface resist layer RF forms a surface mask RMF from the surface resist layer RF. Further, the back surface mask RMR is formed from the back surface resist layer RR by exposure and development of the back surface resist layer RR.
  • the surface mask RMF has mask holes RMFh for forming a second hole portion in the metal foil 10M.
  • the back surface mask RMR has a mask hole RMRh for forming the first hole portion in the metal foil 10M.
  • the first hole portion MH1 having a back surface opening on the back surface 10 MR and having a shape tapering from the back surface 10 MR toward the front surface 10 MF.
  • the first hole portion MH1 corresponds to the first hole portion 10H1 of the light shielding plate 10.
  • the metal leaf 10M is etched using an etching solution capable of etching the metal leaf 10M.
  • the surface mask RMF is covered with a surface protective film PMF having resistance to an etching solution.
  • the surface protective film PMF may fill or cover the mask holes RMFh of the surface mask RMF.
  • the first hole portion MH1 When the first hole portion MH1 is formed by etching the back surface 10MR, the first hole portion MH1 having a depth larger than the distance between the back surface 10R and the central opening HC of the light shielding plate 10 described above. Is formed.
  • the surface mask RMF formed on the front surface 10MF is used to have a surface opening on the front surface 10MF and taper from the front surface 10MF to the back surface 10MR.
  • the second hole portion MH2 having the same shape is formed on the metal foil 10M so as to be connected to the first hole portion MH1.
  • the second hole portion MH2 corresponds to the second hole portion 10H2 of the light shielding plate 10.
  • the metal foil 10M is etched using an etching solution capable of etching the metal foil 10M, as in the case of forming the first hole portion MH1.
  • the back surface mask RMR is removed from the back surface 10MR of the metal foil 10M.
  • the back surface 10MR of the metal foil 10M is covered with the back surface protective film PMR having resistance to the etching solution, and the inside of the first hole portion MH1 is filled.
  • the surface 10MF of the metal foil 10M is etched with the first hole portion MH1 filled with the back surface protective film PMR. Therefore, after the etching of the front surface 10MF reaches the back surface protective film PMR, the supply of the etching solution to the metal foil 10M is controlled by the back surface protective film PMR. Thereby, even when the thickness of the metal foil 10M covers a wide range of 10 ⁇ m or more and 100 ⁇ m or less, the accuracy of the cross-sectional shape in the cross-sectional shape of the second hole portion MH2 can be improved.
  • the front surface mask RMF is removed from the front surface 10 MF
  • the back surface protective film PMR is removed from the back surface 10 MR.
  • an antireflection film covering the front surface 10MF, the back surface 10MR, and the side surface for partitioning the first hole portion MH1 and the second hole portion MH2 is formed. Will be done.
  • the antireflection film has a reflectance lower than that of the metal foil 10M, and has a function of absorbing a part of the light incident on the antireflection film.
  • the antireflection film is, for example, a film having a black color.
  • the antireflection film may be formed on the metal foil 10M by using a film forming method such as a sputtering method or a vapor deposition method. Alternatively, the antireflection film may be formed on the metal foil 10M by bringing the metal foil 10M into contact with the liquid for forming the antireflection film.
  • one hole 10H is provided, and in the thickness direction of the light-shielding plate 10, the front surface 10F and the edge of the central opening HC with respect to the distance between the back surface 10R and the edge of the central opening HC
  • a light-shielding plate 10 having a distance ratio of 2.5 or more is manufactured.
  • the back surface mask RMR may be covered and the back surface protective film PMR may be formed in the first hole portion MH1. Further, the back surface protective film PMR may be removed from the back surface 10 MR together with the back surface mask RMR after the second hole portion MH2 is formed by etching the front surface 10 MF.
  • Example 1-1 A stainless steel foil having a thickness of 30 ⁇ m was prepared. Then, after the first hole portion was formed by etching the stainless steel foil from the back surface of the stainless steel foil, the second hole portion was formed by etching the stainless steel foil from the front surface of the stainless steel foil. As a result, it has a first hole portion and a second hole portion, and has a central opening having a major axis diameter of 270 ⁇ m, a minor axis diameter of 75 ⁇ m, and an elliptical shape at the central opening. A light-shielding plate having a hole was obtained.
  • Example 1-2 A light-shielding plate of Example 1-2 was obtained by the same method as in Example 1-1, except that the central opening was changed to a circular shape having a diameter of 850 ⁇ m in Example 1-1.
  • Example 1-3 A light-shielding plate of Example 1-3 was obtained by the same method as in Example 1-1, except that the central opening was changed to a circular shape having a diameter of 490 ⁇ m in Example 1-1.
  • Example 1-4 A light-shielding plate of Example 1-4 was obtained by the same method as in Example 1-1 except that the central opening was changed to a circular shape having a diameter of 6600 ⁇ m in Example 1-1.
  • Example 1-5 A light-shielding plate of Example 1-5 was obtained by the same method as in Example 1-1 except that the central opening was changed to a circular shape having a diameter of 2510 ⁇ m in Example 1-1.
  • Example 1-6 A light-shielding plate of Example 1-6 was obtained by the same method as in Example 1-3 except that the thickness of the stainless steel foil was changed to 25 ⁇ m in Example 1-3.
  • Example 1-2 the light-shielding of Comparative Example 1-1 was performed by the same method as in Example 1-1, except that the stainless steel foil was punched out with a die to form a circular hole penetrating the stainless steel foil. I got a board.
  • the diameter of the front surface opening and the diameter of the back surface opening were the same, and were the same as the second diameter of Example 1-2.
  • the light-shielding plate of Comparative Example 1 does not have a hole having a first hole portion and a second hole portion. Therefore, Table 1 shows the second distance with respect to the first distance D11 in Comparative Example 1. The ratio of D12 is not stated.
  • the ratio of the second distance D12 to the first distance D11 is 3.84 in Example 1-1, 3.35 in Example 1-2, and in Example 1-3. It was found to be 2.61.
  • the ratio of the second distance D12 to the first distance D11 is 2.90 in Examples 1-4, 2.57 in Examples 1-5, and 84.65 in Examples 1-6. Was recognized. As described above, in each of the examples, it was confirmed that the ratio of the second distance D12 to the first distance D11 was 2.5 or more.
  • the side surface of the second hole portion was divided into five equal parts along the radial direction of the surface opening, and the inclination angle in each region was calculated.
  • the calculation results are as shown in Tables 2 and 3 below.
  • the horizontal distance is the length of each region along the radial direction of the surface opening.
  • the height difference is the difference between the position of one end and the position of the other end of each region in the thickness direction of the light-shielding plate.
  • Example 1-1 by setting the horizontal distance in each region to 6.5 ⁇ m or 6.7 ⁇ m, the side surface for partitioning the second hole portion is set in the radial direction of the surface opening. Divided into 5 equal parts.
  • Example 1-2 the side surface partitioning the second hole portion was divided into five equal parts in the radial direction of the surface opening by setting the horizontal distance in each region to 9.5 ⁇ m or 9.6 ⁇ m.
  • Example 1-3 the horizontal distance in each region is set to 8.1 ⁇ m, and in Example 1-4, the horizontal distance in each region is set to 7.2 ⁇ m to partition the second hole portion.
  • the side surface to be used was divided into 5 equal parts in the radial direction of the surface opening.
  • the side surface partitioning the second hole portion was divided into five equal parts in the radial direction of the surface opening by setting the horizontal distance in each region to 6.9 ⁇ m or 7.1 ⁇ m.
  • the side surface partitioning the second hole portion was divided into five equal parts in the radial direction of the surface opening by setting the horizontal distance in each region to 7.7 ⁇ m or 7.6 ⁇ m.
  • the first inclination angle ⁇ 11 in the first region is It was found that it was the largest and the first inclination angle ⁇ 11 was 50 ° or more and 60 ° or less. Further, in any of Examples 1-1 to 1-6, the inclination angle becomes smaller in order from the first inclination angle ⁇ 11 to the fourth inclination angle ⁇ 14, and the fifth inclination angle ⁇ 15 becomes the fifth. 4 It was found that the inclination angle was larger than ⁇ 14.
  • the effects described below can be obtained.
  • (1-1) In the light-shielding plate 10, since the second hole portion 10H2 has a shape that tapers from the front surface 10F toward the back surface 10R, the light incident on the hole 10H from diagonally above the front surface 10F is the first hole portion 10H1. Is easily reflected toward the surface 10F of the light-shielding plate 10 on the side surface for partitioning.
  • the light-shielding plate 10 is formed in the first region R1 including the surface opening H2F among the side surfaces for partitioning the second hole portion 10H2. It is possible to increase the certainty of reflecting light toward the surface 10F.
  • the above-mentioned first embodiment can be modified and implemented as follows.
  • the side surface that partitions the first hole portion 10H1 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the ratio of the second distance D12 to the one distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
  • the side surface that partitions the second hole portion 10H2 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the ratio of the second distance D12 to the one distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
  • the inclination angle in each region does not have to decrease in order from the first region R1 to the fourth region R4.
  • the inclination angle in each region may be equal to the inclination angle in the other regions. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
  • the fifth inclination angle ⁇ 15 of the fifth region R5 may be smaller than the fourth inclination angle ⁇ 14 of the fourth region R4. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
  • the first inclination angle ⁇ 11 of the first region R1 may be smaller than 50 ° or larger than 60 °. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
  • the first inclination angle ⁇ 11 of the first region R1 may be smaller than the inclination angle in at least one region from the second region R2 to the fifth region R5. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
  • the light-shielding plate 10 may be formed of a metal other than stainless steel.
  • the light-shielding plate 10 may be made of, for example, an iron-nickel alloy or an iron-nickel-cobalt alloy.
  • the coefficient of thermal expansion of iron-nickel alloys is smaller than the coefficient of thermal expansion of stainless steel. Therefore, the light-shielding plate made of an iron-nickel alloy has a small deformation due to a change in the outside air temperature, and as a result, the change in the outside air temperature due to the deformation of the inner diameter due to the warp of the light-shielding plate itself and the thermal expansion and contraction. It is possible to suppress the change in the incident amount of external light due to the above.
  • the incident amount of external light is the incident amount of external light incident on the lens through the light-shielding plate 10. Therefore, the fact that the light-shielding plate 10 is formed of an iron-nickel alloy is effective in suppressing ghosts and flares caused by changes in the amount of incident light.
  • the iron-nickel alloy is an alloy containing iron and nickel as main components, and for example, 30% by mass or more of nickel and iron as a residual.
  • an alloy containing 36% by mass of nickel, that is, Invar is preferable as a material for forming the light-shielding plate 10.
  • the residue for 36% by weight nickel may contain additives other than iron, which is the main component. Additives include, for example, chromium, manganese, carbon, and cobalt.
  • the maximum amount of additives contained in the iron-nickel alloy is 1% by mass or less.
  • the coefficient of thermal expansion of the iron-nickel-cobalt alloy is smaller than the coefficient of thermal expansion of the iron-nickel alloy. Therefore, the light-shielding plate made of iron-nickel-cobalt alloy has less deformation due to changes in the outside air temperature, which causes the outer diameter to be deformed due to the warp of the light-shielding plate itself and the deformation of the inner diameter due to thermal expansion and contraction. It is possible to further suppress the change in the incident amount of external light due to the change in air temperature. Therefore, the formation of the light-shielding plate 10 by the iron-nickel-cobalt alloy is more effective in suppressing ghosts and flares caused by changes in the amount of incident light.
  • the iron-nickel-cobalt alloy contains iron, nickel, and cobalt as main components, and contains, for example, 30% by mass or more of nickel, 3% by mass or more of cobalt, and iron as a residue. It is an alloy.
  • an alloy containing 32% by mass of nickel and 4% by mass or more and 5% by mass or less of cobalt, that is, Super Invar is preferable as a material for forming the light-shielding plate 10.
  • the residue for 32% by mass nickel and 4% by mass or more and 5% by mass or less of cobalt may contain additives other than iron as a main component. Additives are, for example, chromium, manganese, and carbon.
  • the maximum amount of additives contained in the iron-nickel-cobalt alloy is 0.5% by mass or less.
  • the light-shielding plate 10 is made of an iron-nickel alloy or an iron-nickel-cobalt alloy, the following effects can be obtained.
  • FIGS. 10 and 11 A second embodiment of the shading plate, the camera unit, and the electronic device will be described with reference to FIGS. 10 and 11.
  • the shape of the light-shielding plate is different from that in the first embodiment described above. Therefore, while these differences will be described in detail below, other explanations will be omitted.
  • the light-shielding plate and the examples will be described in order.
  • FIG. 10 shows an enlarged part of the cross-sectional structure of the light-shielding plate 10 shown in FIG.
  • the edge of the central aperture HC is imaged along the radial direction of the central aperture HC while focusing on the edge of the central aperture HC.
  • the maximum width of the light-shielding plate 10 in the thickness direction of the light-shielding plate 10 in focus is the maximum width WM. That is, the maximum width WM is the thickness of the light-shielding plate 10 at a position separated from the edge of the central opening HC by the same distance as the depth of field DF along the direction orthogonal to the thickness direction of the light-shielding plate 10. ..
  • the maximum width WM is 7.0 ⁇ m or less. Further, the maximum width WM is 30% or less of the thickness T of the light-shielding plate 10. The maximum width WM may be 3.0 ⁇ m or less. Further, the maximum width WM may be 1.0 ⁇ m or more. The maximum width WM may satisfy only either 7.0 ⁇ m or less and 30% or less of the thickness T of the light-shielding plate 10, but may not satisfy the other.
  • the distance between the back surface 10R and the edge of the central opening HC in the thickness direction of the shading plate 10 is the opening distance D21.
  • the opening distance D21 may be larger than 0 ⁇ m and 3 ⁇ m or less. Alternatively, the opening distance D21 may be 30% or less of the thickness of the shading plate 10. The opening distance D21 does not have to satisfy that it is 30% or less of the thickness of the light-shielding plate 10 but that it is 3 ⁇ m or less.
  • the opening distance D21 may be smaller than the maximum width WM or may be substantially equal to the maximum width WM.
  • the maximum width WM is 7.0 ⁇ m or less, or because the maximum width WM is 30% or less of the thickness T of the light-shielding plate 10, the area of the side surface for partitioning the hole 10H in the vicinity of the central opening HC is set. By making it smaller, it is possible to reduce the amount of light reflected on the side surface that partitions the hole 10H in the vicinity of the central opening HC. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
  • the maximum width WM is 3.0 ⁇ m or less
  • the area of the side surface that partitions the hole in the vicinity of the central opening HC is further reduced, so that the light is reflected on the side surface that partitions the hole 10H in the vicinity of the central opening HC.
  • the amount of light emitted can be further reduced.
  • the thickness of the portion of the light-shielding plate 10 including the central opening HC is 1.0 ⁇ m or more, so that deformation in the vicinity of the central opening HC can be suppressed. Is. As a result, the amount of light transmitted through the light-shielding plate 10 through the central opening HC is suppressed from fluctuating due to the deformation of the light-shielding plate 10.
  • the opening distance D21 is larger than 0 ⁇ m and 3 ⁇ m or less, or 30% or less of the thickness of the light-shielding plate 10
  • the area of the side surface for partitioning the first hole portion 10H1 is reduced, whereby the first hole portion 10H1 is divided.
  • the amount of light reflected on the side surface that partitions the hole portion 10H1 can be reduced.
  • the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
  • Example 2 Examples and comparative examples will be described with reference to FIG. [Example 2-1]
  • a stainless steel foil having a thickness of 25 ⁇ m was prepared. Then, after the first hole portion was formed by etching the stainless steel foil from the back surface of the stainless steel foil, the second hole portion was formed by etching the stainless steel foil from the front surface of the stainless steel foil. As a result, a light-shielding plate having a hole formed from the first hole portion and the second hole portion was obtained.
  • Example 2-2 A light-shielding plate of Example 2-2 was obtained by the same method as in Example 2-1 except that the second diameter of the surface opening of the second hole portion was increased in Example 2-1.
  • Example 2-3 A light-shielding plate of Example 2-3 was obtained by the same method as in Example 2-2 except that the second diameter of the surface opening of the second hole portion was reduced in Example 2-2.
  • Example 2-1 the light-shielding plate of Comparative Example 1 was formed by the same method as in Example 2-1 except that the stainless steel foil was punched out with a die to form a circular hole penetrating the stainless steel foil. Obtained.
  • the diameter of the front surface opening and the diameter of the back surface opening were the same, and were the same as the second diameter of Example 2-1.
  • the maximum width WM was measured using a confocal laser scanning microscope (VK-X1000Series, manufactured by KEYENCE CORPORATION) for each of the light-shielding plates of Examples 2-1 to 2-3 and Comparative Example 2-1. did. At this time, a 50x objective lens was attached to the confocal laser scanning microscope. In addition, the maximum width WM was measured by observing the side surface with a confocal laser microscope in a state where the edge of the central opening was in focus from the direction facing the side surface that partitions the hole. In a confocal laser microscope, the range of focus, that is, the depth of field differs depending on the magnification of the objective lens.
  • the maximum width of the light-shielding plate in the thickness direction differs depending on the position from the edge of the central opening. Therefore, the thickness of the light-shielding plate at the position where it is actually in focus has a predetermined width.
  • the depth of field of the 50x objective lens is 0.4 ⁇ m. Therefore, when the depth of field is 0.4 ⁇ m and the edge of the central opening is in focus, the maximum value of the width of the light-shielding plate in the thickness direction of the light-shielding plate is defined as the maximum width. That is, the thickness of the light-shielding plate at a position separated by the depth of field from the edge of the central opening is the maximum width WM of the light-shielding plate.
  • the measurement results of the maximum width WM are as shown in Table 4.
  • Example 2-1 to Example 2-3 and Comparative Example 2-1 was cut along a plane orthogonal to the surface to prepare a measurement target.
  • the results of photographing the measurement target of Example 2-1 with a scanning electron microscope were as shown in FIG.
  • the results of measuring the opening distance for each of Examples 2-1 to 2-3 and Comparative Example 2-1 are as shown in Table 4. Since the holes of the light-shielding plate of Comparative Example 2-1 do not have the first hole portion, the second hole portion, and the central opening, the maximum width and the opening distance are shown for Comparative Example 2-1. Not.
  • the maximum width WM of Example 2-1 is 2.3 ⁇ m
  • the maximum width WM of Example 2-2 is 0.6 ⁇ m
  • the maximum width WM of Example 2-3 is 6. It was found to be .96 ⁇ m.
  • the maximum width WM was 7.0 ⁇ m or less in each of Examples 2-1 to 2-3.
  • the opening distance D21 of Example 2-1 is 0.27 ⁇ m
  • the opening distance D21 of Example 2-2 is 0.10 ⁇ m
  • the opening distance D21 of Example 2-3 is 7. It was found to be 0.05 ⁇ m.
  • the first hole portion had a back surface opening H1R and a central opening HC. It was found that the light-shielding plate of Example 2-2 and the light-shielding plate of Example 2-3 also had holes having a shape similar to the shape of the holes of the light-shielding plate of Example 2-1.
  • Example 2-1 to 2-3 it was recognized that ghosts and flares were reduced as compared with Comparative Example 2-1. Therefore, according to Examples 2-1 to 2-3, it can be said that it is possible to reduce the amount of light reflected on the side surface that partitions the holes so as to pass through the holes of the light-shielding plate. According to Example 2-3, it is possible to reduce the amount of light reflected on the side surface that partitions the holes so as to pass through the holes of the light-shielding plate as compared with Comparative Example 2-1. Ghosts and flares are confirmed. Therefore, it can be said that the maximum width WM is preferably 7.0 ⁇ m or less.
  • Example 2-2 it is possible to reduce the amount of light reflected on the side surface that partitions the holes so as to pass through the holes of the light-shielding plate as compared with Comparative Example 2-1. Compared with Example 2-1 it is considered that the amount of light reflected on the side surface that partitions the hole so as to pass through the hole of the light-shielding plate is high. Since it is considered that such a difference in the amount of light is caused by the deformation of the light-shielding plate due to the decrease in strength, it can be said that the maximum width WM is preferably 1.0 ⁇ m or more in order to suppress the deformation of the light-shielding plate.
  • the maximum width WM is 30% or less of the thickness of the light-shielding plate 10
  • the area of the side surface that partitions the hole 10H in the vicinity of the central opening HC is reduced, thereby reducing the area of the side surface in the vicinity of the central opening HC.
  • the amount of light reflected on the side surface of the hole 10H can be reduced.
  • the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
  • the second embodiment described above can be modified and implemented as follows.
  • [Aperture distance] The opening distance D21 may be larger than 3 ⁇ m. Even in this case, when the maximum width WM is 7.0 ⁇ m or less, the effect according to (2-1) described above can be obtained. Even in this case, if the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the effect according to (2-6) described above can be obtained.
  • the opening distance D21 may be larger than 30% of the thickness of the shading plate 10. Even in this case, when the maximum width WM is 7.0 ⁇ m or less, the effect according to (2-1) described above can be obtained. Even in this case, if the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the effect according to (2-6) described above can be obtained.
  • the maximum width WM may be greater than 0 ⁇ m and less than 1 ⁇ m. Even in this case, when the maximum width WM is 7.0 ⁇ m or less, the effect according to (2-1) described above can be obtained. Even in this case, if the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the effect according to (2-6) described above can be obtained.
  • the maximum width WM may be larger than 3.0 ⁇ m and 7.0 ⁇ m or less. Even in this case, the effect according to (2-1) described above can be obtained.
  • the side surface that partitions the first hole portion 10H1 has a linear shape in a cross section along a plane orthogonal to the front surface 10F. You may have.
  • the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R, the side surface that partitions the second hole portion 10H2 has a linear shape in a cross section along a plane orthogonal to the front surface 10F. You may have.
  • the light-shielding plate 10 may be formed of a metal other than stainless steel.
  • the shading plate 10 may be formed of any of the metals listed in the modified examples of the first embodiment.
  • the light-shielding plate 10 of the second embodiment can be implemented in combination with the structure of the light-shielding plate 10 of the first embodiment.
  • FIGS. 12 and 13 A third embodiment of the shading plate, the camera unit, and the electronic device will be described with reference to FIGS. 12 and 13.
  • the shape of the light-shielding plate is different from that in the first embodiment described above. Therefore, while these differences will be described in detail below, other explanations will be omitted.
  • the light-shielding plate and the examples will be described in order.
  • FIG. 12 shows an enlarged part of the cross-sectional structure of the light-shielding plate 10 shown in FIG.
  • a straight line passing through the edge of the central opening HC and the edge of the back surface opening H1R, that is, a line segment is the first straight line L31.
  • the angle formed by the first straight line L31 and the back surface 10R is the first angle ⁇ 31.
  • the first angle ⁇ 31 is larger than 90 °.
  • the cross section along the plane orthogonal to the surface 10F passes through the center of the surface opening H2F.
  • the first straight line L31 is an arc string connecting the central opening HC and the back opening H1R.
  • the straight line passing through the edge of the central opening HC and parallel to the back surface 10R is the reference straight line LR.
  • the straight line connecting the edge of the central opening HC and the edge of the surface opening H2F at the shortest distance is the second straight line L32.
  • the angle formed by the reference straight line LR and the second straight line L32 may be 20 ° or more and 40 ° or less.
  • the angle formed by the reference straight line LR and the second straight line L32 may be any angle included in the range of 20 ° or more and 30 ° or less in response to the increase in the angle of view.
  • the angle formed by the reference straight line LR and the second straight line L32 is included in the range of 30 ° or more and 40 ° or less in response to the decrease in the angle of view.
  • the angle formed by the reference straight line LR and the second straight line L32 may be 20 ° or more and 30 ° or less in order to cope with the case where the angle of view becomes large, and it corresponds to the case where the angle of view becomes small. Then, it may be 30 ° or more and 40 ° or less.
  • the light incident on the second hole portion 10H2 from diagonally above the surface 10F is reflected on the side surface having an arc shape. Therefore, the specularly reflected light having the highest brightness among the reflected light is reflected along the direction from the arc-shaped side surface toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H is further suppressed.
  • the side surface that partitions the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10. Therefore, as compared with the case where the side surface for partitioning the first hole portion 10H1 has a linear shape, the light incident on the hole from diagonally above the front surface 10F is reflected by the side surface for partitioning the hole 10H in the vicinity of the back surface opening H1R. The amount of light produced can be reduced. As a result, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole can be further reduced.
  • the direction is diagonally above the surface 10F and the amount of deviation from the direction orthogonal to the surface 10F is small.
  • the angle formed by the second straight line L32 and the reference straight line LR is larger than 40 °, the direction is diagonally above the surface 10F and the amount of deviation from the direction orthogonal to the surface 10F is small.
  • Example 3-1 A stainless steel foil having a thickness of 25 ⁇ m was prepared. Then, after the first hole portion was formed by etching the stainless steel foil from the back surface of the stainless steel foil, the second hole portion was formed by etching the stainless steel foil from the front surface of the stainless steel foil. As a result, a light-shielding plate having a hole formed from the first hole portion and the second hole portion was obtained. The first diameter of the first hole portion was 490 ⁇ m, and the second diameter of the second hole portion was 571 ⁇ m.
  • Example 3-1 In Example 3-1 the light shielding of Comparative Example 3-1 by the same method as in Example 3-1 except that the stainless steel foil was punched out with a die to form a circular hole penetrating the stainless steel foil. I got a board. In the light-shielding plate of Comparative Example 3-1 the diameter of the front surface opening and the diameter of the back surface opening were the same, and were the same as the second diameter of Example 3-1.
  • Example 3-2 In Example 3-1 except that after the second hole portion was formed without forming the first hole portion, the space between the bottom portion and the back surface of the second hole portion was punched by irradiation with a laser beam.
  • a light-shielding plate of Comparative Example 3-2 was obtained by the same method as in 1.
  • the diameter of the front surface opening is the same as the second diameter of Example 3-1 and the diameter of the back surface opening is the same as the first diameter of Example 3-1. there were.
  • the side surface that partitions the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10. Therefore, as compared with the case where the side surface for partitioning the first hole portion 10H1 has a linear shape, the light incident on the hole from diagonally above the front surface 10F is reflected by the side surface for partitioning the hole 10H in the vicinity of the back surface opening H1R. The amount of light produced can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be further reduced.
  • the third embodiment described above can be modified and implemented as follows.
  • the second angle ⁇ 32 formed by the second straight line L32 and the reference straight line LR may be larger than 40 °. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the first angle ⁇ 31 is larger than 90 °, the effect according to (3-1) described above can be obtained.
  • the side surface that partitions the first hole portion 10H1 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the first angle ⁇ 31 is larger than 90 °, the effect according to (3-1) described above can be obtained.
  • the side surface that partitions the second hole portion 10H2 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the first angle ⁇ 31 is larger than 90 °, the effect according to (3-1) described above can be obtained.
  • the light-shielding plate 10 may be formed of a metal other than stainless steel.
  • the shading plate 10 may be formed of any of the metals listed in the modified examples of the first embodiment.
  • the light-shielding plate 10 of the third embodiment can be implemented in combination with at least one of the structure of the light-shielding plate 10 of the first embodiment and the structure of the light-shielding plate 10 of the second embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention comprises an obverse surface positioned on a side at which light impinges, a reverse surface that is on the side opposite from the obverse surface, and a hole passing through between the obverse surface and the reverse surface. The hole comprises a first hole portion and a second hole portion that is connected to the first hole portion at a central opening. The first hole portion extends from a reverse-surface opening in the reverse surface to the central opening, and has a shape that tapers from the reverse surface toward the obverse surface. The second hole portion extends from an obverse-surface opening in the obverse surface to the central opening, and has a shape that tapers from the obverse surface toward the reverse surface. The size of the obverse-surface opening is greater than that of the reverse-surface opening. When an edge of the central opening is imaged along the radial direction of the central opening in a state in which a focal point overlaps the edge of the central opening under imaging conditions such that the depth of field is 0.4 µm, the maximum width of a light-shielding plate overlapped by the focal point in the thickness direction of the light-shielding plate is 7.0 µm or less.

Description

遮光板、カメラユニット、および、電子機器Shading plate, camera unit, and electronic devices
 本発明は、遮光板、遮光板を備えるカメラユニット、および、カメラユニットを備える電子機器に関する。 The present invention relates to a light-shielding plate, a camera unit including a light-shielding plate, and an electronic device including the camera unit.
 スマートフォンなどの電子機器が備えるカメラユニットは、外光に対する絞りとして機能する遮光板を備えている。所定の形状を有した遮光板を容易に成型できることから、樹脂製の遮光板が多用されている(例えば、特許文献1を参照)。しかしながら、樹脂製の遮光板は、光透過性を有するので、外光を通過させるための孔だけでなく、孔を区画する部分においても外光を透過させてしまう。このように、樹脂製の遮光板による遮光は十分ではないことから、より高い遮光性を有した金属製の遮光板が使用され始めている(例えば、特許文献2を参照)。 The camera unit of electronic devices such as smartphones is equipped with a light-shielding plate that functions as an aperture for external light. Since a light-shielding plate having a predetermined shape can be easily molded, a resin-made light-shielding plate is often used (see, for example, Patent Document 1). However, since the light-shielding plate made of resin has light transmittance, it allows external light to pass not only through the holes for passing external light but also in the portion that partitions the holes. As described above, since the light shielding by the resin light-shielding plate is not sufficient, a metal light-shielding plate having a higher light-shielding property has begun to be used (see, for example, Patent Document 2).
特開2010-8786号公報Japanese Unexamined Patent Publication No. 2010-8786 国際公開第2016/060198号International Publication No. 2016/060198
 ところで、加工の難易度が低く、また、単位時間当たりに多くの製品を製造することが可能であるため、金属製の遮光板を製造する際には、金属板を金型によって打ち抜く打ち抜き加工が用いられている。打ち抜き加工を用いた金属板の加工では、金型によって金属板を打ち抜く際に、金属板に変形やひずみが生じることを抑え、これによって製品の寸法における精度を担保するために、金属板の表面に直交する方向に沿って金属板を打ち抜くことが必要とされる。これにより、金属板には、金属板の表面に直交する断面において、金属板の表面に対して垂直に延びる側面を有した孔が形成される。 By the way, since the difficulty of processing is low and it is possible to manufacture many products per unit time, when manufacturing a metal light-shielding plate, the punching process of punching the metal plate with a die is performed. It is used. In the processing of a metal plate using punching, the surface of the metal plate is prevented from being deformed or distorted when the metal plate is punched by a die, thereby ensuring accuracy in the dimensions of the product. It is required to punch a metal plate along a direction orthogonal to. As a result, the metal plate is formed with a hole having a side surface extending perpendicularly to the surface of the metal plate in a cross section orthogonal to the surface of the metal plate.
 こうした孔を有する遮光板をカメラユニットに搭載した場合には、遮光板の表面との間で鋭角を形成する方向から遮光板に入射した外光が、孔を区画する側面において反射され、結果として孔を通過してしまうことがある。孔を通過した光は、カメラユニットが備える撮像部に受光され、撮像部が撮像した画像においてゴーストおよびフレアの少なくとも一方が生じてしまう場合がある。このように、金属製の遮光板には、遮光板が金属製であるがゆえの新たな課題が生じている。 When a light-shielding plate having such holes is mounted on the camera unit, external light incident on the light-shielding plate from the direction of forming an acute angle with the surface of the light-shielding plate is reflected on the side surface that partitions the holes, and as a result. It may pass through the hole. The light that has passed through the hole is received by the imaging unit included in the camera unit, and at least one of ghost and flare may occur in the image captured by the imaging unit. As described above, the metal light-shielding plate has a new problem because the light-shielding plate is made of metal.
 本発明は、孔を透過するように孔を区画する側面で反射される光の光量を低下させることを可能とした遮光板、カメラユニット、および、電子機器を提供することを目的とする。 An object of the present invention is to provide a shading plate, a camera unit, and an electronic device capable of reducing the amount of light reflected by a side surface that partitions a hole so as to pass through the hole.
 上記課題を解決するための遮光板は、金属製の遮光板であって、光の入射側に位置する表面と、前記表面とは反対側の面である裏面と、前記表面と前記裏面との間を貫通する孔と、を備える。前記孔は、第1孔部分と、中央開口において前記第1孔部分に接続する第2孔部分とを備え、前記第1孔部分は、前記裏面における裏面開口から前記中央開口に延びており、前記裏面から前記表面に向けて先細る形状を有し、前記第2孔部分は、前記表面における表面開口から前記中央開口に延びており、前記表面から前記裏面に向けて先細る形状を有し、前記表面開口の大きさは前記裏面開口の大きさよりも大きい。被写界深度が0.4μmである撮像条件において、前記中央開口の縁にピントを合わせた状態で前記中央開口の径方向に沿って前記中央開口の縁を撮像したときに、ピントが合う前記遮光板の厚さ方向における前記遮光板の最大幅が、7.0μm以下である。 The light-shielding plate for solving the above-mentioned problems is a metal light-shielding plate, which is a front surface located on the incident side of light, a back surface which is a surface opposite to the front surface, and the front surface and the back surface. It is provided with a hole penetrating between them. The hole includes a first hole portion and a second hole portion connected to the first hole portion at the central opening, and the first hole portion extends from the back surface opening on the back surface to the central opening. The second hole portion has a shape that tapers from the back surface toward the front surface, extends from the surface opening on the front surface to the central opening, and has a shape that tapers from the front surface toward the back surface. The size of the front surface opening is larger than the size of the back surface opening. Under imaging conditions where the depth of field is 0.4 μm, when the edge of the central aperture is imaged along the radial direction of the central aperture with the edge of the central aperture in focus, the focus is achieved. The maximum width of the light-shielding plate in the thickness direction of the light-shielding plate is 7.0 μm or less.
 上記課題を解決するためのカメラユニットは、上記遮光板を備える。
 上記課題を解決するための電子機器は、上記カメラユニットを備える。
The camera unit for solving the above problems includes the above-mentioned light-shielding plate.
An electronic device for solving the above problems includes the above camera unit.
 上記各構成によれば、ピントが合う遮光板の最大幅が7.0μm以下であることによって、中央開口の近傍において孔を区画する側面の面積を小さくし、これによって、中央開口の近傍において孔を区画する側面において反射される光の光量を低下させることができる。結果として、孔を透過するように孔を区画する側面で反射される光の光量を低下させることができる。 According to each of the above configurations, the maximum width of the light-shielding plate to be focused is 7.0 μm or less, so that the area of the side surface that partitions the hole in the vicinity of the central opening is reduced, whereby the hole is formed in the vicinity of the central opening. It is possible to reduce the amount of light reflected on the side surface of the partition. As a result, the amount of light reflected by the side surface that partitions the hole so as to pass through the hole can be reduced.
 上記課題を解決するための遮光板は、金属製の遮光板であって、光の入射側に位置する表面と、前記表面とは反対側の面である裏面と、前記表面と前記裏面との間を貫通する孔と、を備える。前記孔は、第1孔部分と、中央開口において前記第1孔部分に接続する第2孔部分とを備え、前記第1孔部分は、前記裏面における裏面開口から前記中央開口に延びており、前記裏面から前記表面に向けて先細る形状を有し、前記第2孔部分は、前記表面における表面開口から前記中央開口に延びており、前記表面から前記裏面に向けて先細る形状を有し、前記表面開口の大きさは前記裏面開口の大きさよりも大きい。被写界深度が0.4μmである撮像条件において、前記中央開口の縁にピントを合わせた状態で前記中央開口の径方向に沿って前記中央開口の縁を撮像したときに、ピントが合う前記遮光板の厚さ方向における前記遮光板の最大幅が、前記遮光板の厚さにおける30%以下である。 The light-shielding plate for solving the above-mentioned problems is a metal light-shielding plate, which is a front surface located on the incident side of light, a back surface which is a surface opposite to the front surface, and the front surface and the back surface. It is provided with a hole penetrating between them. The hole includes a first hole portion and a second hole portion connected to the first hole portion at the central opening, and the first hole portion extends from the back surface opening on the back surface to the central opening. The second hole portion has a shape that tapers from the back surface toward the front surface, extends from the surface opening on the front surface to the central opening, and has a shape that tapers from the front surface toward the back surface. The size of the front surface opening is larger than the size of the back surface opening. Under imaging conditions where the depth of field is 0.4 μm, when the edge of the central aperture is imaged along the radial direction of the central aperture with the edge of the central aperture in focus, the focus is achieved. The maximum width of the light-shielding plate in the thickness direction of the light-shielding plate is 30% or less of the thickness of the light-shielding plate.
 上記構成によれば、ピントが合う遮光板の最大幅が遮光板の厚さにおける30%以下であることによって、中央開口の近傍において孔を区画する側面の面積を小さくし、これによって、中央開口の近傍において孔を区画する側面において反射される光の光量を低下させることができる。結果として、孔を透過するように孔を区画する側面で反射される光の光量を低下させることができる。 According to the above configuration, the maximum width of the light-shielding plate in focus is 30% or less of the thickness of the light-shielding plate, so that the area of the side surface that partitions the hole in the vicinity of the central opening is reduced, thereby reducing the central opening. It is possible to reduce the amount of light reflected on the side surface that partitions the hole in the vicinity of. As a result, the amount of light reflected by the side surface that partitions the hole so as to pass through the hole can be reduced.
第1実施形態における遮光板の構造を示す平面図。The plan view which shows the structure of the light-shielding plate in 1st Embodiment. 図1が示す遮光板の構造を示す断面図。FIG. 5 is a cross-sectional view showing the structure of the light shielding plate shown in FIG. 図2が示す断面図の一部を拡大して示す部分拡大断面図。A partially enlarged cross-sectional view showing a part of the cross-sectional view shown in FIG. 2 in an enlarged manner. 第1実施形態の遮光板の作用を説明するための作用図。The operation diagram for demonstrating the operation of the light-shielding plate of 1st Embodiment. 第1実施形態の遮光板の作用を説明するための作用図。The operation diagram for demonstrating the operation of the light-shielding plate of 1st Embodiment. 第1実施形態の遮光板の製造方法を説明するための工程図。The process drawing for demonstrating the manufacturing method of the light-shielding plate of 1st Embodiment. 第1実施形態の遮光板の製造方法を説明するための工程図。The process drawing for demonstrating the manufacturing method of the light-shielding plate of 1st Embodiment. 第1実施形態の遮光板の製造方法を説明するための工程図。The process drawing for demonstrating the manufacturing method of the light-shielding plate of 1st Embodiment. 第1実施形態の遮光板の製造方法を説明するための工程図。The process drawing for demonstrating the manufacturing method of the light-shielding plate of 1st Embodiment. 第2実施形態における遮光板の断面図の一部を拡大して示す部分拡大断面図。A partially enlarged cross-sectional view showing a part of the cross-sectional view of the light-shielding plate according to the second embodiment. 実施例2‐1の遮光板における断面構造を撮影した画像。An image of the cross-sectional structure of the light-shielding plate of Example 2-1. 第3実施形態における遮光板の断面図の一部を拡大して示す部分拡大断面図。A partially enlarged cross-sectional view showing a part of the cross-sectional view of the light-shielding plate according to the third embodiment. 実施例3‐1の遮光板における断面構造を撮影した画像。An image of the cross-sectional structure of the light-shielding plate of Example 3-1.
 [第1実施形態]
 図1から図9を参照して、遮光板、カメラユニット、および、電子機器の第1実施形態を説明する。以下では、遮光板、遮光板の製造方法、および、実施例を順に説明する。
[First Embodiment]
A first embodiment of a shading plate, a camera unit, and an electronic device will be described with reference to FIGS. 1 to 9. Hereinafter, a light-shielding plate, a method for manufacturing the light-shielding plate, and an embodiment will be described in order.
 [遮光板]
 図1から図5を参照して、遮光板を説明する。
 図1が示すように、金属製の遮光板10は、表面10Fと、裏面10Rと、孔10Hとを備えている。表面10Fは、光の入射側に位置する面である。裏面10Rは、表面10Fとは反対側の面である。孔10Hは、表面10Fと裏面10Rとの間を貫通している。遮光板10は、例えばステンレス鋼製であるが、ステンレス鋼以外の金属から形成されてもよい。なお、遮光板10では、表面10F、裏面10R、および、孔10Hを区画する側面が、図示されない反射防止膜によって覆われている。反射防止膜は、遮光板10を形成する金属よりも低い反射率を有し、かつ、反射防止膜に照射された光の一部を吸収する機能を有している。また、遮光板10が反射防止膜によって覆われていても、遮光板10における光の反射を完全になくすことはできない。
[Shading plate]
The light-shielding plate will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the metal shading plate 10 includes a front surface 10F, a back surface 10R, and a hole 10H. The surface 10F is a surface located on the incident side of light. The back surface 10R is a surface opposite to the front surface 10F. The hole 10H penetrates between the front surface 10F and the back surface 10R. The light-shielding plate 10 is made of stainless steel, for example, but may be made of a metal other than stainless steel. In the light-shielding plate 10, the front surface 10F, the back surface 10R, and the side surface for partitioning the hole 10H are covered with an antireflection film (not shown). The antireflection film has a lower reflectance than the metal forming the light-shielding plate 10, and has a function of absorbing a part of the light irradiated to the antireflection film. Further, even if the light-shielding plate 10 is covered with an antireflection film, the reflection of light on the light-shielding plate 10 cannot be completely eliminated.
 遮光板10は、遮光板10が覆うレンズの形状に応じた円形状を有している。孔10Hは、孔10Hが対向するレンズの形状に応じた円形状を有している。 The light-shielding plate 10 has a circular shape corresponding to the shape of the lens covered by the light-shielding plate 10. The hole 10H has a circular shape corresponding to the shape of the lens with which the hole 10H faces.
 図2は、遮光板10の表面10Fと直交する断面における遮光板10の構造を示している。
 図2が示すように、孔10Hは、第1孔部分10H1および第2孔部分10H2を備えている。第1孔部分10H1は、裏面10Rにおける裏面開口H1Rから中央開口HC(図3参照)に延びている。第1孔部分10H1は、裏面10Rから表面10Fに向けて先細る形状を有している。第2孔部分10H2は、表面10Fにおける表面開口H2Fから中央開口HCに延びている。第2孔部分10H2は、表面10Fから裏面10Rに向けて先細る形状を有している。表面開口H2Fの大きさは、裏面開口H1Rの大きさよりも大きい。第2孔部分10H2は、中央開口HCにおいて第1孔部分10H1に繋がっている。すなわち、中央開口HCは、遮光板10の厚さ方向において、表面10Fから裏面10Rに向かう途中に位置している。
FIG. 2 shows the structure of the light-shielding plate 10 in a cross section orthogonal to the surface 10F of the light-shielding plate 10.
As shown in FIG. 2, the hole 10H includes a first hole portion 10H1 and a second hole portion 10H2. The first hole portion 10H1 extends from the back surface opening H1R on the back surface 10R to the central opening HC (see FIG. 3). The first hole portion 10H1 has a shape that tapers from the back surface 10R toward the front surface 10F. The second hole portion 10H2 extends from the surface opening H2F on the surface 10F to the central opening HC. The second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. The size of the front opening H2F is larger than the size of the back opening H1R. The second hole portion 10H2 is connected to the first hole portion 10H1 in the central opening HC. That is, the central opening HC is located on the way from the front surface 10F to the back surface 10R in the thickness direction of the light-shielding plate 10.
 本実施形態では、表面10Fと直交する平面に沿う断面において、第2孔部分10H2を区画する側面が弧状であり、かつ、第2孔部分10H2を区画する側面の曲率中心が、遮光板10の外に位置している。また、表面10Fと直交する平面に沿う断面において、第1孔部分10H1を区画する側面が弧状であり、第1孔部分10H1を区画する側面の曲率中心が、遮光板10の外に位置している。 In the present embodiment, in a cross section along a plane orthogonal to the surface 10F, the side surface for partitioning the second hole portion 10H2 is arcuate, and the center of curvature of the side surface for partitioning the second hole portion 10H2 is the light-shielding plate 10. Located outside. Further, in a cross section along a plane orthogonal to the surface 10F, the side surface for partitioning the first hole portion 10H1 is arcuate, and the center of curvature of the side surface for partitioning the first hole portion 10H1 is located outside the shading plate 10. There is.
 遮光板10において、第1孔部分10H1の直径が第1直径DH1であり、第2孔部分10H2の直径が第2直径DH2である。第1直径DH1は、遮光板10が搭載されるカメラユニットに応じて設定される。第1直径DH1は、遮光板10が例えばスマートフォンのカメラユニットに搭載される場合には、0.4mm以上1.0mm以下であってよい。また、第1直径DH1は、遮光板10が例えば車載カメラに搭載される場合には、2.0mm以上7.0mm以下であってよい。 In the light shielding plate 10, the diameter of the first hole portion 10H1 is the first diameter DH1, and the diameter of the second hole portion 10H2 is the second diameter DH2. The first diameter DH1 is set according to the camera unit on which the shading plate 10 is mounted. The first diameter DH1 may be 0.4 mm or more and 1.0 mm or less when the light-shielding plate 10 is mounted on a camera unit of a smartphone, for example. Further, the first diameter DH1 may be 2.0 mm or more and 7.0 mm or less when the light-shielding plate 10 is mounted on, for example, an in-vehicle camera.
 第2直径DH2に対する第1直径DH1の百分率(DH1/DH2×100)は、例えば80%以上99%以下であってよい。遮光板10が、スマートフォン、タブレット型パーソナルコンピューター、および、ノート型パーソナルコンピューターの前面に設置されるカメラユニットに搭載される場合には、カメラユニットが、被写体を近距離で撮影することが多い。そのため、画角は大きくなるが、レンズが被写体の焦点を結ぶ上では、遮光板10には大きな内径が必要とされない。また、カメラユニットが配置される空間の制約から、遮光板10の外径を大きくすることも難しい。そのため、第2直径DH2に対する第1直径DH1の百分率は、80%以上90%以下であってよい。 The percentage (DH1 / DH2 × 100) of the first diameter DH1 with respect to the second diameter DH2 may be, for example, 80% or more and 99% or less. When the shading plate 10 is mounted on a smartphone, a tablet-type personal computer, or a camera unit installed in front of a notebook-type personal computer, the camera unit often shoots a subject at a short distance. Therefore, although the angle of view is large, the light-shielding plate 10 does not require a large inner diameter for the lens to focus on the subject. Further, it is difficult to increase the outer diameter of the light-shielding plate 10 due to the limitation of the space in which the camera unit is arranged. Therefore, the percentage of the first diameter DH1 with respect to the second diameter DH2 may be 80% or more and 90% or less.
 これに対して、遮光板10が、車載カメラに搭載される場合には、車載カメラが、被写体を中距離から遠距離で撮影することが多い。そのため、画角は小さくなるが、カメラユニットが配置される空間の制約が小さいため、カメラユニットが備えるレンズの径が大きくなる。これにより、レンズに対して広い範囲の光を集めるために、遮光板10において、第2直径DH2に対する第1直径DH1の比は、90%以上99%以下であってよい。 On the other hand, when the shading plate 10 is mounted on the in-vehicle camera, the in-vehicle camera often shoots the subject from a medium distance to a long distance. Therefore, although the angle of view is small, the limitation of the space in which the camera unit is arranged is small, so that the diameter of the lens provided in the camera unit is large. Thereby, in order to collect light in a wide range with respect to the lens, the ratio of the first diameter DH1 to the second diameter DH2 in the light shielding plate 10 may be 90% or more and 99% or less.
 また、遮光板10が、スマートフォンの背面に設置されるカメラユニットに搭載される場合には、カメラユニットが、被写体を近距離から遠距離で撮影することが多い。そのため、画角が大きくなる場合に対応する上では、第2直径DH2に対する第1直径DH1の比は、80%以上90%以下であってよく、画角が小さくなる場合に対応する上では、第2直径DH2に対する第1直径DH1の比は、90%以上99%以下であってよい。 Further, when the shading plate 10 is mounted on a camera unit installed on the back of a smartphone, the camera unit often shoots a subject from a short distance to a long distance. Therefore, the ratio of the first diameter DH1 to the second diameter DH2 may be 80% or more and 90% or less in dealing with the case where the angle of view becomes large, and in dealing with the case where the angle of view becomes small. The ratio of the first diameter DH1 to the second diameter DH2 may be 90% or more and 99% or less.
 遮光板10の厚さTは、例えば10μm以上100μm以下であってよい。遮光板10の厚さTが10μm以上である場合には、遮光板10を形成するための金属箔における反りが遮光板10の形状に対して影響を与えることが抑えられる。また、遮光板10の厚さTが100μm以下である場合には、孔10Hを形成する際のエッチングの精度が低下することが抑えられる。 The thickness T of the light-shielding plate 10 may be, for example, 10 μm or more and 100 μm or less. When the thickness T of the light-shielding plate 10 is 10 μm or more, it is possible to prevent the warp of the metal foil for forming the light-shielding plate 10 from affecting the shape of the light-shielding plate 10. Further, when the thickness T of the light-shielding plate 10 is 100 μm or less, it is possible to suppress a decrease in etching accuracy when forming the holes 10H.
 図3は、図2が示す遮光板10の断面構造における一部を拡大して示している。
 図3が示すように、遮光板10の裏面10Rが裏面開口H1Rを区画し、中央開口HCにおいて、第1孔部分10H1が第2孔部分10H2に接続されている。遮光板10の厚さ方向において、裏面10Rと中央開口HCの縁との間の距離が、第1距離D11である。遮光板10の厚さ方向において、表面10Fと中央開口HCの縁との間の距離が、第2距離D12である。遮光板10において、第1距離D11に対する第2距離D12の比(D12/D11)が、2.5以上である。
FIG. 3 shows an enlarged part of the cross-sectional structure of the light-shielding plate 10 shown in FIG.
As shown in FIG. 3, the back surface 10R of the light-shielding plate 10 partitions the back surface opening H1R, and the first hole portion 10H1 is connected to the second hole portion 10H2 in the central opening HC. In the thickness direction of the light-shielding plate 10, the distance between the back surface 10R and the edge of the central opening HC is the first distance D11. The distance between the surface 10F and the edge of the central opening HC in the thickness direction of the light-shielding plate 10 is the second distance D12. In the light-shielding plate 10, the ratio (D12 / D11) of the second distance D12 to the first distance D11 is 2.5 or more.
 第1距離D11に対する第2距離D12の比(D12/D11)が大きくなるに従い、中央開口HCは、相対的に裏面開口H1Rに近付く。これにより、第1孔部分10H1の側面における面積を減少させることができる。そのため、遮光板10の斜め上方から孔10Hに入射した光の一部が、レンズの表面において反射された後、第1孔部分10H1に入射して、第1孔部分10H1からレンズLN(図4参照)に向けて反射されることが抑制される。 As the ratio of the second distance D12 to the first distance D11 (D12 / D11) increases, the central opening HC relatively approaches the back opening H1R. As a result, the area on the side surface of the first hole portion 10H1 can be reduced. Therefore, a part of the light incident on the hole 10H from diagonally above the light-shielding plate 10 is reflected on the surface of the lens and then incident on the first hole portion 10H1 to enter the lens LN from the first hole portion 10H1 (FIG. 4). Reflection towards (see) is suppressed.
 なお、第1距離D11に対する第2距離D12の比(D12/D11)は、無限大に近づくことが好ましい。しかしながら実際には、孔10Hを形成するためのエッチングにおいて、遮光板10を形成するための金属箔と、金属箔に形成されたマスクとの隙間にエッチング液がしみ込み、これによって、サブミクロン程度の深さ、すなわち第1距離D11を有した第1孔部分10H1が形成される。そのため、例えば、金属箔が100μmの厚さを有する場合には、第1距離D11の下限値が0.1μm程度である。したがって、第1距離D11に対する第2距離D12の比(D12/D11)の上限値は、1000程度である。 The ratio of the second distance D12 to the first distance D11 (D12 / D11) preferably approaches infinity. However, in reality, in the etching for forming the holes 10H, the etching solution soaks into the gap between the metal foil for forming the light-shielding plate 10 and the mask formed on the metal foil, and thereby, about submicrons. A first hole portion 10H1 having a depth of, i.e., a first distance D11 is formed. Therefore, for example, when the metal foil has a thickness of 100 μm, the lower limit of the first distance D11 is about 0.1 μm. Therefore, the upper limit of the ratio (D12 / D11) of the second distance D12 to the first distance D11 is about 1000.
 表面10Fと対向する視点から見て、表面開口H2Fは円状を有している。表面10Fと対向する視点から見て、第2孔部分10H2を区画する側面を、表面開口H2Fの中心に対して同心の面によって、表面開口H2Fの径方向において5等分する。この場合に、表面10Fと対向する視点から見て、第2孔部分10H2を区画する側面は、表面開口H2Fの縁から中央開口HCの縁に向かう方向に沿って、第1領域R1、第2領域R2、第3領域R3、第4領域R4、および、第5領域R5を有している。なお、第1領域R1は、第2孔部分10H2を区画する側面のうち、表面開口H2Fの縁を含む領域である。第5領域R5は、第2孔部分10H2を区画する側面のうち、中央開口HCの縁を含む領域である。 The surface opening H2F has a circular shape when viewed from the viewpoint facing the surface 10F. The side surface that partitions the second hole portion 10H2 when viewed from the viewpoint facing the surface 10F is divided into five equal parts in the radial direction of the surface opening H2F by a surface concentric with respect to the center of the surface opening H2F. In this case, when viewed from the viewpoint facing the surface 10F, the side surfaces that partition the second hole portion 10H2 are the first regions R1 and the second along the direction from the edge of the surface opening H2F to the edge of the central opening HC. It has a region R2, a third region R3, a fourth region R4, and a fifth region R5. The first region R1 is a region including the edge of the surface opening H2F among the side surfaces for partitioning the second hole portion 10H2. The fifth region R5 is a region including the edge of the central opening HC among the side surfaces for partitioning the second hole portion 10H2.
 表面10Fと直交する平面に沿う断面、すなわち上述した中心を通る平面に沿う断面では、各領域において、表面10Fに対する、第2孔部分10H2を区画する側面の一部における一端と他端とを結ぶ直線、すなわち線分の傾きが、側面のなかで各領域に含まれる部分での傾斜角である。第1領域R1において、第1直線L11と表面10Fとが形成する角度が第1傾斜角θ11であり、第2領域R2において、第2直線L12と表面10Fとが形成する角度が第2傾斜角θ12である。第3領域R3において、第3直線L13と表面10Fとが形成する角度が第3傾斜角θ13であり、第4領域R4において、第4直線L14と表面10Fとが形成する角度が第4傾斜角θ14であり、第5領域R5において、第5直線L15と表面10Fとが形成する角度が第5傾斜角θ15である。 In the cross section along the plane orthogonal to the surface 10F, that is, the cross section along the plane passing through the center described above, in each region, one end and the other end of a part of the side surface partitioning the second hole portion 10H2 with respect to the surface 10F are connected. The straight line, that is, the inclination of the line segment, is the inclination angle at the portion included in each region in the side surface. In the first region R1, the angle formed by the first straight line L11 and the surface 10F is the first inclination angle θ11, and in the second region R2, the angle formed by the second straight line L12 and the surface 10F is the second inclination angle. It is θ12. In the third region R3, the angle formed by the third straight line L13 and the surface 10F is the third inclination angle θ13, and in the fourth region R4, the angle formed by the fourth straight line L14 and the surface 10F is the fourth inclination angle. It is θ14, and the angle formed by the fifth straight line L15 and the surface 10F in the fifth region R5 is the fifth inclination angle θ15.
 表面10Fに直交する平面に沿う断面において、第2孔部分10H2を区画する側面のうち、第1領域R1の第1傾斜角θ11が、他の領域での傾斜角よりも大きい。すなわち、5つの領域のうち第1領域R1の第1傾斜角θ11が、最大の大きさを有する。第1傾斜角θ11は、第2傾斜角θ12、第3傾斜角θ13、第4傾斜角θ14、および、第5傾斜角θ15の各々よりも大きい。また、第1傾斜角θ11は、50°以上60°以下である。 In the cross section along the plane orthogonal to the surface 10F, the first inclination angle θ11 of the first region R1 is larger than the inclination angle in the other regions among the side surfaces that partition the second hole portion 10H2. That is, the first inclination angle θ11 of the first region R1 among the five regions has the maximum size. The first inclination angle θ11 is larger than each of the second inclination angle θ12, the third inclination angle θ13, the fourth inclination angle θ14, and the fifth inclination angle θ15. The first inclination angle θ11 is 50 ° or more and 60 ° or less.
 表面10Fに直交する平面に沿う断面において、第2孔部分10H2を区画する側面のうち、第5領域R5の第5傾斜角θ15が、第4傾斜角θ14よりも大きい。また、第1領域R1から第4領域R4に向けて、第2孔部分10H2を区画する側面のうちで、各領域に含まれる部分での傾斜角が小さくなる。すなわち、第2孔部分10H2を区画する側面において、第1傾斜角θ11、第2傾斜角θ12、第3傾斜角θ13、第4傾斜角θ14の順に、傾斜角が小さくなる。 In the cross section along the plane orthogonal to the surface 10F, the fifth inclination angle θ15 of the fifth region R5 is larger than the fourth inclination angle θ14 among the side surfaces that partition the second hole portion 10H2. Further, from the first region R1 to the fourth region R4, the inclination angle in the portion included in each region among the side surfaces for partitioning the second hole portion 10H2 becomes smaller. That is, on the side surface that partitions the second hole portion 10H2, the inclination angle becomes smaller in the order of the first inclination angle θ11, the second inclination angle θ12, the third inclination angle θ13, and the fourth inclination angle θ14.
 図4は、本実施形態における遮光板10の断面構造を示している。一方で、図5は、表面に直交する断面において、孔を区画する側面が表面と直交する方向に沿って延びる例における断面構造を示している。なお、図4および図5では、図示の便宜上、遮光板の厚さに対する第1直径が縮小されている。 FIG. 4 shows the cross-sectional structure of the light-shielding plate 10 in this embodiment. On the other hand, FIG. 5 shows a cross-sectional structure in an example in which the side surface for partitioning the hole extends along the direction orthogonal to the surface in the cross section orthogonal to the surface. In FIGS. 4 and 5, for convenience of illustration, the first diameter with respect to the thickness of the light-shielding plate is reduced.
 図4が示すように、遮光板10に対して表面10Fに直交する方向から入射した光は、表面10Fに形成された表面開口H2Fから孔10Hに入る。そして、孔10Hを通った光は裏面10Rに形成された裏面開口H1Rから出ることによって、レンズLNに到達する。一方で、遮光板10において、第2孔部分10H2が表面10Fから裏面10Rに向けて先細る形状を有するため、表面10Fの斜め上方から孔10Hに入射した光は、第2孔部分10H2を区画する側面において遮光板10の表面10Fに向けて反射されやすい。 As shown in FIG. 4, light incident on the light-shielding plate 10 from a direction orthogonal to the surface 10F enters the hole 10H through the surface opening H2F formed on the surface 10F. Then, the light that has passed through the hole 10H reaches the lens LN by exiting from the back surface opening H1R formed on the back surface 10R. On the other hand, in the light-shielding plate 10, since the second hole portion 10H2 has a shape that tapers from the front surface 10F toward the back surface 10R, the light incident on the hole 10H from diagonally above the front surface 10F partitions the second hole portion 10H2. It is easy to be reflected toward the surface 10F of the light-shielding plate 10 on the side surface.
 しかも、裏面10Rと中央開口HCとの間の第2距離D12に対する表面10Fと中央開口HCとの間の第1距離D11の比(D11/D12)が2.5以上であることから、第2孔部分10H2の大きさを、表面10Fから裏面10Rに向けて先細る形状とすることが可能な大きさに維持することが可能である。これにより、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることが可能である。結果として、遮光板10に対向するレンズLNに意図しない光が入射することが抑えられる。 Moreover, since the ratio (D11 / D12) of the first distance D11 between the front surface 10F and the central opening HC to the second distance D12 between the back surface 10R and the central opening HC is 2.5 or more, the second. It is possible to maintain the size of the hole portion 10H2 to a size that can be tapered from the front surface 10F to the back surface 10R. This makes it possible to reduce the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole 10H. As a result, it is possible to prevent unintended light from entering the lens LN facing the light-shielding plate 10.
 本実施形態では、第1領域R1における第1傾斜角θ11が、第2領域R2から第5領域R5の各々における傾斜角よりも大きい。そのため、第2孔部分10H2の直径が過剰に大きくなることを抑えつつ、第1領域R1以外の領域において、光を遮光板10の表面10Fに向けてより反射させやすくすることができる。なお、第1傾斜角θ11が50°以上60°以下であるため、第2孔部分10H2を区画する側面のうち、表面開口H2Fを含む第1領域R1において、遮光板10の表面10Fに向けて光を反射させる確実性を高めることができる。 In the present embodiment, the first inclination angle θ11 in the first region R1 is larger than the inclination angle in each of the second region R2 to the fifth region R5. Therefore, it is possible to prevent the diameter of the second hole portion 10H2 from becoming excessively large, and to make it easier for light to be reflected toward the surface 10F of the light-shielding plate 10 in a region other than the first region R1. Since the first inclination angle θ11 is 50 ° or more and 60 ° or less, in the first region R1 including the surface opening H2F among the side surfaces for partitioning the second hole portion 10H2, toward the surface 10F of the light shielding plate 10. The certainty of reflecting light can be increased.
 本実施形態では、第5領域R5の第5傾斜角θ15が、第4領域R4の第4傾斜角θ14よりも大きいため、第5領域R5の第5傾斜角θ15が、第4領域R4の第4傾斜角θ14よりも小さい場合に比べて、第2孔部分10H2の直径が拡張されることが抑えられる。また、第1領域R1から第4領域R4に向けて、各領域での傾斜角が小さくなるため、第1領域R1から第4領域R4までにわたって第2孔部分10H2を区画する側面の傾きが同一である場合に比べて、中央開口HCに近付くほど、第2孔部分10H2に入射した光を遮光板10の表面10Fに向けて反射させやすくなる。 In the present embodiment, the fifth inclination angle θ15 of the fifth region R5 is larger than the fourth inclination angle θ14 of the fourth region R4, so that the fifth inclination angle θ15 of the fifth region R5 is the fourth of the fourth region R4. 4 It is possible to suppress the expansion of the diameter of the second hole portion 10H2 as compared with the case where it is smaller than the inclination angle θ14. Further, since the inclination angle in each region becomes smaller from the first region R1 to the fourth region R4, the inclination of the side surface for partitioning the second hole portion 10H2 is the same from the first region R1 to the fourth region R4. The closer to the central opening HC, the easier it is for the light incident on the second hole portion 10H2 to be reflected toward the surface 10F of the light-shielding plate 10.
 また、表面10Fの斜め上方から第2孔部分10H2に入射した光は、曲率中心が遮光板10の外側に位置するような弧状を有した側面において反射される。そのため、反射光のなかで最も高い輝度を有した正反射光は、弧状を有した側面から遮光板10の表面10Fに向かう方向に沿って反射される。それゆえに、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量がより抑えられる。 Further, the light incident on the second hole portion 10H2 from diagonally above the surface 10F is reflected on the side surface having an arc shape such that the center of curvature is located outside the light shielding plate 10. Therefore, the specularly reflected light having the highest brightness among the reflected light is reflected along the direction from the arc-shaped side surface toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H is further suppressed.
 遮光板10では、第1孔部分10H1を区画する側面が、曲率中心が遮光板10の外に位置するような弧状を有する。そのため、第1孔部分10H1を区画する側面が直線状を有する場合に比べて、表面10Fの斜め上方から孔に入射した光のなかで、裏面開口H1Rの近傍において孔10Hを区画する側面によって反射される光の光量を低下させることができる。これにより、孔を透過するように孔10Hを区画する側面で反射される光の光量をより低下させることができる。 In the light-shielding plate 10, the side surface that partitions the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10. Therefore, as compared with the case where the side surface for partitioning the first hole portion 10H1 has a linear shape, the light incident on the hole from diagonally above the front surface 10F is reflected by the side surface for partitioning the hole 10H in the vicinity of the back surface opening H1R. The amount of light produced can be reduced. As a result, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole can be further reduced.
 図5が示すように、遮光板100に対して表面100Fに直交する方向から入射した光は、遮光板10に対して表面10Fに直交する方向から入射した光と同様、表面100Fに形成された開口から孔100H内に入る。そして、孔100Hを通った光は裏面100Rに形成された開口から出ることによって、レンズLNに到達する。これに対して、表面100Fの斜め上方から表面100Fに入射した光の一部は、表面100Fに形成された開口から孔100H内に入射し、かつ、孔100Hを区画する側面において反射される。側面に入射した光のほとんどは正反射の方向に反射されるため、側面に入射した光は、側面からレンズLNに向けて反射される。これにより、意図しない光がレンズLNを通じて撮像部に入射してしまう。 As shown in FIG. 5, the light incident on the light-shielding plate 100 from the direction orthogonal to the surface 100F was formed on the surface 100F in the same manner as the light incident on the light-shielding plate 10 from the direction orthogonal to the surface 10F. Enter the hole 100H through the opening. Then, the light that has passed through the hole 100H reaches the lens LN by exiting from the opening formed in the back surface 100R. On the other hand, a part of the light incident on the surface 100F from diagonally above the surface 100F is incident on the hole 100H from the opening formed on the surface 100F and is reflected on the side surface for partitioning the hole 100H. Since most of the light incident on the side surface is reflected in the direction of specular reflection, the light incident on the side surface is reflected from the side surface toward the lens LN. As a result, unintended light enters the image pickup unit through the lens LN.
 以上説明した遮光板10は、上述したカメラユニットに1つ以上備えられる。また、遮光板10を備えるカメラユニットは、各種の電子機器に搭載される。カメラユニットを備える電子機器は、例えば、スマートフォン、タブレット型パーソナルコンピューター、および、ノート型パーソナルコンピューターなどであってよい。 One or more of the light-shielding plates 10 described above are provided in the above-mentioned camera unit. Further, the camera unit provided with the light-shielding plate 10 is mounted on various electronic devices. The electronic device including the camera unit may be, for example, a smartphone, a tablet-type personal computer, a notebook-type personal computer, or the like.
 [遮光板の製造方法]
 図6から図9を参照して、遮光板10の製造方法を説明する。図6から図9の各々は、遮光板10の製造過程における特定の工程における金属箔の断面構造を示している。なお、図6から図9では、図示の便宜上、金属箔の厚さに対する第2直径DH2の比が実際の遮光板よりも縮小され、かつ、金属箔の厚さに対する第1直径DH1の比が実際の遮光板よりも縮小されている。また、図6から図9では、図示の便宜上、第2直径DH2に対する第1直径DH1の比が、実際の遮光板よりも縮小されている。また、図6から図9では、説明の便宜上、遮光板10を製造する工程のなかで、遮光板10が有する孔10Hの形成に関わる工程のみを示している。
[Manufacturing method of shading plate]
A method for manufacturing the light-shielding plate 10 will be described with reference to FIGS. 6 to 9. Each of FIGS. 6 to 9 shows the cross-sectional structure of the metal leaf in a specific step in the manufacturing process of the light-shielding plate 10. In FIGS. 6 to 9, for convenience of illustration, the ratio of the second diameter DH2 to the thickness of the metal foil is smaller than that of the actual light-shielding plate, and the ratio of the first diameter DH1 to the thickness of the metal foil is It is smaller than the actual shading plate. Further, in FIGS. 6 to 9, for convenience of illustration, the ratio of the first diameter DH1 to the second diameter DH2 is smaller than that of the actual light-shielding plate. Further, in FIGS. 6 to 9, for convenience of explanation, only the steps related to the formation of the holes 10H of the light-shielding plate 10 are shown in the steps of manufacturing the light-shielding plate 10.
 図6が示すように、遮光板10を形成する際には、まず、遮光板10を形成するための金属箔10Mを準備する。金属箔10Mは、例えばステンレス鋼の箔であるが、上述したように、ステンレス鋼以外の金属によって形成された金属箔であってもよい。金属箔10Mの厚さは、10μm以上100μm以下である。金属箔10Mの厚さが10μm以上である場合には、金属箔10Mの反りが遮光板10の形状に対して影響を与えることが抑えられる。また、金属箔10Mの厚さが100μm以下である場合には、孔10Hを形成する際のエッチングの精度が低下することが抑えられる。金属箔10Mの厚さは、金属箔10Mから製造された遮光板10の厚さと略同一である。 As shown in FIG. 6, when forming the light-shielding plate 10, first, a metal foil 10M for forming the light-shielding plate 10 is prepared. The metal foil 10M is, for example, a stainless steel foil, but as described above, it may be a metal foil formed of a metal other than stainless steel. The thickness of the metal foil 10M is 10 μm or more and 100 μm or less. When the thickness of the metal foil 10M is 10 μm or more, it is possible to prevent the warp of the metal foil 10M from affecting the shape of the light-shielding plate 10. Further, when the thickness of the metal foil 10M is 100 μm or less, it is possible to suppress a decrease in etching accuracy when forming the holes 10H. The thickness of the metal foil 10M is substantially the same as the thickness of the light-shielding plate 10 manufactured from the metal foil 10M.
 そして、金属箔10Mの表面10MFと裏面10MRとにレジスト層を配置する。金属箔10Mの表面10MFは、遮光板10の表面10Fに相当し、かつ、金属箔10Mの裏面10MRは、遮光板10の裏面10Rに相当する。金属箔10Mの表面10MFには、表面レジスト層RFが配置され、かつ、金属箔10Mの裏面10MRには、裏面レジスト層RRが配置される。なお、表面10MFおよび裏面10MRの両方には、ドライフィルムレジストがレジスト層RF,RRとして貼り付けられてもよい。あるいは、表面10MFおよび裏面10MRの両方には、レジスト層RF,RRを形成するための塗液を用いて、レジスト層RF,RRが形成されてもよい。レジスト層RF,RRは、ネガ型のレジストによって形成されてもよいし、ポジ型のレジストによって形成されてもよい。 Then, a resist layer is arranged on the front surface 10MF and the back surface 10MR of the metal foil 10M. The front surface 10MF of the metal foil 10M corresponds to the front surface 10F of the light-shielding plate 10, and the back surface 10MR of the metal foil 10M corresponds to the back surface 10R of the light-shielding plate 10. The front surface resist layer RF is arranged on the front surface 10MF of the metal foil 10M, and the back surface resist layer RR is arranged on the back surface 10MR of the metal foil 10M. A dry film resist may be attached as resist layers RF and RR on both the front surface 10 MF and the back surface 10 MR. Alternatively, the resist layers RF and RR may be formed on both the front surface 10MF and the back surface 10 MR by using a coating liquid for forming the resist layers RF and RR. The resist layers RF and RR may be formed by a negative type resist or a positive type resist.
 図7が示すように、レジスト層RF,RRの露光と現像とによって、レジスト層からレジストマスクが形成される。より詳しくは、表面レジスト層RFの露光および現像によって、表面レジスト層RFから表面マスクRMFが形成される。また、裏面レジスト層RRの露光および現像によって、裏面レジスト層RRから裏面マスクRMRが形成される。表面マスクRMFは、金属箔10Mに第2孔部分を形成するためのマスク孔RMFhを有している。裏面マスクRMRは、金属箔10Mに第1孔部分を形成するためのマスク孔RMRhを有している。 As shown in FIG. 7, a resist mask is formed from the resist layer by exposure and development of the resist layers RF and RR. More specifically, exposure and development of the surface resist layer RF forms a surface mask RMF from the surface resist layer RF. Further, the back surface mask RMR is formed from the back surface resist layer RR by exposure and development of the back surface resist layer RR. The surface mask RMF has mask holes RMFh for forming a second hole portion in the metal foil 10M. The back surface mask RMR has a mask hole RMRh for forming the first hole portion in the metal foil 10M.
 図8が示すように、裏面10MRに形成された裏面マスクRMRを用いて、裏面10MRに裏面開口を有し、かつ、裏面10MRから表面10MFに向けて先細る形状を有した第1孔部分MH1を金属箔10Mに形成する。第1孔部分MH1は、遮光板10が有する第1孔部分10H1に相当する。この際に、金属箔10Mをエッチングすることが可能なエッチング液を用いて、金属箔10Mをエッチングする。なお、金属箔10Mをエッチングする前に、エッチング液に対する耐性を有した表面保護膜PMFによって、表面マスクRMFを覆う。表面保護膜PMFは、表面マスクRMFのマスク孔RMFhを埋めてもよいし、覆ってもよい。表面保護膜PMFによって表面マスクRMFを覆うことによって、金属箔10Mの表面10MFが、金属箔10Mの裏面10MRと同時にエッチングされることが抑えられる。 As shown in FIG. 8, using the back surface mask RMR formed on the back surface 10 MR, the first hole portion MH1 having a back surface opening on the back surface 10 MR and having a shape tapering from the back surface 10 MR toward the front surface 10 MF. Is formed on the metal foil 10M. The first hole portion MH1 corresponds to the first hole portion 10H1 of the light shielding plate 10. At this time, the metal leaf 10M is etched using an etching solution capable of etching the metal leaf 10M. Before etching the metal foil 10M, the surface mask RMF is covered with a surface protective film PMF having resistance to an etching solution. The surface protective film PMF may fill or cover the mask holes RMFh of the surface mask RMF. By covering the surface mask RMF with the surface protective film PMF, it is possible to prevent the front surface 10MF of the metal foil 10M from being etched at the same time as the back surface 10MR of the metal foil 10M.
 なお、裏面10MRのエッチングによって第1孔部分MH1が形成される場合には、遮光板10における上述した裏面10Rと中央開口HCとの間の距離よりも大きい深さを有した第1孔部分MH1が形成される。 When the first hole portion MH1 is formed by etching the back surface 10MR, the first hole portion MH1 having a depth larger than the distance between the back surface 10R and the central opening HC of the light shielding plate 10 described above. Is formed.
 図9が示すように、第1孔部分MH1を形成した後に、表面10MFに形成された表面マスクRMFを用いて、表面10MFに表面開口を有し、かつ、表面10MFから裏面10MRに向けて先細る形状を有した第2孔部分MH2を、第1孔部分MH1に繋がるように金属箔10Mに形成する。第2孔部分MH2は、遮光板10が有する第2孔部分10H2に相当する。この際に、第1孔部分MH1を形成するときと同様、金属箔10Mをエッチングすることが可能なエッチング液を用いて、金属箔10Mをエッチングする。なお、金属箔10Mをエッチングする前に、金属箔10Mの裏面10MRから裏面マスクRMRを取り除く。 As shown in FIG. 9, after forming the first hole portion MH1, the surface mask RMF formed on the front surface 10MF is used to have a surface opening on the front surface 10MF and taper from the front surface 10MF to the back surface 10MR. The second hole portion MH2 having the same shape is formed on the metal foil 10M so as to be connected to the first hole portion MH1. The second hole portion MH2 corresponds to the second hole portion 10H2 of the light shielding plate 10. At this time, the metal foil 10M is etched using an etching solution capable of etching the metal foil 10M, as in the case of forming the first hole portion MH1. Before etching the metal foil 10M, the back surface mask RMR is removed from the back surface 10MR of the metal foil 10M.
 また、金属箔10Mをエッチングする前に、エッチング液に対する耐性を有した裏面保護膜PMRによって、金属箔10Mの裏面10MRを覆い、かつ、第1孔部分MH1内を埋める。裏面保護膜PMRによって金属箔10Mの裏面10MRを覆うことによって、金属箔10Mの裏面10MRが、金属箔10Mの表面10MFと同時にエッチングされることが抑えられる。 Further, before etching the metal foil 10M, the back surface 10MR of the metal foil 10M is covered with the back surface protective film PMR having resistance to the etching solution, and the inside of the first hole portion MH1 is filled. By covering the back surface 10MR of the metal foil 10M with the back surface protective film PMR, it is possible to prevent the back surface 10MR of the metal foil 10M from being etched at the same time as the front surface 10MF of the metal foil 10M.
 第2孔部分MH2のエッチングでは、第1孔部分MH1を裏面保護膜PMRによって埋めた状態で、金属箔10Mの表面10MFをエッチングする。そのため、表面10MFのエッチングが裏面保護膜PMRに到達した後は、金属箔10Mに対するエッチング液の供給が、裏面保護膜PMRによって制御される。これにより、金属箔10Mの厚さが10μm以上100μm以下という広い範囲にわたる場合であっても、第2孔部分MH2の断面形状における断面形状の精度を高めることができる。これに対して、第1孔部分MH1内が裏面保護膜PMRによって埋められていない場合には、第1孔部分MH1と第2孔部分MH2とが繋がることによって金属箔10Mが貫通されると、第1孔部分MH1と第2孔部分MH2との接続部を通じて、エッチング液が、金属箔10Mの裏面10MRに向けて漏れてしまう。結果として、第1孔部分MH1の形状、および、第2孔部分MH2の形状における精度が低下してしまう。 In the etching of the second hole portion MH2, the surface 10MF of the metal foil 10M is etched with the first hole portion MH1 filled with the back surface protective film PMR. Therefore, after the etching of the front surface 10MF reaches the back surface protective film PMR, the supply of the etching solution to the metal foil 10M is controlled by the back surface protective film PMR. Thereby, even when the thickness of the metal foil 10M covers a wide range of 10 μm or more and 100 μm or less, the accuracy of the cross-sectional shape in the cross-sectional shape of the second hole portion MH2 can be improved. On the other hand, when the inside of the first hole portion MH1 is not filled with the back surface protective film PMR, when the metal foil 10M is penetrated by connecting the first hole portion MH1 and the second hole portion MH2, The etching solution leaks toward the back surface 10MR of the metal foil 10M through the connection portion between the first hole portion MH1 and the second hole portion MH2. As a result, the accuracy of the shape of the first hole portion MH1 and the shape of the second hole portion MH2 is lowered.
 なお、第1孔部分MH1と第2孔部分MH2とを形成した後に、表面10MFから表面マスクRMFを取り除き、かつ、裏面10MRから裏面保護膜PMRを取り除く。また、表面マスクRMFおよび裏面保護膜PMRが金属箔10Mから取り除かれた後に、表面10MF、裏面10MR、および、第1孔部分MH1および第2孔部分MH2を区画する側面を覆う反射防止膜が形成される。上述したように、反射防止膜は、金属箔10Mよりも低い反射率を有し、かつ、反射防止膜に入射した光の一部を吸収する機能を有する。 After forming the first hole portion MH1 and the second hole portion MH2, the front surface mask RMF is removed from the front surface 10 MF, and the back surface protective film PMR is removed from the back surface 10 MR. Further, after the front surface mask RMF and the back surface protective film PMR are removed from the metal foil 10M, an antireflection film covering the front surface 10MF, the back surface 10MR, and the side surface for partitioning the first hole portion MH1 and the second hole portion MH2 is formed. Will be done. As described above, the antireflection film has a reflectance lower than that of the metal foil 10M, and has a function of absorbing a part of the light incident on the antireflection film.
 反射防止膜は、例えば黒色を有した被膜である。反射防止膜は、スパッタ法または蒸着法などの成膜方法を用いて金属箔10Mに形成されてもよい。あるいは、反射防止膜は反射防止膜を形成するための液体に、金属箔10Mを触れさせることによって、金属箔10Mに形成されてもよい。 The antireflection film is, for example, a film having a black color. The antireflection film may be formed on the metal foil 10M by using a film forming method such as a sputtering method or a vapor deposition method. Alternatively, the antireflection film may be formed on the metal foil 10M by bringing the metal foil 10M into contact with the liquid for forming the antireflection film.
 こうした遮光板10の製造方法によって、1つの孔10Hを有し、遮光板10の厚さ方向において、裏面10Rと中央開口HCの縁との間の距離に対する表面10Fと中央開口HCの縁との間の距離の比が2.5以上である遮光板10が製造される。 By such a method of manufacturing the light-shielding plate 10, one hole 10H is provided, and in the thickness direction of the light-shielding plate 10, the front surface 10F and the edge of the central opening HC with respect to the distance between the back surface 10R and the edge of the central opening HC A light-shielding plate 10 having a distance ratio of 2.5 or more is manufactured.
 上述した遮光板10の製造方法では、裏面保護膜PMRを形成する前に、裏面マスクRMRを取り除かなくてもよい。この場合には、裏面マスクRMRを覆い、かつ、第1孔部分MH1内に充填された裏面保護膜PMRを形成すればよい。また、裏面保護膜PMRは、表面10MFのエッチングによって第2孔部分MH2が形成された後に、裏面マスクRMRとともに裏面10MRから取り除かれればよい。 In the method for manufacturing the light-shielding plate 10 described above, it is not necessary to remove the back surface mask RMR before forming the back surface protective film PMR. In this case, the back surface mask RMR may be covered and the back surface protective film PMR may be formed in the first hole portion MH1. Further, the back surface protective film PMR may be removed from the back surface 10 MR together with the back surface mask RMR after the second hole portion MH2 is formed by etching the front surface 10 MF.
 [実施例]
 実施例および比較例を説明する。
 [実施例1‐1]
 30μmの厚さを有したステンレス鋼箔を準備した。そして、ステンレス鋼箔の裏面からステンレス鋼箔をエッチングすることによって第1孔部分を形成した後に、ステンレス鋼箔の表面からステンレス鋼箔をエッチングすることによって第2孔部分を形成した。これにより、第1孔部分と第2孔部分とを有し、中央開口において、270μmの長軸直径を有し、75μmの短軸直径を有し、かつ、楕円形状を有した中央開口を有した孔を有する遮光板を得た。
[Example]
Examples and comparative examples will be described.
[Example 1-1]
A stainless steel foil having a thickness of 30 μm was prepared. Then, after the first hole portion was formed by etching the stainless steel foil from the back surface of the stainless steel foil, the second hole portion was formed by etching the stainless steel foil from the front surface of the stainless steel foil. As a result, it has a first hole portion and a second hole portion, and has a central opening having a major axis diameter of 270 μm, a minor axis diameter of 75 μm, and an elliptical shape at the central opening. A light-shielding plate having a hole was obtained.
 [実施例1‐2]
 実施例1‐1において、中央開口を850μmの直径を有した円状に変更した以外は、実施例1‐1と同様の方法によって、実施例1‐2の遮光板を得た。
[Example 1-2]
A light-shielding plate of Example 1-2 was obtained by the same method as in Example 1-1, except that the central opening was changed to a circular shape having a diameter of 850 μm in Example 1-1.
 [実施例1‐3]
 実施例1‐1において、中央開口を490μmの直径を有した円状に変更した以外は、実施例1‐1と同様の方法によって、実施例1‐3の遮光板を得た。
[Example 1-3]
A light-shielding plate of Example 1-3 was obtained by the same method as in Example 1-1, except that the central opening was changed to a circular shape having a diameter of 490 μm in Example 1-1.
 [実施例1‐4]
 実施例1‐1において、中央開口を6600μmの直径を有した円状に変更した以外は、実施例1‐1と同様の方法によって、実施例1‐4の遮光板を得た。
[Example 1-4]
A light-shielding plate of Example 1-4 was obtained by the same method as in Example 1-1 except that the central opening was changed to a circular shape having a diameter of 6600 μm in Example 1-1.
 [実施例1‐5]
 実施例1‐1において、中央開口を2510μmの直径を有した円状に変更した以外は、実施例1‐1と同様の方法によって、実施例1‐5の遮光板を得た。
[Example 1-5]
A light-shielding plate of Example 1-5 was obtained by the same method as in Example 1-1 except that the central opening was changed to a circular shape having a diameter of 2510 μm in Example 1-1.
 [実施例1‐6]
 実施例1‐3において、ステンレス鋼箔の厚さを25μmに変更した以外は、実施例1‐3と同様の方法によって、実施例1‐6の遮光板を得た。
[Example 1-6]
A light-shielding plate of Example 1-6 was obtained by the same method as in Example 1-3 except that the thickness of the stainless steel foil was changed to 25 μm in Example 1-3.
 [比較例1‐1]
 実施例1‐2において、ステンレス鋼箔を金型で打ち抜くことによって、ステンレス鋼箔を貫通する円形孔を形成した以外は、実施例1‐1と同様の方法によって、比較例1‐1の遮光板を得た。なお、比較例1‐1の遮光板において、表面開口の直径と裏面開口の直径とは同一であり、かつ、実施例1‐2の第2直径と同一であった。
[Comparative Example 1-1]
In Example 1-2, the light-shielding of Comparative Example 1-1 was performed by the same method as in Example 1-1, except that the stainless steel foil was punched out with a die to form a circular hole penetrating the stainless steel foil. I got a board. In the light-shielding plate of Comparative Example 1-1, the diameter of the front surface opening and the diameter of the back surface opening were the same, and were the same as the second diameter of Example 1-2.
 [評価結果]
 実施例1‐1から実施例1‐6、および、比較例1‐1の遮光板の各々について、表面と対向する方向から、共焦点レーザー顕微鏡(VK-X1000Series、(株)キーエンス製)を用いて、第2孔部分のプロファイルを測定した。また、裏面と対向する方向から、共焦点レーザー顕微鏡(同上)を用いて、第2孔部分のプロファイルを測定した。そして、第1孔部分のプロファイルおよび第2孔部分のプロファイルに基づき、第1距離D11に対する第2距離D12の比(D12/D11)を算出した。第1距離D11に対する第2距離D12の比は、以下の表1に示すとおりであった。なお、比較例1の遮光板は、上述したように、第1孔部分と第2孔部分とを有する孔を有しないため、表1には、比較例1における第1距離D11に対する第2距離D12の比を記載していない。
[Evaluation results]
A confocal laser scanning microscope (VK-X1000Series, manufactured by KEYENCE CORPORATION) was used for each of the light-shielding plates of Examples 1-1 to 1-6 and Comparative Example 1-1 from the direction facing the surface. The profile of the second hole portion was measured. In addition, the profile of the second hole portion was measured from the direction facing the back surface using a confocal laser scanning microscope (same as above). Then, the ratio of the second distance D12 to the first distance D11 (D12 / D11) was calculated based on the profile of the first hole portion and the profile of the second hole portion. The ratio of the second distance D12 to the first distance D11 is as shown in Table 1 below. As described above, the light-shielding plate of Comparative Example 1 does not have a hole having a first hole portion and a second hole portion. Therefore, Table 1 shows the second distance with respect to the first distance D11 in Comparative Example 1. The ratio of D12 is not stated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1が示すように、第1距離D11に対する第2距離D12の比は、実施例1‐1において3.84であり、実施例1‐2において3.35であり、実施例1‐3において2.61であることが認められた。また、第1距離D11に対する第2距離D12の比は、実施例1‐4において2.90であり、実施例1‐5において2.57であり、実施例1‐6において84.65であることが認められた。このように、いずれの実施例においても、第1距離D11に対する第2距離D12の比が、2.5以上であることが認められた。 As shown in Table 1, the ratio of the second distance D12 to the first distance D11 is 3.84 in Example 1-1, 3.35 in Example 1-2, and in Example 1-3. It was found to be 2.61. The ratio of the second distance D12 to the first distance D11 is 2.90 in Examples 1-4, 2.57 in Examples 1-5, and 84.65 in Examples 1-6. Was recognized. As described above, in each of the examples, it was confirmed that the ratio of the second distance D12 to the first distance D11 was 2.5 or more.
 また、第2孔部分のプロファイルに基づき、各遮光板の撮像結果において、第2孔部分の側面を表面開口の径方向に沿って5等分し、各領域における傾斜角を算出した。算出結果は、以下の表2および表3に示すとおりであった。なお、表2および表3において、水平距離とは、表面開口の径方向に沿う各領域の長さである。また、表2および表3において、高低差とは、遮光板の厚さ方向における各領域の一端の位置と他端の位置との差である。 Further, based on the profile of the second hole portion, in the imaging result of each shading plate, the side surface of the second hole portion was divided into five equal parts along the radial direction of the surface opening, and the inclination angle in each region was calculated. The calculation results are as shown in Tables 2 and 3 below. In Tables 2 and 3, the horizontal distance is the length of each region along the radial direction of the surface opening. Further, in Tables 2 and 3, the height difference is the difference between the position of one end and the position of the other end of each region in the thickness direction of the light-shielding plate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および表3が示すように、実施例1‐1では、各領域における水平距離を6.5μmまたは6.7μmに設定することによって、第2孔部分を区画する側面を表面開口の径方向において5等分した。実施例1‐2では、各領域における水平距離を9.5μmまたは9.6μmに設定することによって、第2孔部分を区画する側面を表面開口の径方向において5等分した。実施例1‐3では、各領域における水平距離を8.1μmに設定し、また、実施例1‐4では、各領域における水平距離を7.2μmに設定することによって、第2孔部分を区画する側面を表面開口の径方向において5等分した。実施例1‐5において、各領域における水平距離を6.9μmまたは7.1μmに設定することによって、第2孔部分を区画する側面を表面開口の径方向において5等分した。実施例1‐6において、各領域における水平距離を7.7μmまたは7.6μmに設定することによって、第2孔部分を区画する側面を表面開口の径方向において5等分した。 As shown in Tables 2 and 3, in Example 1-1, by setting the horizontal distance in each region to 6.5 μm or 6.7 μm, the side surface for partitioning the second hole portion is set in the radial direction of the surface opening. Divided into 5 equal parts. In Example 1-2, the side surface partitioning the second hole portion was divided into five equal parts in the radial direction of the surface opening by setting the horizontal distance in each region to 9.5 μm or 9.6 μm. In Example 1-3, the horizontal distance in each region is set to 8.1 μm, and in Example 1-4, the horizontal distance in each region is set to 7.2 μm to partition the second hole portion. The side surface to be used was divided into 5 equal parts in the radial direction of the surface opening. In Examples 1-5, the side surface partitioning the second hole portion was divided into five equal parts in the radial direction of the surface opening by setting the horizontal distance in each region to 6.9 μm or 7.1 μm. In Examples 1-6, the side surface partitioning the second hole portion was divided into five equal parts in the radial direction of the surface opening by setting the horizontal distance in each region to 7.7 μm or 7.6 μm.
 また、表2および表3が示すように、実施例1‐1から実施例1‐6のいずれにおいても、第1領域から第5領域のうちで、第1領域での第1傾斜角θ11が最も大きく、かつ、第1傾斜角θ11が50°以上60°以下であることが認められた。さらに、実施例1‐1から実施例1‐6のいずれにおいても、第1傾斜角θ11から第4傾斜角θ14に向けて、傾斜角が順に小さくなること、および、第5傾斜角θ15が第4傾斜角θ14よりも大きいことが認められた。 Further, as shown in Tables 2 and 3, in all of Examples 1-1 to 1-6, among the first to fifth regions, the first inclination angle θ11 in the first region is It was found that it was the largest and the first inclination angle θ11 was 50 ° or more and 60 ° or less. Further, in any of Examples 1-1 to 1-6, the inclination angle becomes smaller in order from the first inclination angle θ11 to the fourth inclination angle θ14, and the fifth inclination angle θ15 becomes the fifth. 4 It was found that the inclination angle was larger than θ14.
 なお、各遮光板を搭載したカメラユニットによって、同一の環境下において同一の物体を撮影した。実施例1‐1から実施例1‐6の各々の遮光板を有したカメラユニットを用いて撮影した画像には、ゴーストおよびフレアがほぼ認められなかった。このように、第1距離D11に対する第2距離D12の比(D12/D11)が2.5以上であることにより、ゴーストおよびフレアが抑制されることが認められた。特に、実施例1‐6では、実施例1‐1から実施例1‐5に比べて、よりゴーストおよびフレアが抑制されることが認められた。実施例1‐6では、実施例1‐1から実施例1‐5に比べて、第1孔部分の側面における面積が非常に小さく、これによって、レンズに入射した光の一部が、レンズの表面から反射されて第1孔部分に入射し、さらに、第1孔部分からレンズに向けて反射されることを顕著に抑制できるため、ゴーストおよびフレアがさらに抑制されたと考えられる。これに対して、比較例1‐1の遮光板を有したカメラユニットによって撮影した画像には、ゴーストおよびフレアが生じることが認められた。 The same object was photographed in the same environment by the camera unit equipped with each shading plate. Almost no ghosts and flares were observed in the images taken by using the camera units having the respective shading plates of Examples 1-1 to 1-6. As described above, it was confirmed that the ghost and flare were suppressed when the ratio (D12 / D11) of the second distance D12 to the first distance D11 was 2.5 or more. In particular, in Examples 1-6, it was found that ghosts and flares were more suppressed as compared with Examples 1-1 to 1-5. In Examples 1-6, the area on the side surface of the first hole portion is very small as compared with Examples 1-1 to 1-5, so that a part of the light incident on the lens is a part of the lens. It is considered that ghosts and flares are further suppressed because the reflection from the surface and incident on the first hole portion and further reflected from the first hole portion toward the lens can be remarkably suppressed. On the other hand, it was found that ghosts and flares occurred in the images taken by the camera unit having the light-shielding plate of Comparative Example 1-1.
 以上説明したように、遮光板、カメラユニット、および、電子機器の第1実施形態によれば、以下に記載の効果を得ることができる。
 (1‐1)遮光板10において、第2孔部分10H2が表面10Fから裏面10Rに向けて先細る形状を有するため、表面10Fの斜め上方から孔10Hに入射した光は、第1孔部分10H1を区画する側面において遮光板10の表面10Fに向けて反射されやすい。
As described above, according to the first embodiment of the shading plate, the camera unit, and the electronic device, the effects described below can be obtained.
(1-1) In the light-shielding plate 10, since the second hole portion 10H2 has a shape that tapers from the front surface 10F toward the back surface 10R, the light incident on the hole 10H from diagonally above the front surface 10F is the first hole portion 10H1. Is easily reflected toward the surface 10F of the light-shielding plate 10 on the side surface for partitioning.
 (1‐2)裏面10Rと中央開口HCとの間の第1距離D11に対する表面10Fと中央開口HCとの間の第2距離D12の比(D12/D11)が2.5以上であることから、第2孔部分10H2の大きさを、表面10Fから裏面10Rに向けて先細る形状とすることが可能な大きさに維持することが可能である。これにより、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることが可能である。 (1-2) Since the ratio (D12 / D11) of the second distance D12 between the front surface 10F and the central opening HC to the first distance D11 between the back surface 10R and the central opening HC is 2.5 or more. It is possible to maintain the size of the second hole portion 10H2 to a size that can be tapered from the front surface 10F to the back surface 10R. This makes it possible to reduce the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole 10H.
 (1‐3)第1領域R1における第1傾斜角θ11が、第2領域R2から第5領域R5の各々における傾斜角よりも大きい場合には、第2孔部分10H2の直径が過剰に大きくなることを抑えつつ、第1領域R1以外の領域において、光を遮光板10の表面10Fに向けてより反射させやすくすることができる。 (1-3) When the first inclination angle θ11 in the first region R1 is larger than the inclination angle in each of the second region R2 to the fifth region R5, the diameter of the second hole portion 10H2 becomes excessively large. While suppressing this, it is possible to make it easier for light to be reflected toward the surface 10F of the light-shielding plate 10 in a region other than the first region R1.
 (1‐4)第1傾斜角θ11が50°以上60°以下である場合には、第2孔部分10H2を区画する側面のうち、表面開口H2Fを含む第1領域R1において、遮光板10の表面10Fに向けて光を反射させる確実性を高めることができる。 (1-4) When the first inclination angle θ11 is 50 ° or more and 60 ° or less, the light-shielding plate 10 is formed in the first region R1 including the surface opening H2F among the side surfaces for partitioning the second hole portion 10H2. It is possible to increase the certainty of reflecting light toward the surface 10F.
 (1‐5)第5領域R5の第5傾斜角θ15が、第4領域R4の第4傾斜角θ14よりも大きい場合には、第5領域R5の第5傾斜角θ15が、第4領域R4の第4傾斜角θ14よりも小さい場合に比べて、第2孔部分10H2の直径が拡張されることが抑えられる。 (1-5) When the fifth inclination angle θ15 of the fifth region R5 is larger than the fourth inclination angle θ14 of the fourth region R4, the fifth inclination angle θ15 of the fifth region R5 becomes the fourth region R4. The diameter of the second hole portion 10H2 is suppressed from being expanded as compared with the case where the angle is smaller than the fourth inclination angle θ14.
 (1‐6)第1領域R1から第4領域R4に向けて、各領域での傾斜角が小さくなる場合には、中央開口HCに近付くほど、第2孔部分10H2に入射した光を遮光板10の表面10Fに向けて反射させやすくなる。 (1-6) When the inclination angle in each region becomes smaller from the first region R1 to the fourth region R4, the closer to the central opening HC, the light incident on the second hole portion 10H2 is blocked by the light shielding plate. It becomes easy to reflect toward the surface 10F of 10.
 (1‐7)第2孔部分10H2を区画する側面が、曲率中心が遮光板10の外側に位置するような弧状を有する場合には、反射光のなかで最も高い輝度を有した正反射光が、弧状を有した側面から遮光板10の表面10Fに向かう方向に沿って反射される。 (1-7) When the side surface partitioning the second hole portion 10H2 has an arc shape such that the center of curvature is located outside the shading plate 10, the specular reflected light having the highest brightness among the reflected light. Is reflected along the direction from the arc-shaped side surface toward the surface 10F of the light-shielding plate 10.
 (1‐8)第1孔部分10H1を区画する側面が、曲率中心が遮光板10の外側に位置するような弧状を有する場合には、表面10Fの斜め上方から孔に入射した光のなかで、裏面開口H1Rの近傍において孔10Hを区画する側面によって反射される光の光量を低下させることができる。 (1-8) When the side surface partitioning the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10, the light incident on the hole from diagonally above the surface 10F The amount of light reflected by the side surface that partitions the hole 10H in the vicinity of the back surface opening H1R can be reduced.
 なお、上述した第1実施形態を以下のように変更して実施することができる。
 [第1孔部分]
 ・第1孔部分10H1を区画する側面は、表面10Fに直交する平面に沿う断面において、直線状を有してもよい。この場合であっても、第1孔部分10H1が裏面10Rから表面10Fに向けて先細りする形状を有し、第2孔部分10H2が表面10Fから裏面10Rに向けて先細りする形状を有し、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。
The above-mentioned first embodiment can be modified and implemented as follows.
[1st hole part]
The side surface that partitions the first hole portion 10H1 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the ratio of the second distance D12 to the one distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 [第2孔部分]
 ・第2孔部分10H2を区画する側面は、表面10Fに直交する平面に沿う断面において、直線状を有してもよい。この場合であっても、第1孔部分10H1が裏面10Rから表面10Fに向けて先細りする形状を有し、第2孔部分10H2が表面10Fから裏面10Rに向けて先細りする形状を有し、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。
[Second hole part]
The side surface that partitions the second hole portion 10H2 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the ratio of the second distance D12 to the one distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 [第2孔部分を区画する側面]
 ・第1領域R1から第5領域R5に向けて、各領域での傾斜角が順に小さくなってもよい。この場合であっても、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。
[Side surface for partitioning the second hole]
-The inclination angle in each region may gradually decrease from the first region R1 to the fifth region R5. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 ・第1領域R1から第4領域R4に向けて、各領域での傾斜角が順に小さくならなくてもよい。例えば、第1領域R1から第4領域R4において、各領域での傾斜角が他の領域での傾斜角と等しくてもよい。この場合であっても、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。 -The inclination angle in each region does not have to decrease in order from the first region R1 to the fourth region R4. For example, in the first region R1 to the fourth region R4, the inclination angle in each region may be equal to the inclination angle in the other regions. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 ・第5領域R5の第5傾斜角θ15は、第4領域R4の第4傾斜角θ14よりも小さくてもよい。この場合であっても、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。 The fifth inclination angle θ15 of the fifth region R5 may be smaller than the fourth inclination angle θ14 of the fourth region R4. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 ・第1領域R1の第1傾斜角θ11は、50°よりも小さくてもよいし、60°よりも大きくてもよい。この場合であっても、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。 The first inclination angle θ11 of the first region R1 may be smaller than 50 ° or larger than 60 °. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 ・第1領域R1の第1傾斜角θ11は、第2領域R2から第5領域R5の少なくとも1つの領域における傾斜角よりも小さくてもよい。この場合であっても、第1距離D11に対する第2距離D12の比が2.5以上であれば、上述した(1‐1)に準じた効果を得ることはできる。 The first inclination angle θ11 of the first region R1 may be smaller than the inclination angle in at least one region from the second region R2 to the fifth region R5. Even in this case, if the ratio of the second distance D12 to the first distance D11 is 2.5 or more, the effect according to (1-1) described above can be obtained.
 [遮光板]
 ・遮光板10は、上述したように、ステンレス鋼以外の金属から形成されてよい。遮光板10は、例えば、鉄‐ニッケル系合金製であってもよいし、鉄‐ニッケル‐コバルト系合金製であってもよい。
[Shading plate]
-As described above, the light-shielding plate 10 may be formed of a metal other than stainless steel. The light-shielding plate 10 may be made of, for example, an iron-nickel alloy or an iron-nickel-cobalt alloy.
 鉄‐ニッケル系合金の熱膨張係数は、ステンレス鋼の熱膨張係数よりも小さい。そのため、鉄‐ニッケル系合金製の遮光板は、外気温の変化に伴う変形が小さく、これによって、遮光板自体の反りや熱膨張および熱収縮に伴う内径の変形を要因とする外気温の変化に伴う外光の入射量における変化を抑えることができる。なお、外光の入射量とは、遮光板10を通じてレンズに入射する外光の入射量である。それゆえに、遮光板10が鉄‐ニッケル系合金によって形成されることは、外光の入射量における変化に伴い生じるゴーストおよびフレアの抑制に有効である。 The coefficient of thermal expansion of iron-nickel alloys is smaller than the coefficient of thermal expansion of stainless steel. Therefore, the light-shielding plate made of an iron-nickel alloy has a small deformation due to a change in the outside air temperature, and as a result, the change in the outside air temperature due to the deformation of the inner diameter due to the warp of the light-shielding plate itself and the thermal expansion and contraction. It is possible to suppress the change in the incident amount of external light due to the above. The incident amount of external light is the incident amount of external light incident on the lens through the light-shielding plate 10. Therefore, the fact that the light-shielding plate 10 is formed of an iron-nickel alloy is effective in suppressing ghosts and flares caused by changes in the amount of incident light.
 なお、鉄‐ニッケル系合金は、鉄とニッケルとを主成分とし、かつ、例えば、30質量%以上のニッケルと、残余分としての鉄を含む合金である。鉄‐ニッケル系合金のなかでも、36質量%のニッケルを含む合金、すなわちインバーが、遮光板10を形成するための材料として好ましい。インバーにおいて、36質量%のニッケルに対する残余分は、主成分である鉄以外の添加物を含む場合がある。添加物は、例えば、クロム、マンガン、炭素、および、コバルトなどである。鉄‐ニッケル系合金に含まれる添加物は、最大でも1質量%以下である。 The iron-nickel alloy is an alloy containing iron and nickel as main components, and for example, 30% by mass or more of nickel and iron as a residual. Among the iron-nickel alloys, an alloy containing 36% by mass of nickel, that is, Invar, is preferable as a material for forming the light-shielding plate 10. In Invar, the residue for 36% by weight nickel may contain additives other than iron, which is the main component. Additives include, for example, chromium, manganese, carbon, and cobalt. The maximum amount of additives contained in the iron-nickel alloy is 1% by mass or less.
 鉄‐ニッケル‐コバルト系合金の熱膨張係数は、鉄‐ニッケル系合金の熱膨張係数よりも小さい。そのため、鉄‐ニッケル‐コバルト系合金製の遮光板は、外気温の変化に伴う変形がより小さく、これによって、遮光板自体の反りや熱膨張および熱収縮に伴う内径の変形を要因とする外気温の変化に伴う外光の入射量における変化をより抑えることができる。それゆえに、遮光板10が鉄‐ニッケル‐コバルト系合金によって形成されることは、外光の入射量における変化に伴い生じるゴーストおよびフレアの抑制にさらに有効である。 The coefficient of thermal expansion of the iron-nickel-cobalt alloy is smaller than the coefficient of thermal expansion of the iron-nickel alloy. Therefore, the light-shielding plate made of iron-nickel-cobalt alloy has less deformation due to changes in the outside air temperature, which causes the outer diameter to be deformed due to the warp of the light-shielding plate itself and the deformation of the inner diameter due to thermal expansion and contraction. It is possible to further suppress the change in the incident amount of external light due to the change in air temperature. Therefore, the formation of the light-shielding plate 10 by the iron-nickel-cobalt alloy is more effective in suppressing ghosts and flares caused by changes in the amount of incident light.
 なお、鉄‐ニッケル‐コバルト系合金は、鉄、ニッケル、および、コバルトを主成分とし、かつ、例えば、30質量%以上のニッケル、3質量%以上のコバルト、および、残余分としての鉄を含む合金である。鉄‐ニッケル‐コバルト系合金のなかでも、32質量%のニッケルと4質量%以上5質量%以下のコバルトを含む合金、すなわちスーパーインバーが、遮光板10を形成するための材料として好ましい。スーパーインバーにおいて、32質量%のニッケル、および、4質量%以上5質量%以下のコバルトに対する残余分は、主成分である鉄以外の添加物を含む場合がある。添加物は、例えば、クロム、マンガン、および、炭素などである。鉄‐ニッケル‐コバルト系合金に含まれる添加物は、最大でも0.5質量%以下である。 The iron-nickel-cobalt alloy contains iron, nickel, and cobalt as main components, and contains, for example, 30% by mass or more of nickel, 3% by mass or more of cobalt, and iron as a residue. It is an alloy. Among the iron-nickel-cobalt alloys, an alloy containing 32% by mass of nickel and 4% by mass or more and 5% by mass or less of cobalt, that is, Super Invar is preferable as a material for forming the light-shielding plate 10. In Super Invar, the residue for 32% by mass nickel and 4% by mass or more and 5% by mass or less of cobalt may contain additives other than iron as a main component. Additives are, for example, chromium, manganese, and carbon. The maximum amount of additives contained in the iron-nickel-cobalt alloy is 0.5% by mass or less.
 このように、遮光板10が、鉄‐ニッケル系合金製、または、鉄‐ニッケル‐コバルト系合金製である場合には、以下の効果を得ることができる。 As described above, when the light-shielding plate 10 is made of an iron-nickel alloy or an iron-nickel-cobalt alloy, the following effects can be obtained.
 (1‐9)外気温の変化に伴う遮光板10の変形を抑えることができ、これによって、外気温の変化に伴う外光の入射量における変化を抑えることができる。それゆえに、外光の入射量における変化に伴うゴーストおよびフレアの発生を抑えることができる。 (1-9) Deformation of the light-shielding plate 10 due to a change in the outside air temperature can be suppressed, and thus a change in the incident amount of outside light due to a change in the outside air temperature can be suppressed. Therefore, it is possible to suppress the occurrence of ghosts and flares due to changes in the incident amount of external light.
 [第2実施形態]
 図10および図11を参照して、遮光板、カメラユニット、および、電子機器の第2実施形態を説明する。第2実施形態は、上述した第1実施形態と比べて、遮光板の形状が異なる。そのため以下では、こうした相違点を詳しく説明する一方で、それ以外の説明を省略する。以下では、遮光板、および、実施例を順に説明する。
[Second Embodiment]
A second embodiment of the shading plate, the camera unit, and the electronic device will be described with reference to FIGS. 10 and 11. In the second embodiment, the shape of the light-shielding plate is different from that in the first embodiment described above. Therefore, while these differences will be described in detail below, other explanations will be omitted. Hereinafter, the light-shielding plate and the examples will be described in order.
 [遮光板]
 図10を参照して、遮光板を説明する。
[Shading plate]
The shading plate will be described with reference to FIG.
 図10は、図2が示す遮光板10の断面構造における一部を拡大して示している。
 図10が示すように、被写界深度が0.4μmである撮像条件において、中央開口HCの縁にピントを合わせた状態で、中央開口HCの径方向に沿って中央開口HCの縁を撮像したときに、ピントが合う遮光板10の厚さ方向における遮光板10の最大幅が、最大幅WMである。すなわち、最大幅WMは、中央開口HCの縁から、遮光板10の厚さ方向と直交する方向に沿って被写界深度DFと同じ距離だけ離れた位置での遮光板10の厚さである。
FIG. 10 shows an enlarged part of the cross-sectional structure of the light-shielding plate 10 shown in FIG.
As shown in FIG. 10, under the imaging condition where the depth of field is 0.4 μm, the edge of the central aperture HC is imaged along the radial direction of the central aperture HC while focusing on the edge of the central aperture HC. The maximum width of the light-shielding plate 10 in the thickness direction of the light-shielding plate 10 in focus is the maximum width WM. That is, the maximum width WM is the thickness of the light-shielding plate 10 at a position separated from the edge of the central opening HC by the same distance as the depth of field DF along the direction orthogonal to the thickness direction of the light-shielding plate 10. ..
 最大幅WMは、7.0μm以下である。また、最大幅WMは、遮光板10の厚さTにおける30%以下である。最大幅WMは、3.0μm以下であってよい。また、最大幅WMは、1.0μm以上であってよい。なお、最大幅WMは、7.0μm以下であること、および、遮光板10の厚さTにおける30%以下であることのいずれかのみを満たす一方で、他方を満たさなくてもよい。 The maximum width WM is 7.0 μm or less. Further, the maximum width WM is 30% or less of the thickness T of the light-shielding plate 10. The maximum width WM may be 3.0 μm or less. Further, the maximum width WM may be 1.0 μm or more. The maximum width WM may satisfy only either 7.0 μm or less and 30% or less of the thickness T of the light-shielding plate 10, but may not satisfy the other.
 遮光板10の厚さ方向における、裏面10Rと中央開口HCの縁との間の距離が、開口距離D21である。開口距離D21は、0μmよりも大きく3μm以下であってよい。あるいは、開口距離D21は、遮光板10の厚さにおける30%以下であってよい。なお、開口距離D21は、遮光板10の厚さにおける30%以下であることを満たす一方で、3μm以下であることを満たさなくてもよい。開口距離D21は、最大幅WMよりも小さくてもよいし、最大幅WMとほぼ等しくてもよい。 The distance between the back surface 10R and the edge of the central opening HC in the thickness direction of the shading plate 10 is the opening distance D21. The opening distance D21 may be larger than 0 μm and 3 μm or less. Alternatively, the opening distance D21 may be 30% or less of the thickness of the shading plate 10. The opening distance D21 does not have to satisfy that it is 30% or less of the thickness of the light-shielding plate 10 but that it is 3 μm or less. The opening distance D21 may be smaller than the maximum width WM or may be substantially equal to the maximum width WM.
 遮光板10に対して表面10Fに直交する方向から入射した光は、表面10Fに形成された表面開口H2Fから孔10Hに入る。そして、孔10Hを通った光は裏面10Rに形成された裏面開口H1Rから出ることによって、レンズLNに到達する。一方で、遮光板10において、第2孔部分10H2が表面10Fから裏面10Rに向けて先細る形状を有するため、表面10Fの斜め上方から孔10Hに入射した光は、第2孔部分10H2を区画する側面において遮光板10の表面10Fに向けて反射されやすい。 Light incident on the light-shielding plate 10 from a direction orthogonal to the surface 10F enters the hole 10H through the surface opening H2F formed on the surface 10F. Then, the light that has passed through the hole 10H reaches the lens LN by exiting from the back surface opening H1R formed on the back surface 10R. On the other hand, in the light-shielding plate 10, since the second hole portion 10H2 has a shape that tapers from the front surface 10F toward the back surface 10R, the light incident on the hole 10H from diagonally above the front surface 10F partitions the second hole portion 10H2. It is easy to be reflected toward the surface 10F of the light-shielding plate 10 on the side surface.
 また、最大幅WMが7.0μm以下であるため、あるいは、最大幅WMが遮光板10の厚さTにおける30%以下であるため、中央開口HCの近傍において孔10Hを区画する側面の面積を小さくし、これによって、中央開口HCの近傍において孔10Hを区画する側面において反射される光の光量を低下させることができる。結果として、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。なお、最大幅WMが3.0μm以下であれば、中央開口HCの近傍において孔を区画する側面の面積をさらに小さくし、これによって、中央開口HCの近傍において孔10Hを区画する側面において反射される光の光量をさらに低下させることができる。 Further, since the maximum width WM is 7.0 μm or less, or because the maximum width WM is 30% or less of the thickness T of the light-shielding plate 10, the area of the side surface for partitioning the hole 10H in the vicinity of the central opening HC is set. By making it smaller, it is possible to reduce the amount of light reflected on the side surface that partitions the hole 10H in the vicinity of the central opening HC. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced. When the maximum width WM is 3.0 μm or less, the area of the side surface that partitions the hole in the vicinity of the central opening HC is further reduced, so that the light is reflected on the side surface that partitions the hole 10H in the vicinity of the central opening HC. The amount of light emitted can be further reduced.
 また、最大幅WMが1.0μm以上であれば、遮光板10のなかで中央開口HCを含む部分における厚さが1.0μm以上であることによって、中央開口HC付近における変形を抑えることが可能である。これにより、中央開口HCを通じて遮光板10を透過する光の光量が、遮光板10の変形に起因して変動することが抑えられる。 Further, when the maximum width WM is 1.0 μm or more, the thickness of the portion of the light-shielding plate 10 including the central opening HC is 1.0 μm or more, so that deformation in the vicinity of the central opening HC can be suppressed. Is. As a result, the amount of light transmitted through the light-shielding plate 10 through the central opening HC is suppressed from fluctuating due to the deformation of the light-shielding plate 10.
 さらに、開口距離D21が0μmよりも大きく3μm以下、あるいは、遮光板10の厚さにおける30%以下であることによって、第1孔部分10H1を区画する側面の面積を小さくし、これによって、第1孔部分10H1を区画する側面において反射される光の光量を低下させることができる。結果として、孔10Hを通過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。 Further, when the opening distance D21 is larger than 0 μm and 3 μm or less, or 30% or less of the thickness of the light-shielding plate 10, the area of the side surface for partitioning the first hole portion 10H1 is reduced, whereby the first hole portion 10H1 is divided. The amount of light reflected on the side surface that partitions the hole portion 10H1 can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
 [実施例]
 図11を参照して実施例および比較例を説明する。
 [実施例2‐1]
 25μmの厚さを有したステンレス鋼箔を準備した。そして、ステンレス鋼箔の裏面からステンレス鋼箔をエッチングすることによって第1孔部分を形成した後に、ステンレス鋼箔の表面からステンレス鋼箔をエッチングすることによって第2孔部分を形成した。これにより、第1孔部分と第2孔部分とから形成される孔を有した遮光板を得た。
[Example]
Examples and comparative examples will be described with reference to FIG.
[Example 2-1]
A stainless steel foil having a thickness of 25 μm was prepared. Then, after the first hole portion was formed by etching the stainless steel foil from the back surface of the stainless steel foil, the second hole portion was formed by etching the stainless steel foil from the front surface of the stainless steel foil. As a result, a light-shielding plate having a hole formed from the first hole portion and the second hole portion was obtained.
 [実施例2‐2]
 実施例2‐1において、第2孔部分が有する表面開口の第2直径を大きくした以外は、実施例2‐1と同様の方法によって、実施例2‐2の遮光板を得た。
[Example 2-2]
A light-shielding plate of Example 2-2 was obtained by the same method as in Example 2-1 except that the second diameter of the surface opening of the second hole portion was increased in Example 2-1.
 [実施例2‐3]
 実施例2‐2において、第2孔部分が有する表面開口の第2直径を小さくした以外は、実施例2‐2と同様の方法によって、実施例2‐3の遮光板を得た。
[Example 2-3]
A light-shielding plate of Example 2-3 was obtained by the same method as in Example 2-2 except that the second diameter of the surface opening of the second hole portion was reduced in Example 2-2.
 [比較例2‐1]
 実施例2‐1において、ステンレス鋼箔を金型で打ち抜くことによって、ステンレス鋼箔を貫通する円形孔を形成した以外は、実施例2‐1と同様の方法によって、比較例1の遮光板を得た。なお、比較例1の遮光板において、表面開口の直径と裏面開口の直径とは同一であり、かつ、実施例2‐1の第2直径と同一であった。
[Comparative Example 2-1]
In Example 2-1 the light-shielding plate of Comparative Example 1 was formed by the same method as in Example 2-1 except that the stainless steel foil was punched out with a die to form a circular hole penetrating the stainless steel foil. Obtained. In the light-shielding plate of Comparative Example 1, the diameter of the front surface opening and the diameter of the back surface opening were the same, and were the same as the second diameter of Example 2-1.
 [評価結果]
 実施例2‐1から実施例2‐3、および、比較例2‐1の遮光板の各々について、共焦点レーザー顕微鏡(VK-X1000Series、(株)キーエンス製)を用いて、最大幅WMを測定した。この際に、共焦点レーザー顕微鏡に、50倍の対物レンズを装着した。また、孔を区画する側面と対向する方向から、中央開口の縁にピントが合う状態で、共焦点レーザー顕微鏡によって側面を観察することによって、最大幅WMを測定した。共焦点レーザー顕微鏡では、対物レンズが有する倍率によって、焦点の合う範囲、すなわち被写界深度が異なる。また、被写界深度内ではピントが合うため、中央開口の縁からの位置に応じて、遮光板の厚さ方向における最大幅は異なる。そのため、実際にはピントが合う位置での遮光板の厚さは、所定の幅を有する。50倍の対物レンズの被写界深度は0.4μmである。そこで、被写界深度が0.4μmであり、中央開口の縁にピントを合わせた状態において、遮光板の厚さ方向における遮光板の幅における最大値を最大幅と定義した。すなわち、中央開口の縁から被写界深度だけ離れた位置での遮光板の厚さが、遮光板の最大幅WMである。最大幅WMの測定結果は、表4が示すとおりであった。
[Evaluation results]
The maximum width WM was measured using a confocal laser scanning microscope (VK-X1000Series, manufactured by KEYENCE CORPORATION) for each of the light-shielding plates of Examples 2-1 to 2-3 and Comparative Example 2-1. did. At this time, a 50x objective lens was attached to the confocal laser scanning microscope. In addition, the maximum width WM was measured by observing the side surface with a confocal laser microscope in a state where the edge of the central opening was in focus from the direction facing the side surface that partitions the hole. In a confocal laser microscope, the range of focus, that is, the depth of field differs depending on the magnification of the objective lens. Further, since the focus is set within the depth of field, the maximum width of the light-shielding plate in the thickness direction differs depending on the position from the edge of the central opening. Therefore, the thickness of the light-shielding plate at the position where it is actually in focus has a predetermined width. The depth of field of the 50x objective lens is 0.4 μm. Therefore, when the depth of field is 0.4 μm and the edge of the central opening is in focus, the maximum value of the width of the light-shielding plate in the thickness direction of the light-shielding plate is defined as the maximum width. That is, the thickness of the light-shielding plate at a position separated by the depth of field from the edge of the central opening is the maximum width WM of the light-shielding plate. The measurement results of the maximum width WM are as shown in Table 4.
 実施例2‐1から実施例2‐3、および、比較例2‐1の各々を、表面に直交する平面に沿って切断し、測定対象を作成した。このうち、実施例2‐1の測定対象を走査型電子顕微鏡で撮影した結果は、図11に示す通りであった。また、実施例2‐1から実施例2‐3、および、比較例2‐1の各々について、開口距離を測定した結果は、表4が示すとおりであった。なお、比較例2‐1の遮光板が有する孔は、第1孔部分、第2孔部分、および、中央開口を有しないため、比較例2‐1については、最大幅および開口距離を表記していない。 Each of Example 2-1 to Example 2-3 and Comparative Example 2-1 was cut along a plane orthogonal to the surface to prepare a measurement target. Of these, the results of photographing the measurement target of Example 2-1 with a scanning electron microscope were as shown in FIG. In addition, the results of measuring the opening distance for each of Examples 2-1 to 2-3 and Comparative Example 2-1 are as shown in Table 4. Since the holes of the light-shielding plate of Comparative Example 2-1 do not have the first hole portion, the second hole portion, and the central opening, the maximum width and the opening distance are shown for Comparative Example 2-1. Not.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1が示すように、実施例2‐1の最大幅WMは2.3μmであり、実施例2‐2の最大幅WMは0.6μmであり、実施例2‐3の最大幅WMは6.96μmであることが認められた。このように、実施例2‐1から実施例2‐3のいずれにおいても、最大幅WMは7.0μm以下であることが認められた。表4が示すように、実施例2‐1の開口距離D21は0.27μmであり、実施例2‐2の開口距離D21は0.10μmであり、実施例2‐3の開口距離D21は7.05μmであることが認められた。 As shown in Table 1, the maximum width WM of Example 2-1 is 2.3 μm, the maximum width WM of Example 2-2 is 0.6 μm, and the maximum width WM of Example 2-3 is 6. It was found to be .96 μm. As described above, it was confirmed that the maximum width WM was 7.0 μm or less in each of Examples 2-1 to 2-3. As shown in Table 4, the opening distance D21 of Example 2-1 is 0.27 μm, the opening distance D21 of Example 2-2 is 0.10 μm, and the opening distance D21 of Example 2-3 is 7. It was found to be 0.05 μm.
 また、図11が示すように、実施例2‐1の遮光板において、第1孔部分は、裏面開口H1Rと中央開口HCとを有することが認められた。なお、実施例2‐2の遮光板、および、実施例2‐3の遮光板も、実施例2‐1の遮光板が有する孔の形状に準じた形状の孔を備えることが認められた。 Further, as shown in FIG. 11, in the light-shielding plate of Example 2-1 it was found that the first hole portion had a back surface opening H1R and a central opening HC. It was found that the light-shielding plate of Example 2-2 and the light-shielding plate of Example 2-3 also had holes having a shape similar to the shape of the holes of the light-shielding plate of Example 2-1.
 各遮光板から測定対象を形成する前に、各遮光板を搭載したカメラユニットによって、同一の環境下において同一の物体を撮影した。カメラユニットによって撮影した画像を以下の水準によって評価した。 Before forming the measurement target from each shading plate, the same object was photographed in the same environment by the camera unit equipped with each shading plate. Images taken by the camera unit were evaluated according to the following levels.
 ◎ ゴーストが生じず、かつ、フレアもほとんど生じていない
 ○ ゴーストが生じず、かつ、画像のコントラストを大きく低減させない程度のフレアが生じる
 △ 画像の一部分にのみにゴーストが生じ、画像のコントラストを大きく低減させない程度のフレアが生じる
 × 画像の広範囲に広がるゴースト、および、画像のコントラストを大きく低減させるフレアが生じる
◎ No ghosts and almost no flare ○ No ghosts and flare that does not significantly reduce the contrast of the image △ Ghosts occur only in a part of the image and the contrast of the image is increased. Flare that does not reduce occurs × Ghost that spreads over a wide area of the image and flare that greatly reduces the contrast of the image occur
 表4が示すように、実施例2‐1の遮光板を用いた場合の評価結果は「◎」であり、実施例2‐2の遮光板を用いた場合の評価結果は「○」であり、実施例2‐3の遮光板を用いた場合の評価結果は「△」であることが認められた。また、表4が示すように、比較例1の遮光板を用いた場合の評価結果は「×」であることが認められた。 As shown in Table 4, the evaluation result when the light-shielding plate of Example 2-1 was used was "◎", and the evaluation result when the light-shielding plate of Example 2-2 was used was "○". , It was confirmed that the evaluation result when the light-shielding plate of Example 2-3 was used was "Δ". Further, as shown in Table 4, it was confirmed that the evaluation result when the light-shielding plate of Comparative Example 1 was used was “x”.
 このように、実施例2‐1から実施例2‐3によれば、比較例2‐1に比べて、ゴーストおよびフレアが低減されることが認められた。そのため、実施例2‐1から実施例2‐3によれば、遮光板の孔を通過するように孔を区画する側面で反射される光の光量を低下させることが可能であると言える。なお、実施例2‐3によれば、比較例2‐1に比べて遮光板の孔を通過するように孔を区画する側面で反射される光の光量を低下させることが可能ではあるが、ゴーストおよびフレアが確認される。そのため、最大幅WMは7.0μm以下であることが好ましいと言える。また、実施例2‐2によれば、比較例2‐1に比べて遮光板の孔を通過するように孔を区画する側面で反射される光の光量を低下させることが可能ではあるが、実施例2‐1と比較した場合に、遮光板の孔を通過するように孔を区画する側面で反射される光の光量が高いと考えられる。こうした光量の違いは、遮光板の強度低下による変形に起因すると考えられることから、遮光板の変形を抑える上で、最大幅WMは1.0μm以上であることが好ましいと言える。 As described above, according to Examples 2-1 to 2-3, it was recognized that ghosts and flares were reduced as compared with Comparative Example 2-1. Therefore, according to Examples 2-1 to 2-3, it can be said that it is possible to reduce the amount of light reflected on the side surface that partitions the holes so as to pass through the holes of the light-shielding plate. According to Example 2-3, it is possible to reduce the amount of light reflected on the side surface that partitions the holes so as to pass through the holes of the light-shielding plate as compared with Comparative Example 2-1. Ghosts and flares are confirmed. Therefore, it can be said that the maximum width WM is preferably 7.0 μm or less. Further, according to Example 2-2, it is possible to reduce the amount of light reflected on the side surface that partitions the holes so as to pass through the holes of the light-shielding plate as compared with Comparative Example 2-1. Compared with Example 2-1 it is considered that the amount of light reflected on the side surface that partitions the hole so as to pass through the hole of the light-shielding plate is high. Since it is considered that such a difference in the amount of light is caused by the deformation of the light-shielding plate due to the decrease in strength, it can be said that the maximum width WM is preferably 1.0 μm or more in order to suppress the deformation of the light-shielding plate.
 以上説明したように、遮光板、カメラユニット、および、電子機器の第2実施形態によれば、以下に記載の効果を得ることができる。
 (2‐1)最大幅WMが7.0μm以下であることによって、中央開口HCの近傍において孔10Hを区画する側面の面積を小さくし、これによって、中央開口HCの近傍において孔10Hを区画する側面において反射される光の光量を低下させることができる。結果として、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。
As described above, according to the second embodiment of the shading plate, the camera unit, and the electronic device, the effects described below can be obtained.
(2-1) When the maximum width WM is 7.0 μm or less, the area of the side surface for partitioning the hole 10H in the vicinity of the central opening HC is reduced, thereby partitioning the hole 10H in the vicinity of the central opening HC. The amount of light reflected on the side surface can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
 (2‐2)最大幅WMが3.0μm以下であることによって、中央開口HCの近傍において孔10Hを区画する側面において反射される光の光量をさらに低下させることができる。結果として、孔10Hを透過するように孔を区画する側面で反射される光の光量をさらに低下させることができる。 (2-2) When the maximum width WM is 3.0 μm or less, the amount of light reflected on the side surface that partitions the hole 10H in the vicinity of the central opening HC can be further reduced. As a result, the amount of light reflected by the side surface that partitions the hole so as to pass through the hole 10H can be further reduced.
 (2‐3)最大幅WMが1.0μm以上であることによって、中央開口HC付近における変形を抑えることが可能である。これにより、中央開口HCを通じて遮光板10を透過する光の光量が、遮光板10の変形に起因して変動することが抑えられる。 (2-3) When the maximum width WM is 1.0 μm or more, it is possible to suppress deformation in the vicinity of the central opening HC. As a result, the amount of light transmitted through the light-shielding plate 10 through the central opening HC is suppressed from fluctuating due to the deformation of the light-shielding plate 10.
 (2‐4)開口距離D21が3.0μm以下であることによって、第1孔部分10H1を区画する側面の面積を小さくし、これによって、第1孔部分10H1を区画する側面において反射される光の光量を低下させることができる。結果として、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。 (2-4) When the opening distance D21 is 3.0 μm or less, the area of the side surface that partitions the first hole portion 10H1 is reduced, and thereby the light reflected on the side surface that partitions the first hole portion 10H1. The amount of light can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
 (2‐5)開口距離D21が遮光板10の厚さにおける30%以下であることによって、第1孔部分10H1を区画する側面の面積を小さくし、これによって、第1孔部分10H1を区画する側面において反射される光の光量を低下させることができる。結果として、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。 (2-5) When the opening distance D21 is 30% or less of the thickness of the light-shielding plate 10, the area of the side surface for partitioning the first hole portion 10H1 is reduced, thereby partitioning the first hole portion 10H1. The amount of light reflected on the side surface can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
 (2‐6)最大幅WMが遮光板10の厚さにおける30%以下であることによって、中央開口HCの近傍において孔10Hを区画する側面の面積を小さくし、これによって、中央開口HCの近傍において孔10Hを区画する側面において反射される光の光量を低下させることができる。結果として、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。 (2-6) Since the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the area of the side surface that partitions the hole 10H in the vicinity of the central opening HC is reduced, thereby reducing the area of the side surface in the vicinity of the central opening HC. The amount of light reflected on the side surface of the hole 10H can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
 なお、上述した第2実施形態を以下のように変更して実施することができる。
 [開口距離]
 ・開口距離D21は、3μmよりも大きくてもよい。この場合であっても、最大幅WMが7.0μm以下である場合には、上述した(2‐1)に準じた効果を得ることができる。また、この場合であっても、最大幅WMが遮光板10の厚さにおける30%以下であれば、上述した(2‐6)に準じた効果を得ることはできる。
The second embodiment described above can be modified and implemented as follows.
[Aperture distance]
The opening distance D21 may be larger than 3 μm. Even in this case, when the maximum width WM is 7.0 μm or less, the effect according to (2-1) described above can be obtained. Even in this case, if the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the effect according to (2-6) described above can be obtained.
 ・開口距離D21は、遮光板10の厚さにおける30%よりも大きくてもよい。この場合であっても、最大幅WMが7.0μm以下である場合には、上述した(2‐1)に準じた効果を得ることができる。また、この場合であっても、最大幅WMが遮光板10の厚さにおける30%以下であれば、上述した(2‐6)に準じた効果を得ることはできる。 The opening distance D21 may be larger than 30% of the thickness of the shading plate 10. Even in this case, when the maximum width WM is 7.0 μm or less, the effect according to (2-1) described above can be obtained. Even in this case, if the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the effect according to (2-6) described above can be obtained.
 [最大幅]
 ・最大幅WMは、0μmよりも大きく1μm未満であってもよい。この場合であっても、最大幅WMが7.0μm以下である場合には、上述した(2‐1)に準じた効果を得ることができる。また、この場合であっても、最大幅WMが遮光板10の厚さにおける30%以下であれば、上述した(2‐6)に準じた効果を得ることはできる。
[Maximum width]
The maximum width WM may be greater than 0 μm and less than 1 μm. Even in this case, when the maximum width WM is 7.0 μm or less, the effect according to (2-1) described above can be obtained. Even in this case, if the maximum width WM is 30% or less of the thickness of the light-shielding plate 10, the effect according to (2-6) described above can be obtained.
 ・最大幅WMは、3.0μmよりも大きく7.0μm以下であってもよい。この場合であっても、上述した(2‐1)に準じた効果を得ることはできる。 -The maximum width WM may be larger than 3.0 μm and 7.0 μm or less. Even in this case, the effect according to (2-1) described above can be obtained.
 [第1孔部分]
 ・第1孔部分10H1が裏面10Rから表面10Fに向けて先細りする形状を有していれば、第1孔部分10H1を区画する側面は、表面10Fに直交する平面に沿う断面において、直線状を有してもよい。
[1st hole part]
If the first hole portion 10H1 has a shape that tapers from the back surface 10R toward the front surface 10F, the side surface that partitions the first hole portion 10H1 has a linear shape in a cross section along a plane orthogonal to the front surface 10F. You may have.
 [第2孔部分]
 ・第2孔部分10H2が表面10Fから裏面10Rに向けて先細りする形状を有していれば、第2孔部分10H2を区画する側面は、表面10Fに直交する平面に沿う断面において、直線状を有してもよい。
[Second hole part]
If the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R, the side surface that partitions the second hole portion 10H2 has a linear shape in a cross section along a plane orthogonal to the front surface 10F. You may have.
 [遮光板]
 ・遮光板10は、上述したように、ステンレス鋼以外の金属から形成されてよい。遮光板10は、第1実施形態の変更例において列挙されたいずれかの金属によって形成されてもよい。
[Shading plate]
-As described above, the light-shielding plate 10 may be formed of a metal other than stainless steel. The shading plate 10 may be formed of any of the metals listed in the modified examples of the first embodiment.
 ・第2実施形態の遮光板10は、第1実施形態の遮光板10が有する構造と組み合わせて実施することが可能である。 The light-shielding plate 10 of the second embodiment can be implemented in combination with the structure of the light-shielding plate 10 of the first embodiment.
 [第3実施形態]
 図12および図13を参照して、遮光板、カメラユニット、および、電子機器の第3実施形態を説明する。第3実施形態は、上述した第1実施形態と比べて、遮光板の形状が異なる。そのため以下では、こうした相違点を詳しく説明する一方で、それ以外の説明を省略する。以下では、遮光板、および、実施例を順に説明する。
[Third Embodiment]
A third embodiment of the shading plate, the camera unit, and the electronic device will be described with reference to FIGS. 12 and 13. In the third embodiment, the shape of the light-shielding plate is different from that in the first embodiment described above. Therefore, while these differences will be described in detail below, other explanations will be omitted. Hereinafter, the light-shielding plate and the examples will be described in order.
 [遮光板]
 図12を参照して、遮光板を説明する。
[Shading plate]
The shading plate will be described with reference to FIG.
 図12は、図2が示す遮光板10の断面構造における一部を拡大して示している。
 図12が示すように、表面10Fと直交する平面に沿う断面において、中央開口HCの縁と裏面開口H1Rの縁とを通る直線、すなわち線分が、第1直線L31である。第1直線L31と裏面10Rとが形成する角度が第1角度θ31である。第1角度θ31は、90°よりも大きい。なお、表面10Fと直交する平面に沿う断面は、表面開口H2Fの中心を通る。また、表面10Fと直交する平面に沿う断面において、第1直線L31は、中央開口HCと裏面開口H1Rとを結ぶ弧の弦である。
FIG. 12 shows an enlarged part of the cross-sectional structure of the light-shielding plate 10 shown in FIG.
As shown in FIG. 12, in a cross section along a plane orthogonal to the front surface 10F, a straight line passing through the edge of the central opening HC and the edge of the back surface opening H1R, that is, a line segment is the first straight line L31. The angle formed by the first straight line L31 and the back surface 10R is the first angle θ31. The first angle θ31 is larger than 90 °. The cross section along the plane orthogonal to the surface 10F passes through the center of the surface opening H2F. Further, in a cross section along a plane orthogonal to the front surface 10F, the first straight line L31 is an arc string connecting the central opening HC and the back opening H1R.
 表面10Fと直交する平面に沿う断面において、中央開口HCの縁を通り、かつ、裏面10Rに平行な直線が、基準直線LRである。また、中央開口HCの縁と表面開口H2Fの縁とを最短距離で結ぶ直線が、第2直線L32である。基準直線LRと第2直線L32とが形成する角度が、20°以上40°以下であってよい。 In the cross section along the plane orthogonal to the front surface 10F, the straight line passing through the edge of the central opening HC and parallel to the back surface 10R is the reference straight line LR. The straight line connecting the edge of the central opening HC and the edge of the surface opening H2F at the shortest distance is the second straight line L32. The angle formed by the reference straight line LR and the second straight line L32 may be 20 ° or more and 40 ° or less.
 遮光板10が、スマートフォン、タブレット型パーソナルコンピューター、および、ノート型パーソナルコンピューターの前面に設置されるカメラユニットに搭載される場合には、カメラユニットが、被写体を近距離で撮影することが多い。そのため、画角が大きくなることに対応して、基準直線LRと第2直線L32とが形成する角度は、20°以上30°以下の範囲に含まれるいずれかの角度であってよい。また、遮光板10が車載カメラに搭載される場合には、カメラユニットが、被写体を中距離から遠距離で撮影することが多い。そのため、画角が小さくなることに対応して、基準直線LRと第2直線L32とが形成する角度は、30°以上40°以下の範囲に含まれることが好ましい。 When the shading plate 10 is mounted on a smartphone, a tablet personal computer, or a camera unit installed in front of a notebook personal computer, the camera unit often shoots a subject at a short distance. Therefore, the angle formed by the reference straight line LR and the second straight line L32 may be any angle included in the range of 20 ° or more and 30 ° or less in response to the increase in the angle of view. Further, when the shading plate 10 is mounted on an in-vehicle camera, the camera unit often shoots a subject from a medium distance to a long distance. Therefore, it is preferable that the angle formed by the reference straight line LR and the second straight line L32 is included in the range of 30 ° or more and 40 ° or less in response to the decrease in the angle of view.
 また、遮光板10が、スマートフォンの背面に設置されるカメラユニットに搭載される場合には、カメラユニットが、被写体を近距離から遠距離で撮影することが多い。そのため、画角が大きくなる場合に対応する上では、基準直線LRと第2直線L32とが形成する角度は、20°以上30°以下であってよく、画角が小さくなる場合に対応する上では、30°以上40°以下であってよい。 Further, when the shading plate 10 is mounted on a camera unit installed on the back of a smartphone, the camera unit often shoots a subject from a short distance to a long distance. Therefore, the angle formed by the reference straight line LR and the second straight line L32 may be 20 ° or more and 30 ° or less in order to cope with the case where the angle of view becomes large, and it corresponds to the case where the angle of view becomes small. Then, it may be 30 ° or more and 40 ° or less.
 遮光板10に対して表面10Fに直交する方向から入射した光は、表面10Fに形成された表面開口H2Fから孔10Hに入る。そして、孔10Hを通った光は裏面10Rに形成された裏面開口H1Rから出ることによって、レンズLNに到達する。一方で、遮光板10において、第2孔部分10H2が表面10Fから裏面10Rに向けて先細る形状を有するため、表面10Fの斜め上方から孔10Hに入射した光は、第1孔部分10H1を区画する側面において遮光板10の表面10Fに向けて反射されやすい。 Light incident on the light-shielding plate 10 from a direction orthogonal to the surface 10F enters the hole 10H through the surface opening H2F formed on the surface 10F. Then, the light that has passed through the hole 10H reaches the lens LN by exiting from the back surface opening H1R formed on the back surface 10R. On the other hand, in the light-shielding plate 10, since the second hole portion 10H2 has a shape that tapers from the front surface 10F toward the back surface 10R, the light incident on the hole 10H from diagonally above the front surface 10F partitions the first hole portion 10H1. It is easy to be reflected toward the surface 10F of the light-shielding plate 10 on the side surface.
 また、第1直線L31と、裏面10Rとが形成する角度が90°である場合に比べて、表面10Fに対して斜め上方から遮光板10に入射した光のなかで、裏面開口H1Rの近傍において孔10Hを区画する側面によって反射される光の光量を低下させることができる。これにより、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。結果として、遮光板10に対向するレンズLNに意図しない光が入射することが抑えられる。 Further, as compared with the case where the angle formed by the first straight line L31 and the back surface 10R is 90 °, in the light incident on the light shielding plate 10 from diagonally above the front surface 10F, in the vicinity of the back surface opening H1R. The amount of light reflected by the side surface that partitions the hole 10H can be reduced. As a result, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced. As a result, it is possible to prevent unintended light from entering the lens LN facing the light-shielding plate 10.
 また、表面10Fの斜め上方から第2孔部分10H2に入射した光は、弧状を有した側面において反射される。そのため、反射光のなかで最も高い輝度を有した正反射光は、弧状を有した側面から遮光板10の表面10Fに向かう方向に沿って反射される。それゆえに、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量がより抑えられる。 Further, the light incident on the second hole portion 10H2 from diagonally above the surface 10F is reflected on the side surface having an arc shape. Therefore, the specularly reflected light having the highest brightness among the reflected light is reflected along the direction from the arc-shaped side surface toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H is further suppressed.
 遮光板10では、第1孔部分10H1を区画する側面が、曲率中心が遮光板10の外に位置するような弧状を有する。そのため、第1孔部分10H1を区画する側面が直線状を有する場合に比べて、表面10Fの斜め上方から孔に入射した光のなかで、裏面開口H1Rの近傍において孔10Hを区画する側面によって反射される光の光量を低下させることができる。これにより、孔を透過するように孔10Hを区画する側面で反射される光の光量をより低下させることができる。 In the light-shielding plate 10, the side surface that partitions the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10. Therefore, as compared with the case where the side surface for partitioning the first hole portion 10H1 has a linear shape, the light incident on the hole from diagonally above the front surface 10F is reflected by the side surface for partitioning the hole 10H in the vicinity of the back surface opening H1R. The amount of light produced can be reduced. As a result, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole can be further reduced.
 また、第2直線L32と基準直線LRとが形成する角度が40°よりも大きい場合に比べて、表面10Fの斜め上方であって、かつ、表面10Fと直交する方向からのずれ量が小さい方向から孔10Hを区画する側面に光が入射した場合に、当該側面に入射した光が、遮光板10の表面10Fに向けて反射されやすくなる。そのため、孔を透過するように孔10Hを区画する側面で反射される光の光量がより抑えられる。 Further, as compared with the case where the angle formed by the second straight line L32 and the reference straight line LR is larger than 40 °, the direction is diagonally above the surface 10F and the amount of deviation from the direction orthogonal to the surface 10F is small. When light is incident on the side surface that partitions the hole 10H, the light incident on the side surface is likely to be reflected toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole is further suppressed.
 [実施例]
 図13を参照して実施例および比較例を説明する。
 [実施例3‐1]
 25μmの厚さを有したステンレス鋼箔を準備した。そして、ステンレス鋼箔の裏面からステンレス鋼箔をエッチングすることによって第1孔部分を形成した後に、ステンレス鋼箔の表面からステンレス鋼箔をエッチングすることによって第2孔部分を形成した。これにより、第1孔部分と第2孔部分とから形成される孔を有した遮光板を得た。なお、第1孔部分の第1直径は490μmであり、第2孔部分の第2直径は571μmであった。
[Example]
Examples and comparative examples will be described with reference to FIG.
[Example 3-1]
A stainless steel foil having a thickness of 25 μm was prepared. Then, after the first hole portion was formed by etching the stainless steel foil from the back surface of the stainless steel foil, the second hole portion was formed by etching the stainless steel foil from the front surface of the stainless steel foil. As a result, a light-shielding plate having a hole formed from the first hole portion and the second hole portion was obtained. The first diameter of the first hole portion was 490 μm, and the second diameter of the second hole portion was 571 μm.
 [比較例3‐1]
 実施例3‐1において、ステンレス鋼箔を金型で打ち抜くことによって、ステンレス鋼箔を貫通する円形孔を形成した以外は、実施例3‐1と同様の方法によって、比較例3‐1の遮光板を得た。なお、比較例3‐1の遮光板において、表面開口の直径と裏面開口の直径とは同一であり、かつ、実施例3‐1の第2直径と同一であった。
[Comparative Example 3-1]
In Example 3-1 the light shielding of Comparative Example 3-1 by the same method as in Example 3-1 except that the stainless steel foil was punched out with a die to form a circular hole penetrating the stainless steel foil. I got a board. In the light-shielding plate of Comparative Example 3-1 the diameter of the front surface opening and the diameter of the back surface opening were the same, and were the same as the second diameter of Example 3-1.
 [比較例3‐2]
 実施例3‐1において、第1孔部分を形成せずに第2孔部分を形成した後に、第2孔部分の底部と裏面との間をレーザー光線の照射によって打ち抜いた以外は、実施例3‐1と同様の方法によって、比較例3‐2の遮光板を得た。なお、比較例3‐2の遮光板において、表面開口の直径は、実施例3‐1の第2直径と同一であり、裏面開口の直径は、実施例3‐1の第1直径と同一であった。
[Comparative Example 3-2]
In Example 3-1 except that after the second hole portion was formed without forming the first hole portion, the space between the bottom portion and the back surface of the second hole portion was punched by irradiation with a laser beam. A light-shielding plate of Comparative Example 3-2 was obtained by the same method as in 1. In the light-shielding plate of Comparative Example 3-2, the diameter of the front surface opening is the same as the second diameter of Example 3-1 and the diameter of the back surface opening is the same as the first diameter of Example 3-1. there were.
 [評価結果]
 実施例3‐1、比較例3‐1、および、比較例3‐2の遮光板の各々を、表面に直交する平面に沿って切断し、測定対象を作成した。実施例3‐1の測定対象を走査型電子顕微鏡で撮影した結果は、図13に示す通りであった。
[Evaluation results]
Each of the light-shielding plates of Example 3-1 and Comparative Example 3-1 and Comparative Example 3-2 was cut along a plane orthogonal to the surface to prepare a measurement target. The results of photographing the measurement target of Example 3-1 with a scanning electron microscope were as shown in FIG.
 図13が示すように、実施例3‐1の測定対象において、第1直線L31と裏面10Rとが形成する第1角度θ31が、125°であること、すなわち90°よりも大きいことが認められた。一方で、比較例3‐1の測定対象では、孔を区画する側面の全体において、側面と裏面とが形成する角度が90°であることが認められた。また、比較例3‐2の測定対象では、レーザー光線の照射によって形成された側面と裏面とが形成する角度が90°であることが認められた。 As shown in FIG. 13, in the measurement target of Example 3-1 it was found that the first angle θ31 formed by the first straight line L31 and the back surface 10R was 125 °, that is, larger than 90 °. It was. On the other hand, in the measurement target of Comparative Example 3-1 it was found that the angle formed by the side surface and the back surface was 90 ° on the entire side surface for partitioning the hole. Further, in the measurement target of Comparative Example 3-2, it was confirmed that the angle formed by the side surface and the back surface formed by the irradiation of the laser beam was 90 °.
 なお、各遮光板から測定対象を形成する前に、各遮光板を搭載したカメラユニットによって、同一の環境下において同一の物体を撮影した。実施例3‐1の遮光板を有したカメラユニットを用いて撮影した画像には、ゴーストやフレアが認められなかった。これに対して、比較例3‐1の遮光板を有したカメラユニットによって撮影した画像、および、比較例3‐2の遮光板を有したカメラユニットによって撮影した画像には、ゴーストおよびフレアの少なくとも一方が生じることが認められた。 Before forming the measurement target from each shading plate, the same object was photographed in the same environment by the camera unit equipped with each shading plate. No ghost or flare was observed in the image taken by using the camera unit having the light-shielding plate of Example 3-1. On the other hand, the images taken by the camera unit having the light-shielding plate of Comparative Example 3-1 and the images taken by the camera unit having the light-shielding plate of Comparative Example 3-2 have at least ghosts and flares. It was found that one occurred.
 以上説明したように、遮光板、カメラユニット、および、電子機器の第3実施形態によれば、以下に記載の効果を得ることができる。
 (3‐1)裏面開口H1Rの近傍において孔10Hを区画する側面によって反射される光の光量を低下させることができる。これにより、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量を低下させることができる。
As described above, according to the third embodiment of the shading plate, the camera unit, and the electronic device, the effects described below can be obtained.
(3-1) The amount of light reflected by the side surface that partitions the hole 10H in the vicinity of the back surface opening H1R can be reduced. As a result, the amount of light reflected on the side surface that partitions the hole 10H so as to pass through the hole 10H can be reduced.
 (3‐2)表面10Fの斜め上方から第2孔部分10H2に入射した光は、弧状を有した側面において反射される。そのため、反射光のなかで最も高い輝度を有した正反射光は、弧状を有した側面から遮光板10の表面10Fに向かう方向に沿って反射される。それゆえに、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量がより抑えられる。 (3-2) Light incident on the second hole portion 10H2 from diagonally above the surface 10F is reflected on the side surface having an arc shape. Therefore, the specularly reflected light having the highest brightness among the reflected light is reflected along the direction from the arc-shaped side surface toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H is further suppressed.
 (3‐3)遮光板10では、第1孔部分10H1を区画する側面が、曲率中心が遮光板10の外に位置するような弧状を有する。そのため、第1孔部分10H1を区画する側面が直線状を有する場合に比べて、表面10Fの斜め上方から孔に入射した光のなかで、裏面開口H1Rの近傍において孔10Hを区画する側面によって反射される光の光量を低下させることができる。これにより、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量をより低下させることができる。 (3-3) In the light-shielding plate 10, the side surface that partitions the first hole portion 10H1 has an arc shape such that the center of curvature is located outside the light-shielding plate 10. Therefore, as compared with the case where the side surface for partitioning the first hole portion 10H1 has a linear shape, the light incident on the hole from diagonally above the front surface 10F is reflected by the side surface for partitioning the hole 10H in the vicinity of the back surface opening H1R. The amount of light produced can be reduced. As a result, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H can be further reduced.
 (3‐4)第2直線L32と基準直線LRとが形成する角度が40°よりも大きい場合に比べて、表面10Fの斜め上方であって、かつ、表面10Fと直交する方向からのずれ量が小さい方向から孔10Hを区画する側面に光が入射した場合に、当該側面に入射した光が、遮光板10の表面10Fに向けて反射されやすくなる。そのため、孔10Hを透過するように孔10Hを区画する側面で反射される光の光量がより抑えられる。 (3-4) Amount of deviation from the direction diagonally above the surface 10F and orthogonal to the surface 10F, as compared with the case where the angle formed by the second straight line L32 and the reference straight line LR is larger than 40 °. When light is incident on the side surface that partitions the hole 10H from a small direction, the light incident on the side surface is likely to be reflected toward the surface 10F of the light-shielding plate 10. Therefore, the amount of light reflected by the side surface that partitions the hole 10H so as to pass through the hole 10H is further suppressed.
 なお、上述した第3実施形態を以下のように変更して実施することができる。
 [第2角度]
 ・第2直線L32と基準直線LRとが形成する第2角度θ32は、40°よりも大きくてもよい。この場合であっても、第1孔部分10H1が裏面10Rから表面10Fに向けて先細りする形状を有し、第2孔部分10H2が表面10Fから裏面10Rに向けて先細りする形状を有し、かつ、第1角度θ31が90°よりも大きければ、上述した(3‐1)に準じた効果を得ることはできる。
The third embodiment described above can be modified and implemented as follows.
[Second angle]
The second angle θ32 formed by the second straight line L32 and the reference straight line LR may be larger than 40 °. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the first angle θ31 is larger than 90 °, the effect according to (3-1) described above can be obtained.
 [第1孔部分]
 ・第1孔部分10H1を区画する側面は、表面10Fに直交する平面に沿う断面において、直線状を有してもよい。この場合であっても、第1孔部分10H1が裏面10Rから表面10Fに向けて先細りする形状を有し、第2孔部分10H2が表面10Fから裏面10Rに向けて先細りする形状を有し、かつ、第1角度θ31が90°よりも大きければ、上述した(3‐1)に準じた効果を得ることはできる。
[1st hole part]
The side surface that partitions the first hole portion 10H1 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the first angle θ31 is larger than 90 °, the effect according to (3-1) described above can be obtained.
 [第2孔部分]
 ・第2孔部分10H2を区画する側面は、表面10Fに直交する平面に沿う断面において、直線状を有してもよい。この場合であっても、第1孔部分10H1が裏面10Rから表面10Fに向けて先細りする形状を有し、第2孔部分10H2が表面10Fから裏面10Rに向けて先細りする形状を有し、かつ、第1角度θ31が90°よりも大きければ、上述した(3‐1)に準じた効果を得ることはできる。
[Second hole part]
The side surface that partitions the second hole portion 10H2 may have a linear shape in a cross section along a plane orthogonal to the surface 10F. Even in this case, the first hole portion 10H1 has a shape that tapers from the back surface 10R to the front surface 10F, and the second hole portion 10H2 has a shape that tapers from the front surface 10F to the back surface 10R. If the first angle θ31 is larger than 90 °, the effect according to (3-1) described above can be obtained.
 [遮光板]
 ・遮光板10は、上述したように、ステンレス鋼以外の金属から形成されてよい。遮光板10は、第1実施形態の変更例において列挙されたいずれかの金属によって形成されてもよい。
 ・第3実施形態の遮光板10は、第1実施形態の遮光板10が有する構造、および、第2実施形態の遮光板10が有する構造の少なくとも一方と組み合わせて実施することが可能である。
[Shading plate]
-As described above, the light-shielding plate 10 may be formed of a metal other than stainless steel. The shading plate 10 may be formed of any of the metals listed in the modified examples of the first embodiment.
The light-shielding plate 10 of the third embodiment can be implemented in combination with at least one of the structure of the light-shielding plate 10 of the first embodiment and the structure of the light-shielding plate 10 of the second embodiment.

Claims (11)

  1.  金属製の遮光板であって、
     光の入射側に位置する表面と、
     前記表面とは反対側の面である裏面と、
     前記表面と前記裏面との間を貫通する孔と、を備え、
     前記孔は、第1孔部分と、中央開口において前記第1孔部分に接続する第2孔部分とを備え、前記第1孔部分は、前記裏面における裏面開口から前記中央開口に延びており、前記裏面から前記表面に向けて先細る形状を有し、前記第2孔部分は、前記表面における表面開口から前記中央開口に延びており、前記表面から前記裏面に向けて先細る形状を有し、前記表面開口の大きさは前記裏面開口の大きさよりも大きく、
     被写界深度が0.4μmである撮像条件において、前記中央開口の縁にピントを合わせた状態で前記中央開口の径方向に沿って前記中央開口の縁を撮像したときに、ピントが合う前記遮光板の厚さ方向における前記遮光板の最大幅が、7.0μm以下である
     遮光板。
    It ’s a metal shading plate,
    The surface located on the incident side of light and
    The back surface, which is the surface opposite to the front surface,
    With a hole penetrating between the front surface and the back surface,
    The hole includes a first hole portion and a second hole portion connected to the first hole portion at the central opening, and the first hole portion extends from the back surface opening on the back surface to the central opening. The second hole portion has a shape that tapers from the back surface toward the front surface, extends from the surface opening on the front surface to the central opening, and has a shape that tapers from the front surface toward the back surface. , The size of the front surface opening is larger than the size of the back surface opening,
    Under imaging conditions where the depth of field is 0.4 μm, when the edge of the central aperture is imaged along the radial direction of the central aperture with the edge of the central aperture in focus, the focus is achieved. A light-shielding plate having a maximum width of 7.0 μm or less in the thickness direction of the light-shielding plate.
  2.  前記遮光板の前記最大幅が、3.0μm以下である
     請求項1に記載の遮光板。
    The light-shielding plate according to claim 1, wherein the maximum width of the light-shielding plate is 3.0 μm or less.
  3.  前記遮光板の前記最大幅が、1.0μm以上である
     請求項1または2に記載の遮光板。
    The light-shielding plate according to claim 1 or 2, wherein the maximum width of the light-shielding plate is 1.0 μm or more.
  4.  前記遮光板の厚さ方向において、前記裏面と前記中央開口の縁との間の距離が、0μmよりも大きく3μm以下である
     請求項1から3のいずれか一項に記載の遮光板。
    The light-shielding plate according to any one of claims 1 to 3, wherein the distance between the back surface and the edge of the central opening is greater than 0 μm and 3 μm or less in the thickness direction of the light-shielding plate.
  5.  前記遮光板の厚さ方向において、前記裏面と前記中央開口の縁との間の距離が、前記遮光板の厚さにおける30%以下である
     請求項1から3のいずれか一項に記載の遮光板。
    The shading according to any one of claims 1 to 3, wherein the distance between the back surface and the edge of the central opening is 30% or less of the thickness of the shading plate in the thickness direction of the shading plate. Board.
  6.  金属製の遮光板であって、
     光の入射側に位置する表面と、
     前記表面とは反対側の面である裏面と、
     前記表面と前記裏面との間を貫通する孔と、を備え、
     前記孔は、第1孔部分と、中央開口において前記第1孔部分に接続する第2孔部分とを備え、前記第1孔部分は、前記裏面における裏面開口から前記中央開口に延びており、前記裏面から前記表面に向けて先細る形状を有し、前記第2孔部分は、前記表面における表面開口から前記中央開口に延びており、前記表面から前記裏面に向けて先細る形状を有し、前記表面開口の大きさは前記裏面開口の大きさよりも大きく、
     被写界深度が0.4μmである撮像条件において、前記中央開口の縁にピントを合わせた状態で前記中央開口の径方向に沿って前記中央開口の縁を撮像したときに、ピントが合う前記遮光板の厚さ方向における前記遮光板の最大幅が、前記遮光板の厚さにおける30%以下である
     遮光板。
    It ’s a metal shading plate,
    The surface located on the incident side of light and
    The back surface, which is the surface opposite to the front surface,
    With a hole penetrating between the front surface and the back surface,
    The hole includes a first hole portion and a second hole portion connected to the first hole portion at the central opening, and the first hole portion extends from the back surface opening on the back surface to the central opening. The second hole portion has a shape that tapers from the back surface toward the front surface, extends from the surface opening on the front surface to the central opening, and has a shape that tapers from the front surface toward the back surface. , The size of the front surface opening is larger than the size of the back surface opening,
    Under imaging conditions where the depth of field is 0.4 μm, when the edge of the central aperture is imaged along the radial direction of the central aperture with the edge of the central aperture in focus, the focus is achieved. A light-shielding plate in which the maximum width of the light-shielding plate in the thickness direction of the light-shielding plate is 30% or less of the thickness of the light-shielding plate.
  7.  前記遮光板は、10μm以上100μm以下の厚さを有する
     請求項1から6のいずれか一項に記載の遮光板。
    The light-shielding plate according to any one of claims 1 to 6, wherein the light-shielding plate has a thickness of 10 μm or more and 100 μm or less.
  8.  前記遮光板は、鉄‐ニッケル系合金製、または、鉄‐ニッケル‐コバルト系合金製である
     請求項1から7のいずれか一項に記載の遮光板。
    The light-shielding plate according to any one of claims 1 to 7, wherein the light-shielding plate is made of an iron-nickel alloy or an iron-nickel-cobalt alloy.
  9.  前記遮光板は、インバー製またはスーパーインバー製である
     請求項8に記載の遮光板。
    The light-shielding plate according to claim 8, wherein the light-shielding plate is made of Invar or Super Invar.
  10.  請求項1から9のいずれか一項に記載の遮光板を備える
     カメラユニット。
    A camera unit including the light-shielding plate according to any one of claims 1 to 9.
  11.  請求項10に記載のカメラユニットを備える
     電子機器。
    An electronic device including the camera unit according to claim 10.
PCT/JP2020/027893 2019-07-19 2020-07-17 Light-shielding plate, camera unit, and electronic device WO2021015131A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080050707.7A CN114127629B (en) 2019-07-19 2020-07-17 Light shielding plate, camera unit, and electronic apparatus
KR1020227001189A KR102617511B1 (en) 2019-07-19 2020-07-17 Light shields, camera units, and electronic devices
US17/574,859 US20220137270A1 (en) 2019-07-19 2022-01-13 Light shielding plate, camera unit, and electronic device

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2019134036 2019-07-19
JP2019134038 2019-07-19
JP2019-134036 2019-07-19
JP2019134037 2019-07-19
JP2019-134038 2019-07-19
JP2019-134037 2019-07-19
JP2019167432A JP7095667B2 (en) 2019-07-19 2019-09-13 Shading plate, camera unit, and electronic devices
JP2019-167433 2019-09-13
JP2019-167431 2019-09-13
JP2019167431A JP7172926B2 (en) 2019-07-19 2019-09-13 Shades, camera units, and electronic equipment
JP2019-167432 2019-09-13
JP2019167433A JP7140079B2 (en) 2019-07-19 2019-09-13 Light shading plate, camera unit, electronic device, and method for manufacturing light shading plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/574,859 Continuation US20220137270A1 (en) 2019-07-19 2022-01-13 Light shielding plate, camera unit, and electronic device

Publications (1)

Publication Number Publication Date
WO2021015131A1 true WO2021015131A1 (en) 2021-01-28

Family

ID=74192608

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2020/027894 WO2021015132A1 (en) 2019-07-19 2020-07-17 Light-blocking plate, camera unit, electronic device, and method for manufacturing light-blocking plate
PCT/JP2020/027892 WO2021015130A1 (en) 2019-07-19 2020-07-17 Light blocking plate, camera unit, and electronic apparatus
PCT/JP2020/027893 WO2021015131A1 (en) 2019-07-19 2020-07-17 Light-shielding plate, camera unit, and electronic device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/027894 WO2021015132A1 (en) 2019-07-19 2020-07-17 Light-blocking plate, camera unit, electronic device, and method for manufacturing light-blocking plate
PCT/JP2020/027892 WO2021015130A1 (en) 2019-07-19 2020-07-17 Light blocking plate, camera unit, and electronic apparatus

Country Status (1)

Country Link
WO (3) WO2021015132A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229095A (en) * 2001-02-06 2002-08-14 Nidec Copal Corp Diaphragm blade
JP2006072151A (en) * 2004-09-03 2006-03-16 Fujinon Corp Diaphragm plate
JP2008257134A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Mining Co Ltd Heat resistant light shielding film and method of manufacturing same, and diaphragm or light quantity adjusting device using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229095A (en) * 2001-02-06 2002-08-14 Nidec Copal Corp Diaphragm blade
JP2006072151A (en) * 2004-09-03 2006-03-16 Fujinon Corp Diaphragm plate
JP2008257134A (en) * 2007-04-09 2008-10-23 Sumitomo Metal Mining Co Ltd Heat resistant light shielding film and method of manufacturing same, and diaphragm or light quantity adjusting device using same

Also Published As

Publication number Publication date
WO2021015132A1 (en) 2021-01-28
WO2021015130A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
US11936972B2 (en) Light shielding plate, camera unit, and electronic apparatus
JP7364011B2 (en) Light shielding plates, camera units, and electronic equipment
JP2023160895A (en) Light shielding plate, camera unit, electronic apparatus, and method for manufacturing light shielding plate
WO2021015131A1 (en) Light-shielding plate, camera unit, and electronic device
JP7424415B2 (en) Light shielding plates, camera units, and electronic equipment
JP7140079B2 (en) Light shading plate, camera unit, electronic device, and method for manufacturing light shading plate
JP2022089934A (en) Light shielding member, lens unit, camera module, and electronic device
EP3935427B1 (en) Lens system and imaging apparatus
JP7383224B2 (en) Metal light shielding plates, camera modules and electronic equipment
JP2021173897A (en) Light-shielding member and manufacturing method thereof, lens unit and camera module having light-shielding member, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001189

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845072

Country of ref document: EP

Kind code of ref document: A1