WO2021015124A1 - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
WO2021015124A1
WO2021015124A1 PCT/JP2020/027842 JP2020027842W WO2021015124A1 WO 2021015124 A1 WO2021015124 A1 WO 2021015124A1 JP 2020027842 W JP2020027842 W JP 2020027842W WO 2021015124 A1 WO2021015124 A1 WO 2021015124A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
surface side
water absorption
electrolytic solution
electrodes
Prior art date
Application number
PCT/JP2020/027842
Other languages
French (fr)
Japanese (ja)
Inventor
鳥越 一平
啓 中妻
明弘 兼松
公宏 嶋谷
Original Assignee
学校法人兵庫医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人兵庫医科大学 filed Critical 学校法人兵庫医科大学
Publication of WO2021015124A1 publication Critical patent/WO2021015124A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/44Devices worn by the patient for reception of urine, faeces, catamenial or other discharge; Portable urination aids; Colostomy devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Definitions

  • the present invention relates to a measuring device and a measuring method, and more particularly to a measuring device for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorption layer per unit time.
  • Measurement of urinary flow rate is an important test item in diagnosing urinary diseases.
  • Various urine flow rate measuring devices have been developed for patients who can urinate independently.
  • urination data is collected by regularly inspecting diapers and measuring the amount of urination when urination occurs. There is.
  • this method only the approximate time of urination and the total amount of urination can be known, and urine flow rate data cannot be obtained.
  • electrodes are arranged on the outer surface of an absorbent article that absorbs urination, which is opposite to the side that touches the skin of the user, and the amount of urination such as a diaper can be measured. Has been described.
  • the electrode impedance at each moment must correspond to the total amount of urine infiltrating the entire water absorption layer at that moment.
  • the relationship between electrode impedance and total urine volume is usually non-linear and dynamic (time history dependent). The process by which urine diffuses into the water-absorbing layer and the water-absorbing layer absorbs and retains urine is complicated.
  • the change in electrode impedance since the electrodes are arranged on the outer surface, the change in electrode impedance has a large time delay with respect to the change in total urine volume.
  • an object of the present invention is to propose a measuring device or the like suitable for accurately estimating the time history (urine flow rate, etc.) of the flow rate per unit time of the electrolytic solution flowing into the water absorption layer.
  • the first aspect of the present invention is a measuring device for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorption layer per unit time, and the water absorption layer includes a front surface side layer and a back surface side layer. , The front surface side layer and the back surface side layer are provided, the water absorption layer is provided with a pair or more electrodes, and the electrodes are a part or all of the intermediate layer, the surface side layer and the said. Higher sensitivity than the back side layer.
  • the second aspect of the present invention is the measuring device of the first aspect, in which the intermediate layer includes the center in the thickness direction between the front surface and the back surface of the water absorption layer, and the electrolytic solution is the water absorption. It flows in from the front surface of the layer and does not flow in from the back surface.
  • the third aspect of the present invention is the measuring device of the first or second aspect, and the maximum sensitivity of the electrode is the center and / or the thickness direction between the front surface side and the back surface side of the intermediate layer. It exists near the center.
  • the fourth aspect of the present invention is the measuring device according to any one of the first to third aspects, wherein the sensitivity of the electrode is uniformly distributed over the entire effective water absorption region of the water absorption layer.
  • the relationship between the impedance of the electrode and the total amount of the electrolytic solution can be linearly approximated.
  • a fifth aspect of the present invention is a measuring method for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorbing layer per unit time
  • the water absorbing layer includes a front surface side layer and a back surface side layer.
  • An intermediate layer between the front surface side layer and the back surface side layer is provided, the water absorption layer includes a pair or more of electrodes, and the electrodes are a part or all of the intermediate layer, and the surface side layer and the above. It is more sensitive than the back surface side layer and includes at least a step in which the impedance between the electrodes is changed by the electrolytic solution in the intermediate layer.
  • the sixth aspect of the present invention is the measuring method of the fifth aspect, in which the impedance of the electrode is changed by at least the electrolytic solution in the diffused state flowing in the intermediate layer and is maintained in the intermediate layer. It also changes depending on the electrolytic solution in the water-absorbing state, and the relationship with the total amount of the electrolytic solution flowing into the water-absorbing layer can be linearly approximated.
  • the sensitivity of the electrode installed in the water absorption layer is higher in the intermediate layer than in the front surface side layer and the back surface side layer.
  • the maximum sensitivity is set in the center and / or in the vicinity of the center in the thickness direction as in the third viewpoint.
  • the electrolytic solution flowing into the water absorption layer can be detected accurately.
  • the impedance is the total amount of the electrolytic solution. It can be measured with an accuracy that allows the relationship between them to be linearly approximated.
  • the conventional technique was mainly aimed at detecting "presence or absence of urination” to know when to change diapers, or to estimate “total amount of urination” to determine the necessity of changing diapers.
  • the present invention can measure the time history (urine flow rate in the case of urine) of the flow rate of the electrolytic solution per unit time with high accuracy.
  • Patent Document 1 refers to the measurement of urine flow rate.
  • the electrode is brought into contact with the outside of the water absorption layer (the side far from the skin), and the distribution of the electrolytic solution detection sensitivity in the water absorption layer thickness direction takes the maximum value at the end face of the water absorption layer.
  • the electrodes are composed of a group of conductors having a size of 25 mm ⁇ 25 mm, and the electrolyte detection sensitivity cannot be regarded as uniform. Therefore, it is expected that the measurement result of the urine flow rate is not sufficiently accurate.
  • FIG. 1 is a diagram showing an example of a water absorption layer created by the inventors.
  • FIG. 2 is a diagram showing an example of a water absorption layer created by the inventors. It is a graph which shows the experiment by the inventors. Another example of the configuration of the measuring device according to the embodiment of the present invention is shown.
  • FIG. 1 shows an example of the configuration of the measuring device according to the embodiment of the present invention.
  • the measuring device 1 is for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorption layer per unit time.
  • the measuring device 1 includes a water absorbing layer 3 (an example of the "water absorbing layer” according to the present invention) and a measuring unit 5.
  • the water absorption layer 3 absorbs and retains the electrolytic solution.
  • the upper surface of the water absorption layer 3 is the front surface, and the lower surface is the back surface.
  • the “thickness" is between the front and back surfaces.
  • the thickness direction is the vertical direction of FIG.
  • the electrolyte flows in from the surface.
  • the water absorbing layer 3 is a diaper and the electrolytic solution is urine. It is assumed that the diaper is used with the front surface in contact with the skin and the back surface away from the skin.
  • the water absorption layer 3 is divided into three layers in the thickness direction, the front surface side is the front surface side layer 7 (an example of the "front surface side layer” of the present claim), and the back surface side is the back surface side layer 11 (the "front surface side layer” of the present claim).
  • An example of the "back surface side layer” and the layer between the front surface side layer 7 and the back surface side layer 11 is the intermediate layer 9 (an example of the "intermediate layer” in the claims of the present application).
  • the water absorption layer 3 is divided into four equal parts in the thickness direction, the front surface side is the front surface side layer 7, the back surface side is the back surface side layer 11, and the two layers between the front surface side layer 7 and the back surface side layer 11 are combined.
  • the intermediate layer 9 may be used (see FIGS. 3 (b) and 3 (c)).
  • the sensitivity of the electrode 13 is higher than that of the front surface side layer 7 and the back surface side layer 11.
  • the sensitivity of the electrode 13 may be high as a whole in the thickness direction of the intermediate layer 9 (see FIGS. 2 and 3 and the like), or may be high in some parts.
  • the maximum sensitivity of the electrodes 13 1 and 13 2 may be present in the center in the thickness direction of the intermediate layer 9 may be present in the vicinity of the center, and distributed only in the vicinity of the free of central It may be distributed in the vicinity including the center.
  • the number of electrodes may be one or more. Further, the maximum sensitivity of the electrode 13 may exist in the center and / or in the vicinity of the water absorption layer 3 in the thickness direction.
  • the surface side layer 7 is close to the skin so that the electrode 13 of the intermediate layer 9 does not come into direct contact with the skin, and further, it is expected to prevent reflux while collecting urine as much as possible. ..
  • the intermediate layer 9 is expected to play a role of retaining most of the absorbed urine.
  • the back surface side layer 11 is expected to prevent the urine of the intermediate layer 9 from seeping out.
  • the front surface side layer 7, the intermediate layer 9, and the back surface side layer 11 may be integrated or separated.
  • the electrode 13 is electrically connected to the measuring unit 5.
  • the measurement section 5 measures the change in impedance (electrode impedance) between the electrodes.
  • the measuring unit 5 measures the electrode impedance that changes as urine, which is an electrolytic solution, infiltrates the water absorbing layer, estimates the time change of the amount of urine contained in the water absorbing layer based on the value, and further estimates the change with time. Calculate the time derivative to estimate the urine flow rate.
  • resistance conductance
  • capacitance susceptance may be used as the electrode impedance.
  • Diapers are for holding urine.
  • the front surface side layer 7, the intermediate layer 9, and the back surface side layer 11 hold urine that has flowed in from the surface of the water absorption layer 3.
  • the electrode impedance at each moment needs to correspond to the total amount of urine infiltrating the entire water absorption layer at that moment.
  • the urine that has flowed into the front surface side layer 7 can be measured with less time delay, and the urine that is retained before seeping into the back surface side layer 11 can also be measured.
  • urine in a diffused state and a water-absorbed state can be measured in a well-balanced manner. Therefore, it is possible to measure with high accuracy.
  • FIG. 2A shows the configuration of the intermediate layer 21 of the water absorption layer.
  • FIG. 2B is a reference diagram showing the positional relationship between the two copper wires when FIG. 2A is viewed from the side surface.
  • FIG. 2C shows the water absorption layer 23.
  • FIG. 2D is a reference diagram showing the positional relationship between the two copper wires and the like when FIG. 2C is viewed from the side surface.
  • FIG. 3A is a photograph of an actual example of the intermediate layer created by the inventors.
  • the water absorbing material is a cloth diaper (cotton cloth).
  • the intermediate layer is a stack of four, and the inner layer of the water absorption layer is 150 mm ⁇ 150 mm.
  • two copper wires are sewn into the intermediate layer as electrodes.
  • the weaving pitch of the electrodes is 5 mm apart.
  • the sensitivity is set to be uniform on a macro scale as a whole.
  • the macroscopically uniform sensitivity means that when a predetermined amount of urine is similarly inflowed into different places in the effective water absorption region, the sensitivity is arranged so as to make the same change.
  • the electrode is composed of a group of conductors having a size of 25 mm ⁇ 25 mm, and the electrolytic solution detection sensitivity cannot be regarded as uniform.
  • FIG. 3B is a photograph of another example of the actual intermediate layer created by the inventors.
  • the water absorbing material is a cloth diaper.
  • the intermediate layer is a stack of four, and the inner layer of the water absorption layer is 80 mm ⁇ 80 mm.
  • two copper wires are sewn into the intermediate layer as electrodes.
  • FIG. 3 (c) is a photograph of the actual product including the outer layer with FIG. 3 (b) as the intermediate layer.
  • the outer layer of the absorption layer is sandwiched by arranging two layers of cloth diapers as a front surface side layer and a back surface side layer, respectively, above and below the intermediate layer of FIG. 3 (b).
  • the water absorption layer is substantially a stack of eight cloth diapers, the upper two layers being the front surface side layer, the middle four layers being the water absorption layer 23, and the lower two layers being the back surface side layer.
  • the water absorption layer 23 is made of the same material and constitutes a front surface side layer, an intermediate layer, and a back surface side layer.
  • FIG. 4 is a graph showing experiments by the inventors.
  • FIG. 4A shows the relationship between admittance (line L 11 : solid line) and urine flow rate (ml / s) (line L 12 : broken line).
  • the horizontal axis is time.
  • the urine flow rate can be obtained by numerically differentiating the admittance waveform with respect to time.
  • FIG. 4 (b) shows the experimental results when an outer layer similar to that in FIG. 3 (c) is provided in the intermediate layer of FIG. 3 (a). Simulated urine is dropped at a bell-shaped flux with a syringe pump.
  • FIG. 4B shows the urine flow rate (line L 21 : broken line) obtained from the moving speed of the syringe pump and the value measured by the diaper type sensor of FIG. 2 (line L 22 : solid line).
  • the horizontal axis is time (s), and the vertical axis is the fine coefficient ((1 / ⁇ ) / s). It has been confirmed that the urine flow rate obtained from the moving speed of the syringe pump matches the true value with an uncertainty of about 2%.
  • the diaper type sensor detects the urine flow rate with high accuracy and accuracy.
  • the total amount of urine can be obtained with high accuracy by, for example, measuring the weight of a diaper.
  • the measurement result (L 22 ) by the diaper type sensor can be improved in accuracy to match L 21 by calibrating using the weight of the diaper or the like.
  • FIG. 4C shows the measurement results in the case of a configuration in which the water absorbing material is superposed on the electrodes (see Patent Document 1, Patent Document 2, etc.).
  • the horizontal axis is time (s) and the vertical axis is admittance (1 / ⁇ ).
  • Line L 31 , line L 32, and line L 33 are electrode admittances when simulated urine is dropped at a constant flow rate of 5 ml / s when 5, 10 and 15 bleached sheets are stacked as water absorbing materials, respectively.
  • the waveform is shown. It takes time for the electrolytic solution to reach the electrode surface, and the change in electrode impedance is delayed. As the thickness of the water absorbing material increases, the delay in admittance change increases.
  • FIG. 4D shows the measurement result by the diaper type sensor of FIG. 3C.
  • the horizontal axis is time (s) and the vertical axis is admittance (1 / ⁇ ).
  • Line L 41 (dashed line) shows simulated urine dropped at a constant flow rate of 5 ml / s.
  • Line L 42 (solid line) shows the electrode admittance waveform when simulated urine is dropped.
  • an electrode is installed in the intermediate layer of the water absorption layer, and the electrode is configured so that the maximum sensitivity of the electrode matches near the center of the thickness of the water absorption layer, so that the delay is as small as possible. In fact, in FIG. 4 (d), the delay is significantly reduced as compared with FIG. 4 (c).
  • the effective water absorption region will be described with reference to FIGS. 4 (e) and 4 (f).
  • a macroscopic uniform distribution of electrode sensitivity is a prerequisite for electrode impedance to be proportional to absorbed urine output. If the same amount of urine is absorbed by the water absorption layer but shows different impedance depending on the location of absorption, the impedance and the amount of absorption are not proportional. It is also important that the sensitivity distribution covers the entire effective water absorption region. When urine diffuses to a region having no sensitivity, the urine outside the sensitivity distribution does not contribute to the electrode impedance, so that the impedance and the amount of water absorption are not proportional.
  • FIG. 4 (e) and 4 (f) show the effect of the difference in the total amount of dripping by the diaper type sensor of FIG. 3 (c).
  • the electrode sensitivity distribution (copper wire sewing region) is as small as 80 mm ⁇ 80 mm.
  • FIG. 4 (e) shows the urine flow rate (line L 51 ) when the total amount of dripping is 50 ml, and the value measured by the diaper type sensor (line L 52 ).
  • the horizontal axis is time (s), and the vertical axis is admittance increase value ((1 / ⁇ ) / s). In this case, FIG. 4 (e) shows that the urine flow rate can be accurately measured.
  • FIG. 4 (e) shows that the urine flow rate can be accurately measured.
  • FIG. 4 (f) shows the urine flow rate (line L 61 ) when the total amount of dripping is 100 ml, and the value measured by the diaper type sensor (line L 62 ).
  • the horizontal axis is time (s), and the vertical axis is admittance increase value ((1 / ⁇ ) / s).
  • the admittance decreased even though the total urine volume should not have decreased, the electrolytic solution diffused outside the electrode sensitivity distribution, and there was a part where accurate measurement could not be performed.
  • the size is shown in FIG. 3A, the area of the effective water absorption region is 3.5 times or more, so it is expected that measurement can be performed with high accuracy even if the total amount of dripping is 100 ml.
  • the electrodes in FIG. 3 have solved the problems of conventional electrodes and made it possible to linearly approximate the relationship between impedance and total urine volume to a practically sufficient level. Furthermore, by numerically differentiating the impedance of the electrodes, the urinary fluxion could be estimated with sufficient accuracy for practical use.
  • the water absorption layer inner layer is an example in which conductive cloths are arranged above and below the water absorption material.
  • the outer layer of the water absorption layer water absorption materials are arranged above and below the inner layer of the water absorption layer.
  • FIG. 5B is a reference diagram showing the positional relationship between the outer layer of the absorbent material and the inner layer of the absorbent material (the absorbent and the upper and lower conductive cloths) when FIG. 5 (a) is viewed from the side surface.
  • FIG. 5 (c) and 5 (d) show still another example according to the embodiment of the present invention.
  • the inner layer has a structure in which comb-tooth type electrodes are arranged.
  • Water absorption layer As the outer layer, water absorption materials are arranged above and below the inner layer.
  • FIG. 5D is a reference view showing the positional relationship between the absorbent material and the comb-shaped electrode when FIG. 5C is viewed from the side surface.
  • 1 measuring device 3, 23 water absorption layer, 5 measuring unit, 7 front surface side layer, 9, 21 intermediate layer, 11 back surface side layer, 13 electrodes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Electrochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Nursing (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The present invention proposes a measurement device, etc., that is suited for precisely estimating a time log of a flow amount per unit time of an electrolytic solution flowing into an absorbent layer (urinary flow rate, etc.). A measurement device 1 measures a time log of a flow amount per unit time of an electrolytic solution flowing into an absorbent layer 3. The absorbent layer 3 comprises an obverse-surface-side layer 7, a reverse-surface-side layer 11, and an intermediate layer 9 between the obverse-surface-side layer 7 and the reverse-surface-side layer 11. The absorbent layer 3 comprises electrodes 13. The electrodes 13 have higher sensitivity in part or all of the intermediate layer 9 than in the obverse-surface-side layer 7 and the reverse-surface-side layer 11. Furthermore, the sensitivity of the electrodes 13 can be evenly distributed through the entirety of the effective absorbent area of the absorbent layer 3, and the relationship between the total amount of the electrolytic solution and the impedance of the electrodes 13 can be linearly approximated.

Description

測定装置及び測定方法Measuring device and measuring method
 本願発明は、測定装置及び測定方法に関し、特に、吸水層に流入した電解液の単位時間当たりの流量の時間履歴を測定するための測定装置等に関する。 The present invention relates to a measuring device and a measuring method, and more particularly to a measuring device for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorption layer per unit time.
 泌尿器系の疾患診断において、尿流率(単位時間当たりの排尿流量の時間履歴)の測定が重要な検査項目である。自立的に排尿できる患者に対しては、種々の尿流率測定装置が開発されている。他方、例えば自立的な排尿ができない乳幼児などでは、母親の協力を得て、定期的にオムツを点検して、排尿があった場合に排尿量を測定するなどの方法で排尿データを収集している。しかし、この方法では、排尿があったおよその時刻と排尿総量が分かるだけで、尿流率データは得られない。 Measurement of urinary flow rate (time history of urinary flow rate per unit time) is an important test item in diagnosing urinary diseases. Various urine flow rate measuring devices have been developed for patients who can urinate independently. On the other hand, for example, for infants who cannot urinate independently, with the cooperation of their mother, urination data is collected by regularly inspecting diapers and measuring the amount of urination when urination occurs. There is. However, with this method, only the approximate time of urination and the total amount of urination can be known, and urine flow rate data cannot be obtained.
 例えば特許文献1及び特許文献2には、排尿を吸収する吸収性物品の、使用者の肌に触れる側とは反対の外側表面に電極を配置して、おむつなどの排尿量を測定することが記載されている。 For example, in Patent Document 1 and Patent Document 2, electrodes are arranged on the outer surface of an absorbent article that absorbs urination, which is opposite to the side that touches the skin of the user, and the amount of urination such as a diaper can be measured. Has been described.
特開2013-39158号公報Japanese Unexamined Patent Publication No. 2013-39158 特開2002-224093号公報JP-A-2002-224093
 電極インピーダンスにより尿総量を計測するためには、各瞬間の電極インピーダンスが、その瞬間に吸水層全体に浸みこんでいる尿総量と対応している必要がある。しかしながら、通常、電極インピーダンスと尿総量の関係は、非線形で動的(時間履歴に依存)である。吸水層に尿が拡散し、吸水層が尿を吸収保持する過程は複雑である。特許文献1及び特許文献2に記載された技術では、電極を外側表面に配置するために、電極インピーダンス変化が尿総量変化に対して時間遅れが大きい。さらに、電極インピーダンス変化が飽和したり、尿総量変化は単調増加であるのに電極インピーダンスが減少方向に変化したり、電極インピーダンス変化が尿総量変化に追いつけず波形がなまる、などの現象が生じていた。吸水層内の尿の拡散・吸収過程を数理モデル化して、劣化した電極インピーダンス信号から尿流率を逆推定することは、現実には悪条件問題となり困難である。 In order to measure the total amount of urine by the electrode impedance, the electrode impedance at each moment must correspond to the total amount of urine infiltrating the entire water absorption layer at that moment. However, the relationship between electrode impedance and total urine volume is usually non-linear and dynamic (time history dependent). The process by which urine diffuses into the water-absorbing layer and the water-absorbing layer absorbs and retains urine is complicated. In the techniques described in Patent Document 1 and Patent Document 2, since the electrodes are arranged on the outer surface, the change in electrode impedance has a large time delay with respect to the change in total urine volume. Furthermore, phenomena such as saturation of electrode impedance changes, electrode impedance changes in a decreasing direction even though total urine volume changes are monotonous, and electrode impedance changes that cannot keep up with changes in total urine volume and the waveform becomes dull occur. Was there. Mathematical modeling of the diffusion / absorption process of urine in the water absorption layer and reverse estimation of the urine flow rate from the deteriorated electrode impedance signal is actually a problem of adverse conditions and difficult.
 そこで、本願発明は、吸水層に流入した電解液の単位時間当たりの流量の時間履歴(尿流率など)を精度よく推定することに適した測定装置等を提案することを目的とする。 Therefore, an object of the present invention is to propose a measuring device or the like suitable for accurately estimating the time history (urine flow rate, etc.) of the flow rate per unit time of the electrolytic solution flowing into the water absorption layer.
 本願発明の第1の観点は、吸水層に流入した電解液の単位時間当たりの流量の時間履歴を測定するための測定装置であって、前記吸水層は、表面側層と、裏面側層と、前記表面側層と前記裏面側層の間の中間層を備え、前記吸水層は、一対以上の電極を備え、前記電極は、前記中間層の一部又は全部において、前記表面側層及び前記裏面側層よりも感度が高い。 The first aspect of the present invention is a measuring device for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorption layer per unit time, and the water absorption layer includes a front surface side layer and a back surface side layer. , The front surface side layer and the back surface side layer are provided, the water absorption layer is provided with a pair or more electrodes, and the electrodes are a part or all of the intermediate layer, the surface side layer and the said. Higher sensitivity than the back side layer.
 本願発明の第2の観点は、第1の観点の測定装置であって、前記中間層は、前記吸水層の表面と裏面との間の厚み方向の中央を含み、前記電解液は、前記吸水層の表面から流入して、裏面からは流入しない。 The second aspect of the present invention is the measuring device of the first aspect, in which the intermediate layer includes the center in the thickness direction between the front surface and the back surface of the water absorption layer, and the electrolytic solution is the water absorption. It flows in from the front surface of the layer and does not flow in from the back surface.
 本願発明の第3の観点は、第1又は第2の観点の測定装置であって、前記電極の最大感度は、前記中間層の表面側と裏面側との間の厚み方向の中央及び/又は中央の近傍に存在する。 The third aspect of the present invention is the measuring device of the first or second aspect, and the maximum sensitivity of the electrode is the center and / or the thickness direction between the front surface side and the back surface side of the intermediate layer. It exists near the center.
 本願発明の第4の観点は、第1から第3のいずれかの観点の測定装置であって、前記電極の感度は、前記吸水層の有効吸水領域の全体に、一様に分布し、前記電極のインピーダンスは、前記電解液の総量との間の関係が線形近似できる。 The fourth aspect of the present invention is the measuring device according to any one of the first to third aspects, wherein the sensitivity of the electrode is uniformly distributed over the entire effective water absorption region of the water absorption layer. The relationship between the impedance of the electrode and the total amount of the electrolytic solution can be linearly approximated.
 本願発明の第5の観点は、吸水層に流入した電解液の単位時間当たりの流量の時間履歴を測定するための測定方法であって、前記吸水層は、表面側層と、裏面側層と、前記表面側層と前記裏面側層の間の中間層を備え、前記吸水層は、一対以上の電極を備え、前記電極は、前記中間層の一部又は全部において、前記表面側層と前記裏面側層よりも感度が高く、前記電極の間のインピーダンスが、少なくとも、前記中間層における電解液により変化するステップを含む。 A fifth aspect of the present invention is a measuring method for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorbing layer per unit time, and the water absorbing layer includes a front surface side layer and a back surface side layer. An intermediate layer between the front surface side layer and the back surface side layer is provided, the water absorption layer includes a pair or more of electrodes, and the electrodes are a part or all of the intermediate layer, and the surface side layer and the above. It is more sensitive than the back surface side layer and includes at least a step in which the impedance between the electrodes is changed by the electrolytic solution in the intermediate layer.
 本願発明の第6の観点は、第5の観点の測定方法であって、前記電極のインピーダンスは、少なくとも、前記中間層で流れる拡散状態の電解液により変化するとともに、前記中間層に保持される吸水状態の電解液によっても変化して、前記吸水層に流入した前記電解液の総量との間の関係が線形近似できる。 The sixth aspect of the present invention is the measuring method of the fifth aspect, in which the impedance of the electrode is changed by at least the electrolytic solution in the diffused state flowing in the intermediate layer and is maintained in the intermediate layer. It also changes depending on the electrolytic solution in the water-absorbing state, and the relationship with the total amount of the electrolytic solution flowing into the water-absorbing layer can be linearly approximated.
 本願発明の各観点によれば、吸水層に設置した電極の感度が、中間層において、表面側層及び裏面側層よりも高くする。特に、第3の観点にあるように厚さ方向に中央及び/又は中央の近傍で最大感度にする。これにより、吸水層に流入した電解液に対して、できるだけ時間遅れがないようにする。さらに、吸水層の内部で計測することにより、吸水層に流入した電解液を精度よく検出することができ、例えば第4や第6の観点にあるように、インピーダンスが、電解液の総量との間の関係が線形近似できるような精度で測定することができる。 According to each viewpoint of the present invention, the sensitivity of the electrode installed in the water absorption layer is higher in the intermediate layer than in the front surface side layer and the back surface side layer. In particular, the maximum sensitivity is set in the center and / or in the vicinity of the center in the thickness direction as in the third viewpoint. As a result, there is as little time delay as possible with respect to the electrolytic solution that has flowed into the water absorption layer. Further, by measuring inside the water absorption layer, the electrolytic solution flowing into the water absorption layer can be detected accurately. For example, as in the fourth and sixth viewpoints, the impedance is the total amount of the electrolytic solution. It can be measured with an accuracy that allows the relationship between them to be linearly approximated.
 従来の技術では、主として、オムツの交換時期を知るために「排尿の有無」を検知すること、あるいは、オムツ交換の要否を判定するために「排尿総量」を推定することを目的としていた。それに対し、本願発明は、単位時間当たりの電解液の流量の時間履歴(尿の場合には尿流率)を高い精度で測定できるものである。 The conventional technique was mainly aimed at detecting "presence or absence of urination" to know when to change diapers, or to estimate "total amount of urination" to determine the necessity of changing diapers. On the other hand, the present invention can measure the time history (urine flow rate in the case of urine) of the flow rate of the electrolytic solution per unit time with high accuracy.
 なお、例えば特許文献1は、尿流率の測定に言及している。しかしながら、特許文献1では、電極を吸水層の外側(肌から遠い側)に接触させる構成であり、電解液検出感度の吸水層厚さ方向の分布は、吸水層の端面で最大値を取る。また、電極が25mm×25mmといった大きさの導体群から構成されており、電解液検出感度が一様とはみなせない。そのため、尿流率の測定結果は、十分な精度でないことが予想される。 Note that, for example, Patent Document 1 refers to the measurement of urine flow rate. However, in Patent Document 1, the electrode is brought into contact with the outside of the water absorption layer (the side far from the skin), and the distribution of the electrolytic solution detection sensitivity in the water absorption layer thickness direction takes the maximum value at the end face of the water absorption layer. In addition, the electrodes are composed of a group of conductors having a size of 25 mm × 25 mm, and the electrolyte detection sensitivity cannot be regarded as uniform. Therefore, it is expected that the measurement result of the urine flow rate is not sufficiently accurate.
本願発明の実施の形態に係る測定装置の構成の一例を示す。An example of the configuration of the measuring device according to the embodiment of the present invention is shown. 発明者らが作成した吸水層の一例を示す第1図である。FIG. 1 is a diagram showing an example of a water absorption layer created by the inventors. 発明者らが作成した吸水層の一例を示す第2図である。FIG. 2 is a diagram showing an example of a water absorption layer created by the inventors. 発明者らによる実験を示すグラフである。It is a graph which shows the experiment by the inventors. 本願発明の実施の形態に係る測定装置の構成の他の例を示す。Another example of the configuration of the measuring device according to the embodiment of the present invention is shown.
 以下では、図面を参照して、本願発明の実施例について説明する。なお、本願発明は、この実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described with reference to the drawings. The invention of the present application is not limited to this embodiment.
 図1は、本願発明の実施の形態に係る測定装置の構成の一例を示す。測定装置1は、吸水層に流入した電解液の単位時間当たりの流量の時間履歴を測定するためのものである。測定装置1は、吸水層3(本願請求項の「吸水層」の一例)と、計測部5を備える。吸水層3は、電解液を吸水して保持する。以下では、吸水層3の上面を表面とし、下面を裏面とする。「厚さ」は、表面と裏面の間である。厚み方向は、図1の上下方向である。電解液は、表面から流入する。以下では、吸水層3はおむつであり、電解液は尿であるとする。おむつは、表面が肌に接触し、裏面が肌から遠い状態で使用するとする。 FIG. 1 shows an example of the configuration of the measuring device according to the embodiment of the present invention. The measuring device 1 is for measuring the time history of the flow rate of the electrolytic solution flowing into the water absorption layer per unit time. The measuring device 1 includes a water absorbing layer 3 (an example of the "water absorbing layer" according to the present invention) and a measuring unit 5. The water absorption layer 3 absorbs and retains the electrolytic solution. In the following, the upper surface of the water absorption layer 3 is the front surface, and the lower surface is the back surface. The "thickness" is between the front and back surfaces. The thickness direction is the vertical direction of FIG. The electrolyte flows in from the surface. In the following, it is assumed that the water absorbing layer 3 is a diaper and the electrolytic solution is urine. It is assumed that the diaper is used with the front surface in contact with the skin and the back surface away from the skin.
 吸水層3は、厚さ方向に3つの層に分かれ、表面側を表面側層7(本願請求項の「表面側層」の一例)とし、裏面側を裏面側層11(本願請求項の「裏面側層」の一例)とし、表面側層7と裏面側層11の間の層を中間層9(本願請求項の「中間層」の一例)とする。例えば、吸水層3を厚さ方向に4等分し、表面側を表面側層7とし、裏面側を裏面側層11とし、表面側層7と裏面側層11の間の2つの層を併せて中間層9としてもよい(図3(b)及び(c)参照)。 The water absorption layer 3 is divided into three layers in the thickness direction, the front surface side is the front surface side layer 7 (an example of the "front surface side layer" of the present claim), and the back surface side is the back surface side layer 11 (the "front surface side layer" of the present claim). An example of the "back surface side layer"), and the layer between the front surface side layer 7 and the back surface side layer 11 is the intermediate layer 9 (an example of the "intermediate layer" in the claims of the present application). For example, the water absorption layer 3 is divided into four equal parts in the thickness direction, the front surface side is the front surface side layer 7, the back surface side is the back surface side layer 11, and the two layers between the front surface side layer 7 and the back surface side layer 11 are combined. The intermediate layer 9 may be used (see FIGS. 3 (b) and 3 (c)).
 中間層9は、一対の電極131及び132(本願請求項の「電極」の一例)を備える。そのため、中間層9では、電極13の感度は、表面側層7及び裏面側層11よりも高い。ここで、電極13の感度は、中間層9の厚さ方向に全体で高くてもよく(図2及び図3など参照)、一部で高くてもよい。また、電極131及び132の最大感度は、中間層9の厚さ方向の中央に存在してもよく、中央の近傍に存在してもよく、中央を含まずに近傍のみに分布してもよく、中央を含んでその近傍に分布してもよい。なお、電極は、一対以上であってもよい。また、電極13の最大感度は、吸水層3の厚さ方向の中央及び/又はその近傍に存在してもよい。 Intermediate layer 9 is provided with a pair of electrodes 13 1 and 13 2 (an example of the "electrode" in the claims). Therefore, in the intermediate layer 9, the sensitivity of the electrode 13 is higher than that of the front surface side layer 7 and the back surface side layer 11. Here, the sensitivity of the electrode 13 may be high as a whole in the thickness direction of the intermediate layer 9 (see FIGS. 2 and 3 and the like), or may be high in some parts. The maximum sensitivity of the electrodes 13 1 and 13 2 may be present in the center in the thickness direction of the intermediate layer 9 may be present in the vicinity of the center, and distributed only in the vicinity of the free of central It may be distributed in the vicinity including the center. The number of electrodes may be one or more. Further, the maximum sensitivity of the electrode 13 may exist in the center and / or in the vicinity of the water absorption layer 3 in the thickness direction.
 おむつとしての役割から、一般的に、表面側層7は、肌に近く、中間層9の電極13が直接肌に触れないようにし、さらに、できるだけ尿を集めつつ逆流を防ぐことが期待される。中間層9は、吸水した尿の大部分を保持する役割を担うことが期待される。裏面側層11は、中間層9の尿が外側に浸みださないようにすることが期待される。なお、表面側層7と中間層9と裏面側層11は、一体のものでもよく、分離したものでもよい。 From its role as a diaper, it is generally expected that the surface side layer 7 is close to the skin so that the electrode 13 of the intermediate layer 9 does not come into direct contact with the skin, and further, it is expected to prevent reflux while collecting urine as much as possible. .. The intermediate layer 9 is expected to play a role of retaining most of the absorbed urine. The back surface side layer 11 is expected to prevent the urine of the intermediate layer 9 from seeping out. The front surface side layer 7, the intermediate layer 9, and the back surface side layer 11 may be integrated or separated.
 電極13は、計測部5と電気的に接続されている。表面から流入した電解液が電極131及び132に到達すると、計測部5は、電極間のインピーダンス(電極インピーダンス)の変化を計測する。計測部5は、電解液である尿が吸水層に浸潤するのに伴って変化する電極インピーダンスを測定して、その値に基づいて吸水層に含まれる尿量の時間変化を推定し、さらにその時間微分を計算して、尿流量を推定する。なお、電極インピーダンスは、抵抗(コンダクタンス)を用いてもよく、キャパシタンス(容量性サセプタンス)を用いてもよい。 The electrode 13 is electrically connected to the measuring unit 5. When the electrolyte solution flowing in from the surface to reach the electrodes 13 1 and 13 2, the measurement section 5 measures the change in impedance (electrode impedance) between the electrodes. The measuring unit 5 measures the electrode impedance that changes as urine, which is an electrolytic solution, infiltrates the water absorbing layer, estimates the time change of the amount of urine contained in the water absorbing layer based on the value, and further estimates the change with time. Calculate the time derivative to estimate the urine flow rate. As the electrode impedance, resistance (conductance) may be used, or capacitance (capacitance susceptance) may be used.
 おむつは、尿を保持するためのものである。表面側層7、中間層9及び裏面側層11は、吸水層3の表面から流入した尿を保持する。電極インピーダンスにより尿総量を計測するためには、各瞬間の電極インピーダンスが、その瞬間に吸水層全体に浸みこんでいる尿総量と対応している必要がある。 Diapers are for holding urine. The front surface side layer 7, the intermediate layer 9, and the back surface side layer 11 hold urine that has flowed in from the surface of the water absorption layer 3. In order to measure the total amount of urine by the electrode impedance, the electrode impedance at each moment needs to correspond to the total amount of urine infiltrating the entire water absorption layer at that moment.
 おむつの一般的な傾向から、表面側層7では、尿を保持するために、表面側から裏面側に流入している状態(拡散状態)が多いことが予想される。そのため、表面側層7でインピーダンスを測定しようとしても、電解液は表面側層7から中間層9へと流れてしまい、計測できる状態のものが少なくなる可能性が高い。 From the general tendency of diapers, it is expected that in the surface side layer 7, there are many states (diffusion state) in which urine is flowing from the front side to the back side in order to retain urine. Therefore, even if an attempt is made to measure the impedance in the surface side layer 7, the electrolytic solution will flow from the surface side layer 7 to the intermediate layer 9, and there is a high possibility that the number of measurable states will decrease.
 他方、裏面側層11では、中間層9などを経て拡散状態が弱まり、保持される吸水状態になることが予想される。そのため、裏面側層11に浸みこむ尿は、流入してから時間が経過した後である。そのため、裏面側層11に浸みこんでいる尿は、尿総量と対応しているとは認め難い。特に、特許文献1や特許文献2では、裏面側層11のさらに外側に電極を配置し、吸水層から空気中へと浸みだす尿を測定している。尿を保持するというおむつの役割を考慮すれば、外側表面の電極にて測定された尿は、総量とは異なる可能性が高い。 On the other hand, in the back surface side layer 11, it is expected that the diffusion state is weakened through the intermediate layer 9 and the like, and the water absorption state is maintained. Therefore, the urine that permeates the back surface side layer 11 is after a lapse of time from the inflow. Therefore, it is difficult to recognize that the urine infiltrating the back surface side layer 11 corresponds to the total amount of urine. In particular, in Patent Document 1 and Patent Document 2, electrodes are arranged further outside the back surface side layer 11, and urine exuding from the water absorption layer into the air is measured. Given the role of the diaper in retaining urine, the urine measured at the electrodes on the outer surface is likely to differ from the total volume.
 それに対し、中間層9では、表面側層7に流入した尿が時間の遅れが少なく測定でき、さらに、裏面側層11に浸みだす前に保持された尿をも測定することができる。このように、拡散状態と吸水状態の尿をバランスよく測定することができる。そのため、高い精度での測定を可能とする。 On the other hand, in the intermediate layer 9, the urine that has flowed into the front surface side layer 7 can be measured with less time delay, and the urine that is retained before seeping into the back surface side layer 11 can also be measured. In this way, urine in a diffused state and a water-absorbed state can be measured in a well-balanced manner. Therefore, it is possible to measure with high accuracy.
 図2及び図3は、発明者らが作成した吸水層の一例を示す。図2(a)は、吸水層の中間層21の構成を示す。図2(b)は、図2(a)を側面から見たときの2本の銅線の位置関係を示す参考図である。図2(c)は、吸水層23を示す。図2(d)は、図2(c)を側面から見たときの2本の銅線などの位置関係を示す参考図である。 2 and 3 show an example of the water absorption layer created by the inventors. FIG. 2A shows the configuration of the intermediate layer 21 of the water absorption layer. FIG. 2B is a reference diagram showing the positional relationship between the two copper wires when FIG. 2A is viewed from the side surface. FIG. 2C shows the water absorption layer 23. FIG. 2D is a reference diagram showing the positional relationship between the two copper wires and the like when FIG. 2C is viewed from the side surface.
 図3(a)は、発明者らが作成した中間層の実物の一例を撮影したものである。吸水材は、布おむつ(綿布)である。中間層は、4枚重ねであり、吸水層内層は150mm×150mmである。中間層は、図2(a)及び(b)にあるように、電極として2つの銅線が縫い込まれている。電極の編み込みピッチは、5mm間隔である。尿を測定することができる有効吸水領域では、全体として、マクロに見て一様な感度となるようにしている。マクロに見て一様な感度とは、有効吸水領域の異なる場所に、所定量の尿を同様に流入させた場合に、同様の変化をするように配置するものである。例えば特許文献1では、電極が25mm×25mmといった大きさの導体群から構成されており、電解液検出感度が一様とはみなせない。 FIG. 3A is a photograph of an actual example of the intermediate layer created by the inventors. The water absorbing material is a cloth diaper (cotton cloth). The intermediate layer is a stack of four, and the inner layer of the water absorption layer is 150 mm × 150 mm. As shown in FIGS. 2 (a) and 2 (b), two copper wires are sewn into the intermediate layer as electrodes. The weaving pitch of the electrodes is 5 mm apart. In the effective water absorption region where urine can be measured, the sensitivity is set to be uniform on a macro scale as a whole. The macroscopically uniform sensitivity means that when a predetermined amount of urine is similarly inflowed into different places in the effective water absorption region, the sensitivity is arranged so as to make the same change. For example, in Patent Document 1, the electrode is composed of a group of conductors having a size of 25 mm × 25 mm, and the electrolytic solution detection sensitivity cannot be regarded as uniform.
 図3(b)は、発明者らが作成した中間層の実物の他の一例を撮影したものである。吸水材は、布おむつである。中間層は、4枚重ねであり、吸水層内層は80mm×80mmである。中間層は、図3(a)と同様に、電極として、2つの銅線が縫い込まれている。 FIG. 3B is a photograph of another example of the actual intermediate layer created by the inventors. The water absorbing material is a cloth diaper. The intermediate layer is a stack of four, and the inner layer of the water absorption layer is 80 mm × 80 mm. As in FIG. 3A, two copper wires are sewn into the intermediate layer as electrodes.
 図3(c)は、図3(b)を中間層として、外層をも含めた実物を撮影したものである。吸収層外層は、図3(b)の中間層の上下に、それぞれ、表面側層及び裏面側層として布おむつ2枚重ねを配置して挟んでいる。吸水層は、実質的に、布おむつ8枚重ねであり、上2枚が表面側層、中間4枚が吸水層23、下2枚が裏面側層である。吸水層23は、同じ素材にて、表面側層、中間層及び裏面側層を構成している。 FIG. 3 (c) is a photograph of the actual product including the outer layer with FIG. 3 (b) as the intermediate layer. The outer layer of the absorption layer is sandwiched by arranging two layers of cloth diapers as a front surface side layer and a back surface side layer, respectively, above and below the intermediate layer of FIG. 3 (b). The water absorption layer is substantially a stack of eight cloth diapers, the upper two layers being the front surface side layer, the middle four layers being the water absorption layer 23, and the lower two layers being the back surface side layer. The water absorption layer 23 is made of the same material and constitutes a front surface side layer, an intermediate layer, and a back surface side layer.
 図4は、発明者らによる実験を示すグラフである。図4(a)は、アドミタンス(線L11:実線)と尿流率(ml/s)(線L12:破線)の関係を示す。横軸は、時間である。尿流率は、アドミタンス波形を数値的に時間微分して求めることができる。 FIG. 4 is a graph showing experiments by the inventors. FIG. 4A shows the relationship between admittance (line L 11 : solid line) and urine flow rate (ml / s) (line L 12 : broken line). The horizontal axis is time. The urine flow rate can be obtained by numerically differentiating the admittance waveform with respect to time.
 図4(b)は、図3(a)の中間層に、図3(c)と同様の外層を設けた場合の実験結果を示す。シリンジポンプにより釣り鐘型の流率で模擬尿を滴下する。図4(b)は、シリンジポンプの移動速度から求めた尿流率(線L21:破線)と、図2のおむつ型センサにより測定した値(線L22:実線)を示す。横軸は時間(s)、縦軸は微係数((1/Ω)/s)である。シリンジポンプの移動速度から求めた尿流率は、不確かさ2%程度で真値と一致することを確認している。おむつ型センサは、高い精度で正確な尿流率を検出している。なお、尿の総量は、例えばおむつの重さを測定することで、高い精度で得られる。おむつ型センサによる測定結果(L22)は、おむつの重さなどを利用してキャリブレーションをすることなどによって、L21に一致する精度を高めることができる。 FIG. 4 (b) shows the experimental results when an outer layer similar to that in FIG. 3 (c) is provided in the intermediate layer of FIG. 3 (a). Simulated urine is dropped at a bell-shaped flux with a syringe pump. FIG. 4B shows the urine flow rate (line L 21 : broken line) obtained from the moving speed of the syringe pump and the value measured by the diaper type sensor of FIG. 2 (line L 22 : solid line). The horizontal axis is time (s), and the vertical axis is the fine coefficient ((1 / Ω) / s). It has been confirmed that the urine flow rate obtained from the moving speed of the syringe pump matches the true value with an uncertainty of about 2%. The diaper type sensor detects the urine flow rate with high accuracy and accuracy. The total amount of urine can be obtained with high accuracy by, for example, measuring the weight of a diaper. The measurement result (L 22 ) by the diaper type sensor can be improved in accuracy to match L 21 by calibrating using the weight of the diaper or the like.
 図4(c)は、吸水材を電極の上に重ねる構成(特許文献1、特許文献2など参照)の場合の測定結果を示す。横軸は時間(s)、縦軸はアドミタンス(1/Ω)である。線L31、線L32及び線L33は、それぞれ、吸水材として、さらし5枚、10枚及び15枚を重ねたときの、5ml/sの一定流量で模擬尿を滴下したときの電極アドミタンス波形を示す。電解液が電極面に到達するまでに時間がかかり、電極インピーダンス変化には遅れが生じている。吸水材の厚みが増すほど、アドミタンス変化の遅れが増大する。 FIG. 4C shows the measurement results in the case of a configuration in which the water absorbing material is superposed on the electrodes (see Patent Document 1, Patent Document 2, etc.). The horizontal axis is time (s) and the vertical axis is admittance (1 / Ω). Line L 31 , line L 32, and line L 33 are electrode admittances when simulated urine is dropped at a constant flow rate of 5 ml / s when 5, 10 and 15 bleached sheets are stacked as water absorbing materials, respectively. The waveform is shown. It takes time for the electrolytic solution to reach the electrode surface, and the change in electrode impedance is delayed. As the thickness of the water absorbing material increases, the delay in admittance change increases.
 図4(d)は、図3(c)のおむつ型センサによる測定結果を示す。横軸は時間(s)、縦軸はアドミタンス(1/Ω)である。線L41(破線)は、5ml/sの一定流量で滴下した模擬尿を示す。線L42(実線)は、模擬尿を滴下したときの電極アドミタンス波形を示す。図4(d)では、吸水層の中間層に電極を設置して、吸水層の厚みの中央近傍に電極の最大感度が一致するように電極を構成して、遅れができるだけ小さくなっている。実際、図4(d)では、図4(c)と比較して、遅れが大幅に縮小されている。 FIG. 4D shows the measurement result by the diaper type sensor of FIG. 3C. The horizontal axis is time (s) and the vertical axis is admittance (1 / Ω). Line L 41 (dashed line) shows simulated urine dropped at a constant flow rate of 5 ml / s. Line L 42 (solid line) shows the electrode admittance waveform when simulated urine is dropped. In FIG. 4D, an electrode is installed in the intermediate layer of the water absorption layer, and the electrode is configured so that the maximum sensitivity of the electrode matches near the center of the thickness of the water absorption layer, so that the delay is as small as possible. In fact, in FIG. 4 (d), the delay is significantly reduced as compared with FIG. 4 (c).
 図4(e)及び図4(f)を参照して、有効吸水領域について説明する。電極感度の面的分布が、マクロに見て一様であることは、電極インピーダンスが吸収尿量に比例するための必要条件である。同じ量の尿が吸水層に吸収されても吸収の場所によって異なるインピーダンスを示すのであれば、インピーダンスと吸収量は比例しない。さらに、感度の分布が、有効吸水領域全体を覆うことも重要である。感度を持たない領域にまで尿が拡散したとき、感度分布外の尿は電極インピーダンスに寄与しないため、インピーダンスと吸水量が比例しなくなる。 The effective water absorption region will be described with reference to FIGS. 4 (e) and 4 (f). A macroscopic uniform distribution of electrode sensitivity is a prerequisite for electrode impedance to be proportional to absorbed urine output. If the same amount of urine is absorbed by the water absorption layer but shows different impedance depending on the location of absorption, the impedance and the amount of absorption are not proportional. It is also important that the sensitivity distribution covers the entire effective water absorption region. When urine diffuses to a region having no sensitivity, the urine outside the sensitivity distribution does not contribute to the electrode impedance, so that the impedance and the amount of water absorption are not proportional.
 図4(e)及び図4(f)は、図3(c)のおむつ型センサによる、滴下総量の違いによる影響を示すものである。図3(c)では、電極感度分布(銅線縫込み領域)は80mm×80mmと小さい。図4(e)は、滴下総量が50mlである場合の尿流率(線L51)と、おむつ型センサにより測定した値(線L52)を示す。横軸は時間(s)、縦軸はアドミタンス増加値((1/Ω)/s)である。図4(e)は、この場合、正確に尿流率が測定できている。他方、図4(f)は、滴下総量が100mlである場合の尿流率(線L61)と、おむつ型センサにより測定した値(線L62)を示す。横軸は時間(s)、縦軸はアドミタンス増加値((1/Ω)/s)である。この場合、総尿量は減っていないはずなのにアドミタンスが減少するように、電解液が電極感度分布の外側に拡散して正確な測定ができない部分が生じた。なお、図3(a)の大きさであれば、有効吸水領域の面積が3.5倍以上であるため、滴下総量が100mlであっても高い精度で測定できることが期待される。 4 (e) and 4 (f) show the effect of the difference in the total amount of dripping by the diaper type sensor of FIG. 3 (c). In FIG. 3C, the electrode sensitivity distribution (copper wire sewing region) is as small as 80 mm × 80 mm. FIG. 4 (e) shows the urine flow rate (line L 51 ) when the total amount of dripping is 50 ml, and the value measured by the diaper type sensor (line L 52 ). The horizontal axis is time (s), and the vertical axis is admittance increase value ((1 / Ω) / s). In this case, FIG. 4 (e) shows that the urine flow rate can be accurately measured. On the other hand, FIG. 4 (f) shows the urine flow rate (line L 61 ) when the total amount of dripping is 100 ml, and the value measured by the diaper type sensor (line L 62 ). The horizontal axis is time (s), and the vertical axis is admittance increase value ((1 / Ω) / s). In this case, as the admittance decreased even though the total urine volume should not have decreased, the electrolytic solution diffused outside the electrode sensitivity distribution, and there was a part where accurate measurement could not be performed. If the size is shown in FIG. 3A, the area of the effective water absorption region is 3.5 times or more, so it is expected that measurement can be performed with high accuracy even if the total amount of dripping is 100 ml.
 図3の電極によって、従来の電極の問題点を解消し、インピーダンスと尿総量の間の関係を実用上十分な程度で線形近似することが可能となった。さらに、電極のインピーダンスを数値微分することで、尿流率も実用上十分な精度で推定することができた。 The electrodes in FIG. 3 have solved the problems of conventional electrodes and made it possible to linearly approximate the relationship between impedance and total urine volume to a practically sufficient level. Furthermore, by numerically differentiating the impedance of the electrodes, the urinary fluxion could be estimated with sufficient accuracy for practical use.
 図5(a)及び(b)は、本願発明の実施の形態に係る他の一例を示す。図5(a)を参照して、吸水層内層(電極層)は、吸水材の上下に導電性布を配置した構成とした例である。吸水層外層として、吸水層内層の上下に吸水材を配置する。図5(b)は、図5(a)を側面から見たときの吸収材外層と、吸収材内層(吸収剤と上下の導電性布)の位置関係を示す参考図である。 5 (a) and 5 (b) show another example according to the embodiment of the present invention. With reference to FIG. 5A, the water absorption layer inner layer (electrode layer) is an example in which conductive cloths are arranged above and below the water absorption material. As the outer layer of the water absorption layer, water absorption materials are arranged above and below the inner layer of the water absorption layer. FIG. 5B is a reference diagram showing the positional relationship between the outer layer of the absorbent material and the inner layer of the absorbent material (the absorbent and the upper and lower conductive cloths) when FIG. 5 (a) is viewed from the side surface.
 図5(c)及び(d)は、本願発明の実施の形態に係るさらに他の一例を示す。図5(c)を参照して、内層は、櫛歯型電極を配置した構成とする。吸水層外層として、内層の上下に吸水材を配置する。図5(d)は、図5(c)を側面から見たときの吸収材と櫛歯形電極の位置関係を示す参考図である。 5 (c) and 5 (d) show still another example according to the embodiment of the present invention. With reference to FIG. 5 (c), the inner layer has a structure in which comb-tooth type electrodes are arranged. Water absorption layer As the outer layer, water absorption materials are arranged above and below the inner layer. FIG. 5D is a reference view showing the positional relationship between the absorbent material and the comb-shaped electrode when FIG. 5C is viewed from the side surface.
 1 測定装置、3,23 吸水層、5 計測部、7 表面側層、9,21 中間層、11 裏面側層、13 電極 1 measuring device, 3, 23 water absorption layer, 5 measuring unit, 7 front surface side layer, 9, 21 intermediate layer, 11 back surface side layer, 13 electrodes

Claims (6)

  1.  吸水層に流入した電解液の単位時間当たりの流量の時間履歴を測定するための測定装置であって、
     前記吸水層は、表面側層と、裏面側層と、前記表面側層と前記裏面側層の間の中間層を備え、
     前記吸水層は、一対以上の電極を備え、
     前記電極は、前記中間層の一部又は全部において、前記表面側層及び前記裏面側層よりも感度が高い、測定装置。
    It is a measuring device for measuring the time history of the flow rate per unit time of the electrolytic solution flowing into the water absorption layer.
    The water absorption layer includes a front surface side layer, a back surface side layer, and an intermediate layer between the front surface side layer and the back surface side layer.
    The water absorption layer includes a pair or more of electrodes.
    A measuring device in which the electrodes are more sensitive than the front surface side layer and the back surface side layer in a part or all of the intermediate layer.
  2.  前記中間層は、前記吸水層の表面と裏面との間の厚み方向の中央を含み、
     前記電解液は、前記吸水層の表面から流入して、裏面からは流入しない、請求項1記載の測定装置。
    The intermediate layer includes the center in the thickness direction between the front surface and the back surface of the water absorption layer.
    The measuring device according to claim 1, wherein the electrolytic solution flows in from the front surface of the water absorption layer and does not flow in from the back surface.
  3.  前記電極の最大感度は、前記中間層の表面側と裏面側との間の厚み方向の中央及び/又は中央の近傍に存在する、請求項1又は2に記載の測定装置。 The measuring device according to claim 1 or 2, wherein the maximum sensitivity of the electrode exists at the center and / or near the center in the thickness direction between the front surface side and the back surface side of the intermediate layer.
  4.  前記電極の感度は、前記吸水層の有効吸水領域の全体に、一様に分布し、
     前記電極のインピーダンスは、前記電解液の総量との間の関係が線形近似できる、請求項1から3のいずれかに記載の測定装置。
    The sensitivity of the electrodes is uniformly distributed over the entire effective water absorption region of the water absorption layer.
    The measuring device according to any one of claims 1 to 3, wherein the impedance of the electrode can be linearly approximated in relation to the total amount of the electrolytic solution.
  5.  吸水層に流入した電解液の単位時間当たりの流量の時間履歴を測定するための測定方法であって、
     前記吸水層は、表面側層と、裏面側層と、前記表面側層と前記裏面側層の間の中間層を備え、
     前記吸水層は、一対以上の電極を備え、
     前記電極は、前記中間層の一部又は全部において、前記表面側層と前記裏面側層よりも感度が高く、
     前記電極の間のインピーダンスが、少なくとも、前記中間層における電解液により変化するステップを含む測定方法。
    It is a measurement method for measuring the time history of the flow rate per unit time of the electrolytic solution flowing into the water absorption layer.
    The water absorption layer includes a front surface side layer, a back surface side layer, and an intermediate layer between the front surface side layer and the back surface side layer.
    The water absorption layer includes a pair or more of electrodes.
    The electrodes are more sensitive than the front surface side layer and the back surface side layer in a part or all of the intermediate layer.
    A measuring method comprising the step of changing the impedance between the electrodes by at least the electrolytic solution in the intermediate layer.
  6.  前記電極のインピーダンスは、少なくとも、
      前記中間層で流れる拡散状態の電解液により変化するとともに、
      前記中間層に保持される吸水状態の電解液によっても変化して、
     前記吸水層に流入した前記電解液の総量との間の関係が線形近似できる、請求項5記載の測定方法。
    The impedance of the electrode is at least
    It changes depending on the diffused electrolytic solution flowing in the intermediate layer, and at the same time
    It also changes depending on the water-absorbing electrolytic solution held in the intermediate layer,
    The measuring method according to claim 5, wherein the relationship with the total amount of the electrolytic solution flowing into the water absorption layer can be linearly approximated.
PCT/JP2020/027842 2019-07-19 2020-07-17 Measurement device and measurement method WO2021015124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-133997 2019-07-19
JP2019133997A JP7381004B2 (en) 2019-07-19 2019-07-19 measuring device

Publications (1)

Publication Number Publication Date
WO2021015124A1 true WO2021015124A1 (en) 2021-01-28

Family

ID=74193673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027842 WO2021015124A1 (en) 2019-07-19 2020-07-17 Measurement device and measurement method

Country Status (2)

Country Link
JP (1) JP7381004B2 (en)
WO (1) WO2021015124A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675448U (en) * 1993-03-31 1994-10-25 岩崎通信機株式会社 Diapers
JP2002055074A (en) * 2000-05-29 2002-02-20 Mitsuru Fujiwara Urine-detecting switch and device
JP2011075347A (en) * 2009-09-30 2011-04-14 Awajitec:Kk Moisture sensor
US20110319845A1 (en) * 2010-06-28 2011-12-29 At Box Technology Inc. Diaper structure with urine sensor
JP2013039158A (en) * 2011-08-11 2013-02-28 Kao Corp Urination detecting device
JP2019001355A (en) * 2017-06-16 2019-01-10 アイシン精機株式会社 Door module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675448U (en) * 1993-03-31 1994-10-25 岩崎通信機株式会社 Diapers
JP2002055074A (en) * 2000-05-29 2002-02-20 Mitsuru Fujiwara Urine-detecting switch and device
JP2011075347A (en) * 2009-09-30 2011-04-14 Awajitec:Kk Moisture sensor
US20110319845A1 (en) * 2010-06-28 2011-12-29 At Box Technology Inc. Diaper structure with urine sensor
JP2013039158A (en) * 2011-08-11 2013-02-28 Kao Corp Urination detecting device
JP2019001355A (en) * 2017-06-16 2019-01-10 アイシン精機株式会社 Door module

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWASAKI, KOU: "Acquisition of urinary diffusion along the diaper absorption layer in order to estimate urine flow rate for infants and children", LECTURE PROCEEDINGS OF JSME ANNUAL CONFERENCE ON ROBOTICS AND MECHATRONICS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, 2018, pages 1P2-C04 *
TSUTUMI, KYOSUKE: "A Novel Uroflowmeter System Utilizing Diaper-Embedded Sensor for Impedance Pattern", PROCEEDINGS OF THE 30TH SENSOR SYMPOSIUM ON SENSORS, MICROMACHINES AND APPLICATION SYSTEMS OF IEEJ SENSORS AND MICROMACHINE SOCIETY 2013, vol. 25, no. 30, 29 October 2013 (2013-10-29), pages 1 - 6 *

Also Published As

Publication number Publication date
JP2021018144A (en) 2021-02-15
JP7381004B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
RU2589478C2 (en) Absorbent product containing sensor for liquid emissions
US9333118B2 (en) Absorbent article comprising a liquid discharge detection sensor
JP5993030B2 (en) Method for detecting liquid discharge to an absorbent article
US20200196933A1 (en) Sensor enabled absorbent article avoiding leakages
EP2809282B1 (en) Wound dressing provided with a detection system
JP2014511487A (en) Wearable article with moisture sensor
JP2007521484A5 (en)
JP2014508589A5 (en)
JP2006511244A5 (en)
EP2465418A1 (en) Device and method for determining an excretion rate of a bodily fluid by a human or an animal
WO2013080196A1 (en) Dry eye diagnostic
WO2021015124A1 (en) Measurement device and measurement method
US9072483B2 (en) Touch screen medical diagnostic device and methods
JP2017538942A5 (en)
JP2020525795A5 (en)
CN205176036U (en) Immunity examination strip device
EP3566729A1 (en) Hemodialysis machine provided with a liquid flow measurement system and related method
CN205795704U (en) testis volume measuring instrument convenient to operate
EP3024388B1 (en) Device for assessing the water loss of a person or of an animal through perspiration
JP6395762B2 (en) Method for detecting liquid discharge to an absorbent article
TWM424921U (en) Urine amount detection and prompt device of diaper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844760

Country of ref document: EP

Kind code of ref document: A1