WO2021014812A1 - Treatment for fibroblastic or myofibroblastic tumor and disease - Google Patents
Treatment for fibroblastic or myofibroblastic tumor and disease Download PDFInfo
- Publication number
- WO2021014812A1 WO2021014812A1 PCT/JP2020/023111 JP2020023111W WO2021014812A1 WO 2021014812 A1 WO2021014812 A1 WO 2021014812A1 JP 2020023111 W JP2020023111 W JP 2020023111W WO 2021014812 A1 WO2021014812 A1 WO 2021014812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fibroblastic
- therapeutic agent
- auranofin
- myofibroblastic
- tumor
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7135—Compounds containing heavy metals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to a therapeutic agent for fibroblastic or myofibroblastic tumors / diseases (for example, desmoid fibromatosis) and its use.
- fibroblastic or myofibroblastic tumors / diseases for example, desmoid fibromatosis
- Desmoid fibromatosis is a myofibroblastic tumor that is highly locally invasive but does not metastasize distantly. Although there are predominant sites such as shoulders, chest wall, back, limbs, and head and neck, it can basically occur from any part of the body, and it is necessary to change the treatment policy according to the site of onset. Previously, surgery was central to the treatment of DF, but due to the very high local recurrence rate, conservative treatment is recommended worldwide. However, no drug is covered by insurance for DF. The effectiveness of anti-cancer drug treatment centered on methotrexate, vinblastine, and doxorubicin has been reported (see, for example, Non-Patent Document 1). Recently, the effectiveness of sorafenib and pazopanib, which are molecular-targeted therapeutic agents, has been reported (see, for example, Non-Patent Document 2).
- DF is a benign and malignant intermediate tumor
- strong side effects such as anticancer agents and molecular-targeted therapeutic agents are strong and very expensive. If there are few side effects and there is a drug that controls the proliferation of myofibroblasts, it will be of great benefit to DF patients and can be expected to contribute to the medical economy.
- This also applies to benign or benign (intermediate) fibroblastic or myofibroblastic tumors / diseases other than DF. Therefore, the main problem of the present invention is to find a new therapeutic agent for fibroblastic or myofibroblastic tumors / diseases and to solve the problems of existing therapeutic agents (anticancer agents, molecular targeted therapeutic agents, etc.). To do.
- the present inventors emphasized the ease of clinical application, and applied a drug repositioning strategy to fibroblastic or myofibroblastic tumors / diseases such as DF. Attempts have been made to identify effective drugs. As a result of detailed examination, it was found that a drug known as an anti-rheumatic drug has an effect of efficiently suppressing the proliferation of DF cells. The drug significantly reduced the number of tumors that developed in the DF mouse model, and also reduced the cell density of the tumors that developed, and exerted an excellent antitumor effect on DF. In addition to this finding, we also obtained information on the mechanism of action that would be useful in advancing clinical applications.
- the drug is a fibroblastic or myofibroblast tumor other than DF. It was speculated that it could be applied to diseases.
- the following invention is based on the above findings and considerations. [1] A therapeutic agent for fibroblastic or myofibroblastic tumors / diseases containing auranofin or a pharmaceutically acceptable salt thereof as an active ingredient.
- Fibroblastic or myofibroblastic tumors / diseases include fibroma, superficial fibromatosis, deep fibromatosis, sporadic fibroblastic tumor, inflammatory myofibroblastic tumor , The therapeutic agent according to [1], which is hypertrophic scar, keloid or organ fibrosis.
- the therapeutic agent according to [1], wherein the fibroblastic or myofibroblastic tumor / disease is desmoid fibromatosis.
- Fibroblastic or myofibroblasts comprising the step of administering a therapeutically effective amount of auranofin or a pharmaceutically acceptable salt thereof to a patient with a fibroblastic or myofibroblastic tumor / disease. Treatment of blastic tumors and diseases.
- the present invention relates to a medicine for fibroblastic or myofibroblastic tumor / disease, that is, a therapeutic agent for fibroblastic or myofibroblastic tumor / disease (hereinafter, also referred to as "therapeutic agent of the present invention”).
- the therapeutic agent of the present invention contains auranofin or a pharmaceutically acceptable salt thereof as an active ingredient.
- Auranofin is a compound with the chemical name (2,3,4,6-Tetra-O-acetyl-1-thio- ⁇ -D-glucopyranosato) (triethylphosphine) gold and is used as an active ingredient in anti-rheumatic drugs. It has a track record (specifically, RA remission inducer, auranofin tablet 3 mg "Sawai", RA remission inducer "Ridola tablet (registered trademark) 3 mg").
- a pharmacologically acceptable salt of auranofin may be used as the active ingredient of the therapeutic agent of the present invention.
- the "pharmacologically acceptable salt” is not particularly limited, and the use of various salts such as acid addition salts and amino acid addition salts is assumed.
- acid addition salts include hydrochlorides, sulfates, nitrates, phosphates, inorganic acid salts such as hydrobromide, acetates, maleates, fumarates, citrates, benzenesulfonates, Examples include organic acid salts such as benzoate, malate, oxalate, methanesulfonate and tartrate.
- Examples of amino acid addition salts include glycine addition salt, phenylalanine addition salt, lysine addition salt, aspartic acid addition salt, and glutamic acid addition salt.
- the therapeutic agent of the present invention can be applied to the treatment or prevention of fibroblastic or myofibroblastic tumors / diseases.
- “Therapeutic agent” refers to a drug that exhibits a therapeutic or prophylactic effect on a target disease or condition.
- the therapeutic effect includes alleviating (mitigating) the symptom or associated symptom characteristic of the target disease / pathological condition, preventing or delaying the exacerbation of the symptom, and the like.
- the latter can be regarded as one of the preventive effects in terms of preventing aggravation.
- therapeutic and prophylactic effects are partially overlapping concepts, which are difficult to distinguish and capture, and the practical benefits of doing so are small.
- a typical prophylactic effect is to prevent or delay the recurrence of symptoms characteristic of the target disease / condition. As long as it shows some therapeutic effect or preventive effect on the target disease / pathological condition, or both, it corresponds to a therapeutic agent for the target disease / pathological condition.
- Fibroblastic or myofibroblastic tumor / disease is a disease in which excessive (that is, deviating from the normal state) proliferation of fibroblasts and / or myofibroblasts is observed, in other words, fibers.
- the therapeutic agent of the present invention is suitable for the treatment of myofibroblastic tumors / diseases.
- fibroblastic or myofibroblastic tumors / diseases that can be treated by the therapeutic agent of the present invention include soft fibroma, elastofibroma, and sclerotic fibroma.
- Fibroma such as dermatofibroma, superficial fibroma such as palm fibroma (dupuytran contraction), sole fibroma, desmoid fibroma which is deep fibroma , Sporadic fibroma, inflammatory myofibroblastoma, hypertrophic scar, keloid, organ fibrosis (pulmonary fibrosis, renal fibrosis, etc.).
- One of the suitable treatment / prevention targets for the therapeutic agent of the present invention is desmoid fibromatosis. Aggressive fibromatosis is also called aggressive fibromatosis. As described above, treatment with anticancer agents, molecular-targeted therapeutic agents, and the like has been attempted for desmoid fibromatosis, but there are problems of side effects and costs.
- the therapeutic agent of the present invention exerts a therapeutic effect by a mechanism of action different from those of these therapeutic agents, and provides a new therapeutic strategy.
- the therapeutic agent of the present invention can be formulated according to a conventional method.
- other ingredients allowed in the formulation eg, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiology (Saline, etc.) can be contained.
- excipient lactose, starch, sorbitol, D-mannitol, white sugar and the like can be used.
- disintegrant starch, carboxymethyl cellulose, calcium carbonate and the like can be used.
- As the buffer, phosphate, citrate, acetate and the like can be used.
- emulsifier gum arabic, sodium alginate, tragant and the like can be used.
- suspending agent glycerin monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used.
- pain-relieving agent benzyl alcohol, chlorobutanol, sorbitol and the like can be used. Propylene glycol, ascorbic acid and the like can be used as the stabilizer.
- phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben and the like can be used.
- benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
- the dosage form when formulating is not particularly limited.
- dosage forms are tablets, powders, fine granules, granules, capsules, syrups, injections, topical agents, and suppositories.
- the therapeutic agent of the present invention is targeted by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) depending on the dosage form. Applies to. Systemic and topical administrations are also indicated by the subject.
- administration routes are not mutually exclusive, and two or more arbitrarily selected administration routes can be used in combination (for example, intravenous injection or the like at the same time as oral administration or after a lapse of a predetermined time).
- the therapeutic agent of the present invention contains an amount of the active ingredient necessary for obtaining the expected therapeutic effect (that is, a therapeutically effective amount).
- the amount of the active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set in the range of, for example, about 0.1% by weight to about 99% by weight so that a desired dose can be achieved.
- the dose of the therapeutic agent of the present invention is set so as to obtain the expected therapeutic effect. Symptoms, patient age, gender, weight, etc. are generally taken into account when setting therapeutically effective doses. Those skilled in the art can set an appropriate dose in consideration of these matters.
- the dose can be set so that the daily amount of the active ingredient is 0.1 mg to 50 mg, preferably 1 mg to 30 mg, and particularly preferably 2 mg to 20 mg for an adult (body weight of about 60 kg).
- the administration schedule for example, once to several times a day (for example, twice, three times, four times), once every two days, or once every three days can be adopted. In preparing the administration schedule, the patient's medical condition and the duration of effect of the active ingredient can be taken into consideration.
- treatment with another drug for example, an existing therapeutic agent
- treatment with an existing therapeutic agent for example, an existing therapeutic agent
- an existing therapeutic procedure for example, surgical excision
- the present application also provides a therapeutic method characterized by administering a therapeutically effective amount of the therapeutic agent of the present invention to a patient with a fibroblastic or myofibroblastic tumor / disease. To do.
- Tumor cultured cells Tumor tissue of wild-type (WT) of DF and each CTNNB1 gene mutant (T41A, S45F) histologically pathologically diagnosed are fragmented into 0.2 mg / mL proteinase. The tumor was allowed to stand at 37 ° C. for 3 hours in Dulbecco's modified Eagle's culture medium (DMEM) to be dissolved. The isolated cells were then placed in DMEM containing 10% fetal bovine serum (FBS) supplemented with 100 U / mL penicillin and 100 mg / mL streptomycin at 37 ° C. and 5% CO 2 concentrations. Cultivation was performed in the environment. Cultures were changed every 3-4 days and were trypsinized and subcultured before reaching confluet. The 5th to 15th passage DF cultured cells thus obtained were used in the experiment.
- DMEM Dulbecco's modified Eagle's culture medium
- Cell proliferation evaluation assay DF cultured cells were seeded on a 96-well plate at a concentration of 5 ⁇ 10 3 / well in a medium containing 10% FBS, and stored for 12 hours for adhesion. Then, it was replaced with DMSO or a medium containing 10% FBS containing auranophin (dissolved in DMSO) at each concentration of 0.2 to 10 ⁇ M, and cell proliferation after 24 hours was measured with the MTS assay kit (CellTiter 96® AQueous Assay). , Promega), and the absorbance was measured with a microplate reader, Rainbow RC (Tecan Japan), according to the attached instructions.
- Apoptosis evaluation assay DF cultured cells were seeded on a 96-well plate at a concentration of 5 ⁇ 10 3 / well in a medium containing 10% FBS, and stored for 12 hours for adhesion. Then, it was replaced with a medium containing DMSO or 10% FBS containing Felodipine, Meloxicam or auranophin at a concentration of 5 ⁇ M, and the activity of Caspase 3/7, which is an index of apoptosis-inducing ability after 24 hours, was expressed in the Caspase assay kit (Caspase). -Glo (registered trademark) 3/7 Assay, Promega) was used to measure the luminescence with a microplate reader PowerScan4 (DS Pharma Biomedical) according to the attached instructions.
- RT-PCR mRNA expression analysis
- RT-PCR reverse transcription polymerase chain reaction
- LightCycler Roche Diagnostics
- the mRNA expression level of each gene was evaluated as a relative value based on the Gapdh expression level used as an internal control.
- the primers for Axin-2, Cyclin-D, C-myc and Cox-2 are as follows.
- Mouse model As a mouse model that develops DF, a Ctnnb1 mutation model (Sato S. et al. Cell Rep. 16 (4): 917) in which Ng2 / Cspg4-CreER mice were mated with Ctnnb1 lox (ex3) mice. -927 2016) and the Apc1638N mouse model as an Apc mutation model (Smits R. et al. Gastroenterology, 114 (2): 275-83 1998) have been reported.
- the former is a mouse that expresses the enzyme Cre in cells expressing NG2 in the presence of tamoxifen and can delete the exon 3 of the ⁇ -catenin gene (CTNNB1) sandwiched between loxP.
- mice with a mutation in APC the causative gene of familial adenomatous polyposis.
- the causes of the onset of desmoid are roughly divided into two cases, one is when the exon 3 of the CTNNB1 gene is mutated and the other is when the APC gene is mutated.
- the sites of occurrence are often different, it has been reported that behavior and responsiveness to drugs are similar (Heinrich MC et al, J Clin Oncol, 24 (29): 4674-74 2006) (Nishida Y). et al, Int J Clin Oncol, 20 (6): 1211-7 2015).
- the human equivalent dose is 12.3, so the dose in humans is about 0.08 mg / kg / day.
- the amount of auranofin normally used in humans is 6 mg / day, and when the body weight is 60 kg, it is 0.1 mg / kg / day, which is considered to be the same dose as the dose to mice this time.
- the number of tumors, tumor diameter, and body weight at 6 months of age were compared between the administration group and the control group (solvent only). Since the number of desmoids generated in females of the Apc mutation model is small (Poon R, et al, PLoS One. 2012; 7 (5): e37940.), We decided to use male mice suitable for evaluation. As the number of tumors, the number of tumors developed subcutaneously and intramuscularly was counted, and the maximum tumor diameter was measured macroscopically. In the statistical significance test, the difference between the two groups was analyzed by the Student-t test.
- Intrinsic fibromatosis (palm fibromatosis, sole fibromatosis, etc.) Organs such as sporadic fibroma, inflammatory myofibroblastic tumor, hypertrophic scar, keloid, pulmonary fibrosis / renal fibrosis Its application is expected to be widely applied to fibroblastic or myofibroblastic tumors / diseases such as fibrosis.
- the therapeutic agent of the present invention contains the approved drug auranofin or a pharmaceutically acceptable salt thereof as an active ingredient.
- Auranofin has been used as an active ingredient in anti-rheumatic drugs, and its safety has been established, including optimal dosage, side effects, and contraindications. This fact is a great merit in clinical application of the therapeutic agent of the present invention containing auranofin as an active ingredient.
- the therapeutic agent of the present invention exhibits a growth inhibitory effect on fibroblasts / myofibroblasts, and is applied not only to DF but also to the treatment of other fibroblastic or myofibroblastic tumors / diseases. Is highly expected.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention addresses the problem of providing a new therapeutic strategy for fibroblastic or myofibroblastic tumor and disease such as desmoid-type fibromatosis. Provided is a therapeutic agent for fibroblastic or myofibroblastic tumor and disease, the therapeutic agent containing, as an active ingredient, auranofin which is successfully identified by a drug repositioning strategy, or a pharmaceutically acceptable salt thereof.
Description
本発明は線維芽細胞性又は筋線維芽細胞性腫瘍・疾患(例えばデスモイド型線維腫症)に対する治療薬及びその用途に関する。本出願は、2019年7月24日に出願された日本国特許出願第2019-135877号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
The present invention relates to a therapeutic agent for fibroblastic or myofibroblastic tumors / diseases (for example, desmoid fibromatosis) and its use. This application claims priority based on Japanese Patent Application No. 2019-135877 filed on July 24, 2019, and the entire contents of the patent application are incorporated by reference.
デスモイド型線維腫症(DF)は筋線維芽細胞性腫瘍であり、局所浸潤性は強いが遠隔転移はしない。肩、胸壁、背中、四肢、頭頸部等の好発部位はあるものの、基本的には身体のあらゆる部位から発症し得るものであり、発症部位に応じて治療方針を変える必要がある。以前は手術がDFの治療の中心であったが非常に高い局所再発率から世界的に保存治療を選択するように勧められている。しかし、DFに対する保険適用となっている薬剤はない。メソトレキセートとビンブラスチン、ドキソルビシンを中心とした抗癌剤治療の有効性は報告されている(例えば非特許文献1を参照)。また、最近は分子標的治療薬であるソラフェニブ、パゾパニブの有効性が報告されている(例えば非特許文献2を参照)。
Desmoid fibromatosis (DF) is a myofibroblastic tumor that is highly locally invasive but does not metastasize distantly. Although there are predominant sites such as shoulders, chest wall, back, limbs, and head and neck, it can basically occur from any part of the body, and it is necessary to change the treatment policy according to the site of onset. Previously, surgery was central to the treatment of DF, but due to the very high local recurrence rate, conservative treatment is recommended worldwide. However, no drug is covered by insurance for DF. The effectiveness of anti-cancer drug treatment centered on methotrexate, vinblastine, and doxorubicin has been reported (see, for example, Non-Patent Document 1). Recently, the effectiveness of sorafenib and pazopanib, which are molecular-targeted therapeutic agents, has been reported (see, for example, Non-Patent Document 2).
DFは良悪性の中間型腫瘍であることから、抗癌剤や分子標的治療薬のような強力な治療では副作用が強いこと及び非常に高価であることが問題となる。副作用が少なく、筋線維芽細胞の増殖を制御する薬剤があればDF患者に対して利するところは大きく、医療経済への貢献も期待できる。このことは、DF以外の良性又は良悪性(中間型)の線維芽細胞性又は筋線維芽細胞性腫瘍・疾患にも当てはまる。
そこで本発明は、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患に対する新たな治療薬を見出し、既存の治療薬(抗癌剤や分子標的治療薬等)が抱える問題を解消することを主たる課題とする。 Since DF is a benign and malignant intermediate tumor, there are problems that strong side effects such as anticancer agents and molecular-targeted therapeutic agents are strong and very expensive. If there are few side effects and there is a drug that controls the proliferation of myofibroblasts, it will be of great benefit to DF patients and can be expected to contribute to the medical economy. This also applies to benign or benign (intermediate) fibroblastic or myofibroblastic tumors / diseases other than DF.
Therefore, the main problem of the present invention is to find a new therapeutic agent for fibroblastic or myofibroblastic tumors / diseases and to solve the problems of existing therapeutic agents (anticancer agents, molecular targeted therapeutic agents, etc.). To do.
そこで本発明は、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患に対する新たな治療薬を見出し、既存の治療薬(抗癌剤や分子標的治療薬等)が抱える問題を解消することを主たる課題とする。 Since DF is a benign and malignant intermediate tumor, there are problems that strong side effects such as anticancer agents and molecular-targeted therapeutic agents are strong and very expensive. If there are few side effects and there is a drug that controls the proliferation of myofibroblasts, it will be of great benefit to DF patients and can be expected to contribute to the medical economy. This also applies to benign or benign (intermediate) fibroblastic or myofibroblastic tumors / diseases other than DF.
Therefore, the main problem of the present invention is to find a new therapeutic agent for fibroblastic or myofibroblastic tumors / diseases and to solve the problems of existing therapeutic agents (anticancer agents, molecular targeted therapeutic agents, etc.). To do.
上記課題を解決すべく本発明者らは、臨床応用が容易であることを重視し、ドラッグ・リポジショニング(drug repositioning)戦略によってDF等の線維芽細胞性又は筋線維芽細胞性腫瘍・疾患に有効な薬剤を同定することを試みた。詳細な検討の結果、抗リウマチ薬として知られている薬剤にDF細胞の増殖を効率的に抑制する効果が認められた。当該薬剤はDFマウスモデルで発生腫瘍数を有意に減少させるとともに、発生した腫瘍の細胞密度の低下をもたらし、DFに対して優れた抗腫瘍効果を発揮した。この知見に加え、臨床応用を進める際に有益となる、作用機序に関する情報も得られた。一方、同定に成功した薬剤が示した効果(特に 線維芽細胞様細胞の増殖抑制実験における増殖抑制の効果)からすれば、当該薬剤はDF以外の線維芽細胞性又は筋線維芽細胞性腫瘍・疾患にも適用可能と推察された。
以下の発明は上記知見及び考察に基づく。
[1]オーラノフィン又はその薬学的に許容可能な塩を有効成分として含有する、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬。
[2]線維芽細胞性又は筋線維芽細胞性腫瘍・疾患が、線維腫、表在性線維腫症、深在性線維腫症、弧発性線維性腫瘍、炎症性筋線維芽細胞性腫瘍、肥厚性瘢痕、ケロイド又は臓器線維症である、[1]に記載の治療薬。
[3]線維芽細胞性又は筋線維芽細胞性腫瘍・疾患がデスモイド型線維腫症である、[1]に記載の治療薬。
[4]オーラノフィン又はその薬学的に許容される塩を治療上有効量、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の患者に投与するステップを含む、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の治療法。
[5]線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬を製造するための、オーラノフィン又はその薬学的に許容可能な塩の使用。 In order to solve the above problems, the present inventors emphasized the ease of clinical application, and applied a drug repositioning strategy to fibroblastic or myofibroblastic tumors / diseases such as DF. Attempts have been made to identify effective drugs. As a result of detailed examination, it was found that a drug known as an anti-rheumatic drug has an effect of efficiently suppressing the proliferation of DF cells. The drug significantly reduced the number of tumors that developed in the DF mouse model, and also reduced the cell density of the tumors that developed, and exerted an excellent antitumor effect on DF. In addition to this finding, we also obtained information on the mechanism of action that would be useful in advancing clinical applications. On the other hand, based on the effects of the successfully identified drug (particularly the effect of suppressing growth in fibroblast-like cell growth suppression experiments), the drug is a fibroblastic or myofibroblast tumor other than DF. It was speculated that it could be applied to diseases.
The following invention is based on the above findings and considerations.
[1] A therapeutic agent for fibroblastic or myofibroblastic tumors / diseases containing auranofin or a pharmaceutically acceptable salt thereof as an active ingredient.
[2] Fibroblastic or myofibroblastic tumors / diseases include fibroma, superficial fibromatosis, deep fibromatosis, sporadic fibroblastic tumor, inflammatory myofibroblastic tumor , The therapeutic agent according to [1], which is hypertrophic scar, keloid or organ fibrosis.
[3] The therapeutic agent according to [1], wherein the fibroblastic or myofibroblastic tumor / disease is desmoid fibromatosis.
[4] Fibroblastic or myofibroblasts comprising the step of administering a therapeutically effective amount of auranofin or a pharmaceutically acceptable salt thereof to a patient with a fibroblastic or myofibroblastic tumor / disease. Treatment of blastic tumors and diseases.
[5] Use of auranofin or a pharmaceutically acceptable salt thereof for producing a therapeutic agent for fibroblastic or myofibroblastic tumors / diseases.
以下の発明は上記知見及び考察に基づく。
[1]オーラノフィン又はその薬学的に許容可能な塩を有効成分として含有する、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬。
[2]線維芽細胞性又は筋線維芽細胞性腫瘍・疾患が、線維腫、表在性線維腫症、深在性線維腫症、弧発性線維性腫瘍、炎症性筋線維芽細胞性腫瘍、肥厚性瘢痕、ケロイド又は臓器線維症である、[1]に記載の治療薬。
[3]線維芽細胞性又は筋線維芽細胞性腫瘍・疾患がデスモイド型線維腫症である、[1]に記載の治療薬。
[4]オーラノフィン又はその薬学的に許容される塩を治療上有効量、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の患者に投与するステップを含む、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の治療法。
[5]線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬を製造するための、オーラノフィン又はその薬学的に許容可能な塩の使用。 In order to solve the above problems, the present inventors emphasized the ease of clinical application, and applied a drug repositioning strategy to fibroblastic or myofibroblastic tumors / diseases such as DF. Attempts have been made to identify effective drugs. As a result of detailed examination, it was found that a drug known as an anti-rheumatic drug has an effect of efficiently suppressing the proliferation of DF cells. The drug significantly reduced the number of tumors that developed in the DF mouse model, and also reduced the cell density of the tumors that developed, and exerted an excellent antitumor effect on DF. In addition to this finding, we also obtained information on the mechanism of action that would be useful in advancing clinical applications. On the other hand, based on the effects of the successfully identified drug (particularly the effect of suppressing growth in fibroblast-like cell growth suppression experiments), the drug is a fibroblastic or myofibroblast tumor other than DF. It was speculated that it could be applied to diseases.
The following invention is based on the above findings and considerations.
[1] A therapeutic agent for fibroblastic or myofibroblastic tumors / diseases containing auranofin or a pharmaceutically acceptable salt thereof as an active ingredient.
[2] Fibroblastic or myofibroblastic tumors / diseases include fibroma, superficial fibromatosis, deep fibromatosis, sporadic fibroblastic tumor, inflammatory myofibroblastic tumor , The therapeutic agent according to [1], which is hypertrophic scar, keloid or organ fibrosis.
[3] The therapeutic agent according to [1], wherein the fibroblastic or myofibroblastic tumor / disease is desmoid fibromatosis.
[4] Fibroblastic or myofibroblasts comprising the step of administering a therapeutically effective amount of auranofin or a pharmaceutically acceptable salt thereof to a patient with a fibroblastic or myofibroblastic tumor / disease. Treatment of blastic tumors and diseases.
[5] Use of auranofin or a pharmaceutically acceptable salt thereof for producing a therapeutic agent for fibroblastic or myofibroblastic tumors / diseases.
本発明は線維芽細胞性又は筋線維芽細胞性腫瘍・疾患に対する医薬、即ち線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬(以下、「本発明の治療薬」ともいう)に関する。本発明の治療薬はオーラノフィン又はその薬学的に許容可能な塩を有効成分とする。オーラノフィンは、化学名(2,3,4,6‐Tetra‐O‐acetyl‐1‐thio‐β‐D‐glucopyranosato)(triethylphosphine)goldの化合物であり、抗リウマチ薬の有効成分としての使用実績(具体的には、RA寛解導入剤、オーラノフィン錠3mg「サワイ」、RA寛解導入剤「リドーラ錠(登録商標)3mg」)を有する。
The present invention relates to a medicine for fibroblastic or myofibroblastic tumor / disease, that is, a therapeutic agent for fibroblastic or myofibroblastic tumor / disease (hereinafter, also referred to as "therapeutic agent of the present invention"). The therapeutic agent of the present invention contains auranofin or a pharmaceutically acceptable salt thereof as an active ingredient. Auranofin is a compound with the chemical name (2,3,4,6-Tetra-O-acetyl-1-thio-β-D-glucopyranosato) (triethylphosphine) gold and is used as an active ingredient in anti-rheumatic drugs. It has a track record (specifically, RA remission inducer, auranofin tablet 3 mg "Sawai", RA remission inducer "Ridola tablet (registered trademark) 3 mg").
本発明の治療薬の有効成分として、オーラノフィンの薬理学的に許容される塩を用いても良い。「薬理学的に許容される塩」は特に限定されるものではなく、様々な塩、例えば、酸付加塩、アミノ酸付加塩等の利用が想定される。酸付加塩の例としては塩酸塩、硫酸塩、硝酸塩、リン酸塩、臭化水素酸塩などの無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、ベンゼンスルホン酸塩、安息香酸塩、リンゴ酸塩、シュウ酸塩、メタンスルホン酸塩、酒石酸塩などの有機酸塩が挙げられる。アミノ酸付加塩の例としてはグリシン付加塩、フェニルアラニン付加塩、リジン付加塩、アスパラギン酸付加塩、グルタミン酸付加塩が挙げられる。
A pharmacologically acceptable salt of auranofin may be used as the active ingredient of the therapeutic agent of the present invention. The "pharmacologically acceptable salt" is not particularly limited, and the use of various salts such as acid addition salts and amino acid addition salts is assumed. Examples of acid addition salts include hydrochlorides, sulfates, nitrates, phosphates, inorganic acid salts such as hydrobromide, acetates, maleates, fumarates, citrates, benzenesulfonates, Examples include organic acid salts such as benzoate, malate, oxalate, methanesulfonate and tartrate. Examples of amino acid addition salts include glycine addition salt, phenylalanine addition salt, lysine addition salt, aspartic acid addition salt, and glutamic acid addition salt.
本発明の治療薬は線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の治療又は予防に適用可能である。「治療薬」とは、標的の疾病ないし病態に対する治療的又は予防的効果を示す医薬のことをいう。治療的効果には、標的疾患/病態に特徴的な症状又は随伴症状を緩和すること(軽症化)、症状の悪化を阻止ないし遅延すること等が含まれる。後者については、重症化を予防するという点において予防的効果の一つと捉えることができる。このように、治療的効果と予防的効果は一部において重複する概念であり、明確に区別して捉えることは困難であり、またそうすることの実益は少ない。予防的効果の典型的なものは、標的疾患/病態に特徴的な症状の再発を阻止ないし遅延することである。尚、標的疾患/病態に対して何らかの治療的効果又は予防的効果、或いはこの両者を示す限り、標的疾患/病態に対する治療薬に該当する。
The therapeutic agent of the present invention can be applied to the treatment or prevention of fibroblastic or myofibroblastic tumors / diseases. "Therapeutic agent" refers to a drug that exhibits a therapeutic or prophylactic effect on a target disease or condition. The therapeutic effect includes alleviating (mitigating) the symptom or associated symptom characteristic of the target disease / pathological condition, preventing or delaying the exacerbation of the symptom, and the like. The latter can be regarded as one of the preventive effects in terms of preventing aggravation. Thus, therapeutic and prophylactic effects are partially overlapping concepts, which are difficult to distinguish and capture, and the practical benefits of doing so are small. A typical prophylactic effect is to prevent or delay the recurrence of symptoms characteristic of the target disease / condition. As long as it shows some therapeutic effect or preventive effect on the target disease / pathological condition, or both, it corresponds to a therapeutic agent for the target disease / pathological condition.
「線維芽細胞性又は筋線維芽細胞性腫瘍・疾患」とは、線維芽細胞又は筋線維芽細胞或いはこの両者の過剰な(即ち、正常状態を逸脱した)増殖を認める疾患、言い換えれば、線維芽細胞/筋線維芽細胞の増殖が病態の基盤となる又は病態を形成する疾患である。特に、強力な作用・効果を期待できるものの副作用や費用の問題がある医薬(例えば抗癌剤や分子標的治療薬)での治療が望まれない、良性又は良悪性(中間型)の線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の治療に対して本発明の治療薬は好適である。本発明の治療薬の治療対象となりうる線維芽細胞性又は筋線維芽細胞性腫瘍・疾患を例示すると、軟性線維腫(soft fibroma)、弾性線維腫(elastofibroma)、硬化性線維腫(sclerotic fibroma)、皮膚線維腫(dermatofibroma)等の線維腫、手掌線維腫症(デュピュイトラン拘縮)、足底線維腫症等の表在性線維腫症、深在性線維腫症であるデスモイド型線維腫症、弧発性線維性腫瘍、炎症性筋線維芽細胞性腫瘍、肥厚性瘢痕(hypertrophic scar)、ケロイド(keloid)、臓器線維症(肺線維症・腎線維症等)である。
"Fibroblastic or myofibroblastic tumor / disease" is a disease in which excessive (that is, deviating from the normal state) proliferation of fibroblasts and / or myofibroblasts is observed, in other words, fibers. A disease in which the proliferation of blasts / myofibroblasts underlies or forms the pathology. In particular, benign or benign (intermediate type) fibroblastic or benign (intermediate type) fibroblastic or malignant (intermediate type) fibroblastic or malignant (intermediate type) fibroblastic or malignant (intermediate type) fibroblastic or malignant (intermediate) type The therapeutic agent of the present invention is suitable for the treatment of myofibroblastic tumors / diseases. Examples of fibroblastic or myofibroblastic tumors / diseases that can be treated by the therapeutic agent of the present invention include soft fibroma, elastofibroma, and sclerotic fibroma. , Fibroma such as dermatofibroma, superficial fibroma such as palm fibroma (dupuytran contraction), sole fibroma, desmoid fibroma which is deep fibroma , Sporadic fibroma, inflammatory myofibroblastoma, hypertrophic scar, keloid, organ fibrosis (pulmonary fibrosis, renal fibrosis, etc.).
本発明の治療薬の好適な治療/予防対象の一つはデスモイド型線維腫症である。デスモイド型線維腫症はデスモイド腫瘍とも呼ばれる。上記の通り、デスモイド型線維腫症には抗癌剤や分子標的治療薬等を用いた治療が試みられているが、副作用や費用の問題を抱える。本発明の治療薬はこれらの治療薬とは異なる作用機序によって治療効果を発揮するものであり、新たな治療戦略を提供する。
One of the suitable treatment / prevention targets for the therapeutic agent of the present invention is desmoid fibromatosis. Aggressive fibromatosis is also called aggressive fibromatosis. As described above, treatment with anticancer agents, molecular-targeted therapeutic agents, and the like has been attempted for desmoid fibromatosis, but there are problems of side effects and costs. The therapeutic agent of the present invention exerts a therapeutic effect by a mechanism of action different from those of these therapeutic agents, and provides a new therapeutic strategy.
本発明の治療薬の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。
The therapeutic agent of the present invention can be formulated according to a conventional method. When formulated, other ingredients allowed in the formulation (eg, carriers, excipients, disintegrants, buffers, emulsifiers, suspensions, soothing agents, stabilizers, preservatives, preservatives, physiology (Saline, etc.) can be contained. As the excipient, lactose, starch, sorbitol, D-mannitol, white sugar and the like can be used. As the disintegrant, starch, carboxymethyl cellulose, calcium carbonate and the like can be used. As the buffer, phosphate, citrate, acetate and the like can be used. As the emulsifier, gum arabic, sodium alginate, tragant and the like can be used. As the suspending agent, glycerin monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used. As the pain-relieving agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. Propylene glycol, ascorbic acid and the like can be used as the stabilizer. As the preservative, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben and the like can be used. As the preservative, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
製剤化する場合の剤形も特に限定されない。剤形の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、及び座剤である。本発明の治療薬はその剤形に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって対象に適用される。また、全身的な投与と局所的な投与も対象により適応される。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。本発明の治療薬には、期待される治療効果を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の治療薬中の有効成分量は一般に剤形によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%~約99重量%の範囲内で設定する。
The dosage form when formulating is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, injections, topical agents, and suppositories. The therapeutic agent of the present invention is targeted by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular, or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) depending on the dosage form. Applies to. Systemic and topical administrations are also indicated by the subject. These administration routes are not mutually exclusive, and two or more arbitrarily selected administration routes can be used in combination (for example, intravenous injection or the like at the same time as oral administration or after a lapse of a predetermined time). The therapeutic agent of the present invention contains an amount of the active ingredient necessary for obtaining the expected therapeutic effect (that is, a therapeutically effective amount). The amount of the active ingredient in the therapeutic agent of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set in the range of, for example, about 0.1% by weight to about 99% by weight so that a desired dose can be achieved.
本発明の治療薬の投与量は、期待される治療効果が得られるように設定される。治療上有効な投与量の設定においては一般に症状、患者の年齢、性別、及び体重などが考慮される。当業者であればこれらの事項を考慮して適当な投与量を設定することが可能である。例えば、成人(体重約60kg)を対象として1日当たりの有効成分量が0.1mg~50mg、好ましくは1mg~30mg、特に好ましくは2mg~20mgとなるよう投与量を設定することができる。投与スケジュールとしては例えば1日1回~数回(例えば2回、3回、4回)、2日に1回、或いは3日に1回などを採用できる。投与スケジュールの作成においては、患者の病状や有効成分の効果持続時間などを考慮することができる。
The dose of the therapeutic agent of the present invention is set so as to obtain the expected therapeutic effect. Symptoms, patient age, gender, weight, etc. are generally taken into account when setting therapeutically effective doses. Those skilled in the art can set an appropriate dose in consideration of these matters. For example, the dose can be set so that the daily amount of the active ingredient is 0.1 mg to 50 mg, preferably 1 mg to 30 mg, and particularly preferably 2 mg to 20 mg for an adult (body weight of about 60 kg). As the administration schedule, for example, once to several times a day (for example, twice, three times, four times), once every two days, or once every three days can be adopted. In preparing the administration schedule, the patient's medical condition and the duration of effect of the active ingredient can be taken into consideration.
本発明の治療薬による治療に並行して他の医薬(例えば既存の治療薬)による治療を行ったり、既存の治療手技(例えば外科的切除)に対して本発明の治療薬による治療を組み合わせたりしてもよい。
In parallel with the treatment with the therapeutic agent of the present invention, treatment with another drug (for example, an existing therapeutic agent) may be performed, or the treatment with the therapeutic agent of the present invention may be combined with an existing therapeutic procedure (for example, surgical excision). You may.
以上の記述から明らかな通り、本願は、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の患者に対して本発明の治療薬を治療上有効量投与することを特徴とする治療法も提供する。
As is clear from the above description, the present application also provides a therapeutic method characterized by administering a therapeutically effective amount of the therapeutic agent of the present invention to a patient with a fibroblastic or myofibroblastic tumor / disease. To do.
既存薬の新たな効能を探索し、適用拡大を図ること、即ちドラッグ・リポジショニング戦略によって、デスモイド型線維腫症(DF)等に有効な薬剤の同定を目指した。詳細には、DF細胞の増殖を効率的に抑制する薬剤の選抜を試みるとともに、選抜された薬剤の薬効をDF発症マウスモデルにて評価した。
We aimed to identify new drugs that are effective for desmoid fibromatosis (DF), etc. by exploring new indications of existing drugs and expanding their application, that is, by drug repositioning strategy. Specifically, we attempted to select a drug that efficiently suppresses the proliferation of DF cells, and evaluated the efficacy of the selected drug in a DF-onset mouse model.
1.ドラッグ・リポジショニングによる薬剤の探索
Prestwick Chemicals社の1,186種のFDA認可薬ライブラリーを構成する各薬剤について、DF培養細胞(デスモイド腫瘍から、遺伝子変異のない細胞株(WT)とCTNNB1遺伝子エクソン3に点変異(S45F)を有する細胞株の2系統を調製した)に対する増殖抑制活性をMTSアッセイで比較評価した。独自の評価基準を設定することで25薬剤を選択した。次に、日本国内での臨床応用に適することや、安全に長期投与可能等の基準によって5薬剤に絞り込み、それらの細胞増殖抑制活性をMeloxicamと比較することにより、優れた細胞増殖抑制活性を示す薬剤「オーラノフィン」を最終候補として選択した。 1. 1. Drug Repositioning Drug Search For each drug in Prestwick Chemicals' 1,186 FDA-approved drug library, DF cultured cells (from desmoid tumors to gene mutation-free cell lines (WT) and CTNNB1 gene Exxon 3) Two strains of cell lines with point mutations (S45F) were prepared) and their growth inhibitory activity was comparatively evaluated by the MTS assay. Twenty-five drugs were selected by setting their own evaluation criteria. Next, by narrowing down to 5 drugs based on criteria such as suitability for clinical application in Japan and safe long-term administration, and comparing their cell growth inhibitory activity with Meloxicam, excellent cell growth inhibitory activity is shown. The drug "Auranofin" was selected as the final candidate.
Prestwick Chemicals社の1,186種のFDA認可薬ライブラリーを構成する各薬剤について、DF培養細胞(デスモイド腫瘍から、遺伝子変異のない細胞株(WT)とCTNNB1遺伝子エクソン3に点変異(S45F)を有する細胞株の2系統を調製した)に対する増殖抑制活性をMTSアッセイで比較評価した。独自の評価基準を設定することで25薬剤を選択した。次に、日本国内での臨床応用に適することや、安全に長期投与可能等の基準によって5薬剤に絞り込み、それらの細胞増殖抑制活性をMeloxicamと比較することにより、優れた細胞増殖抑制活性を示す薬剤「オーラノフィン」を最終候補として選択した。 1. 1. Drug Repositioning Drug Search For each drug in Prestwick Chemicals' 1,186 FDA-approved drug library, DF cultured cells (from desmoid tumors to gene mutation-free cell lines (WT) and CTNNB1 gene Exxon 3) Two strains of cell lines with point mutations (S45F) were prepared) and their growth inhibitory activity was comparatively evaluated by the MTS assay. Twenty-five drugs were selected by setting their own evaluation criteria. Next, by narrowing down to 5 drugs based on criteria such as suitability for clinical application in Japan and safe long-term administration, and comparing their cell growth inhibitory activity with Meloxicam, excellent cell growth inhibitory activity is shown. The drug "Auranofin" was selected as the final candidate.
2.選択した薬剤の評価
2-1.材料と方法
(1)腫瘍培養細胞
組織学的に病理診断をされたDFの野生型(WT)及び各CTNNB1遺伝子変異型(T41A, S45F)の腫瘍組織を細断片にして、0.2 mg/mLプロテナーゼを加えたDulbecco’s modified Eagle’s培養液 (DMEM) 中に37℃にて3時間静置し溶解処理を行った。その後、分離された細胞を100 U/mL濃度のペニシリンおよび100 mg/mL濃度のストレプトマイシンを添加した10%のウシ胎児血清(FBS)を含有するDMEM中で、37℃、5% CO2濃度の環境下で培養を行った。培養液は3~4日ごとに交換し、コンフルエトに達する前にトリプシン処理し継代を行った。こうして得られた5~15継代目のDF培養細胞を実験で使用した。 2. 2. Evaluation of selected drug 2-1. Materials and methods (1) Tumor cultured cells Tumor tissue of wild-type (WT) of DF and each CTNNB1 gene mutant (T41A, S45F) histologically pathologically diagnosed are fragmented into 0.2 mg / mL proteinase. The tumor was allowed to stand at 37 ° C. for 3 hours in Dulbecco's modified Eagle's culture medium (DMEM) to be dissolved. The isolated cells were then placed in DMEM containing 10% fetal bovine serum (FBS) supplemented with 100 U / mL penicillin and 100 mg / mL streptomycin at 37 ° C. and 5% CO 2 concentrations. Cultivation was performed in the environment. Cultures were changed every 3-4 days and were trypsinized and subcultured before reaching confluet. The 5th to 15th passage DF cultured cells thus obtained were used in the experiment.
2-1.材料と方法
(1)腫瘍培養細胞
組織学的に病理診断をされたDFの野生型(WT)及び各CTNNB1遺伝子変異型(T41A, S45F)の腫瘍組織を細断片にして、0.2 mg/mLプロテナーゼを加えたDulbecco’s modified Eagle’s培養液 (DMEM) 中に37℃にて3時間静置し溶解処理を行った。その後、分離された細胞を100 U/mL濃度のペニシリンおよび100 mg/mL濃度のストレプトマイシンを添加した10%のウシ胎児血清(FBS)を含有するDMEM中で、37℃、5% CO2濃度の環境下で培養を行った。培養液は3~4日ごとに交換し、コンフルエトに達する前にトリプシン処理し継代を行った。こうして得られた5~15継代目のDF培養細胞を実験で使用した。 2. 2. Evaluation of selected drug 2-1. Materials and methods (1) Tumor cultured cells Tumor tissue of wild-type (WT) of DF and each CTNNB1 gene mutant (T41A, S45F) histologically pathologically diagnosed are fragmented into 0.2 mg / mL proteinase. The tumor was allowed to stand at 37 ° C. for 3 hours in Dulbecco's modified Eagle's culture medium (DMEM) to be dissolved. The isolated cells were then placed in DMEM containing 10% fetal bovine serum (FBS) supplemented with 100 U / mL penicillin and 100 mg / mL streptomycin at 37 ° C. and 5% CO 2 concentrations. Cultivation was performed in the environment. Cultures were changed every 3-4 days and were trypsinized and subcultured before reaching confluet. The 5th to 15th passage DF cultured cells thus obtained were used in the experiment.
(2)細胞増殖評価アッセイ
DF培養細胞を10%FBS含有メディウムに5×103/wellの濃度で96-wellプレートに播き、12時間保存し接着させた。その後、DMSOもしくは0.2~10μMの各濃度のオーラノフィン(DMSOに溶解)を含んだ10%FBS含有メディウムに交換し、24時間後の細胞増殖をMTS assay kit (CellTiter 96(登録商標)AQueous Assay, Promega社)にて付属説明書に従い、吸光度をマイクロプレートリーダー、Rainbow RC(Tecan Japan社)にて測定した。 (2) Cell proliferation evaluation assay DF cultured cells were seeded on a 96-well plate at a concentration of 5 × 10 3 / well in a medium containing 10% FBS, and stored for 12 hours for adhesion. Then, it was replaced with DMSO or a medium containing 10% FBS containing auranophin (dissolved in DMSO) at each concentration of 0.2 to 10 μM, and cell proliferation after 24 hours was measured with the MTS assay kit (CellTiter 96® AQueous Assay). , Promega), and the absorbance was measured with a microplate reader, Rainbow RC (Tecan Japan), according to the attached instructions.
DF培養細胞を10%FBS含有メディウムに5×103/wellの濃度で96-wellプレートに播き、12時間保存し接着させた。その後、DMSOもしくは0.2~10μMの各濃度のオーラノフィン(DMSOに溶解)を含んだ10%FBS含有メディウムに交換し、24時間後の細胞増殖をMTS assay kit (CellTiter 96(登録商標)AQueous Assay, Promega社)にて付属説明書に従い、吸光度をマイクロプレートリーダー、Rainbow RC(Tecan Japan社)にて測定した。 (2) Cell proliferation evaluation assay DF cultured cells were seeded on a 96-well plate at a concentration of 5 × 10 3 / well in a medium containing 10% FBS, and stored for 12 hours for adhesion. Then, it was replaced with DMSO or a medium containing 10% FBS containing auranophin (dissolved in DMSO) at each concentration of 0.2 to 10 μM, and cell proliferation after 24 hours was measured with the MTS assay kit (CellTiter 96® AQueous Assay). , Promega), and the absorbance was measured with a microplate reader, Rainbow RC (Tecan Japan), according to the attached instructions.
(3)アポトーシス評価アッセイ
DF培養細胞を10%FBS含有メディウムに5×103/wellの濃度で96-wellプレートに播き、12時間保存し接着させた。その後、DMSOもしくは5μMの濃度のFelodipine、Meloxicamもしくはオーラノフィンを含んだ10%FBS含有メディウムに交換し、24時間後のアポトーシス誘導能の指標であるCaspase 3/7の活性をCaspase assay kit (Caspase-Glo(登録商標)3/7 Assay, Promega社)にて付属説明書に従い、発光度をマイクロプレートリーダーPowerScan4 (DS Pharma Biomedical社)にて測定した。 (3) Apoptosis evaluation assay DF cultured cells were seeded on a 96-well plate at a concentration of 5 × 10 3 / well in a medium containing 10% FBS, and stored for 12 hours for adhesion. Then, it was replaced with a medium containing DMSO or 10% FBS containing Felodipine, Meloxicam or auranophin at a concentration of 5 μM, and the activity of Caspase 3/7, which is an index of apoptosis-inducing ability after 24 hours, was expressed in the Caspase assay kit (Caspase). -Glo (registered trademark) 3/7 Assay, Promega) was used to measure the luminescence with a microplate reader PowerScan4 (DS Pharma Biomedical) according to the attached instructions.
DF培養細胞を10%FBS含有メディウムに5×103/wellの濃度で96-wellプレートに播き、12時間保存し接着させた。その後、DMSOもしくは5μMの濃度のFelodipine、Meloxicamもしくはオーラノフィンを含んだ10%FBS含有メディウムに交換し、24時間後のアポトーシス誘導能の指標であるCaspase 3/7の活性をCaspase assay kit (Caspase-Glo(登録商標)3/7 Assay, Promega社)にて付属説明書に従い、発光度をマイクロプレートリーダーPowerScan4 (DS Pharma Biomedical社)にて測定した。 (3) Apoptosis evaluation assay DF cultured cells were seeded on a 96-well plate at a concentration of 5 × 10 3 / well in a medium containing 10% FBS, and stored for 12 hours for adhesion. Then, it was replaced with a medium containing DMSO or 10% FBS containing Felodipine, Meloxicam or auranophin at a concentration of 5 μM, and the activity of Caspase 3/7, which is an index of apoptosis-inducing ability after 24 hours, was expressed in the Caspase assay kit (Caspase). -Glo (registered trademark) 3/7 Assay, Promega) was used to measure the luminescence with a microplate reader PowerScan4 (DS Pharma Biomedical) according to the attached instructions.
(4)mRNA発現解析 (RT-PCR)
各薬剤のWnt/β-cateninシグナル経路に対する抑制能を評価するため、下流遺伝子として報告されているAxin-2、Cyclin-D、C-mycおよびCox-2のmRNA発現を測定した。WT、T41A変異およびS45F変異の各DF培養細胞を10%FBS含有メディウムに1×104/wellの濃度で96-wellプレートに播き、12時間保存し接着させた。5μMの各薬剤を加えたメディウムで6時間培養し、Total cellular RNA をRNeasy Mini Kit (Qiagen社)を用いて付属説明書に従い抽出した。逆転写ポリメラーゼ連鎖反応(RT-PCR)により得られたcDNAをLightCycler (Roche Diagnostics社)を用いて、real time RT-PCR反応を行った。各遺伝子のmRNAの発現レベルをインターナルコントロールとして用いたGapdhの発現レベルを基準とした相対値で評価した。Axin-2、Cyclin-D、C-mycおよびCox-2の各プライマーは以下の通りである。
Axin-2 センスプライマー: 5'-CAACAGATCATCCCATCCAACA-3'(配列番号1)、アンチセンスプライマー: 5'-ATTGGGTAGGTGTAAGGAGAC-3'(配列番号2)(PCR産物の推定サイズは80bp)
Cyclin-D センスプライマー: 5'-ACCAGCTCCTGTGCTGCGAAGTG-3'(配列番号3)、アンチセンスプライマー: 5'-GACGGCAGGACCTCCTTCTGCACA-3'(配列番号4)(PCR産物の推定サイズは157bp)
C-myc センスプライマー: 5'-CAGCACCTTCTCATGCATC-3'(配列番号5)、アンチセンスプライマー: 5'-AGGATAGTCCTTCCGAGTGG-3'(配列番号6)(PCR産物の推定サイズは126bp)
Cox-2 センスプライマー: 5'-TGCATTCTTTGCCCAGCAC-3'(配列番号7)、アンチセンスプライマー: 5'-TGCATTCTTTGCCCAGCAC-3'(配列番号8)(PCR産物の推定サイズは146bp)
Gapdh センスプライマー: 5'-AGGTCGGAGTCAACGGATTTG-3'(配列番号9)、アンチセンスプライマー: 5'-TGTAAACCATGTAGTTGAGGTCA-3'(配列番号10)(PCR産物の推定サイズは123bp)。 (4) mRNA expression analysis (RT-PCR)
In order to evaluate the inhibitory ability of each drug against the Wnt / β-catenin signaling pathway, the mRNA expression of Axin-2, Cyclin-D, C-myc and Cox-2, which have been reported as downstream genes, was measured. WT, T41A and S45F mutant DF cultured cells were seeded on a 96-well plate at a concentration of 1 × 10 4 / well in a medium containing 10% FBS and stored for 12 hours for adhesion. The cells were cultured in a medium containing 5 μM of each drug for 6 hours, and Total cellular RNA was extracted using RNeasy Mini Kit (Qiagen) according to the attached instructions. The cDNA obtained by reverse transcription polymerase chain reaction (RT-PCR) was subjected to real-time RT-PCR reaction using LightCycler (Roche Diagnostics). The mRNA expression level of each gene was evaluated as a relative value based on the Gapdh expression level used as an internal control. The primers for Axin-2, Cyclin-D, C-myc and Cox-2 are as follows.
Axin-2 Sense Primer: 5'-CAACAGATCATCCCATCCAACA-3'(SEQ ID NO: 1), Antisense Primer: 5'-ATTGGGTAGGTGTAAGGAGAC-3' (SEQ ID NO: 2) (estimated size of PCR product is 80 bp)
Cyclin-D Sense Primer: 5'-ACCAGCTCCTGTGCTGCGAAGTG-3'(SEQ ID NO: 3), Antisense Primer: 5'-GACGGCAGGACCTCCTTCTGCACA-3' (SEQ ID NO: 4) (estimated PCR product size is 157 bp)
C-myc sense primer: 5'-CAGCACCTTCTCATGCATC-3'(SEQ ID NO: 5), antisense primer: 5'-AGGATAGTCCTTCCGAGTGG-3' (SEQ ID NO: 6) (estimated size of PCR product is 126 bp)
Cox-2 sense primer: 5'-TGCATTCTTTGCCCAGCAC-3'(SEQ ID NO: 7), antisense primer: 5'-TGCATTCTTTGCCCAGCAC-3' (SEQ ID NO: 8) (estimated size of PCR product is 146 bp)
Gapdh sense primer: 5'-AGGTCGGAGTCAACGGATTTG-3'(SEQ ID NO: 9), antisense primer: 5'-TGTAAACCATGTAGTTGAGGTCA-3' (SEQ ID NO: 10) (estimated size of PCR product is 123 bp).
各薬剤のWnt/β-cateninシグナル経路に対する抑制能を評価するため、下流遺伝子として報告されているAxin-2、Cyclin-D、C-mycおよびCox-2のmRNA発現を測定した。WT、T41A変異およびS45F変異の各DF培養細胞を10%FBS含有メディウムに1×104/wellの濃度で96-wellプレートに播き、12時間保存し接着させた。5μMの各薬剤を加えたメディウムで6時間培養し、Total cellular RNA をRNeasy Mini Kit (Qiagen社)を用いて付属説明書に従い抽出した。逆転写ポリメラーゼ連鎖反応(RT-PCR)により得られたcDNAをLightCycler (Roche Diagnostics社)を用いて、real time RT-PCR反応を行った。各遺伝子のmRNAの発現レベルをインターナルコントロールとして用いたGapdhの発現レベルを基準とした相対値で評価した。Axin-2、Cyclin-D、C-mycおよびCox-2の各プライマーは以下の通りである。
Axin-2 センスプライマー: 5'-CAACAGATCATCCCATCCAACA-3'(配列番号1)、アンチセンスプライマー: 5'-ATTGGGTAGGTGTAAGGAGAC-3'(配列番号2)(PCR産物の推定サイズは80bp)
Cyclin-D センスプライマー: 5'-ACCAGCTCCTGTGCTGCGAAGTG-3'(配列番号3)、アンチセンスプライマー: 5'-GACGGCAGGACCTCCTTCTGCACA-3'(配列番号4)(PCR産物の推定サイズは157bp)
C-myc センスプライマー: 5'-CAGCACCTTCTCATGCATC-3'(配列番号5)、アンチセンスプライマー: 5'-AGGATAGTCCTTCCGAGTGG-3'(配列番号6)(PCR産物の推定サイズは126bp)
Cox-2 センスプライマー: 5'-TGCATTCTTTGCCCAGCAC-3'(配列番号7)、アンチセンスプライマー: 5'-TGCATTCTTTGCCCAGCAC-3'(配列番号8)(PCR産物の推定サイズは146bp)
Gapdh センスプライマー: 5'-AGGTCGGAGTCAACGGATTTG-3'(配列番号9)、アンチセンスプライマー: 5'-TGTAAACCATGTAGTTGAGGTCA-3'(配列番号10)(PCR産物の推定サイズは123bp)。 (4) mRNA expression analysis (RT-PCR)
In order to evaluate the inhibitory ability of each drug against the Wnt / β-catenin signaling pathway, the mRNA expression of Axin-2, Cyclin-D, C-myc and Cox-2, which have been reported as downstream genes, was measured. WT, T41A and S45F mutant DF cultured cells were seeded on a 96-well plate at a concentration of 1 × 10 4 / well in a medium containing 10% FBS and stored for 12 hours for adhesion. The cells were cultured in a medium containing 5 μM of each drug for 6 hours, and Total cellular RNA was extracted using RNeasy Mini Kit (Qiagen) according to the attached instructions. The cDNA obtained by reverse transcription polymerase chain reaction (RT-PCR) was subjected to real-time RT-PCR reaction using LightCycler (Roche Diagnostics). The mRNA expression level of each gene was evaluated as a relative value based on the Gapdh expression level used as an internal control. The primers for Axin-2, Cyclin-D, C-myc and Cox-2 are as follows.
Axin-2 Sense Primer: 5'-CAACAGATCATCCCATCCAACA-3'(SEQ ID NO: 1), Antisense Primer: 5'-ATTGGGTAGGTGTAAGGAGAC-3' (SEQ ID NO: 2) (estimated size of PCR product is 80 bp)
Cyclin-D Sense Primer: 5'-ACCAGCTCCTGTGCTGCGAAGTG-3'(SEQ ID NO: 3), Antisense Primer: 5'-GACGGCAGGACCTCCTTCTGCACA-3' (SEQ ID NO: 4) (estimated PCR product size is 157 bp)
C-myc sense primer: 5'-CAGCACCTTCTCATGCATC-3'(SEQ ID NO: 5), antisense primer: 5'-AGGATAGTCCTTCCGAGTGG-3' (SEQ ID NO: 6) (estimated size of PCR product is 126 bp)
Cox-2 sense primer: 5'-TGCATTCTTTGCCCAGCAC-3'(SEQ ID NO: 7), antisense primer: 5'-TGCATTCTTTGCCCAGCAC-3' (SEQ ID NO: 8) (estimated size of PCR product is 146 bp)
Gapdh sense primer: 5'-AGGTCGGAGTCAACGGATTTG-3'(SEQ ID NO: 9), antisense primer: 5'-TGTAAACCATGTAGTTGAGGTCA-3' (SEQ ID NO: 10) (estimated size of PCR product is 123 bp).
(5)マウスモデル
DFを発症するマウスモデルとしては、Ng2/Cspg4-CreERマウスをCtnnb1lox(ex3)マウスと交配させたCtnnb1変異モデル(Sato S. et al. Cell Rep. 16(4):917-927 2016)およびApc変異モデルとしてのApc1638Nマウスモデル(Smits R. et al. Gastroenterology, 114(2):275-83 1998)の2種が報告されている。前者はタモキシフェン存在下にNG2を発現している細胞において酵素Creを発現し、loxPで挟まれたβ-catenin遺伝子(CTNNB1)のエクソン3を欠失することができるマウスである。後者は、家族性大腸腺腫症の原因遺伝子であるAPCに変異を持つマウスである。デスモイドの発症原因は大きく2つに分かれ、CTNNB1遺伝子のエクソン3に変異が入る場合とAPC遺伝子に変異が入る場合である。発生部位はそれぞれ異なることが多いが、振る舞いや薬物に対する反応性は類似していることが報告されている(Heinrich MC et al, J Clin Oncol, 24(29):4764-74 2006) (Nishida Y et al, Int J Clin Oncol, 20(6):1211-7 2015)。予備試験で両モデルにおけるDFの形成を確認した結果、Ctnnb1変異モデルでは明らかなDFの形成がみられなかったため、本試験ではApc変異モデルを用いた。APCとβ-cateninは複合体を形成し、それぞれの変異はβ-cateninの分解を阻害するため、蓄積したβ-cateninが核内移行し、デスモイドが発生するとされている。したがって、APC変異マウスを用いて薬効を評価することはデスモイド発生のメカニズムから考えて妥当と考えられる。このマウスに対し、生後1か月(5週齢)よりオーラノフィンの投与量がlmg/kg/dayとなるように混餌投与した。マウスにlmg/kg/day投与した場合、ヒト等価用量が12.3であるため、ヒトでの投与量は約0.08mg/kg/dayとなる。通常ヒトに使用されているオーラノフィンは6mg/dayであり、60kg体重とすると0.1mg/kg/dayとなり、今回のマウスへの投与量と同等の服用量と考えられる。生後6か月時点での腫瘍数、腫瘍径、体重について投与群と対照群(溶媒のみ)を比較した。なお、Apc変異モデルの雌ではデスモイド発生数が少ないため(Poon R, et al, PLoS One. 2012;7(5):e37940.)、評価に適した雄マウスを用いることにした。腫瘍数としては皮下及び筋肉内に発現した腫瘍の数をカウントし、腫瘍径は肉眼的最大径を計測した。統計学的有意差検定では2群聞の差をStudent-t検定にて解析した。 (5) Mouse model As a mouse model that develops DF, a Ctnnb1 mutation model (Sato S. et al. Cell Rep. 16 (4): 917) in which Ng2 / Cspg4-CreER mice were mated with Ctnnb1 lox (ex3) mice. -927 2016) and the Apc1638N mouse model as an Apc mutation model (Smits R. et al. Gastroenterology, 114 (2): 275-83 1998) have been reported. The former is a mouse that expresses the enzyme Cre in cells expressing NG2 in the presence of tamoxifen and can delete the exon 3 of the β-catenin gene (CTNNB1) sandwiched between loxP. The latter are mice with a mutation in APC, the causative gene of familial adenomatous polyposis. The causes of the onset of desmoid are roughly divided into two cases, one is when the exon 3 of the CTNNB1 gene is mutated and the other is when the APC gene is mutated. Although the sites of occurrence are often different, it has been reported that behavior and responsiveness to drugs are similar (Heinrich MC et al, J Clin Oncol, 24 (29): 4674-74 2006) (Nishida Y). et al, Int J Clin Oncol, 20 (6): 1211-7 2015). As a result of confirming the formation of DF in both models in the preliminary test, no obvious DF formation was observed in the Ctnnb1 mutation model, so the Apc mutation model was used in this study. It is said that APC and β-catenin form a complex, and each mutation inhibits the degradation of β-catenin, so that the accumulated β-catenin translocates into the nucleus and desmoids are generated. Therefore, it is considered appropriate to evaluate the efficacy of APC mutant mice from the viewpoint of the mechanism of desmoid development. These mice were fed a diet so that the dose of auranofin was l mg / kg / day from 1 month (5 weeks of age) after birth. When lmg / kg / day is administered to mice, the human equivalent dose is 12.3, so the dose in humans is about 0.08 mg / kg / day. The amount of auranofin normally used in humans is 6 mg / day, and when the body weight is 60 kg, it is 0.1 mg / kg / day, which is considered to be the same dose as the dose to mice this time. The number of tumors, tumor diameter, and body weight at 6 months of age were compared between the administration group and the control group (solvent only). Since the number of desmoids generated in females of the Apc mutation model is small (Poon R, et al, PLoS One. 2012; 7 (5): e37940.), We decided to use male mice suitable for evaluation. As the number of tumors, the number of tumors developed subcutaneously and intramuscularly was counted, and the maximum tumor diameter was measured macroscopically. In the statistical significance test, the difference between the two groups was analyzed by the Student-t test.
DFを発症するマウスモデルとしては、Ng2/Cspg4-CreERマウスをCtnnb1lox(ex3)マウスと交配させたCtnnb1変異モデル(Sato S. et al. Cell Rep. 16(4):917-927 2016)およびApc変異モデルとしてのApc1638Nマウスモデル(Smits R. et al. Gastroenterology, 114(2):275-83 1998)の2種が報告されている。前者はタモキシフェン存在下にNG2を発現している細胞において酵素Creを発現し、loxPで挟まれたβ-catenin遺伝子(CTNNB1)のエクソン3を欠失することができるマウスである。後者は、家族性大腸腺腫症の原因遺伝子であるAPCに変異を持つマウスである。デスモイドの発症原因は大きく2つに分かれ、CTNNB1遺伝子のエクソン3に変異が入る場合とAPC遺伝子に変異が入る場合である。発生部位はそれぞれ異なることが多いが、振る舞いや薬物に対する反応性は類似していることが報告されている(Heinrich MC et al, J Clin Oncol, 24(29):4764-74 2006) (Nishida Y et al, Int J Clin Oncol, 20(6):1211-7 2015)。予備試験で両モデルにおけるDFの形成を確認した結果、Ctnnb1変異モデルでは明らかなDFの形成がみられなかったため、本試験ではApc変異モデルを用いた。APCとβ-cateninは複合体を形成し、それぞれの変異はβ-cateninの分解を阻害するため、蓄積したβ-cateninが核内移行し、デスモイドが発生するとされている。したがって、APC変異マウスを用いて薬効を評価することはデスモイド発生のメカニズムから考えて妥当と考えられる。このマウスに対し、生後1か月(5週齢)よりオーラノフィンの投与量がlmg/kg/dayとなるように混餌投与した。マウスにlmg/kg/day投与した場合、ヒト等価用量が12.3であるため、ヒトでの投与量は約0.08mg/kg/dayとなる。通常ヒトに使用されているオーラノフィンは6mg/dayであり、60kg体重とすると0.1mg/kg/dayとなり、今回のマウスへの投与量と同等の服用量と考えられる。生後6か月時点での腫瘍数、腫瘍径、体重について投与群と対照群(溶媒のみ)を比較した。なお、Apc変異モデルの雌ではデスモイド発生数が少ないため(Poon R, et al, PLoS One. 2012;7(5):e37940.)、評価に適した雄マウスを用いることにした。腫瘍数としては皮下及び筋肉内に発現した腫瘍の数をカウントし、腫瘍径は肉眼的最大径を計測した。統計学的有意差検定では2群聞の差をStudent-t検定にて解析した。 (5) Mouse model As a mouse model that develops DF, a Ctnnb1 mutation model (Sato S. et al. Cell Rep. 16 (4): 917) in which Ng2 / Cspg4-CreER mice were mated with Ctnnb1 lox (ex3) mice. -927 2016) and the Apc1638N mouse model as an Apc mutation model (Smits R. et al. Gastroenterology, 114 (2): 275-83 1998) have been reported. The former is a mouse that expresses the enzyme Cre in cells expressing NG2 in the presence of tamoxifen and can delete the exon 3 of the β-catenin gene (CTNNB1) sandwiched between loxP. The latter are mice with a mutation in APC, the causative gene of familial adenomatous polyposis. The causes of the onset of desmoid are roughly divided into two cases, one is when the exon 3 of the CTNNB1 gene is mutated and the other is when the APC gene is mutated. Although the sites of occurrence are often different, it has been reported that behavior and responsiveness to drugs are similar (Heinrich MC et al, J Clin Oncol, 24 (29): 4674-74 2006) (Nishida Y). et al, Int J Clin Oncol, 20 (6): 1211-7 2015). As a result of confirming the formation of DF in both models in the preliminary test, no obvious DF formation was observed in the Ctnnb1 mutation model, so the Apc mutation model was used in this study. It is said that APC and β-catenin form a complex, and each mutation inhibits the degradation of β-catenin, so that the accumulated β-catenin translocates into the nucleus and desmoids are generated. Therefore, it is considered appropriate to evaluate the efficacy of APC mutant mice from the viewpoint of the mechanism of desmoid development. These mice were fed a diet so that the dose of auranofin was l mg / kg / day from 1 month (5 weeks of age) after birth. When lmg / kg / day is administered to mice, the human equivalent dose is 12.3, so the dose in humans is about 0.08 mg / kg / day. The amount of auranofin normally used in humans is 6 mg / day, and when the body weight is 60 kg, it is 0.1 mg / kg / day, which is considered to be the same dose as the dose to mice this time. The number of tumors, tumor diameter, and body weight at 6 months of age were compared between the administration group and the control group (solvent only). Since the number of desmoids generated in females of the Apc mutation model is small (Poon R, et al, PLoS One. 2012; 7 (5): e37940.), We decided to use male mice suitable for evaluation. As the number of tumors, the number of tumors developed subcutaneously and intramuscularly was counted, and the maximum tumor diameter was measured macroscopically. In the statistical significance test, the difference between the two groups was analyzed by the Student-t test.
2-2.結果
(1)細胞増殖抑制効果
DF培養細胞に対するオーラノフィンの増殖抑制効果をWT株とS45F株にて評価した。WT株ではオーラノフィンは0.5~1.0μMの濃度において16~18%のわずかな増殖促進効果を認め、5μM以上の高濃度下では濃度依存的に強い抑制が認められた(図1A)。10μMではコントロールと比較し約80%の抑制を認めた(5μM vs l0μM, p=0.0012)。一方、S45F変異株では、オーラノフィン0.5~l.0μMの濃度で有意な増殖促進は認めなかったが、5μM以上の高濃度下では統計学的に有意な抑制が認められ、コントロールと比較して約60%の抑制を認めた(図1B)。 2-2. Results (1) Cell growth inhibitory effect The growth inhibitory effect of auranofin on DF cultured cells was evaluated in the WT strain and the S45F strain. In the WT strain, auranofin showed a slight growth-promoting effect of 16 to 18% at a concentration of 0.5 to 1.0 μM, and a strong concentration-dependent suppression was observed at a high concentration of 5 μM or more (Fig. 1A). At 10 μM, about 80% suppression was observed compared to the control (5 μM vs l0 μM, p = 0.0012). On the other hand, in the S45F mutant strain, no significant growth promotion was observed at a concentration of 0.5 to l.0 μM of auranofin, but statistically significant suppression was observed at a high concentration of 5 μM or more, which was compared with the control. A suppression of about 60% was observed (Fig. 1B).
(1)細胞増殖抑制効果
DF培養細胞に対するオーラノフィンの増殖抑制効果をWT株とS45F株にて評価した。WT株ではオーラノフィンは0.5~1.0μMの濃度において16~18%のわずかな増殖促進効果を認め、5μM以上の高濃度下では濃度依存的に強い抑制が認められた(図1A)。10μMではコントロールと比較し約80%の抑制を認めた(5μM vs l0μM, p=0.0012)。一方、S45F変異株では、オーラノフィン0.5~l.0μMの濃度で有意な増殖促進は認めなかったが、5μM以上の高濃度下では統計学的に有意な抑制が認められ、コントロールと比較して約60%の抑制を認めた(図1B)。 2-2. Results (1) Cell growth inhibitory effect The growth inhibitory effect of auranofin on DF cultured cells was evaluated in the WT strain and the S45F strain. In the WT strain, auranofin showed a slight growth-promoting effect of 16 to 18% at a concentration of 0.5 to 1.0 μM, and a strong concentration-dependent suppression was observed at a high concentration of 5 μM or more (Fig. 1A). At 10 μM, about 80% suppression was observed compared to the control (5 μM vs l0 μM, p = 0.0012). On the other hand, in the S45F mutant strain, no significant growth promotion was observed at a concentration of 0.5 to l.0 μM of auranofin, but statistically significant suppression was observed at a high concentration of 5 μM or more, which was compared with the control. A suppression of about 60% was observed (Fig. 1B).
(2)アポトーシス誘導効果
各変異型株のDF培養細胞に対するアポトーシス誘導効果をCaspase 3/7活性を測定することで評価した。その結果、Felodipine、Meloxicamおよびオーラノフィンはいずれもコントロールと比較し有意なCaspase 3/7活性の増加を認めず、明らかなアポトーシス誘導効果は示唆されなかった(図2)。 (2) Apoptosis-inducing effect The apoptosis-inducing effect of each mutant strain on DF cultured cells was evaluated by measuring Caspase 3/7 activity. As a result, none of felodipine, meloxicam and auranofin showed a significant increase in Caspase 3/7 activity as compared with the control, suggesting no clear apoptosis-inducing effect (Fig. 2).
各変異型株のDF培養細胞に対するアポトーシス誘導効果をCaspase 3/7活性を測定することで評価した。その結果、Felodipine、Meloxicamおよびオーラノフィンはいずれもコントロールと比較し有意なCaspase 3/7活性の増加を認めず、明らかなアポトーシス誘導効果は示唆されなかった(図2)。 (2) Apoptosis-inducing effect The apoptosis-inducing effect of each mutant strain on DF cultured cells was evaluated by measuring Caspase 3/7 activity. As a result, none of felodipine, meloxicam and auranofin showed a significant increase in Caspase 3/7 activity as compared with the control, suggesting no clear apoptosis-inducing effect (Fig. 2).
(3)転写因子の発現抑制効果
Felodipine、Meloxicamもしくはオーラノフィンの投与により、Wnt/β-cateninシグナルの下流遺伝子であるAxin-2、Cyclin-D、C-mycおよびCox-2の発現にそれぞれ異なる変動がみられた(図3A~C)。WT細胞およびT41A変異細胞では、オーラノフィン投与により発現の変動は他の薬剤と同様に遺伝子毎に幅がみられたが、Cyclin-Dの発現は一様に抑制された(図3A、B)。一方、S45F変異株においては、オーラノフィンは他の2剤と異なり4遺伝子全てにおいて発現抑制効果がみられ、特にCyclin-D、C-mycおよびCox-2の発現は強く抑制された(図3C)。 (3) Transcription factor expression inhibitory effect By administration of felodipine, meloxicam or auranofin, the expression of Axin-2, Cyclin-D, C-myc and Cox-2, which are downstream genes of Wnt / β-catenin signal, is increased, respectively. Different fluctuations were observed (FIGS. 3A-C). In WT cells and T41A mutant cells, the variation in expression was observed for each gene as with other drugs by administration of auranofin, but the expression of Cyclin-D was uniformly suppressed (FIGS. 3A and 3B). ). On the other hand, in the S45F mutant strain, unlike the other two agents, auranofin showed an expression-suppressing effect on all four genes, and in particular, the expression of Cyclin-D, C-myc and Cox-2 was strongly suppressed (Fig.). 3C).
Felodipine、Meloxicamもしくはオーラノフィンの投与により、Wnt/β-cateninシグナルの下流遺伝子であるAxin-2、Cyclin-D、C-mycおよびCox-2の発現にそれぞれ異なる変動がみられた(図3A~C)。WT細胞およびT41A変異細胞では、オーラノフィン投与により発現の変動は他の薬剤と同様に遺伝子毎に幅がみられたが、Cyclin-Dの発現は一様に抑制された(図3A、B)。一方、S45F変異株においては、オーラノフィンは他の2剤と異なり4遺伝子全てにおいて発現抑制効果がみられ、特にCyclin-D、C-mycおよびCox-2の発現は強く抑制された(図3C)。 (3) Transcription factor expression inhibitory effect By administration of felodipine, meloxicam or auranofin, the expression of Axin-2, Cyclin-D, C-myc and Cox-2, which are downstream genes of Wnt / β-catenin signal, is increased, respectively. Different fluctuations were observed (FIGS. 3A-C). In WT cells and T41A mutant cells, the variation in expression was observed for each gene as with other drugs by administration of auranofin, but the expression of Cyclin-D was uniformly suppressed (FIGS. 3A and 3B). ). On the other hand, in the S45F mutant strain, unlike the other two agents, auranofin showed an expression-suppressing effect on all four genes, and in particular, the expression of Cyclin-D, C-myc and Cox-2 was strongly suppressed (Fig.). 3C).
(4)デスモイド発症マウスモデルでのオーラノフィン薬効評価
デスモイド発症マウスモデルApc1638Nマウスの生後5週齢より、オーラノフィンを含有しない餌(無投与群)またはオーラノフィン混餌(オーラノフィン投与群)を摂取させた(図4A)。無投与群のマウスの生後6か月時の評価では、皮下、筋・筋膜に肉眼的腫瘍の形成が認められ(図4B、C)、腫瘍数は、無投与群が39個(n=5)、オーラノフィン投与群が28個(n=10)であり、本薬投与群で統計学的に有意な腫瘍数の減少を認めた(図5A。p<0.05)。平均体重に関してはオーラノフィン投与群と無投与群の聞に有意差を認めなかった(図5B)。組織学的評価ではオーラノフィン投与群で細胞密度(cellularity)が低くなっていた(図6)。デスモイドにおいてはサイズの縮小だけではなく、細胞密度の低下が腫瘍の増殖度を表すと考えられているため、細胞密度の減少は腫瘍の抑制効果を示す。 (4) Evaluation of auranofin drug efficacy in desmoid-onset mouse model From 5 weeks of age of desmoid-onset mouse model Apc1638N mouse, auranofin-free diet (non-administration group) or auranofin mixed diet (oranofin administration group) ) Was ingested (Fig. 4A). In the 6-month-old evaluation of the mice in the non-administration group, gross tumors were observed subcutaneously and in the muscles and fascia (Figs. 4B and C), and the number of tumors was 39 in the non-administration group (n =). 5) There were 28 tumors (n = 10) in the oranofin-administered group, and a statistically significant decrease in the number of tumors was observed in the pomalidomide-administered group (Fig. 5A, p <0.05). Regarding the average body weight, there was no significant difference between the auranofin-administered group and the non-administered group (Fig. 5B). Histological evaluation showed that the cell density was low in the auranofin-administered group (Fig. 6). In desmoids, not only the reduction in size but also the decrease in cell density is considered to indicate the degree of tumor growth. Therefore, the decrease in cell density has a tumor-suppressing effect.
デスモイド発症マウスモデルApc1638Nマウスの生後5週齢より、オーラノフィンを含有しない餌(無投与群)またはオーラノフィン混餌(オーラノフィン投与群)を摂取させた(図4A)。無投与群のマウスの生後6か月時の評価では、皮下、筋・筋膜に肉眼的腫瘍の形成が認められ(図4B、C)、腫瘍数は、無投与群が39個(n=5)、オーラノフィン投与群が28個(n=10)であり、本薬投与群で統計学的に有意な腫瘍数の減少を認めた(図5A。p<0.05)。平均体重に関してはオーラノフィン投与群と無投与群の聞に有意差を認めなかった(図5B)。組織学的評価ではオーラノフィン投与群で細胞密度(cellularity)が低くなっていた(図6)。デスモイドにおいてはサイズの縮小だけではなく、細胞密度の低下が腫瘍の増殖度を表すと考えられているため、細胞密度の減少は腫瘍の抑制効果を示す。 (4) Evaluation of auranofin drug efficacy in desmoid-onset mouse model From 5 weeks of age of desmoid-onset mouse model Apc1638N mouse, auranofin-free diet (non-administration group) or auranofin mixed diet (oranofin administration group) ) Was ingested (Fig. 4A). In the 6-month-old evaluation of the mice in the non-administration group, gross tumors were observed subcutaneously and in the muscles and fascia (Figs. 4B and C), and the number of tumors was 39 in the non-administration group (n =). 5) There were 28 tumors (n = 10) in the oranofin-administered group, and a statistically significant decrease in the number of tumors was observed in the pomalidomide-administered group (Fig. 5A, p <0.05). Regarding the average body weight, there was no significant difference between the auranofin-administered group and the non-administered group (Fig. 5B). Histological evaluation showed that the cell density was low in the auranofin-administered group (Fig. 6). In desmoids, not only the reduction in size but also the decrease in cell density is considered to indicate the degree of tumor growth. Therefore, the decrease in cell density has a tumor-suppressing effect.
3.考察
ドラッグ・リポジショニング戦略によって見出されたオーラノフィンは細胞レベル及び動物レベルの実験でDFに対する薬効を発揮した。腫瘍数を減少させるだけでなく、組織中の細胞密度を減弱させることは、発生しても増大活性がほどんどないことを意味する。この事実は、オーラノフィンがDFの治療に有望であることを示す。また、DFの特徴や病態及び他の疾患との共通性等を考慮すれば、オーラノフィンは、各種線維腫(軟性線維腫、弾性線維腫、硬化性線維腫、皮膚線維腫等)、表在性線維腫症(手掌線維腫症、足底線維腫症等)弧発性線維性腫瘍、炎症性筋線維芽細胞性腫瘍、肥厚性瘢痕、ケロイド、肺線維症・腎線維症などの臓器線維症等、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患に広くその適用が期待される。 3. 3. Discussion Auranofin found by the drug repositioning strategy exerted a medicinal effect on DF in cell-level and animal-level experiments. Not only reducing the number of tumors, but also reducing the cell density in the tissue means that there is little increasing activity when it occurs. This fact indicates that auranofin is promising for the treatment of DF. In addition, considering the characteristics and pathophysiology of DF and commonality with other diseases, auranofin is a type of fibroma (soft fibroma, elastic fibroma, sclerosing fibroma, cutaneous fibroma, etc.), table. Intrinsic fibromatosis (palm fibromatosis, sole fibromatosis, etc.) Organs such as sporadic fibroma, inflammatory myofibroblastic tumor, hypertrophic scar, keloid, pulmonary fibrosis / renal fibrosis Its application is expected to be widely applied to fibroblastic or myofibroblastic tumors / diseases such as fibrosis.
ドラッグ・リポジショニング戦略によって見出されたオーラノフィンは細胞レベル及び動物レベルの実験でDFに対する薬効を発揮した。腫瘍数を減少させるだけでなく、組織中の細胞密度を減弱させることは、発生しても増大活性がほどんどないことを意味する。この事実は、オーラノフィンがDFの治療に有望であることを示す。また、DFの特徴や病態及び他の疾患との共通性等を考慮すれば、オーラノフィンは、各種線維腫(軟性線維腫、弾性線維腫、硬化性線維腫、皮膚線維腫等)、表在性線維腫症(手掌線維腫症、足底線維腫症等)弧発性線維性腫瘍、炎症性筋線維芽細胞性腫瘍、肥厚性瘢痕、ケロイド、肺線維症・腎線維症などの臓器線維症等、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患に広くその適用が期待される。 3. 3. Discussion Auranofin found by the drug repositioning strategy exerted a medicinal effect on DF in cell-level and animal-level experiments. Not only reducing the number of tumors, but also reducing the cell density in the tissue means that there is little increasing activity when it occurs. This fact indicates that auranofin is promising for the treatment of DF. In addition, considering the characteristics and pathophysiology of DF and commonality with other diseases, auranofin is a type of fibroma (soft fibroma, elastic fibroma, sclerosing fibroma, cutaneous fibroma, etc.), table. Intrinsic fibromatosis (palm fibromatosis, sole fibromatosis, etc.) Organs such as sporadic fibroma, inflammatory myofibroblastic tumor, hypertrophic scar, keloid, pulmonary fibrosis / renal fibrosis Its application is expected to be widely applied to fibroblastic or myofibroblastic tumors / diseases such as fibrosis.
本発明の治療薬は、既認可薬であるオーラノフィン又はその薬学的に許容可能な塩を有効成分とする。オーラノフィンは抗リウマチ薬の有効成分としての使用実績があり、至適服用量・副作用・禁忌など、安全性が確立されている。この事実は、オーラノフィンを有効成分とした本発明の治療薬を臨床応用する上で大きなメリットとなる。本発明の治療薬は線維芽細胞/筋線維芽細胞に対して増殖抑制効果を示すものであり、DFはもとより、その他の線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の治療への適用が大いに期待される。
The therapeutic agent of the present invention contains the approved drug auranofin or a pharmaceutically acceptable salt thereof as an active ingredient. Auranofin has been used as an active ingredient in anti-rheumatic drugs, and its safety has been established, including optimal dosage, side effects, and contraindications. This fact is a great merit in clinical application of the therapeutic agent of the present invention containing auranofin as an active ingredient. The therapeutic agent of the present invention exhibits a growth inhibitory effect on fibroblasts / myofibroblasts, and is applied not only to DF but also to the treatment of other fibroblastic or myofibroblastic tumors / diseases. Is highly expected.
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of the papers, published patent gazettes, patent gazettes, etc. specified in this specification shall be cited by reference in their entirety.
配列番号1~10:人工配列の説明:プライマー
SEQ ID NO: 1-10: Description of artificial sequence: Primer
Claims (5)
- オーラノフィン又はその薬学的に許容可能な塩を有効成分として含有する、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬。 A therapeutic agent for fibroblastic or myofibroblastic tumors / diseases containing auranofin or a pharmaceutically acceptable salt thereof as an active ingredient.
- 線維芽細胞性又は筋線維芽細胞性腫瘍・疾患が、線維腫、表在性線維腫症、深在性線維腫症、弧発性線維性腫瘍、炎症性筋線維芽細胞性腫瘍、肥厚性瘢痕、ケロイド又は臓器線維症である、請求項1に記載の治療薬。 Fibroblastic or myofibroblastic tumors / diseases are fibroma, superficial fibromatosis, deep fibromatosis, sporadic fibroblastic tumor, inflammatory myofibroblastic tumor, hypertrophic The therapeutic agent according to claim 1, which is scar, keloid or organ fibrosis.
- 線維芽細胞性又は筋線維芽細胞性腫瘍・疾患がデスモイド型線維腫症である、請求項1に記載の治療薬。 The therapeutic agent according to claim 1, wherein the fibroblastic or myofibroblastic tumor / disease is desmoid fibromatosis.
- オーラノフィン又はその薬学的に許容される塩を治療上有効量、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の患者に投与するステップを含む、線維芽細胞性又は筋線維芽細胞性腫瘍・疾患の治療法。 Fibroblastic or myofibroblastic, including the step of administering auranofin or a pharmaceutically acceptable salt thereof in a therapeutically effective amount to a patient with a fibroblastic or myofibroblastic tumor / disease. Treatment of tumors and diseases.
- 線維芽細胞性又は筋線維芽細胞性腫瘍・疾患治療薬を製造するための、オーラノフィン又はその薬学的に許容可能な塩の使用。 Use of auranofin or a pharmaceutically acceptable salt thereof for producing a therapeutic agent for fibroblastic or myofibroblastic tumors / diseases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021533858A JPWO2021014812A1 (en) | 2019-07-24 | 2020-06-11 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019135877 | 2019-07-24 | ||
JP2019-135877 | 2019-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021014812A1 true WO2021014812A1 (en) | 2021-01-28 |
Family
ID=74193038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/023111 WO2021014812A1 (en) | 2019-07-24 | 2020-06-11 | Treatment for fibroblastic or myofibroblastic tumor and disease |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021014812A1 (en) |
WO (1) | WO2021014812A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017525708A (en) * | 2014-08-21 | 2017-09-07 | コリア ユナイテッド ファーマ. インコーポレーテッド | A pharmaceutical composition for preventing or treating liver fibrosis or cirrhosis, comprising a gold preparation |
WO2018117345A1 (en) * | 2016-12-20 | 2018-06-28 | 울산대학교 산학협력단 | Selective induction of cancer apoptosis through combined inhibition of glutathione, thioredoxin, and nrf2 antioxidant |
WO2019155086A1 (en) * | 2018-02-12 | 2019-08-15 | Cinda Pharma Ab | Thioredoxin reductase inhibitors for use in the treatment of cancer |
-
2020
- 2020-06-11 JP JP2021533858A patent/JPWO2021014812A1/ja active Pending
- 2020-06-11 WO PCT/JP2020/023111 patent/WO2021014812A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017525708A (en) * | 2014-08-21 | 2017-09-07 | コリア ユナイテッド ファーマ. インコーポレーテッド | A pharmaceutical composition for preventing or treating liver fibrosis or cirrhosis, comprising a gold preparation |
WO2018117345A1 (en) * | 2016-12-20 | 2018-06-28 | 울산대학교 산학협력단 | Selective induction of cancer apoptosis through combined inhibition of glutathione, thioredoxin, and nrf2 antioxidant |
WO2019155086A1 (en) * | 2018-02-12 | 2019-08-15 | Cinda Pharma Ab | Thioredoxin reductase inhibitors for use in the treatment of cancer |
Non-Patent Citations (3)
Title |
---|
NISHIDA, YOSHIHIRO: "Mutation analysis for desmoid type fibromatosis and research for the establishment of a novel treatment algorithm", SCIENTIFIC RESEARCH GRANT PROGRAM RESEARCH RESULTS REPORT, 29 March 2019 (2019-03-29) * |
ONODERA TAKEFUMI, MOMOSE ISAO, KAWADA MANABU: "Potential anticancer activity of auranofin", CHEMICAL AND PHARMACEUTICAL BULLTEIN, vol. 67, no. 3, 2019, pages 186 - 191, XP055786202, ISSN: 1347-5223 * |
ROSENBERG LAURA, YOON CHARLES H, SHARMA GAURAV, BERTAGNOLLI MONICA M, CHO NANCY L: "Sorafenib inhibits proliferation and invasion in desmoid-derived cells by targeting Ras/MEK/ERK and PI3K/Akt/mTOR pathways", CARCINOGENESIS, vol. 39, no. 5, 2018, pages 681 - 688, XP055786206, ISSN: 0143-3334 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021014812A1 (en) | 2021-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2856646C (en) | Combination treatment of cancer | |
US12083136B2 (en) | Combination of BCL-2/BCL-XL inhibitors and chemotherapeutic agent and use thereof | |
AU2019315466B2 (en) | Synergistic antitumor effect of Bcl-2 inhibitor combined with rituximab and/or bendamustine or Bcl-2 inhibitor combined with CHOP | |
KR20200014791A (en) | Tinostamustine for use in treating sarcomas | |
US20190231735A1 (en) | Methods for treating cancer | |
US11491168B2 (en) | Combination of Bcl-2/Bcl-xL inhibitors and chemotherapeutic agent and use thereof | |
RU2592230C2 (en) | Cancer cell apoptosis | |
JP7564619B2 (en) | Pharmaceutical composition for preventing and treating pancreatic cancer containing gossypol and phenformin as active ingredients | |
WO2022097287A1 (en) | Therapeutic agent for progressive disease caused by increase in eomes-positive cd4-positive t cells | |
EP1545710B1 (en) | Use of n-(3-methoxy-5-methylpyrazin-2-yl)-2-(4-[1,3,4-oxadiazol-2-yl]phenyl)pyridine-3-sulphonamide in the treatment of cancer | |
WO2021014812A1 (en) | Treatment for fibroblastic or myofibroblastic tumor and disease | |
CN117919234A (en) | Application of naphthalamide compound in treatment of drug-resistant tumor | |
KR20190052255A (en) | Composition for preventing or treating cancer comprising IDF-11774 and autolysosome formation inhibitor | |
TW202128212A (en) | Pharmaceutical compositions and use thereof for relieving anticancer drug resistance and enhancing sensitivity of anticancer drug | |
US20190275021A1 (en) | Use of combination of vegfr inhibitor and parp inhibitor in preparation of medicament for treating gastric cancer | |
JP2024125139A (en) | Antitumor pharmaceutical composition comprising azuvudine | |
CN114469950B (en) | Application of chelidonine in preparing FLT3-ITD mutant acute myelogenous leukemia treatment drug | |
US20240197730A1 (en) | Cancer treatment using parp inhibitors and plk1 inhibitors | |
WO2023281413A1 (en) | Methods and dosing regimens comprising pf-06873600 for the treatment of cancer | |
TW202308631A (en) | Compounds and compositions for the treatment of mpnst | |
TW202029961A (en) | Use of ar antagonist combined with parp inhibitor in preparation of medicament for treating prostate cancer | |
JP2017114829A (en) | Therapeutic agent for deficiency of interleukin 36 receptor antagonist | |
KR102658209B1 (en) | Pharmaceutical composition for preventing or treating bladder cancer comprising a CDK inhibitor and an ID2 activator | |
AU2017330814A1 (en) | Combined composition for preventing or treating cancer comprising a benzophenone thiazole derivatives as a VDA and topoisomerase inhibitor | |
CN111166756B (en) | 20 Use of (S) -ginsenoside-Rg 3 in reversing drug resistance of glioma cells to chemotherapeutic drugs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20843133 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021533858 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20843133 Country of ref document: EP Kind code of ref document: A1 |