WO2021014768A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2021014768A1
WO2021014768A1 PCT/JP2020/021754 JP2020021754W WO2021014768A1 WO 2021014768 A1 WO2021014768 A1 WO 2021014768A1 JP 2020021754 W JP2020021754 W JP 2020021754W WO 2021014768 A1 WO2021014768 A1 WO 2021014768A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
vehicle
electric power
generation unit
power generation
Prior art date
Application number
PCT/JP2020/021754
Other languages
French (fr)
Japanese (ja)
Inventor
晋平 瀧田
宜久 山口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021014768A1 publication Critical patent/WO2021014768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • This disclosure relates to vehicles.
  • a power transmission device to a vehicle that charges a vehicle power source by using regenerative energy during deceleration or a power source provided in the vehicle, such as a fuel cell vehicle or a hybrid vehicle, has not been sufficiently studied.
  • a vehicle is provided. This vehicle is charged by a power receiving device that receives electric power from a power transmitting device laid on the runway, electric power supplied from a power generation unit using an internal combustion engine or a fuel cell, and electric power supplied through the power receiving device.
  • a vehicle power source to be used, and a vehicle control device that controls the power generation unit to reduce the power supplied from the power generation unit to the vehicle power source when the power receiving device receives electric power from the power transmission device. Be prepared.
  • the vehicle control device when the vehicle control device receives power from the power transmission device, the power generated by the power generation unit is reduced.
  • the ratio of the amount of power generated by the power generation unit to the amount of power supplied from the power transmission device becomes small.
  • FIG. 1 is an explanatory diagram showing the configuration of the vehicle and the power transmission device of the first embodiment.
  • FIG. 2 is a flowchart showing the charge limit control executed by the vehicle control device.
  • FIG. 3 is an explanatory diagram showing the relationship between the running state of the vehicle and the charge limit control.
  • FIG. 4 is an explanatory diagram showing the configuration of the vehicle and the power transmission device of the second embodiment.
  • the power supply system 300 includes a power transmission device 100 laid on the road RS, which is a runway of the vehicle 200, and a power receiving device 205 mounted on the vehicle 200 traveling on the road RS.
  • the power transmission device 100 supplies electric power to the moving vehicle 200 in a non-contact manner via the power reception device 205.
  • the power transmission device 100 includes a plurality of power transmission resonance circuits 110, a plurality of power transmission circuits 120, a power supply circuit 130, a power receiving coil position detection unit 140, a power transmission control device 150, and a wireless communication device 170.
  • the power transmission resonance circuit 110 is embedded in the road RS along the extending direction of the road RS.
  • the power transmission resonant circuit 110 includes a power transmission coil and a resonant capacitor.
  • the power supply circuit 130 supplies DC power to the power transmission circuit 120.
  • the power transmission circuit 120 converts the DC power supplied from the power supply circuit 130 into AC power and supplies it to the power transmission coil of the power transmission resonance circuit 110.
  • the power receiving coil position detection unit 140 detects the position of the power receiving coil installed at the bottom of the vehicle 200.
  • the plurality of power transmission circuits 120 execute power transmission using one or more power transmission resonance circuits 110 close to the power reception resonance circuit 210 according to the position of the power reception coil detected by the power reception coil position detection unit 140.
  • the power receiving coil position detection unit 140 may detect the position of the power receiving coil from the magnitudes of the transmitted power and the transmitted current in the plurality of power transmission circuits 120, and may provide a position sensor or a distance measuring device for detecting the position of the vehicle 200. It may be used to detect the position of the power receiving coil.
  • the power transmission control device 150 includes a well-known microprocessor and memory, and the microprocessor controls the operation of the power transmission device 100 by executing a program prepared in advance. When transmitting power to the vehicle 200, the power transmission control device 150 controls the power transmission circuit 120 to execute power transmission. The power transmission control device 150 performs road-to-vehicle communication with the vehicle 200 on the road RS via the wireless communication device 170. In the present embodiment, the power transmission control device 150 acquires the identification information of the vehicle 200 on the road RS.
  • the power transmission control device 150 When the power transmission control device 150 is in a state in which the power transmission device 100 is executing power transmission to the power receiving device 205 of the vehicle 200 for which the identification information has been acquired by the power transmission resonance circuit 110 (hereinafter, also referred to as “power transmission state”), the power transmission control device 150 is used. The vehicle 200 is notified of the power transmission state via the wireless communication device 170.
  • the vehicle 200 is a hybrid vehicle in which the prime mover of the internal combustion engine 260 and the drive motor 240 is mounted in the present embodiment.
  • the vehicle 200 further includes a power receiving device 205, a main battery 230, a drive motor 240, a drive shaft 250, an internal combustion engine 260, a wireless communication device 280, and a vehicle control device 290.
  • the power receiving device 205 includes a power receiving resonance circuit 210 and a power receiving circuit 220.
  • the power receiving resonance circuit 210 is a device that includes a power receiving coil and a resonance capacitor and receives AC power induced in the power receiving coil by electromagnetic induction with the power transmission resonance circuit 110.
  • the power receiving circuit 220 is a circuit that converts the AC power output from the power receiving resonance circuit 210 into the DC power E1.
  • the DC power E1 represents the power that can be received from the power transmitting device 100 via the power receiving device 205. More specifically, the DC power E1 is the smaller of the power that can be transmitted by the power transmission device 100 and the power that can be received by the power receiving device 205 of the vehicle 200.
  • the electric power that can be transmitted by the power transmission device 100 represents, for example, a design value of the power transmission power realized by the power transmission circuit 120 or the power transmission resonance circuit 110, and differs for each power transmission device 100.
  • the vehicle 200 acquires electric power that can be transmitted by the power transmission device 100 from the power transmission device 100 by wireless communication described later.
  • the electric power that can be received by the power receiving device 205 of the vehicle 200 represents a design value of the electric power received by the power receiving circuit 220 and the power receiving resonance circuit 210, and is different for each vehicle 200.
  • the electric power that can be received by the power receiving device 205 of the vehicle 200 is stored in advance in the memory of the vehicle control device 290, which will be described later.
  • the DC power E1 output from the power receiving circuit 220 is used to charge the main battery 230.
  • the DC power E1 output from the power receiving circuit 220 may be used for charging an auxiliary battery (not shown), may be used for driving a drive motor 240, or may be used for driving an auxiliary device such as an air conditioner or an electric power steering device. ..
  • the main battery 230 is a secondary battery that outputs DC power for driving the drive motor 240.
  • the main battery 230 is also referred to as a vehicle power source.
  • the drive motor 240 operates as a motor or a generator. When the drive motor 240 operates as a motor, the drive motor 240 generates a driving force P22 for driving the drive shaft 250 by using the DC power E22 supplied as running power from the main battery 230.
  • the DC power E22 may be converted into three-phase AC power by the inverter circuit.
  • the drive motor 240 operates as a generator when the vehicle 200 is decelerated, and uses the braking force P20 during deceleration to supply the regenerative power E20 to the main battery 230.
  • the regenerative power E20 is DC power obtained by converting the three-phase AC power output by the drive motor 240 as a generator by an inverter circuit.
  • the internal combustion engine 260 is a general vehicle engine such as a reciprocating engine or a rotary engine.
  • the internal combustion engine 260 functions as a prime mover that extracts power by burning a liquid fuel such as gasoline or diesel fuel. More specifically, in the present embodiment, the internal combustion engine 260 generates a driving force P3 for driving the drive shaft 250 and a driving force P21 for driving the drive motor 240 as a generator.
  • the three-phase AC power output from the drive motor 240 by the driving force P21 is converted into DC power E21 by an inverter circuit (not shown) and supplied to the main battery 230. That is, in the vehicle 200 of the present embodiment, the internal combustion engine 260 and the drive motor 240 function as a power generation unit that supplies DC power E21 to the main battery 230.
  • the wireless communication device 280 is a device that performs road-to-vehicle communication by wireless communication with the wireless communication device 170 of the power transmission device 100.
  • the wireless communication device 280 receives the notification that the vehicle 200 is in the power transmission state by the power transmission device 100, the wireless communication device 280 outputs the result to the vehicle control device 290.
  • the wireless communication device 280 may transmit information on the driving status of the vehicle 200 such as the vehicle speed and the steering amount and the surrounding conditions of the vehicle 200 to the power transmission device 100, and performs vehicle-to-vehicle communication with another vehicle to perform status information. May be replaced.
  • the vehicle control device 290 includes a well-known microprocessor and memory, and the microprocessor executes a program prepared in advance to control the internal combustion engine 260 and the drive motor 240, and manage the remaining capacity of the main battery 230. Control of each part in 200 is executed. In the present embodiment, the vehicle control device 290 controls the drive motor 240 to limit the DC power E21 supplied to the main battery 230 when the power transmission device 290 receives power from the power transmission device 100. To execute.
  • the details of the charge limit control executed by the vehicle control device 290 will be described with reference to FIG.
  • the charge limit control shown in FIG. 2 is started, for example, by turning on the ignition key of the vehicle 200.
  • the vehicle control device 290 determines whether or not the vehicle 200 is in the power transmission state (step S10). More specifically, the vehicle control device 290 confirms whether or not the wireless communication device 170 of the power transmission device 100 notifies that the power transmission state is being transmitted via the wireless communication device 280 by road-to-vehicle communication. When the notification of the power transmission state is not confirmed, the vehicle control device 290 determines that the vehicle 200 is not in the power transmission state (S10: NO), and the power generation unit generates power, that is, charges the main battery 230 using the internal combustion engine 260. The internal combustion engine 260 and the drive motor 240 are controlled (step S12) without limitation, and the process is exited to NEXT.
  • the vehicle control device 290 Upon confirming the notification of the power transmission state, the vehicle control device 290 determines that the vehicle 200 is in the power transmission state (S10: YES), and as will be described later, power generation by the power generation unit, that is, the main battery 230 using the internal combustion engine 260. (Step S14). The vehicle control device 290 sequentially confirms the notification of the power transmission state and confirms whether or not the power transmission state continues (step S16). If the notification that the power transmission state is not confirmed is not confirmed, the vehicle control device 290 determines that the power reception from the power transmission device 100 has been completed (S16: YES), and shifts the process to step S12. If the power transmission state continues (S16: NO), the vehicle control device 290 returns the process to step S14.
  • the horizontal axis of FIG. 3 indicates the time axis.
  • the traveling state of the vehicle 200 is different in each period from the time t1 to the time t5 shown in FIG. Specifically, the vehicle 200 is in a stopped state in a period from time t1 to time t2, in an accelerated state in a period from time t2 to time t3, and in a cruising state in a period from time t3 to time t4. , The deceleration state is in the period from the time t4 to the time t5, and the vehicle is in the stopped state after the time t5.
  • the power transmission device 100 is in a power transmission state for executing power transmission to the vehicle 200.
  • the vertical axis in FIG. 3 shows electric power. Above the time axis, a change in the total value of the electric power supplied to the main battery 230 of the vehicle 200 (hereinafter, also referred to as electric power RC) is conceptually shown.
  • the electric power Emax shown on the vertical axis is the maximum value of the electric power that can be charged to the main battery 230.
  • the electric power Emax is appropriately set by the vehicle control device 290 according to the SOC (state of charge) of the main battery 230 and the traveling environment of the vehicle 200.
  • the vehicle control device 290 controls the electric power supplied to the main battery 230 so as to be equal to or less than the electric power Emax.
  • the electric power Emax is set at a lower electric power in order to suppress deterioration of the main battery 230, for example, when the SOC of the main battery 230 is high or when the traveling environment of the vehicle 200 is in a low temperature environment or a high temperature environment.
  • different hatching is applied to each electric power charged to the main battery 230 in order to facilitate understanding of the technology.
  • the power MP consumed by the drive motor 240 when the vehicle 200 is running is conceptually shown.
  • the electric power used for traveling by the drive motor 240 of the vehicle 200 is zero.
  • the main battery 230 can be charged with DC power E1 from the power transmitting device 100 via the power receiving device 205.
  • the electric power E1 is the smaller of the electric power that can be transmitted by the power transmission device 100 and the electric power that can be received by the power receiving device 205 of the vehicle 200.
  • the vehicle control device 290 acquires the electric power that can be transmitted by the power transmission device 100 from the power transmission device 100 by road-to-vehicle communication by the wireless communication device 280, and compares it with the electric power that can be received by the power reception device 205 stored in advance in the memory. , The smaller power is set as the power E1.
  • the vehicle control device 290 drives the drive motor 240 as a generator under the control of the internal combustion engine 260 to generate AC power.
  • the AC power is converted into DC power E21 by an inverter circuit (not shown) and supplied to the main battery 230.
  • the main battery 230 is charged with the electric power ER3 which is the sum of the electric power E1 and the electric power E21.
  • the vehicle control device 290 controls the power generation unit to reduce the DC power E21 supplied to the main battery 230. More specifically, the vehicle control device 290 controls the internal combustion engine 260, which is a power generation unit, and the drive motor 240 to adjust the driving force P21, and the DC power E21 supplied to the main battery 230 is the power generation capacity EC1. Restrict to the following.
  • the power generation capacity EC1 is calculated by the following formula (1).
  • EC1 Emax-E1 ... Equation (1)
  • the power generation capacity EC1 is calculated by subtracting the power E1 from the power Emax, which is the maximum value of the power that can be charged to the main battery 230.
  • the vehicle control device 290 controls the internal combustion engine 260 and the drive motor 240 so as to supply the DC power E21, which is the same power as the power generation capacity EC2 described later, to the main battery 230.
  • the vehicle control device 290 may control the power generation unit so as to generate the same electric power as the power generation capacity EC1.
  • the vehicle control device 290 stops the power generation using the power generation unit.
  • FIG. 3 conceptually shows the electric power E22 consumed during acceleration as the electric power E22A. Due to the consumption of the electric power E22A, the electric power RC supplied to the main battery 230 becomes the electric power ER1. Similarly, from time t3 to time t4, the vehicle control device 290 consumes the electric power E22B of the main battery 230 to drive the drive motor 240 to cruise the vehicle 200.
  • FIG. 3 conceptually shows the electric power E22 consumed during cruising as the electric power E22B. Due to the consumption of the electric power E22B, the electric power RC supplied to the main battery 230 becomes the electric power ER2.
  • the drive motor 240 operates as a generator to supply the regenerative power E20 to the main battery 230.
  • the DC power E21 supplied to the main battery 230 by the power generation of the power generation unit is further described by the following formula.
  • the power generation by the power generation unit is controlled so that the power generation capacity EC2 or less required by (2) is obtained.
  • EC2 EC1-E20 ⁇ ⁇ ⁇ Equation (2)
  • the power generation capacity EC2 is calculated by subtracting the electric power E1 and the regenerative electric power E20 from the electric power Emax which is the maximum value of the electric power that can be charged to the main battery 230.
  • the DC power E21 supplied to the main battery 230 by the power generation of the power generation unit when the vehicle 200 is decelerated has the same power value as the power generation capacity EC2. That is, as shown in FIG. 3, the electric power ER4, which is the total electric power charged in the main battery 230, and the electric power Emax are substantially the same.
  • the DC power E21 may be limited to power smaller than the power generation capacity EC2.
  • the vehicle 200 of the present embodiment when the electric power E1 can be transmitted from the power transmission device 100 by the vehicle control device 290, the electric power E21 supplied to the main battery 230 by the power generation of the power generation unit. Is reduced. In the main battery 230, the ratio of the supply amount of the electric power E21 generated by the power generation unit to the supply amount of the electric power E1 that can be transmitted from the power transmission device 100 becomes small. By reducing the ratio of the consumption of the electric power E21 to the consumption of the electric power E1 when the vehicle 200 is running, the vehicle 200 can be driven in a state where the consumption of the fuel used for power generation by the power generation unit is suppressed. ..
  • the electric power E21 supplied to the main battery 230 by the power generation of the power generation unit can receive electric power from the power transmission device 100 from the electric power Emax which is the maximum value of the electric power that can be charged to the main battery 230. It is limited to the power generation capacity EC1 or less calculated by subtracting the electric power E1.
  • the electric power E21 generated by the power generation unit can be suppressed. Therefore, it is possible to suppress the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit.
  • the electric power E21 supplied to the main battery 230 by the power generation of the power generation unit is the power generation capacity obtained by subtracting the regenerative power E20 from the power generation capacity EC1. It is controlled to be EC2 or less. Therefore, the amount of power generated by the power generation unit can be further reduced by maximally charging the main battery 230 with the electric power E1 and the regenerative electric power E20 that can be transmitted from the power transmission device 100. Therefore, the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit can be further suppressed.
  • the vehicle control device 290 stops power generation using the power generation unit when the electric power E1 that can be received from the power transmission device 100 is equal to or higher than the electric power Emax. Therefore, the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit can be further suppressed.
  • the vehicle control device 290 when the sum of the electric power E1 that can be received from the power transmission device 100 and the regenerative electric power E20 is equal to or greater than the electric power Emax, that is, the regenerative electric power E20 has a power generation capacity EC1 or more. If this is the case, the power generation using the power generation unit is stopped. Therefore, the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit can be further suppressed.
  • the vehicle 200b of the second embodiment is different from the vehicle 200 of the first embodiment in that it includes an internal combustion engine 260b instead of the internal combustion engine 260 and further includes a charging motor 270.
  • the configuration is the same as that of the vehicle 200 of the first embodiment.
  • the internal combustion engine 260b is used as a power source for power generation.
  • the internal combustion engine 260b generates a driving force P21b for driving the charging motor 270 as a generator.
  • the AC power output from the charging motor 270 is converted into DC power E21b and supplied to the main battery 230. That is, in the vehicle 200b of the present embodiment, the internal combustion engine 260b and the charging motor 270 function as a power generation unit that supplies DC power E21b to the main battery 230.
  • the vehicle control device 290 controls the internal combustion engine 260b, which is a power generation unit, and the charging motor 270 to adjust the driving force, and supplies the DC power E21b to the main battery 230.
  • the vehicle control device 290 controls the internal combustion engine 260 so that the DC power E21b becomes equal to or less than the above-mentioned power generation capacity EC1 while the vehicle 200b is traveling.
  • the vehicle control device 290 further controls the power generation unit so that the DC power E21b is equal to or less than the power generation capacity EC2 described above.
  • the vehicle 200b of the present embodiment when the electric power E1 can be transmitted from the power transmission device 100 by the vehicle control device 290, the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit is reduced. By reducing the ratio of the consumption of the electric power E21b to the consumption of the electric power E1 when the vehicle 200b is traveling, the vehicle 200b can be traveled in a state where the consumption of the fuel used for power generation by the power generation unit is suppressed. ..
  • the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit can be transmitted from the power transmission device 100 from the electric power Emax which is the maximum value of the electric power that can be charged to the main battery 230. It is limited to the power generation capacity EC1 or less calculated by subtracting the electric power E1.
  • the maximum amount of electric power E1 that can be transmitted from the power transmission device 100 the amount of power generated by the power generation unit can be suppressed. Therefore, the consumption of fuel used for the internal combustion engine 260b of the power generation unit can be suppressed.
  • the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit is further equal to or less than the power generation capacity EC2 obtained by subtracting the regenerative power E20 from the power generation capacity EC1. Is controlled to be. Therefore, by maximally charging the main battery 230 with the electric power E1 and the regenerated electric power E20 that can be transmitted from the power transmission device 100, the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit can be further reduced. .. Therefore, the consumption of fuel used for the internal combustion engine 260b of the power generation unit can be further suppressed.
  • the electric power E21 or the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit is controlled so as to be equal to or less than the power generation capacity EC1 or the power generation capacity EC2.
  • the vehicle control device 290 controls the power generation unit to stop the supply of electric power to the main battery 230, and the electric power E21 or The electric power E21b may not be generated. According to this type of vehicle, the consumption of fuel used in the power generation unit can be further suppressed.
  • the vehicle control device 290 can suppress the consumption of fuel used in the power generation unit by a simpler method without performing calculations for reducing the power generation capacity EC1 and the power generation capacity EC2 or less.
  • the vehicle 200b includes an internal combustion engine 260b, but a fuel cell may be provided instead of the internal combustion engine 260b.
  • the electric power generated by the fuel cell may be used to drive the drive motor 240, and may be directly supplied to the main battery 230 as the electric power E21b.
  • a wireless communication device 280 and a wireless communication device 170 are provided for road-to-vehicle communication between the vehicle 200 or the vehicle 200b and the power transmission device 100.
  • the wireless communication device 280 and the wireless communication device 170 may not be provided.
  • the vehicle control device 290 may determine, for example, whether or not the power transmission state is the power transmission state by the power transmission device 100 from the power reception state of the power reception device 205, and the position information of the vehicle 200 and the position of the road RS. The information may be used to determine that the power transmission state is being transmitted by the power transmission device 100.
  • the power transmission device 100 is provided with a power transmission electrode that contacts and transmits power in place of the power reception resonance circuit 210, for example, and is in contact with a part of the running vehicle 200 to supply power. It may be a type power transmission device.
  • a vehicle 200 is a hybrid vehicle equipped with a prime mover of an internal combustion engine 260 and a drive motor 240, a vehicle including an internal combustion engine 260b used as a power source for power generation, and a charging motor 270.
  • the control for limiting the charging by the power generation unit executed by the vehicle control device 290 has been described.
  • the control executed by the vehicle control device 290 to limit the charging by the power generation unit is performed by the generator that supplies the driving force from the internal combustion engine to the vehicle power source and the drive shaft 250 or the drive motor 240. It may be applied to a vehicle provided with a power split mechanism for distribution, which is also called a series parallel system or a split system. In such a vehicle, the internal combustion engine or the fuel cell and the power split mechanism are used as the power generation unit, and the power generated by the power generation unit is limited to the power generation capacity EC1 and EC2 or less.
  • the power transmission control device 150 when the power transmission control device 150 is in the state of executing power transmission to the vehicle 200, the power transmission control device 150 notifies the vehicle 200 of the power transmission state via the wireless communication device 170.
  • the notification of the power transmission state may be executed, for example, when the power transmission control device 150 detects the approach of the vehicle 200 to the power transmission device 100.
  • the vehicle 200 can start charge limit control such as calculation of the power generation capacities EC1 and EC2 before the execution of power transmission by the power transmission device 100.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features in the embodiments corresponding to the technical features described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or some or all of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve this. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

A vehicle (200) is provided with: an electricity receiving device (205) which receives electric power from an electricity transmitting device (100) laid on a roadway (RS); a vehicle power source (230) which is charged by means of electric power (E21, E21b) supplied from an electricity generating unit that employs an internal combustion engine or a fuel cell, and electric power (E1) supplied via the electricity receiving device; and a vehicle control device (290) which, when the electricity receiving device is receiving electric power from the electricity transmitting device, controls the electricity generating unit to reduce the electric power supplied to the vehicle power source from the electricity generating unit.

Description

車両vehicle 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年7月25日に出願された日本出願番号2019-136607号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-136607 filed on July 25, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、車両に関する。 This disclosure relates to vehicles.
 走路に敷設された送電装置から受電装置を介して電力を受電して車両電源に充電を行う車両が知られている(例えば、特開2011-244532号公報)。 There are known vehicles that receive electric power from a power transmission device laid on a runway via a power receiving device to charge a vehicle power source (for example, Japanese Patent Application Laid-Open No. 2011-244532).
 例えば、燃料電池車両やハイブリッド車両のように、減速時の回生エネルギや車両に備えられる動力源を利用して車両電源の充電を行う車両に対する送電装置の適用について充分に検討されていない。 For example, the application of a power transmission device to a vehicle that charges a vehicle power source by using regenerative energy during deceleration or a power source provided in the vehicle, such as a fuel cell vehicle or a hybrid vehicle, has not been sufficiently studied.
 本開示は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。 This disclosure has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms or application examples.
 本開示の一形態によれば、車両が提供される。この車両は、走路に敷設される送電装置から電力を受電する受電装置と、内燃機関または燃料電池を用いた発電部から供給される電力と、前記受電装置を介して供給される電力とによって充電される車両電源と、前記受電装置が前記送電装置から電力を受電する場合に、前記発電部を制御して、前記発電部から前記車両電源に供給される電力を低減させる車両制御装置と、を備える。 According to one form of the disclosure, a vehicle is provided. This vehicle is charged by a power receiving device that receives electric power from a power transmitting device laid on the runway, electric power supplied from a power generation unit using an internal combustion engine or a fuel cell, and electric power supplied through the power receiving device. A vehicle power source to be used, and a vehicle control device that controls the power generation unit to reduce the power supplied from the power generation unit to the vehicle power source when the power receiving device receives electric power from the power transmission device. Be prepared.
 この形態の車両によれば、車両制御装置によって、送電装置から電力を受電する場合に、発電部によって発電される電力が低減される。車両電源では、送電装置から送電され得る電力の供給量に対して、発電部によって発電される電力の供給量の比率が小さくなる。車両の走行時において送電装置から送電され得る電力の消費量に対して、発電部によって発電される電力の消費量の比率を小さくすることによって、発電部による発電に用いられる燃料の消費を抑えた状態で車両を走行させることができる。 According to this type of vehicle, when the vehicle control device receives power from the power transmission device, the power generated by the power generation unit is reduced. In the vehicle power supply, the ratio of the amount of power generated by the power generation unit to the amount of power supplied from the power transmission device becomes small. By reducing the ratio of the amount of power generated by the power generation unit to the amount of power that can be transmitted from the power transmission device when the vehicle is running, the consumption of fuel used for power generation by the power generation unit is suppressed. The vehicle can be driven in the state.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の車両と送電装置との構成を表す説明図であり、 図2は、車両制御装置が実行する充電制限制御を表すフローチャートであり、 図3は、車両の走行状態と充電制限制御との関係を表す説明図であり、 図4は、第2実施形態の車両と送電装置との構成を表す説明図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an explanatory diagram showing the configuration of the vehicle and the power transmission device of the first embodiment. FIG. 2 is a flowchart showing the charge limit control executed by the vehicle control device. FIG. 3 is an explanatory diagram showing the relationship between the running state of the vehicle and the charge limit control. FIG. 4 is an explanatory diagram showing the configuration of the vehicle and the power transmission device of the second embodiment.
A.第1実施形態:
 図1に示すように、給電システム300は、車両200の走路である道路RSに敷設される送電装置100と、道路RSを走行する車両200に搭載される受電装置205とを含む。給電システム300において、送電装置100は、受電装置205を介して、走行中の車両200に非接触で電力を供給する。送電装置100は、複数の送電共振回路110と、複数の送電回路120と、電源回路130と、受電コイル位置検出部140と、送電制御装置150と、無線通信装置170とを備える。
A. First Embodiment:
As shown in FIG. 1, the power supply system 300 includes a power transmission device 100 laid on the road RS, which is a runway of the vehicle 200, and a power receiving device 205 mounted on the vehicle 200 traveling on the road RS. In the power supply system 300, the power transmission device 100 supplies electric power to the moving vehicle 200 in a non-contact manner via the power reception device 205. The power transmission device 100 includes a plurality of power transmission resonance circuits 110, a plurality of power transmission circuits 120, a power supply circuit 130, a power receiving coil position detection unit 140, a power transmission control device 150, and a wireless communication device 170.
 送電共振回路110は、道路RSの延伸方向に沿って道路RSに埋設されている。送電共振回路110は、送電コイルおよび共振コンデンサを含む。 The power transmission resonance circuit 110 is embedded in the road RS along the extending direction of the road RS. The power transmission resonant circuit 110 includes a power transmission coil and a resonant capacitor.
 電源回路130は、直流電力を送電回路120に供給する。送電回路120は、電源回路130から供給される直流電力を交流電力に変換して、送電共振回路110の送電コイルに供給する。 The power supply circuit 130 supplies DC power to the power transmission circuit 120. The power transmission circuit 120 converts the DC power supplied from the power supply circuit 130 into AC power and supplies it to the power transmission coil of the power transmission resonance circuit 110.
 受電コイル位置検出部140は、車両200の底部に設置された受電コイルの位置を検出する。複数の送電回路120は、受電コイル位置検出部140で検出された受電コイルの位置に応じて、受電共振回路210に近い1つ以上の送電共振回路110を用いて送電を実行する。受電コイル位置検出部140は、例えば、複数の送電回路120における送電電力や送電電流の大きさから受電コイルの位置を検出してもよく、車両200の位置を検出する位置センサや測距装置を利用して受電コイルの位置を検出してもよい。 The power receiving coil position detection unit 140 detects the position of the power receiving coil installed at the bottom of the vehicle 200. The plurality of power transmission circuits 120 execute power transmission using one or more power transmission resonance circuits 110 close to the power reception resonance circuit 210 according to the position of the power reception coil detected by the power reception coil position detection unit 140. The power receiving coil position detection unit 140 may detect the position of the power receiving coil from the magnitudes of the transmitted power and the transmitted current in the plurality of power transmission circuits 120, and may provide a position sensor or a distance measuring device for detecting the position of the vehicle 200. It may be used to detect the position of the power receiving coil.
 送電制御装置150は、周知のマイクロプロセッサやメモリを備え、マイクロプロセッサが予め用意されたプログラムを実行することで送電装置100の動作を制御する。送電制御装置150は、車両200に送電を行う際には、送電回路120を制御して送電を実行する。送電制御装置150は、無線通信装置170を介して、道路RS上の車両200との路車間通信を行う。本実施形態において、送電制御装置150は、道路RS上の車両200の識別情報を取得する。送電制御装置150は、送電装置100が識別情報を取得した車両200の受電装置205に送電共振回路110による送電を実行している状態(以下、「送電状態」とも呼ぶ)である場合には、無線通信装置170を介して、送電状態であることを車両200に通知する。 The power transmission control device 150 includes a well-known microprocessor and memory, and the microprocessor controls the operation of the power transmission device 100 by executing a program prepared in advance. When transmitting power to the vehicle 200, the power transmission control device 150 controls the power transmission circuit 120 to execute power transmission. The power transmission control device 150 performs road-to-vehicle communication with the vehicle 200 on the road RS via the wireless communication device 170. In the present embodiment, the power transmission control device 150 acquires the identification information of the vehicle 200 on the road RS. When the power transmission control device 150 is in a state in which the power transmission device 100 is executing power transmission to the power receiving device 205 of the vehicle 200 for which the identification information has been acquired by the power transmission resonance circuit 110 (hereinafter, also referred to as “power transmission state”), the power transmission control device 150 is used. The vehicle 200 is notified of the power transmission state via the wireless communication device 170.
 車両200は、本実施形態において、内燃機関260と駆動モータ240との原動機を搭載するハイブリッド車両である。車両200は、更に、受電装置205と、メインバッテリ230と、駆動モータ240と、駆動軸250と、内燃機関260と、無線通信装置280と、車両制御装置290とを備える。受電装置205は、受電共振回路210と受電回路220とを含んでいる。 The vehicle 200 is a hybrid vehicle in which the prime mover of the internal combustion engine 260 and the drive motor 240 is mounted in the present embodiment. The vehicle 200 further includes a power receiving device 205, a main battery 230, a drive motor 240, a drive shaft 250, an internal combustion engine 260, a wireless communication device 280, and a vehicle control device 290. The power receiving device 205 includes a power receiving resonance circuit 210 and a power receiving circuit 220.
 受電共振回路210は、受電コイルおよび共振コンデンサを含み、送電共振回路110との間の電磁誘導によって受電コイルに誘導された交流電力を受電する装置である。受電回路220は、受電共振回路210から出力される交流電力を直流電力E1に変換する回路である。直流電力E1は、送電装置100から受電装置205を介して受電し得る電力を表す。より具体的には、直流電力E1は、送電装置100によって送電し得る電力と、車両200の受電装置205によって受電可能な電力とのうち小さい方の電力である。送電装置100によって送電し得る電力とは、例えば、送電回路120や送電共振回路110によって実現される送電電力の設計値を表し、送電装置100ごとに異なる。車両200は、送電装置100によって送電し得る電力を、後述する無線通信によって送電装置100から取得する。車両200の受電装置205によって受電可能な電力とは、受電回路220や受電共振回路210によって実現される受電電力の設計値を表し、車両200ごとに異なる。車両200の受電装置205によって受電可能な電力は、後述する車両制御装置290のメモリに予め記憶されている。受電回路220から出力される直流電力E1は、メインバッテリ230の充電に利用される。受電回路220から出力される直流電力E1は、図示しない補機バッテリの充電に利用されてもよく、駆動モータ240の駆動、空調装置や電動パワーステアリング装置といった補機の駆動に利用されてもよい。 The power receiving resonance circuit 210 is a device that includes a power receiving coil and a resonance capacitor and receives AC power induced in the power receiving coil by electromagnetic induction with the power transmission resonance circuit 110. The power receiving circuit 220 is a circuit that converts the AC power output from the power receiving resonance circuit 210 into the DC power E1. The DC power E1 represents the power that can be received from the power transmitting device 100 via the power receiving device 205. More specifically, the DC power E1 is the smaller of the power that can be transmitted by the power transmission device 100 and the power that can be received by the power receiving device 205 of the vehicle 200. The electric power that can be transmitted by the power transmission device 100 represents, for example, a design value of the power transmission power realized by the power transmission circuit 120 or the power transmission resonance circuit 110, and differs for each power transmission device 100. The vehicle 200 acquires electric power that can be transmitted by the power transmission device 100 from the power transmission device 100 by wireless communication described later. The electric power that can be received by the power receiving device 205 of the vehicle 200 represents a design value of the electric power received by the power receiving circuit 220 and the power receiving resonance circuit 210, and is different for each vehicle 200. The electric power that can be received by the power receiving device 205 of the vehicle 200 is stored in advance in the memory of the vehicle control device 290, which will be described later. The DC power E1 output from the power receiving circuit 220 is used to charge the main battery 230. The DC power E1 output from the power receiving circuit 220 may be used for charging an auxiliary battery (not shown), may be used for driving a drive motor 240, or may be used for driving an auxiliary device such as an air conditioner or an electric power steering device. ..
 メインバッテリ230は、駆動モータ240を駆動するための直流電力を出力する2次電池である。メインバッテリ230を、車両電源とも呼ぶ。駆動モータ240は、モータまたはジェネレータとして動作する。駆動モータ240は、モータとして動作する場合には、メインバッテリ230から走行用電力として供給される直流電力E22を用いて駆動軸250を駆動するための駆動力P22を発生させる。直流電力E22は、インバータ回路によって3相交流電力に変換されてよい。駆動モータ240は、車両200の減速時にジェネレータとして動作し、減速時の制動力P20を利用して、メインバッテリ230に回生電力E20を供給する。回生電力E20は、ジェネレータとしての駆動モータ240が出力する3相交流電力をインバータ回路によって変換される直流電力である。 The main battery 230 is a secondary battery that outputs DC power for driving the drive motor 240. The main battery 230 is also referred to as a vehicle power source. The drive motor 240 operates as a motor or a generator. When the drive motor 240 operates as a motor, the drive motor 240 generates a driving force P22 for driving the drive shaft 250 by using the DC power E22 supplied as running power from the main battery 230. The DC power E22 may be converted into three-phase AC power by the inverter circuit. The drive motor 240 operates as a generator when the vehicle 200 is decelerated, and uses the braking force P20 during deceleration to supply the regenerative power E20 to the main battery 230. The regenerative power E20 is DC power obtained by converting the three-phase AC power output by the drive motor 240 as a generator by an inverter circuit.
 内燃機関260は、レシプロエンジンやロータリエンジンといった一般的な車両用エンジンである。内燃機関260は、ガソリンやディーゼル燃料といった液体燃料の燃焼により動力を取り出す原動機として機能する。より具体的には、内燃機関260は、本実施形態において、駆動軸250を駆動するための駆動力P3と、駆動モータ240を発電機として駆動するための駆動力P21とを発生させる。駆動力P21により駆動モータ240から出力された3相交流電力は、図示しないインバータ回路によって直流電力E21に変換されてメインバッテリ230に供給される。すなわち、本実施形態の車両200では、内燃機関260と駆動モータ240とが、メインバッテリ230に直流電力E21を供給する発電部として機能する。 The internal combustion engine 260 is a general vehicle engine such as a reciprocating engine or a rotary engine. The internal combustion engine 260 functions as a prime mover that extracts power by burning a liquid fuel such as gasoline or diesel fuel. More specifically, in the present embodiment, the internal combustion engine 260 generates a driving force P3 for driving the drive shaft 250 and a driving force P21 for driving the drive motor 240 as a generator. The three-phase AC power output from the drive motor 240 by the driving force P21 is converted into DC power E21 by an inverter circuit (not shown) and supplied to the main battery 230. That is, in the vehicle 200 of the present embodiment, the internal combustion engine 260 and the drive motor 240 function as a power generation unit that supplies DC power E21 to the main battery 230.
 無線通信装置280は、送電装置100の無線通信装置170との無線通信により路車間通信を行う装置である。無線通信装置280は、車両200が送電装置100による送電状態であることの通知を受信した場合には、その結果を車両制御装置290に出力する。無線通信装置280は、車速や操舵量などの車両200の運転状況や、車両200の周囲の状況に関する情報を送電装置100に送信してもよく、他車両との車車間通信を行って状況情報を交換してもよい。 The wireless communication device 280 is a device that performs road-to-vehicle communication by wireless communication with the wireless communication device 170 of the power transmission device 100. When the wireless communication device 280 receives the notification that the vehicle 200 is in the power transmission state by the power transmission device 100, the wireless communication device 280 outputs the result to the vehicle control device 290. The wireless communication device 280 may transmit information on the driving status of the vehicle 200 such as the vehicle speed and the steering amount and the surrounding conditions of the vehicle 200 to the power transmission device 100, and performs vehicle-to-vehicle communication with another vehicle to perform status information. May be replaced.
 車両制御装置290は、周知のマイクロプロセッサやメモリを備え、マイクロプロセッサが予め用意されたプログラムを実行することで、内燃機関260や駆動モータ240の制御、メインバッテリ230の残容量の管理を含む車両200内の各部の制御を実行する。本実施形態において、車両制御装置290は、送電装置100からの送電を受ける送電状態である場合には、駆動モータ240を制御してメインバッテリ230に供給される直流電力E21を制限する充電制限制御を実行する。 The vehicle control device 290 includes a well-known microprocessor and memory, and the microprocessor executes a program prepared in advance to control the internal combustion engine 260 and the drive motor 240, and manage the remaining capacity of the main battery 230. Control of each part in 200 is executed. In the present embodiment, the vehicle control device 290 controls the drive motor 240 to limit the DC power E21 supplied to the main battery 230 when the power transmission device 290 receives power from the power transmission device 100. To execute.
 図2を用いて、車両制御装置290が実行する充電制限制御の詳細について説明する。図2に示す充電制限制御は、例えば車両200のイグニションキーをオンにすることにより開始する。 The details of the charge limit control executed by the vehicle control device 290 will be described with reference to FIG. The charge limit control shown in FIG. 2 is started, for example, by turning on the ignition key of the vehicle 200.
 車両制御装置290は、車両200が送電状態であるか否かを判定する(ステップS10)。より具体的には、車両制御装置290は、路車間通信によって送電装置100の無線通信装置170から無線通信装置280を介して送電状態であることが通知されているか否かを確認する。車両制御装置290は、送電状態の通知が確認されない場合に、車両200が送電状態でないと判定し(S10:NO)、発電部による発電、すなわち内燃機関260を利用したメインバッテリ230への充電を制限することなく、内燃機関260と駆動モータ240とを制御して(ステップS12)、処理をNEXTに抜ける。 The vehicle control device 290 determines whether or not the vehicle 200 is in the power transmission state (step S10). More specifically, the vehicle control device 290 confirms whether or not the wireless communication device 170 of the power transmission device 100 notifies that the power transmission state is being transmitted via the wireless communication device 280 by road-to-vehicle communication. When the notification of the power transmission state is not confirmed, the vehicle control device 290 determines that the vehicle 200 is not in the power transmission state (S10: NO), and the power generation unit generates power, that is, charges the main battery 230 using the internal combustion engine 260. The internal combustion engine 260 and the drive motor 240 are controlled (step S12) without limitation, and the process is exited to NEXT.
 車両制御装置290は、送電状態の通知を確認すると、車両200が送電状態であると判定し(S10:YES)、後述するように、発電部による発電、すなわち内燃機関260を利用したメインバッテリ230への充電を制限する(ステップS14)。車両制御装置290は、逐次に送電状態の通知を確認して送電状態が継続しているか否かを確認する(ステップS16)。車両制御装置290は、送電状態であることの通知が確認されない場合、送電装置100からの受電が終了したと判定し(S16:YES)、処理をステップS12に移行する。送電状態が継続している場合(S16:NO)、車両制御装置290は、処理をステップS14に戻す。 Upon confirming the notification of the power transmission state, the vehicle control device 290 determines that the vehicle 200 is in the power transmission state (S10: YES), and as will be described later, power generation by the power generation unit, that is, the main battery 230 using the internal combustion engine 260. (Step S14). The vehicle control device 290 sequentially confirms the notification of the power transmission state and confirms whether or not the power transmission state continues (step S16). If the notification that the power transmission state is not confirmed is not confirmed, the vehicle control device 290 determines that the power reception from the power transmission device 100 has been completed (S16: YES), and shifts the process to step S12. If the power transmission state continues (S16: NO), the vehicle control device 290 returns the process to step S14.
 図3を用いて、ステップS14で車両制御装置290が実行する発電部による充電を制限する制御について説明する。図3の横軸は時間軸を示している。図3に示した時間t1から時間t5までの各期間では、車両200の走行状態が異なる。具体的には、車両200は、時間t1から時間t2までの期間において停車状態であり、時間t2から時間t3までの期間において加速状態であり、時間t3から時間t4までの期間において巡航状態であり、時間t4から時間t5までの期間において減速状態であり、時間t5以降において停車状態である。図3に示す各期間において、送電装置100は、車両200に送電を実行する送電状態である。 With reference to FIG. 3, the control for limiting the charging by the power generation unit executed by the vehicle control device 290 in step S14 will be described. The horizontal axis of FIG. 3 indicates the time axis. The traveling state of the vehicle 200 is different in each period from the time t1 to the time t5 shown in FIG. Specifically, the vehicle 200 is in a stopped state in a period from time t1 to time t2, in an accelerated state in a period from time t2 to time t3, and in a cruising state in a period from time t3 to time t4. , The deceleration state is in the period from the time t4 to the time t5, and the vehicle is in the stopped state after the time t5. In each period shown in FIG. 3, the power transmission device 100 is in a power transmission state for executing power transmission to the vehicle 200.
 図3の縦軸は電力を示している。時間軸よりも上側には、車両200のメインバッテリ230に供給される電力の合計値(以下、電力RCとも呼ぶ)の変化が概念的に示されている。縦軸に示される電力Emaxは、メインバッテリ230に充電し得る電力の最大値である。電力Emaxは、車両制御装置290によって、メインバッテリ230のSOC(state of charge)や車両200の走行環境に応じて適宜に設定される。車両制御装置290は、メインバッテリ230に供給する電力を電力Emax以下となるように制御する。電力Emaxは、例えば、メインバッテリ230のSOCが高い場合や、車両200の走行環境が低温環境または高温環境にある場合には、メインバッテリ230の劣化を抑制するために、より低い電力で設定される。図3には、技術の理解を容易にするため、メインバッテリ230へ充電される電力ごとに異なるハッチングが施されている。図3の時間軸よりも下側には、車両200の走行時に駆動モータ240によって消費される電力MPを概念的に示している。 The vertical axis in FIG. 3 shows electric power. Above the time axis, a change in the total value of the electric power supplied to the main battery 230 of the vehicle 200 (hereinafter, also referred to as electric power RC) is conceptually shown. The electric power Emax shown on the vertical axis is the maximum value of the electric power that can be charged to the main battery 230. The electric power Emax is appropriately set by the vehicle control device 290 according to the SOC (state of charge) of the main battery 230 and the traveling environment of the vehicle 200. The vehicle control device 290 controls the electric power supplied to the main battery 230 so as to be equal to or less than the electric power Emax. The electric power Emax is set at a lower electric power in order to suppress deterioration of the main battery 230, for example, when the SOC of the main battery 230 is high or when the traveling environment of the vehicle 200 is in a low temperature environment or a high temperature environment. To. In FIG. 3, different hatching is applied to each electric power charged to the main battery 230 in order to facilitate understanding of the technology. Below the time axis of FIG. 3, the power MP consumed by the drive motor 240 when the vehicle 200 is running is conceptually shown.
 時間t1から時間t2において、車両200は、駆動モータ240によって走行に利用される電力はゼロである。メインバッテリ230には送電装置100から受電装置205を介して直流電力E1が充電され得る。上述したように、電力E1は、送電装置100によって送電し得る電力と、車両200の受電装置205によって受電可能な電力とのうち小さい方の電力である。車両制御装置290は、送電装置100によって送電し得る電力を無線通信装置280による路車間通信により送電装置100から取得し、メモリ内に予め記憶された受電装置205によって受電可能な電力と比較して、小さい方の電力を電力E1として設定する。 From time t1 to time t2, the electric power used for traveling by the drive motor 240 of the vehicle 200 is zero. The main battery 230 can be charged with DC power E1 from the power transmitting device 100 via the power receiving device 205. As described above, the electric power E1 is the smaller of the electric power that can be transmitted by the power transmission device 100 and the electric power that can be received by the power receiving device 205 of the vehicle 200. The vehicle control device 290 acquires the electric power that can be transmitted by the power transmission device 100 from the power transmission device 100 by road-to-vehicle communication by the wireless communication device 280, and compares it with the electric power that can be received by the power reception device 205 stored in advance in the memory. , The smaller power is set as the power E1.
 車両制御装置290は、内燃機関260の制御により駆動モータ240を発電機として駆動させて交流電力を発生させる。交流電力は、図示しないインバータ回路によって直流電力E21に変換されてメインバッテリ230に供給される。これにより、メインバッテリ230には、電力E1と、電力E21とを足し合わせた電力ER3が充電される。本実施形態において、車両制御装置290は、発電部を制御して、メインバッテリ230に供給される直流電力E21を低減させる。より具体的には、車両制御装置290は、発電部である内燃機関260と駆動モータ240とを制御して駆動力P21を調整し、メインバッテリ230に供給される直流電力E21が発電用容量EC1以下になるように制限する。発電用容量EC1は、下記式(1)によって求められる。
EC1=Emax-E1 ・・・式(1)
The vehicle control device 290 drives the drive motor 240 as a generator under the control of the internal combustion engine 260 to generate AC power. The AC power is converted into DC power E21 by an inverter circuit (not shown) and supplied to the main battery 230. As a result, the main battery 230 is charged with the electric power ER3 which is the sum of the electric power E1 and the electric power E21. In the present embodiment, the vehicle control device 290 controls the power generation unit to reduce the DC power E21 supplied to the main battery 230. More specifically, the vehicle control device 290 controls the internal combustion engine 260, which is a power generation unit, and the drive motor 240 to adjust the driving force P21, and the DC power E21 supplied to the main battery 230 is the power generation capacity EC1. Restrict to the following. The power generation capacity EC1 is calculated by the following formula (1).
EC1 = Emax-E1 ... Equation (1)
 発電用容量EC1は、メインバッテリ230に充電し得る電力の最大値である電力Emaxから電力E1を差し引いて算出される。本実施形態において、車両制御装置290は、後述する発電用容量EC2と同一の電力である直流電力E21をメインバッテリ230に供給するように、内燃機関260と駆動モータ240とを制御する。車両制御装置290は、発電用容量EC1と同一の電力を発電するように、発電部を制御してもよい。車両制御装置290は、送電装置100から受電し得る電力E1が電力Emax以上である場合には、発電部を利用した発電を停止させる。 The power generation capacity EC1 is calculated by subtracting the power E1 from the power Emax, which is the maximum value of the power that can be charged to the main battery 230. In the present embodiment, the vehicle control device 290 controls the internal combustion engine 260 and the drive motor 240 so as to supply the DC power E21, which is the same power as the power generation capacity EC2 described later, to the main battery 230. The vehicle control device 290 may control the power generation unit so as to generate the same electric power as the power generation capacity EC1. When the electric power E1 that can be received from the power transmission device 100 is equal to or higher than the electric power Emax, the vehicle control device 290 stops the power generation using the power generation unit.
 時間t2から時間t3において、車両制御装置290は、車両200の加速のために、メインバッテリ230の電力E22分を消費して駆動モータ240を駆動させる。図3に、加速時に消費される電力E22を電力E22Aとして概念的に示す。電力E22Aの消費により、メインバッテリ230に供給される電力RCは、電力ER1となる。同様に、時間t3から時間t4において、車両制御装置290は、メインバッテリ230の電力E22Bを消費して駆動モータ240を駆動させて車両200を巡航させる。図3に、巡航時に消費される電力E22を電力E22Bとして概念的に示す。電力E22Bの消費により、メインバッテリ230に供給される電力RCは、電力ER2となる。 From time t2 to time t3, the vehicle control device 290 consumes the electric power E22 minutes of the main battery 230 to drive the drive motor 240 for accelerating the vehicle 200. FIG. 3 conceptually shows the electric power E22 consumed during acceleration as the electric power E22A. Due to the consumption of the electric power E22A, the electric power RC supplied to the main battery 230 becomes the electric power ER1. Similarly, from time t3 to time t4, the vehicle control device 290 consumes the electric power E22B of the main battery 230 to drive the drive motor 240 to cruise the vehicle 200. FIG. 3 conceptually shows the electric power E22 consumed during cruising as the electric power E22B. Due to the consumption of the electric power E22B, the electric power RC supplied to the main battery 230 becomes the electric power ER2.
 時間t4から時間t5までの車両200の減速時において、駆動モータ240は、ジェネレータとして動作してメインバッテリ230に回生電力E20を供給する。本実施形態において、車両制御装置290は、車両200の減速時に駆動モータ240が回生電力E20を発生させる場合には、さらに、発電部の発電によってメインバッテリ230に供給される直流電力E21が下記式(2)によって求められる発電用容量EC2以下となるように発電部による発電を制御する。
EC2=EC1-E20 ・・・式(2)
During deceleration of the vehicle 200 from time t4 to time t5, the drive motor 240 operates as a generator to supply the regenerative power E20 to the main battery 230. In the present embodiment, in the vehicle control device 290, when the drive motor 240 generates the regenerative power E20 when the vehicle 200 is decelerated, the DC power E21 supplied to the main battery 230 by the power generation of the power generation unit is further described by the following formula. The power generation by the power generation unit is controlled so that the power generation capacity EC2 or less required by (2) is obtained.
EC2 = EC1-E20 ・ ・ ・ Equation (2)
 発電用容量EC2は、メインバッテリ230に充電し得る電力の最大値である電力Emaxから、電力E1および回生電力E20を差し引いて算出される。本実施形態において、車両200の減速時に発電部の発電によってメインバッテリ230に供給される直流電力E21は、発電用容量EC2と同一の電力値である。すなわち、図3に示すように、メインバッテリ230に充電される電力の総和である電力ER4と、電力Emaxとが略同一である。直流電力E21は、発電用容量EC2よりも小さい電力に制限されてもよい。車両制御装置290は、送電装置100から受電し得る電力E1と回生電力E20との総和が電力Emax以上である場合には、発電部を利用した発電を停止させる。 The power generation capacity EC2 is calculated by subtracting the electric power E1 and the regenerative electric power E20 from the electric power Emax which is the maximum value of the electric power that can be charged to the main battery 230. In the present embodiment, the DC power E21 supplied to the main battery 230 by the power generation of the power generation unit when the vehicle 200 is decelerated has the same power value as the power generation capacity EC2. That is, as shown in FIG. 3, the electric power ER4, which is the total electric power charged in the main battery 230, and the electric power Emax are substantially the same. The DC power E21 may be limited to power smaller than the power generation capacity EC2. When the sum of the electric power E1 and the regenerative electric power E20 that can be received from the power transmission device 100 is equal to or greater than the electric power Emax, the vehicle control device 290 stops the power generation using the power generation unit.
 以上、説明したように、本実施形態の車両200によれば、車両制御装置290によって、送電装置100から電力E1を送電され得る場合に、発電部の発電によってメインバッテリ230に供給される電力E21が低減される。メインバッテリ230では、送電装置100から送電され得る電力E1の供給量に対して、発電部によって発電される電力E21の供給量の比率が小さくなる。車両200の走行時において電力E1の消費量に対して電力E21の消費量の比率を小さくすることによって、発電部による発電に用いられる燃料の消費を抑えた状態で車両200を走行させることができる。 As described above, according to the vehicle 200 of the present embodiment, when the electric power E1 can be transmitted from the power transmission device 100 by the vehicle control device 290, the electric power E21 supplied to the main battery 230 by the power generation of the power generation unit. Is reduced. In the main battery 230, the ratio of the supply amount of the electric power E21 generated by the power generation unit to the supply amount of the electric power E1 that can be transmitted from the power transmission device 100 becomes small. By reducing the ratio of the consumption of the electric power E21 to the consumption of the electric power E1 when the vehicle 200 is running, the vehicle 200 can be driven in a state where the consumption of the fuel used for power generation by the power generation unit is suppressed. ..
 本実施形態の車両200によれば、発電部の発電によってメインバッテリ230に供給される電力E21が、メインバッテリ230に充電し得る電力の最大値である電力Emaxから、送電装置100から受電し得る電力E1を差し引いて算出される発電用容量EC1以下となるように制限される。送電装置100から送電され得る電力E1を最大限に受電することにより、発電部によって発電される電力E21を抑えることができる。したがって、発電部の内燃機関260による発電に用いられる燃料の消費を抑えることができる。 According to the vehicle 200 of the present embodiment, the electric power E21 supplied to the main battery 230 by the power generation of the power generation unit can receive electric power from the power transmission device 100 from the electric power Emax which is the maximum value of the electric power that can be charged to the main battery 230. It is limited to the power generation capacity EC1 or less calculated by subtracting the electric power E1. By receiving the electric power E1 that can be transmitted from the power transmission device 100 to the maximum, the electric power E21 generated by the power generation unit can be suppressed. Therefore, it is possible to suppress the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit.
 本実施形態の車両200によれば、車両200の減速時には、発電部発電部の発電によってメインバッテリ230に供給される電力E21が、さらに、発電用容量EC1から回生電力E20を差し引いた発電用容量EC2以下になるように制御される。したがって、送電装置100から送電され得る電力E1と回生電力E20とをメインバッテリ230に最大限に充電することにより、発電部による発電量をより減少させることができる。したがって、発電部の内燃機関260による発電に用いられる燃料の消費をより抑えることができる。 According to the vehicle 200 of the present embodiment, when the vehicle 200 is decelerated, the electric power E21 supplied to the main battery 230 by the power generation of the power generation unit is the power generation capacity obtained by subtracting the regenerative power E20 from the power generation capacity EC1. It is controlled to be EC2 or less. Therefore, the amount of power generated by the power generation unit can be further reduced by maximally charging the main battery 230 with the electric power E1 and the regenerative electric power E20 that can be transmitted from the power transmission device 100. Therefore, the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit can be further suppressed.
 本実施形態の車両200によれば、車両制御装置290は、送電装置100から受電し得る電力E1が電力Emax以上である場合には、発電部を利用した発電を停止させる。したがって、発電部の内燃機関260による発電に用いられる燃料の消費をより抑えることができる。 According to the vehicle 200 of the present embodiment, the vehicle control device 290 stops power generation using the power generation unit when the electric power E1 that can be received from the power transmission device 100 is equal to or higher than the electric power Emax. Therefore, the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit can be further suppressed.
 本実施形態の車両200によれば、車両制御装置290は、送電装置100から受電し得る電力E1と回生電力E20との総和が電力Emax以上である場合、すなわち回生電力E20が発電用容量EC1以上である場合には、発電部を利用した発電を停止させる。したがって、発電部の内燃機関260による発電に用いられる燃料の消費をより抑えることができる。 According to the vehicle 200 of the present embodiment, in the vehicle control device 290, when the sum of the electric power E1 that can be received from the power transmission device 100 and the regenerative electric power E20 is equal to or greater than the electric power Emax, that is, the regenerative electric power E20 has a power generation capacity EC1 or more. If this is the case, the power generation using the power generation unit is stopped. Therefore, the consumption of fuel used for power generation by the internal combustion engine 260 of the power generation unit can be further suppressed.
B.第2実施形態:
 図4に示すように、第2実施形態の車両200bは、内燃機関260に代えて内燃機関260bを備える点と、更に充電モータ270を備える点とで、第1実施形態の車両200と相違し、それ以外の構成は第1実施形態の車両200と同様である。
B. Second embodiment:
As shown in FIG. 4, the vehicle 200b of the second embodiment is different from the vehicle 200 of the first embodiment in that it includes an internal combustion engine 260b instead of the internal combustion engine 260 and further includes a charging motor 270. Other than that, the configuration is the same as that of the vehicle 200 of the first embodiment.
 本実施形態において、内燃機関260bは、発電用の動力源として用いられる。内燃機関260bは、充電モータ270を発電機として駆動するための駆動力P21bを発生させる。充電モータ270から出力される交流電力は、直流電力E21bに変換されてメインバッテリ230に供給される。すなわち、本実施形態の車両200bでは、内燃機関260bと充電モータ270とが、メインバッテリ230に直流電力E21bを供給する発電部として機能する。 In the present embodiment, the internal combustion engine 260b is used as a power source for power generation. The internal combustion engine 260b generates a driving force P21b for driving the charging motor 270 as a generator. The AC power output from the charging motor 270 is converted into DC power E21b and supplied to the main battery 230. That is, in the vehicle 200b of the present embodiment, the internal combustion engine 260b and the charging motor 270 function as a power generation unit that supplies DC power E21b to the main battery 230.
 本実施形態の車両200bでは、車両制御装置290は、発電部である内燃機関260bと充電モータ270とを制御して駆動力を調整し、直流電力E21bをメインバッテリ230に供給する。車両制御装置290は、車両200bの走行中には直流電力E21bが上述した発電用容量EC1以下になるように、内燃機関260を制御する。車両制御装置290は、車両200bの減速時に駆動モータ240が回生電力E20を発生させる場合には、さらに、直流電力E21bが上述した発電用容量EC2以下となるように発電部を制御する。 In the vehicle 200b of the present embodiment, the vehicle control device 290 controls the internal combustion engine 260b, which is a power generation unit, and the charging motor 270 to adjust the driving force, and supplies the DC power E21b to the main battery 230. The vehicle control device 290 controls the internal combustion engine 260 so that the DC power E21b becomes equal to or less than the above-mentioned power generation capacity EC1 while the vehicle 200b is traveling. When the drive motor 240 generates the regenerative power E20 when the vehicle 200b is decelerated, the vehicle control device 290 further controls the power generation unit so that the DC power E21b is equal to or less than the power generation capacity EC2 described above.
 本実施形態の車両200bによれば、車両制御装置290によって、送電装置100から電力E1を送電され得る場合に、発電部の発電によってメインバッテリ230に供給される電力E21bが低減される。車両200bの走行時において電力E1の消費量に対して電力E21bの消費量の比率を小さくすることによって、発電部による発電に用いられる燃料の消費を抑えた状態で車両200bを走行させることができる。 According to the vehicle 200b of the present embodiment, when the electric power E1 can be transmitted from the power transmission device 100 by the vehicle control device 290, the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit is reduced. By reducing the ratio of the consumption of the electric power E21b to the consumption of the electric power E1 when the vehicle 200b is traveling, the vehicle 200b can be traveled in a state where the consumption of the fuel used for power generation by the power generation unit is suppressed. ..
 本実施形態の車両200bによれば、発電部の発電によってメインバッテリ230に供給される電力E21bが、メインバッテリ230に充電し得る電力の最大値である電力Emaxから、送電装置100から送電され得る電力E1を差し引いて算出される発電用容量EC1以下となるように制限される。送電装置100から送電され得る電力E1を最大限に受電することにより、発電部による発電量を抑えることができる。したがって、発電部の内燃機関260bに用いられる燃料の消費を抑えることができる。 According to the vehicle 200b of the present embodiment, the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit can be transmitted from the power transmission device 100 from the electric power Emax which is the maximum value of the electric power that can be charged to the main battery 230. It is limited to the power generation capacity EC1 or less calculated by subtracting the electric power E1. By receiving the maximum amount of electric power E1 that can be transmitted from the power transmission device 100, the amount of power generated by the power generation unit can be suppressed. Therefore, the consumption of fuel used for the internal combustion engine 260b of the power generation unit can be suppressed.
 本実施形態の車両200bによれば、車両200bの減速時には、発電部の発電によってメインバッテリ230に供給される電力E21bが、さらに、発電用容量EC1から回生電力E20を差し引いた発電用容量EC2以下になるように制御される。したがって、送電装置100から送電され得る電力E1と回生電力E20とをメインバッテリ230に最大限に充電することにより、発電部の発電によってメインバッテリ230に供給される電力E21bをより減少させることができる。したがって、発電部の内燃機関260bに用いられる燃料の消費をより抑えることができる。 According to the vehicle 200b of the present embodiment, when the vehicle 200b is decelerated, the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit is further equal to or less than the power generation capacity EC2 obtained by subtracting the regenerative power E20 from the power generation capacity EC1. Is controlled to be. Therefore, by maximally charging the main battery 230 with the electric power E1 and the regenerated electric power E20 that can be transmitted from the power transmission device 100, the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit can be further reduced. .. Therefore, the consumption of fuel used for the internal combustion engine 260b of the power generation unit can be further suppressed.
C.他の実施形態:
(C1)上記各実施形態では、発電部の発電によってメインバッテリ230に供給される電力E21または電力E21bが、発電用容量EC1または発電用容量EC2以下になるように制御される。これに対して、車両200または車両200bが送電装置100による送電状態である場合に、車両制御装置290は、発電部を制御して、メインバッテリ230への電力の供給を停止し、電力E21または電力E21bを発生しないようにしてもよい。この形態の車両によれば、発電部に用いられる燃料の消費をより抑えることができる。車両制御装置290は、発電用容量EC1や発電用容量EC2以下とするための演算をすることなく、より簡易な方法によって発電部に用いられる燃料の消費を抑えることができる。
C. Other embodiments:
(C1) In each of the above embodiments, the electric power E21 or the electric power E21b supplied to the main battery 230 by the power generation of the power generation unit is controlled so as to be equal to or less than the power generation capacity EC1 or the power generation capacity EC2. On the other hand, when the vehicle 200 or the vehicle 200b is in the power transmission state by the power transmission device 100, the vehicle control device 290 controls the power generation unit to stop the supply of electric power to the main battery 230, and the electric power E21 or The electric power E21b may not be generated. According to this type of vehicle, the consumption of fuel used in the power generation unit can be further suppressed. The vehicle control device 290 can suppress the consumption of fuel used in the power generation unit by a simpler method without performing calculations for reducing the power generation capacity EC1 and the power generation capacity EC2 or less.
(C2)上記第2実施形態において、車両200bは、内燃機関260bを備えるが、内燃機関260bに代えて燃料電池を備えてもよい。この形態の車両200bにおいて、燃料電池で発電した電力は、駆動モータ240の駆動に用いられてよく、電力E21bとして直接的にメインバッテリ230に供給されてよい。 (C2) In the second embodiment, the vehicle 200b includes an internal combustion engine 260b, but a fuel cell may be provided instead of the internal combustion engine 260b. In the vehicle 200b of this form, the electric power generated by the fuel cell may be used to drive the drive motor 240, and may be directly supplied to the main battery 230 as the electric power E21b.
(C3)上記各実施形態において、車両200または車両200bと送電装置100との路車間通信のために、無線通信装置280、無線通信装置170が備えられる。これに対して、無線通信装置280、無線通信装置170が備えられなくともよい。このような態様において、車両制御装置290は、例えば、受電装置205の受電状態から送電装置100による送電状態であるか否かを判断してもよく、車両200の位置情報と道路RSとの位置情報とを利用して、送電装置100による送電状態であると判断してもよい。 (C3) In each of the above embodiments, a wireless communication device 280 and a wireless communication device 170 are provided for road-to-vehicle communication between the vehicle 200 or the vehicle 200b and the power transmission device 100. On the other hand, the wireless communication device 280 and the wireless communication device 170 may not be provided. In such an embodiment, the vehicle control device 290 may determine, for example, whether or not the power transmission state is the power transmission state by the power transmission device 100 from the power reception state of the power reception device 205, and the position information of the vehicle 200 and the position of the road RS. The information may be used to determine that the power transmission state is being transmitted by the power transmission device 100.
(C4)上記各実施形態において、走行中の車両200、車両200bに非接触で電力を供給する非接触式の送電装置100の例を示した。これに対して、送電装置100は、例えば、受電共振回路210に代替する受電電極に接触して送電する送電電極を備える等、走行中の車両200の一部と接触して電力を供給する接触式の送電装置であってもよい。 (C4) In each of the above embodiments, an example of a non-contact power transmission device 100 that supplies electric power to a moving vehicle 200 and a vehicle 200b in a non-contact manner is shown. On the other hand, the power transmission device 100 is provided with a power transmission electrode that contacts and transmits power in place of the power reception resonance circuit 210, for example, and is in contact with a part of the running vehicle 200 to supply power. It may be a type power transmission device.
(C5)上記各実施形態において、内燃機関260と駆動モータ240との原動機を搭載するハイブリッド車である車両200と、発電用の動力源として用いられる内燃機関260bと、充電モータ270とを備える車両200bとを例に、車両制御装置290が実行する発電部による充電を制限する制御について説明した。これに対して、車両制御装置290が実行する発電部による充電を制限する制御は、内燃機関からの駆動力を、車両電源に電力を供給する発電機と、駆動軸250または駆動モータ240とに振り分ける動力分割機構を備える、いわゆるシリーズパラレル方式やスプリット方式とも呼ばれる車両に適用してもよい。このような形態の車両では、内燃機関または燃料電池と、動力分割機構とを発電部として、発電部により発電される電力が発電用容量EC1,EC2以下となるように制限される。 (C5) In each of the above embodiments, a vehicle 200 is a hybrid vehicle equipped with a prime mover of an internal combustion engine 260 and a drive motor 240, a vehicle including an internal combustion engine 260b used as a power source for power generation, and a charging motor 270. Taking 200b as an example, the control for limiting the charging by the power generation unit executed by the vehicle control device 290 has been described. On the other hand, the control executed by the vehicle control device 290 to limit the charging by the power generation unit is performed by the generator that supplies the driving force from the internal combustion engine to the vehicle power source and the drive shaft 250 or the drive motor 240. It may be applied to a vehicle provided with a power split mechanism for distribution, which is also called a series parallel system or a split system. In such a vehicle, the internal combustion engine or the fuel cell and the power split mechanism are used as the power generation unit, and the power generated by the power generation unit is limited to the power generation capacity EC1 and EC2 or less.
(C6)上記各実施形態において、送電制御装置150は、車両200に送電を実行している状態である場合に、無線通信装置170を介して、送電状態であることを車両200に通知する。これに対して、送電状態の通知は、例えば、送電制御装置150が送電装置100への車両200の接近を検知した際に実行されてもよい。この場合において、車両200は、発電用容量EC1,EC2の算出等の充電制限制御を、送電装置100による送電の実行前に開始することができる。 (C6) In each of the above embodiments, when the power transmission control device 150 is in the state of executing power transmission to the vehicle 200, the power transmission control device 150 notifies the vehicle 200 of the power transmission state via the wireless communication device 170. On the other hand, the notification of the power transmission state may be executed, for example, when the power transmission control device 150 detects the approach of the vehicle 200 to the power transmission device 100. In this case, the vehicle 200 can start charge limit control such as calculation of the power generation capacities EC1 and EC2 before the execution of power transmission by the power transmission device 100.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose. For example, the technical features in the embodiments corresponding to the technical features described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or some or all of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve this. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Claims (6)

  1.  車両(200,200b)であって、
     走路(RS)に敷設される送電装置(100)から電力を受電する受電装置(205)と、
     内燃機関または燃料電池を用いた発電部から供給される電力(E21,E21b)と、前記受電装置を介して供給される電力(E1)とによって充電される車両電源(230)と、
     前記受電装置が前記送電装置から電力を受電する場合に、前記発電部を制御して、前記発電部から前記車両電源に供給される電力を低減させる車両制御装置(290)と、を備える、
    車両。
    It is a vehicle (200, 200b)
    A power receiving device (205) that receives power from a power transmitting device (100) laid on the track (RS), and
    A vehicle power source (230) charged by electric power (E21, E21b) supplied from a power generation unit using an internal combustion engine or a fuel cell and electric power (E1) supplied via the power receiving device.
    The vehicle control device (290) is provided with a vehicle control device (290) that controls the power generation unit to reduce the power supplied from the power generation unit to the vehicle power source when the power receiving device receives electric power from the power transmission device.
    vehicle.
  2.  請求項1に記載の車両であって、
     前記車両制御装置は、前記受電装置が前記送電装置から電力を受電する場合に、前記発電部から前記車両電源に供給される電力が、下記式(1)によって求められる発電用容量EC1以下になるように前記発電部を制御する、
    車両。
    EC1=Emax-E1 ・・・式(1)
    Emax:車両制御装置によって設定される車両電源に充電し得る電力の最大値
    E1:送電装置から受電装置を介して受電し得る電力
    The vehicle according to claim 1.
    In the vehicle control device, when the power receiving device receives power from the power transmission device, the power supplied from the power generation unit to the vehicle power source becomes the power generation capacity EC1 or less calculated by the following formula (1). To control the power generation unit,
    vehicle.
    EC1 = Emax-E1 ... Equation (1)
    Emax: Maximum value of electric power that can be charged to the vehicle power supply set by the vehicle control device E1: Electric power that can be received from the power transmission device via the power receiving device.
  3.  請求項2に記載の車両であって、
     前記E1の値が前記Emax以上である場合、前記車両制御装置は、前記発電部を制御して、前記車両電源への電力の供給を停止させる、
    車両。
    The vehicle according to claim 2.
    When the value of E1 is equal to or greater than Emax, the vehicle control device controls the power generation unit to stop the supply of electric power to the vehicle power source.
    vehicle.
  4.  請求項2または請求項3に記載の車両であって、
     更に、前記車両電源から走行用電力(E22)を供給される駆動モータ(240)を備え、
     前記受電装置が前記送電装置から電力を受電する場合であって、さらに、前記駆動モータが前記車両の減速時に前記車両電源を充電する回生電力(E20)を発生させる場合には、前記車両制御装置は、前記発電部から前記車両電源に供給される電力が下記式(2)によって求められる発電用容量EC2以下になるように前記発電部を制御する、
    車両。
    EC2=EC1-E20 ・・・式(2)
    The vehicle according to claim 2 or 3.
    Further, it is provided with a drive motor (240) to which running electric power (E22) is supplied from the vehicle power source.
    When the power receiving device receives electric power from the power transmitting device and the drive motor generates regenerative power (E20) for charging the vehicle power source when the vehicle decelerates, the vehicle control device Controls the power generation unit so that the electric power supplied from the power generation unit to the vehicle power source is equal to or less than the power generation capacity EC2 calculated by the following formula (2).
    vehicle.
    EC2 = EC1-E20 ・ ・ ・ Equation (2)
  5.  請求項4に記載の車両であって、
     前記E20の値が前記EC1以上である場合、前記車両制御装置は、前記発電部を制御して、前記車両電源への電力の供給を停止させる、
    車両。
    The vehicle according to claim 4.
    When the value of E20 is EC1 or more, the vehicle control device controls the power generation unit to stop the supply of electric power to the vehicle power source.
    vehicle.
  6.  請求項1に記載の車両であって、
     前記受電装置が前記送電装置から電力を受電する場合に、
     前記車両制御装置は、前記発電部を制御して、前記車両電源への電力の供給を停止させる、
    車両。
    The vehicle according to claim 1.
    When the power receiving device receives electric power from the power transmitting device,
    The vehicle control device controls the power generation unit to stop the supply of electric power to the vehicle power source.
    vehicle.
PCT/JP2020/021754 2019-07-25 2020-06-02 Vehicle WO2021014768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-136607 2019-07-25
JP2019136607A JP7124804B2 (en) 2019-07-25 2019-07-25 vehicle

Publications (1)

Publication Number Publication Date
WO2021014768A1 true WO2021014768A1 (en) 2021-01-28

Family

ID=74194167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021754 WO2021014768A1 (en) 2019-07-25 2020-06-02 Vehicle

Country Status (2)

Country Link
JP (1) JP7124804B2 (en)
WO (1) WO2021014768A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280113A (en) * 2005-03-29 2006-10-12 Toshiba Corp Control unit for railway vehicle
WO2010041320A1 (en) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 Electric vehicle
JP2010167898A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Hybrid vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211103B2 (en) 2010-05-14 2013-06-12 株式会社豊田自動織機 Resonant contactless power supply system for vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280113A (en) * 2005-03-29 2006-10-12 Toshiba Corp Control unit for railway vehicle
WO2010041320A1 (en) * 2008-10-09 2010-04-15 トヨタ自動車株式会社 Electric vehicle
JP2010167898A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Hybrid vehicle

Also Published As

Publication number Publication date
JP7124804B2 (en) 2022-08-24
JP2021020492A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
EP2774802B1 (en) Vehicle and vehicle control method
US8469857B2 (en) Vehicle and control method and control device for vehicle
JP5716779B2 (en) Hybrid car
CN104024039B (en) The control method of vehicle and vehicle
US9550432B2 (en) Hybrid vehicle having mode of increasing amount of charge stored in power storage device to target value and control method for hybrid vehicle
US11407316B2 (en) Vehicle travel control device
JP7103152B2 (en) Vehicle brake control device
KR20170011162A (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
KR102524295B1 (en) Plug-in hybrid vehicle and method of charging control for the same
WO2013018221A1 (en) Vehicle, and vehicle control method
CN103906652A (en) Vehicle and vehicle control method
KR20190056152A (en) Method and appratus for controlling power of mild hybrid electric vehicle
JP7327350B2 (en) HYBRID VEHICLE CONTROL DEVICE AND HYBRID VEHICLE CONTROL METHOD
JP2015000685A (en) Control device and control method for hybrid vehicle
JP5751192B2 (en) Hybrid car
CN103889771B (en) The control method of vehicle and vehicle
WO2021014768A1 (en) Vehicle
KR20180134190A (en) Hybrid vehicle and method of controlling transmission pattern for the same
JP2018027733A (en) Charge controller of hybrid vehicle
CN103889770A (en) Vehicle and method for controlling vehicle
JP7191918B2 (en) Control device, control method, and electric vehicle
US11772630B2 (en) Control device for hybrid vehicle and control method for hybrid vehicle
JPWO2012101801A1 (en) Vehicle and vehicle control method
KR101964234B1 (en) Power generation determine method of range extender electric vehicle
WO2014038442A1 (en) Hybrid vehicle control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844896

Country of ref document: EP

Kind code of ref document: A1