WO2021014599A1 - Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst - Google Patents

Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst Download PDF

Info

Publication number
WO2021014599A1
WO2021014599A1 PCT/JP2019/028940 JP2019028940W WO2021014599A1 WO 2021014599 A1 WO2021014599 A1 WO 2021014599A1 JP 2019028940 W JP2019028940 W JP 2019028940W WO 2021014599 A1 WO2021014599 A1 WO 2021014599A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
electroless plating
pretreatment liquid
nitrogen
catalyst
Prior art date
Application number
PCT/JP2019/028940
Other languages
French (fr)
Japanese (ja)
Inventor
遊佐 敦
美由喜 土畑
朗子 鬼頭
直樹 臼杵
吟 孫
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2019560781A priority Critical patent/JP6666529B1/en
Priority to CN201980098550.2A priority patent/CN114127334A/en
Priority to PCT/JP2019/028940 priority patent/WO2021014599A1/en
Publication of WO2021014599A1 publication Critical patent/WO2021014599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating

Definitions

  • the present invention relates to a method for manufacturing plated parts and a pretreatment liquid for applying an electroless plating catalyst.
  • MID Molded Integrated Device
  • circuits are three-dimensionally formed on a three-dimensional resin molded product
  • MID has merits such as reduction of printed circuit boards and flexible substrates and reduction of the number of manufacturing processes, and various manufacturing methods have been developed.
  • the MID circuit formed on the insulating base material be formed by electroless plating.
  • electroless plating an electroless plating catalyst is first applied to the surface of the base material, and then an electroless plating process is performed.
  • Two main methods for applying electroless plating catalysts are known: the sensitizer-activator method and the catalyst-accelerator method.
  • the sensitizer-activator method a tin colloid is adsorbed on a substrate (sensitizer), then immersed in a palladium chloride solution (activator), and palladium chloride is reduced with stannous chloride to precipitate metallic palladium.
  • the conventional catalyst addition treatment also has the following problems.
  • the catalyst accelerator method since the catalyst palladium is a colloid, it is unstable and easily precipitates and aggregates. Therefore, the amount of catalyst used increases.
  • the sensitizer-activator method continuous treatment is difficult because the sensitizer solution is an unstable colloidal solution in which tin is self-reduced.
  • the tin colloid in the sensitizer solution has a strong adsorptive power.
  • electroless plating is performed using the sensitizer-activator method while the base material is held by a metal jig coated with vinyl chloride, not only the base material on which the plating film is formed but also the base material is formed. The plating film also precipitates on the jig holding the material. Therefore, it is necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment, which hinders the improvement of throughput.
  • Patent Document 1 proposes a method for manufacturing a molded circuit component using an electroless plating catalyst application treatment different from the sensitizer activator method and the catalyst accelerator method.
  • the base material is irradiated with a laser beam having a specific wavelength, partially roughened and surface-modified, and the surface-modified portion of the laser beam irradiation portion is a catalyst composed of metal ions. Is adsorbed and the ion catalyst is reduced, and then electroless plating is performed. Since the catalyst composed of metal ions selectively adheres to the laser beam irradiation portion, an electroless plating film is selectively formed on the laser beam irradiation portion.
  • Patent Document 2 discloses a plating method that does not deposit a plating film on a jig that holds a base material, although it is not a method for manufacturing a circuit component.
  • the base material (plastic) is subjected to etching treatment, addition of a catalyst-imparting enhancer, application of an electroless plating catalyst, and electroless plating in this order.
  • the catalyst-imparting enhancer contains a nitrogen atom-containing compound having selective adsorption on functional groups exposed on the surface of the base material (plastic).
  • the adhesion of the electroless plating catalyst to the base material is controlled only by irradiating or not irradiating the laser beam. Therefore, the selectivity of plating (contrast with or without plating film) may be insufficient. Further, according to the study by the present inventors, it is necessary to optimize the combination of the laser and the resin base material in order to control the adhesion of the electroless plating catalyst only by irradiating or not irradiating the laser beam. I understood. Therefore, the selection range of the resin base material that can be practically applied is narrowed.
  • the method for manufacturing a molding circuit component of Patent Document 1 it is essential to reduce the electroless plating catalyst before the electroless plating treatment in order to suppress the desorption of the electroless catalyst during the electroless plating treatment. is there. Further, in order to strengthen the adsorption force of the electroless plating catalyst to the base material, it has been proposed that the base material is treated with an alkali or a surfactant after irradiation with a laser beam. Therefore, the manufacturing method of the molded circuit component of Patent Document 1 requires a long manufacturing process.
  • Patent Document 2 discloses a plating method in which a plating film is not deposited on a jig holding a base material, but a conventional catalyst accelerator method is used for the catalyst application treatment. Therefore, problems in the conventional catalyst application treatment such as a large number of steps and instability of the treatment liquid have not been solved yet. Further, according to the study by the present inventors, the plating method using the catalyst-imparting enhancer disclosed in Patent Document 2 has insufficient plating selectivity (contrast with or without plating film), and MID and antenna. It was found that it is difficult to form the fine plating pattern (circuit pattern, antenna pattern) required for the member.
  • an electroless plating catalyst can be applied to a substrate by a simple method using a stable treatment liquid, the electroless plating has high reactivity and selectivity, and further.
  • a part of the surface of a base material is irradiated with a laser beam, and the base material irradiated with the laser light is subjected to a weight average molecular weight.
  • a pretreatment liquid containing 1,000 or more nitrogen-containing polymers and having a surface tension of 20 mN / m to 60 mN / m, cleaning the base material contacted with the pretreatment liquid, and the cleaning.
  • the plating catalyst solution containing a metal salt is brought into contact with the base material, and the electroless plating solution is brought into contact with the base material contacted with the plating catalyst solution to form an electroless plating film on the laser beam irradiation portion.
  • a method of manufacturing a plated part including what to do is provided.
  • the surface of the base material may be roughened and / or modified by irradiating the laser beam.
  • the nitrogen-containing polymer may be polyethyleneimine.
  • the weight average molecular weight of the nitrogen-containing polymer may be 1,000 to 100,000, 10,000 to 100,000, or 50,000 to 100,000.
  • the blending amount of the nitrogen-containing polymer in the pretreatment liquid may be 0.01 g / L to 100 g / L or 2 g / L to 50 g / L.
  • the pretreatment liquid may contain a surfactant.
  • the catalytic deactivator may be a hyperbranched polymer.
  • the metal salt of the plating catalyst solution may be palladium chloride, and the blending amount of palladium chloride in the plating catalyst solution may be 0.01 g / L to 1.0 g / L.
  • the electroless plating solution may contain sodium hypophosphite. By contacting the plating catalyst solution, the metal ions derived from the metal salt may be adsorbed on the base material, and the electroless plating solution may be brought into contact with the base material on which the metal ions are adsorbed.
  • the electroless plating film may form an electric circuit or an antenna pattern.
  • a pretreatment liquid for applying an electroless plating catalyst which contains water, a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, and a surfactant, and has a surface tension.
  • a pretreatment solution is provided in which is 20 mN / m to 60 mN / m.
  • the nitrogen-containing polymer may be polyethyleneimine.
  • the blending amount of the nitrogen-containing polymer in the pretreatment liquid may be 0.01 g / L to 100 g / L.
  • an electroless plating catalyst can be applied to a base material by a simple method using a stable treatment liquid, and the reactivity and selectivity of electroless plating are high. Further, precipitation of the plating film on the jig holding the base material can be suppressed.
  • FIG. 1 is a flowchart showing a method for manufacturing a plated component according to the first embodiment.
  • FIG. 2 is a flowchart showing a method of manufacturing the plated parts of the second embodiment.
  • the plated part (selective plated part) of the present embodiment is a member (part) in which an electroless plating film is selectively formed on a part of the surface of the base material.
  • the base material a commercially available product may be used, or the material constituting the base material may be molded into a desired shape by a general-purpose method.
  • the material of the base material is not particularly limited, and for example, resin, glass, metal, ceramic, wood and the like can be used.
  • thermoplastic resins examples include thermoplastic resins and thermosetting resins.
  • semi-aromatic polyamides such as nylon 6T (PA6T), nylon 9T (PA9T), polyamide MXD6 (MXD6PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), syndiotac polystyrene (
  • a thermoplastic resin (heat-resistant resin) having heat resistance such as SPS), polyetheretherketone (PEEK), and polyetherimide can be used.
  • a crystalline resin such as an epoxy resin or a silicone resin can also be used.
  • the base material containing these heat-resistant resins and / or crystalline resins has solder reflow resistance, and also has high durability, high heat resistance, and chemical resistance. If the plated parts are not required to have solder reflow resistance, use general-purpose engineering plastics such as ABS resin, polycarbonate (PC), polymer alloy of ABS resin and PC (ABS / PC), polypropylene, aliphatic polyamide, etc. Can be done. From the viewpoint of improving dimensional stability and rigidity, these resins may contain an inorganic filler such as a glass filler or a mineral filler. Further, these resins may be used alone or in combination of two or more.
  • a heat-dissipating metal or ceramic may be used for at least a part of the base material.
  • the metal include iron, copper, aluminum, titanium, magnesium, stainless steel (SUS) and the like.
  • ceramics non-conductors
  • These metals and ceramics may be used alone or in combination of two or more.
  • the surface of the base material can be roughened and / or modified by irradiating the base material with laser light.
  • the fact that the surface of the base material is roughened means that the surface roughness or the size of the unevenness on the surface of the base material becomes larger than that before the laser irradiation.
  • modifying the surface of the base material means that, for example, a functional group is generated on the surface of the base material by breaking the chemical bond of the material constituting the base material with laser light. Only one of the roughening and the modification of the surface of the base material may occur, or both may occur.
  • surface treatment such as roughening, modification, swelling, and etching of the base material may be further performed by chemical or physical etching or the like. It does not have to be.
  • the laser used for laser light irradiation is not particularly limited, and may be appropriately selected based on the intended use of the plated parts.
  • YV0 4 laser emitting a laser beam in the infrared region ( ⁇ 1064nm)
  • laser light in the infrared region is used, the surfaces of resins and metals are cut and the base material is roughened.
  • the base material is a resin base material containing a filler
  • the contained filler is exposed to the laser beam irradiation portion, and the anchoring (anchoring) effect improves the adhesion strength of the electroless plating film formed on the base material.
  • a green laser 532 nm
  • an electroless plating film can be formed on a smooth base material surface without significantly roughening the base material surface.
  • the pretreatment liquid is brought into contact with the base material (step S2 in FIG. 1).
  • the pretreatment liquid contains a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, and may further contain water and a surfactant.
  • the surface tension of the pretreatment liquid is 20 mN / m to 60 mN / m.
  • the nitrogen-containing polymer is a polymer capable of adsorbing metal ions derived from a metal salt which is a electroless plating catalyst used in a subsequent step.
  • a metal salt which is a electroless plating catalyst used in a subsequent step.
  • polyacrylamide, polyallylamine, polyethyleneimine and the like can be used, among which polyethyleneimine is used.
  • Polyethylenimine is a highly reactive polymer containing primary, secondary, and tertiary amines and having a branched structure, and has a high ability to adsorb electroless plating catalysts, which are metal ions.
  • the weight average molecular weight of the nitrogen-containing polymer is 1,000 or more.
  • the nitrogen-containing polymer adsorbs and / or penetrates the laser-irradiated portion of the substrate, i.e., the roughened and / or modified portion of the substrate, but the nitrogen-containing polymer has a weight average molecular weight of less than 1,000. If there is, it becomes easy to be separated from the base material in the cleaning step (step S3 in FIG. 1) which is a subsequent step. As a result, the reactivity of electroless plating decreases.
  • the weight average molecular weight of the nitrogen-containing polymer By setting the weight average molecular weight of the nitrogen-containing polymer to 1,000 or more, desorption of the nitrogen-containing polymer in the washing step can be suppressed, and the reactivity of electroless plating can be enhanced.
  • the weight average molecular weight of the nitrogen-containing polymer is preferably 10,000 or more, or 50,000 or more, for example. It should be noted that even if the base material is gently washed in the washing step, the desorption of the nitrogen-containing polymer from the base material can be suppressed, but the washing of the base material becomes insufficient and the selectivity of electroless plating is lowered. There is a risk. This tendency is remarkable when the shape of the base material is complicated.
  • the weight average molecular weight of the nitrogen-containing polymer is preferably 100,000 or less, 80,000 or less, or 70,000 or less, for example.
  • the weight average molecular weight of the nitrogen-containing polymer is preferably, for example, 1,000 to 100,000, 10,000 to 100,000, 50,000 to 100,000, or 10,000 to 70,000.
  • the blending amount of the nitrogen-containing polymer in the pretreatment liquid is preferably, for example, 0.01 g / L to 100 g / L, 2 g / L to 50 g / L, or 5 g / L to 50 g / L. Since the specific gravities of the nitrogen-containing polymer and the pretreatment liquid are almost the same, the blending amounts are, for example, 0.001% by weight to 10% by weight, 0.2% by weight to 5% by weight, and 0.5% by weight to 5. Weight% is preferred. Since the metal ions used as the electroless plating catalyst are stable in water, they are not easily adsorbed on the surface of the base material.
  • the blending amount of the nitrogen-containing polymer in the pretreatment liquid By setting the blending amount of the nitrogen-containing polymer in the pretreatment liquid to be equal to or higher than the lower limit of the above range, a sufficient amount of nitrogen-containing polymer for adsorbing metal ions on the base material can be applied to the base material, and the cleaning step Even after passing through (step S3 in FIG. 1), a sufficient amount of nitrogen-containing polymer can remain in the laser beam irradiation portion. Further, if the blending amount of the nitrogen-containing polymer is too large, the nitrogen-containing polymer may be precipitated in the pretreatment liquid, and the plating film may be precipitated on the jig holding the base material.
  • the blending amount of the nitrogen-containing polymer in the pretreatment liquid is set to be equal to or less than the upper limit of the above range, it is possible to suppress the precipitation of the nitrogen-containing polymer in the pretreatment liquid and keep the pretreatment liquid stable. In addition, precipitation of the plating film on the jig holding the base material can be suppressed.
  • the solvent of the pretreatment liquid for dissolving the nitrogen-containing polymer is not particularly limited and can be selected depending on the type of the nitrogen-containing polymer.
  • water ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone and the like.
  • Organic solvents examples of these mixed solvents.
  • the solvent of the pretreatment liquid is preferably water.
  • the nitrogen-containing polymer is preferably a water-soluble polymer
  • the pretreatment liquid is preferably an aqueous solution of the nitrogen-containing polymer.
  • all of the solvent may be water, the main component of the solvent may be water, and a water-soluble organic solvent such as alcohol may be contained.
  • the surface tension of the pretreatment liquid is 20 mN / m to 60 mN / m, preferably 30 mN / m to 50 mN / m. If the surface tension is smaller than the above range, the pretreatment liquid tends to adhere to the jig holding the base material, and it becomes difficult to remove it even through the cleaning step (step S3 in FIG. 1). As a result, a plating film may be deposited on the jig surface. On the other hand, if the surface tension is larger than the above range, it becomes difficult for the pretreatment liquid to sufficiently wet the roughened region and fine irregularities on the surface of the base material. This phenomenon is remarkable when the plating pattern is a fine pattern such as a fine line.
  • the plating film is not deposited in the laser beam irradiation portion, and conversely, the plating film may be deposited between the fine lines of the fine pattern. That is, the reactivity and / or selectivity of electroless plating is reduced. Further, if the surface tension is larger than the above range, the adhesion strength of the plating film may decrease.
  • the surface tension of the pretreatment liquid can be adjusted by using, for example, a surfactant or a surface conditioner.
  • the type of the surfactant is not particularly limited, and an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, a silicone-based surfactant, a fluorine-based surfactant, etc. are appropriately selected. Can be used.
  • the amount of the surfactant blended in the pretreatment liquid is not particularly limited as long as the surface tension of the pretreatment liquid is adjusted to be within the above range. For example, the blending amount of the surfactant in the pretreatment liquid is 0.01% by weight to 5% by weight and 0.05% by weight to 1% by weight.
  • the surface tension of the pretreatment liquid is as described above. It is likely to be larger than the range, in which case it has been found that the reactivity and selectivity of electroless plating is reduced (see Experiment 16 in Examples below).
  • the pretreatment liquid may further contain general-purpose additives such as preservatives, if necessary.
  • the pretreatment liquid can be prepared by mixing a nitrogen-containing polymer, a solvent, and if necessary, a surfactant and a general-purpose additive by any method.
  • the pretreatment liquid may or may not further contain a reducing agent.
  • the method of bringing the pretreatment liquid into contact with the base material is arbitrary, and for example, the entire base material may be immersed in the pretreatment liquid. Further, the pretreatment liquid may be brought into contact with only a part of the base material, but in this case, the pretreatment liquid is brought into contact with the region including the laser beam irradiation portion of the base material.
  • the temperature of the pretreatment liquid and the pretreatment time are not particularly limited. The temperature of the pretreatment liquid is, for example, room temperature or 10 ° C. to 50 ° C., and the pretreatment time is, for example, 1 to 10 minutes.
  • the temperature of the pretreatment liquid and the pretreatment time are within the above ranges, a sufficient amount of nitrogen-containing polymer can be adsorbed on the base material, and deterioration of the base material due to permeation of the pretreatment liquid can be suppressed.
  • the base material in contact with the pretreatment liquid is washed (step S3 in FIG. 1).
  • the nitrogen-containing polymer is adsorbed and / or permeated into the laser-irradiated portion of the substrate, that is, the roughened and / or modified portion of the substrate.
  • the nitrogen-containing polymer is not adsorbed on the non-irradiated portion of the laser beam, or is adsorbed with a relatively weak force. Therefore, by cleaning the base material, the nitrogen-containing polymer adhering to the laser light non-irradiated portion, that is, the portion where the electroless plating film is not formed can be removed, and the nitrogen-containing polymer can be left only in the laser light irradiated portion. it can.
  • the nitrogen-containing polymer adhering to the jig holding the base material can be removed, and the precipitation of the plating film on the jig can be suppressed.
  • Cleaning can be performed, for example, by immersing the base material in a liquid (cleaning solution) capable of dissolving the nitrogen-containing polymer contained in the pretreatment liquid.
  • a liquid cleaning solution
  • the cleaning liquid those listed as the solvent of the above-mentioned pretreatment liquid can be used, and water is preferable. That is, as cleaning of the base material, it is preferable to wash the base material with water.
  • the cleaning liquid in which the substrate is immersed may be stirred during the cleaning of the substrate.
  • the stirring of the cleaning liquid means, for example, stirring, circulating, flowing, etc. the cleaning liquid by air bubbling, a pump, or the like.
  • the base material and the jig may be shaken in the cleaning liquid.
  • the temperature of the cleaning liquid and the cleaning time are not particularly limited.
  • the temperature of the cleaning liquid is, for example, room temperature or 10 ° C. to 80 ° C., and the cleaning time is, for example, 1 to 20 minutes.
  • the substrate may be washed a plurality of times.
  • a plating catalyst solution containing a metal salt is brought into contact with the base material (step S4 in FIG. 1).
  • metal ions derived from the metal salt which is an electroless plating catalyst, are adsorbed on the laser beam irradiation portion of the base material, that is, the roughened and / or swollen portion.
  • metal ions which are catalysts
  • metal ions are reduced and adsorbed on the substrate as a metal state with an oxidation number of 0 (zero).
  • metal ions are difficult to adsorb on the surface of the substrate. Even if it is adsorbed, it has a weak adsorption force, so that it may be detached from the base material during the electroless plating process.
  • the metal ion is reduced to a metallic state to enhance the adsorption force to the base material.
  • electroless plating catalysts usually exhibit catalytic activity in a metallic state with an oxidation number of 0 (zero).
  • a nitrogen-containing polymer capable of adsorbing metal ions is present in the laser beam irradiation portion of the base material of the present embodiment.
  • the nitrogen-containing polymer allows metal ions to be adsorbed on the laser beam irradiation portion of the base material. Since the nitrogen-containing polymer enhances the adsorption force of the electroless plating catalyst on the substrate, it is possible to suppress the detachment of the electroless plating catalyst during the electroless plating treatment.
  • metal ions are adsorbed on the base material.
  • an ionic electroless plating catalyst (oxidation number of metal) showing no catalytic activity.
  • the base material to which is positive) is brought into contact with the electroless plating solution.
  • the electroless plating catalyst can be present on the surface of the substrate at a sufficient concentration even in the ionic state, and is reduced by the reducing agent contained in the electroless plating solution to exhibit catalytic activity. it can.
  • an electroless plating film can be formed on the laser beam irradiation portion of the base material.
  • the reduction treatment of the electroless plating catalyst can be omitted before the electroless plating step. Therefore, the manufacturing cost can be reduced and the throughput is improved. Further, in the present embodiment, the unstable colloidal solution used in the conventional catalyst application treatment is unnecessary.
  • the plating catalyst solution containing the metal salt used in the present embodiment is stable and easy to manage and store.
  • any metal salt having electroless catalytic ability can be used.
  • salts of Pd, Pt, Cu, Ni and the like can be mentioned, and among them, Pd having high catalytic ability is preferable.
  • the salt of Pd include palladium chloride, palladium acetate, and a palladium complex, and among them, inexpensive and stable palladium chloride is preferable.
  • the amount of the metal salt blended in the plating catalyst solution is not particularly limited, and is based on conditions such as the temperature of the plating catalyst solution, the contact time between the plating catalyst solution and the base material, or the electroless plating step described later (FIG. It can be appropriately adjusted based on the type of electroless plating solution used in step S5) of 1.
  • the blending amount of the metal salt in the plating catalyst solution is 0.01 g / L to 1.0 g / L, 0.05 g / L to 0.5 g / L, or 0.1 g / L to 0.3 g / L. It is L.
  • the amount of the metal salt blended is less than the above range, the amount of the metal salt adsorbed on the base material may be uneven, and the plating film may be defective.
  • the blending amount of the metal salt exceeds the above range, the plating reaction on the outermost surface of the base material becomes dominant, and the adhesion strength of the plating film may decrease.
  • the solvent of the plating catalyst solution for dissolving the metal salt is not particularly limited and can be selected depending on the type of the metal salt.
  • water ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone and the like.
  • Organic solvent examples thereof include a mixed solvent thereof.
  • hydrochloric acid, nitric acid, ammonia, sodium hydroxide and the like may be added to adjust the pH of the liquid.
  • the concentration of hydrochloric acid in the plating catalyst solution is, for example, 0.1N to 12N, preferably 0.1N to 5N, and more preferably 1.0N to 4.0N.
  • an alkaline plating catalyst solution may be used.
  • the plating catalyst solution may be composed of only a metal salt and a solvent, or may contain a general-purpose additive, if necessary.
  • the plating catalyst solution may contain, for example, a stabilizer, a complexing agent, and a surfactant.
  • the plating catalyst solution may be prepared by mixing a metal salt, a solvent, and if necessary, a general-purpose additive or the like, or a commercially available product may be used.
  • a catalytic treatment agent (activator) used in the sensitizer-activator method can be used.
  • a sensitizer treatment using a sensitizer (sensitizer) which is an unstable colloidal solution
  • the treatment using the colloidal solution is not necessary. Therefore, in the electroless plating catalyst application treatment of the present embodiment, the throughput is improved as compared with the sensitizer-activator method.
  • the method of bringing the plating catalyst solution into contact with the base material is arbitrary, and for example, the entire base material may be immersed in the plating catalyst solution. Further, the plating catalyst solution may be brought into contact with only a part of the base material, but in this case, the plating catalyst solution is brought into contact with the region including the laser beam irradiation portion of the base material. Further, the temperature of the plating catalyst solution and the time for contacting the plating catalyst solution with the base material are not particularly limited. The temperature of the plating catalyst solution is, for example, room temperature or 20 ° C. to 40 ° C., and the contact time of the plating catalyst solution is preferably, for example, 30 seconds to 10 minutes.
  • the electroless plating catalyst can be uniformly adsorbed on the laser beam irradiation portion.
  • deterioration of the base material due to permeation of the plating catalyst solution and adhesion of the catalyst to the laser light non-irradiated portion can be suppressed.
  • After immersing the base material in the plating catalyst solution it is preferable to wash the base material with water.
  • the electroless plating solution is brought into contact with the base material that has been brought into contact with the plating catalyst solution (step S5 in FIG. 1).
  • the electroless plating solution may be brought into contact with the base material on which the metal ions are adsorbed.
  • an electroless plating film can be formed on the laser beam irradiation portion of the base material.
  • the electroless plating solution any general-purpose electroless plating solution can be used depending on the purpose.
  • the electroless plating solution contains, for example, a reducing agent such as sodium hypophosphate, formalin, and dimethylamine borane.
  • a reducing agent such as sodium hypophosphate, formalin, and dimethylamine borane.
  • an electroless nickel plating solution electroless nickel phosphorus plating solution
  • an electroless copper nickel plating solution an electroless copper plating solution, an electroless copper plating solution, an electroless palladium plating solution, etc.
  • An electroless nickel plating solution and an electroless copper nickel plating solution containing sodium hypophosphite having a high reducing effect of a catalyst (metal ion) as a reducing agent are preferable.
  • the electroless copper nickel plating solution containing sodium hypophosphite as a reducing agent further has the following advantages. Unlike general electroless copper plating, it is not necessary to use formalin as a reducing agent, which is highly harmful to the human body and easily vaporizes naturally.
  • the electroless copper nickel plating film to be formed can form an electroless or electrolytic copper plating film directly above it with good adhesion, and has high electrical conductivity close to that of pure copper.
  • the blending amount of sodium hypophosphate in the electroless plating solution is preferably 5 g / L to 50 g / L.
  • the metal ions (electroless plating catalyst) adsorbed on the substrate can be sufficiently reduced.
  • the temperature of the electroless plating solution and the electroless plating time can be appropriately determined according to the type of the electroless plating solution and the base material.
  • the temperature of the electroless plating solution is 50 ° C. to 80 ° C.
  • the electroless plating time is 1 minute to 1 hour.
  • electroless plating may be performed by bringing the electroless plating solution into contact with the base material while stirring or shaking it.
  • stirring or shaking the electroless plating solution By stirring or shaking the electroless plating solution, the temperature and plating reactivity of the electroless plating solution can be made uniform.
  • an electroless plating film having a uniform shape and high adhesion strength can be formed even on a base material having a complicated shape or a large shape.
  • the electroless plating catalyst is relatively strongly adsorbed on the laser beam irradiation portion of the base material by the nitrogen-containing polymer. Therefore, even if the electroless plating solution is stirred or shaken, the electroless plating catalyst does not separate from the base material, and unevenness of the plating reaction is unlikely to occur.
  • stirring or rocking the electroless plating solution means, for example, stirring, circulating, or flowing the electroless plating solution by air bubbling, a pump, or the like.
  • a plurality of different types of electroless plating films may be formed on the electroless plating film for the purpose of improving the use and design of the plated parts, or the electroless plating film may be formed by electrolytic plating. Good. Further, the base material on which the electroless plating film is formed may be annealed after electroless plating, or may be left at room temperature for natural drying. Further, the following steps such as continuously forming an electrolytic plating film may be performed without performing annealing treatment or natural drying.
  • the electroless plating film may have conductivity.
  • the electroless plating film can function as a wiring pattern, an electric circuit, an antenna, or the like, and the plated component functions as an electronic component.
  • the electroless plating film may be formed flatly on only one surface of the base material, or may be formed three-dimensionally over a plurality of surfaces of the base material. Further, when the base material has a three-dimensional surface including a spherical surface or the like, the electroless plating film may be formed three-dimensionally along the three-dimensional surface.
  • the electroless plating film When the electroless plating film is formed three-dimensionally over a plurality of surfaces of the molded product or along the surface of a three-dimensional shape including a spherical surface and has conductivity, the electroless plating film functions as a three-dimensional electric circuit.
  • the plated component having such a predetermined pattern plating film functions as a three-dimensional circuit molded component (MID: Molded Interconductor Device).
  • the base material irradiated with the laser beam is brought into contact with a pretreatment liquid containing a nitrogen-containing polymer having a specific weight average molecular weight and having a specific surface tension.
  • Pretreatment for catalysis is performed.
  • the electroless plating catalyst can be applied to the base material by using the plating catalyst solution containing a metal salt, which is a stable plating catalyst solution, and the reactivity and selectivity of electroless plating are improved.
  • an electroless plating film can be selectively formed on the laser beam irradiation portion of the base material.
  • the formation of the plating film on the jig can be suppressed. Therefore, while the base material is held by the jig, the pretreatment liquid is brought into contact with both the base material and the jig to perform cleaning, the plating catalyst liquid is brought into contact with the plating catalyst liquid, and the electroless plating liquid is brought into contact with the base material and the jig. May be good. That is, it is not necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment. This improves throughput.
  • the reduction treatment of the electroless plating catalyst (metal ion), which has been conventionally performed, can be omitted.
  • the electroless plating solution may contain a reducing agent.
  • the manufacturing cost can be reduced and the throughput can be improved.
  • a reduction treatment of the electroless plating catalyst (metal ion) may be provided.
  • the reduction treatment of electroless plating is not an essential step, but the reduction treatment of electroless plating improves the proportion of electroless plating that is metallized. This may widen the range of choices for the type of electroless plating solution.
  • a method of manufacturing a plated part will be described with reference to the flowchart shown in FIG.
  • a catalyst deactivating agent catalytic activity interfering agent
  • step S11 in FIG. 2 a catalyst deactivating agent
  • the plated parts are manufactured by the same method as in the first embodiment.
  • the same material as in the first embodiment can be used.
  • the catalyst deactivator any substance can be used as long as it is a substance that prevents the electroless plating catalyst from exerting its catalytic ability and, as a result, suppresses the reaction of electroless plating.
  • the catalyst deactivator either reacts directly with the electroless plating catalyst to poison the electroless plating catalyst, or prevents the electroless plating catalyst from exerting its catalytic ability even if it does not react directly with the electroless plating catalyst. It is presumed.
  • catalyst deactivators include heavy metals such as zinc (Zn), lead (Pb), tin (Sn), bismuth (Bi), antimony (Sb) and other heavy metals and compounds thereof, iodine and the like.
  • examples thereof include the compound and an oxidizing agent such as a peroxide.
  • zinc (Zn), lead (Pb), tin (Sn), bismuth (Bi), antimony (Sb) and their compounds are preferable in that they are highly toxic to electroless plating catalysts, and iodine is preferable.
  • These catalytic deactivators can be applied to the substrate by, for example, the method disclosed in International Patent Publication No. WO2016 / 013464. It is presumed that these catalytic deactivators applied to the base material permeate the base material or strongly adsorb to the base material.
  • a catalytic activity interfering layer containing a catalytic deactivating agent (hereinafter, appropriately simply referred to as “interfering layer”) on the surface of the base material, the catalytic deactivating agent is applied to the surface of the base material. May be good.
  • an interfering layer containing the above-mentioned catalytic deactivator such as iodine and a resin serving as a binder is formed.
  • the catalyst deactivating agent can be retained on the surface of the base material that is difficult for the catalyst deactivating agent to directly adsorb or permeate.
  • the catalyst deactivating agent a resin that interferes with the catalytic activity may be used.
  • the catalyst deactivator which is a resin
  • the catalyst deactivator which is a resin can be applied onto the substrate as an interfering layer.
  • a polymer having an amide group and a dithiocarbamate group in the side chain is preferable. It is presumed that the amide group and dithiocarbamate group of the side chain act on the metal ion serving as the electroless plating catalyst to prevent the catalyst from exerting its catalytic ability.
  • a dendritic polymer such as a dendrimer or a hyperbranched polymer is preferable.
  • the resin that interferes with the catalytic activity for example, the polymer disclosed in International Patent Publication No. WO2017 / 154470 or WO2018 / 131492 can be used, and the surface of the base material can be used by the method disclosed in the same publication. A disturbing layer can be formed on the surface.
  • the dendritic polymer is represented by the following formula (1) disclosed in, for example, International Patent Publication No. WO2017 / 154470 or WO2018 / 131492, and has a weight average molecular weight of 1,000 to 1,000. A hyperbranched polymer of 000 is preferred.
  • a 1 is a group containing an aromatic ring
  • a 2 is a group containing an amide group
  • a 3 is a group containing sulfur
  • R 0 is hydrogen or 1 to 1 to carbon atoms.
  • a part of the surface of the base material to which the catalyst deactivator is applied is irradiated with laser light (step S1 in FIG. 2).
  • laser light irradiation a laser light irradiation part and a laser light non-irradiation part are formed on the surface of the base material.
  • the catalyst deactivating agent is removed or modified or altered so that it does not act as the catalyst deactivating agent. Further, the laser light irradiation unit is roughened and / or modified in the same manner as in the first embodiment.
  • step S2 in FIG. 2 pretreatment for catalyst application (step S2 in FIG. 2), cleaning of the base material (step S3 in FIG. 2), application of the electroless plating catalyst (step S4 in FIG. 2). And electroless plating (step S5 in FIG. 2) is performed in this order.
  • a plated component having an electroless plating film formed on the laser beam irradiation portion can be obtained.
  • the same effect as that of the first embodiment can be obtained, and an electroless plating film can be selectively formed on the laser beam irradiation portion of the base material. Further, in the present embodiment, the catalyst deactivator remaining in the laser light non-irradiated portion can more reliably suppress the precipitation of the plating film in the laser light non-irradiated portion. This improves the selectivity of electroless plating.
  • the set of the base material treatment agent for electroless plating of the present embodiment includes a pretreatment liquid for applying an electroless plating catalyst and a catalyst deactivator.
  • the pretreatment liquid for applying the electroless plating catalyst contains water, a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, and a surfactant, and has a surface tension of 20 mN / m to 60 mN / m.
  • Catalytic deactivators include hyperbranched polymers.
  • the catalyst deactivating agent of the present embodiment the same catalyst deactivating agent as that of the second embodiment can be used.
  • the set of the base material treatment agent for electroless plating of the present embodiment is particularly effective for forming a fine plating pattern (circuit pattern, antenna pattern) required for the MID and the antenna member.
  • Example 1 Base material Polyphenylene sulfide (PPS) (manufactured by DIC, Z230) was injection-molded to obtain a flat plate-shaped base material of 80 mm ⁇ 80 mm ⁇ 2 mm. The mold temperature was 150 ° C. The molded base material was held by a copper jig coated with vinyl chloride, and in that state, each step described below was carried out.
  • PPS polyphenylene sulfide
  • the hyperbranched polymer represented by the following formula (A) was synthesized by the method disclosed in International Patent Publication No. WO2018 / 131492.
  • R 0 is a vinyl group or an ethyl group.
  • the synthesized polymer represented by the formula (A) was dissolved in methyl ethyl ketone to prepare a polymer solution having a polymer content of 0.3% by weight.
  • the substrate was immersed in a polymer solution at room temperature for 5 seconds and then dried in an 85 ° C. dryer for 5 minutes.
  • a catalytic activity interfering layer having a film thickness of about 100 nm was formed on the surface of the base material.
  • PEI polyethyleneimine
  • SLS sodium lauryl sulfate as a surfactant (4) SLS
  • a pretreatment solution was prepared so that the blending amount (solid content concentration) of polyethyleneimine was 10 g / L and the blending amount of sodium lauryl sulfate was 0.1 g / L.
  • the surface tension of the pretreatment liquid was 34.5 mN / m.
  • the substrate was immersed in the pretreatment liquid adjusted to 30 ° C. for 5 minutes.
  • the base material was washed by immersing the base material in water at room temperature stirred by air bubbling for 5 minutes. The same washing was performed once more.
  • an aqueous palladium chloride solution was prepared. After dissolving 0.1 g of palladium chloride in 1 mL of 12N hydrochloric acid, it was diluted with water to make 1 L. From this, a palladium chloride aqueous solution having a blending amount of 0.1 g / L was prepared. The substrate was immersed in a palladium chloride aqueous solution adjusted to 30 ° C. for 5 minutes. After removing the base material from the aqueous solution of palladium chloride, it was washed by immersing it in water at room temperature stirred by air bubbling for several seconds. The same washing was performed twice more.
  • Electroless plating The base material was immersed in an electroless nickel plating solution (manufactured by Okuno Pharmaceutical Co., Ltd., ICP Nicolon LTN-NP, reducing agent: sodium hypophosphite) adjusted to 65 ° C. for 5 minutes. During the electroless plating, the electroless plating solution was vigorously stirred by air bubbling and a pump. An electroless nickel plating film was grown on the surface of the base material by about 1 ⁇ m to obtain a plated part (Sample 1).
  • an electroless nickel plating solution manufactured by Okuno Pharmaceutical Co., Ltd., ICP Nicolon LTN-NP, reducing agent: sodium hypophosphite
  • Example 2 In the pretreatment for catalyst application, the plated parts (made by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) were used in the same manner as in Experiment 1 except that polyethyleneimine having a weight average molecular weight of 10,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the nitrogen-containing polymer. Sample 2) was produced.
  • Example 3 In the pretreatment for catalyst application, the plated parts (produced by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) were used in the same manner as in Experiment 1 except that polyethyleneimine having a weight average molecular weight of 1,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the nitrogen-containing polymer. Sample 3) was produced.
  • Example 4 In the pretreatment for catalyst application, the plated parts (made by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) were used in the same manner as in Experiment 1 except that polyethyleneimine having a weight average molecular weight of 100,000 was used as the nitrogen-containing polymer. Sample 4) was produced.
  • Example 5 A plated part (sample 5) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 0.01 g / L in the pretreatment for applying the catalyst.
  • Example 6 A plated part (Sample 6) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 2 g / L in the pretreatment for applying the catalyst.
  • Example 7 A plated part (Sample 7) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 50 g / L in the pretreatment for applying the catalyst.
  • Example 8 A plated part (Sample 8) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 100 g / L in the pretreatment for applying the catalyst.
  • Example 9 As the surfactant of the pretreatment liquid, a silicone-based surfactant (polyether-modified siloxane) was used instead of SLS, and the surface tension of the pretreatment liquid was 22.0 mN / m, which was the same as in Experiment 1.
  • a plated part (Sample 9) was produced by the method.
  • Example 10 As the surfactant of the pretreatment liquid, a nonionic surfactant (manufactured by Kao Corporation, Emargen (registered trademark) A500, polyoxyethylene distyrene phenyl ether) is used instead of SLS, and the surface tension of the pretreatment liquid is used.
  • a plated part (sample 10) was produced by the same method as in Experiment 1 except that the value was 52.7 mN / m.
  • Liquid crystal polymer (manufactured by Ueno Pharmaceutical Co., Ltd., 5030G) is used as the base material, UV laser (manufactured by Keyence, MD-U1000C) is used as the laser, and sodium hypophosphite is used as the reducing agent as the electroless plating solution.
  • the copper-nickel alloy plating solution electroless copper nickel plating solution
  • the concentration of the palladium chloride aqueous solution was set to 0.2 g / L.
  • the plated parts (sample 11) were manufactured by the same method as in Experiment 1.
  • Example 12 A plated part (sample 12) was produced by the same method as in Experiment 11 except that the catalyst deactivator was not applied to the base material.
  • Example 13 A plated part (Sample 13) was produced by the same method as in Experiment 1 except that the weight average molecular weight of the nitrogen-containing polymer was set to 500.
  • Example 14 As the surfactant of the pretreatment liquid, a fluorine-based surfactant (Surflon S-242 manufactured by AGC Seimi Chemical Co., Ltd.) was used instead of SLS, and the surface tension of the pretreatment liquid was set to 18.0 mN / m. Produced a plated part (sample 14) by the same method as in Experiment 1.
  • Example 15 As the surfactant of the pretreatment liquid, sodium alkylsuccinate sulfonate was used instead of SLS, and the plating parts were plated by the same method as in Experiment 1 except that the surface tension of the pretreatment liquid was 67.9 mN / m. (Sample 15) was produced.
  • Example 16 A plated part (sample 16) was produced by the same method as in Experiment 1 except that no surfactant was used in the pretreatment liquid and the surface tension of the pretreatment liquid was 73.0 mN / m.
  • Example 17 In Experiment 17, no pretreatment liquid for applying the catalyst was applied to the base material, and no catalyst deactivator was applied. Further, by the same method as in Example 1 of Patent Document 1, the base material is subjected to alkali treatment and surface activator treatment after laser light irradiation (laser drawing), and electroless plating catalyst is applied and then electroless plating treatment is performed. Before, a reduction treatment was performed using sodium borohydride. Other than that, a plated part (sample 17) was manufactured in the same manner as in Experiment 1. Therefore, the main difference between Experiment 17 and Example 1 of Patent Document 1 is the type of base material and the type of laser.
  • Experiments 1 to 4 and 13 in which the weight average molecular weight of the nitrogen-containing polymer (PEI) contained in the pretreatment liquid is different and other conditions are the same are compared.
  • the weight average molecular weight of the nitrogen-containing polymer (PEI) was 1,000 to 100,000, the reactivity and selectivity of electroless plating were good, and the plating was performed on a jig. The film did not precipitate.
  • the weight average molecular weight of the nitrogen-containing polymer (PEI) is 70,000 or less, the selectivity of electroless plating is better, and the weight average molecular weight of the nitrogen-containing polymer (PEI) is 10.
  • Experiments 5 to 8 in which the amount of the nitrogen-containing polymer (PEI) blended in the pretreatment liquid is different and other conditions are the same are compared.
  • the blending amount of the nitrogen-containing polymer (PEI) was 0.01 g / L to 100 g / L, the selectivity and reactivity of electroless plating were good, and plating on a jig was performed. The precipitation of the film was suppressed.
  • Experiments 9-10 and 14-16 Compare Experiments 9-10 and 14-16 with different surface tensions of the pretreatment solution and similar other conditions.
  • the surface tension of the pretreatment liquid was in the range of 20 to 60 mN / m
  • the selectivity and reactivity of electroless plating were good, and the plating film did not precipitate on the jig.
  • Experiment 14 (18.0 mN / m) in which the surface tension of the pretreatment liquid was less than 20 mN / m, an electroless plating film was deposited on the entire surface of the jig.
  • Experiment 15 (67.9 mN / m) in which the surface tension of the pretreatment liquid was higher than 60 mN / m, the reactivity of electroless plating was poor, and in Experiment 16 (73.0 mN / m), electroless plating was performed. The selectivity and reactivity were poor.
  • the pretreatment liquid used in Experiment 16 has a solvent of water and does not contain a surfactant. It was found that the surface tension of such a pretreatment liquid was higher than 60 mN / m, and the reactivity and selectivity of electroless plating were lowered.
  • an electroless plating catalyst can be applied to a base material by a simple method using a stable treatment liquid, and plated parts such as MID that require a fine plating pattern can be manufactured. Further, since it is not necessary to replace the jig for holding the base material between the catalyst application treatment and the plating treatment, the throughput is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

Provided is a method for manufacturing a plated part in which an electroless plating catalyst can be applied to a base material by a simple method using a stable treatment liquid, the reactivity and selectivity of electroless plating are high, and precipitation of a plating film on a jig can be suppressed. The method for manufacturing a plated part comprises: irradiating a part of the surface of a base material with a laser beam; bringing a pretreatment liquid that includes a nitrogen-containing polymer having a weight average molecular weight of 1000 or more and has a surface tension of 20-60 mN/m into contact with the base material irradiated with the laser light; washing the base material which has been brought into contact with the pretreatment liquid; bringing a plating catalyst solution including a metal salt into contact with the washed base material; and bringing an electroless plating solution into contact with the base material that has been brought into contact with the plating catalyst solution and forming an electroless plated film on the laser beam irradiation portion.

Description

メッキ部品の製造方法、及び無電解メッキ触媒付与用の前処理液Manufacturing method of plated parts and pretreatment liquid for applying electroless plating catalyst
 本発明は、メッキ部品の製造方法、及び無電解メッキ触媒付与用の前処理液に関する。 The present invention relates to a method for manufacturing plated parts and a pretreatment liquid for applying an electroless plating catalyst.
 三次元の樹脂成形品上に立体的に回路を形成した立体回路成形部品(MID:Molded Interconnected Device)が、スマートホン用の内蔵アンテナを中心に市場を拡大している。MIDは、プリント基板やフレキ基板の削減、製造工程数削減等のメリットがあり、様々な製造方法が開発されている。 Three-dimensional circuit molded parts (MID: Molded Integrated Device), in which circuits are three-dimensionally formed on a three-dimensional resin molded product, are expanding the market centered on built-in antennas for smartphones. MID has merits such as reduction of printed circuit boards and flexible substrates and reduction of the number of manufacturing processes, and various manufacturing methods have been developed.
 絶縁性の基材(樹脂成形品)上に形成されるMIDの回路は、無電解メッキにより形成することが提案されている。無電解メッキでは、まず無電解メッキ触媒を基材表面に付与し、その後、無電解メッキ処理を行う。無電解メッキ触媒付与の主な方法として、センシタイザー・アクチベータ法と、キャタリスト・アクセラレータ法の2種類が知られている。センシタイザー・アクチベータ法では、スズコロイドを基材に吸着させた後(センシタイザー)、塩化パラジウム溶液に浸漬して(アクチベータ)、塩化第1スズで塩化パラジウムを還元して金属パラジウムを析出させる。キャタリスト・アクセラレータ法では、パラジウムスズコロイドを基材に吸着させた後(キャタリスト)、濃硫酸等で還元して金属パラジウムを析出させる(アクセラレータ)。これらの従来の触媒付与処理は、実際には、更に多くの工程が必要とされる。このため、従来の触媒付与処理では、工程数の削減が求められていた。 It has been proposed that the MID circuit formed on the insulating base material (resin molded product) be formed by electroless plating. In electroless plating, an electroless plating catalyst is first applied to the surface of the base material, and then an electroless plating process is performed. Two main methods for applying electroless plating catalysts are known: the sensitizer-activator method and the catalyst-accelerator method. In the sensitizer-activator method, a tin colloid is adsorbed on a substrate (sensitizer), then immersed in a palladium chloride solution (activator), and palladium chloride is reduced with stannous chloride to precipitate metallic palladium. In the catalyst / accelerator method, palladium tin colloid is adsorbed on a substrate (catalyst) and then reduced with concentrated sulfuric acid or the like to precipitate metallic palladium (accelerator). These conventional catalyst application treatments actually require more steps. Therefore, in the conventional catalyst addition treatment, it has been required to reduce the number of steps.
 更に、従来の触媒付与処理は、以下のような課題も有している。キャタリスト・アクセラレータ法では、触媒であるパラジウムがコロイドであるため、不安定で沈降及び凝集し易い。このため、触媒使用量が多くなる。また、センシタイザー・アクチベータ法では、センシタイザー液が、スズが自己還元してしまう不安定なコロイド溶液であるため、連続処理が難しい。更に、センシタイザー液中のスズコロイドは吸着力が強い。例えば、基材を塩化ビニルで被覆した金属製の治具で保持した状態でセンシタイザー・アクチベータ法を用いて無電解メッキを行うと、メッキ膜を形成する対象である基材のみならず、基材を保持している治具にもメッキ膜が析出してしまう。このため、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要があり、スループット向上の妨げとなっていた。 Furthermore, the conventional catalyst addition treatment also has the following problems. In the catalyst accelerator method, since the catalyst palladium is a colloid, it is unstable and easily precipitates and aggregates. Therefore, the amount of catalyst used increases. Further, in the sensitizer-activator method, continuous treatment is difficult because the sensitizer solution is an unstable colloidal solution in which tin is self-reduced. Furthermore, the tin colloid in the sensitizer solution has a strong adsorptive power. For example, when electroless plating is performed using the sensitizer-activator method while the base material is held by a metal jig coated with vinyl chloride, not only the base material on which the plating film is formed but also the base material is formed. The plating film also precipitates on the jig holding the material. Therefore, it is necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment, which hinders the improvement of throughput.
 特許文献1では、センシタイザー・アクチベータ法及びキャタリスト・アクセラレータ法とは異なる無電解メッキ触媒付与処理を用いた、成形回路部品の製造方法が提案されている。特許文献1に開示される方法では、基材に特定波長のレーザービームを照射し、部分的に粗化および表面改質を行い、該レーザービーム照射部の表面改質部に金属イオンからなる触媒を吸着させ、該イオン触媒を還元した後、無電解メッキ処理を行う。金属イオンからなる触媒が、レーザービーム照射部に選択的に付着するため、レーザービーム照射部に無電解メッキ膜が選択的に形成される。 Patent Document 1 proposes a method for manufacturing a molded circuit component using an electroless plating catalyst application treatment different from the sensitizer activator method and the catalyst accelerator method. In the method disclosed in Patent Document 1, the base material is irradiated with a laser beam having a specific wavelength, partially roughened and surface-modified, and the surface-modified portion of the laser beam irradiation portion is a catalyst composed of metal ions. Is adsorbed and the ion catalyst is reduced, and then electroless plating is performed. Since the catalyst composed of metal ions selectively adheres to the laser beam irradiation portion, an electroless plating film is selectively formed on the laser beam irradiation portion.
 また、特許文献2には、回路部品の製造方法ではないが、基材を保持する治具にメッキ膜を析出させないメッキ方法が開示されている。特許文献2のメッキ方法では、基材(プラスチック)に対して、エッチング処理、触媒付与増強液の付与、無電解メッキ触媒の付与、及び無電解メッキをこの順に行う。触媒付与増強液は、基材(プラスチック)表面に露出した官能基に選択吸着性のある、窒素原子を含有する化合物を含有する。 Further, Patent Document 2 discloses a plating method that does not deposit a plating film on a jig that holds a base material, although it is not a method for manufacturing a circuit component. In the plating method of Patent Document 2, the base material (plastic) is subjected to etching treatment, addition of a catalyst-imparting enhancer, application of an electroless plating catalyst, and electroless plating in this order. The catalyst-imparting enhancer contains a nitrogen atom-containing compound having selective adsorption on functional groups exposed on the surface of the base material (plastic).
特許5022501号公報Japanese Patent No. 5022501 特開2008-31513号公報Japanese Unexamined Patent Publication No. 2008-31513
 しかし、特許文献1の成形回路部品の製造方法では、レーザービームの照射、非照射のみにより、基材への無電解メッキ触媒の付着を制御している。このため、メッキの選択性(メッキ膜有無のコントラスト)が不十分となる虞がある。また、本発明者らの検討によれば、レーザービームの照射、非照射のみにより、無電解メッキ触媒の付着を制御するためには、レーザーと樹脂基材の組み合わせを最適化する必要があることがわかった。したがって、実用上適用できる樹脂基材の選択範囲が狭くなる。また、特許文献1の成形回路部品の製造方法では、無電解メッキ処理中に無電解触媒が脱離することを抑制するため、無電解メッキ処理前に無電解メッキ触媒を還元することが必須である。更に、無電解メッキ触媒の基材への吸着力を強固にするため、レーザービームの照射後に、基材をアルカリ処理、界面活性剤処理することも提案されている。このため、特許文献1の成形回路部品の製造方法は、製造工程が長くなる。 However, in the method for manufacturing a molded circuit component of Patent Document 1, the adhesion of the electroless plating catalyst to the base material is controlled only by irradiating or not irradiating the laser beam. Therefore, the selectivity of plating (contrast with or without plating film) may be insufficient. Further, according to the study by the present inventors, it is necessary to optimize the combination of the laser and the resin base material in order to control the adhesion of the electroless plating catalyst only by irradiating or not irradiating the laser beam. I understood. Therefore, the selection range of the resin base material that can be practically applied is narrowed. Further, in the method for manufacturing a molding circuit component of Patent Document 1, it is essential to reduce the electroless plating catalyst before the electroless plating treatment in order to suppress the desorption of the electroless catalyst during the electroless plating treatment. is there. Further, in order to strengthen the adsorption force of the electroless plating catalyst to the base material, it has been proposed that the base material is treated with an alkali or a surfactant after irradiation with a laser beam. Therefore, the manufacturing method of the molded circuit component of Patent Document 1 requires a long manufacturing process.
 また、特許文献2には、基材を保持する治具にメッキ膜を析出させないメッキ方法が開示されているが、触媒付与処理には、従来のキャタリスト・アクセラレータ法が用いられている。したがって、工程数の多さ、処理液の不安定さ等の従来の触媒付与処理における課題を解決するに到っていない。また、本発明者らの検討によれば、特許文献2に開示される触媒付与増強液を用いたメッキ方法では、メッキの選択性(メッキ膜有無のコントラスト)が不十分であり、MIDやアンテナ部材に求められる微細なメッキパターン(回路パターン、アンテナパターン)の形成が難しいことがわかった。 Further, Patent Document 2 discloses a plating method in which a plating film is not deposited on a jig holding a base material, but a conventional catalyst accelerator method is used for the catalyst application treatment. Therefore, problems in the conventional catalyst application treatment such as a large number of steps and instability of the treatment liquid have not been solved yet. Further, according to the study by the present inventors, the plating method using the catalyst-imparting enhancer disclosed in Patent Document 2 has insufficient plating selectivity (contrast with or without plating film), and MID and antenna. It was found that it is difficult to form the fine plating pattern (circuit pattern, antenna pattern) required for the member.
 本発明は、これらの課題を解決するものであり、安定な処理液を用いた簡易な方法で基材に無電解メッキ触媒を付与でき、無電解メッキの反応性及び選択性が高く、更に、治具上のメッキ膜析出も抑制できるメッキ部品の製造方法を提供する。 The present invention solves these problems, an electroless plating catalyst can be applied to a substrate by a simple method using a stable treatment liquid, the electroless plating has high reactivity and selectivity, and further. Provided is a method for manufacturing a plated part capable of suppressing precipitation of a plated film on a jig.
 本発明の第1の態様に従えば、メッキ部品の製造方法であって、基材の表面の一部に、レーザー光を照射することと、前記レーザー光を照射した基材に、重量平均分子量1,000以上の窒素含有ポリマーを含み、表面張力が20mN/m~60mN/mである前処理液を接触させることと、前記前処理液を接触させた基材を洗浄することと、前記洗浄した基材に、金属塩を含むメッキ触媒液を接触させることと、前記メッキ触媒液を接触させた基材に、無電解メッキ液を接触させ、前記レーザー光照射部に無電解メッキ膜を形成することとを含むメッキ部品の製造方法が提供される。 According to the first aspect of the present invention, in the method for manufacturing a plated part, a part of the surface of a base material is irradiated with a laser beam, and the base material irradiated with the laser light is subjected to a weight average molecular weight. Contacting a pretreatment liquid containing 1,000 or more nitrogen-containing polymers and having a surface tension of 20 mN / m to 60 mN / m, cleaning the base material contacted with the pretreatment liquid, and the cleaning. The plating catalyst solution containing a metal salt is brought into contact with the base material, and the electroless plating solution is brought into contact with the base material contacted with the plating catalyst solution to form an electroless plating film on the laser beam irradiation portion. A method of manufacturing a plated part including what to do is provided.
 本態様において、前記レーザー光を照射することにより、前記基材の表面を粗化及び/又は改質させてもよい。前記窒素含有ポリマーが、ポリエチレンイミンであってもよい。前記窒素含有ポリマーの重量平均分子量が、1,000~100,000、10,000~100,000又は、50,000~100,000であってもよい。前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/L、又は2g/L~50g/Lであってもよい。前記前処理液が界面活性剤を含んでもよい。 In this embodiment, the surface of the base material may be roughened and / or modified by irradiating the laser beam. The nitrogen-containing polymer may be polyethyleneimine. The weight average molecular weight of the nitrogen-containing polymer may be 1,000 to 100,000, 10,000 to 100,000, or 50,000 to 100,000. The blending amount of the nitrogen-containing polymer in the pretreatment liquid may be 0.01 g / L to 100 g / L or 2 g / L to 50 g / L. The pretreatment liquid may contain a surfactant.
 前記基材にレーザー光を照射する前に、前記基材の表面に触媒失活剤を付与することを更に含んでもよい。前記触媒失活剤がハイパーブランチポリマーであってもよい。前記メッキ触媒液の金属塩が塩化パラジウムであり、前記メッキ触媒液中の塩化パラジウムの配合量が、0.01g/L~1.0g/Lであってもよい。前記無電解メッキ液が次亜リン酸ナトリウムを含んでもよい。前記メッキ触媒液を接触させることにより、前記金属塩由来の金属イオンが前記基材に吸着し、前記金属イオンが吸着している基材に前記無電解メッキ液を接触させてもよい。前記無電解メッキ膜が電気回路又はアンテナパターンを形成していてもよい。 It may further include applying a catalytic deactivator to the surface of the base material before irradiating the base material with laser light. The catalytic deactivator may be a hyperbranched polymer. The metal salt of the plating catalyst solution may be palladium chloride, and the blending amount of palladium chloride in the plating catalyst solution may be 0.01 g / L to 1.0 g / L. The electroless plating solution may contain sodium hypophosphite. By contacting the plating catalyst solution, the metal ions derived from the metal salt may be adsorbed on the base material, and the electroless plating solution may be brought into contact with the base material on which the metal ions are adsorbed. The electroless plating film may form an electric circuit or an antenna pattern.
 本発明の第2の態様に従えば、無電解メッキ触媒付与用の前処理液であって、水と、重量平均分子量1,000以上の窒素含有ポリマーと、界面活性剤とを含み、表面張力が20mN/m~60mN/mである、前処理液が提供される。 According to the second aspect of the present invention, it is a pretreatment liquid for applying an electroless plating catalyst, which contains water, a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, and a surfactant, and has a surface tension. A pretreatment solution is provided in which is 20 mN / m to 60 mN / m.
 本態様において、前記窒素含有ポリマーが、ポリエチレンイミンであってもよい。前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/Lであってもよい。 In this embodiment, the nitrogen-containing polymer may be polyethyleneimine. The blending amount of the nitrogen-containing polymer in the pretreatment liquid may be 0.01 g / L to 100 g / L.
 本発明のメッキ部品の製造方法は、安定な処理液を用いた簡易な方法で基材に無電解メッキ触媒を付与でき、無電解メッキの反応性及び選択性が高い。更に、基材を保持する治具上のメッキ膜析出を抑制できる。 In the method for manufacturing a plated part of the present invention, an electroless plating catalyst can be applied to a base material by a simple method using a stable treatment liquid, and the reactivity and selectivity of electroless plating are high. Further, precipitation of the plating film on the jig holding the base material can be suppressed.
図1は、第1の実施形態のメッキ部品の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a plated component according to the first embodiment. 図2は、第2の実施形態のメッキ部品の製造方法を示すフローチャートである。FIG. 2 is a flowchart showing a method of manufacturing the plated parts of the second embodiment.
[第1の実施形態]
 第1の実施形態として、図1に示すフローチャートに従ってメッキ部品の製造方法について説明する。本実施形態のメッキ部品(選択的メッキ部品)とは、基材表面の一部に、選択的に無電解メッキ膜が形成されている部材(部品)である。
[First Embodiment]
As the first embodiment, a method of manufacturing a plated part will be described according to the flowchart shown in FIG. The plated part (selective plated part) of the present embodiment is a member (part) in which an electroless plating film is selectively formed on a part of the surface of the base material.
(1)レーザー光照射
 まず、基材の表面の一部に、レーザー光を照射する(図1のステップS1)。
(1) Laser Light Irradiation First, a part of the surface of the base material is irradiated with laser light (step S1 in FIG. 1).
 基材は、市販品を用いてもよいし、又は汎用の方法により、基材を構成する材料を所望の形状に成形してもよい。基材の材料は、特に限定されず、例えば、樹脂、ガラス、金属、セラミック、木材等を用いることができる。 As the base material, a commercially available product may be used, or the material constituting the base material may be molded into a desired shape by a general-purpose method. The material of the base material is not particularly limited, and for example, resin, glass, metal, ceramic, wood and the like can be used.
 樹脂としては、熱可塑性樹脂、熱硬化性樹脂が挙げられる。例えば、ナイロン6T(PA6T)、ナイロン9T(PA9T)、ポリアミドMXD6(MXD6PA)等の半芳香族ポリアミド、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)、シンジオタックポリスチレン(SPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド等の耐熱性有する熱可塑性樹脂(耐熱樹脂)を用いることができる。また、エポキシ樹脂やシリコーン樹脂等の結晶性樹脂も用いることができる。これらの耐熱樹脂及び/又は結晶性樹脂を含む基材は、ハンダリフロー耐性を有し、更に、高耐久性、高耐熱性、耐薬品性も有する。また、メッキ部品にハンダリフロー耐性が要求されない場合には、汎用エンプラであるABS樹脂、ポリカーボネート(PC)、ABS樹脂とPCとのポリマーアロイ(ABS/PC)、ポリプロピレン、脂肪族ポリアミド等を用いることができる。寸法安定性や剛性向上の観点から、これらの樹脂は、ガラスフィラーやミネラルフィラー等の無機フィラーを含有してもよい。また、これらの樹脂は、単独で用いてもよいし、2種類以上を混合して用いてもよい。 Examples of the resin include thermoplastic resins and thermosetting resins. For example, semi-aromatic polyamides such as nylon 6T (PA6T), nylon 9T (PA9T), polyamide MXD6 (MXD6PA), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polybutylene terephthalate (PBT), syndiotac polystyrene ( A thermoplastic resin (heat-resistant resin) having heat resistance such as SPS), polyetheretherketone (PEEK), and polyetherimide can be used. Further, a crystalline resin such as an epoxy resin or a silicone resin can also be used. The base material containing these heat-resistant resins and / or crystalline resins has solder reflow resistance, and also has high durability, high heat resistance, and chemical resistance. If the plated parts are not required to have solder reflow resistance, use general-purpose engineering plastics such as ABS resin, polycarbonate (PC), polymer alloy of ABS resin and PC (ABS / PC), polypropylene, aliphatic polyamide, etc. Can be done. From the viewpoint of improving dimensional stability and rigidity, these resins may contain an inorganic filler such as a glass filler or a mineral filler. Further, these resins may be used alone or in combination of two or more.
 また、基材の少なくとも一部に、放熱性のある金属やセラミックスを用いてもよい。金属(導体)としては、例えば、鉄、銅、アルミニウム、チタン、マグネシウム、ステンレス鋼(SUS)等が挙げられる。セラミックス(不導体)としては、ジルコニア、アルミナ、窒化アルミ等のセラミックが挙げられる。これらの金属及びセラミックスは、単独で用いてもよいし、2種類以上を混合して用いてもよい。 Further, a heat-dissipating metal or ceramic may be used for at least a part of the base material. Examples of the metal (conductor) include iron, copper, aluminum, titanium, magnesium, stainless steel (SUS) and the like. Examples of ceramics (non-conductors) include ceramics such as zirconia, alumina, and aluminum nitride. These metals and ceramics may be used alone or in combination of two or more.
 本実施形態では、基材にレーザー光を照射することにより、基材表面を粗化及び/又は改質できる。ここで、基材の表面が粗化されるとは、基材表面の表面粗さ又は凹凸の大きさが、レーザー光照射前と比較して大きくなることを意味する。また、基材の表面が改質されるとは、例えば、基材を構成する材料の化学結合がレーザー光により切断されることにより、基材表面に官能基が生成することを意味する。基材表面の粗化と改質は、どちらか一方のみが生じてもよいし、両方が生じてもよい。また、基材へのレーザー光の照射の前及び/又は後に、化学又は物理エッチング等により、更に、基材の粗化や改質、膨潤、エッチング等の表面処理を行ってもよいし、行わなくてもよい。 In the present embodiment, the surface of the base material can be roughened and / or modified by irradiating the base material with laser light. Here, the fact that the surface of the base material is roughened means that the surface roughness or the size of the unevenness on the surface of the base material becomes larger than that before the laser irradiation. Further, modifying the surface of the base material means that, for example, a functional group is generated on the surface of the base material by breaking the chemical bond of the material constituting the base material with laser light. Only one of the roughening and the modification of the surface of the base material may occur, or both may occur. Further, before and / or after irradiation of the base material with laser light, surface treatment such as roughening, modification, swelling, and etching of the base material may be further performed by chemical or physical etching or the like. It does not have to be.
 レーザー光照射に用いるレーザーは特に限定されず、メッキ部品の用途に基づいて、適宜、選択してもよい。例えば、赤外領域のレーザー光を放射するYV0レーザー(λ=1064nm)、ファイバーレーザー(λ=1090nm)、COレーザー(λ=10μm)等を用いてもよい。赤外領域のレーザー光を用いると、樹脂、金属の表面が切削され、基材の粗化が進む。特に、基材がフィラーを含有する樹脂基材の場合、含有フィラーがレーザー光照射部に露出し、アンカリング(投錨)効果により、この上に形成される無電解メッキ膜の密着強度が向上する。また、例えば、短波長のレーザー光を放射するグリーンレーザー(λ=532nm)、UVレーザー(λ=355nm)、エキシマレーザー(λ=193nm)等を用いてもよい。短波長のレーザー光を用いると、スポット径を絞り、基材に過剰な熱やダメージを与えず、微細な加工及び基材の表面改質が可能となる。これにより、基材表面を大きく粗化することなく、平滑な基材表面に無電解メッキ膜を形成できる。 The laser used for laser light irradiation is not particularly limited, and may be appropriately selected based on the intended use of the plated parts. For example, YV0 4 laser emitting a laser beam in the infrared region (λ = 1064nm), a fiber laser (λ = 1090nm), may be used a CO 2 laser (lambda = 10 [mu] m) and the like. When laser light in the infrared region is used, the surfaces of resins and metals are cut and the base material is roughened. In particular, when the base material is a resin base material containing a filler, the contained filler is exposed to the laser beam irradiation portion, and the anchoring (anchoring) effect improves the adhesion strength of the electroless plating film formed on the base material. .. Further, for example, a green laser (λ = 532 nm), a UV laser (λ = 355 nm), an excimer laser (λ = 193 nm), or the like that emits a laser beam having a short wavelength may be used. When a short wavelength laser beam is used, the spot diameter is narrowed down, excessive heat or damage is not given to the base material, and fine processing and surface modification of the base material are possible. As a result, an electroless plating film can be formed on a smooth base material surface without significantly roughening the base material surface.
(2)触媒付与の前処理
 次に、基材に無電解メッキ触媒を付与するための前処理として、前処理液を基材に接触させる(図1のステップS2)。前処理液は、重量平均分子量1,000以上の窒素含有ポリマーを含み、更に、水及び界面活性剤を含んでもよい。前処理液の表面張力は、20mN/m~60mN/mである。
(2) Pretreatment for Catalysis Next, as a pretreatment for applying the electroless plating catalyst to the base material, the pretreatment liquid is brought into contact with the base material (step S2 in FIG. 1). The pretreatment liquid contains a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, and may further contain water and a surfactant. The surface tension of the pretreatment liquid is 20 mN / m to 60 mN / m.
 窒素含有ポリマーは、後工程で用いる無電解メッキ触媒である金属塩由来の金属イオンを吸着可能なポリマーであり、例えば、ポリアクリルアミド、ポリアリルアミン、ポリエチレンイミン等を用いることができ、中でもポリエチレンイミンが好ましい。ポリエチレンイミンは、1級、2級、3級のアミンを含み、分岐構造を有する反応性に優れたポリマーであり、金属イオンである無電解メッキ触媒を吸着する能力が高い。 The nitrogen-containing polymer is a polymer capable of adsorbing metal ions derived from a metal salt which is a electroless plating catalyst used in a subsequent step. For example, polyacrylamide, polyallylamine, polyethyleneimine and the like can be used, among which polyethyleneimine is used. preferable. Polyethylenimine is a highly reactive polymer containing primary, secondary, and tertiary amines and having a branched structure, and has a high ability to adsorb electroless plating catalysts, which are metal ions.
 窒素含有ポリマーの重量平均分子量は、1,000以上である。窒素含有ポリマーは、基材のレーザー光照射部、即ち、基材の粗化及び/又は改質された部分に吸着及び/又は浸透するが、窒素含有ポリマーの重量平均分子量が1,000未満であると、後工程である洗浄工程(図1のステップS3)において基材から脱離し易くなる。この結果、無電解メッキの反応性が低下する。窒素含有ポリマーの重量平均分子量を1,000以上とすることで、洗浄工程における窒素含有ポリマーの脱離を抑制し、無電解メッキの反応性を高められる。窒素含有ポリマーの脱離を更に抑制する観点から、窒素含有ポリマーの重量平均分子量は、例えば、10,000以上、又は50,000以上が好ましい。尚、洗浄工程において基材の洗浄を穏やかに行うことによっても、基材からの窒素含有ポリマーの脱離を抑制できるが、基材の洗浄が不十分となり、無電解メッキの選択性が低下する虞がある。この傾向は、基材の形状が複雑な場合に顕著である。 The weight average molecular weight of the nitrogen-containing polymer is 1,000 or more. The nitrogen-containing polymer adsorbs and / or penetrates the laser-irradiated portion of the substrate, i.e., the roughened and / or modified portion of the substrate, but the nitrogen-containing polymer has a weight average molecular weight of less than 1,000. If there is, it becomes easy to be separated from the base material in the cleaning step (step S3 in FIG. 1) which is a subsequent step. As a result, the reactivity of electroless plating decreases. By setting the weight average molecular weight of the nitrogen-containing polymer to 1,000 or more, desorption of the nitrogen-containing polymer in the washing step can be suppressed, and the reactivity of electroless plating can be enhanced. From the viewpoint of further suppressing the desorption of the nitrogen-containing polymer, the weight average molecular weight of the nitrogen-containing polymer is preferably 10,000 or more, or 50,000 or more, for example. It should be noted that even if the base material is gently washed in the washing step, the desorption of the nitrogen-containing polymer from the base material can be suppressed, but the washing of the base material becomes insufficient and the selectivity of electroless plating is lowered. There is a risk. This tendency is remarkable when the shape of the base material is complicated.
 また、窒素含有ポリマーの重量平均分子量が大き過ぎると、窒素含有ポリマーはレーザー光照射部に吸着及び/又は浸透し難くなる。この現象は、メッキパターンが細線等の細密なパターンである場合に顕著である。この結果、レーザー光照射部においてメッキ膜の未析出が生じる虞や、反対に、細密なパターンの細線の間にメッキ膜が析出する虞がある。即ち、無電解メッキの反応性及び/又は選択性が低下する虞がある。以上の観点からは、窒素含有ポリマーの重量平均分子量は、例えば、100,000以下、80,000以下、又は70,000以下が好ましい。 Further, if the weight average molecular weight of the nitrogen-containing polymer is too large, it becomes difficult for the nitrogen-containing polymer to be adsorbed and / or permeated into the laser beam irradiation portion. This phenomenon is remarkable when the plating pattern is a fine pattern such as a fine line. As a result, there is a possibility that the plating film is not deposited in the laser beam irradiation portion, and conversely, the plating film may be deposited between the fine lines of the fine pattern. That is, the reactivity and / or selectivity of electroless plating may decrease. From the above viewpoint, the weight average molecular weight of the nitrogen-containing polymer is preferably 100,000 or less, 80,000 or less, or 70,000 or less, for example.
 以上から、窒素含有ポリマーの重量平均分子量は、例えば、1,000~100,000、10,000~100,000、50,000~100,000、又は10,000~70,000が好ましい。 From the above, the weight average molecular weight of the nitrogen-containing polymer is preferably, for example, 1,000 to 100,000, 10,000 to 100,000, 50,000 to 100,000, or 10,000 to 70,000.
 前処理液中の窒素含有ポリマーの配合量は、例えば、0.01g/L~100g/L、2g/L~50g/L、又は、5g/L~50g/Lが好ましい。尚、窒素含有ポリマー及び前処理液の比重は、ほぼ等しいため、配合量は、例えば、0.001重量%~10重量%、0.2重量%~5重量%、0.5重量%~5重量%が好ましい。無電解メッキ触媒として用いる金属イオンは水中で安定であるため、基材表面に吸着し難い。前処理液中の窒素含有ポリマーの配合量を上記範囲の下限値以上とすることで、金属イオンを基材上に吸着させるのに十分な量の窒素含有ポリマーを基材に付与でき、洗浄工程(図1のステップS3)を経ても、レーザー光照射部に十分な量の窒素含有ポリマーを残存させることができる。また、窒素含有ポリマーの配合量が多過ぎると、前処理液中に窒素含有ポリマーが析出する虞があり、また、基材を保持する治具にメッキ膜が析出する虞がある。前処理液中の窒素含有ポリマーの配合量を上記範囲の上限値以下とすることで、前処理液中に窒素含有ポリマーが析出することを抑制して前処理液を安定に保つことができ、また、基材を保持する治具へのメッキ膜の析出を抑制できる。 The blending amount of the nitrogen-containing polymer in the pretreatment liquid is preferably, for example, 0.01 g / L to 100 g / L, 2 g / L to 50 g / L, or 5 g / L to 50 g / L. Since the specific gravities of the nitrogen-containing polymer and the pretreatment liquid are almost the same, the blending amounts are, for example, 0.001% by weight to 10% by weight, 0.2% by weight to 5% by weight, and 0.5% by weight to 5. Weight% is preferred. Since the metal ions used as the electroless plating catalyst are stable in water, they are not easily adsorbed on the surface of the base material. By setting the blending amount of the nitrogen-containing polymer in the pretreatment liquid to be equal to or higher than the lower limit of the above range, a sufficient amount of nitrogen-containing polymer for adsorbing metal ions on the base material can be applied to the base material, and the cleaning step Even after passing through (step S3 in FIG. 1), a sufficient amount of nitrogen-containing polymer can remain in the laser beam irradiation portion. Further, if the blending amount of the nitrogen-containing polymer is too large, the nitrogen-containing polymer may be precipitated in the pretreatment liquid, and the plating film may be precipitated on the jig holding the base material. By setting the blending amount of the nitrogen-containing polymer in the pretreatment liquid to be equal to or less than the upper limit of the above range, it is possible to suppress the precipitation of the nitrogen-containing polymer in the pretreatment liquid and keep the pretreatment liquid stable. In addition, precipitation of the plating film on the jig holding the base material can be suppressed.
 窒素含有ポリマーを溶解させる前処理液の溶媒は、特に限定されず、窒素含有ポリマーの種類に応じて選択でき、例えば、水;エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトン、エチルメチルケトン等の有機溶媒;これらの混合溶媒が挙げられる。中でも、前処理液の溶媒は水であることが好ましい。この場合、窒素含有ポリマーは水溶性ポリマーであり、前処理液は、窒素含有ポリマーの水溶液であることが好ましい。また、溶媒の全てが水であってもよいし、溶媒の主成分が水であり、更にアルコール等の水溶性有機溶媒を含んでもよい。 The solvent of the pretreatment liquid for dissolving the nitrogen-containing polymer is not particularly limited and can be selected depending on the type of the nitrogen-containing polymer. For example, water; ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone and the like. Organic solvents; examples of these mixed solvents. Above all, the solvent of the pretreatment liquid is preferably water. In this case, the nitrogen-containing polymer is preferably a water-soluble polymer, and the pretreatment liquid is preferably an aqueous solution of the nitrogen-containing polymer. Further, all of the solvent may be water, the main component of the solvent may be water, and a water-soluble organic solvent such as alcohol may be contained.
 前処理液の表面張力は、20mN/m~60mN/mであり、好ましくは、30mN/m~50mN/mである。表面張力が上記範囲より小さいと、基材を保持する治具に前処理液が付着し易く、洗浄工程(図1のステップS3)を経ても除去し難くなる。この結果、治具表面にメッキ膜が析出する虞がある。一方、表面張力が上記範囲より大きいと、前処理液によって基材表面の粗化された領域や微細な凹凸を十分に濡らすことが難しくなる。この現象は、メッキパターンが細線等の細密なパターンである場合に顕著である。この結果、レーザー光照射部においてメッキ膜の未析出が生じる虞や、反対に、細密なパターンの細線の間にメッキ膜が析出する虞がある。即ち、無電解メッキの反応性及び/又は選択性が低下する。更に、表面張力が上記範囲より大きいと、メッキ膜の密着強度が低下する虞もある。前処理液の表面張力は、例えば、界面活性剤や表面調整剤を用いて調整できる。 The surface tension of the pretreatment liquid is 20 mN / m to 60 mN / m, preferably 30 mN / m to 50 mN / m. If the surface tension is smaller than the above range, the pretreatment liquid tends to adhere to the jig holding the base material, and it becomes difficult to remove it even through the cleaning step (step S3 in FIG. 1). As a result, a plating film may be deposited on the jig surface. On the other hand, if the surface tension is larger than the above range, it becomes difficult for the pretreatment liquid to sufficiently wet the roughened region and fine irregularities on the surface of the base material. This phenomenon is remarkable when the plating pattern is a fine pattern such as a fine line. As a result, there is a possibility that the plating film is not deposited in the laser beam irradiation portion, and conversely, the plating film may be deposited between the fine lines of the fine pattern. That is, the reactivity and / or selectivity of electroless plating is reduced. Further, if the surface tension is larger than the above range, the adhesion strength of the plating film may decrease. The surface tension of the pretreatment liquid can be adjusted by using, for example, a surfactant or a surface conditioner.
 界面活性剤の種類は特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、ノニオン性界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤等、適宜選択して使用できる。前処理液中の界面活性剤の配合量は、前処理液の表面張力を上記範囲内となるように調整すれば、特に限定されない。例えば、前処理液中の界面活性剤の配合量は、0.01重量%~5重量%、0.05重量%~1重量%である。尚、本発明者らの検討によれば、前処理液の溶媒が水、又は溶媒の主成分が水であり、前処理液が界面活性剤を含まない場合、前処理液の表面張力は上記範囲より大きくなる可能性が高く、この場合、無電解メッキの反応性及び選択性が低下することがわかっている(後述の実施例における実験16参照)。 The type of the surfactant is not particularly limited, and an anionic surfactant, a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, a silicone-based surfactant, a fluorine-based surfactant, etc. are appropriately selected. Can be used. The amount of the surfactant blended in the pretreatment liquid is not particularly limited as long as the surface tension of the pretreatment liquid is adjusted to be within the above range. For example, the blending amount of the surfactant in the pretreatment liquid is 0.01% by weight to 5% by weight and 0.05% by weight to 1% by weight. According to the study by the present inventors, when the solvent of the pretreatment liquid is water or the main component of the solvent is water and the pretreatment liquid does not contain a surfactant, the surface tension of the pretreatment liquid is as described above. It is likely to be larger than the range, in which case it has been found that the reactivity and selectivity of electroless plating is reduced (see Experiment 16 in Examples below).
 前処理液は、必要に応じて、防腐剤等の汎用の添加剤を更に含んでもよい。前処理液は、窒素含有ポリマー、溶媒、更に必要に応じて、界面活性剤、汎用の添加剤を任意の方法により混合して調製できる。尚、前処理液は、更に還元剤を含んでもよいし、又は、含まなくてもよい。 The pretreatment liquid may further contain general-purpose additives such as preservatives, if necessary. The pretreatment liquid can be prepared by mixing a nitrogen-containing polymer, a solvent, and if necessary, a surfactant and a general-purpose additive by any method. The pretreatment liquid may or may not further contain a reducing agent.
 基材に前処理液を接触させる方法は任意であり、例えば、前処理液に基材全体を浸漬させてもよい。また、基材の一部分のみに前処理液を接触させてもよいが、この場合、基材のレーザー光照射部を含む領域に前処理液を接触させる。また前処理液の温度及び前処理時間(基材に前処理液を接触させる時間)は、特に制限されない。前処理液の温度は、例えば、室温、又は、10℃~50℃であり、前処理時間は、例えば、1~10分である。前処理液の温度、及び前処理時間が上記範囲であれば、基材に十分な量の窒素含有ポリマーを吸着させることができ、また、前処理液の浸透による基材の劣化を抑制できる。 The method of bringing the pretreatment liquid into contact with the base material is arbitrary, and for example, the entire base material may be immersed in the pretreatment liquid. Further, the pretreatment liquid may be brought into contact with only a part of the base material, but in this case, the pretreatment liquid is brought into contact with the region including the laser beam irradiation portion of the base material. The temperature of the pretreatment liquid and the pretreatment time (time for bringing the pretreatment liquid into contact with the substrate) are not particularly limited. The temperature of the pretreatment liquid is, for example, room temperature or 10 ° C. to 50 ° C., and the pretreatment time is, for example, 1 to 10 minutes. When the temperature of the pretreatment liquid and the pretreatment time are within the above ranges, a sufficient amount of nitrogen-containing polymer can be adsorbed on the base material, and deterioration of the base material due to permeation of the pretreatment liquid can be suppressed.
(3)基材の洗浄
 次に、前処理液を接触させた基材を洗浄する(図1のステップS3)。窒素含有ポリマーは、基材のレーザー光照射部、即ち、基材の粗化及び/又は改質された部分に吸着及び/又は浸透している。一方、レーザー光非照射部には、窒素含有ポリマーは吸着していないか、または、比較的弱い力で吸着している。このため、基材の洗浄により、レーザー光非照射部、即ち、無電解メッキ膜を形成しない部分に付着している窒素含有ポリマーを除去し、レーザー光照射部のみに窒素含有ポリマーを残すことができる。また、基材を保持している治具に付着した窒素含有ポリマーを除去し、治具上のメッキ膜の析出を抑制できる。
(3) Cleaning of the base material Next, the base material in contact with the pretreatment liquid is washed (step S3 in FIG. 1). The nitrogen-containing polymer is adsorbed and / or permeated into the laser-irradiated portion of the substrate, that is, the roughened and / or modified portion of the substrate. On the other hand, the nitrogen-containing polymer is not adsorbed on the non-irradiated portion of the laser beam, or is adsorbed with a relatively weak force. Therefore, by cleaning the base material, the nitrogen-containing polymer adhering to the laser light non-irradiated portion, that is, the portion where the electroless plating film is not formed can be removed, and the nitrogen-containing polymer can be left only in the laser light irradiated portion. it can. In addition, the nitrogen-containing polymer adhering to the jig holding the base material can be removed, and the precipitation of the plating film on the jig can be suppressed.
 洗浄は、例えば、前処理液に含まれる窒素含有ポリマーを溶解可能な液体(洗浄液)に基材を浸漬することによって行うことができる。洗浄液としては、上述の前処理液の溶媒として挙げたものを用いることができ、水であることが好ましい。即ち、基材の洗浄として、基材を水洗することが好ましい。また、洗浄効果を上げるために、基材の洗浄中、基材を浸漬した洗浄液を攪拌してもよい。ここで、洗浄液の撹拌とは、例えば、エアバブリング、ポンプ等により洗浄液を撹拌、循環、流動等させることを意味する。または、洗浄液中で、基材および治具を揺動してもよい。洗浄液に溶出した窒素含有ポリマーの濃度上昇を抑制するため、洗浄液をフィルター、活性炭等に通過循環させ、洗浄効果を維持することが好ましい。 Cleaning can be performed, for example, by immersing the base material in a liquid (cleaning solution) capable of dissolving the nitrogen-containing polymer contained in the pretreatment liquid. As the cleaning liquid, those listed as the solvent of the above-mentioned pretreatment liquid can be used, and water is preferable. That is, as cleaning of the base material, it is preferable to wash the base material with water. Further, in order to improve the cleaning effect, the cleaning liquid in which the substrate is immersed may be stirred during the cleaning of the substrate. Here, the stirring of the cleaning liquid means, for example, stirring, circulating, flowing, etc. the cleaning liquid by air bubbling, a pump, or the like. Alternatively, the base material and the jig may be shaken in the cleaning liquid. In order to suppress an increase in the concentration of the nitrogen-containing polymer eluted in the cleaning liquid, it is preferable to pass the cleaning liquid through a filter, activated carbon or the like and circulate it to maintain the cleaning effect.
 洗浄液の温度及び洗浄時間(基材を洗浄液に浸漬している時間)は、特に制限されない。洗浄液の温度は、例えば、室温、又は、10℃~80℃であり、洗浄時間は、例えば、1~20分である。洗浄効果を高めるために、基材の洗浄は、複数回行ってもよい。 The temperature of the cleaning liquid and the cleaning time (time during which the base material is immersed in the cleaning liquid) are not particularly limited. The temperature of the cleaning liquid is, for example, room temperature or 10 ° C. to 80 ° C., and the cleaning time is, for example, 1 to 20 minutes. In order to enhance the cleaning effect, the substrate may be washed a plurality of times.
(4)無電解メッキ触媒の付与
 次に、基材に金属塩を含むメッキ触媒液を接触させる(図1のステップS4)。これにより、基材のレーザー光照射部、即ち、粗化及び/又は膨潤した部分に、無電解メッキ触媒である金属塩由来の金属イオンが吸着する。
(4) Application of Electroless Plating Catalyst Next, a plating catalyst solution containing a metal salt is brought into contact with the base material (step S4 in FIG. 1). As a result, metal ions derived from the metal salt, which is an electroless plating catalyst, are adsorbed on the laser beam irradiation portion of the base material, that is, the roughened and / or swollen portion.
 センシタイザー・アクチベータ法やキャタリスト・アクセラレータ法等の従来の触媒付与処理では、触媒である金属イオンを還元し、酸化数0(ゼロ)の金属状態として基材に吸着させる。その理由を以下に説明する。第1に、金属イオンは基材表面に吸着し難い。吸着したとしても吸着力が弱いため、無電解メッキ処理中に基材から脱離する虞がある。従来の触媒付与処理では、金属イオンを還元して金属状態とすることで、基材への吸着力を高めている。第2に、無電解メッキ触媒は、通常、酸化数0(ゼロ)の金属状態において触媒活性を示す。イオン状態では触媒活性を示さない。従来の触媒付与処理では、金属イオンを還元して基材に吸着させることで、無電解メッキ工程において、触媒活性を示す金属状態の無電解メッキ触媒が吸着した基材を無電解メッキ液に接触させている。 In conventional catalyst application treatments such as the sensitizer activator method and the catalyst accelerator method, metal ions, which are catalysts, are reduced and adsorbed on the substrate as a metal state with an oxidation number of 0 (zero). The reason will be explained below. First, metal ions are difficult to adsorb on the surface of the substrate. Even if it is adsorbed, it has a weak adsorption force, so that it may be detached from the base material during the electroless plating process. In the conventional catalyst application treatment, the metal ion is reduced to a metallic state to enhance the adsorption force to the base material. Second, electroless plating catalysts usually exhibit catalytic activity in a metallic state with an oxidation number of 0 (zero). It does not show catalytic activity in the ionic state. In the conventional catalyst application treatment, metal ions are reduced and adsorbed on the base material, so that the base material adsorbed by the electroless plating catalyst in a metallic state showing catalytic activity is brought into contact with the electroless plating solution in the electroless plating step. I'm letting you.
 これに対して、本実施形態では、触媒付与処理(図1のステップS4)において、触媒である金属イオンを還元しなくてよい。本実施形態の基材のレーザー光照射部には、金属イオンを吸着可能な窒素含有ポリマーが存在する。窒素含有ポリマーにより、基材のレーザー光照射部に、金属イオンを吸着させることができる。窒素含有ポリマーにより無電解メッキ触媒の基材への吸着力が高まるため、無電解メッキ処理中の無電解メッキ触媒の脱離を抑制できる。本実施形態では、触媒付与処理において、基材に金属イオンを吸着させるため、無電解メッキ工程(図1のステップS5)において、触媒活性を示さないイオン状態の無電解メッキ触媒(金属の酸化数が正)が吸着した基材を無電解メッキ液に接触させる。しかし、本実施形態では、無電解メッキ触媒はイオン状態であっても基材表面に十分な濃度で存在でき、無電解メッキ液中に含まれる還元剤により還元されて、触媒活性を示すことができる。これにより、基材のレーザー光照射部に無電解メッキ膜を形成できる。 On the other hand, in the present embodiment, it is not necessary to reduce the metal ion as a catalyst in the catalyst application treatment (step S4 in FIG. 1). A nitrogen-containing polymer capable of adsorbing metal ions is present in the laser beam irradiation portion of the base material of the present embodiment. The nitrogen-containing polymer allows metal ions to be adsorbed on the laser beam irradiation portion of the base material. Since the nitrogen-containing polymer enhances the adsorption force of the electroless plating catalyst on the substrate, it is possible to suppress the detachment of the electroless plating catalyst during the electroless plating treatment. In the present embodiment, in the catalyst application treatment, metal ions are adsorbed on the base material. Therefore, in the electroless plating step (step S5 in FIG. 1), an ionic electroless plating catalyst (oxidation number of metal) showing no catalytic activity. The base material to which is positive) is brought into contact with the electroless plating solution. However, in the present embodiment, the electroless plating catalyst can be present on the surface of the substrate at a sufficient concentration even in the ionic state, and is reduced by the reducing agent contained in the electroless plating solution to exhibit catalytic activity. it can. As a result, an electroless plating film can be formed on the laser beam irradiation portion of the base material.
 本実施形態では、無電解メッキ工程前において、無電解メッキ触媒(金属イオン)の還元処理を省略できる。このため、製造コストを削減でき、スループットが向上する。また、本実施形態では、従来の触媒付与処理において用いられている不安定なコロイド溶液が不要である。本実施形態で用いる金属塩を含むメッキ触媒液は安定であり、管理及び保存が容易である。 In the present embodiment, the reduction treatment of the electroless plating catalyst (metal ion) can be omitted before the electroless plating step. Therefore, the manufacturing cost can be reduced and the throughput is improved. Further, in the present embodiment, the unstable colloidal solution used in the conventional catalyst application treatment is unnecessary. The plating catalyst solution containing the metal salt used in the present embodiment is stable and easy to manage and store.
 メッキ触媒液の含有する金属塩は、無電解触媒能を有する金属の塩であれば任意のものを用いることができる。例えば、Pd、Pt、Cu、Ni等の塩が挙げられ、中でも、触媒能の高いPdが好ましい。Pdの塩としては、例えば、塩化パラジウム、酢酸パラジウム、パラジウム錯体が挙げられ、中でも、安価で安定な塩化パラジウムが好ましい。 As the metal salt contained in the plating catalyst solution, any metal salt having electroless catalytic ability can be used. For example, salts of Pd, Pt, Cu, Ni and the like can be mentioned, and among them, Pd having high catalytic ability is preferable. Examples of the salt of Pd include palladium chloride, palladium acetate, and a palladium complex, and among them, inexpensive and stable palladium chloride is preferable.
 メッキ触媒液中の金属塩の配合量は、特に限定されず、メッキ触媒液の温度、メッキ触媒液と基材との接触時間等の条件に基づいて、または、後述する無電解メッキ工程(図1のステップS5)で用いる無電解メッキ液の種類に基づいて適宜調整できる。例えば、メッキ触媒液中の金属塩の配合量は、0.01g/L~1.0g/L、0.05g/L~0.5g/L、又は、0.1g/L~0.3g/Lである。金属塩の配合量が上記範囲より少ないと、基材への金属塩の吸着量にムラができ、メッキ膜の欠陥ができる虞がある。また、金属塩の配合量が上記範囲を超えると、基材の最表面でのメッキ反応が支配的となり、メッキ膜の密着強度が低下する虞がある。 The amount of the metal salt blended in the plating catalyst solution is not particularly limited, and is based on conditions such as the temperature of the plating catalyst solution, the contact time between the plating catalyst solution and the base material, or the electroless plating step described later (FIG. It can be appropriately adjusted based on the type of electroless plating solution used in step S5) of 1. For example, the blending amount of the metal salt in the plating catalyst solution is 0.01 g / L to 1.0 g / L, 0.05 g / L to 0.5 g / L, or 0.1 g / L to 0.3 g / L. It is L. If the amount of the metal salt blended is less than the above range, the amount of the metal salt adsorbed on the base material may be uneven, and the plating film may be defective. On the other hand, if the blending amount of the metal salt exceeds the above range, the plating reaction on the outermost surface of the base material becomes dominant, and the adhesion strength of the plating film may decrease.
 金属塩を溶解させるメッキ触媒液の溶媒としては、特に限定されず、金属塩の種類に応じて選択でき、例えば、水;エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、アセトン、エチルメチルケトン等の有機溶媒;これらの混合溶媒が挙げられる。更に、金属塩の溶解度を上げるために、塩酸、硝酸、アンモニア、水酸化ナトリウムなどを加えて、液体のpHを調整していてもよい。例えば、メッキ触媒液が塩酸を含む場合、メッキ触媒液中の塩酸の濃度は、例えば、0.1N~12Nであり、0.1N~5Nが好ましく、1.0N~4.0Nがより好ましい。また、本実施形態では、アルカリ性のメッキ触媒液を用いてもよい。 The solvent of the plating catalyst solution for dissolving the metal salt is not particularly limited and can be selected depending on the type of the metal salt. For example, water; ethanol, propanol, isopropanol, butanol, isobutanol, acetone, ethyl methyl ketone and the like. Organic solvent; examples thereof include a mixed solvent thereof. Further, in order to increase the solubility of the metal salt, hydrochloric acid, nitric acid, ammonia, sodium hydroxide and the like may be added to adjust the pH of the liquid. For example, when the plating catalyst solution contains hydrochloric acid, the concentration of hydrochloric acid in the plating catalyst solution is, for example, 0.1N to 12N, preferably 0.1N to 5N, and more preferably 1.0N to 4.0N. Further, in the present embodiment, an alkaline plating catalyst solution may be used.
 メッキ触媒液は、金属塩及び溶媒のみから構成されてもよいし、必要に応じて、汎用の添加剤を含んでもよい。メッキ触媒液は、例えば、安定剤、錯化剤、界面活性剤を含んでもよい。 The plating catalyst solution may be composed of only a metal salt and a solvent, or may contain a general-purpose additive, if necessary. The plating catalyst solution may contain, for example, a stabilizer, a complexing agent, and a surfactant.
 メッキ触媒液は、金属塩と、溶媒と、更に必要に応じて汎用の添加剤等を混合して調製してもよいし、市販品を用いてもよい。市販品としては、例えば、センシタイザー・アクチベータ法に用いる触媒化処理剤(アクチベータ)を用いることができる。通常のセンシタイザー・アクチベータ法では、Pd2+を含む触媒化処理剤(アクチベータ)を用いるアクチベータ処理の前に、不安定なコロイド溶液である感応性付与剤(センシタイザー)を用いたセンシタイザー処理が必要であるが、本実施形態ではコロイド溶液を用いた処理は不要である。このため、本実施形態の無電解メッキ触媒付与処理では、センシタイザー・アクチベータ法よりもスループットが向上する。 The plating catalyst solution may be prepared by mixing a metal salt, a solvent, and if necessary, a general-purpose additive or the like, or a commercially available product may be used. As a commercially available product, for example, a catalytic treatment agent (activator) used in the sensitizer-activator method can be used. In the usual sensitizer-activator method, a sensitizer treatment using a sensitizer (sensitizer), which is an unstable colloidal solution, is performed before the activator treatment using a catalytic treatment agent (activator) containing Pd 2+. However, in this embodiment, the treatment using the colloidal solution is not necessary. Therefore, in the electroless plating catalyst application treatment of the present embodiment, the throughput is improved as compared with the sensitizer-activator method.
 基材にメッキ触媒液を接触させる方法は任意であり、例えば、メッキ触媒液に基材全体を浸漬させてもよい。また、基材の一部分のみにメッキ触媒液を接触させてもよいが、この場合、基材のレーザー光照射部を含む領域にメッキ触媒液を接触させる。また、メッキ触媒液の温度及び基材にメッキ触媒液を接触させる時間は、特に制限されない。メッキ触媒液の温度は、例えば、室温、又は、20℃~40℃であり、メッキ触媒液を接触させる時間は、例えば、30秒~10分が好ましい。メッキ触媒液の温度、及び接触時間が上記範囲であれば、レーザー光照射部に均一に無電解メッキ触媒を吸着させることができる。また、メッキ触媒液の浸透による基材の劣化、及びレーザー光非照射部への触媒の付着を抑制できる。尚、メッキ触媒液に基材を浸漬した後、基材を水洗して洗浄することが好ましい。 The method of bringing the plating catalyst solution into contact with the base material is arbitrary, and for example, the entire base material may be immersed in the plating catalyst solution. Further, the plating catalyst solution may be brought into contact with only a part of the base material, but in this case, the plating catalyst solution is brought into contact with the region including the laser beam irradiation portion of the base material. Further, the temperature of the plating catalyst solution and the time for contacting the plating catalyst solution with the base material are not particularly limited. The temperature of the plating catalyst solution is, for example, room temperature or 20 ° C. to 40 ° C., and the contact time of the plating catalyst solution is preferably, for example, 30 seconds to 10 minutes. When the temperature of the plating catalyst solution and the contact time are within the above ranges, the electroless plating catalyst can be uniformly adsorbed on the laser beam irradiation portion. In addition, deterioration of the base material due to permeation of the plating catalyst solution and adhesion of the catalyst to the laser light non-irradiated portion can be suppressed. After immersing the base material in the plating catalyst solution, it is preferable to wash the base material with water.
(5)無電解メッキ
 次に、メッキ触媒液を接触させた基材に、無電解メッキ液を接触させる(図1のステップS5)。本実施形態では、無電解メッキ触媒(金属イオン)を基材に付与した後(図1のステップS4)、無電解メッキ触媒(金属イオン)を還元する必要がない。即ち、金属イオンが吸着している基材に無電解メッキ液を接触させてよい。これにより、基材のレーザー光照射部に無電解メッキ膜を形成できる。
(5) Electroless plating Next, the electroless plating solution is brought into contact with the base material that has been brought into contact with the plating catalyst solution (step S5 in FIG. 1). In the present embodiment, it is not necessary to reduce the electroless plating catalyst (metal ions) after applying the electroless plating catalyst (metal ions) to the base material (step S4 in FIG. 1). That is, the electroless plating solution may be brought into contact with the base material on which the metal ions are adsorbed. As a result, an electroless plating film can be formed on the laser beam irradiation portion of the base material.
 無電解メッキ液としては、目的に応じて任意の汎用の無電解メッキ液を使用しできる。無電解メッキ液は、例えば、次亜リン酸ナトリウム、ホルマリン、ジメチルアミンボラン等の還元剤を含有する。無電解メッキ液としては、無電解ニッケルメッキ液(無電解ニッケルリンメッキ液)、無電解銅ニッケルメッキ液、無電解銅メッキ液、無電解パラジウムメッキ液等を用いることができ、中でも無電解メッキ触媒(金属イオン)の還元効果の高い次亜リン酸ナトリウムを還元剤として含む、無電解ニッケルメッキ液、無電解銅ニッケルメッキ液が好ましい。また、次亜リン酸ナトリウムを還元剤として含む無電解銅ニッケルメッキ液は、更に、以下の利点を有する。一般的な無電解銅メッキとは異なり、人体に対する有害性が高く自然気化しやすいホルマリンを還元剤に用いる必要がない。形成される無電解銅ニッケルメッキ膜は、その直上に無電解又は電解銅メッキ膜を密着性良く形成でき、また、純銅に近い高い電気伝導性を有する。 As the electroless plating solution, any general-purpose electroless plating solution can be used depending on the purpose. The electroless plating solution contains, for example, a reducing agent such as sodium hypophosphate, formalin, and dimethylamine borane. As the electroless plating solution, an electroless nickel plating solution (electroless nickel phosphorus plating solution), an electroless copper nickel plating solution, an electroless copper plating solution, an electroless palladium plating solution, etc. can be used, and among them, electroless plating. An electroless nickel plating solution and an electroless copper nickel plating solution containing sodium hypophosphite having a high reducing effect of a catalyst (metal ion) as a reducing agent are preferable. Further, the electroless copper nickel plating solution containing sodium hypophosphite as a reducing agent further has the following advantages. Unlike general electroless copper plating, it is not necessary to use formalin as a reducing agent, which is highly harmful to the human body and easily vaporizes naturally. The electroless copper nickel plating film to be formed can form an electroless or electrolytic copper plating film directly above it with good adhesion, and has high electrical conductivity close to that of pure copper.
 次亜リン酸ナトリウムを還元剤として用いる場合、無電解メッキ液中の次亜リン酸ナトリウムの配合量は、5g/L~50g/Lであることが好ましい。還元剤の配合量が上記範囲内であれば、基材に吸着している金属イオン(無電解メッキ触媒)を十分に還元できる。 When sodium hypophosphate is used as a reducing agent, the blending amount of sodium hypophosphate in the electroless plating solution is preferably 5 g / L to 50 g / L. When the blending amount of the reducing agent is within the above range, the metal ions (electroless plating catalyst) adsorbed on the substrate can be sufficiently reduced.
 無電解メッキ液の温度、無電解メッキ時間(基材に無電解メッキ液を接触させる時間)は、無電解メッキ液及び基材の種類等に応じて適宜決定できる。例えば、無電解メッキ液の温度は、50℃~80℃であり、無電解メッキ時間は、1分~1時間である。 The temperature of the electroless plating solution and the electroless plating time (time for contacting the electroless plating solution with the base material) can be appropriately determined according to the type of the electroless plating solution and the base material. For example, the temperature of the electroless plating solution is 50 ° C. to 80 ° C., and the electroless plating time is 1 minute to 1 hour.
 また、無電解メッキ液を撹拌又は揺動させながら基材に接触させて、無電解メッキを行ってもよい。無電解メッキ液を撹拌又は揺動させることで、無電解メッキ液の温度及びメッキ反応性を均一化できる。これにより、複雑形状又は大型形状の基材上にも、均一で密着強度の高い無電解メッキ膜を形成できる。本実施形態では、窒素含有ポリマーにより、基材のレーザー光照射部に無電解メッキ触媒が比較的強固に吸着している。このため、無電解メッキ液を撹拌又は揺動させても無電解メッキ触媒が基材から脱離せず、メッキ反応のムラが生じ難い。ここで、無電解メッキ液の撹拌又は揺動とは、例えば、エアバブリング、ポンプ等により無電解メッキ液を撹拌、循環、流動等させることを意味する。 Alternatively, electroless plating may be performed by bringing the electroless plating solution into contact with the base material while stirring or shaking it. By stirring or shaking the electroless plating solution, the temperature and plating reactivity of the electroless plating solution can be made uniform. As a result, an electroless plating film having a uniform shape and high adhesion strength can be formed even on a base material having a complicated shape or a large shape. In the present embodiment, the electroless plating catalyst is relatively strongly adsorbed on the laser beam irradiation portion of the base material by the nitrogen-containing polymer. Therefore, even if the electroless plating solution is stirred or shaken, the electroless plating catalyst does not separate from the base material, and unevenness of the plating reaction is unlikely to occur. Here, stirring or rocking the electroless plating solution means, for example, stirring, circulating, or flowing the electroless plating solution by air bubbling, a pump, or the like.
 無電解メッキ膜上には、メッキ部品の用途及び意匠性向上等の目的から、更に異なる種類の無電解メッキ膜を複数層形成してもよいし、電解メッキにより電解メッキ膜を形成してもよい。また、無電解メッキ膜が形成された基材は、無電解メッキ後にアニール処理を施してもよいし、室温で放置して自然乾燥してもよい。また、アニール処理や自然乾燥を行わず、連続して電解メッキ膜を形成する等の次の工程を行ってもよい。 A plurality of different types of electroless plating films may be formed on the electroless plating film for the purpose of improving the use and design of the plated parts, or the electroless plating film may be formed by electrolytic plating. Good. Further, the base material on which the electroless plating film is formed may be annealed after electroless plating, or may be left at room temperature for natural drying. Further, the following steps such as continuously forming an electrolytic plating film may be performed without performing annealing treatment or natural drying.
 無電解メッキ膜は導電性を有していてもよい。この場合、無電解メッキ膜は、配線パターン、電気回路、アンテナ等として機能でき、メッキ部品は、電子部品として機能する。また、無電解メッキ膜は、基材の一面のみに平面的に形成させてもよいし、基材の複数の面に亘って立体的に形成されてもよい。また、基材が球面等を含む立体形状の表面を有する場合には、無電解メッキ膜は、その立体形状の表面に沿って立体的に形成されてもよい。無電解メッキ膜が成形体の複数の面に亘って、又は球面等を含む立体形状の表面に沿って立体的に形成され、且つ導電性を有する場合、無電解メッキ膜は立体電気回路として機能し、このような所定パターンのメッキ膜を有するメッキ部品は、立体回路成形部品(MID:Molded Interconnect Device)として機能する。 The electroless plating film may have conductivity. In this case, the electroless plating film can function as a wiring pattern, an electric circuit, an antenna, or the like, and the plated component functions as an electronic component. Further, the electroless plating film may be formed flatly on only one surface of the base material, or may be formed three-dimensionally over a plurality of surfaces of the base material. Further, when the base material has a three-dimensional surface including a spherical surface or the like, the electroless plating film may be formed three-dimensionally along the three-dimensional surface. When the electroless plating film is formed three-dimensionally over a plurality of surfaces of the molded product or along the surface of a three-dimensional shape including a spherical surface and has conductivity, the electroless plating film functions as a three-dimensional electric circuit. However, the plated component having such a predetermined pattern plating film functions as a three-dimensional circuit molded component (MID: Molded Interconductor Device).
 以上説明したように、本実施形態の製造方法では、レーザー光を照射した基材に、特定の重量平均分子量を有する窒素含有ポリマーを含み、特定の表面張力を有する前処理液を接触させて、触媒付与の前処理を行う。これにより、安定なメッキ触媒液である、金属塩を含むメッキ触媒液用いて基材に無電解メッキ触媒を付与でき、無電解メッキの反応性及び選択性が向上する。本実施形態では、基材のレーザー光照射部に、無電解メッキ膜を選択的に形成できる。 As described above, in the production method of the present embodiment, the base material irradiated with the laser beam is brought into contact with a pretreatment liquid containing a nitrogen-containing polymer having a specific weight average molecular weight and having a specific surface tension. Pretreatment for catalysis is performed. As a result, the electroless plating catalyst can be applied to the base material by using the plating catalyst solution containing a metal salt, which is a stable plating catalyst solution, and the reactivity and selectivity of electroless plating are improved. In the present embodiment, an electroless plating film can be selectively formed on the laser beam irradiation portion of the base material.
 また、本実施形態では、治具上のメッキ膜の形成を抑制できる。このため、基材を治具で保持した状態で、基材及び治具の両方に、前処理液を接触させ、洗浄を行い、メッキ触媒液を接触させ、そして無電解メッキ液を接触させてもよい。即ち、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要がない。これにより、スループットが向上する。 Further, in the present embodiment, the formation of the plating film on the jig can be suppressed. Therefore, while the base material is held by the jig, the pretreatment liquid is brought into contact with both the base material and the jig to perform cleaning, the plating catalyst liquid is brought into contact with the plating catalyst liquid, and the electroless plating liquid is brought into contact with the base material and the jig. May be good. That is, it is not necessary to replace the jig that holds the base material between the catalyst application treatment and the plating treatment. This improves throughput.
 また、本実施形態の製造方法では、従来、行われていた、無電解メッキ触媒(金属イオン)の還元処理を省略できる。換言すれば、本実施形態の製造方法では、基材と接触する液体のうち、無電解メッキ液のみが還元剤を含有してもよい。無電解メッキ触媒(金属イオン)の還元処理を省略することで、製造コストを削減でき、スループットが向上する。尚、本実施形態の製造方法では、無電解メッキ触媒(金属イオン)を基材に付与した後で(図1のステップS4)、無電解メッキ処理の前に(図1のステップS5)に、無電解メッキ触媒(金属イオン)の還元処理を設けてもよい。無電解メッキの還元処理は必須の工程ではないが、無電解メッキの還元処理を設けることで、金属化する無電解メッキの割合が向上する。これにより、無電解メッキ液の種類の選択の幅が広がる可能性がある。 Further, in the production method of the present embodiment, the reduction treatment of the electroless plating catalyst (metal ion), which has been conventionally performed, can be omitted. In other words, in the production method of the present embodiment, of the liquids in contact with the base material, only the electroless plating solution may contain a reducing agent. By omitting the reduction treatment of the electroless plating catalyst (metal ion), the manufacturing cost can be reduced and the throughput can be improved. In the production method of the present embodiment, after the electroless plating catalyst (metal ion) is applied to the base material (step S4 in FIG. 1) and before the electroless plating treatment (step S5 in FIG. 1), A reduction treatment of the electroless plating catalyst (metal ion) may be provided. The reduction treatment of electroless plating is not an essential step, but the reduction treatment of electroless plating improves the proportion of electroless plating that is metallized. This may widen the range of choices for the type of electroless plating solution.
[第2の実施形態]
 第2の実施形態として、図2に示すフローチャートに従って、メッキ部品の製造方法について説明する。本実施形態では、基材にレーザー光を照射する前に、基材表面に触媒失活剤(触媒活性妨害剤)を付与する(図2のステップS11)。それ以外は、第1の実施形態と同様の方法により、メッキ部品を製造する。
[Second Embodiment]
As a second embodiment, a method of manufacturing a plated part will be described with reference to the flowchart shown in FIG. In the present embodiment, a catalyst deactivating agent (catalytic activity interfering agent) is applied to the surface of the base material before irradiating the base material with laser light (step S11 in FIG. 2). Other than that, the plated parts are manufactured by the same method as in the first embodiment.
 基材としては、第1の実施形態と同様のものを用いることができる。触媒失活剤としては、無電解メッキ触媒が触媒能を発揮することを妨げ、結果として、無電解メッキの反応を抑制する物質であれば、任意の物質を用いることができる。触媒失活剤は、無電解メッキ触媒と直接反応して無電解メッキ触媒を被毒するか、又は無電解メッキ触媒と直接反応せずとも、無電解メッキ触媒が触媒能を発揮することを妨げると推測される。このような触媒失活剤としては、例えば、亜鉛(Zn)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、アンチモン(Sb)等のメッキ触媒毒となる重金属及びその化合物、ヨウ素及びその化合物、過酸化物等の酸化剤等が挙げられる。中でも、亜鉛(Zn)、鉛(Pb)、錫(Sn)、ビスマス(Bi)、アンチモン(Sb)及びその化合物は、無電解メッキ触媒に対しての被毒性が強いという点で好ましく、ヨウ素は、基材への浸透性が高い点で好ましい。これらの触媒失活剤は、例えば、国際特許公開公報WO2016/013464号に開示される方法により、基材へ付与できる。基材に付与されたこれらの触媒失活剤は、基材に浸透するか、又は強固に吸着すると推測される。 As the base material, the same material as in the first embodiment can be used. As the catalyst deactivator, any substance can be used as long as it is a substance that prevents the electroless plating catalyst from exerting its catalytic ability and, as a result, suppresses the reaction of electroless plating. The catalyst deactivator either reacts directly with the electroless plating catalyst to poison the electroless plating catalyst, or prevents the electroless plating catalyst from exerting its catalytic ability even if it does not react directly with the electroless plating catalyst. It is presumed. Examples of such catalyst deactivators include heavy metals such as zinc (Zn), lead (Pb), tin (Sn), bismuth (Bi), antimony (Sb) and other heavy metals and compounds thereof, iodine and the like. Examples thereof include the compound and an oxidizing agent such as a peroxide. Among them, zinc (Zn), lead (Pb), tin (Sn), bismuth (Bi), antimony (Sb) and their compounds are preferable in that they are highly toxic to electroless plating catalysts, and iodine is preferable. , It is preferable because it has high permeability to the base material. These catalytic deactivators can be applied to the substrate by, for example, the method disclosed in International Patent Publication No. WO2016 / 013464. It is presumed that these catalytic deactivators applied to the base material permeate the base material or strongly adsorb to the base material.
 また、触媒失活剤を含む触媒活性妨害層(以下、適宜、単に「妨害層」と記載する)を基材の表面に形成することにより、触媒失活剤を基材の表面に付与してもよい。例えば、上述したヨウ素等の触媒失活剤と、バインダとなる樹脂とを含む妨害層を形成する。バインダとなる樹脂を用いることで、触媒失活剤が直接、吸着又は浸透し難い基材の表面にも触媒失活剤を留めることができる。 Further, by forming a catalytic activity interfering layer containing a catalytic deactivating agent (hereinafter, appropriately simply referred to as “interfering layer”) on the surface of the base material, the catalytic deactivating agent is applied to the surface of the base material. May be good. For example, an interfering layer containing the above-mentioned catalytic deactivator such as iodine and a resin serving as a binder is formed. By using a resin that serves as a binder, the catalyst deactivating agent can be retained on the surface of the base material that is difficult for the catalyst deactivating agent to directly adsorb or permeate.
 また、触媒失活剤として、触媒活性を妨害する樹脂を用いてもよい。樹脂である触媒失活剤は、妨害層として基材上に付与できる。樹脂である触媒失活剤としては、側鎖にアミド基及びジチオカルバメート基を有するポリマーが好ましい。側鎖のアミド基及びジチオカルバメート基が無電解メッキ触媒となる金属イオンに作用し、触媒能を発揮することを妨げると推測される。また、樹脂である触媒失活剤は、デンドリマー、ハイパーブランチポリマー等のデンドリティックポリマーが好ましい。触媒活性を妨害する樹脂としては、例えば、国際特許公開公報WO2017/154470号、又はWO2018/131492号に開示されるポリマーを用いることができ、また、同公報に開示される方法により、基材表面に妨害層を形成できる。 Further, as the catalyst deactivating agent, a resin that interferes with the catalytic activity may be used. The catalyst deactivator, which is a resin, can be applied onto the substrate as an interfering layer. As the catalyst deactivator which is a resin, a polymer having an amide group and a dithiocarbamate group in the side chain is preferable. It is presumed that the amide group and dithiocarbamate group of the side chain act on the metal ion serving as the electroless plating catalyst to prevent the catalyst from exerting its catalytic ability. Further, as the catalyst deactivator which is a resin, a dendritic polymer such as a dendrimer or a hyperbranched polymer is preferable. As the resin that interferes with the catalytic activity, for example, the polymer disclosed in International Patent Publication No. WO2017 / 154470 or WO2018 / 131492 can be used, and the surface of the base material can be used by the method disclosed in the same publication. A disturbing layer can be formed on the surface.
 デンドリティックポリマーとしては、例えば、国際特許公開公報WO2017/154470号、又はWO2018/131492号に開示されている、下記式(1)で表され、重量平均分子量が、1,000~1,000,000であるハイパーブランチポリマーが好ましい。 The dendritic polymer is represented by the following formula (1) disclosed in, for example, International Patent Publication No. WO2017 / 154470 or WO2018 / 131492, and has a weight average molecular weight of 1,000 to 1,000. A hyperbranched polymer of 000 is preferred.
Figure JPOXMLDOC01-appb-C000001
 式(1)において、Aは芳香環を含む基であり、Aは、アミド基を含む基であり、Aは、硫黄を含む基であり、Rは、水素又は炭素数1~10個の置換若しくは無置換の炭化水素基であり、m1は0.5~11であり、n1は5~100である。
Figure JPOXMLDOC01-appb-C000001
In the formula (1), A 1 is a group containing an aromatic ring, A 2 is a group containing an amide group, A 3 is a group containing sulfur, and R 0 is hydrogen or 1 to 1 to carbon atoms. There are 10 substituted or unsubstituted hydrocarbon groups, m1 is 0.5 to 11, and n1 is 5 to 100.
 次に、図2に示すように、第1の実施形態と同様の以下の工程を行う。まず、触媒失活剤が付与された基材の表面の一部にレーザー光を照射する(図2のステップS1)。レーザー光照射により、基材の表面には、レーザー光照射部と、レーザー光非照射部が形成される。レーザー光照射部では、触媒失活剤は除去されるか、変性又は変質して触媒失活剤として作用しなくなる。また、レーザー光照射部は、第1の実施形態と同様に粗化及び/又は改質される。 Next, as shown in FIG. 2, the following steps similar to those in the first embodiment are performed. First, a part of the surface of the base material to which the catalyst deactivator is applied is irradiated with laser light (step S1 in FIG. 2). By laser light irradiation, a laser light irradiation part and a laser light non-irradiation part are formed on the surface of the base material. In the laser light irradiation unit, the catalyst deactivating agent is removed or modified or altered so that it does not act as the catalyst deactivating agent. Further, the laser light irradiation unit is roughened and / or modified in the same manner as in the first embodiment.
 次に、第1の実施形態と同様に、触媒付与の前処理(図2のステップS2)、基材の洗浄(図2のステップS3)、無電解メッキ触媒の付与(図2のステップS4)及び無電解メッキ(図2のステップS5)をこの順に行う。これにより、レーザー光照射部に無電解メッキ膜が形成されたメッキ部品が得られる。 Next, as in the first embodiment, pretreatment for catalyst application (step S2 in FIG. 2), cleaning of the base material (step S3 in FIG. 2), application of the electroless plating catalyst (step S4 in FIG. 2). And electroless plating (step S5 in FIG. 2) is performed in this order. As a result, a plated component having an electroless plating film formed on the laser beam irradiation portion can be obtained.
 本実施形態の製造方法では、第1の実施形態と同様の効果を奏することができ、基材のレーザー光照射部に選択的に無電解メッキ膜を形成できる。また、本実施形態では、レーザー光非照射部に残存する触媒失活剤により、レーザー光非照射部におけるメッキ膜の析出をより確実に抑制できる。これにより、無電解メッキの選択性が向上する。 In the manufacturing method of the present embodiment, the same effect as that of the first embodiment can be obtained, and an electroless plating film can be selectively formed on the laser beam irradiation portion of the base material. Further, in the present embodiment, the catalyst deactivator remaining in the laser light non-irradiated portion can more reliably suppress the precipitation of the plating film in the laser light non-irradiated portion. This improves the selectivity of electroless plating.
[第3の実施形態]
 第3の実施形態として、無電解メッキ用の基材処理剤のセットについて説明する。本実施形態の無電解メッキ用の基材処理剤のセットは、無電解メッキ触媒付与用の前処理液と、触媒失活剤とを含む。無電解メッキ触媒付与用の前処理液は、水と、重量平均分子量1,000以上の窒素含有ポリマーと、界面活性剤とを含み、表面張力が20mN/m~60mN/mである。本実施形態の前処理液は、第1の実施形態の前処理液と同様のものを用いることができる。触媒失活剤は、ハイパーブランチポリマーを含む。本実施形態の触媒失活剤は、第2の実施形態の触媒失活剤と同様のものを用いることができる。
[Third Embodiment]
As a third embodiment, a set of a base material treatment agent for electroless plating will be described. The set of the base material treatment agent for electroless plating of the present embodiment includes a pretreatment liquid for applying an electroless plating catalyst and a catalyst deactivator. The pretreatment liquid for applying the electroless plating catalyst contains water, a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more, and a surfactant, and has a surface tension of 20 mN / m to 60 mN / m. As the pretreatment liquid of the present embodiment, the same pretreatment liquid as that of the first embodiment can be used. Catalytic deactivators include hyperbranched polymers. As the catalyst deactivating agent of the present embodiment, the same catalyst deactivating agent as that of the second embodiment can be used.
 無電解メッキ用の基材処理剤のセットとして、無電解メッキ触媒付与用の前処理液と、触媒失活剤とを併せて用いることにより、無電解メッキの反応性及び選択性をより向上させることができる。本実施形態の無電解メッキ用の基材処理剤のセットは、MIDやアンテナ部材に求められる微細なメッキパターン(回路パターン、アンテナパターン)の形成に特に有効である。 By using the pretreatment liquid for applying the electroless plating catalyst and the catalyst deactivator together as a set of the base material treatment agent for electroless plating, the reactivity and selectivity of electroless plating are further improved. be able to. The set of the base material treatment agent for electroless plating of the present embodiment is particularly effective for forming a fine plating pattern (circuit pattern, antenna pattern) required for the MID and the antenna member.
 本実施形態のセットでは、窒素含有ポリマーとしてポリエチレンイミンを含む前処理液と、触媒失活剤として式(1)で表されるハイパーブランチポリマーとを組み合わせて用いることが好ましい。 In the set of the present embodiment, it is preferable to use a pretreatment liquid containing polyethyleneimine as a nitrogen-containing polymer and a hyperbranched polymer represented by the formula (1) as a catalyst deactivator in combination.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples and Comparative Examples.
 以下に説明する実験1~17において、メッキ部品である試料1~17を作製した。各実験で用いた基材及びレーザーの種類、触媒失活剤の使用の有無、前処理液の組成、触媒液中の金属塩配合量、無電解メッキ液の種類を表1及び2に示す。尚、実験1~12は実施例に相当し、実験13~17は比較例に相当する。 In experiments 1 to 17 described below, samples 1 to 17 which are plated parts were prepared. Tables 1 and 2 show the types of the base material and the laser used in each experiment, the presence or absence of the catalyst deactivator, the composition of the pretreatment liquid, the amount of the metal salt mixed in the catalyst liquid, and the types of the electroless plating liquid. Experiments 1 to 12 correspond to Examples, and Experiments 13 to 17 correspond to Comparative Examples.
 [実験1]
(1)基材
 ポリフェニレンサルファイド(PPS)(DIC製、Z230)を射出成形し、80mm×80mm×2mmの平板形状の基材を得た。金型温度は150℃とした。成形した基材を塩化ビニルで被覆した銅製の治具で保持し、その状態で以下に説明する各工程を実施した。
[Experiment 1]
(1) Base material Polyphenylene sulfide (PPS) (manufactured by DIC, Z230) was injection-molded to obtain a flat plate-shaped base material of 80 mm × 80 mm × 2 mm. The mold temperature was 150 ° C. The molded base material was held by a copper jig coated with vinyl chloride, and in that state, each step described below was carried out.
(2)触媒失活剤の付与
 基材の表面に、触媒失活剤である下記式(A)で表されるハイパーブランチポリマーを含む触媒活性妨害層を形成した。下記式(A)で表されるハイパーブランチポリマーは、国際特許公開公報WO2018/131492号に開示される方法により合成した。尚、式(A)において、Rは、ビニル基又はエチル基である。
Figure JPOXMLDOC01-appb-C000002
(2) Application of catalyst deactivating agent A catalytic activity interfering layer containing a hyperbranched polymer represented by the following formula (A), which is a catalytic deactivating agent, was formed on the surface of the base material. The hyperbranched polymer represented by the following formula (A) was synthesized by the method disclosed in International Patent Publication No. WO2018 / 131492. In the formula (A), R 0 is a vinyl group or an ethyl group.
Figure JPOXMLDOC01-appb-C000002
 合成した式(A)で表されるポリマーをメチルエチルケトンに溶解して、ポリマー配合量0.3重量%のポリマー溶液を調製した。室温のポリマー溶液に基材を5秒間浸漬し、その後、85℃乾燥機中で5分間乾燥した。これにより、基材表面に膜厚約100nmの触媒活性妨害層が形成された。 The synthesized polymer represented by the formula (A) was dissolved in methyl ethyl ketone to prepare a polymer solution having a polymer content of 0.3% by weight. The substrate was immersed in a polymer solution at room temperature for 5 seconds and then dried in an 85 ° C. dryer for 5 minutes. As a result, a catalytic activity interfering layer having a film thickness of about 100 nm was formed on the surface of the base material.
(3)レーザー光照射(レーザー描画)
 触媒活性妨害層を形成した基材にYVOレーザー(キーエンス製、MD-V9929WA、波長1064nm)を用いて、下記の配線パターンA及びBをレーザー描画した。レーザー描画時のパワーは80%、周波数は40kHz,線速度は600mm/sとした。レーザー描画後、基材の脱脂処理及び洗浄を行った。
 配線パターンA(ライン/スペース:0.5mm/0.5mm):0.1mmピッチの格子パターンによって形成されたライン(0.5mm×5mm)をスペース0.5mmにて5本描画。
 配線パターンB(ライン/スペース:0.2mm/0.2mm):0.05mmピッチの格子パターンによって形成されたライン(0.2mm×5mm)をスペース0.2mmにて5本描画。
(3) Laser light irradiation (laser drawing)
YVO 4 laser to a substrate to form a catalytically active interference layer (manufactured by Keyence, MD-V9929WA, wavelength 1064 nm) was used to laser writing the following wiring patterns A and B. The power at the time of laser drawing was 80%, the frequency was 40 kHz, and the linear velocity was 600 mm / s. After the laser drawing, the base material was degreased and washed.
Wiring pattern A (line / space: 0.5 mm / 0.5 mm): Five lines (0.5 mm × 5 mm) formed by a grid pattern with a 0.1 mm pitch are drawn with a space of 0.5 mm.
Wiring pattern B (line / space: 0.2 mm / 0.2 mm): Five lines (0.2 mm × 5 mm) formed by a grid pattern with a pitch of 0.05 mm are drawn with a space of 0.2 mm.
(4)触媒付与の前処理
 水に、窒素含有ポリマーとして、重量平均分子量70,000のポリエチレンイミン(PEI)(和光純薬製、30重量%濃度溶液)、界面活性剤として、ラウリル硫酸ナトリウム(SLS)を混合し、ポリエチレンイミンの配合量(固形分濃度)が10g/L、ラウリル硫酸ナトリウムの配合量が0.1g/Lとなるように前処理液を調製した。前処理液の表面張力は、34.5mN/mであった。30℃に調整した前処理液に、基材を5分間浸漬した。
(4) Pretreatment for catalysis In water, polyethyleneimine (PEI) having a weight average molecular weight of 70,000 (manufactured by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) as a nitrogen-containing polymer, and sodium lauryl sulfate as a surfactant (4) SLS) was mixed, and a pretreatment solution was prepared so that the blending amount (solid content concentration) of polyethyleneimine was 10 g / L and the blending amount of sodium lauryl sulfate was 0.1 g / L. The surface tension of the pretreatment liquid was 34.5 mN / m. The substrate was immersed in the pretreatment liquid adjusted to 30 ° C. for 5 minutes.
(5)基材の洗浄
 エアバブリングにより撹拌した常温の水に基材を5分間浸漬して洗浄した。同様の洗浄を更にもう1回行った。
(5) Cleaning of the base material The base material was washed by immersing the base material in water at room temperature stirred by air bubbling for 5 minutes. The same washing was performed once more.
(6)無電解メッキ触媒の付与
 まず、塩化パラジウム水溶液を調合した。0.1gの塩化パラジウムを12Nの塩酸1mLに溶解させた後、水で希釈し1Lとした。これより、配合量0.1g/Lの塩化パラジウム水溶液を調製した。30℃に調整した塩化パラジウム水溶液中に基材を5分浸漬した。基材を塩化パラジウム水溶液から取り出した後、エアバブリングにより撹拌した常温の水に数秒間浸漬して洗浄した。同様の洗浄を更に2回行った。
(6) Addition of Electroless Plating Catalyst First, an aqueous palladium chloride solution was prepared. After dissolving 0.1 g of palladium chloride in 1 mL of 12N hydrochloric acid, it was diluted with water to make 1 L. From this, a palladium chloride aqueous solution having a blending amount of 0.1 g / L was prepared. The substrate was immersed in a palladium chloride aqueous solution adjusted to 30 ° C. for 5 minutes. After removing the base material from the aqueous solution of palladium chloride, it was washed by immersing it in water at room temperature stirred by air bubbling for several seconds. The same washing was performed twice more.
(7)無電解メッキ
 65℃に調整した無電解ニッケルメッキ液(奥野製薬工業製、ICPニコロンLTN-NP、還元剤:次亜リン酸ナトリウム)に、基材を5分間浸漬した。無電解メッキ中、エアバブリング及びポンプにより、無電解メッキ液を激しく撹拌した。基材表面に無電解ニッケルメッキ膜を約1μm成長させ、メッキ部品(試料1)を得た。
(7) Electroless plating The base material was immersed in an electroless nickel plating solution (manufactured by Okuno Pharmaceutical Co., Ltd., ICP Nicolon LTN-NP, reducing agent: sodium hypophosphite) adjusted to 65 ° C. for 5 minutes. During the electroless plating, the electroless plating solution was vigorously stirred by air bubbling and a pump. An electroless nickel plating film was grown on the surface of the base material by about 1 μm to obtain a plated part (Sample 1).
 [実験2]
 触媒付与の前処理において、窒素含有ポリマーとして、重量平均分子量10,000のポリエチレンイミン(和光純薬製、30重量%濃度溶液)を用いた以外は、実験1と同様の方法により、メッキ部品(試料2)を製造した。
[Experiment 2]
In the pretreatment for catalyst application, the plated parts (made by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) were used in the same manner as in Experiment 1 except that polyethyleneimine having a weight average molecular weight of 10,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the nitrogen-containing polymer. Sample 2) was produced.
 [実験3]
 触媒付与の前処理において、窒素含有ポリマーとして、重量平均分子量1,000のポリエチレンイミン(和光純薬製、30重量%濃度溶液)を用いた以外は、実験1と同様の方法により、メッキ部品(試料3)を製造した。
[Experiment 3]
In the pretreatment for catalyst application, the plated parts (produced by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) were used in the same manner as in Experiment 1 except that polyethyleneimine having a weight average molecular weight of 1,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the nitrogen-containing polymer. Sample 3) was produced.
 [実験4]
 触媒付与の前処理において、窒素含有ポリマーとして、重量平均分子量100,000のポリエチレンイミン(和光純薬製、30重量%濃度溶液)を用いた以外は、実験1と同様の方法により、メッキ部品(試料4)を製造した。
[Experiment 4]
In the pretreatment for catalyst application, the plated parts (made by Wako Pure Chemical Industries, Ltd., 30 wt% concentration solution) were used in the same manner as in Experiment 1 except that polyethyleneimine having a weight average molecular weight of 100,000 was used as the nitrogen-containing polymer. Sample 4) was produced.
 [実験5]
 触媒付与の前処理において、窒素含有ポリマーの配合量を0.01g/Lとした以外は、実験1と同様の方法により、メッキ部品(試料5)を製造した。
[Experiment 5]
A plated part (sample 5) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 0.01 g / L in the pretreatment for applying the catalyst.
 [実験6]
 触媒付与の前処理において、窒素含有ポリマーの配合量を2g/Lとした以外は、実験1と同様の方法により、メッキ部品(試料6)を製造した。
[Experiment 6]
A plated part (Sample 6) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 2 g / L in the pretreatment for applying the catalyst.
 [実験7]
 触媒付与の前処理において、窒素含有ポリマーの配合量を50g/Lとした以外は、実験1と同様の方法により、メッキ部品(試料7)を製造した。
[Experiment 7]
A plated part (Sample 7) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 50 g / L in the pretreatment for applying the catalyst.
 [実験8]
 触媒付与の前処理において、窒素含有ポリマーの配合量を100g/Lとした以外は、実験1と同様の方法により、メッキ部品(試料8)を製造した。
[Experiment 8]
A plated part (Sample 8) was produced by the same method as in Experiment 1 except that the blending amount of the nitrogen-containing polymer was 100 g / L in the pretreatment for applying the catalyst.
 [実験9]
 前処理液の界面活性剤として、SLSに代えて、シリコーン系界面活性剤(ポリエーテル変性シロキサン)を用い、前処理液の表面張力を22.0mN/mとした以外は、実験1と同様の方法により、メッキ部品(試料9)を製造した。
[Experiment 9]
As the surfactant of the pretreatment liquid, a silicone-based surfactant (polyether-modified siloxane) was used instead of SLS, and the surface tension of the pretreatment liquid was 22.0 mN / m, which was the same as in Experiment 1. A plated part (Sample 9) was produced by the method.
 [実験10]
 前処理液の界面活性剤として、SLSに代えて、ノニオン系界面活性剤(花王株式会社製、エマルゲン(登録商標)A500、ポリオキシエチレンジスチレン化フェニルエーテル)を用い、前処理液の表面張力を52.7mN/mとした以外は、実験1と同様の方法により、メッキ部品(試料10)を製造した。
[Experiment 10]
As the surfactant of the pretreatment liquid, a nonionic surfactant (manufactured by Kao Corporation, Emargen (registered trademark) A500, polyoxyethylene distyrene phenyl ether) is used instead of SLS, and the surface tension of the pretreatment liquid is used. A plated part (sample 10) was produced by the same method as in Experiment 1 except that the value was 52.7 mN / m.
 [実験11]
 基材の材料として液晶ポリマー(LCP)(上野製薬工業製、5030G)を用い、レーザーとしてUVレーザー(キーエンス製、MD-U1000C)を用い、無電解メッキ液として還元剤に次亜リン酸ナトリウムを用いた銅とニッケルの合金メッキ液(無電解銅ニッケルメッキ液)(株式会社JCU製、AISL)を用いた。更に、塩化パラジウム水溶液の濃度を0.2g/Lとした。それ以外は、実験1と同様の方法により、メッキ部品(試料11)を製造した。
[Experiment 11]
Liquid crystal polymer (LCP) (manufactured by Ueno Pharmaceutical Co., Ltd., 5030G) is used as the base material, UV laser (manufactured by Keyence, MD-U1000C) is used as the laser, and sodium hypophosphite is used as the reducing agent as the electroless plating solution. The copper-nickel alloy plating solution (electroless copper nickel plating solution) (manufactured by JCU Co., Ltd., AISL) was used. Further, the concentration of the palladium chloride aqueous solution was set to 0.2 g / L. Other than that, the plated parts (sample 11) were manufactured by the same method as in Experiment 1.
 [実験12]
 基材に触媒失活剤を付与しなかった以外は、実験11と同様の方法により、メッキ部品(試料12)を製造した。
[Experiment 12]
A plated part (sample 12) was produced by the same method as in Experiment 11 except that the catalyst deactivator was not applied to the base material.
 [実験13]
 窒素含有ポリマーの重量平均分子量を500とした以外は、実験1と同様の方法により、メッキ部品(試料13)を製造した。
[Experiment 13]
A plated part (Sample 13) was produced by the same method as in Experiment 1 except that the weight average molecular weight of the nitrogen-containing polymer was set to 500.
 [実験14]
 前処理液の界面活性剤として、SLSに代えて、フッ素系界面活性剤(AGCセイミケミカル株式会社製、サーフロンS‐242)を用い、前処理液の表面張力を18.0mN/mとした以外は、実験1と同様の方法により、メッキ部品(試料14)を製造した。
[Experiment 14]
As the surfactant of the pretreatment liquid, a fluorine-based surfactant (Surflon S-242 manufactured by AGC Seimi Chemical Co., Ltd.) was used instead of SLS, and the surface tension of the pretreatment liquid was set to 18.0 mN / m. Produced a plated part (sample 14) by the same method as in Experiment 1.
 [実験15]
 前処理液の界面活性剤として、SLSに代えて、アルキルサクシネートスルホン酸ナトリウムを用い、前処理液の表面張力を67.9mN/mとした以外は、実験1と同様の方法により、メッキ部品(試料15)を製造した。
[Experiment 15]
As the surfactant of the pretreatment liquid, sodium alkylsuccinate sulfonate was used instead of SLS, and the plating parts were plated by the same method as in Experiment 1 except that the surface tension of the pretreatment liquid was 67.9 mN / m. (Sample 15) was produced.
 [実験16]
 前処理液に界面活性剤を用いず、前処理液の表面張力を73.0mN/mとした以外は、実験1と同様の方法により、メッキ部品(試料16)を製造した。
[Experiment 16]
A plated part (sample 16) was produced by the same method as in Experiment 1 except that no surfactant was used in the pretreatment liquid and the surface tension of the pretreatment liquid was 73.0 mN / m.
 [実験17]
 実験17では、基材に触媒付与のための前処理液を付与せず、また、触媒失活剤も付与しなかった。更に、特許文献1の実施例1と同様の方法により、レーザー光照射(レーザー描画)の後に基材のアルカリ処理及び表面活性剤処理を行い、無電解メッキ触媒の付与後で且つ無電解メッキ処理の前に水素化ホウ素ナトリウムを用いた還元処理を行った。それ以外は、実験1と同様にメッキ部品(試料17)を製造した。したがって、実験17と、特許文献1の実施例1との主な相違点は、基材の種類とレーザーの種類である。実験17では、ポリフェニレンサルファイド(PPS)の基材と、YVOレーザー(波長1064nm)を用いたのに対し、特許文献1の実施例1では、無電解メッキ触媒の吸着性が高い芳香族ポリアミドの基材と、より短波長のグリーンレーザーを用いている。
[Experiment 17]
In Experiment 17, no pretreatment liquid for applying the catalyst was applied to the base material, and no catalyst deactivator was applied. Further, by the same method as in Example 1 of Patent Document 1, the base material is subjected to alkali treatment and surface activator treatment after laser light irradiation (laser drawing), and electroless plating catalyst is applied and then electroless plating treatment is performed. Before, a reduction treatment was performed using sodium borohydride. Other than that, a plated part (sample 17) was manufactured in the same manner as in Experiment 1. Therefore, the main difference between Experiment 17 and Example 1 of Patent Document 1 is the type of base material and the type of laser. In Experiment 17, the base material of polyphenylene sulfide (PPS), while using a YVO 4 laser (wavelength 1064 nm), in Example 1 of Patent Document 1, the absorptive high aromatic polyamide electroless plating catalyst A base material and a shorter wavelength green laser are used.
[試料1~17の評価]
(1)無電解メッキの反応性及び選択性
 試料(メッキ部品)1~17の表面を目視およびマイクロスコープ顕微鏡にて観察し、以下の評価基準に従って無電解メッキの反応性及び選択性を評価した。結果を表1及び2に示す。
[Evaluation of samples 1 to 17]
(1) Reactivity and selectivity of electroless plating The surfaces of samples (plated parts) 1 to 17 were visually observed and microscopically observed, and the reactivity and selectivity of electroless plating were evaluated according to the following evaluation criteria. .. The results are shown in Tables 1 and 2.
<無電解メッキ反応性の評価基準>
○:レーザー描画部に無電解メッキ膜が形成されていない領域(膜抜け、未析出部)が無く、無電解メッキ膜が安定に形成されている。
△:レーザー描画部の一部に膜抜けがある。しかし、無電解メッキ時間を延長すると無電解メッキ反応が進み、膜抜けが消失した。
×:レーザー描画部の一部に膜抜けがある。無電解メッキ時間を延長しても、それ以上、無電解メッキ反応が進まなかった。
<Evaluation criteria for electroless plating reactivity>
◯: There is no region (film missing, unprecipitated portion) in which the electroless plating film is not formed in the laser drawing portion, and the electroless plating film is stably formed.
Δ: There is a film omission in a part of the laser drawing part. However, when the electroless plating time was extended, the electroless plating reaction proceeded and the film loss disappeared.
X: There is a film omission in a part of the laser drawing part. Even if the electroless plating time was extended, the electroless plating reaction did not proceed any further.
<無電解メッキ選択性の評価基準>
○:配線パターンA及びB両方において、隣接する配線間の短絡(繋がり)が無い。
△:配線パターンA(ライン/スペース:0.5mm/0.5mm)では、配線間の短絡(繋がり)が無いが、配線パターンB(0.2mm/0.2mm)では、一部の隣接する配線間に短絡が認められる。
×:配線パターンA及びB両方において、一部の隣接する配線間に短絡(繋がり)が認められる。
<Evaluation criteria for electroless plating selectivity>
◯: In both wiring patterns A and B, there is no short circuit (connection) between adjacent wirings.
Δ: In the wiring pattern A (line / space: 0.5 mm / 0.5 mm), there is no short circuit (connection) between the wirings, but in the wiring pattern B (0.2 mm / 0.2 mm), some of them are adjacent to each other. A short circuit is observed between the wires.
X: In both wiring patterns A and B, a short circuit (connection) is observed between some adjacent wirings.
(2)治具上のメッキ膜の析出
 メッキ部品の製造後に、基材を保持していた治具の表面(塩化ビニル)を目視で観察し、治具上の無電解メッキ膜の有無を以下の評価基準に従って評価した。結果を表1及び2に示す。
(2) Precipitation of plating film on the jig After manufacturing the plated parts, visually observe the surface (vinyl chloride) of the jig holding the base material, and check the presence or absence of the electroless plating film on the jig as follows. It was evaluated according to the evaluation criteria of. The results are shown in Tables 1 and 2.
<治具上のメッキ膜の析出の評価基準>
○:治具上に無電解メッキ膜は全く析出していない。
△:治具上の一部にメッキ膜が析出している。
×:治具上の全面に無電解メッキ膜が析出している。
<Evaluation criteria for precipitation of plating film on jig>
◯: No electroless plating film was deposited on the jig.
Δ: A plating film is deposited on a part of the jig.
X: An electroless plating film is deposited on the entire surface of the jig.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び2に示すように、実験1~12では、無電解メッキ反の応性及び選択性が共に良好であり、治具上のメッキ膜の析出も抑制された。一方、実験13~17では、無電解メッキの選択性若しくは反応性が不良であるか、又は、治具上の全面に無電解メッキ膜が析出した。 As shown in Tables 1 and 2, in Experiments 1 to 12, both the responsiveness and selectivity of the electroless plating reaction were good, and the precipitation of the plating film on the jig was suppressed. On the other hand, in Experiments 13 to 17, the selectivity or reactivity of the electroless plating was poor, or the electroless plating film was deposited on the entire surface of the jig.
 前処理液に含まれる窒素含有ポリマー(PEI)の重量平均分子量が異なり、その他の条件が同様である実験1~4及び13を比較する。窒素含有ポリマー(PEI)の重量平均分子量が1,000~100,000である実験1~4では、いずれも、無電解メッキの反応性及び選択性が良好であり、また、治具上にメッキ膜は析出しなかった。特に、窒素含有ポリマー(PEI)の重量平均分子量が70,000以下である実験1~3では、無電解メッキの選択性がより良好であり、窒素含有ポリマー(PEI)の重量平均分子量が10,000以上である実験1、2及び4では無電解メッキの反応性がより良好であり、そして、窒素含有ポリマー(PEI)の重量平均分子量が10,000~70,000である実験1及び2では、無電解メッキの反応性及び選択性がより良好であり、また、治具上にメッキ膜は析出しなかった。一方、窒素含有ポリマー(PEI)の重量平均分子量が1,000未満である実験13(重量平均分子量:500)では、無電解メッキの反応性が著しく低く、メッキ膜がほとんど析出しなかった。このため、無電解メッキの選択性の評価はできなかった。 Experiments 1 to 4 and 13 in which the weight average molecular weight of the nitrogen-containing polymer (PEI) contained in the pretreatment liquid is different and other conditions are the same are compared. In Experiments 1 to 4 in which the weight average molecular weight of the nitrogen-containing polymer (PEI) was 1,000 to 100,000, the reactivity and selectivity of electroless plating were good, and the plating was performed on a jig. The film did not precipitate. In particular, in Experiments 1 to 3 in which the weight average molecular weight of the nitrogen-containing polymer (PEI) is 70,000 or less, the selectivity of electroless plating is better, and the weight average molecular weight of the nitrogen-containing polymer (PEI) is 10. In Experiments 1, 2 and 4 where it is 000 or more, the reactivity of electroless plating is better, and in Experiments 1 and 2 where the weight average molecular weight of the nitrogen-containing polymer (PEI) is 10,000 to 70,000. The reactivity and selectivity of electroless plating were better, and the plating film did not precipitate on the jig. On the other hand, in Experiment 13 (weight average molecular weight: 500) in which the weight average molecular weight of the nitrogen-containing polymer (PEI) was less than 1,000, the reactivity of electroless plating was extremely low, and the plating film was hardly precipitated. Therefore, the selectivity of electroless plating could not be evaluated.
 前処理液中の窒素含有ポリマー(PEI)の配合量が異なり、その他の条件が同様である実験5~8を比較する。窒素含有ポリマー(PEI)の配合量が0.01g/L~100g/Lである実験5~8では、いずれも、無電解メッキの選択性及び反応性が良好であり、治具上へのメッキ膜の析出が抑制されていた。得に、窒素含有ポリマー(PEI)の配合量が0.01g/L~50g/Lである実験5~7では、治具上にメッキ膜が析出せず、窒素含有ポリマー(PEI)の配合量が2g/L~100g/Lである実験6~8では、無電解メッキの反応性がより良好であり、そして、窒素含有ポリマー(PEI)の配合量が2g/L~50g/Lである実験6及び7では、無電解メッキの反応性及び選択性がより良好であり、また、治具上にメッキ膜は析出しなかった。 Experiments 5 to 8 in which the amount of the nitrogen-containing polymer (PEI) blended in the pretreatment liquid is different and other conditions are the same are compared. In Experiments 5 to 8 in which the blending amount of the nitrogen-containing polymer (PEI) was 0.01 g / L to 100 g / L, the selectivity and reactivity of electroless plating were good, and plating on a jig was performed. The precipitation of the film was suppressed. In particular, in Experiments 5 to 7 in which the blending amount of the nitrogen-containing polymer (PEI) was 0.01 g / L to 50 g / L, the plating film did not precipitate on the jig, and the blending amount of the nitrogen-containing polymer (PEI) was not deposited. In Experiments 6-8, where is 2 g / L-100 g / L, the reactivity of the electroless plating is better, and the amount of the nitrogen-containing polymer (PEI) blended is 2 g / L-50 g / L. In Nos. 6 and 7, the reactivity and selectivity of the electroless plating were better, and the plating film did not precipitate on the jig.
 前処理液の表面張力が異なり、その他の条件が同様である実験9~10及び14~16を比較する。前処理液の表面張力が20~60mN/mの範囲内である実験9及び10では、無電解メッキの選択性及び反応性が良好であり、治具上にメッキ膜は析出しなかった。一方、前処理液の表面張力が20mN/m未満である実験14(18.0mN/m)では、治具上の全面に無電解メッキ膜が析出した。また、前処理液の表面張力が60mN/mより高い実験15(67.9mN/m)では、無電解メッキの反応性が不良であり、実験16(73.0mN/m)では無電解メッキの選択性及び反応性が不良であった。尚、実験16で用いた前処理液は、溶媒が水で、且つ、界面活性剤を含まない。このような前処理液の表面張力は60mN/mより高くなり、無電解メッキの反応性及び選択性が低下することがわかった。 Compare Experiments 9-10 and 14-16 with different surface tensions of the pretreatment solution and similar other conditions. In Experiments 9 and 10 in which the surface tension of the pretreatment liquid was in the range of 20 to 60 mN / m, the selectivity and reactivity of electroless plating were good, and the plating film did not precipitate on the jig. On the other hand, in Experiment 14 (18.0 mN / m) in which the surface tension of the pretreatment liquid was less than 20 mN / m, an electroless plating film was deposited on the entire surface of the jig. Further, in Experiment 15 (67.9 mN / m) in which the surface tension of the pretreatment liquid was higher than 60 mN / m, the reactivity of electroless plating was poor, and in Experiment 16 (73.0 mN / m), electroless plating was performed. The selectivity and reactivity were poor. The pretreatment liquid used in Experiment 16 has a solvent of water and does not contain a surfactant. It was found that the surface tension of such a pretreatment liquid was higher than 60 mN / m, and the reactivity and selectivity of electroless plating were lowered.
 実験11及び12について考察する。実験11及び12では、基材として液晶ポリマーを用い、レーザーとして短波長レーザー(UVレーザー)を用いた。液晶ポリマーに対しては、UVレーザーによる表面改質効果が大きいことが本発明者らの検討で明らかになっている。したがって、実験11及び12では、レーザー光照射部を大きく粗化することなく、表面改質することにより、無電解メッキ触媒の吸着を高めることできたと推測される。実験12では、基材に触媒失活剤を付与せずとも、無電解メッキの選択性が良好であることが確認できた。また、実験11では、基材に触媒失活剤を付与することにより、無電解メッキの選択性が更に向上することが確認できた。 Consider experiments 11 and 12. In Experiments 11 and 12, a liquid crystal polymer was used as a base material, and a short wavelength laser (UV laser) was used as a laser. It has been clarified by the present inventors that the surface modification effect of the UV laser is large for the liquid crystal polymer. Therefore, in Experiments 11 and 12, it is presumed that the adsorption of the electroless plating catalyst could be enhanced by surface modification without significantly roughening the laser beam irradiation portion. In Experiment 12, it was confirmed that the selectivity of electroless plating was good even without applying a catalyst deactivator to the base material. Further, in Experiment 11, it was confirmed that the selectivity of electroless plating was further improved by applying the catalyst deactivator to the base material.
 また、実験11及び12では、次亜リン酸ナトリウムを還元剤として含む無電解銅ニッケルメッキ液を用いて、反応性及び選択性が良好な無電解メッキを行えることが確認できた。尚、無電解銅ニッケルメッキ液を用いた無電解メッキでは、無電解ニッケルメッキを用いた無電解メッキよりも、より多くの無電解メッキ触媒が必要となる。このため、実験11及び12では、実験1よりも、触媒液中の無電解メッキ触媒(PdCl)の配合量を多くした。 Further, in Experiments 11 and 12, it was confirmed that electroless plating having good reactivity and selectivity can be performed by using an electroless copper nickel plating solution containing sodium hypophosphite as a reducing agent. In addition, electroless plating using electroless copper nickel plating solution requires more electroless plating catalyst than electroless plating using electroless nickel plating. Therefore, in Experiments 11 and 12, the amount of the electroless plating catalyst (PdCl 2 ) in the catalyst solution was larger than that in Experiment 1.
 実験17について考察する。基材に前処理液を付与しなかった実験17では、無電解メッキの反応性が著しく低く、メッキ膜がほとんど析出しなかった。このため、無電解メッキの選択性の評価はできなかった。また、上述のように、特許文献1の実施例1との主な相違点は、基材の種類とレーザーの種類である。この結果から、基材に前処理液を付与せずに、レーザー光の照射、非照射のみにより、無電解メッキ触媒の付着を制御するためには、レーザー光源や樹脂基材の種類の組み合わせの最適化が必要であることが確認できた。 Consider Experiment 17. In Experiment 17, in which the pretreatment liquid was not applied to the base material, the reactivity of electroless plating was extremely low, and the plating film was hardly precipitated. Therefore, the selectivity of electroless plating could not be evaluated. Further, as described above, the main difference from the first embodiment of Patent Document 1 is the type of the base material and the type of the laser. From this result, in order to control the adhesion of the electroless plating catalyst only by irradiating or not irradiating the laser light without applying the pretreatment liquid to the base material, it is necessary to combine the types of the laser light source and the resin base material. It was confirmed that optimization is necessary.
 本発明のメッキ部品の製造方法によれば、安定な処理液を用いた簡易な方法で基材に無電解メッキ触媒を付与でき、微細なメッキパターンが求められるMID等のメッキ部品を製造できる。また、触媒付与処理とメッキ処理との間で、基材を保持する治具を取り換える必要がないため、スループットが向上する。 According to the method for manufacturing plated parts of the present invention, an electroless plating catalyst can be applied to a base material by a simple method using a stable treatment liquid, and plated parts such as MID that require a fine plating pattern can be manufactured. Further, since it is not necessary to replace the jig for holding the base material between the catalyst application treatment and the plating treatment, the throughput is improved.

Claims (18)

  1.  メッキ部品の製造方法であって、
     基材の表面の一部に、レーザー光を照射することと、
     前記レーザー光を照射した基材に、重量平均分子量1,000以上の窒素含有ポリマーを含み、表面張力が20mN/m~60mN/mである前処理液を接触させることと、
     前記前処理液を接触させた基材を洗浄することと、
     前記洗浄した基材に、金属塩を含むメッキ触媒液を接触させることと、
     前記メッキ触媒液を接触させた基材に、無電解メッキ液を接触させ、前記レーザー光照射部に無電解メッキ膜を形成することとを含むメッキ部品の製造方法。
    It is a manufacturing method of plated parts.
    Irradiating a part of the surface of the base material with laser light and
    The base material irradiated with the laser beam is brought into contact with a pretreatment liquid containing a nitrogen-containing polymer having a weight average molecular weight of 1,000 or more and having a surface tension of 20 mN / m to 60 mN / m.
    Cleaning the base material that has been brought into contact with the pretreatment liquid, and
    Contacting the washed substrate with a plating catalyst solution containing a metal salt
    A method for manufacturing a plated component, which comprises contacting an electroless plating solution with a base material which has been brought into contact with the plating catalyst solution to form an electroless plating film on the laser beam irradiation portion.
  2.  前記レーザー光を照射することにより、前記基材の表面を粗化及び/又は改質させる、請求項1に記載のメッキ部品の製造方法。 The method for manufacturing a plated part according to claim 1, wherein the surface of the base material is roughened and / or modified by irradiating the laser beam.
  3.  前記窒素含有ポリマーが、ポリエチレンイミンである、請求項1又は2に記載のメッキ部品の製造方法。 The method for producing a plated part according to claim 1 or 2, wherein the nitrogen-containing polymer is polyethyleneimine.
  4.  前記窒素含有ポリマーの重量平均分子量が、1,000~100,000である、請求項1~3のいずれか一項に記載のメッキ部品の製造方法。 The method for producing a plated part according to any one of claims 1 to 3, wherein the nitrogen-containing polymer has a weight average molecular weight of 1,000 to 100,000.
  5.  前記窒素含有ポリマーの重量平均分子量が、10,000~100,000である、請求項4に記載のメッキ部品の製造方法。 The method for producing a plated part according to claim 4, wherein the nitrogen-containing polymer has a weight average molecular weight of 10,000 to 100,000.
  6.  前記窒素含有ポリマーの重量平均分子量が、50,000~100,000である、請求項4に記載のメッキ部品の製造方法。 The method for producing a plated part according to claim 4, wherein the nitrogen-containing polymer has a weight average molecular weight of 50,000 to 100,000.
  7.  前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/Lである、請求項1~6のいずれか一項に記載のメッキ部品の製造方法。 The method for producing a plated part according to any one of claims 1 to 6, wherein the amount of the nitrogen-containing polymer blended in the pretreatment liquid is 0.01 g / L to 100 g / L.
  8.  前記前処理液中の前記窒素含有ポリマーの配合量が、2g/L~50g/Lである、請求項7に記載のメッキ部品の製造方法。 The method for producing a plated part according to claim 7, wherein the blending amount of the nitrogen-containing polymer in the pretreatment liquid is 2 g / L to 50 g / L.
  9.  前記前処理液が界面活性剤を含む、請求項1~8のいずれか一項に記載のメッキ部品の製造方法。 The method for manufacturing a plated part according to any one of claims 1 to 8, wherein the pretreatment liquid contains a surfactant.
  10.  前記基材にレーザー光を照射する前に、前記基材の表面に触媒失活剤を付与することを更に含む、請求項1~9のいずれか一項に記載のメッキ部品の製造方法。 The method for manufacturing a plated part according to any one of claims 1 to 9, further comprising applying a catalytic deactivator to the surface of the base material before irradiating the base material with laser light.
  11.  前記触媒失活剤がハイパーブランチポリマーである、請求項10に記載のメッキ部品の製造方法。 The method for manufacturing a plated part according to claim 10, wherein the catalytic deactivator is a hyperbranched polymer.
  12.  前記メッキ触媒液の金属塩が塩化パラジウムであり、前記メッキ触媒液中の塩化パラジウムの配合量が、0.01g/L~1.0g/Lである、請求項1~11のいずれか一項に記載のメッキ部品の製造方法。 Any one of claims 1 to 11, wherein the metal salt of the plating catalyst solution is palladium chloride, and the blending amount of palladium chloride in the plating catalyst solution is 0.01 g / L to 1.0 g / L. The method for manufacturing plated parts according to.
  13.  前記無電解メッキ液が次亜リン酸ナトリウムを含む、請求項1~12のいずれか一項に記載のメッキ部品の製造方法。 The method for manufacturing a plated part according to any one of claims 1 to 12, wherein the electroless plating solution contains sodium hypophosphite.
  14.  前記メッキ触媒液を接触させることにより、前記金属塩由来の金属イオンが前記基材に吸着し、
     前記金属イオンが吸着している基材に前記無電解メッキ液を接触させる、1~13のいずれか一項に記載のメッキ部品の製造方法。
    By bringing the plating catalyst solution into contact, the metal ions derived from the metal salt are adsorbed on the base material, and the metal ions are adsorbed on the base material.
    The method for manufacturing a plated component according to any one of 1 to 13, wherein the electroless plating solution is brought into contact with the base material on which the metal ions are adsorbed.
  15.  前記無電解メッキ膜が電気回路又はアンテナパターンを形成している、請求項1~14のいずれか一項に記載のメッキ部品の製造方法。 The method for manufacturing a plated component according to any one of claims 1 to 14, wherein the electroless plating film forms an electric circuit or an antenna pattern.
  16.  無電解メッキ触媒付与用の前処理液であって、
     水と、
     重量平均分子量1,000以上の窒素含有ポリマーと、
     界面活性剤とを含み、
     表面張力が20mN/m~60mN/mである、前処理液。
    A pretreatment liquid for applying electroless plating catalyst,
    water and,
    Nitrogen-containing polymers with a weight average molecular weight of 1,000 or more,
    Contains surfactants
    A pretreatment liquid having a surface tension of 20 mN / m to 60 mN / m.
  17.  前記窒素含有ポリマーが、ポリエチレンイミンである、請求項16に記載の前処理液。 The pretreatment liquid according to claim 16, wherein the nitrogen-containing polymer is polyethyleneimine.
  18.  前記前処理液中の前記窒素含有ポリマーの配合量が、0.01g/L~100g/Lである、請求項16又は17に記載の前処理液。 The pretreatment liquid according to claim 16 or 17, wherein the amount of the nitrogen-containing polymer blended in the pretreatment liquid is 0.01 g / L to 100 g / L.
PCT/JP2019/028940 2019-07-24 2019-07-24 Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst WO2021014599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019560781A JP6666529B1 (en) 2019-07-24 2019-07-24 Manufacturing method of plated parts
CN201980098550.2A CN114127334A (en) 2019-07-24 2019-07-24 Method for producing plated member and pretreatment liquid for imparting electroless plating catalyst
PCT/JP2019/028940 WO2021014599A1 (en) 2019-07-24 2019-07-24 Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028940 WO2021014599A1 (en) 2019-07-24 2019-07-24 Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst

Publications (1)

Publication Number Publication Date
WO2021014599A1 true WO2021014599A1 (en) 2021-01-28

Family

ID=70000439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028940 WO2021014599A1 (en) 2019-07-24 2019-07-24 Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst

Country Status (3)

Country Link
JP (1) JP6666529B1 (en)
CN (1) CN114127334A (en)
WO (1) WO2021014599A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214001A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Inkjet ink, surface metal film material and method for manufacturing the same, metal pattern material and method for manufacturing the same
WO2012043010A1 (en) * 2010-09-29 2012-04-05 富士フイルム株式会社 Metal film material and method for manufacturing same
JP2017226890A (en) * 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component
JP2018053334A (en) * 2016-09-30 2018-04-05 マクセルホールディングス株式会社 Method of manufacturing plating component
JP2019131839A (en) * 2018-01-29 2019-08-08 マクセルホールディングス株式会社 Method of manufacturing plating film coated body, and pretreatment liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517275B2 (en) * 2005-10-03 2014-06-11 奥野製薬工業株式会社 Post-treatment agent for etching treatment with chromic acid-sulfuric acid mixture
US20100155255A1 (en) * 2007-05-22 2010-06-24 Okuno Chemical Industries Co., Ltd. Pretreatment process for electroless plating of resin molded body, method for plating resin molded body, and pretreatment agent
JP2010121143A (en) * 2008-11-17 2010-06-03 Okuno Chem Ind Co Ltd Post-processing agent of etching for resin-formed body, post-processing method using the same, and plating method for resin-formed body
US20130084395A1 (en) * 2011-09-29 2013-04-04 Roshan V. Chapaneri Treatment of Plastic Surfaces After Etching in Nitric Acid Containing Media
JP5902853B2 (en) * 2014-07-24 2016-04-13 日立マクセル株式会社 Manufacturing method of plated parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214001A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Inkjet ink, surface metal film material and method for manufacturing the same, metal pattern material and method for manufacturing the same
WO2012043010A1 (en) * 2010-09-29 2012-04-05 富士フイルム株式会社 Metal film material and method for manufacturing same
JP2017226890A (en) * 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component
JP2018053334A (en) * 2016-09-30 2018-04-05 マクセルホールディングス株式会社 Method of manufacturing plating component
JP2019131839A (en) * 2018-01-29 2019-08-08 マクセルホールディングス株式会社 Method of manufacturing plating film coated body, and pretreatment liquid

Also Published As

Publication number Publication date
JPWO2021014599A1 (en) 2021-09-13
JP6666529B1 (en) 2020-03-13
CN114127334A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
KR101424225B1 (en) Method for producing formed circuit component
JP6145681B2 (en) Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
JP6201153B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP5731215B2 (en) Manufacturing method of molded circuit components
JP5585980B2 (en) Pretreatment method of electroless plating for resin molding, plating method for resin molding, and pretreatment agent
JP4843164B2 (en) Method for forming copper-resin composite material
JP2014088618A (en) Method for electroless plating and solution used for the same
JP7005363B2 (en) Manufacturing method of plating film coating and pretreatment liquid
JP5648229B2 (en) Electroless plating metal film manufacturing method and plating coated substrate
JP2010121143A (en) Post-processing agent of etching for resin-formed body, post-processing method using the same, and plating method for resin-formed body
KR101329989B1 (en) Direct plating method and solution for palladium conductor layer formation
WO2021014599A1 (en) Method for manufacturing plated part, and pretreatment liquid for applying electroless plating catalyst
JP7360155B2 (en) Electroless nickel plating film and pretreatment method for forming the electroless nickel plating film
JP4646376B2 (en) Accelerator bath solution for direct plating and direct plating method
JP7455859B2 (en) Method of activating the surface of a non-conductive or carbon fiber-containing substrate for metallization
JP5517275B2 (en) Post-treatment agent for etching treatment with chromic acid-sulfuric acid mixture
JP4940512B2 (en) Method for forming electroless plating film of resin
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP4740711B2 (en) Pd / Sn colloidal catalyst adsorption promoter
JP2024093100A (en) Manufacturing method for partial plated parts
JP6130331B2 (en) Manufacturing method of resin product with metal film
JP2023539602A (en) Method of activating the surface of a non-conductive or carbon fiber-containing substrate for metallization
TWI626989B (en) Pretreatment of chemical copper plating and catalyst solution including cu(ii) complex and conditioner employed therein
JP2007016283A (en) Direct plating method and palladium conductive body layer forming solution
JPH02104671A (en) Palladium activator and method for electroless-plating ceramic substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019560781

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938875

Country of ref document: EP

Kind code of ref document: A1