WO2021012777A1 - 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法 - Google Patents

一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法 Download PDF

Info

Publication number
WO2021012777A1
WO2021012777A1 PCT/CN2020/092378 CN2020092378W WO2021012777A1 WO 2021012777 A1 WO2021012777 A1 WO 2021012777A1 CN 2020092378 W CN2020092378 W CN 2020092378W WO 2021012777 A1 WO2021012777 A1 WO 2021012777A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
lightning
gap
lightning protection
voltage
Prior art date
Application number
PCT/CN2020/092378
Other languages
English (en)
French (fr)
Inventor
陆佳政
谢鹏康
胡建平
方针
蒋正龙
王博闻
彭永晶
Original Assignee
国网湖南省电力有限公司
国网湖南省电力有限公司防灾减灾中心
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网湖南省电力有限公司, 国网湖南省电力有限公司防灾减灾中心, 国家电网有限公司 filed Critical 国网湖南省电力有限公司
Publication of WO2021012777A1 publication Critical patent/WO2021012777A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies

Definitions

  • the present disclosure relates to the technical field of power system disaster prevention and mitigation, and in particular to a method for designing a lightning protection gap for a lightning protection and ice flashover composite insulator.
  • the transmission lines that cancel the ground wire and install high current capacity lightning and ice flashover composite insulators have been more and more widely used.
  • the existing lightning and ice flashover composite insulators The lightning protection module can withstand most lightning strikes, but there may also be a phenomenon that the lightning current amplitude is too high and the lightning protection tripping of the transmission line may cause damage to the lightning protection and ice protection composite insulator. Therefore, the lightning protection section of the insulator needs to be designed according to the actual situation to relieve Larger lightning current, and improve its lightning and ice flash protection capabilities.
  • the technical problem to be solved by the present disclosure is: when an excessive lightning strike is encountered, the existing lightning and ice flashover synthetic insulators used to cancel the ground transmission line lack a protection device and are prone to damage.
  • embodiments of the present disclosure provide a method for designing a lightning protection gap for a lightning protection and ice flashover composite insulator, which includes the following steps 1 to 4:
  • Step 1 Setting the lightning current protection threshold: Set the lightning current protection threshold I m , when the lightning current amplitude exceeds I m , the protection gap of the lightning protection section is broken down;
  • Step 2 Residual voltage test of zinc oxide resistors and measurement of the volt-ampere characteristic curve of the lightning protection section: The volt-ampere characteristic curve of the zinc oxide resistors in the high current section is obtained by the impulse current acting on the zinc oxide resistors, and different impacts are obtained. Residual voltage of lightning protection section under current action;
  • Step 3 Protective gap structure design and breakdown voltage test: use rod-rod electrode as the protection gap structure, output pulse voltage through impulse voltage generator, conduct breakdown voltage test, measure the rod-rod electrode impact at different gap distances Flashover voltage, and get the relationship curve of positive and negative polarity impulse flashover voltage with gap distance;
  • Step 4 Determine the distance of the protection gap: According to the lightning current protection threshold I m in step 1 and the volt-ampere characteristic curve of the lightning protection section in step 2, obtain the operation residual voltage U m at both ends of the lightning protection section, and according to the operation residual voltage U m and the relationship curve of the positive and negative polarity impulse flashover voltage with the gap distance in step 3, and calculate the protection gap distance d m .
  • the lightning current protection threshold I m of the step 1 is ⁇ 150kA.
  • the step 2 specifically includes: generating a pulse-like impulse current with a waveform of 4/10 ⁇ s through an impulse current generator, which acts on the zinc oxide resistor used in the lightning protection section, and the amplitude of the impulse current is 50-150kA. 10kA test one point, each test uses a brand new resistor piece until the zinc oxide resistor piece is damaged, the volt-ampere characteristic curve of the zinc oxide resistor piece is measured and measured, and the volt-ampere characteristic curve of the monolithic zinc oxide resistor piece is multiplied by the resistor piece The number is equal to the volt-ampere characteristic curve of the entire lightning protection section, which is a piecewise linear function:
  • U 1 is the residual voltage
  • I is the current value
  • a 1 , b 1 , a 2 , and b 2 are the linear fitting constants obtained during linear fitting
  • I 0 is the nonlinear segment and the large The critical value of the current segment.
  • the step 3 specifically includes: when designing the protective gap structure, in order to achieve high flow capacity and lightning and ice flash protection functions, and considering the small pole-to-rod gap polarity effect, the protective gap electrode structure is selected as the rod-to-rod gap Structure, apply a 2.6/50 ⁇ s pulse impulse voltage to the rod protection gap, and obtain the breakdown voltage versus gap distance curve,
  • U 3 and U 4 represent the positive and negative breakdown voltages of the protection gap
  • d represents the distance of the protection gap
  • a 3 , b 3 , a 4 , and b 4 are constants obtained by fitting.
  • the relationship curve between the positive and negative polarity impulse flashover voltage and the gap distance in the step 3 and step 4 is specifically selected as the relationship between the negative polarity impulse flashover voltage and the gap distance.
  • the present invention also discloses a lightning protection and ice flashover synthetic insulator lightning protection gap design device, including:
  • At least one processor At least one processor
  • At least one memory connected in communication with the processor, wherein:
  • the memory stores program instructions that can be executed by the processor, and the processor calls the program instructions to execute any one of the lightning protection section protection gap design methods described above.
  • the present invention also discloses a non-transitory computer-readable storage medium that stores computer instructions that cause the computer to execute any of the above Design method of protection gap for lightning protection section.
  • the lightning protection section protection gap design method of the present invention can effectively divert excessive lightning current and prevent the lightning protection section of the lightning protection and ice flashover synthetic insulator from being easily damaged by the lightning current.
  • the lightning protection section protection gap design method of the present invention can also design insulators of different specifications and requirements in batches, and the design method is simple and effective, and is suitable for calculation by computer operation.
  • Figure 1 is a structural diagram of the lightning and ice flashover composite insulator and protective gap in the present invention
  • FIG. 2 is a flow chart of the design method for the lightning protection section of the lightning protection and ice flashover composite insulator in the present invention
  • Fig. 3 is a curve diagram of the variable correspondence relationship between the lightning current, the voltage at both ends of the lightning protection section and the protection gap distance of the present invention.
  • Lightning and ice flashover synthetic insulator and lightning protection section 2. Lightning and ice flashing and synthetic insulator insulation section, 3. Pressure equalizing ring at both ends of the insulation section, 4. Protection gap at both ends of the lightning protection section.
  • FIG. 1 it is a structural diagram showing a lightning and ice flashover composite insulator and a protective gap, as a conventional lightning and ice flashover composite insulator, where reference numeral 1 represents the lightning protection section of the lightning and ice flashover composite insulator, 2 represents the insulation section of the synthetic insulator for lightning protection and ice flashover, 3 represents the equalizing ring at both ends of the insulation section, and 4 represents the protection gap at both ends of the lightning protection section. Among them, the two ends of the protection gap 4 at both ends of the lightning protection section are respectively connected to the ground terminal of the lightning protection and ice protection insulator and the equalizing ring 3 of the insulation section.
  • the insulating section voltage equalizing ring 3 When lightning acts on the power transmission line, the insulating section voltage equalizing ring 3 first breaks down, and the lightning enters the earth along the arc at both ends of the insulating section and the zinc oxide resistors in the lightning protection section. When the lightning current is too large, the residual voltage of the lightning protection section will lead to the breakdown of the protection gap, and the lightning current will enter the ground plane along the gap arc of the protection gap, thereby protecting the zinc oxide resistors.
  • the design method for the lightning protection gap of the lightning protection and ice flashover composite insulator of the present invention is used to design the lightning protection segment parallel protection gap .
  • the lightning protection section of the lightning protection and ice flashover composite insulator is struck by a lightning of too high amplitude, the lightning will break down along the protection gap and will not flow through the zinc oxide resistor, which can prevent the lightning protection section from being damaged due to the high lightning current amplitude.
  • Has the characteristics of simple structure and high reliability which specifically includes the following steps:
  • Step 1 Setting the lightning current protection threshold: Set the lightning current protection threshold I m (I m ⁇ 150kA). When the lightning current amplitude exceeds I m , the protection gap breaks down;
  • Step 2 Residual voltage test of zinc oxide resistors and measurement of the volt-ampere characteristic curve of the lightning protection section:
  • the impulse current is generated by the impulse current generator, which acts on the zinc oxide resistors, and the volt-ampere of the zinc oxide resistors in the high current section is obtained by testing. Characteristic curve, obtain the residual voltage of lightning protection section under different impulse currents;
  • the step 2 specifically includes: generating a pulse-like impulse current with a waveform of 4/10 ⁇ s through an impulse current generator, which acts on the zinc oxide resistor used in the lightning protection section, and the impulse current amplitude is 50-150kA, and one test is performed every 10kA. Point, use a brand-new resistor for each test until the zinc oxide resistor is damaged.
  • the volt-ampere characteristic curve of the zinc oxide resistor is measured and measured.
  • the volt-ampere characteristic curve of a single zinc oxide resistor multiplied by the number of resistors is equal to the whole
  • the volt-ampere characteristic curve of the lightning protection section, the volt-ampere characteristic curve is a piecewise linear function:
  • U 1 is the residual voltage
  • I is the current value
  • a 1 , b 1 , a 2 , and b 2 are the linear fitting constants obtained during linear fitting
  • I 0 is the nonlinear section of the volt-ampere characteristic curve The critical value with the high current segment (see the intersection of the two straight lines on the left in Figure 3).
  • Step 3 Protective gap structure design and breakdown voltage test: Considering the small polarity effect of the rod-rod electrode, the rod-rod electrode is used as the protection gap structure, and the impulse voltage generator outputs pulse voltage to conduct the breakdown voltage test Measure the impulse flashover voltage of the rod-rod electrode under different gap distances, and obtain the relationship curve of the positive and negative polarity impulse flashover voltage with the gap distance.
  • the step 3 specifically includes: when designing the protective gap structure, in order to achieve high current capacity and lightning and ice flash protection functions, and considering the small pole-to-rod gap polarity effect, the protective gap electrode structure is selected as the rod-to-rod gap structure.
  • a 2.6/50 ⁇ s pulse impulse voltage is applied to the protection gap of the rod, and the breakdown voltage varies with the gap distance.
  • U 3 and U 4 represent the positive and negative breakdown voltages of the protection gap
  • d represents the distance of the protection gap
  • a 3 , b 3 , a 4 , and b 4 are constants obtained by fitting.
  • Step 4 Determine the distance of the protection gap: According to the lightning current protection threshold I m and the volt-ampere characteristic curve of the lightning protection section in step 2, the operation residual voltage U m at both ends of the lightning protection section is obtained, and according to the operation residual voltage U m and step 3 The positive and negative polarity impulse flashover voltage vs. gap distance curve, the protection gap distance d m is calculated.
  • the method of the present invention is particularly suitable to be implemented by computer software, so the above-mentioned lightning protection and ice flashover synthetic insulator lightning protection gap design method can use a non-transient computer readable storage medium with computer instructions or A computer including a processor is implemented.
  • Figure 3 shows the volt-ampere characteristic curve of the zinc oxide resistor in the impact section and the relationship between the gap distance and the lightning voltage amplitude.
  • the operating residual voltage U m is calculated and the corresponding protection is calculated according to the operating residual voltage U m and the positive and negative impulse flashover voltage in step 3 versus the gap distance (ie the coordinate curve on the right in Figure 3)
  • the setting calculation is given priority to the negative lightning (corresponding to the linear curve of the voltage U 4 ).
  • the linear fitting calculation of the relationship curve is performed, that is, the volt-ampere characteristic curve of the lightning protection section in step 2 and the positive and negative impact flashover voltage of step 3 with the gap distance
  • the curves are all linear curves.
  • the lightning protection and ice flashover synthetic insulator lightning protection gap design method provided by the present disclosure solves the problem of canceling ground transmission lines when encountering excessive lightning strikes through scientific and reasonable design of the lightning protection gap protection gap.
  • the lightning and ice flashover synthetic insulator lacks the technical problem of being easily damaged by the protection device, and the method is simple and easy to implement and has a small amount of calculation, which has strong industrial applicability.

Landscapes

  • Insulators (AREA)
  • Thermistors And Varistors (AREA)

Abstract

一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法,该方法包含步骤1~4,步骤1:雷电流保护阈值设置,步骤2:氧化锌电阻片残压测试与防雷段伏安特性曲线测量,步骤3:保护间隙结构设计与击穿电压试验,步骤4:保护间隙距离确定。通过科学合理的设计防雷段保护间隙,解决了当遭遇过大雷击时,现有的应用于取消地线输电线路的防雷防冰闪合成绝缘子缺乏保护装置易发生损坏的技术问题,且该方法简单易行且计算量小。

Description

一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法
本公开要求于2019年07月24日提交中国专利局、申请号为201910669831.0、发明名称为“一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电力系统防灾减灾技术领域,尤其涉及一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法。
背景技术
经数据统计,电力系统中50%以上的跳闸事故是由于雷击引发。随着国民经济的不断发展,人民对用电可靠性提出了更高的要求,故降低输电线路的雷击跳闸率、建立健全的电网防雷体系,对提高电力系统的稳定性具有重要的作用。
由于越来越多的输电线路跨越高寒山区,取消地线并加装高通流能力防雷防冰闪合成绝缘子的输电线路得到了越来越广泛的应用,现有的防雷防冰闪合成绝缘子防雷模块可以耐受大多数雷击,然而也可能存在雷电流幅值过高造成输电线路雷击跳闸导致防雷防冰闪合成绝缘子损坏的现象,故需要根据实际情况设计绝缘子防雷段,以疏导较大的雷电流,且提高其防雷防冰闪能力。
然而,在现有技术中,针对上述问题,暂时还没有关于成熟系统的防雷防冰闪合成绝缘子防雷段的保护或者设计方法。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是:当遭遇过大雷击时,现有的应用于 取消地线输电线路的防雷防冰闪合成绝缘子缺乏保护装置易发生损坏的技术问题。
(二)技术方案
为了解决上述技术问题,本公开实施例提供了一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法,包括如下步骤1~4:
步骤1:雷电流保护阈值设置:设置雷击电流保护阈值I m,当雷电流幅值超过I m时,防雷段的保护间隙被击穿;
步骤2:氧化锌电阻片残压测试与防雷段伏安特性曲线测量:通过冲击电流作用于氧化锌电阻片,测试得到氧化锌电阻片在大电流区段的伏安特性曲线,得到不同冲击电流作用下的防雷段残压;
步骤3:保护间隙结构设计与击穿电压试验:采用棒-棒电极作为保护间隙结构,通过冲击电压发生器输出脉冲电压,进行击穿电压试验,测量得到不同间隙距离下的棒-棒电极冲击闪络电压,并得到正负极性冲击闪络电压随间隙距离的关系曲线;
步骤4:保护间隙距离确定:根据步骤1中的雷击电流保护阈值I m和步骤2中的防雷段伏安特性曲线,得到防雷段两端的动作残压U m,并根据动作残压U m和步骤3中的正负极性冲击闪络电压随间隙距离的关系曲线,计算得到保护间隙距离d m
进一步的,所述步骤1的雷击电流保护阈值I m<150kA。
进一步的,所述步骤2中具体包括:通过冲击电流发生器产生波形为4/10μs脉冲式的冲击电流,作用于防雷段采用的氧化锌电阻片,冲击电流幅值处于50-150kA,每10kA测试一个点,每次测试采用一片全新电阻片,直到氧化锌电阻片损坏,测量测量得到氧化锌电阻片的伏安特性曲线,单片氧化锌电阻片的伏安特性曲线乘以电阻片个数等于整个防雷段的伏安特性曲线,伏安特性曲线为分段线性函数:
Figure PCTCN2020092378-appb-000001
其中,U 1表示残压,I表示电流值,a 1,b 1,a 2,b 2分别为线形拟合时得到的线性拟合常数,I 0为伏安特性曲线中非线性段与大电流段的临界值。
进一步的,所述步骤3具体包括:设计保护间隙结构时,为了实现高通流能力和防雷防冰闪功能,且考虑到棒棒间隙极性效应小,因此保护间隙电极结构选为棒棒间隙结构,对棒棒保护间隙施加2.6/50μs脉冲式的冲击电压,得到击穿电压随间隙距离变化曲线,
拟合得到正负极性冲击闪络电压随间隙距离的计算公式:
Figure PCTCN2020092378-appb-000002
其中,U 3和U 4分别表示保护间隙正极性击穿电压和负极性击穿电压,d表示保护间隙距离,a 3,b 3,a 4,b 4分别为拟合得到的常数。
进一步的,所述步骤3和步骤4中的正负极性冲击闪络电压随间隙距离的关系曲线具体选择为负极性冲击闪络电压随间隙距离的关系曲线。
在另外一个方面,本发明还公开了一种防雷防冰闪合成绝缘子防雷段保护间隙设计装置,包括:
至少一个处理器;以及
与所述处理器通信连接的至少一个存储器,其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行上述任一项所述的防雷段保护间隙设计方法。
在另外一个方面,本发明还公开了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述任一项所述的防雷段保护间隙设计方法。
(三)有益效果
1、本发明的防雷段保护间隙设计方法可以有效疏导过大的雷电流,防止防雷防冰闪合成绝缘子防雷段被雷电流轻易损坏。
2、本发明的防雷段保护间隙设计方法还能够批量设计不同规格和需求的绝缘子,其设计方法简便有效且适于通过计算机运行计算。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中的防雷防冰闪合成绝缘子及保护间隙的结构图;
图2为本发明中的防雷防冰闪合成绝缘子防雷段保护间隙设计方法的流程图;
图3为本发明的雷电流,防雷段两端电压以及保护间隙距离的变量对应关系曲线图。
附图标记说明:
1、防雷防冰闪合成绝缘子防雷段,2、防雷防冰闪合成绝缘子绝缘段,3、绝缘段两端均压环,4、防雷段两端保护间隙。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,其为表示防雷防冰闪合成绝缘子及保护间隙结构图,作为常规的防雷防冰闪合成绝缘子,其中附图标记1表示防雷防冰闪合成绝缘子防雷段,2表示防雷防冰闪合成绝缘子绝缘段,3表示绝缘段两端均压环,4表示防雷段两端保护间隙。其中,防雷段两端保护间隙4的两端分别与防雷防冰绝缘子接地端以及绝缘段均压环3相连。当雷电作用于输电线路时,绝缘段均压环3首先击穿,雷电沿绝缘段 两端电弧以及防雷段氧化锌电阻片进入大地。当雷电流过大时,防雷段残压导致保护间隙击穿,雷电流沿保护间隙的间隙电弧进入地平面,进而起到保护氧化锌电阻片的作用。
如图2的防雷防冰闪合成绝缘子防雷段保护间隙设计方法的流程图所示,本发明的防雷防冰闪合成绝缘子防雷段保护间隙设计方法用于设计防雷段并联保护间隙,当防雷防冰闪合成绝缘子防雷段遭受过高幅值的雷击时,雷电沿保护间隙击穿,不流经氧化锌电阻片,可以防止防雷段因雷电流幅值过高发生损坏,具有结构简便可靠性高等特点,其具体包括如下步骤:
步骤1:雷电流保护阈值设置:设置雷击电流保护阈值I m(I m<150kA),当雷电流幅值超过I m时,保护间隙击穿;
步骤2:氧化锌电阻片残压测试与防雷段伏安特性曲线测量:通过冲击电流发生器产生冲击电流,作用于氧化锌电阻片,测试得到氧化锌电阻片在大电流区段的伏安特性曲线,得到不同冲击电流作用下的防雷段残压;
所述步骤2中具体包括:通过冲击电流发生器产生波形为4/10μs脉冲式的冲击电流,作用于防雷段采用的氧化锌电阻片,冲击电流幅值处于50-150kA,每10kA测试一个点,每次测试采用一片全新电阻片,直到氧化锌电阻片损坏,测量测量得到氧化锌电阻片的伏安特性曲线,单片氧化锌电阻片的伏安特性曲线乘以电阻片个数等于整个防雷段的伏安特性曲线,伏安特性曲线为分段线性函数:
Figure PCTCN2020092378-appb-000003
上式中,U 1表示残压,I表示电流值,a 1,b 1,a 2,b 2分别为线形拟合时得到的线性拟合常数,I 0为伏安特性曲线中非线性段与大电流段的临界值(参见图3中左图的两条直线的交点)。
步骤3:保护间隙结构设计与击穿电压试验:考虑到棒-棒电极的极性效应小,因此采用棒-棒电极作为保护间隙结构,通过冲击电压发生器输出脉冲电压,进行击穿电压试验,测量得到不同间隙距离下的棒-棒电极冲击闪络电压,并得到正负极性冲击闪络电压随间隙距离的 关系曲线。
所述步骤3具体包括:设计保护间隙结构时,为了实现高通流能力和防雷防冰闪功能,且考虑到棒棒间隙极性效应小,因此保护间隙电极结构选为棒棒间隙结构,对棒棒保护间隙施加2.6/50μs脉冲式的冲击电压,得到击穿电压随间隙距离变化曲线,
拟合得到正负极性冲击闪络电压随间隙距离的计算公式:
Figure PCTCN2020092378-appb-000004
上式中,U 3和U 4分别表示保护间隙正极性击穿电压和负极性击穿电压,d表示保护间隙距离,a 3,b 3,a 4,b 4分别为拟合得到的常数。
步骤4:保护间隙距离确定:根据雷击电流保护阈值I m和步骤2中的防雷段伏安特性曲线得到防雷段两端的动作残压U m,并根据动作残压U m和步骤3中的正负极性冲击闪络电压随间隙距离的关系曲线,计算得到保护间隙距离d m
值得一提的是,本发明的方法特别适合于通过计算机软件来实现,故上述防雷防冰闪合成绝缘子防雷段保护间隙设计方法可使用带计算机指令的非暂态计算机可读存储介质或者包括处理器的计算机来实现。
图3为氧化锌电阻片在冲击段伏安特性曲线以及间隙距离与雷电压幅值之间的关系。首先根据雷电流动作幅值I m,和步骤2中的防雷段伏安特性曲线(即图3中左方的坐标曲线),整理得到氧化锌电阻片动作残压U m,根据氧化锌电阻片动作残压U m,并根据动作残压U m和步骤3中的正负极性冲击闪络电压随间隙距离的关系曲线(即图3中右方的坐标曲线),计算得到相应的保护距离d m,由于自然界负极性雷占大多数,所以优先按负极性雷(对应电压U 4的线性曲线)进行整定计算。值得一提的是,为了减少运算量,进行了关系曲线的线性拟合计算,即步骤2中的防雷段伏安特性曲线以及步骤3中的正负极性冲击闪络电压随间隙距离的曲线都为线性的曲线。
最后说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术 方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本公开提供的防雷防冰闪合成绝缘子防雷段保护间隙设计方法,通过科学合理的设计防雷段保护间隙,解决了当遭遇过大雷击时,现有的应用于取消地线输电线路的防雷防冰闪合成绝缘子缺乏保护装置易发生损坏的技术问题,且该方法简单易行且计算量小,具有很强的工业实用性。

Claims (7)

  1. 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法,其特征在于,包括
    步骤1:雷电流保护阈值设置:设置雷击电流保护阈值I m,当雷电流幅值超过I m时,防雷段的保护间隙被击穿;
    步骤2:氧化锌电阻片残压测试与防雷段伏安特性曲线测量:通过冲击电流作用于氧化锌电阻片,测试得到氧化锌电阻片在大电流区段的伏安特性曲线,得到不同冲击电流作用下的防雷段残压;
    步骤3:保护间隙结构设计与击穿电压试验:采用棒-棒电极作为保护间隙结构,通过冲击电压发生器输出脉冲电压,进行击穿电压试验,测量得到不同间隙距离下的棒-棒电极冲击闪络电压,并得到正负极性冲击闪络电压随间隙距离的关系曲线;
    步骤4:保护间隙距离确定:根据步骤1中的雷击电流保护阈值I m和步骤2中的防雷段伏安特性曲线,得到防雷段两端的动作残压U m,并根据动作残压U m和步骤3中的正负极性冲击闪络电压随间隙距离的关系曲线,计算得到保护间隙距离d m
  2. 根据权利要求1所述的防雷段保护间隙设计方法,其特征在于,所述步骤1的雷击电流保护阈值I m<150kA。
  3. 根据权利要求1所述的防雷段保护间隙设计方法,其特征在于,所述步骤2中具体包括:通过冲击电流发生器产生波形为4/10μs脉冲式的冲击电流,作用于防雷段采用的氧化锌电阻片,冲击电流幅值处于50-150kA,每10kA测试一个点,每次测试采用一片全新电阻片,直到氧化锌电阻片损坏,测量测量得到氧化锌电阻片的伏安特性曲线,单片氧化锌电阻片的伏安特性曲线乘以电阻片个数等于整个防雷段的伏安特性曲线,伏安特性曲线为分段线性函数:
    Figure PCTCN2020092378-appb-100001
    其中,U 1表示残压,I表示电流值,a 1,b 1,a 2,b 2分别为线形拟合时得到的线性拟合常数,I 0为伏安特性曲线中非线性段与大电流段的 临界值。
  4. 根据权利要求1~3任意一项所述的防雷段保护间隙设计方法,其特征在于,所述步骤3具体包括:设计保护间隙结构时,为了实现高通流能力和防雷防冰闪功能,且考虑到棒棒间隙极性效应小,因此保护间隙电极结构选为棒棒间隙结构,对棒棒保护间隙施加2.6/50μs脉冲式的冲击电压,得到击穿电压随间隙距离变化曲线。
    拟合得到正负极性冲击闪络电压随间隙距离的计算公式:
    Figure PCTCN2020092378-appb-100002
    其中,U 3和U 4分别表示保护间隙正极性击穿电压和负极性击穿电压,d表示保护间隙距离,a 3,b 3,a 4,b 4分别为拟合得到的常数。
  5. 根据权利要求4所述的防雷段保护间隙设计方法,其特征在于,所述步骤3和步骤4中的正负极性冲击闪络电压随间隙距离的关系曲线具体选择为负极性冲击闪络电压随间隙距离的关系曲线。
  6. 一种防雷防冰闪合成绝缘子防雷段保护间隙设计装置,其特征在于,包括:
    至少一个处理器;以及
    与所述处理器通信连接的至少一个存储器,其中:
    所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1至5任一项所述的防雷段保护间隙设计方法。
  7. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如权利要求1至5任一项所述的防雷段保护间隙设计方法。
PCT/CN2020/092378 2019-07-24 2020-05-26 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法 WO2021012777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910669831.0 2019-07-24
CN201910669831.0A CN110444356B (zh) 2019-07-24 2019-07-24 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法

Publications (1)

Publication Number Publication Date
WO2021012777A1 true WO2021012777A1 (zh) 2021-01-28

Family

ID=68431244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092378 WO2021012777A1 (zh) 2019-07-24 2020-05-26 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法

Country Status (2)

Country Link
CN (1) CN110444356B (zh)
WO (1) WO2021012777A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444356B (zh) * 2019-07-24 2020-10-23 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645579A (zh) * 2009-08-25 2010-02-10 山东迅实电气有限公司 电气化铁路牵引供电系统用防雷保护间隙
CN106384966A (zh) * 2016-09-27 2017-02-08 国网浙江省电力公司丽水供电公司 线路差异化防雷治理方法
US20180090292A1 (en) * 2015-03-19 2018-03-29 Hebei Bao Kay Electric Co., Ltd Miniature circuit breaker capable of rapid breaking
CN108231300A (zh) * 2017-12-20 2018-06-29 国网湖南省电力有限公司 一种防雷绝缘子的并联间隙装置
CN108920803A (zh) * 2018-06-25 2018-11-30 国网湖南省电力有限公司 一种线路氧化锌防雷装置防雷参数设置方法和设备
CN110444356A (zh) * 2019-07-24 2019-11-12 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199354B (zh) * 2016-06-24 2018-12-28 国网浙江省电力公司金华供电公司 绝缘子串并联间隙雷电冲击有效性及放电特性测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645579A (zh) * 2009-08-25 2010-02-10 山东迅实电气有限公司 电气化铁路牵引供电系统用防雷保护间隙
US20180090292A1 (en) * 2015-03-19 2018-03-29 Hebei Bao Kay Electric Co., Ltd Miniature circuit breaker capable of rapid breaking
CN106384966A (zh) * 2016-09-27 2017-02-08 国网浙江省电力公司丽水供电公司 线路差异化防雷治理方法
CN108231300A (zh) * 2017-12-20 2018-06-29 国网湖南省电力有限公司 一种防雷绝缘子的并联间隙装置
CN108920803A (zh) * 2018-06-25 2018-11-30 国网湖南省电力有限公司 一种线路氧化锌防雷装置防雷参数设置方法和设备
CN110444356A (zh) * 2019-07-24 2019-11-12 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU, XIULAN ET AL.: "The Design of the Clearance of Lightning-proof in a 10 kV Distribution Line", SCIENCE TECHNOLOGY AND ENGINEERING, vol. 10, no. 31, 30 November 2010 (2010-11-30), pages 7755 - 7759, XP055774627 *

Also Published As

Publication number Publication date
CN110444356B (zh) 2020-10-23
CN110444356A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN110414120B (zh) 一种取消避雷线输电线路防雷性能计算方法
CN110879333B (zh) 一种高压直流输电线路雷击重启率计算和评估方法
CN102175936B (zh) 一种配网避雷器给定置信水平下非限制性预期运行寿命评估方法
WO2021012777A1 (zh) 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法
WO2021223313A1 (zh) 无避雷线输电线路
CN108963946B (zh) 一种输电线路防雷及防冰装置设计方法
Mobarakei et al. Back Flashover phenomenon analysis in power transmission substation for insulation coordination
CN110687371B (zh) 一种用于确定同塔多回线路的雷电绕击性能的方法及系统
Datsios et al. Effect of concentrated tower grounding system modeling on the minimum backflashover current and BFR of 150 and 400 kV overhead transmission lines
CN102969685A (zh) 一种提高架空配电线路防抗雷击水平的方法
Cabral et al. Improved distribution feeder topology against lightning
WO2021238093A1 (zh) 一种防雷击断线与人身触电绝缘子
CN104537137A (zh) 高压电力变压器短路故障预测方法、预测装置和防御方法
CN205303080U (zh) 一种耐雷电冲击棒状悬式复合绝缘子
Pramana et al. Covered conductor burn-down prevention for distribution line in Indonesia
CN206023160U (zh) 线路闪络保护器
Michishita et al. Fault rate of power distribution line connected to wind turbine by winter lightning
de Souza et al. The effect of soil ionization on the lightning performance of transmission lines
CN105117865B (zh) 一种基于雷击故障绝缘恢复特性的输电线路巡线策略方法
CN202997553U (zh) 一种信号防雷器
Hu et al. Analysis of lightning protection performance of 110 kV transmission line canceling lightning wire
Novizon et al. Flashover Phenomenon on 150kV Transmission Line Due to Direct Lightning Strike on the Ground Wire
CN213275837U (zh) 一种高电压大电流三重雷击试验装置
Tang et al. Research on the Improving Lighting Protection Level for Strong Lightning Activity Area and Easily Suffering Lighting Strike Distribution Line
Zhu et al. Research on Lightning Overvoltage of 110 kV Line of Canceling Ground Wire and Installing Composite Arrester Combined Insulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844340

Country of ref document: EP

Kind code of ref document: A1