CN108920803A - 一种线路氧化锌防雷装置防雷参数设置方法和设备 - Google Patents

一种线路氧化锌防雷装置防雷参数设置方法和设备 Download PDF

Info

Publication number
CN108920803A
CN108920803A CN201810659735.3A CN201810659735A CN108920803A CN 108920803 A CN108920803 A CN 108920803A CN 201810659735 A CN201810659735 A CN 201810659735A CN 108920803 A CN108920803 A CN 108920803A
Authority
CN
China
Prior art keywords
lightning protection
zinc oxide
protection device
parameter
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810659735.3A
Other languages
English (en)
Inventor
陆佳政
王博闻
蒋正龙
方针
吴伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Hunan Electric Power Co Ltd
Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Hunan Electric Power Co Ltd
Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Hunan Electric Power Co Ltd, Disaster Prevention and Mitigation Center of State Grid Hunan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810659735.3A priority Critical patent/CN108920803A/zh
Publication of CN108920803A publication Critical patent/CN108920803A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Abstract

本发明提供一种线路氧化锌防雷装置防雷参数设置方法和设备,通过建立模型,在设定的防雷参数下,对实际线路进行仿真分析,获取氧化锌防雷装置的最大耐受能量,根据大电流冲击理论计算,得到满足此最大耐受能量的通流幅值,根据此通流幅值进行氧化锌电阻片设计,在氧化锌防雷装置应用于线路之前进行了理论分析,可以依据不同线路的防雷需求进行差异化防雷设计,提高了线路运作中氧化锌防雷装置的稳定性,也避免了少雷区由于性能参数过剩而影响运行经济性。

Description

一种线路氧化锌防雷装置防雷参数设置方法和设备
技术领域
本发明涉及电器工程技术领域,更具体地,涉及一种线路氧化锌防雷装置防雷参数设置方法和设备。
背景技术
伴随着经济发展,超高压和特高压输电线路越来越多,输电线路的数量及长度都在不断增加,避雷器的品种及应用也越来越多,但配电线路及电气设备发生过电压而损坏的事故却更加频繁,配电线路最有效的防雷方法是安装避雷器,其中氧化锌防雷装置是保护电力设备的重要装置,由于氧化锌电阻片优异的非线性特性和良好的通流性能,现有的防雷装置大量采用氧化锌电阻片,如避雷器、防雷防冰绝缘子等。当发生雷击时,雷电流通过防雷装置内氧化锌电阻片进入大地,从而保护电力设备免受损坏。
氧化锌防雷装置的电气参数包括通流能量、残压、1mA参考电压、外绝缘参数等。其中最关键的性能为通流能量,通流能量的大小直接关系到氧化锌防雷装置防护雷电的性能。
不同电压等级下线路避雷器用氧化锌电阻片的通流性能国标和行业标准都给出了规定。如10kV等级的线路带间隙氧化锌避雷器2ms方波通流为150A,4/10μs大电流冲击耐受为65kA;或500kV等级带间隙氧化锌避雷器2ms方波通流为800A,4/10μs大电流冲击耐受为100kA,其中4/10μs大电流冲击直接反应到避雷器的防雷性能。但各地区的雷击落雷密度、雷电流幅值、波形都不同,标准规定的耐受幅值不能反映实际雷击情况下的能量耐受。现有的标准没有依据不同线路的情况进行差异化防雷,氧化锌防雷装置的防雷性能设计单单依靠标准设计无法响应实际的防雷需求。
发明内容
本发明提供一种克服上述问题或者至少部分地解决上述问题的一种线路氧化锌防雷装置防雷参数设置方法和设备,解决了现有技术中无法依据不同线路的情况进行差异化防雷,氧化锌防雷装置的防雷性能设计单单依靠标准设计无法响应实际的防雷需求的问题。
根据本发明的一个方面,提供一种线路氧化锌防雷装置防雷参数设置方法,包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
本发明提出一种线路氧化锌防雷装置防雷参数设置方法和设备,通过建立模型,在设定的防雷参数下,对实际线路进行仿真分析,获取氧化锌防雷装置的最大耐受能量,根据大电流冲击理论计算,得到满足此最大耐受能量的通流幅值,根据此通流幅值进行氧化锌电阻片设计,在氧化锌防雷装置应用于线路之前进行了理论分析,可以依据不同线路的防雷需求进行差异化防雷设计,提高了线路运作中氧化锌防雷装置的稳定性,也避免了少雷区由于性能参数过剩而影响运行经济性。
附图说明
图1为根据本发明实施例的线路氧化锌防雷装置防雷参数设置方法流程示意图;
图2为根据本发明实施例的10kV线路氧化锌防雷装置的伏安特性曲线示意图;
图3为根据本发明实施例的500kV线路氧化锌防雷装置的伏安特性曲线示意图;
图4为根据本发明实施例的线路氧化锌防雷装置防雷参数设置设备示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,图中示出了一种线路氧化锌防雷装置防雷参数设置方法,包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
通过建立模型,在设定的防雷参数下,对实际线路进行仿真分析,获取氧化锌防雷装置的最大耐受能量(即最大流通能量)。根据大电流冲击理论计算,得到满足此最大耐受能量的通流幅值(即氧化锌防雷装置的最小吸收能量)。得到氧化锌防雷装置需要达到的通流幅值测试参数,根据此通流幅值进行氧化锌电阻片设计,其他参数参考标准设计;可以在氧化锌防雷装置应用于线路之前进行了理论分析,可以依据不同线路的防雷需求进行差异化防雷设计,提高了线路运作中氧化锌防雷装置的稳定性,也避免了少雷区由于性能参数过剩而影响运行经济性。
具体的,在本实施例中,所述基本参数包括配网输电线路中的杆塔尺寸、档距、导线参数、接地电阻;配网输电线路中的档距、导线型号、杆塔高度、接地电阻根据实际线路进行选取。杆塔数量根据实际配网输电线路进行设置。
具体的,在本实施例中,基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型,具体包括:
设定线路的基本参数、落雷参数,并根据电磁暂态程序(Electro-MagneticTransient Program,EMTP)建立反应输电线路频率特性的配网输电线路模型,在本实施例中,所述配网输电线路模型的建立采用反应输电线路频率特性的JMarti模型。
设定配网输电线路模型的防雷参数,向所述配网输电线路模型中任意一根塔杆中注入雷电流,获取在所述防雷参数下氧化锌防雷装置的最大流通能量。
得到氧化锌防雷装置的流通能量后,即可根据此最大流通能量为标准进行实际氧化锌防雷装置的吸收能量进行设置。
具体的,在本实施例中,所述雷电流为负极性雷电流,通过双指数电源进行模拟。
具体的,在本实施例中,获取氧化锌防雷装置的伏安特性曲线后还包括:
分别将4/10μs大电流冲击波形和所述伏安特性曲线拟合成分段函数,得到不同电流幅值下氧化锌防雷装置的吸收能量。
具体的,将4/10μs大电流冲击波形进行分段拟合,采用三角函数拟合,拟合函数如下所示:
式中,i为电流,t为时间,A、B、C为拟合参数,不同电流幅值下的拟合参数数值不同;
由于氧化锌防雷装置伏安特性为非线性参数,采用指数分段函数进行拟合,拟合函数如下所示:
式中,u为防雷段两端电压,单位为kV,i为流过的电流幅值,k1、k2、k3、x、y、z为拟合参数。考虑到μs级的放电时间与周围物质的热量消散时间常数对比可以忽略。吸收能量计算方面忽略热量消散作用,认为放电过程为绝热过程。因此单次冲击电流作用下氧化锌避雷器的吸收能量:
w=∫uidt。
在本实施例中,为满足设计要求,则需要满足如下条件,设定所述吸收能量的幅值范围为:
w≥βw0
式中,w0为设定防雷参数下氧化锌防雷装置的最大流通能量,w为不同电流幅值下氧化锌防雷装置的吸收能量,β为裕度系数,在本实施例中,β取值为1.5。从而得到氧化锌防雷装置需要达到的大电流测试参数,按此参数进行防雷设计。其他参数如残压、1mA参考电压、外绝缘参数等参考现有标准进行设计。
本实施例中,采用10kV线路进行验证,设置所述杆塔的电感为0.84μH/m,接地电阻为5Ω。雷电流波形选择2.6/50μs的标准雷电波,采用双指数波形模拟。仿真中一共设置11级杆塔,雷电流直接注入三号杆塔的A相。防雷装置伏安特性曲线如图2所示。设计最大耐受雷电流为30kA,通过EMTP电磁暂态仿真得到最大耐受能量为13.25kJ。
对氧化锌电阻片伏安特性曲线进行拟合,可以得到电压与电流的函数关系,如式下式所示
式中,u为防雷段两端电压,单位kV。i为流过电流幅值,单位A。配电线路防雷复合绝缘子需通过幅值为H的4/10μs测试。4/10μs的波形可以简化为式下式所示:
吸收的能量w如下式:
w=∫uidt≥13.25×1.5=19.875
通过计算得到电阻片需至少通过幅值为59kA的4/10μs大电流冲击。因此大电流冲击设计为59kA的4/10μs大电流冲击,其他参数设计参考标准进行参数设计。
不同地区的接地电阻阻值不同,因地域差异接地电阻改造困难,部分地区未进行接地改造。因此接地电阻差异会导致防雷参数设计差异,依据上述分析步骤,得到不同接地电阻下的防雷设计参数,如表1所示。
表1不同接地电阻下的防雷设计参数
本实施例中,500kV线路中输电线路采用Bergeron特征线法表征。杆塔型号选取保护角度为10°、500kV等级Z1酒杯型直线塔。导线水平排列,双地线,导线型号为4×LGJ-400/35,地线型号为GJ-80,水平档距取350m,接地电阻取10Ω,波速2.1×108m/s。杆塔采用Hara多波阻抗模型。雷电流波形选择2.6/50μs的标准雷电波,采用双指数波形模拟。仿真中一共设置5级杆塔。设计最大绕击雷电流为32kA,通过EMTP电磁暂态仿真得到最大耐受能量为577.78kJ。
对氧化锌电阻片伏安特性曲线进行拟合,如图3所示。可以得到电压与电流的函数关系,如下式所示:
式中,u为防雷段两端电压,单位kV。i为流过电流幅值,单位A。配电线路防雷复合绝缘子需通过幅值为H的4/10μs测试。4/10μs的波形可以简化为式如下式所示:
吸收的能量w如下式:
w=∫uidt≥577.78×1.5=866.67
通过计算得到电阻片至少需通过幅值为90kA的4/10μs大电流冲击。因此大电流冲击设计为90kA的4/10μs大电流冲击,其他参数设计参考现有标准设计。
图4是示出本申请实施例的线路氧化锌防雷装置防雷参数设置的结构框图。
参照图4,所述线路氧化锌防雷装置防雷参数设置设备,包括:处理器(processor)810、存储器(memory)830、通信接口(Communications Interface)820和总线840;
其中,
所述处理器810、存储器830、通信接口820通过所述总线840完成相互间的通信;
所述通信接口820用于该测试设备与显示装置的通信设备之间的信息传输;
所述处理器810用于调用所述存储器830中的程序指令,以执行上述各方法实施例所提供的线路氧化锌防雷装置防雷参数设置方法,例如包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
本实施例公开一种线路氧化锌防雷装置防雷参数设置设备,包括:
至少一个处理器;以及
与所述处理器通信连接的至少一个存储器,其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如上述线路氧化锌防雷装置防雷参数设置方法,具体包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
本实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的线路氧化锌防雷装置防雷参数设置方法,例如包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
本实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述各方法实施例所提供的线路氧化锌防雷装置防雷参数设置方法,例如包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
综上所述,本发明提出一种线路氧化锌防雷装置防雷参数设置方法和设备,通过建立模型,在设定的防雷参数下,对实际线路进行仿真分析,获取氧化锌防雷装置的最大耐受能量,根据大电流冲击理论计算,得到满足此最大耐受能量的通流幅值,根据此通流幅值进行氧化锌电阻片设计,在氧化锌防雷装置应用于线路之前进行了理论分析,可以依据不同线路的防雷需求进行差异化防雷设计,提高了线路运作中氧化锌防雷装置的稳定性,也避免了少雷区由于性能参数过剩而影响运行经济性。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所描述的显示装置的测试设备等实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上各实施例仅用以说明本发明的实施例的技术方案,而非对其限制;尽管参照前述各实施例对本发明的实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的实施例各实施例技术方案的范围。

Claims (10)

1.一种线路氧化锌防雷装置防雷参数设置方法,其特征在于,包括:
基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型;
根据所述配网输电线路模型,得到设定防雷参数下氧化锌防雷装置的最大流通能量;
获取氧化锌防雷装置的伏安特性曲线,并基于所述最大流通能量得到氧化锌防雷装置的最小吸收能量,根据所述最小吸收能量得到氧化锌防雷装置的参数。
2.根据权利要求1所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,所述基本参数包括配网输电线路中的杆塔尺寸、档距、导线参数、接地电阻。
3.根据权利要求1所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,基于配网输电线路的基本参数、落雷参数建立反应输电线路频率特性的配网输电线路模型,具体包括:
设定线路的基本参数、落雷参数,并根据电磁暂态程序EMTP建立反应输电线路频率特性的配网输电线路模型;
设定配网输电线路模型的防雷参数,向所述配网输电线路模型中任意一根塔杆中注入雷电流,获取在所述防雷参数下氧化锌防雷装置的最大流通能量。
4.根据权利要求3所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,所述雷电流为负极性雷电流,通过双指数电源进行模拟。
5.根据权利要求1所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,获取氧化锌防雷装置的伏安特性曲线后还包括:
分别将4/10μs大电流冲击波形和所述伏安特性曲线拟合成分段函数,得到不同电流幅值下氧化锌防雷装置的吸收能量。
6.根据权利要求5所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,分别将4/10μs大电流冲击波形和所述伏安特性曲线拟合成分段函数,具体包括,通过三角函数对4/10μs大电流冲击波形进行分段拟合:
式中,i为电流,t为时间,A、B、C为拟合参数,不同电流幅值下的拟合参数数值不同;
通过分段函数对氧化锌防雷装置的伏安特性曲线进行拟合:
式中,u为电压,k1、k2、k3、x、y、z为拟合参数。
7.根据权利要求6所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,得到不同电流幅值下氧化锌防雷装置的吸收能量,具体包括:
获取单次大电流冲击能量下氧化锌避雷器的吸收能量w=∫uidt。
8.根据权利要求1所述的线路氧化锌防雷装置防雷参数设置方法,其特征在于,获取单次大电流冲击能量下氧化锌避雷器的吸收能量后还包括:
设定所述吸收能量的幅值范围为:
w≥βw0
式中,w0为设定防雷参数下氧化锌防雷装置的最大流通能量,w为不同电流幅值下氧化锌防雷装置的吸收能量,β为裕度系数。
9.一种避雷器温度计算设备,其特征在于,包括:
至少一个处理器;以及
与所述处理器通信连接的至少一个存储器,其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1至8任一所述的方法。
10.一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如权利要求1至8任一所述的方法。
CN201810659735.3A 2018-06-25 2018-06-25 一种线路氧化锌防雷装置防雷参数设置方法和设备 Pending CN108920803A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810659735.3A CN108920803A (zh) 2018-06-25 2018-06-25 一种线路氧化锌防雷装置防雷参数设置方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810659735.3A CN108920803A (zh) 2018-06-25 2018-06-25 一种线路氧化锌防雷装置防雷参数设置方法和设备

Publications (1)

Publication Number Publication Date
CN108920803A true CN108920803A (zh) 2018-11-30

Family

ID=64419479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810659735.3A Pending CN108920803A (zh) 2018-06-25 2018-06-25 一种线路氧化锌防雷装置防雷参数设置方法和设备

Country Status (1)

Country Link
CN (1) CN108920803A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109726523A (zh) * 2019-03-04 2019-05-07 广东电网有限责任公司 一种避雷器安装位置的选择方法和装置
CN110444356A (zh) * 2019-07-24 2019-11-12 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法
CN111426726A (zh) * 2020-04-08 2020-07-17 国网湖南省电力有限公司 含氧化锌设备的防爆测试方法及装置、设计方法及装置
CN111983339A (zh) * 2020-06-30 2020-11-24 中国电力科学研究院有限公司 确定特高压金属氧化物避雷器电阻片伏安特性的方法和系统
CN112380808A (zh) * 2020-11-02 2021-02-19 三峡大学 一种带长连续电流多重回击作用下避雷器温升的计算方法
CN116885658A (zh) * 2023-09-08 2023-10-13 湖南防灾科技有限公司 用于特高压输电线路的不停电地线融冰方法及处理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王博闻 等: "《一种10 kV配电线路防雷复合绝缘子的绝缘设计及防雷性能》", 《电网技术》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109726523A (zh) * 2019-03-04 2019-05-07 广东电网有限责任公司 一种避雷器安装位置的选择方法和装置
CN110444356A (zh) * 2019-07-24 2019-11-12 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法
CN110444356B (zh) * 2019-07-24 2020-10-23 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法
WO2021012777A1 (zh) * 2019-07-24 2021-01-28 国网湖南省电力有限公司 一种防雷防冰闪合成绝缘子防雷段保护间隙设计方法
CN111426726A (zh) * 2020-04-08 2020-07-17 国网湖南省电力有限公司 含氧化锌设备的防爆测试方法及装置、设计方法及装置
CN111426726B (zh) * 2020-04-08 2022-08-19 国网湖南省电力有限公司 含氧化锌设备的防爆测试方法及装置、设计方法及装置
CN111983339A (zh) * 2020-06-30 2020-11-24 中国电力科学研究院有限公司 确定特高压金属氧化物避雷器电阻片伏安特性的方法和系统
CN112380808A (zh) * 2020-11-02 2021-02-19 三峡大学 一种带长连续电流多重回击作用下避雷器温升的计算方法
CN112380808B (zh) * 2020-11-02 2022-06-21 三峡大学 一种带长连续电流多重回击作用下避雷器温升的计算方法
CN116885658A (zh) * 2023-09-08 2023-10-13 湖南防灾科技有限公司 用于特高压输电线路的不停电地线融冰方法及处理器
CN116885658B (zh) * 2023-09-08 2023-12-12 湖南防灾科技有限公司 用于特高压输电线路的不停电地线融冰方法及处理器

Similar Documents

Publication Publication Date Title
CN108920803A (zh) 一种线路氧化锌防雷装置防雷参数设置方法和设备
Shariatinasab et al. Estimation of energy stress of surge arresters considering the high-frequency behavior of grounding systems
CN107991559A (zh) 一种大型接地网地电位升极限值的校核方法
CN102175936B (zh) 一种配网避雷器给定置信水平下非限制性预期运行寿命评估方法
Montañés et al. An improvement for the selection of surge arresters based on the evaluation of the failure probability
Hassan et al. Analysis of arrester energy for 132kV overhead transmission line due to back flashover and shielding failure
CN105321027A (zh) 输电线路的防雷方法和装置
Mohajeryami et al. Including surge arresters in the lightning performance analysis of 132kV transmission line
CN110765731A (zh) 限流器的雷电过电压仿真计算方法、装置及计算机设备
Okabe et al. Occurrence probability of lightning failure rates at substations in consideration of lightning stroke current waveforms
CN105024372A (zh) 一种降低敞开式变电站雷电侵入波过电压的方法及装置
Subedi Lightning induced over-voltages in power transformer and voltage spikes in connected load
Cuixia et al. Insulation coordination optimization study for±800kV UHVDC project with increased transmission capacity
Sultan Comparative Study between Porcelain and Silicone Polymer Lightning Arresters under Direct Lightning Strokes for A 400KV Substation Protection
Stojković et al. ATP-EMTP-based approach to teaching insulation coordination in the electrical engineering curriculum
Nugroho et al. Impact of arrester models in placement determination at 150 kV Srondol substation
Motilal et al. Power transformer and surge arrester modeling for fast front overvoltages using EMTP-RV
Gurbuz et al. Lightning Over-voltages in Nuclear Power Plants
CN102543335A (zh) 复合绝缘氧化锌避雷器
Radhika et al. Effective Placement of Surge Arrestor during Lightning
CN102882176A (zh) 一种10kV配电架空线路避雷线架设高度选定方法
CN203799779U (zh) 一种用于变压器的中性点与外壳双接地系统
Aref et al. An investigation of the factors affecting the transition of lightning surges through underground cables and sub-transmission substations: a case study
Annamalai et al. Sizing of surge arresters for 400kV Substation—A case study
Modukpe et al. Mitigating 132kV Transmission Line Outage Due To Lightning Shielding Failure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130