WO2021012639A1 - 一种绝缘管型母线绝缘诊断和定位方法 - Google Patents

一种绝缘管型母线绝缘诊断和定位方法 Download PDF

Info

Publication number
WO2021012639A1
WO2021012639A1 PCT/CN2020/070476 CN2020070476W WO2021012639A1 WO 2021012639 A1 WO2021012639 A1 WO 2021012639A1 CN 2020070476 W CN2020070476 W CN 2020070476W WO 2021012639 A1 WO2021012639 A1 WO 2021012639A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulated tubular
section
grounding
ground
insulated
Prior art date
Application number
PCT/CN2020/070476
Other languages
English (en)
French (fr)
Inventor
李文佩
阮羚
刘睿
Original Assignee
国网湖北省电力有限公司电力科学研究院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网湖北省电力有限公司电力科学研究院, 国家电网有限公司 filed Critical 国网湖北省电力有限公司电力科学研究院
Priority to US16/648,114 priority Critical patent/US10948532B1/en
Priority to EP20711768.0A priority patent/EP3798650B1/en
Publication of WO2021012639A1 publication Critical patent/WO2021012639A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing

Definitions

  • This application relates to the field of power transmission and distribution technology, for example, to an insulation diagnosis and positioning method for insulated tubular bus bars.
  • Insulated tubular busbar is a current-carrying device with copper or aluminum metal tube as the conductor, outsourcing insulation, and grounding shielding layer on the surface.
  • the common voltage level is 6kV-35kV. It is mostly used as a load connecting the low-voltage side of the transformer and the switchgear. Streaming equipment.
  • the unique structural characteristics make the insulated tubular bus bar have the outstanding advantages of large current carrying capacity, good mechanical performance, safety, space saving, low maintenance, and good weather resistance. With the development trend of large-capacity, compact, high-safety and high-environmental compatibility requirements for power transmission, insulated tubular busbars have been widely used due to the above-mentioned development needs.
  • This application uses the structural features of multi-section connection and segmented grounding of the insulated tubular bus to solve the problems of rapid diagnosis and defect location of the insulation state of the equipment, and provides a method that requires less equipment and is simple to implement, and is aimed at common defects and hidden dangers of equipment. Strong performance, convenient insulation diagnosis and defect location methods can be implemented at the inspection site.
  • This application provides an insulation diagnosis and defect location method for an insulated tubular bus bar, including:
  • the manufacturer’s empirical data includes the capacitance per unit length of the insulated tubular bus body c b , and the capacitance per unit length of the intermediate joint c j or the factory test data of the capacitance of each intermediate joint: each insulating tube
  • the capacitance of the intermediate joints numbered k, k+1,..., k+n contained in the grounding section of the type bus bar are respectively C jk , C jk+1 ,..., C jk+n ; calculate each insulation by the following formula
  • the insulation is diagnosed The insulation state of the tubular busbar and the realization of defect location.
  • the amplitude of the test voltage and the test frequency are selected within the following required range: the voltage amplitude U t is not less than 5kV, and is not higher than the resistance of the insulated tubular busbar in the state maintenance test The voltage level of the pressure test; the frequency range is 30Hz ⁇ 300Hz; the waveform should be a sine wave with approximately symmetrical positive and negative semi-axes.
  • applying a test voltage U t between the insulated tubular bus conductor portion and the ground electrode includes: applying a fixed frequency voltage in the frequency range between the insulated tubular bus bar and the ground electrode , And boost the voltage to the test voltage
  • the identification of the grounding section of the insulated tubular bus bar based on the ground screen short wire includes: for the insulated tubular bus bar whose intermediate joint is a shielded barrel structure, determining the insulated tubular bus body and the shield barrel connected by the ground screen short wire It is an insulated tubular busbar grounding section; and when there is no ground screen short connection between the insulated tubular busbar body and the shielding cylinder, the insulated tubular busbar body and the shielding cylinder are segmented at the intermediate connection.
  • the comparison result of the ground current per unit length of the grounding section of different insulated tubular busbars and the grounding current of each insulated tubular busbar grounding section and the capacitance current of the grounding section of each insulated tubular busbar include:
  • each insulated tubular busbar grounding section When the difference between the grounding current per unit length of each insulated tubular busbar grounding section and the grounding sections of other insulated tubular busbars is less than or equal to 10% of the grounding current per unit length of each insulated tubular busbar grounding section , It is determined that the ground current index of the insulated tubular bus is normal; the difference between the ground current per unit length of the ground section of an insulated tubular bus and the ground section of other insulated tubular buses is greater than the unit of the ground section of the insulated tubular bus In the case of 10% of the length of the ground current, determining that the ground section of the one insulated tubular bus bar is a defective section or a fault section;
  • the insulated tube type is determined
  • the current index of the busbar is normal; in the case where the difference between the ground current of an insulated tubular busbar grounding section and the capacitance current value of the insulated tubular busbar grounding section is greater than 3% of the capacitance current value, confirm the insulation
  • the grounding section of the tubular bus bar is a defective section or a faulty section.
  • the ground current value of the defective section or the faulted section is greater than the preset value, it is determined that there is insulation deterioration of the insulated tubular busbar, or there is a discharge condition inside or along the end of the intermediate joint of the defective section or the faulted section.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes a processor and a memory.
  • the memory stores a computer program.
  • the computer program is executed by the processor to implement the method provided in any of the foregoing embodiments.
  • the embodiments of the present application also provide a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method provided in any of the foregoing embodiments is implemented.
  • FIG. 1 is a flowchart of an insulation diagnosis and defect location method for an insulated tubular bus bar provided by an embodiment of the application;
  • FIG. 2 is a flowchart of another insulation diagnosis and defect location method for insulated tubular busbars provided by an embodiment of the application;
  • Fig. 3 is a schematic diagram of the test wiring of the multi-section grounded insulated tubular busbar pressurization and ground current measurement provided by the embodiment of the application;
  • Fig. 4 is a schematic diagram of a multi-section grounded insulated tubular bus bar structure and a method for identifying segmentation modes according to an embodiment of the application.
  • the insulated tubular busbar equipment is assembled into a whole in multiple sections and grounded in sections. Although this grounding method is complicated, it provides convenience for the insulation status detection of this type of equipment and even the fault location. Therefore, the insulation diagnosis and defect location method for insulated tubular bus bars based on ground current measurement proposed in this application becomes possible.
  • FIG. 1 is a flowchart of a method for insulation diagnosis and defect location of an insulated tubular busbar provided by an embodiment of the application. Referring to Figure 1, the method provided in this application includes the following steps:
  • Step 110 Disconnect the connection between the first end of the insulated tubular bus and other equipment and the connection between the second end of the insulated tubular bus and other equipment, and keep the line grounding wire and grounding electrode of the insulated tubular bus Connect, and apply a test voltage between the conductor part of the insulated tubular bus and the ground electrode.
  • Step 120 Record the test voltage and test frequency when measuring the ground current of the ground section of the insulated tubular busbar.
  • Step 130 Identify the ground section of the multi-section insulated tubular busbar according to the ground screen short wiring, and record the number, number and length of the intermediate joints contained in the ground section of each insulated tubular busbar.
  • Step 140 Measure the length of the grounding section of each insulated tubular bus.
  • Step 150 Measure the ground current of the ground section of each insulated tubular busbar under the test voltage, and calculate the ground current per unit length of the ground section of each insulated tubular busbar.
  • Step 160 When the test voltage and test frequency applied to the grounding sections of the different insulated tubular busbars are the same and the structure is the same, compare the ground currents per unit length of the grounding sections of the different insulated tubular busbars.
  • Step 170 Consult the manufacturer’s empirical data.
  • Step 180 According to the comparison result of the ground current per unit length of the grounding section of different insulated tubular busbars and the comparison result of the grounding current of each insulated tubular busbar grounding section and the capacitance current value of the grounding section of each insulated tubular busbar , Diagnose the insulation status of the insulated tubular bus and realize defect location.
  • Step 210 wiring according to the wiring method shown in FIG. 3, and applying voltage.
  • the amplitude and frequency of the applied voltage are selected within the following requirements: the voltage amplitude U t is not less than 5kV, not higher than the withstand voltage test voltage level in the equipment condition maintenance test; the frequency range is 30Hz ⁇ 300Hz; the waveform of the test voltage should It is a sine waveform with approximately symmetrical positive and negative semi-axes.
  • Step 220 Measure the ground current and related test parameters of the ground section of each insulated tubular bus.
  • the data (U t , f, l, I) measured in this step is the basis for insulation diagnosis and defect location analysis of the insulated tubular bus.
  • Step 230 Compare the ground current values per unit length of the ground sections of different insulated tubular bus bars.
  • the grounding current per unit length (I /l) Compare.
  • the grounding current per unit length between the grounding sections of different insulated tubular busbars should be basically the same.
  • the insulation status of the insulated tubular busbar is abnormal. See step 250 for the judgment method.
  • the same structure includes that the number of insulated tubular busbar bodies and the number of intermediate joints included in the insulated tubular busbar ground section are the same.
  • Step 240 Compare the measured value of the ground current of the grounded section of the insulated tubular bus with the calculated value of the capacitance current of the grounded section of the insulated tubular bus.
  • the manufacturer’s experience data includes the capacitance per unit length of the body c b , the capacitance per unit length of the intermediate joint c j , or the factory test data of the capacitance of each intermediate joint: the capacitance of the intermediate joints numbered k, k+1,...
  • each insulated tubular busbar After calculating the capacitance current value of the grounding section of each insulated tubular busbar, compare the grounding current measurement value of each insulated tubular busbar grounding section with the capacitance current value.
  • the ground current measurement value and capacitance current value of each insulated tubular busbar grounding section should be basically the same. A large difference indicates that the insulation state of the insulated tubular busbar is abnormal. See step 250 for the judgment method.
  • Step 250 based on the comparison result of step 230 and the comparison result of step 240, diagnose the insulation state of the insulated tubular bus and locate the defect.
  • grounding current values per unit length of the grounding sections of different insulated tubular busbars are roughly the same (for example, the grounding current per unit length of each insulated tubular busbar grounding section is equal to The difference between the grounding sections of other insulated tubular busbars is less than or equal to 10% of the grounding current per unit length of the insulated tubular busbar grounding section), the grounding current index of the insulated tubular busbar is considered normal; if a certain insulated tube
  • the ground current value per unit length of the grounding section of the type busbar is quite different from the grounding section of other insulated tubular busbars (for example, the difference between the grounding current per unit length of the grounding section of an insulated tubular busbar and the grounding section of other insulated tubular The grounding section of the tubular busbar is 10% of the grounding current per unit length), then the grounding section of the insulated tubular busbar is considered to be a
  • the measured value of the ground current of the insulated tubular busbar grounding section can be compared with the calculated capacitance current of the insulated tubular busbar grounding section. If the deviation between the ground current measurement value and the capacitance current calculation value of each insulated tubular busbar ground section is small (for example, the difference between the ground current and the capacitance current value is less than or equal to 3% of the capacitance current value), then the The ground current index of the insulated tubular busbar is normal.
  • the grounding section of the insulated tubular busbar is a defective section or a faulty section.
  • the equipment has insulation degradation, or there is discharge inside or along the end of the intermediate joint.
  • step 260 insulation diagnosis and defect location are completed, and the test wiring is disconnected.
  • the grounding current value per unit length of the 3-section insulated tubular busbar is 2.64mA/m, 3.43mA/m, 4.10mA/m, and the grounding current value per unit length of the second and third-section insulated tubular busbars is higher than that of the first Duanda 30% and 55%. It shows that the comparison and discrimination method of step 230 is effective.
  • the measurement provided in this application is performed after power failure.
  • the voltage is 10kV
  • the ground current per unit length of the multi-section insulated tubular busbar grounding section is close to 2.63mA/ m, the difference between the ground currents of different segments per unit length does not exceed 10%. It further illustrates that the discrimination method described in this application is effective.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Locating Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种绝缘管型母线绝缘诊断和缺陷定位方法、设备及存储介质,方法包括:在绝缘管型母线导体部分和接地极之间施加试验电压(110);记录测量多段绝缘管型母线接地段的接地电流时的试验电压及试验频率(120);根据地屏短接线识别多段绝缘管型母线接地段,记录每个接地段内包含的中间接头的数量、编号及长度(130);测量每个绝缘管型母线接地段的长度(140);测量试验电压下每个绝缘管型母线接地段的接地电流,计算每个绝缘管型母线接地段的单位长度接地电流(150);对不同绝缘管型母线接地段的单位长度接地电流进行比较(160);根据每个段绝缘管型母线接地段的长度以及包含的中间接头的数量、编号和长度,计算每个绝缘管型母线接地段的电容电流值,并将每个绝缘管型母线接地段的接地电流与电容电流值进行比对(170);根据比较结果和比对结果,诊断绝缘管型母线的绝缘状态并实现缺陷定位(180)。

Description

一种绝缘管型母线绝缘诊断和定位方法
本申请要求在2019年07月22日提交中国专利局、申请号为201910662147.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及输配电技术领域,例如涉及一种绝缘管型母线绝缘诊断和定位方法。
背景技术
绝缘管型母线是一种以铜或铝质金属圆管为导体、外包绝缘、表面具有接地屏蔽层的载流设备,常见电压等级为6kV—35kV,多作为连接变压器低压侧和开关柜的载流设备。独特的结构特点使绝缘管型母线具有载流量大、机械性能好,安全、节省空间、维护量小、以及耐候性好的突出优势。随着电力输送大容量化、紧凑化、高安全性和高环境兼容要求的发展趋势,绝缘管型母线因适应于上述发展需求而得到了广泛应用。
但是,区别于以往在大电流汇流部分采用的半绝缘母线排和封闭母线,绝缘管型母线设备的运行可靠性决定于绝缘管型母线设备的固体绝缘状态。该类设备的运维、检修过程中,缺乏对于该类设备常见绝缘问题针对性强的检测和状态诊断方法,导致设备状态不在控,很多缺陷/隐患不能在早期被发现,最终导致设备绝缘击穿,发生短路故障,引发停电,严重时还将损坏连接的变压器、开关柜等设备,造成重大损失。因此,开发该类设备的绝缘状态诊断方法十分必要。
发明内容
本申请利用绝缘管型母线多段连接、分段接地的结构特征,为解决该设备绝缘状态快速诊断和缺陷定位的问题,提供了一种所须设备少、实施简单,对设备常见缺陷、隐患针对性强,在检修现场执行便捷的绝缘诊断和缺陷定位方法。
本申请提供一种绝缘管型母线绝缘诊断和缺陷定位方法,包括:
断开绝缘管型母线的第一端与其它设备的连接以及所述绝缘管型母线的第二端与其它设备的连接,保持所述绝缘管型母线的线路接地线与接地极的连接,在所述绝缘管型母线的导体部分和接地极之间施加试验电压;
记录测量绝缘管型母线接地段的接地电流时的试验电压及试验频率;
根据地屏短接线识别所述多段绝缘管型母线接地段,记录每个绝缘管型母线接地段内包含的中间接头数量、编号和长度;
测量每个绝缘管型母线接地段的长度和试验电压下每个绝缘管型母线接地段的接地电流,计算每个绝缘管型母线接地段的单位长度接地电流;
在不同绝缘管型母线接地段施加的试验电压和试验频率一致、且结构相同的情况下,对不同绝缘管型母线接地段的单位长度接地电流进行比较;
[根据细则91更正 16.07.2020] 
查阅厂家经验数据,所述厂家经验数据包括绝缘管型母线本体的单位长度电容量c b,以及中间接头的单位长度电容量c j或每个中间接头电容量的出厂试验数据:每个绝缘管型母线接地段内包含的编号为k,k+1,…,k+n的中间接头的电容量分别是C jk,C jk+1,…,C jk+n;通过如下公式计算每个绝缘管型母线接地段的电容电流值:I C=U t·(2πf·ΣC),其中ΣC=c b·l b+c j·l j或ΣC=c b·l b+C jk+C jk+1+…+C jk+n;其中,U t为所述试验电压,f为所述试验频率,l b为所述每个绝缘管型母线接地段内包含的绝缘管型母线本体总长度,l j为所述每个绝缘管型母线接地段内包含的绝缘管型母线中间接头总长度,k为正整数,n为非负整数;将所述每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值进行比对;
根据不同绝缘管型母线接地段的单位长度接地电流的比较结果和每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的比对结果,诊断绝缘管型母线的绝缘状态并实现缺陷定位。
在一实施例中,所述试验电压的幅值以及所述试验频率在以下要求范围内选择:电压幅值U t不低于5kV,且不高于该绝缘管型母线状态检修试验中的耐压试验电压水平;频率范围30Hz~300Hz;波形应为正负半轴近似对称的正弦波形。
在一实施例中,在所述绝缘管型母线导体部分和接地极之间施加试验电压U t,包括:在所述绝缘管型母线和接地极之间施加所述频率范围内固定频率的电压,并将所述电压升压至试验电压
在一实施例中,所述根据地屏短接线识别绝缘管型母线接地段包括:对于中间接头为屏蔽筒结构的绝缘管型母线,将由地屏短接线连接的绝缘管型母线本体和屏蔽筒确定为一个绝缘管型母线接地段;且在绝缘管型母线本体和屏蔽筒之间无地屏短接线连接的情况下,将所述绝缘管型母线本体和屏蔽筒在中间连接处分段。
在一实施例中,所述根据不同绝缘管型母线接地段的单位长度接地电流的比较结果和每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的比对结果,诊断绝缘管型母线的绝缘状态并实现缺陷定位包括:
在每个绝缘管型母线接地段的单位长度接地电流与其它绝缘管型母线接地段的差值均小于或等于所述每个绝缘管型母线接地段的单位长度接地电流的10%的情况下,确定所述绝缘管型母线的接地电流指标正常;在一个绝缘管型母线接地段的单位长度接地电流与其它绝缘管型母线接地段的差值大于所述一个绝缘管型母线接地段的单位长度接地电流的10%的情况下,确定所述一个绝缘管型母线接地段为缺陷段或故障段;
在每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的差值均小于或等于电容电流值的3%的情况下,确定所述绝缘管型母线的电流指标正常;在一个绝缘管型母线接地段的接地电流与所述一个绝缘管型母线接地段的电容电流值的差值大于电容电流值的3%的情况下,确认所述一个绝缘管型母线接地段为缺陷段或故障段。
在所述缺陷段或故障段的接地电流值大于预设值的情况下,确定绝缘管型母线存在绝缘劣化,或所述缺陷段或故障段的中间接头内部或端部沿面存在放电情况。
本申请实施例还提供一种电子设备,电子设备包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如上述任意实施例提供的方法。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述任意实施例提供的方法。
附图说明
图1为本申请实施例提供的一种绝缘管型母线绝缘诊断和缺陷定位方法的流程图;
图2为本申请实施例提供的另一种绝缘管型母线绝缘诊断和缺陷定位方法的流程图;
图3为本申请实施例提供的多段接地绝缘管型母线加压及接地电流测量试验接线示意图;
图4为本申请实施例提供的多段接地绝缘管型母线结构及分段方式识别方 法示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
绝缘管型母线设备为多段组装成为一整体,并分段接地,这种接地方式虽然复杂,但对该类设备的绝缘状态检测,甚至是故障定位提供了便利。因此,本申请提出的基于接地电流测量的绝缘管型母线绝缘诊断和缺陷定位方法成为可能。
图1为本申请实施例提供的一种绝缘管型母线绝缘诊断和缺陷定位方法的流程图。参见图1,本申请提供的方法包括如下步骤:
步骤110、断开绝缘管型母线的第一端与其它设备的连接以及所述绝缘管型母线的第二端与其它设备的连接,保持所述绝缘管型母线的线路接地线与接地极的连接,在所述绝缘管型母线的导体部分和接地极之间施加试验电压。
步骤120、记录测量绝缘管型母线接地段的接地电流时的试验电压及试验频率。
步骤130、根据地屏短接线识别所述多段绝缘管型母线接地段,记录每个绝缘管型母线接地段内包含的中间接头数量、编号和长度。
步骤140、测量每个绝缘管型母线接地段的长度。
步骤150、测量试验电压下每个绝缘管型母线接地段的接地电流,计算每个绝缘管型母线接地段的单位长度接地电流。
步骤160、在不同绝缘管型母线接地段施加的试验电压和试验频率一致、且结构相同的情况下,对不同绝缘管型母线接地段的单位长度接地电流进行比较。
[根据细则91更正 16.07.2020] 
步骤170、查阅厂家经验数据,所述厂家经验数据包括绝缘管型母线本体的单位长度电容量c b,以及中间接头的单位长度电容量c j或每个中间接头电容量的出厂试验数据:每个绝缘管型母线接地段内包含的编号为k,k+1,…,k+n的中间接头的电容量分别是C jk,C jk+1,…C jk+n;通过如下公式计算每个绝缘管型母线接地段的电容电流值:I C=U t ·(2πf·ΣC),其中,ΣC=c b·l b+c j·l j或ΣC=c b·l b+C jk+C jk+1+…+C jk+n;其中,U t为所述试验电压,f为所述试验频率,l b为所述每个绝缘管型母线接地段内包含的绝缘管型母线本体总长度,l j为所述每个绝缘管型母线接地段内包含的绝缘管型母线中间接头总长度,k为正整数,n为非负整数;并将所述每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值进行比对。
步骤180、根据不同绝缘管型母线接地段的单位长度接地电流的比较结果和每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的比对结果,诊断绝缘管型母线的绝缘状态并实现缺陷定位。
根据图2所述的流程图开展绝缘管型母线绝缘诊断和缺陷定位,本申请实施例提供的方法包括如下步骤:
步骤210,根据图3所示接线方式接线,并施加电压。
断开绝缘管型母线与两端其它设备(如变压器、开关柜等)的连接后,按照图3所示接线方式接线。在绝缘管型母线导体部分和接地极之间施加交流试验电压,如有多相绝缘管型母线,应多相同时加压。可采用变频谐振法加压、并联补偿法或直接法加压。施加电压的幅值、频率在以下要求范围内选择:电压幅值U t不低于5kV,不高于设备状态检修试验中的耐压试验电压水平;频率范围30Hz~300Hz;试验电压的波形应为正负半轴近似对称的正弦波形。
接线完毕后,调整合适的电压频率,逐渐升压至U t,维持电压稳定后即可测量,持续时间至测量结束。
步骤220,测量每个绝缘管型母线接地段的接地电流及相关试验参数。
(1)记录测量绝缘管型母线接地段的接地电流时的电压幅值U t及频率f;
(2)根据图4所示的地屏短接线识别绝缘管型母线接地段。对于中间接头为屏蔽筒结构的绝缘管型母线,由地屏短接线连接的本体、屏蔽筒为一个接地段;如本体和屏蔽筒之间无明显地屏短接线连接,则视作线路在中间连接处分段。
(3)记录每个绝缘管型母线接地段内包含的中间接头数量、编号和长度。
(4)测量每个绝缘管型母线接地段长度l。
(5)测量试验电压U t下每个绝缘管型母线接地段的接地电流I。
本步骤所测得的数据(U t,f,l,I)是绝缘管型母线绝缘诊断和缺陷定位分析基础。
步骤230,比对不同绝缘管型母线接地段的单位长度接地电流值。
在不同绝缘管型母线接地段施加电压(幅值U t、频率f)一致,结构相同(包含中间接头数量、种类一致)时,可对不同绝缘管型母线接地段的单位长度接地电流(I/l)进行比较。不同绝缘管型母线接地段间的单位长度接地电流应基本相等,相差较大时说明绝缘管型母线绝缘状态异常,判别方法见步骤250。、
在一实施例中,结构相同包括绝缘管型母线接地段内包含的绝缘管型母线本体数量和中间接头数量相同。步骤240,比对绝缘管型母线接地段的接地电流 测量值与该绝缘管型母线接地段的电容电流计算值。
[根据细则91更正 16.07.2020] 
根据试验电压U t、试验频率f、某一绝缘管型母线接地段内包含的绝缘管型母线本体长度lb、以及中间接头的长度l j或编号k,k+1,…;查阅厂家经验数据,厂家经验数据包括本体单位长度电容量c b,中间接头单位长度电容量c j,或每个中间接头电容量的出厂试验数据:编号为k,k+1,…的中间接头的电容量分别是C jk,C jk+1,…;计算接地段电容电流值:I C=U t ·(2πf·ΣC),其中ΣC=c b·l b+c j·l j或ΣC=c b·l b+C jk+C jk+1+…。
计算出每个绝缘管型母线接地段电容电流值后,将每个绝缘管型母线接地段的接地电流测量值与电容电流值进行比对。每个绝缘管型母线接地段的接地电流测量值与电容电流值应基本相等,相差较大时说明绝缘管型母线绝缘状态存在异常,判别方法见步骤250。
步骤250,根据步骤230的比较结果和步骤240的比对结果,诊断绝缘管型母线的绝缘状态并定位缺陷。
(1)基于接地电流数值比对结果的绝缘诊断及缺陷定位
对不同绝缘管型母线接地段的单位长度接地电流值进行比对,如果不同绝缘管型母线接地段的单位长度接地电流值大致相等(例如每一绝缘管型母线接地段的单位长度接地电流与其它绝缘管型母线接地段的差值均小于或等于该绝缘管型母线接地段的单位长度接地电流的10%),则认为所述绝缘管型母线的接地电流指标正常;如果某一绝缘管型母线接地段的单位长度接地电流值与其它绝缘管型母线接地段差异较大(例如某一绝缘管型母线接地段的单位长度接地电流与其它绝缘管型母线接地段的差值大于该绝缘管型母线接地段的单位长度接地电流的10%),则认为该绝缘管型母线接地段为缺陷段或故障段。
对于厂家资料齐全的绝缘管型母线,需要更为精确判断设备绝缘状态时,可开展绝缘管型母线接地段的接地电流测量值与该绝缘管型母线接地段的电容电流计算值比对。如果每一绝缘管型母线接地段的接地电流测量值与电容电流计算值的偏差均很小(例如接地电流与电容电流值的差值小于或等于电容电流值的3%),则认为所述绝缘管型母线的接地电流指标正常,如果该绝缘管型母线接地段的接地电流测量值与电容电流计算值偏差较大(例如接地电流与电容电流值的差值大于电容电流值的3%),则该绝缘管型母线接地段为缺陷段或故障段。
(2)基于接地电流数值比对结果的绝缘异常原因初步分析
上述比对中,如果缺陷段或故障段的接地电流测量值偏大,例如大于预设值,则设备存在绝缘劣化,或中间接头内部或端部沿面存在放电等情况。
步骤260,绝缘诊断及缺陷定位结束,拆试验接线。
为验证本方法的合理性和有效性而开展的模拟试验中,取3段某厂生产的规格为10kV/2500A绝缘管型母线模拟加压试验,每段长度为2.1m,第1段为绝缘状态完好样品,第2段为内部模拟内部缺陷导致电容屏的样品,第3段为模拟端部外绝缘脏污(较严重)并淋水样品。按照图3所示加压方式,施加10kV,50Hz交流电压。测得3段绝缘管型母线接地电流分别为:5.54mA,7.21mA,8.58mA。分析可得:
(1)3段绝缘管型母线单位长度接地电流值2.64mA/m,3.43mA/m,4.10mA/m,第2段和第3段绝缘管型母线的单位长度接地电流值分别比第1段大30%和55%。说明步骤230的比较判别方式有效。
(2)3段绝缘管型母线电容电流计算值相同(结构、材料相同),均为5.50mA,第1段、第2段和第3段绝缘管型母线的接地电流值分别比起电容电流计算值大1%,31%,56%。说明步骤240的比较判别方式有效。
同种结构、挂网运行的绝缘管型母线,绝缘状态良好时,停电进行本申请提供的所述测量,加压10kV时,多段绝缘管型母线接地段的单位长度接地电流均接近2.63mA/m,不同段单位长度接地电流相差不超过10%。进一步说明了本申请所述的判别方式有效。

Claims (7)

  1. [根据细则91更正 16.07.2020]
    一种绝缘管型母线绝缘诊断和缺陷定位方法,包括:
    断开绝缘管型母线的第一端与其它设备的连接以及所述绝缘管型母线的第二端与其它设备的连接,保持所述绝缘管型母线的线路接地线与接地极的连接,在所述绝缘管型母线的导体部分和接地极之间施加试验电压;
    记录测量所述绝缘管型母线的多段绝缘管型母线接地段的接地电流时的所述试验电压及试验频率;
    根据所述地屏短接线识别所述多段绝缘管型母线接地段,记录每个绝缘管型母线接地段内包含的中间接头的数量、编号和长度;
    测量每个绝缘管型母线接地段的长度和所述试验电压下每个绝缘管型母线接地段的接地电流,计算每个绝缘管型母线接地段的单位长度接地电流;
    在不同绝缘管型母线接地段施加的试验电压和试验频率一致且结构相同的情况下,对不同绝缘管型母线接地段的单位长度接地电流进行比较;
    查阅厂家经验数据,所述厂家经验数据包括绝缘管型母线本体的单位长度电容量c b,以及中间接头的单位长度电容量c j或每个中间接头电容量的出厂试验数据:每个绝缘管型母线接地段内包含的编号为k,k+1,…,k+n的中间接头的电容量分别是C jk,C jk+1,…C jk+n;通过如下公式计算每个绝缘管型母线接地段的电容电流值:I C=U t ·(2πf·ΣC),其中,ΣC=c b·l b+c j·l j或ΣC=c b·l b+C jk+C jk+1+…+C jk+n;其中,U t为所述试验电压,f为所述试验频率,l b为所述每个绝缘管型母线接地段内包含的绝缘管型母线本体总长度,l j为所述每个绝缘管型母线接地段内包含的绝缘管型母线中间接头总长度,k为正整数,n为非负整数;并将所述每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值进行比对;
    根据不同绝缘管型母线接地段的单位长度接地电流的比较结果和每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的比对结果,诊断绝缘管型母线的绝缘状态并实现缺陷定位。
  2. 如权利要求1所述的方法,其中,所述试验电压的幅值以及所述试验频率在以下要求范围内选择:电压幅值U t不低于5kV,且不高于绝缘管型母线状态检修试验中的耐压试验电压水平;频率范围30Hz~300Hz;试验电压的波形应为正负半轴近似对称的正弦波形。
  3. 如权利要求2所述的方法,其中,在所述绝缘管型母线和接地极之间施加试验电压,包括:在所述绝缘管型母线导体部分和接地极之间施加所述频率范围内固定频率的电压,并将所述电压升压至试验电压。
  4. 如权利要求1所述的方法,其中,所述根据地屏短接线识别绝缘管型母线接地段包括:对于中间接头为屏蔽筒结构的绝缘管型母线,将由地屏短接线连接的绝缘管型母线本体和屏蔽筒确定为一个绝缘管型母线接地段;且在绝缘管型母线本体和屏蔽筒之间无地屏短接线连接的情况下,将所述绝缘管型母线本体和屏蔽筒在中间连接处分段。
  5. 如权利要求1所述的方法,其中,所述根据不同绝缘管型母线接地段的单位长度接地电流的比较结果和每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的比对结果,诊断绝缘管型母线的绝缘状态并实现缺陷定位包括:
    在每个绝缘管型母线接地段的单位长度接地电流与其它绝缘管型母线接地段的差值均小于或等于所述每个绝缘管型母线接地段的单位长度接地电流的10%的情况下,确定所述绝缘管型母线的接地电流指标正常;在一个绝缘管型母线接地段的单位长度接地电流与其它绝缘管型母线接地段的差值大于所述一个绝缘管型母线接地段的单位长度接地电流的10%的情况下,确定所述一个绝缘管型母线接地段为缺陷段或故障段;
    在每个绝缘管型母线接地段的接地电流与所述每个绝缘管型母线接地段的电容电流值的差值均小于或等于所述每个绝缘管型母线接地段的电容电流值的3%的情况下,确定所述绝缘管型母线的电流指标正常;在一个绝缘管型母线接地段的接地电流与所述一个绝缘管型母线接地段的电容电流值的差值大于3%的情况下,确认所述一个绝缘管型母线接地段为缺陷段或故障段。
    在所述缺陷段或故障段的接地电流值大于预设值的情况下,确定绝缘管型母线存在绝缘劣化,或所述缺陷段或故障段的中间接头内部或端部沿面存在放电情况。
  6. 一种电子设备,包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1-5任一项所述的方法。
  7. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-5任一项所述的方法。
PCT/CN2020/070476 2019-07-22 2020-01-06 一种绝缘管型母线绝缘诊断和定位方法 WO2021012639A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/648,114 US10948532B1 (en) 2019-07-22 2020-01-06 Insulation diagnosis and positioning method for insulated bus pipe
EP20711768.0A EP3798650B1 (en) 2019-07-22 2020-01-06 Insulation diagnosis and locating method for insulated tube-type bus bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910662147.X 2019-07-22
CN201910662147.XA CN110412418B (zh) 2019-07-22 2019-07-22 基于接地电流测量的绝缘管型母线绝缘诊断和定位方法

Publications (1)

Publication Number Publication Date
WO2021012639A1 true WO2021012639A1 (zh) 2021-01-28

Family

ID=68362386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070476 WO2021012639A1 (zh) 2019-07-22 2020-01-06 一种绝缘管型母线绝缘诊断和定位方法

Country Status (4)

Country Link
US (1) US10948532B1 (zh)
EP (1) EP3798650B1 (zh)
CN (1) CN110412418B (zh)
WO (1) WO2021012639A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675302B1 (en) * 2018-12-27 2021-04-14 Vito NV A method and device for monitoring insulation between a dc bus and protective earth
CN110412418B (zh) * 2019-07-22 2020-07-31 国网湖北省电力有限公司电力科学研究院 基于接地电流测量的绝缘管型母线绝缘诊断和定位方法
CN114089126A (zh) * 2021-09-28 2022-02-25 国网浙江省电力有限公司绍兴供电公司 用于电网下方埋地管道安全评估的土壤击穿场强试验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127860A (ja) * 2008-11-28 2010-06-10 Patokkusu Japan Kk 漏洩電流測定装置及び測定方法
CN102680854A (zh) * 2012-05-08 2012-09-19 山东康威通信技术股份有限公司 一种电力电缆隐性故障及接头工艺缺陷在线监测方法
CN103217613A (zh) * 2013-03-23 2013-07-24 李景禄 输配电线路故障性质判别及故障状态跟踪检测方法
CN108152662A (zh) * 2017-11-24 2018-06-12 国网浙江省电力公司台州供电公司 一种基于接地电流的交叉互联箱故障诊断方法及系统
CN108594097A (zh) * 2018-05-02 2018-09-28 国网福建省电力有限公司莆田供电公司 一种通过金属护套环流判断中高压电缆绝缘状态的方法
CN110412418A (zh) * 2019-07-22 2019-11-05 国网湖北省电力有限公司电力科学研究院 基于接地电流测量的绝缘管型母线绝缘诊断和定位方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300767B1 (en) * 1998-11-30 2001-10-09 General Electric Company System and apparatus for predicting failure in insulated systems
CN1702780A (zh) * 2005-06-13 2005-11-30 罗志昭 新型绝缘母线
JP4504904B2 (ja) * 2005-10-31 2010-07-14 アスモ株式会社 コードスイッチ及びこれを用いた検知装置
CN201229389Y (zh) * 2008-07-24 2009-04-29 福建省泉州电业局 电缆护层绝缘在线监测装置
CN101793936A (zh) * 2010-02-11 2010-08-04 河南省电力公司商丘供电公司 电容式套管绝缘状态在线监测方法
WO2012130816A1 (en) * 2011-03-25 2012-10-04 Eandis High voltage measurement systems
CN202661585U (zh) * 2012-05-09 2013-01-09 广东电网公司佛山供电局 一种绝缘铜管母线的绝缘状态测试系统
EP2796886B1 (de) * 2013-04-23 2017-09-06 Technische Universität Graz Schaltungsanordnung zum Lokalisieren von Isolationsfehlern
CN103592563A (zh) * 2013-11-22 2014-02-19 国家电网公司 直流系统绝缘在线监测装置
FR3015040B1 (fr) * 2013-12-16 2016-01-08 Continental Automotive France Dispositif de detection en continu de rupture d'isolement electrique d'un cable haute tension et procede de detection associe
TWI539169B (zh) * 2014-04-08 2016-06-21 Univ Kao Yuan High Sensitivity Non - grounded DC Power Supply Insulation Resistance Detection Method and Its Circuit
JP6433305B2 (ja) * 2014-04-09 2018-12-05 矢崎総業株式会社 非接地電源の絶縁検出装置及び絶縁検出方法
CN104483571B (zh) * 2014-12-17 2017-11-10 安徽泰瑞通达机电设备有限公司 电缆绝缘检测方法
CN104535894B (zh) * 2015-01-08 2017-07-07 国家电网公司 双母线运行方式下的小电流接地故障选线方法及装置
CN204855722U (zh) * 2015-07-27 2015-12-09 国网天津市电力公司 一种10kV绝缘管型母线局部放电检测系统
CN205120882U (zh) * 2015-08-28 2016-03-30 西安神电高压电器有限公司 一种管型母线监测装置
CN205157649U (zh) * 2015-10-27 2016-04-13 镇江华东电力设备制造厂有限公司 应用于封闭绝缘管型母线上的监测系统
KR102544778B1 (ko) * 2016-06-16 2023-06-19 삼성전자주식회사 누설 전류를 검출하기 위한 방법 및 이를 지원하는 전자 장치
CN106249112A (zh) * 2016-08-04 2016-12-21 国网天津市电力公司 10kV绝缘管型母线中间接头局部放电检测系统
CN206533138U (zh) * 2017-03-10 2017-09-29 湖北三宁化工股份有限公司 一种限制10kV配电系统对地电容电流的装置
CN107121623A (zh) * 2017-04-19 2017-09-01 天津市电力科技发展有限公司 一种绝缘管型母线局部放电监测系统
CN207301251U (zh) * 2017-10-19 2018-05-01 桂林师范高等专科学校 变压器绝缘性检测装置
CN109444644B (zh) * 2018-12-21 2020-12-29 南京国电南自电网自动化有限公司 基于暂态量差动的配电网单相接地故障选线方法
CN109633357B (zh) * 2019-01-10 2021-06-18 许继电源有限公司 三母线中多母线接地绝缘监测方法和监测装置
CN109884467B (zh) * 2019-03-04 2020-06-02 国网湖北省电力有限公司电力科学研究院 一种用于绝缘管型母线绝缘故障定位的装置及方法
CN109738770A (zh) * 2019-03-05 2019-05-10 四川艾德瑞电气有限公司 一种一体化绝缘管型母线连接头监测系统
CN109917230B (zh) * 2019-04-08 2020-09-01 重庆大学 中性点含电阻接地配电网接地故障监测保护一体化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127860A (ja) * 2008-11-28 2010-06-10 Patokkusu Japan Kk 漏洩電流測定装置及び測定方法
CN102680854A (zh) * 2012-05-08 2012-09-19 山东康威通信技术股份有限公司 一种电力电缆隐性故障及接头工艺缺陷在线监测方法
CN103217613A (zh) * 2013-03-23 2013-07-24 李景禄 输配电线路故障性质判别及故障状态跟踪检测方法
CN108152662A (zh) * 2017-11-24 2018-06-12 国网浙江省电力公司台州供电公司 一种基于接地电流的交叉互联箱故障诊断方法及系统
CN108594097A (zh) * 2018-05-02 2018-09-28 国网福建省电力有限公司莆田供电公司 一种通过金属护套环流判断中高压电缆绝缘状态的方法
CN110412418A (zh) * 2019-07-22 2019-11-05 国网湖北省电力有限公司电力科学研究院 基于接地电流测量的绝缘管型母线绝缘诊断和定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3798650A4

Also Published As

Publication number Publication date
EP3798650B1 (en) 2024-08-07
EP3798650A1 (en) 2021-03-31
CN110412418B (zh) 2020-07-31
CN110412418A (zh) 2019-11-05
US10948532B1 (en) 2021-03-16
US20210055339A1 (en) 2021-02-25
EP3798650A4 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2021012639A1 (zh) 一种绝缘管型母线绝缘诊断和定位方法
JP5349036B2 (ja) 絶縁診断システム
CN109917235B (zh) 一种电缆缓冲层导电性能缺陷检测方法
CN107991584A (zh) 一种基于极化/去极化电流的变压器电容式套管绝缘老化测试方法
CN102095954A (zh) 电容式电压互感器不拆引线预防性试验方法
AU2017279740A1 (en) A method of determining a characteristic of a power transformer and a system therefor
JPS61243375A (ja) 電力ケ−ブルの絶縁体劣化診断法
JP6336164B2 (ja) 電力ケーブル診断装置および該方法
CN101290339B (zh) 一种高压电缆故障点检测方法及其装置
JP2016042046A (ja) 誘電正接測定装置および該方法ならびに電力ケーブル診断装置および該方法
Rahimpour et al. The application of sweep frequency response analysis for the online monitoring of power transformers
CN109782070A (zh) 一种pt测试短路阻抗的方法
CN106771843B (zh) 一种单芯电力电缆的故障行波测距方法
CN202649391U (zh) 电缆缺陷模拟试验系统
Abu-Siada et al. Impact of transformer model parameters variation on FRA signature
Ushakov et al. Diagnostics of High-Voltage Cable Lines
CN106556745B (zh) 一种直流分压器及其电容量和介质损耗检测方法
CN110426616A (zh) 一种基于法兰盘螺栓的gis局部放电检测装置和方法
CN108181513A (zh) 一种基于异频法的避雷器相间耦合电容测试方法及系统
CN103454536A (zh) 一种电力变压器试验方法
CN206876812U (zh) 气体绝缘开关中支撑绝缘子局部放电检测装置
JPH07294588A (ja) ケーブル絶縁不良区間の活線下識別方法
Abu-Siada et al. Image processing-based on-line technique to detect power transformer winding faults
CN110672003A (zh) 一种利用扫频阻抗法检测变压器绕组变形的方法
CN110794344B (zh) 一种剔除套管影响的变压器绕组变形的频率响应试验方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020711768

Country of ref document: EP

Effective date: 20200326

ENP Entry into the national phase

Ref document number: 2020711768

Country of ref document: EP

Effective date: 20201027

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20711768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE