WO2021012409A1 - 一种基于配电台区的配电补偿一体化装置及配电台区 - Google Patents

一种基于配电台区的配电补偿一体化装置及配电台区 Download PDF

Info

Publication number
WO2021012409A1
WO2021012409A1 PCT/CN2019/110788 CN2019110788W WO2021012409A1 WO 2021012409 A1 WO2021012409 A1 WO 2021012409A1 CN 2019110788 W CN2019110788 W CN 2019110788W WO 2021012409 A1 WO2021012409 A1 WO 2021012409A1
Authority
WO
WIPO (PCT)
Prior art keywords
power distribution
area
power
load
controller
Prior art date
Application number
PCT/CN2019/110788
Other languages
English (en)
French (fr)
Inventor
于浩然
甘江华
马骏
高鹏
李新元
程兴邦
刘超
曹智慧
吕海超
化楠
詹金果
Original Assignee
许继电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继电源有限公司 filed Critical 许继电源有限公司
Publication of WO2021012409A1 publication Critical patent/WO2021012409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • H02B1/202Cable lay-outs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Definitions

  • the invention belongs to the technical field of power grid equipment, and specifically relates to a distribution compensation integrated device based on a distribution station area and a distribution station area.
  • Distribution station area generally refers to a transformer and its power supply range or area in the power system.
  • the distribution station area generally includes a transformer and an integrated power distribution compensation device.
  • the integrated transformer and power distribution compensation device can realize electric energy distribution, continue to provide electricity to users, and ensure the normal use of electricity in an area.
  • the Chinese utility model patent with the authorized announcement number CN206041292U discloses a pillar-mounted integrated intelligent distribution station area, which includes transformers and low-voltage distribution boxes (ie, distribution compensation Integrated device), the low-voltage distribution box includes multiple modules/units such as reactive power compensation unit, incoming line unit, multiple outgoing line units, electric energy metering unit, voltage/current monitoring module.
  • the low-voltage distribution box includes multiple modules/units such as reactive power compensation unit, incoming line unit, multiple outgoing line units, electric energy metering unit, voltage/current monitoring module.
  • various provinces and autonomous regions have implemented the transformation of rural power grids and old urban areas.
  • the transformation projects mainly include the upgrade of the power distribution part and the installation of three-phase imbalance control units. This is undoubtedly The type and quantity of equipment in the integrated power distribution compensation device in the distribution station area have been increased.
  • the present invention provides a power distribution compensation integrated device based on a power distribution station area and a power distribution station area to solve the problem that the power distribution compensation integrated device in the power distribution station area in the prior art is caused by irregular equipment layout The problem of inconvenient maintenance.
  • An integrated power distribution compensation device based on a power distribution station area of the present invention includes a housing.
  • the inside of the housing is divided into four areas, namely: incoming line area, load outgoing line area, power management area, and energy management Area;
  • the inlet area is provided with an inlet switch for connecting with the secondary side of the transformer;
  • the load outlet area is provided with an outlet switch for connecting with the corresponding load in the station area to supply power to the load;
  • the The power management area is provided with power quality adjustment equipment, which includes a three-phase unbalance treatment unit, a harmonic treatment unit, and a reactive power compensation unit;
  • the energy management area is provided with a data acquisition module and a controller;
  • the data acquisition module includes a current sensor and a voltage sensor arranged on the incoming line where the incoming switch is located, and each outgoing branch where the outgoing switch is located;
  • the controller is connected to the data acquisition module for sampling and control to connect to the power quality adjustment
  • the equipment, incoming switch and outgoing switch also have
  • a power distribution station area of the present invention includes a transformer and a power distribution compensation integrated device based on the power distribution station area.
  • the power distribution compensation integrated device based on the power distribution station area includes a casing, and the inside of the casing is divided There are four areas, namely: incoming line area, load outgoing area, electric energy management area and energy management area; the incoming line switch is provided in the incoming line area, which is connected to the secondary side of the transformer; the load outgoing area is set up There is an outlet switch, which is used to connect to the corresponding load in the station area to supply power to the load; a power quality adjustment device is provided in the power management area, and the power quality adjustment device includes a three-phase unbalance treatment unit, a harmonic treatment unit and Reactive power compensation unit; the energy management area is provided with a data acquisition module and a controller; the data acquisition module includes current sensors and voltage sensors arranged on the incoming line where the incoming switch is located, and the outlet branch where the outgoing switch is located The controller samples and connects to the data
  • the distribution compensation integrated device based on the distribution station area and the distribution station area of the present invention perform electrical layout according to the function of each device/module inside the distribution compensation integrated device based on the distribution station area Installation, the inside of the device is divided into four areas, namely the incoming line area, the load outgoing area, the electric energy management area and the energy management area, so that the overall division and structure of the integrated power distribution compensation device based on the distribution station area are clear and convenient
  • the staff use and operate, it is convenient to find the problem when there is a problem or failure in the distribution station area, which is conducive to later maintenance.
  • the data acquisition module further includes an electric energy metering unit arranged on each branch of the outgoing line.
  • an Ethernet or GPRS communication method is adopted between the controller and the master station.
  • the wireless communication mode is LoRa communication mode.
  • an Ethernet or GPRS communication method is adopted between the controller and the master station.
  • HPLC or LoRa communication methods are used between the controller and the power quality adjustment equipment, and between the controller and each load. .
  • Figure 1 is a schematic diagram of the electrical connection of the distribution station area of the present invention.
  • FIG. 2 is a schematic diagram of the division of the integrated power distribution compensation device of the present invention.
  • FIG. 3 is a schematic diagram of the connection between the data acquisition module and the controller of the present invention.
  • Figure 4 is a schematic diagram of the connection between the controller and the load of the present invention.
  • Figure 5 is a schematic diagram of the connection between the controller and the master station of the present invention.
  • Figure 6-1 is a schematic diagram of one of the installation methods of the distribution station area of the present invention.
  • Figure 6-2 is a schematic diagram of another installation method of the distribution station area of the present invention.
  • This embodiment provides a power distribution station area.
  • the electrical connection diagram of the power distribution station area is shown in Figure 1.
  • the power distribution station area includes transformers, incoming switches, outgoing switches, power quality adjustment equipment (including SVG), etc. . All equipment other than the transformer is installed in the integrated power distribution compensation device based on the distribution station area.
  • the integrated power distribution compensation device (hereinafter referred to as the integrated power distribution compensation device) based on the power distribution station area includes a casing, and each device is arranged inside the casing. According to the main functions of its internal equipment, the inside of the shell is divided into four areas, as shown in Figure 2, which are the incoming line area, load outgoing area, power management area, and energy management area.
  • the front, back, left, and right directions shown in the figure are the front, back, left, and right directions of the staff when they face the integrated power distribution compensation device.
  • the incoming line switch is arranged in the incoming line area, and the incoming line switch is arranged on the incoming line for connection with the secondary side of the transformer.
  • Outgoing switches are arranged in the load outgoing area.
  • the outgoing switches include multiple outgoing branch switches. Each outgoing branch switch is arranged on the corresponding outgoing branch.
  • the outgoing branch switch is connected to the branch in the platform to supply power to the corresponding load.
  • the incoming line area and load outgoing line area mainly meet the power distribution function of the station area.
  • Power quality adjustment equipment is deployed in the power treatment area.
  • the power quality adjustment equipment includes SVG (reactive power compensation unit), three-phase unbalance treatment unit, harmonic treatment unit, etc., which are used to control the power factor in the station area with low power factor and three-phase Balance and harmonic control to improve power quality.
  • SVG reactive power compensation unit
  • three-phase unbalance treatment unit three-phase unbalance treatment unit
  • harmonic treatment unit etc.
  • Data collection modules and controllers are deployed in the energy management area. As shown in Figure 3, based on the ubiquitous Internet of Things technology, the data collection modules and controllers are connected in a wired or wireless manner to realize system energy analysis and equipment control.
  • the data acquisition device includes a voltage sensor and a current sensor arranged on the incoming line, a voltage sensor and a current sensor on each outgoing branch, and an electric energy metering unit arranged on each outgoing branch to collect the voltage, current and Power and other information, and send the collected information to the controller.
  • the controller can analyze and calculate according to the information collected by the data acquisition device, and obtain the system power, power factor, active power, reactive power, three-phase voltage unbalance, voltage qualification rate statistics, station variable load rate, voltage deviation, Information such as frequency deviation. These data can be uploaded to the master station as required by the staff for data reference.
  • controller is also connected to the incoming switch and the outgoing switch through wired or wireless communication, and also connected to power quality adjustment equipment to control the operation of the power quality adjustment equipment according to the analysis and calculation results, improve power quality, improve system efficiency, and reduce system losses .
  • the controller also has a communication interface for data interaction with loads (including charging piles, energy storage, photovoltaics, etc.). As shown in Figure 4, the controller can read the power information and operating status of the above loads. , The information obtained by the controller or the information obtained by calculation and analysis is summarized and sent to the main station through the cloud platform in the optical fiber or GPRS mode, as shown in Figure 5.
  • HPLC high-speed carrier communication technology
  • the wireless communication method between the controller and the equipment in the station can adopt the LoRa communication method.
  • LoRa is a kind of LPWAN communication technology, it is a kind of ultra long-distance wireless transmission scheme based on spread spectrum technology adopted and promoted by American Semtech company. This solution changes the previous compromise between transmission distance and power consumption, and provides users with a simple system that can achieve long-distance, long battery life, and large capacity, and expand the sensor network with a maximum power of 1W , The farthest communication distance can reach about 10km, which fully meets the actual application of the station. Of course, other existing mature wireless communication methods can also be used.
  • the Ethernet/GPRS communication method is supported between the controller and the master station.
  • the GPRS communication mode supports 2G/3G/4G mode, which is connected to the cloud platform through GPRS wireless networking technology to transmit information to the main station.
  • the integrated power distribution compensation device is an integrated device.
  • the installation and wiring of internal electrical components have been completed before leaving the factory. Therefore, when the equipment is shipped to the site for wiring operations, only the incoming line of the transformer secondary side and the outgoing line of the load connection need to be connected. OK.
  • the installation environment can be shown in Figure 6-1 or 6-2, which is H pole installation.
  • This embodiment provides a power distribution compensation integrated device based on the power distribution station area, which has been described in detail in the power distribution station area embodiment, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种基于配电台区的配电补偿一体化装置及配电台区,基于配电台区的配电补偿一体化装置包括壳体,该壳体内部划分为四个区域:进线区、负荷出线区、电能治理区和能量管理区;进线区中设置有进线开关;负荷出线区中设置有出线开关;电能治理区中设置有电能质量调节设备;能量管理区中设置有数据采集模块与控制器。该基于配电台区的配电补偿一体化装置内部整体分区和结构清晰,在配电台区出现问题或故障时便于查找问题所在,利于后期维护。

Description

一种基于配电台区的配电补偿一体化装置及配电台区 技术领域
本发明属于电网设备技术领域,具体涉及一种基于配电台区的配电补偿一体化装置及配电台区。
背景技术
配电台区,一般指电力系统中一台变压器及其供电范围或区域。配电台区内一般包括变压器和配电补偿一体化装置,变压器和配电补偿一体化装置能够实现电能分配,持续提供电给用户,保证一个区域的正常用电。
例如,授权公告号为CN206041292U的中国实用新型专利公开了一种柱上式一体化智能配电台区,该柱上式一体化智能配电台区包括变压器和低压配电箱(即配电补偿一体化装置),低压配电箱包括无功补偿单元、进线单元、多个出线单元、电能计量单元、电压/电流监测模块等多个模块/单元。而且,各个省区为响应节能减排、低碳环保的号召,对农网及老城区实施了台区改造,改造项目主要包括配电部分的升级及加装三相不平衡治理单元,这无疑增加了配电台区的配电补偿一体化装置中的设备的种类和数量。
由于设备数量较多,安装分散、凌乱,布置无规则,随意布置,在配电台区出现问题或故障时不便于查找问题所在,不便于维护。
发明内容
本发明提供了一种基于配电台区的配电补偿一体化装置及配电台区,用以解决现有技术中的配电台区中的配电补偿一体化装置由于设备布置无规则造成的不便于维护的问题。
为解决上述技术问题,本发明的技术方案和有益效果为:
本发明的一种基于配电台区的配电补偿一体化装置,包括壳体,所述壳体内部划分为四个区域,分别为:进线区、负荷出线区、电能治理区和能量管理区;所述进线区中设置有进线开关,用于与变压器二次侧相连;所述负荷出线区中设置有出线开关,用于与台区内对应的负载相连以为负载供电;所述电能治理区中设置有电能质量调节设备,所述电能质量调节设备包括三相不平衡治理单元、谐波治理单元 和无功补偿单元;所述能量管理区中设置有数据采集模块与控制器;所述数据采集模块包括设置在进线开关所在进线线路上、出线开关所在各出线支路上的电流传感器和电压传感器;所述控制器采样连接所述数据采集模块,控制连接所述电能质量调节设备、进线开关和出线开关,还具有用于与各个负载、主站进行数据交互的通信接口。
本发明的一种配电台区,包括变压器和基于配电台区的配电补偿一体化装置,所述基于配电台区的配电补偿一体化装置包括壳体,所述壳体内部划分为四个区域,分别为:进线区、负荷出线区、电能治理区和能量管理区;所述进线区中设置有进线开关,与变压器二次侧相连;所述负荷出线区中设置有出线开关,用于与台区内对应的负载相连以为负载供电;所述电能治理区中设置有电能质量调节设备,所述电能质量调节设备包括三相不平衡治理单元、谐波治理单元和无功补偿单元;所述能量管理区中设置有数据采集模块与控制器;所述数据采集模块包括设置在进线开关所在进线线路上、出线开关所在各出线支路上的电流传感器和电压传感器;所述控制器采样连接所述数据采集模块,控制连接所述电能质量调节设备、进线开关和出线开关,还具有用于与各个负载、主站进行数据交互的通信接口。
其有益效果:本发明的基于配电台区的配电补偿一体化装置及配电台区,在基于配电台区的配电补偿一体化装置内部按照各个设备/模块的功能来进行电气布局安装,装置内部划分为四个区域,分别为进线区、负荷出线区、电能治理区和能量管理区,使该基于配电台区的配电补偿一体化装置内部整体分区和结构清晰,方便工作人员使用操作,在配电台区出现问题或故障时便于查找问题所在,利于后期维护。
作为装置及台区的进一步改进,为了采集电能数据以提高电能质量,所述数据采集模块还包括设置在各出线支路上的电能计量单元。
作为装置及台区的进一步改进,为了可靠实现控制器与主站之间的通信,所述控制器与主站之间采用以太网或GPRS通信方式。
作为装置的进一步改进,为了可靠实现控制器与电能质量调节设备、负载之间的通信,所述控制器与电能质量调节设备之间、控制器与各个负载之间均采用有线通信方式或者无线通信方式。
作为装置的进一步改进,所述无线通信方式为LoRa通信方式。
作为装置的进一步改进,所述控制器与主站之间采用以太网或GPRS通信方式。
作为台区的进一步改进,为了可靠实现控制器与电能质量调节设备、负载之间的通信,所述控制器与电能质量调节设备之间、控制器与各个负载之间均采用HPLC或LoRa通信方式。
附图说明
图1是本发明的配电台区的电气连接示意图;
图2是本发明的配电补偿一体化装置的分区示意图;
图3是本发明的数据采集模块与控制器连接示意图;
图4是本发明的控制器与负载连接示意图;
图5是本发明的控制器与主站连接示意图;
图6-1是本发明的配电台区的其中一种安装方式示意图;
图6-2是本发明的配电台区的另一种安装方式示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚,下面结合附图及实施例,对本发明作进一步的详细说明。
配电台区实施例:
该实施例提供了一种配电台区,该配电台区的电气连接示意图如图1所示,配电台区包括变压器、进线开关、出线开关和电能质量调节设备(包括SVG)等。将除了变压器以外的其他设备均设置在基于配电台区的配电补偿一体化装置中。
基于配电台区的配电补偿一体化装置(下简称配电补偿一体化装置)包括壳体,将各个设备布设在壳体内部。依据其内部设备的主要功能将壳体内部划分四个区域,如图2所示,分别为进线区、负荷出线区、电能治理区和能量管理区。图中所示的前、后、左、右方向为工作人员面向配电补偿一体化装置时工作人员的前、后、左、右方向。
进线区内布设有进线开关,进线开关设置在进线线路上,用于与变压器二次侧相连。负荷出线区内布设有出线开关,出线开关包括多个出线分支开关,各出线分支开关设置在对应的出线支路上,出线分支开关与台区支路相连,为对应的负载供电。进线区和负荷出线区主要满足台区配电功能。
电能治理区内布设有电能质量调节设备,电能质量调节设备包括SVG(无功补 偿单元)、三相不平衡治理单元、谐波治理单元等,用于对台区内功率因数低、三相不平衡、谐波进行治理以提高电能质量。
能量管理区内布设有数据采集模块与控制器,如图3所示,基于泛在物联网技术,数据采集模块与控制器之间通过有线或者无线的方式连接,实现了系统能量分析与设备控制功能。数据采集装置包括设置在进线线路上的电压传感器和电流传感器、各出线支路上的电压传感器和电流传感器、以及设置在各出线支路上的电能计量单元,用于采集台区内电压、电流和电量等信息,并将采集的信息发送给控制器。
控制器可根据数据采集装置采集的信息进行分析计算,得到系统内功率、功率因数、有功电量、无功电量、三相电压不平衡度、电压合格率统计、台区变负载率、电压偏差、频率偏差等信息。这些数据可根据需求上传至主站给工作人员作为数据参考。
而且,控制器还通过有线或无线通信方式连接进线开关和出线开关,还连接电能质量调节设备,以根据分析计算结果控制电能质量调节设备工作,提高电能质量,以提高系统效率,降低系统损耗。
另外,控制器还具有与负载(包括充电桩、储能及光伏等)进行数据交互的通信接口,如图4所示,使控制器能够读取以上各负载的功率信息以及运行状态等,同时,将控制器获取的信息或者计算分析得到的信息汇总以光纤或GPRS方式通过云平台上送至主站,如图5所示。
其中,上述提到的有线通信方式可采用低压电力线高速载波通信技术(HPLC),该通信技术为系统提供了基础支撑,利用HPLC通信技术的频带宽、速率快等优点,通过其并发抄读机制(AFN=F1,F1并发抄读方式)可实现电压、电流、电量的15min冻结数据采集,或者电压、电流、电量15min实时数据采集。15min冻结数据取电表的电压、电流、电量负荷曲线(负荷记录)。考虑到电表(电能计量单元)定义负荷记录为15min,如要实行进一步的分钟级召测,需对实时数据进行召测。如台区环境良好,理论上可以达到每分钟的单点数据召测。当然,还可采用现有的其他成熟的有线通信方式。
控制器与台区内设备之间的无线通信方式可采用LoRa通信方式。LoRa是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。这一方案改变了以往关于传输距离与功耗的折衷考虑方式, 为用户提供一种简单的能实现远距离、长电池寿命、大容量的系统,进而扩展传感网络,其最大功率可达1W,最远通讯距离可达10km左右,完全满足台区的实际应用。当然,还可采用现有的其他成熟的无线通信方式。
控制器与主站之间支持以太网/GPRS通信方式。其中,GPRS通信方式支持2G/3G/4G方式,通过GPRS无线组网技术与云平台对接,将信息传输至主站。
而且,该配电补偿一体化装置为一体式装置,出厂前内部电器元件安装与接线已完成,因此设备运至现场进行接线操作时,仅需连接变压器二次侧的进线以及负荷连接的出线即可。所安装的环境可如图6-1或6-2所示,为H杆安装。
基于配电台区的配电补偿一体化装置实施例:
该实施例提供了一种基于配电台区的配电补偿一体化装置,该装置已在配电台区实施例中做了详细介绍,这里不再赘述。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种基于配电台区的配电补偿一体化装置,包括壳体,其特征在于,所述壳体内部划分为四个区域,分别为:进线区、负荷出线区、电能治理区和能量管理区;
    所述进线区中设置有进线开关,用于与变压器二次侧相连;
    所述负荷出线区中设置有出线开关,用于与台区内对应的负载相连以为负载供电;
    所述电能治理区中设置有电能质量调节设备,所述电能质量调节设备包括三相不平衡治理单元、谐波治理单元和无功补偿单元;
    所述能量管理区中设置有数据采集模块与控制器;所述数据采集模块包括设置在进线开关所在进线线路上、出线开关所在各出线支路上的电流传感器和电压传感器;所述控制器采样连接所述数据采集模块,控制连接所述电能质量调节设备、进线开关和出线开关,还具有用于与各个负载、主站进行数据交互的通信接口。
  2. 根据权利要求1所述的基于配电台区的配电补偿一体化装置,其特征在于,所述数据采集模块还包括设置在各出线支路上的电能计量单元。
  3. 根据权利要求1或2所述的基于配电台区的配电补偿一体化装置,其特征在于,所述控制器与电能质量调节设备之间、控制器与各个负载之间均采用有线通信方式或者无线通信方式。
  4. 根据权利要求3所述的基于配电台区的配电补偿一体化装置,其特征在于,所述有线通信方式为HPLC通信方式。
  5. 根据权利要求3所述的基于配电台区的配电补偿一体化装置,其特征在于,所述无线通信方式为LoRa通信方式。
  6. 根据权利要求1或2所述的基于配电台区的配电补偿一体化装置,其特征在于,所述控制器与主站之间采用以太网或GPRS通信方式。
  7. 一种配电台区,包括变压器和配电补偿一体化装置,所述配电补偿一体化装置包括壳体,其特征在于,所述壳体内部划分为四个区域,分别为:进线区、负荷出线区、电能治理区和能量管理区;
    所述进线区中设置有进线开关,与变压器二次侧相连;
    所述负荷出线区中设置有出线开关,用于与台区内对应的负载相连以为负载供 电;
    所述电能治理区中设置有电能质量调节设备,所述电能质量调节设备包括三相不平衡治理单元、谐波治理单元和无功补偿单元;
    所述能量管理区中设置有数据采集模块与控制器;所述数据采集模块包括设置在进线开关所在进线线路上、出线开关所在各出线支路上的电流传感器和电压传感器;所述控制器采样连接所述数据采集模块,控制连接所述电能质量调节设备、进线开关和出线开关,还具有用于与各个负载、主站进行数据交互的通信接口。
  8. 根据权利要求7所述的配电台区,其特征在于,所述数据采集模块还包括设置在各出线支路上的电能计量单元。
  9. 根据权利要求7或8所述的配电台区,其特征在于,所述控制器与电能质量调节设备之间、控制器与各个负载之间均采用HPLC或LoRa通信方式。
  10. 根据权利要求7或8所述的配电台区,其特征在于,所述控制器与主站之间采用以太网或GPRS通信方式。
PCT/CN2019/110788 2019-07-19 2019-10-12 一种基于配电台区的配电补偿一体化装置及配电台区 WO2021012409A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910655918.2A CN110492492A (zh) 2019-07-19 2019-07-19 一种基于配电台区的配电补偿一体化装置及配电台区
CN201910655918.2 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021012409A1 true WO2021012409A1 (zh) 2021-01-28

Family

ID=68547588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110788 WO2021012409A1 (zh) 2019-07-19 2019-10-12 一种基于配电台区的配电补偿一体化装置及配电台区

Country Status (2)

Country Link
CN (1) CN110492492A (zh)
WO (1) WO2021012409A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003058261A (ja) * 1997-07-23 2003-02-28 Matsushita Electric Ind Co Ltd 静止形無効電力補償装置
CN103618381A (zh) * 2013-11-13 2014-03-05 国家电网公司 保护测控一体化综合配电箱
CN206226125U (zh) * 2016-12-14 2017-06-06 广州供电局有限公司 具有二维码巡检功能的配电监测终端
CN107453244A (zh) * 2017-09-29 2017-12-08 大成电气有限公司 一种三合一配电箱
CN109888787A (zh) * 2018-12-30 2019-06-14 国网浙江省电力有限公司丽水供电公司 配电网负荷切换降损系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202737589U (zh) * 2012-09-12 2013-02-13 丹东电力设备厂 一种低压智能综合配电箱
CN103501058B (zh) * 2013-10-24 2016-04-06 南京国网电瑞继保科技股份有限公司 基于智能台区的能效管理系统
CN206850445U (zh) * 2017-05-10 2018-01-05 广西云涌科技有限公司 一种低压台区电能质量综合治理配电装置
CN207320836U (zh) * 2017-08-02 2018-05-04 安徽明都电气有限公司 有源智能型综合配电装置
KR101920189B1 (ko) * 2017-09-13 2018-11-21 한국전력공사 패드 변압기 전력 품질 보상 장치
CN207743698U (zh) * 2018-02-07 2018-08-17 山东东鼎电气有限公司 一种智能配电柜
CN208369216U (zh) * 2018-06-16 2019-01-11 国网江西省电力有限公司电力科学研究院 一种一体化有源补偿配电变台成套装置
CN208522473U (zh) * 2018-07-13 2019-02-19 珠海英泰利电力技术有限公司 一种配电台区电能质量治理装置及系统
CN210517797U (zh) * 2019-07-19 2020-05-12 许继电源有限公司 基于配电台区的配电补偿一体化装置及配电台区

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003058261A (ja) * 1997-07-23 2003-02-28 Matsushita Electric Ind Co Ltd 静止形無効電力補償装置
CN103618381A (zh) * 2013-11-13 2014-03-05 国家电网公司 保护测控一体化综合配电箱
CN206226125U (zh) * 2016-12-14 2017-06-06 广州供电局有限公司 具有二维码巡检功能的配电监测终端
CN107453244A (zh) * 2017-09-29 2017-12-08 大成电气有限公司 一种三合一配电箱
CN109888787A (zh) * 2018-12-30 2019-06-14 国网浙江省电力有限公司丽水供电公司 配电网负荷切换降损系统

Also Published As

Publication number Publication date
CN110492492A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN103595136B (zh) 一种微网能量管理系统
CN102611172B (zh) 电动汽车充电设施标准设计
CN201331560Y (zh) 一种配电变压器监测装置
CN103595138A (zh) 一种智能微电网系统
CN202166122U (zh) 热力站节能控制系统
CN105471109A (zh) 面向户用风光互补电站的智能用电管理系统及其管理方法
CN103166311A (zh) 智能配电箱
CN108768296A (zh) 一种光伏组件监控方法
CN104319895B (zh) 一种智能型配电线路监测终端
CN203119559U (zh) 分布式直流电源监控装置
CN207832915U (zh) 一种功率单元模块检测装置
CN109103906A (zh) 一种三相配电系统和三相不平衡补偿装置
CN203164334U (zh) 移动式电能质量分析仪
CN106532766B (zh) 一种分布式光伏发电并网测控装置
CN102931688B (zh) 混合式可再生能源供电装置
CN201754509U (zh) 一种智能低压无功补偿装置
CN111416373A (zh) 一种配变动态增容光储一体化装置
WO2021012409A1 (zh) 一种基于配电台区的配电补偿一体化装置及配电台区
CN210517797U (zh) 基于配电台区的配电补偿一体化装置及配电台区
CN205961018U (zh) 一种风光互补路灯与新能源微电网双向互动供电系统
CN210955469U (zh) 一种新型水气电三表无线自组织抄表控制装置
CN106933116B (zh) 具有matlb接口的微电网仿真调试方法
CN103178619B (zh) 一种实现3g监控的apf、svg控制装置
CN203466629U (zh) 一种城市配电台区自治管控优化供电系统及其监控系统
CN202150738U (zh) 无功补偿装置远程监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938454

Country of ref document: EP

Kind code of ref document: A1