WO2021012392A1 - Energy-storage-type energy recovery and noise reduction device for hybrid electric vehicle - Google Patents

Energy-storage-type energy recovery and noise reduction device for hybrid electric vehicle Download PDF

Info

Publication number
WO2021012392A1
WO2021012392A1 PCT/CN2019/109315 CN2019109315W WO2021012392A1 WO 2021012392 A1 WO2021012392 A1 WO 2021012392A1 CN 2019109315 W CN2019109315 W CN 2019109315W WO 2021012392 A1 WO2021012392 A1 WO 2021012392A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
fins
muffler
energy
Prior art date
Application number
PCT/CN2019/109315
Other languages
French (fr)
Chinese (zh)
Inventor
饶中浩
姜威
赵佳腾
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2021012392A1 publication Critical patent/WO2021012392A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K13/00Arrangement in connection with combustion air intake or gas exhaust of propulsion units
    • B60K13/04Arrangement in connection with combustion air intake or gas exhaust of propulsion units concerning exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/089Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using two or more expansion chambers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of automobile exhaust heat recovery, in particular to an energy storage type hybrid electric automobile energy recovery and noise reduction device.
  • Hybrid electric vehicles use dual power sources of engine and electric motor as the energy source, so that the engine can work in high-efficiency areas to the greatest extent while meeting the power of the entire vehicle. Therefore, compared with traditional vehicles, it greatly reduces fuel consumption and has battery life compared to electric vehicles. It has long characteristics and becomes a reliable transitional product before pure electric vehicle technology matures. However, due to the existence of the engine, there is exhaust heat loss and noise pollution, so it has high development potential in terms of noise control and energy recovery.
  • the purpose of the present invention is to provide an energy recovery and noise reduction device for an energy storage type hybrid electric vehicle.
  • an energy storage hybrid vehicle energy recovery and noise reduction device the device is connected to the automobile exhaust system through a flange, the device includes a heat storage system, a thermoelectric Conversion system, super thermal conductive plate and muffler;
  • the heat storage system includes a heat storage box, a heat storage material, and a heat-conducting fin.
  • the heat storage box is in the shape of a toroidal column, wrapped on the outside of the cylindrical muffler, and is radially fixed to the outer wall of the muffler through a slot.
  • the heat storage material is filled in the heat storage box, the thermally conductive fins are placed in the heat storage material; the thermoelectric conversion system is provided with multiple groups, which are distributed around the heat storage box outside the heat storage box along the muffler axis On the surface, each group of the thermoelectric conversion system includes heat dissipation fins and thermoelectric power generation fins. The number of heat conduction fins and the heat dissipation fins are the same.
  • the fin and the heat dissipation fin are attached, and the other end of the heat dissipation fin is located in the air flow channel for heat dissipation;
  • the muffler is divided into three cavities by two partition walls, the first two cavities are resistive cavities, and the third cavity is resistive
  • the superconducting plate includes a plurality of branch structures distributed around the axis of the muffler, each branch is composed of an evaporation section and a condensing section connected as a whole, and the evaporation sections of the branches are all built into the muffler, It is closely attached to the two partition wall surfaces in the muffler cavity, and the condensation sections of the branches are all built into the heat storage material.
  • the heat storage material is a mid-to-high temperature composite phase change material, specifically paraffin wax, carboxylic acid, molten salt, metal alloy and the like.
  • the materials of the heat conduction fins and the heat dissipation fins are aluminum.
  • the material of the branch is copper.
  • thermoelectric power sheet is connected to a voltage stabilizer through a wire, and the voltage stabilizer is connected to the power supply circuit of the automobile.
  • the present invention has the following beneficial effects:
  • the present invention uses the good heat transfer performance of the superconducting plate and the efficient heat storage performance of the heat storage material to transfer and store the high-grade heat in the muffler in time, and the energy storage material is for thermoelectric power generation
  • the energy storage material is for thermoelectric power generation
  • the electric energy generated by the device is directly connected to the vehicle power battery, which further improves the energy recovery capacity of the vehicle and reduces the load of the engine on the power generation.
  • the device has compact structure, low cost and can be modularized. It is directly connected to the exhaust system through a flange, and has the advantages of convenient maintenance and transformation.
  • This device can select the corresponding super-conducting plate material, super-conducting plate starting temperature, and heat storage material phase change temperature for different vehicle types and different driving conditions to achieve the highest energy recovery efficiency.
  • Figure 1 is an assembly diagram of an energy recovery and noise reduction device for an energy storage hybrid electric vehicle of the present invention
  • Figure 2 is a cross-sectional view of an energy recovery and noise reduction device for an energy storage hybrid electric vehicle of the present invention
  • Figure 3 is a side view of an energy recovery and noise reduction device for an energy storage hybrid electric vehicle of the present invention
  • FIG. 4 is a cross-sectional view of the super-conducting plate in the energy recovery and noise reduction device of an energy storage hybrid electric vehicle of the present invention
  • 1-super thermal conductive plate 2-heat storage material, 3-heat conductive fins, 4-heat dissipation fins, 5-thermoelectric power generation sheet, 6-partition wall, 7-muffler, 8-heat storage box.
  • an energy storage hybrid vehicle energy recovery and noise reduction device of the present invention is connected to the exhaust system of the automobile through a flange, and a high temperature resistant device is provided between the flanges. Corrosion-resistant gaskets.
  • the device includes a heat storage system, a thermoelectric conversion system, a super thermal conductive plate 1 and a muffler 7;
  • the heat storage system includes a heat storage box 8, a heat storage material 2 and a thermally conductive fin 3.
  • the heat storage box 8 is a carrier of the energy storage system, is in the shape of a circular cylinder, and is wrapped on the outside of the cylindrical muffler 7 , Through the card slot and the outer wall of the muffler 7 radially fixed, the heat storage material 2 is filled in the heat storage box 8, the thermally conductive fins 3 are placed in the heat storage material 2; the heat storage material 2 is The medium and high temperature composite phase change materials can be adjusted to different phase change temperatures according to the engine power, which can be paraffin, carboxylic acid, molten salt, metal alloy, etc. There are 2 heat storage systems in total.
  • thermoelectric conversion system is provided with multiple groups, which are distributed around the outer surface of the heat storage box 8 along the axis of the muffler 7, and each group of the thermoelectric conversion system includes a heat dissipation fin 4 and a thermoelectric power generation fin 5.
  • the heat conduction fin The number of fins 3 and the heat dissipation fins 4 are the same, the materials of the heat conduction fins 3 and the heat dissipation fins 4 are aluminum, the heat conduction fins 3 are buried in the heat storage material 2, and the thermoelectric power generation fins 5 are The core of the thermoelectric conversion system.
  • thermoelectric power generation sheet 5 The cold and hot end surfaces of the thermoelectric power generation sheet 5 are coated with thermally conductive silicone grease and are respectively attached to the adjacent thermally conductive fins 3 and radiating fins 4.
  • the thermally conductive fins 3 and the radiating fins 4 are The temperature difference formed on both sides of the thermoelectric power generation sheet 5 makes the thermoelectric power generation sheet 5 generate electric energy.
  • the electric energy generated by the thermoelectric power generation sheet 5 is connected to the power supply circuit of the automobile through a wire through a voltage stabilizer. 5 constitutes a power generation module, which converts the thermal energy of the heat storage material into electrical energy; the other end of the heat dissipation fin 4 is located in the air flow channel for heat dissipation.
  • the muffler 7 is divided into three cavities by two partition walls 6.
  • the first two cavities are resistant cavities, which are matched with the superconducting plate 1 to cool down to achieve low-medium and low frequency noise reduction.
  • the third cavity is a resistive cavity with internal filling Acoustic materials achieve high-frequency noise reduction.
  • the superconducting plate 1 is the main heat transfer and thermodynamic conversion element, which includes a plurality of branch structures distributed around the axis of the muffler 7, and each branch is connected as a whole
  • the evaporation section of the branch is composed of the evaporation section and the condensation section.
  • the evaporation section of the branch is built in the muffler 7 and closely fits the two partition walls 6 in the cavity of the muffler 7, and the condensation section of the branch passes through the wall of the muffler 7
  • the upper reserved holes are then built into the heat storage material 2.
  • the branch structure is made of red copper, and the structure can be transformed according to the cross-sectional shape of the muffler 7.
  • the working fluid of the super thermal conductive plate 1 can be determined according to the working temperature.
  • the number of the super thermally conductive plates 1 can be changed according to the actual thermal load to adjust the thermal conductivity of different vehicle types.
  • the engine When applied to a hybrid vehicle, the engine is working and the exhaust gas passes through the three-way catalytic converter, and the temperature can reach 400-600°C.
  • the high-temperature exhaust gas passes through the resonance cavity and transition cavity of the muffler, it oscillates and mixes inside the muffler, and the muffler wall temperature
  • the sharp rise provides a higher heat flux density for the superconducting plate welded on the wall; after the superconducting tube reaches a certain heat flux density threshold, the internal working medium undergoes a gas-liquid two-phase flow, and the working medium is heated and gasified to generate power and gas
  • the plug is pushed to the condensation section to cool and liquefy, and the heat is transferred from the muffler where the evaporation section is located to the heat storage material where the condensation section is located through the continuous gas-liquid two-phase flow.
  • the heat generated by the engine is unstable, which affects the efficiency of power generation, so the heat storage material uses its high latent heat performance to stably store and release heat when the phase change occurs; as the temperature of the energy storage material increases As well as the forced convection heat dissipation of the heat dissipation fins by the air flow channel, the temperature difference between the hot and cold ends of the thermoelectric power generation sheet generates the Seebeck effect to generate electricity.
  • thermoelectric power generation sheet The current generated by the thermoelectric power generation sheet is rectified and stabilized through the parallel wire to supply power to the vehicle power battery , To achieve energy recovery; at the same time, under the action of the super heat-conducting plate, the heat inside the muffler is discharged, and the temperature is reduced, so as to realize the muffling ability of the muffler's resonant cavity to low-frequency noise.
  • the energy storage material that continuously stores energy begins to release heat.
  • the principle is the same as the above.
  • the electricity generated at this time can be used to charge the on-board battery, and the stored electricity can be used to reheat the engine and power the starter.
  • the function of energy recovery equipment can be further expanded due to the increase in heat generation and chassis space.
  • diesel engines generate a lot of heat while providing high-power power.
  • the heat generated by installing an energy recovery device can not only provide electricity for the vehicle, but also provide a heat source for the air-source air conditioning system.
  • the device of the present invention has a simple and compact structure, does not need to modify the exhaust system, can replace the traditional muffler and can be directly hoisted, and rationally combines the advantages of the strong heat transfer capacity of the super-conducting plate, high shape adaptability and high latent heat of the phase change material, and the high quality of the exhaust gas Heat recovery improves the fuel economy of hybrid electric vehicles, reduces the temperature of vehicle exhaust, and at the same time improves the muffling ability of the muffler system against mid- and low-frequency noise, which has high economic value and environmental protection value.

Abstract

Disclosed is an energy-storage-type energy recovery and noise reduction device for a hybrid electric vehicle. The device comprises a heat storage system, thermoelectric conversion systems, a heat superconducting plate (1), and a silencer (7), wherein the heat storage system comprises heat storage box bodies (8), heat storage materials (2), and heat conduction fins (3); the heat storage box bodies (8) surround the outer side of the silencer (7); the heat storage materials (2) fill the heat storage box bodies (8); the heat conduction fins (3) are arranged in the heat storage materials (2); a plurality of thermoelectric conversion systems are provided, and same are distributed on the surfaces of the heat storage box bodies (8) in a surrounding manner along the axis of the silencer (7); each thermoelectric conversion system comprises heat dissipation fins (4) and thermoelectric power generation pieces (5); the cold end and the hot end of each of the thermoelectric power generation pieces (5) are respectively attached to the heat conduction fins (3) and the heat dissipation fins (4) adjacent thereto; and an evaporation section of the heat superconducting plate (1) is arranged inside the silencer (7), and a condensation section of the heat superconducting plate (1) is arranged inside the heat storage materials (2). The device is used for recovering tail gas heat by means of the advantages of the heat superconducting plate, i.e. high heat transmission capacity, high shape adaptability, and high latent heat of phase change materials. The temperature of vehicle tail gas is reduced, and the ability of a silencing system to silence medium-and-low-frequency noise is improved.

Description

一种储能型混合动力汽车能量回收及降噪装置Energy recovery and noise reduction device for energy storage type hybrid electric vehicle 技术领域Technical field
本发明涉及汽车尾气余热回收领域,具体涉及一种储能型混合动力汽车能量回收及降噪装置。The invention relates to the field of automobile exhaust heat recovery, in particular to an energy storage type hybrid electric automobile energy recovery and noise reduction device.
背景技术Background technique
随着时代的发展,人们对汽车的需求变得越来越大,然而汽车行驶所带来的环境污染问题也随之变得越来越严重。石油资源日渐匮乏,发展新能源汽车不仅是国内发展的要求,同时也是国际竞争中重要的筹码。然而,对于纯电动汽车来说,电池及相关技术发展的不完善严重限制了其快速增长,在这种情况下,工程师们对其进行了改良,将电池与传统内燃机相结合,研发出目前备受青睐的混合动力汽车。With the development of the times, people's demand for automobiles has become greater and greater, but the environmental pollution caused by automobile driving has also become more and more serious. Petroleum resources are increasingly scarce, and the development of new energy vehicles is not only a requirement for domestic development, but also an important bargaining chip in international competition. However, for pure electric vehicles, the imperfect development of batteries and related technologies has severely restricted their rapid growth. Under this circumstance, engineers have improved them, combined the batteries with traditional internal combustion engines, and developed the current equipment. The favored hybrid car.
混合动力汽车采用发动机和电动机双动力源作为能量源,使得发动机能够在满足整车动力的情况下最大程度工作在高效区域,因此和传统汽车相比大大降低了油耗,相比电动汽车具有续航时间长的特点,在纯电动汽车技术成熟之前成为可靠的过渡产品。但是由于发动机的存在,存在尾气热量损失以及噪声污染,因此在噪声控制以及能量回收等方面具有较高开发潜力。Hybrid electric vehicles use dual power sources of engine and electric motor as the energy source, so that the engine can work in high-efficiency areas to the greatest extent while meeting the power of the entire vehicle. Therefore, compared with traditional vehicles, it greatly reduces fuel consumption and has battery life compared to electric vehicles. It has long characteristics and becomes a reliable transitional product before pure electric vehicle technology matures. However, due to the existence of the engine, there is exhaust heat loss and noise pollution, so it has high development potential in terms of noise control and energy recovery.
现阶段的能量回收系统大多是以刹车时产生的制动力作为能量源进行发电,并将电能储存在动力电池中,但是作为汽车的主要动力能源-汽油,在真正使用中仅利用了30%左右,40%左右都跟着汽车尾气消散到大气中,对于尾气能量的余热回收的研究涉及到了流体动力学、声学、传热、振动以及发动机结构和性能等多个学科理论知识,具有一定的复杂性。因此,国内外对如何改善汽车排气系统的性能进行了广泛的研究。目前,根据热电材料的温差发电效应来获取汽车尾气能量的课题已在国内外盛行开展。Most of the energy recovery systems at this stage use the braking force generated during braking as an energy source to generate electricity, and store the electrical energy in the power battery, but as the main power source of the car-gasoline, only about 30% of the actual use is used About 40% of the exhaust gas is dissipated into the atmosphere with the exhaust gas. The research on the waste heat recovery of exhaust gas energy involves the theoretical knowledge of fluid dynamics, acoustics, heat transfer, vibration, and engine structure and performance. It has certain complexity. . Therefore, extensive research has been conducted at home and abroad on how to improve the performance of automobile exhaust systems. At present, the subject of obtaining automobile exhaust energy based on the thermoelectric power generation effect of thermoelectric materials has been widely carried out at home and abroad.
发明内容Summary of the invention
本发明的目的是提供一种储能型混合动力汽车能量回收及降噪装置。The purpose of the present invention is to provide an energy recovery and noise reduction device for an energy storage type hybrid electric vehicle.
为实现上述目的,本发明采用的技术方案如下:一种储能型混合动力汽车能量回收及降噪装置,所述装置通过法兰与汽车排气系统相连,所述装置包括储热系统、热电转换系统、超导热板以及消声器;In order to achieve the above objective, the technical solution adopted by the present invention is as follows: an energy storage hybrid vehicle energy recovery and noise reduction device, the device is connected to the automobile exhaust system through a flange, the device includes a heat storage system, a thermoelectric Conversion system, super thermal conductive plate and muffler;
所述储热系统包括储热箱体、储热材料和导热翅片,所述储热箱体为圆环柱形,包裹在圆柱形消声器的外侧,通过卡槽与消声器外壁径向固定,所述储热材料填充在储热箱体中,所述导热翅片置于所述储热材料中;所述热电转换系统设置有多组,沿消声器轴心环绕分布在所述储热箱体外表面,每组所述热电转换系统包括散热翅片和温差发电片,所述导热翅片与所述散热翅片的个数相同,所述温差发电片的冷热两端分别与相邻的导热翅片和散热翅片贴合,散热翅片另一端位于空气流道中进行散热;所述消声器通过两个分隔壁面分为三个腔体,前两腔为抗性腔,第三腔为阻性腔;所述超导热板包括多个沿消声器轴心环绕分布的分支结构,每个分支机构由连接为一体的蒸发段和冷凝段组成,所述分支机构的蒸发段均内置于消声器中,与消声器腔体中的两个分隔壁面紧密贴合,所述分支机构的冷凝段均内置于储热材料中。The heat storage system includes a heat storage box, a heat storage material, and a heat-conducting fin. The heat storage box is in the shape of a toroidal column, wrapped on the outside of the cylindrical muffler, and is radially fixed to the outer wall of the muffler through a slot. The heat storage material is filled in the heat storage box, the thermally conductive fins are placed in the heat storage material; the thermoelectric conversion system is provided with multiple groups, which are distributed around the heat storage box outside the heat storage box along the muffler axis On the surface, each group of the thermoelectric conversion system includes heat dissipation fins and thermoelectric power generation fins. The number of heat conduction fins and the heat dissipation fins are the same. The fin and the heat dissipation fin are attached, and the other end of the heat dissipation fin is located in the air flow channel for heat dissipation; the muffler is divided into three cavities by two partition walls, the first two cavities are resistive cavities, and the third cavity is resistive The superconducting plate includes a plurality of branch structures distributed around the axis of the muffler, each branch is composed of an evaporation section and a condensing section connected as a whole, and the evaporation sections of the branches are all built into the muffler, It is closely attached to the two partition wall surfaces in the muffler cavity, and the condensation sections of the branches are all built into the heat storage material.
优选的,所述储热材料为中高温复合相变材料,具体可为石蜡、羧酸、熔融盐、金属合金等。Preferably, the heat storage material is a mid-to-high temperature composite phase change material, specifically paraffin wax, carboxylic acid, molten salt, metal alloy and the like.
优选的,所述导热翅片、散热翅片的材质均为铝。Preferably, the materials of the heat conduction fins and the heat dissipation fins are aluminum.
优选的,所述分支机构的材质为紫铜。Preferably, the material of the branch is copper.
进一步地,所述温差发电片通过导线连接稳压器,所述稳压器连接汽车的供电电路。Further, the thermoelectric power sheet is connected to a voltage stabilizer through a wire, and the voltage stabilizer is connected to the power supply circuit of the automobile.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明从传统消声器的结构出发,利用超导热板的良好传热性能以及储热材料的高效的储热性能将消声器中的高品位热量及时传递和储存,储能材料则为温差发电提供稳定的热源以此来保证电流的持续输出,进一步增强混合动力汽车能量回收,提高续航里程,从而实现在对余热高效利用的同时通过降低消声器内温度来提高对中低频噪声的消声效果,达到节能和降噪的双重效果。1. Starting from the structure of the traditional muffler, the present invention uses the good heat transfer performance of the superconducting plate and the efficient heat storage performance of the heat storage material to transfer and store the high-grade heat in the muffler in time, and the energy storage material is for thermoelectric power generation Provide a stable heat source to ensure the continuous output of the current, further enhance the energy recovery of the hybrid electric vehicle, increase the cruising range, so as to achieve the efficient use of waste heat while reducing the temperature in the muffler to improve the muffling effect of low-frequency noise. Achieve the dual effects of energy saving and noise reduction.
2.本装置产生的电能直接与车载动力电池连接,进一步提高整车能量回收能力,减少发动机对发电的负载。2. The electric energy generated by the device is directly connected to the vehicle power battery, which further improves the energy recovery capacity of the vehicle and reduces the load of the engine on the power generation.
3.本装置结构紧凑,成本低廉可以模块化,通过法兰直接与排气系统进行连接,具有维护、改造便捷的优势。3. The device has compact structure, low cost and can be modularized. It is directly connected to the exhaust system through a flange, and has the advantages of convenient maintenance and transformation.
4.本装置可针对不同车型,不同的行车工况选择相应的超导热板材质、超导热板启动温度、储热材料相变温度,以实现最高的能量回收效率。4. This device can select the corresponding super-conducting plate material, super-conducting plate starting temperature, and heat storage material phase change temperature for different vehicle types and different driving conditions to achieve the highest energy recovery efficiency.
附图说明Description of the drawings
图1为本发明的一种储能型混合动力汽车能量回收及降噪装置的组装图;Figure 1 is an assembly diagram of an energy recovery and noise reduction device for an energy storage hybrid electric vehicle of the present invention;
图2为本发明的一种储能型混合动力汽车能量回收及降噪装置的剖视图;Figure 2 is a cross-sectional view of an energy recovery and noise reduction device for an energy storage hybrid electric vehicle of the present invention;
图3为本发明的一种储能型混合动力汽车能量回收及降噪装置的侧视图;Figure 3 is a side view of an energy recovery and noise reduction device for an energy storage hybrid electric vehicle of the present invention;
图4为本发明的一种储能型混合动力汽车能量回收及降噪装置中超导热板的剖视图;4 is a cross-sectional view of the super-conducting plate in the energy recovery and noise reduction device of an energy storage hybrid electric vehicle of the present invention;
图中,1-超导热板,2-储热材料,3-导热翅片,4-散热翅片,5-温差发电片,6-分隔壁面,7-消声器,8-储热箱体。In the figure, 1-super thermal conductive plate, 2-heat storage material, 3-heat conductive fins, 4-heat dissipation fins, 5-thermoelectric power generation sheet, 6-partition wall, 7-muffler, 8-heat storage box.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the drawings and specific embodiments.
如图1、图2、图3所示,本发明的一种储能型混合动力汽车能量回收及降噪装置,所述装置通过法兰与汽车排气系统相连,法兰间设有耐高温耐腐蚀垫圈。As shown in Figure 1, Figure 2, Figure 3, an energy storage hybrid vehicle energy recovery and noise reduction device of the present invention is connected to the exhaust system of the automobile through a flange, and a high temperature resistant device is provided between the flanges. Corrosion-resistant gaskets.
所述装置包括储热系统、热电转换系统、超导热板1以及消声器7;The device includes a heat storage system, a thermoelectric conversion system, a super thermal conductive plate 1 and a muffler 7;
所述储热系统包括储热箱体8、储热材料2和导热翅片3,所述储热箱体8是储能系统的载体,为圆环柱形,包裹在圆柱形消声器7的外侧,通过卡槽与消声器7外壁径向固定,所述储热材料2填充在储热箱体8中,所述导热翅片3置于所述储热材料2中;所述储热材料2为中高温复合相变材料,可根据发动机功率调整为不同的相变温度,具体可为石蜡、羧酸、熔融盐、金属合金等。所述储热系统共设置2个。The heat storage system includes a heat storage box 8, a heat storage material 2 and a thermally conductive fin 3. The heat storage box 8 is a carrier of the energy storage system, is in the shape of a circular cylinder, and is wrapped on the outside of the cylindrical muffler 7 , Through the card slot and the outer wall of the muffler 7 radially fixed, the heat storage material 2 is filled in the heat storage box 8, the thermally conductive fins 3 are placed in the heat storage material 2; the heat storage material 2 is The medium and high temperature composite phase change materials can be adjusted to different phase change temperatures according to the engine power, which can be paraffin, carboxylic acid, molten salt, metal alloy, etc. There are 2 heat storage systems in total.
所述热电转换系统设置有多组,沿消声器7轴心环绕分布在所述储热箱体8外表面,每组所述热电转换系统包括散热翅片4和温差发电片5,所述导热翅片3与所述散热翅片4的个数相同,所述导热翅片3、散热翅片4的材质均为铝,导热翅片3埋于储热材料2中,所述温差发电片5是热电转换系统核心,所述温差发电片5的冷热两端端面涂有导热硅脂并分别与相邻的导热翅片3和散热翅片4贴合,导热翅片3和散热翅片4在温差发电片5的两侧形成温差使温差发电片5产生电能,温差发电片5产生的电能通过导线经稳压器接入汽车的供电电路,导热翅片3、散热翅片4和温差发电片5构成发电模块,将储热材料的热能转化为电能;散热翅片4另一端位于空气流道中进行散热。The thermoelectric conversion system is provided with multiple groups, which are distributed around the outer surface of the heat storage box 8 along the axis of the muffler 7, and each group of the thermoelectric conversion system includes a heat dissipation fin 4 and a thermoelectric power generation fin 5. The heat conduction fin The number of fins 3 and the heat dissipation fins 4 are the same, the materials of the heat conduction fins 3 and the heat dissipation fins 4 are aluminum, the heat conduction fins 3 are buried in the heat storage material 2, and the thermoelectric power generation fins 5 are The core of the thermoelectric conversion system. The cold and hot end surfaces of the thermoelectric power generation sheet 5 are coated with thermally conductive silicone grease and are respectively attached to the adjacent thermally conductive fins 3 and radiating fins 4. The thermally conductive fins 3 and the radiating fins 4 are The temperature difference formed on both sides of the thermoelectric power generation sheet 5 makes the thermoelectric power generation sheet 5 generate electric energy. The electric energy generated by the thermoelectric power generation sheet 5 is connected to the power supply circuit of the automobile through a wire through a voltage stabilizer. 5 constitutes a power generation module, which converts the thermal energy of the heat storage material into electrical energy; the other end of the heat dissipation fin 4 is located in the air flow channel for heat dissipation.
所述消声器7通过两个分隔壁面6分为三个腔体,前两腔为抗性腔,配合超 导热板1降温从而实现中低频降噪,第三腔为阻性腔,内部填充消声材料实现高频降噪。The muffler 7 is divided into three cavities by two partition walls 6. The first two cavities are resistant cavities, which are matched with the superconducting plate 1 to cool down to achieve low-medium and low frequency noise reduction. The third cavity is a resistive cavity with internal filling Acoustic materials achieve high-frequency noise reduction.
如图2、图4所示,所述超导热板1是主要的传热和热动转换元件,其包括多个沿消声器7轴心环绕分布的分支结构,每个分支机构由连接为一体的蒸发段和冷凝段组成,所述分支机构的蒸发段均内置于消声器7中,与消声器7腔体中的两个分隔壁面6紧密贴合,所述分支机构的冷凝段穿过消声器7壁面上的预留孔后内置于储热材料2中,所述分支结构由紫铜构成,可根据消声器7的截面形状转变其结构。所述超导热板1的工质可根据工作温度来确定。所述超导热板1的数量可以根据实际热负荷进行改变,用来调节针对不同车型的导热能力。As shown in Figures 2 and 4, the superconducting plate 1 is the main heat transfer and thermodynamic conversion element, which includes a plurality of branch structures distributed around the axis of the muffler 7, and each branch is connected as a whole The evaporation section of the branch is composed of the evaporation section and the condensation section. The evaporation section of the branch is built in the muffler 7 and closely fits the two partition walls 6 in the cavity of the muffler 7, and the condensation section of the branch passes through the wall of the muffler 7 The upper reserved holes are then built into the heat storage material 2. The branch structure is made of red copper, and the structure can be transformed according to the cross-sectional shape of the muffler 7. The working fluid of the super thermal conductive plate 1 can be determined according to the working temperature. The number of the super thermally conductive plates 1 can be changed according to the actual thermal load to adjust the thermal conductivity of different vehicle types.
实施案例一:Implementation case one:
应用于混合动力汽车时,发动机工作,尾气通过三元催化器后,温度可达400-600℃,高温尾气在通过消声器的共振腔和过渡腔时,在消声器的内部发生震荡混合,消声器壁面温度急剧升高,为焊接在壁面上的超导热板提供较高的热流密度;超导热管在达到一定热流密度阈值后内部工质发生气液两相流动,工质受热气化产生动力将气塞推至冷凝段冷却液化,通过不断的气液两相流动产生循环将热量从蒸发段所在的消声器传递到冷凝段所在的储热材料里。When applied to a hybrid vehicle, the engine is working and the exhaust gas passes through the three-way catalytic converter, and the temperature can reach 400-600℃. When the high-temperature exhaust gas passes through the resonance cavity and transition cavity of the muffler, it oscillates and mixes inside the muffler, and the muffler wall temperature The sharp rise provides a higher heat flux density for the superconducting plate welded on the wall; after the superconducting tube reaches a certain heat flux density threshold, the internal working medium undergoes a gas-liquid two-phase flow, and the working medium is heated and gasified to generate power and gas The plug is pushed to the condensation section to cool and liquefy, and the heat is transferred from the muffler where the evaporation section is located to the heat storage material where the condensation section is located through the continuous gas-liquid two-phase flow.
由于行车工况在不断变化,发动机产生的热量不稳定,影响发电效率,因此通过储热材料在发生相变时利用其高潜热性能进行稳定的储放热;随着储能材料温度的升高以及空气流道对散热翅片的强制对流散热,温差发电片冷热两端产生温差进而产生塞贝克效应进行发电,通过并联导线将温差发电片产生的电流整流稳压后,对车辆动力电池供电,实现能量回收;同时在超导热板的作用下,消声器内部的热量导出,温度下降,实现消声器共振腔对中低频噪声的消声能力。As the driving conditions are constantly changing, the heat generated by the engine is unstable, which affects the efficiency of power generation, so the heat storage material uses its high latent heat performance to stably store and release heat when the phase change occurs; as the temperature of the energy storage material increases As well as the forced convection heat dissipation of the heat dissipation fins by the air flow channel, the temperature difference between the hot and cold ends of the thermoelectric power generation sheet generates the Seebeck effect to generate electricity. The current generated by the thermoelectric power generation sheet is rectified and stabilized through the parallel wire to supply power to the vehicle power battery , To achieve energy recovery; at the same time, under the action of the super heat-conducting plate, the heat inside the muffler is discharged, and the temperature is reduced, so as to realize the muffling ability of the muffler's resonant cavity to low-frequency noise.
在发动机关闭时,持续储能的储能材料开始放热,原理同上,此时产生的电能可为车载电瓶进行充电,储存的电能可为再次用车进行发动机预热以及为起动机供电。When the engine is turned off, the energy storage material that continuously stores energy begins to release heat. The principle is the same as the above. The electricity generated at this time can be used to charge the on-board battery, and the stored electricity can be used to reheat the engine and power the starter.
实施案例二:Implementation case two:
应用于大型车辆及特种车辆时,由于其发热量及底盘空间的增加,能量回收设备的功能可得到进一步的拓展。例如大型运输车,柴油发动机在提供大功率动力外同时产生大量热量,加装能量回收装置后产生的热能既可为车辆提供电能也 可为空气源空调系统提供热源。When applied to large vehicles and special vehicles, the function of energy recovery equipment can be further expanded due to the increase in heat generation and chassis space. For example, in large-scale transportation vehicles, diesel engines generate a lot of heat while providing high-power power. The heat generated by installing an energy recovery device can not only provide electricity for the vehicle, but also provide a heat source for the air-source air conditioning system.
本发明装置结构简单紧凑,无需改造排气系统,可替换传统消声器直接吊装,合理结合超导热板强热输送能力、高形状适应性以及相变材料高潜热的优势,将尾气含有的高品质热量回收,提高混合动力汽车的燃油经济性,降低汽车尾气温度,同时提高消声系统对中低频噪声的消音能力,具有较高的经济价值与环保价值。The device of the present invention has a simple and compact structure, does not need to modify the exhaust system, can replace the traditional muffler and can be directly hoisted, and rationally combines the advantages of the strong heat transfer capacity of the super-conducting plate, high shape adaptability and high latent heat of the phase change material, and the high quality of the exhaust gas Heat recovery improves the fuel economy of hybrid electric vehicles, reduces the temperature of vehicle exhaust, and at the same time improves the muffling ability of the muffler system against mid- and low-frequency noise, which has high economic value and environmental protection value.

Claims (5)

  1. 一种储能型混合动力汽车能量回收及降噪装置,其特征在于,所述装置通过法兰与汽车排气系统相连,所述装置包括储热系统、热电转换系统、超导热板(1)以及消声器(7);An energy recovery and noise reduction device for an energy storage hybrid electric vehicle, characterized in that, the device is connected to the exhaust system of the automobile through a flange, and the device includes a heat storage system, a thermoelectric conversion system, and a super heat conducting plate (1 ) And muffler (7);
    所述储热系统包括储热箱体(8)、储热材料(2)和导热翅片(3),所述储热箱体(8)为圆环柱形,包裹在圆柱形消声器(7)的外侧,通过卡槽与消声器(7)外壁径向固定,所述储热材料(2)填充在储热箱体(8)中,所述导热翅片(3)置于所述储热材料(2)中;所述热电转换系统设置有多组,沿消声器(7)轴心环绕分布在所述储热箱体(8)外表面,每组所述热电转换系统包括散热翅片(4)和温差发电片(5),所述导热翅片(3)与所述散热翅片(4)的个数相同,所述温差发电片(5)的冷热两端分别与相邻的导热翅片(3)和散热翅片(4)贴合,散热翅片(4)另一端位于空气流道中进行散热;所述消声器(7)通过两个分隔壁面(6)分为三个腔体,前两腔为抗性腔,第三腔为阻性腔;所述超导热板(1)包括多个沿消声器(7)轴心环绕分布的分支结构,每个分支机构由连接为一体的蒸发段和冷凝段组成,所述分支机构的蒸发段均内置于消声器(7)中,与消声器(7)腔体中的两个分隔壁面(6)紧密贴合,所述分支机构的冷凝段均内置于储热材料(2)中。The heat storage system includes a heat storage box (8), a heat storage material (2) and a thermally conductive fin (3). The heat storage box (8) is in the shape of a circular column and is wrapped in a cylindrical muffler (7). ) Is radially fixed to the outer wall of the muffler (7) by a card slot, the heat storage material (2) is filled in the heat storage box (8), and the heat conducting fins (3) are placed in the heat storage In material (2); the thermoelectric conversion system is provided with multiple groups, which are distributed around the outer surface of the heat storage box (8) along the axis of the muffler (7), and each group of the thermoelectric conversion system includes heat dissipation fins ( 4) and thermoelectric power generation fins (5), the number of said thermally conductive fins (3) is the same as that of said heat dissipation fins (4), and the cold and hot ends of said thermoelectric power generation fins (5) are respectively connected to adjacent ones The heat-conducting fins (3) and the heat-dissipating fins (4) fit together, and the other end of the heat-dissipating fins (4) is located in the air flow channel for heat dissipation; the muffler (7) is divided into three cavities by two partition walls (6) Body, the first two cavities are resistive cavities, and the third cavity is resistive cavities; the super thermally conductive plate (1) includes a plurality of branch structures distributed around the axis of the muffler (7), and each branch is connected by The evaporating section and the condensing section are integrated. The evaporating section of the branch is built in the muffler (7) and closely fits the two partition walls (6) in the cavity of the muffler (7). The condensation section is built in the heat storage material (2).
  2. 根据权利要求1所述的一种储能型混合动力汽车能量回收及降噪装置,其特征在于,所述储热材料(2)为中高温复合相变材料。The energy recovery and noise reduction device for an energy storage hybrid electric vehicle according to claim 1, wherein the heat storage material (2) is a medium-high temperature composite phase change material.
  3. 根据权利要求1所述的一种储能型混合动力汽车能量回收及降噪装置,其特征在于,所述导热翅片(3)、散热翅片(4)的材质均为铝。The energy recovery and noise reduction device for an energy storage hybrid electric vehicle according to claim 1, wherein the materials of the heat conduction fins (3) and the heat dissipation fins (4) are aluminum.
  4. 根据权利要求1所述的一种储能型混合动力汽车能量回收及降噪装置,其特征在于,所述分支机构的材质为紫铜。The energy recovery and noise reduction device for an energy storage hybrid electric vehicle according to claim 1, wherein the material of the branch is copper.
  5. 根据权利要求1所述的一种储能型混合动力汽车能量回收及降噪装置,其特征在于,所述温差发电片(5)通过导线连接稳压器,所述稳压器连接汽车的供电电路。The energy recovery and noise reduction device for an energy storage hybrid electric vehicle according to claim 1, wherein the thermoelectric power generation sheet (5) is connected to a voltage stabilizer through a wire, and the voltage stabilizer is connected to the power supply of the vehicle Circuit.
PCT/CN2019/109315 2019-07-19 2019-09-30 Energy-storage-type energy recovery and noise reduction device for hybrid electric vehicle WO2021012392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910654655.3 2019-07-19
CN201910654655.3A CN110454260A (en) 2019-07-19 2019-07-19 A kind of accumulation energy type hybrid vehicle energy regenerating and denoising device

Publications (1)

Publication Number Publication Date
WO2021012392A1 true WO2021012392A1 (en) 2021-01-28

Family

ID=68481568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109315 WO2021012392A1 (en) 2019-07-19 2019-09-30 Energy-storage-type energy recovery and noise reduction device for hybrid electric vehicle

Country Status (2)

Country Link
CN (1) CN110454260A (en)
WO (1) WO2021012392A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908296B (en) * 2020-08-11 2022-03-22 浙江蒂尔森电梯有限公司 Elevator counterweight housing
CN112468020A (en) * 2020-12-11 2021-03-09 沈阳工程学院 Detachable combined small and medium semiconductor thermoelectric generator
CN114039512A (en) * 2021-10-26 2022-02-11 武汉蔚能电池资产有限公司 Vehicle and electric energy transmission system and transmission method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208885A (en) * 2011-05-03 2011-10-05 吉林大学 Phase change heat exchanger thermoelectric generation device
CN102230407A (en) * 2011-06-30 2011-11-02 东莞市力宇燃气动力有限公司 Resistance-and-reactance-compounded exhaust silencer
CN103078560A (en) * 2013-01-10 2013-05-01 天津大学 Semiconductor temperature difference power generation system
KR20140008047A (en) * 2012-07-10 2014-01-21 세종공업 주식회사 Thermoelectric generation apparatus for car
CN105577034A (en) * 2016-03-23 2016-05-11 武汉喜玛拉雅光电科技股份有限公司 Manufacturing method of multi-stage coupled high-temperature sensible heat-latent phase change energy storage temperature difference power generation device
CN105626213A (en) * 2014-11-25 2016-06-01 现代自动车美国技术研究所 Clamp mounted thermoelectric generator
CN107201935A (en) * 2017-07-06 2017-09-26 江苏大学 A kind of temperature difference electricity generation device and its flow-dividing control method with vehicle exhaust flow-dividing control function
CN107476863A (en) * 2016-06-07 2017-12-15 东北林业大学 Automobile complex muffler system with energy saving and emission reduction effects
CN207135012U (en) * 2017-03-28 2018-03-23 武汉大学 A kind of vehicle exhaust semiconductor power generation device for coupling phase-changing energy-storing
CN109113841A (en) * 2018-08-28 2019-01-01 河北工业大学 A kind of service automobile exhaust gas processing apparatus certainly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309044B2 (en) * 2010-06-21 2012-11-13 Corning Incorporated Exhaust gas treatment system including a thermoelectric generator
CN105679301B (en) * 2016-03-30 2019-11-26 武汉理工大学 A kind of removable segmented thermo-electric generation heat exchanger silencer combination unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208885A (en) * 2011-05-03 2011-10-05 吉林大学 Phase change heat exchanger thermoelectric generation device
CN102230407A (en) * 2011-06-30 2011-11-02 东莞市力宇燃气动力有限公司 Resistance-and-reactance-compounded exhaust silencer
KR20140008047A (en) * 2012-07-10 2014-01-21 세종공업 주식회사 Thermoelectric generation apparatus for car
CN103078560A (en) * 2013-01-10 2013-05-01 天津大学 Semiconductor temperature difference power generation system
CN105626213A (en) * 2014-11-25 2016-06-01 现代自动车美国技术研究所 Clamp mounted thermoelectric generator
CN105577034A (en) * 2016-03-23 2016-05-11 武汉喜玛拉雅光电科技股份有限公司 Manufacturing method of multi-stage coupled high-temperature sensible heat-latent phase change energy storage temperature difference power generation device
CN107476863A (en) * 2016-06-07 2017-12-15 东北林业大学 Automobile complex muffler system with energy saving and emission reduction effects
CN207135012U (en) * 2017-03-28 2018-03-23 武汉大学 A kind of vehicle exhaust semiconductor power generation device for coupling phase-changing energy-storing
CN107201935A (en) * 2017-07-06 2017-09-26 江苏大学 A kind of temperature difference electricity generation device and its flow-dividing control method with vehicle exhaust flow-dividing control function
CN109113841A (en) * 2018-08-28 2019-01-01 河北工业大学 A kind of service automobile exhaust gas processing apparatus certainly

Also Published As

Publication number Publication date
CN110454260A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
Shen et al. Automotive exhaust thermoelectric generators: Current status, challenges and future prospects
WO2021012392A1 (en) Energy-storage-type energy recovery and noise reduction device for hybrid electric vehicle
US7508289B1 (en) Cooled high power vehicle inductor and method
CN201546917U (en) Thermoelectric generator used for automobile exhaust afterheat recycling
CN101603473A (en) The waste heat recovery plant of utilization Stirling engine
CN103119263A (en) Exhaust gas treatment system including a thermoelectric generator
CN110492135B (en) Fuel cell automobile waste heat power generation system, working method thereof and fuel cell automobile
CN110112958B (en) Phase-change coupling bionic fin type automobile exhaust waste heat step power generation system
Zhang et al. Overview of thermoelectric generation for hybrid vehicles
JP2008051062A (en) Automobile
CN103078560A (en) Semiconductor temperature difference power generation system
CN112599888A (en) Battery thermal management system based on combination of flat pulsating heat pipe and liquid cooling system and temperature control method
CN1794557A (en) Engine exhaust pipe residual heat generating method and its device
CN207454072U (en) The automobile tail gas particle catcher of thermo-electric generation assisted Regeneration
CN203119809U (en) Vehicle exhaust waste heat power generation device
CN109274292A (en) A kind of thermo-electric generation system using waste gas residual heat
CN2837523Y (en) Power generator employing engine exhaust pipe waste heat
CN105569796A (en) Internal combustion engine cooling device based on thermoelectric power generation
CN201781449U (en) Cylindrical thermoelectric generator
CN112886868B (en) Heat accumulating type automobile exhaust temperature difference power generation device based on heat pipe-phase change material
CN213565418U (en) Hybrid electric vehicle cooling system
CN201312276Y (en) Simple waste heat thermoelectric generator
CN211230638U (en) Vehicle engine waste heat utilization equipment
CN114499278A (en) Laminated automobile temperature difference power generation device integrated with heat pipe
CN203851066U (en) Device for performing thermoelectric power generation through vehicle air conditioner pipelines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938627

Country of ref document: EP

Kind code of ref document: A1