WO2021012088A1 - 相控阵检测装置、激光雷达和自动驾驶设备 - Google Patents

相控阵检测装置、激光雷达和自动驾驶设备 Download PDF

Info

Publication number
WO2021012088A1
WO2021012088A1 PCT/CN2019/096769 CN2019096769W WO2021012088A1 WO 2021012088 A1 WO2021012088 A1 WO 2021012088A1 CN 2019096769 W CN2019096769 W CN 2019096769W WO 2021012088 A1 WO2021012088 A1 WO 2021012088A1
Authority
WO
WIPO (PCT)
Prior art keywords
phased array
output
detection
unit
signals
Prior art date
Application number
PCT/CN2019/096769
Other languages
English (en)
French (fr)
Inventor
汪敬
任亚林
牛犇
朱琳
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2019/096769 priority Critical patent/WO2021012088A1/zh
Priority to CN201980002796.5A priority patent/CN110720049A/zh
Publication of WO2021012088A1 publication Critical patent/WO2021012088A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Definitions

  • This application relates to the field of radar technology, in particular to a phased array detection device, lidar and automatic driving equipment.
  • Lidar is a radar system that emits laser beams to detect feature vectors such as the position and speed of a target. It is widely used in technical fields such as atmospheric detection, urban surveying and mapping, ocean detection, autonomous driving, robotics, laser television, and laser three-dimensional imaging.
  • the phased array lidar uses the beams emitted by multiple emitting units to interfere in space to form a far-field beam.
  • the far-field beam is used to realize object detection, and then the phase difference of the light emitted by the emitting unit is adjusted. , To adjust the direction of the far-field beam to achieve 360-degree scanning.
  • the inventor of the present application discovered that the optical phased array of the phased array lidar has a phase error, resulting in poor spot imaging quality.
  • the calibration phased array usually uses an external camera to receive the spot image.
  • the phase shifter is adjusted through the algorithm to obtain the ideal light spot distribution. This method not only requires an external camera, but also requires manual modulation.
  • the purpose of the embodiments of the present application is to provide a phased array detection device, lidar, and automatic driving equipment, which can calibrate the phased array without external cameras and manual modulation.
  • a phased array detection device for calibrating a phased array emission device.
  • the phased array detection device includes: a detection unit arranged in the phased array emission device The output terminal is used to receive a plurality of detection signals output by the phased array transmitter and convert the plurality of detection signals into electrical signals, wherein the plurality of detection signals are emitted by the phased array transmitter A part of all optical signals of the; a signal processing unit, connected to the detection unit, for generating a control signal according to the electrical signal; a driving circuit, respectively connected to the signal processing unit and the phased array transmitting device, It is used to drive the phased array emitting device according to the control signal; the detection unit, the signal processing unit and the driving circuit continue to work until the phased array emitting device meets a preset initial state.
  • the detection unit includes: a plurality of arrayed waveguides, arranged at the output end of the phased array transmitting device, for receiving the multiple detection signals output by the phased array transmitting device
  • the star coupler is located at the output end of the plurality of arrayed waveguides and is used to combine the multiple detection signals into a total signal; the detector is located at the output end of the star coupler and is used to combine the The total signal is converted into the electrical signal and output to the signal processing unit.
  • the star coupler is provided with a plurality of input waveguides and an output waveguide, one of the input waveguides is connected to the array waveguide, and the output waveguide is connected to the input of the detector.
  • the input waveguide transmits the multiple detection signals to the output waveguide, so that the multiple detection signals are combined into the total signal in the output waveguide.
  • each of the input waveguides is evenly arranged on an arc, and the output waveguide is set at the center of the arc, so that the distance between each input waveguide and the output waveguide is the same.
  • each of the detection signals travels the same distance in the star coupler.
  • the signal processing unit includes: a voltage conversion module connected to the detection unit and configured to convert the electrical signal into a voltage value; a digital-to-analog conversion module and the voltage conversion module The connection is used to generate the control signal according to the voltage value and the preset initial state, and output it to the drive circuit.
  • the device further includes: an initial state storage unit connected to the signal processing unit and configured to store the preset initial state.
  • a laser radar which includes a phased array transmitting device, a phased array receiving device, and the above-mentioned phased array detection device.
  • the phased array transmitting device and the phased array The array detection device is connected, the phased array transmitter is used for emitting light signals, and the phased array receiving device is used for receiving the light signals reflected by the measured object.
  • the phased array transmitter includes: a laser unit for outputting laser signals; a phased array unit, provided at the output end of the laser unit, for dividing the laser signal into Several light signals are respectively emitted to different positions in the space; the detection unit is connected with the phased array unit.
  • the phased array unit includes: an optical splitter arranged at the output end of the laser unit; a plurality of phase shifters arranged at the output end of the optical splitter; and several transmitting antennas arranged The output ends of the phase shifters are connected to the detection unit.
  • an automatic driving device including the above-mentioned lidar and a vehicle body, the lidar being disposed on the vehicle body.
  • the detection unit receives multiple detection signals output by the phased array transmitter and converts the multiple detection signals into electrical signals.
  • the signal processing unit generates control signals according to the electrical signals, and the drive circuit is used to control
  • the signal drives the phase shifter of the phased array emitting device 100 until the phase difference between the optical signals in the phased array emitting device is 0, so as to realize the phase calibration of the phased array emitting device, and the phased array can be calibrated, and No need for external camera and manual modulation.
  • the phased array detection device can complete the on-chip calibration work only by receiving the weak signal that is not emitted by the phased array transmitter, and will not affect the normal operation of the phased array transmitter.
  • FIG. 1 shows a schematic structural diagram of a lidar provided by an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of a phased array unit provided by an embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of a phased array detection device provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a phased array detection device provided by an embodiment of the present application
  • Figure 5 shows a schematic diagram of the structure of the star coupler in Figure 4.
  • Fig. 6 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present application.
  • Fig. 1 shows a schematic structural diagram of a lidar provided by an embodiment of the present application.
  • the lidar 300 includes a phased array transmitting device 100 and a phased array detection device 200.
  • the phased array emitting device 100 is connected to the phased array detecting device 200, the phased array emitting device 100 is used to emit several light source signals, and the phased array detecting device 200 is used to calibrate the phased array emitting device 100 to make the phase control
  • the array launching device 100 meets the preset initial state.
  • the phased emission device 100 includes: a laser unit 110 and a phased array unit 120.
  • the phased array unit 120 is provided at the output end of the laser unit 110, the laser unit 110 is used to output laser signals, and the phased array unit 120 is used to divide the laser signals into several optical signals and emit them to different positions in the space.
  • the phased array unit 120 is also connected to the phased array detection device 200.
  • the laser unit 110 may be a laser array with a fixed wavelength.
  • fixed-wavelength laser arrays include ruby lasers, neodymium-doped yttrium aluminum garnet lasers, helium-neon lasers, argon ion lasers, lasers integrated on chips, and so on.
  • the laser unit 110 generates several laser signals and outputs the laser signals to the phased array unit 120.
  • the laser unit 110 may also be a tunable laser, which can be selected according to actual application requirements.
  • the phased array unit 120 includes: an optical splitter 121, a number of phase shifters 122 and a number of transmitting antennas 123.
  • the beam splitter 121 is provided at the output end of the laser unit 110, the plurality of phase shifters 122 are provided at the output end of the beam splitter 121, and the plurality of transmitting antennas 123 are provided at the output end of the plurality of phase shifters 122.
  • the optical splitter 121 is an optical splitter.
  • the input end of the beam splitter 121 is connected to the output end of the laser unit 110, and the output end of the beam splitter 121 is connected to the input ends of a plurality of phase shifters 122.
  • the optical splitter 121 is provided with multiple output terminals, and each output terminal is connected to the input terminal of a phase shifter 122.
  • the optical splitter 121 is provided with j output terminals, and the j output terminals are connected to the j phase shifters 122 correspondingly.
  • the optical splitter 121 is used to divide the laser signal output by the laser unit 110 into several optical signals, and output the several optical signals to the several phase shifters 122 respectively.
  • the beam splitter 121 evenly distributes the laser signal so that the optical signal output by each output terminal is the same.
  • each phase shifter 122 receives an optical signal output by the optical splitter 121 and performs phase modulation on the optical signal to change the phase of the optical signal.
  • the input ends of a number of transmitting antennas 123 are connected to the output ends of a number of phase shifters 122.
  • the number of phase shifters 122 is j
  • the number of transmitting antennas 123 is j
  • 123 is connected to j phase shifters 122 correspondingly.
  • several transmitting antennas 123 are used to receive several optical signals output by several phase shifters 122 and transmit the several optical signals to different positions in space. That is, each transmitting antenna 123 receives an optical signal output by a phase shifter 122, and transmits a part of the optical signal to the space.
  • phased array detection device 200 several transmitting antennas 123 are also connected to the phased array detection device 200, and the several transmitting antennas 123 are also used to transmit another part of the optical signal to the phased array detection device 200, so that the phased array detection device 200 responds to the optical signal.
  • the other part of the phased array transmitter 100 is calibrated.
  • transmitting antennas 123 may be waveguide grating structures.
  • the lidar 300 further includes: a phased array receiving device.
  • the phased array transmitting device 100 is used for transmitting light signals
  • the phased array receiving device is used for receiving the light signals reflected by the measured object.
  • the lidar 300 may further include: connecting waveguides.
  • the connecting waveguide is set between various devices as required to realize the propagation of the light beam and reduce the loss in the propagation process.
  • the phased array unit 120 and the phase detection device 200 may be integrated on the same chip, for example, processed based on a silicon-based CMOS process, thereby effectively reducing the size of the lidar 300 and improving the integration.
  • the phased array detecting device 200 derives a small amount of light signals output by the phased array emitting device 100, which is The phased array transmitting device 100 can be calibrated without affecting the normal operation of the phased array transmitting device 100.
  • FIG. 3 shows a schematic structural diagram of a phased array detection device provided by an embodiment of the present application.
  • the phased array detection device 200 is used to calibrate the phased array transmission device 100.
  • the phased array detection device 200 includes a detection unit 210, a signal processing unit 220, and a driving circuit 230.
  • the detection unit 210 is provided at the output end of the phased array transmitter 100, the signal processing unit 220 is connected to the detection unit 210, and the drive circuit 230 is connected to the signal processing unit 220 and the phased array transmitter 100, respectively.
  • the detection unit 210 is used to receive multiple detection signals output by the phased array transmitter 100 and convert the multiple detection signals into electrical signals, wherein the multiple detection signals are part of all the light source signals emitted by the phased array transmitter 100
  • the signal processing unit 220 is used to generate a control signal according to the electrical signal; the driving circuit 230 is used to drive the phased array transmitting device 100 according to the control signal.
  • the detection unit 210, the signal processing unit 220, and the driving circuit 230 continue to work until the phased array transmitter 100 meets the preset initial state. Through the above method, the phased array detection device 200 can calibrate the phased array without external cameras and manual modulation.
  • the input terminal of the detection unit 210 is connected with the output terminal of the phased array transmitter 100, and the output terminal of the detection unit 210 is connected with the input terminal of the signal processing unit 120.
  • the phased array emitting device 100 emits a plurality of optical signals, wherein a part of the plurality of optical signals is emitted into free space, and the other part of the plurality of optical signals is transmitted to the detection unit 210 as a plurality of detection signals.
  • the detection unit 210 receives multiple detection signals output by the phased array device 100, generates an electric signal according to each detection signal, and outputs the electric signal to the signal processing unit 220.
  • the detection unit 210 may include several arrayed waveguides 211, a star coupler 212 and a detector 213.
  • a plurality of array waveguides 211 are provided at the output end of the phased array transmitter 100
  • the star coupler 212 is provided at the output end of the plurality of array waveguides 211
  • the detector 213 is provided at the output end of the star coupler 212.
  • the number of arrayed waveguides 211 is the same as the number of transmitting antennas 123 of the phased array transmitting device 100.
  • the input end of an arrayed waveguide 211 is connected to the output end of the transmitting antenna 123, and the output end of the arrayed waveguide 211 is connected to a star coupler. 212's input.
  • the number of arrayed waveguides 211 and transmitting antennas 123 are both j, j arrayed waveguides 211 and j transmitting antennas 123 are connected correspondingly, and j is an integer greater than 2.
  • the arrayed waveguide 211 derives a part of the light signal that is not emitted from the end of the transmitting antenna 123 as a detection signal, thereby receiving multiple detection signals output by the phased array transmitting device 100.
  • the transmitting antenna 123 and several arrayed waveguides 211 will not cause additional phase errors, and the strength of each detection signal entering the star coupler 212 is the same.
  • the input end of the star coupler 212 is connected to the output ends of a plurality of arrayed waveguides 211, and the output end of the star coupler 212 is connected to the input end of the detector 213.
  • the star coupler 212 is used for synthesizing a plurality of detection signals output by a plurality of arrayed waveguides 211 into a total signal, and outputting it to the detector 213.
  • the star coupler 212 is provided with a plurality of input waveguides 2121 and an output waveguide 2122.
  • An input waveguide 2121 is connected to an array waveguide 211 respectively, and an output waveguide 2122 is connected to the input end of the detector 213.
  • the input waveguides 2121 are evenly arranged on an arc, the spacing between the input waveguides 2121 is the same, and the output waveguides 2122 are set at the center of the arc so that the distances from the input waveguides 2121 to the output waveguides 2122 are the same.
  • the direction of the input waveguide 2121 is parallel to the connecting line at the center of the circle, so that the distances of the detection signal propagating in the star coupler 212 are equal, and no additional phase difference is caused. Therefore, whether the detection signal can interfere constructively depends entirely on the phase caused by the phase shifter in the phased array transmitter 100.
  • an input waveguide 2121 receives a detection signal, and several input waveguides 2121 receive several detection signals. All input waveguides 2121 transmit multiple detection signals to the output waveguide 2122, so that multiple detection signals are combined in the output waveguide. Is the total signal.
  • the strength of the total signal output by the star coupler 212 is determined by the phase relationship of the multiple detection signals.
  • the phase difference of the multiple detection signals is an integer multiple of 2 ⁇
  • the multiple detection signals will interfere in the output waveguide 2122.
  • the output power is maximized.
  • the phased array transmitter 100 emits light signals to a position of 0 angle in space; and when the phase difference of the multiple detection signals is not an integer multiple of 2 ⁇ , the output waveguide 2122 Some detection signals cannot interfere constructively, so the output power is not the maximum, and the phased array transmitter 100 shifts the position of the optical signal emitted in space by 0 angle.
  • the detector 213 may be an optical receiver.
  • the detector 213 is configured to receive the total signal output by the star coupler 212, convert the total signal into an electrical signal, and output it to the signal processing unit 220. Specifically, the detector 213 converts into an electrical signal according to the phase relationship of the total signal.
  • the signal processing unit 220 may be a control processing circuit.
  • the input terminal of the signal processing unit 220 is connected to the detector 213, and the output terminal of the signal processing unit 220 is connected to the input terminal of the driving circuit 230.
  • the signal processing unit 220 is configured to generate a control signal according to the electrical signal, and output it to the driving circuit 230.
  • the signal processing unit 220 includes a voltage conversion module 221 and a digital-to-analog conversion module 222.
  • the voltage conversion module 221 may be a multivariable algorithm module, and the digital-to-analog conversion module may be a multiple-channel digital-to-analog converter.
  • the voltage conversion module 221 is connected to the detection unit 213, and the digital-to-analog conversion module 222 is connected to the voltage conversion module 221 and the driving circuit 230, respectively.
  • the voltage conversion module 221 is configured to convert the electrical signal output by the detection unit 213 into a voltage value and output it to the digital-to-analog conversion module 222.
  • the digital-to-analog conversion module 222 is configured to generate a control signal according to the voltage value output by the voltage conversion module 221 and a preset initial state, and output the control signal to the driving circuit 230.
  • the preset initial state may be a preset voltage value when the phase difference between the phase shifters 122 is zero.
  • the specific implementation manner for the digital-to-analog conversion module 222 to generate the control signal may be: compare the voltage value output by the voltage conversion module 221 with the preset voltage value, and if the voltage value is not equal to the preset voltage value, calculate the voltage value and the preset voltage The difference between the values, and the control signal is obtained according to the difference.
  • the voltage conversion module 221 can be implemented by FPGA, and the specific algorithm can be a multivariable optimization algorithm such as particle swarm algorithm, and the objective function is set to the current value or the maximum voltage value output by the detector 213.
  • the driving circuit 230 may be a multi-channel driving circuit.
  • the input terminal of the driving circuit 230 is connected to the output terminal of the digital-to-analog conversion module 222, and the output terminal of the driving circuit 230 is connected to each phase shifter 122.
  • the driving circuit 230 is used to control each phase shifter 122 in the phased array transmitter 100 according to the control signal output by the digital-to-analog conversion module 222, so that the phase difference between the optical signals in the phased array transmitter 100 is Is 0, so that the phase calibration of the phased array transmitting device 100 is realized.
  • one drive of the drive circuit 230 may not necessarily achieve the phase calibration of the phased array transmitter 100.
  • the detection unit 210, the signal processing unit 220, and the drive circuit 230 continue to work.
  • By adjusting the phase shifter 122 multiple times If it is possible to obtain a phase arrangement with a phase difference of 0, the phased array transmitting device 100 meets the preset initial state, thereby completing the phase calibration of the phased array transmitting device 100.
  • the phase array detection apparatus 200 may further include: an initial state storage unit 240.
  • the initial state storage unit 240 is connected to the digital-analog conversion module 222 in the signal processing unit 220.
  • the initial state storage unit 240 is used to store the preset initial state, and the digital-analog conversion module 222 is also used to obtain the preset initial state from the initial state storage unit 240. status.
  • the detection unit 210, the signal processing unit 220, the driving circuit 230, and the initial state storage unit 240 may be integrated on the same chip, for example, processed based on a silicon-based CMOS process, thereby effectively reducing the size of the radar 300 and improving Degree of integration.
  • the phased array detection device 200 receives multiple detection signals output by the phased array transmission device 100 through the detection unit 210, and converts the multiple detection signals into electrical signals, and the signal processing unit 220 generates Control signal, the drive circuit 230 is used to drive the phase shifter 122 of the phased array transmitter 100 according to the control signal until the phase difference between the optical signals in the phased array transmitter 100 is 0, so as to realize the phased array emission
  • the phase calibration of the device 100 can calibrate the phased array without the need for an external camera and manual modulation.
  • the phased array detection device 200 can complete the on-chip calibration work only by receiving weak signals that are not emitted by the phased array transmitter 100 without affecting the normal operation of the phased array transmitter 100.
  • Fig. 6 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present application.
  • the automatic driving device 500 includes a laser radar 300 and a vehicle body 400, and the laser radar 300 is provided on the vehicle body 400.
  • the structure and function of the lidar 300 in this embodiment are the same as those of the lidar 300 in the above-mentioned embodiment.
  • the automatic driving device 500 can detect the position and distance of surrounding objects, and make decisions based on the position and distance of the surrounding objects, thereby enabling automatic driving and the like.
  • the phased array calibration is achieved by the lidar 300 in the automatic driving equipment 500, without external cameras and manual modulation, and the phased array detection device 200 only receives the phased array transmitter 100 and does not emit
  • the on-chip calibration can be completed by the weak signal of, without affecting the normal operation of the phased array transmitter 100.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features Features are indirectly contacted through intermediaries.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the first feature "below”, “below” and “below” the second feature can mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种相控阵检测装置(200)、激光雷达(300)和自动驾驶设备(500)。其中,相控阵检测装置(200)用于校准相控阵发射装置(100),包括:探测单元(210),设于相控阵发射装置(100)的输出端,用于接收相控阵发射装置(100)输出的多个探测信号,并将多个探测信号转换为电信号,其中,多个探测信号为相控阵发射装置(100)发射的全部光信号的一部分;信号处理单元(220),与探测单元(210)连接,用于根据电信号,生成控制信号;驱动电路(230),分别与信号处理单元(220)、相控阵发射装置(100)连接,用于根据控制信号,驱动相控阵发射装置(100);探测单元(210)、信号处理单元(220)和驱动电路(230)持续工作直至相控阵发射装置(100)满足预设初始状态。通过该相控阵检测装置(200),能够校准相控阵,且无需外接摄像头和人工调制。

Description

相控阵检测装置、激光雷达和自动驾驶设备 技术领域
本申请涉及雷达技术领域,特别涉及一种相控阵检测装置、激光雷达和自动驾驶设备。
背景技术
激光雷达是以发射激光光束来探测目标的位置、速度等特征向量的雷达系统,其广泛应用于大气探测、城市测绘、海洋探测、自动驾驶、机器人技术、激光电视、激光三维成像等技术领域。
目前,相控阵激光雷达通过多个发射单元发射的光束,在空间上产生干涉形成远场光束,通过远场光束来实现物体探测,然后再通过调整发射单元所发射的光的相位差的大小,来调整远场光束的方向,从而实现360度扫描。
但是,在本申请发明人实现本申请的过程中,发现:相控阵激光雷达的光学相控阵存在相位误差,导致光斑成像质量很差,而目前校准相控阵通常采用外接摄像头接收光斑图像,将光斑图像转换为光斑的强度分布后,再通过算法来调整移相器,以得到理想的光斑分布。这种方法不仅需要外接摄像头,还需要人工调制。
发明内容
本申请实施例的目的在于提供一种相控阵检测装置、激光雷达和自动驾驶设备,能够校准相控阵,且无需外接摄像头和人工调制。
根据本申请实施例的一个方面,提供了一种相控阵检测装置,用于校准相控阵发射装置,所述相控阵检测装置包括:探测单元,设于所述相控阵发射装置的输出端,用于接收所述相控阵发射装置输出的多个探测信号,并将所述多个探测信号转换为电信号,其中,所述多个探测信号为所述相控阵发射装置发射的全部光信号的一部分;信号处理单元,与所述探测单元连接,用于根据所述电信号,生成控制信号;驱动电路,分别与所述信号处理单元、所述相控阵发射装置连接,用于根据所述控制信号,驱动所述相控阵发射装置;所述探测 单元、信号处理单元和驱动电路持续工作直至所述相控阵发射装置满足预设初始状态。
在一种可选的方式中,所述探测单元包括:若干阵列波导,设于所述相控阵发射装置的输出端,用于接收所述相控阵发射装置输出的所述多个探测信号;星型耦合器,设于所述若干阵列波导的输出端,用于将所述多个探测信号合成一总信号;探测器,设于所述星型耦合器的输出端,用于将所述总信号转换为所述电信号,并输出至所述信号处理单元。
在一种可选的方式中,所述星型耦合器设有若干输入波导和一输出波导,一所述输入波导分别连接一所述阵列波导,一所述输出波导连接所述探测器的输入端;所述输入波导将所述多个探测信号传输到所述输出波导,以使所述多个探测信号在所述输出波导合成为所述总信号。
在一种可选的方式中,各所述输入波导均匀排布在一圆弧上,所述输出波导设于所述圆弧的圆心,以使各所述输入波导到所述输出波导的距离相同。
在一种可选的方式中,各所述探测信号在所述星型耦合器中传播的距离相同。
在一种可选的方式中,所述信号处理单元包括:电压转换模块,与所述探测单元连接,用于将所述电信号转换为电压值;数模转换模块,与所述电压转换模块连接,用于根据所述电压值以及所述预设初始状态,生成所述控制信号,并输出至所述驱动电路。
在一种可选的方式中,所述装置还包括:初始状态存储单元,与所述信号处理单元连接,用于储存所述预设初始状态。
根据本申请实施例的再一个方面,提供了一种激光雷达,包括相控阵发射装置、相控阵接收装置、以及如上所述的相控阵检测装置,相控阵发射装置与所述相控阵检测装置连接,所述相控阵发射装置用于发射光信号,所述相控阵接收装置用于接收被测物体所反射的光信号。
在一种可选的方式中,所述相控阵发射装置包括:激光单元,用于输出激光信号;相控阵单元,设于所述激光单元的输出端,用于将所述激光信号分成若干光信号,并分别发射到空间中的不同位置;所述探测单元与所述相控阵单元连接。
在一种可选的方式中,所述相控阵单元包括:分光器,设于所述激光单元 的输出端;若干移相器,设于所述分光器的输出端;若干发射天线,设于所述若干移相器的输出端,并连接所述探测单元。
根据本申请实施例的又一个方面,提供了一种自动驾驶设备,包括上述的激光雷达以及车体,所述激光雷达设置于所述车体。
在本申请实施例中,通过探测单元接收相控阵发射装置输出的多个探测信号,并将多个探测信号转换为电信号,信号处理单元根据电信号生成控制信号,驱动电路用于根据控制信号驱动相控阵发射装置100的移相器,直至相控阵发射装置中各路光信号之间的相位差为0,从而实现相控阵发射装置的相位校准,能够校准相控阵,且无需外接摄像头和人工调制。并且,相控阵检测装置仅仅接收相控阵发射装置没有发射出去的微弱信号就可以完成芯片上校准工作,不会对相控阵发射装置的正常工作产生影响。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出了本申请实施例提供的一种激光雷达的结构示意图;
图2示出了本申请实施例提供的一种相控阵单元的结构示意图;
图3示出了本申请实施例提供的一种相控阵检测装置的结构示意图;
图4示出了本申请实施例提供的一种相控阵检测装置的结构示意图;
图5示出了图4中的星型耦合器的结构示意图;
图6示出了本申请实施例提供的一种自动驾驶设备的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
图1示出了本申请实施例提供的一种激光雷达的结构示意图。该激光雷达300包括相控阵发射装置100和相控阵检测装置200。
其中,相控阵发射装置100与相控阵检测装置200连接,相控阵发射装置100用于发射若干光源信号,相控阵检测装置200用于校准相控阵发射装置100,以使相控阵发射装置100满足预设初始状态。
具体地,相控发射装置100包括:激光单元110和相控阵单元120。相控阵单元120设于激光单元110的输出端,激光单元110用于输出激光信号,相控阵单元120用于将激光信号分成若干光信号,并分别发射到空间中的不同位置。相控阵单元120还与相控阵检测装置200连接。
其中,激光单元110可以为固定波长的激光器阵列。例如,固定波长的激光器阵列有红宝石激光器、掺钕钇铝石榴石激光器、氦氖激光器、氩离子激光器、集成于芯片的激光器等。在本实施例中,激光单元110产生若干激光信号,并将该激光信号输出至相控阵单元120。
在一些其他实施例中,激光单元110还可以为可调谐激光器,可以根据实际应用需求进行选择。
其中,如图2所示,相控阵单元120包括:分光器121、若干移相器122和若干发射天线123。分光器121设于激光单元110的输出端,若干移相器122设于分光器121的输出端,若干发射天线123设于若干移相器122的输出端。
其中,分光器121即光分路器。分光器121的输入端与激光单元110的输出端连接,分光器121的输出端与若干移相器122的输入端连接。其中,分光器121设有多个输出端,每个输出端均与一移相器122的输入端连接。例如,如图2所示,分光器121设有j个输出端,j个输出端与j个移相器122对应连接。
在本实施例中,分光器121用于将激光单元110输出的激光信号分成若干光信号,并将该若干光信号分别输出至若干移相器122。其中,分光器121对于激光信号进行平均分配,以使每一输出端输出的光信号是相同的。
其中,若干移相器122的输入端与分光器121的输出端连接,若干移相器122的输出端与若干发射天线123的输入端连接。在本实施例中,每个移相器122均接收分光器121输出的一光信号,并对该光信号进行相位调制,以改变光信号的相位。
其中,若干发射天线123的输入端与若干移相器122的输出端对应连接,例如,如图2所示,移相器122的数量为j,发射天线123的数量为j,j个发 射天线123与j个移相器122对应连接。在本实施例中,若干发射天线123用于接收若干移相器122输出的若干光信号,并将该若干光信号发射到空间中的不同位置。即,每一发射天线123接收一移相器122输出的一光信号,并将光信号的一部分发射到空间。
其中,若干发射天线123还与相控阵检测装置200连接,若干发射天线123还用于将光信号的另一部分传输至相控阵检测装置200,以使相控阵检测装置200根据该光信号的另一部分对相控阵发射装置100进行校准。
其中,若干发射天线123可以为波导光栅结构。
在一些实施例中,该激光雷达300还包括:相控阵接收装置。相控阵发射装置100用于发射光信号,相控阵接收装置用于接收被测物体所反射的光信号。
在一些实施例中,该激光雷达300还可以包括:连接波导。连接波导根据需要设于各种器件之间,以实现光束的传播,并减少传播过程中的损耗。
在一些实施例中,相控阵单元120和相位检测装置200可以集成在同一芯片上,例如基于硅基CMOS工艺进行加工,从而有效减小激光雷达300的尺寸,提高集成度。
在本申请实施例中,通过在激光雷达300上设置相控阵发射装置100和相控阵检测装置200,相控阵检测装置200将相控阵发射装置100输出的少量的光信号导出,既可以对相控阵发射装置100进行校准,又不影响相控阵发射装置100的正常工作。
图3示出了本申请实施例提供的一种相控阵检测装置的结构示意图。该相控阵检测装置200用于校准相控阵发射装置100,如图3所示,该相控阵检测装置200包括:探测单元210、信号处理单元220和驱动电路230。
其中,探测单元210设于相控阵发射装置100的输出端,信号处理单元220与探测单元210连接,驱动电路230分别与信号处理单元220、相控阵发射装置100连接。探测单元210用于接收相控阵发射装置100输出的多个探测信号,并将多个探测信号转换为电信号,其中,多个探测信号为相控阵发射装置100发射的全部光源信号的一部分;信号处理单元220用于根据电信号,生成控制信号;驱动电路230用于根据控制信号,驱动相控阵发射装置100。探测单元210、信号处理单元220和驱动电路230持续工作直至相控阵发射装置100满足预设 初始状态。通过以上方式,该相控阵检测装置200能够校准相控阵,且无需外接摄像头和人工调制。
探测单元210的输入端与相控阵发射装置100的输出端连接,探测单元210的输出端与信号处理单元120的输入端连接。在本实施例中,相控阵发射装置100发射多个光信号,其中,多个光信号的一部分发射到自由空间中,多个光信号的另一部分作为多个探测信号分别传输至探测单元210,探测单元210接收相控阵装置100输出的多个探测信号,并根据各个探测信号生成电信号,并将电信号输出至信号处理单元220。
具体地,如图4所示,探测单元210可以包括:若干阵列波导211、星型耦合器212和探测器213。若干阵列波导211设于相控阵发射装置100的输出端,星型耦合器212设于若干阵列波导211的输出端,探测器213设于星型耦合器212的输出端。
其中,阵列波导211的数量与相控阵发射装置100的发射天线123的数量相同,一阵列波导211的输入端连接一发射天线123的输出端,一阵列波导211的输出端连接星型耦合器212的输入端。例如,如图4所示,阵列波导211和发射天线123的数量均为j个,j个阵列波导211和j个发射天线123对应连接,j为大于2的整数。在本实施例中,阵列波导211将发射天线123末端的一部分没有发射出去的光信号导出作为探测信号,从而接收相控阵发射装置100输出的多个探测信号。
需要说明的是,发射天线123和若干阵列波导211不会引起额外的相位误差,并且进入星型耦合器212的各个探测信号的强度相同。
星型耦合器212的输入端与若干阵列波导211的输出端连接,星型耦合器212的输出端与探测器213的输入端连接。星型耦合器212用于将若干阵列波导211输出的多个探测信号合成一总信号,并输出至探测器213。
具体的,如图5所示,星型耦合器212设有若干输入波导2121和一输出波导2122,一输入波导2121分别连接一阵列波导211,一输出波导2122连接探测器213的输入端。其中,各输入波导2121均匀排布在一圆弧上,各输入波导2121之间的间距一致,输出波导2122设于圆弧的圆心,以使各输入波导2121到输出波导2122的距离相同,各输入波导2121的方向平行于圆心的连接线,以使探测信号在星型耦合器212中传播的距离都相等,不会引起额外的相位差。 因此,探测信号能否干涉相长,完全取决于相控阵发射装置100中的移相器造成的相位。
在本实施例中,一输入波导2121接收一探测信号,则若干输入波导2121接收若干探测信号,全部输入波导2121将多个探测信号传输到输出波导2122,以使多个探测信号在输出波导合成为总信号。
其中,星型耦合器212输出的总信号的强度大小由多个探测信号的相位关系决定,当多个探测信号的相位差为2π的整数倍时,多个探测信号会在输出波导2122干涉相长,使得输出功率最大,此时,相控阵发射装置100向空间中的0角度的位置发射光信号;而当多个探测信号的相位差为不为2π的整数倍时,输出波导2122中有部分探测信号不能干涉相长,则输出功率不是最大,相控阵发射装置100向空间中发射的光信号偏移0角度的位置。
其中,探测器213可以为光接收器。探测器213用于接收星型耦合器212输出的总信号,并将总信号转换为电信号,并输出至信号处理单元220。具体的,探测器213根据总信号的相位关系转换为电信号。
信号处理单元220可以为控制处理电路。信号处理单元220的输入端与探测器213连接,信号处理单元220的输出端与驱动电路230的输入端连接。信号处理单元220用于根据电信号,生成控制信号,并输出至驱动电路230。
具体的,请再参阅图4,信号处理单元220包括电压转换模块221和数模转换模块222。其中,电压转换模块221可以为多变量算法模块,数模转换模块可以为多路数模转换器。电压转换模块221与探测单元213连接,数模转换模块222分别与电压转换模块221、驱动电路230连接。电压转换模块221用于将探测单元213输出的电信号转换为电压值,并输出至数模转换模块222。数模转换模块222用于根据电压转换模块221输出的电压值以及预设初始状态,生成控制信号,并输出至驱动电路230。其中,预设初始状态可以为使得移相器122之间相位差为0时的预设电压值。则数模转换模块222生成控制信号具体实施方式可以为:将电压转换模块221输出的电压值分别与预设电压值比较,若电压值不等于预设电压值,则计算电压值与预设电压值的差值,并根据其差值得到控制信号。
其中,电压转换模块221可以采用FPGA实现,具体算法可以使用粒子群算法等多变量优化算法,并将目标函数设置为探测器213输出的电流值或电压值 最大。
驱动电路230可以为多路驱动电路。驱动电路里230的输入端与数模转换模块222的输出端连接,驱动电路230的输出端与各个移相器122连接。驱动电路230用于根据数模转换模块222输出的控制信号,分别控制相控阵发射装置100中的各个移相器122,以使得相控阵发射装置100中各路光信号之间的相位差为0,从而实现相控阵发射装置100的相位校准。
需要说明的是,驱动电路230进行一次驱动并不一定能够实现相控阵发射装置100的相位校准,探测单元210、信号处理单元220和驱动电路230持续工作,通过多次调节移相器122,使其能够得到相位差为0的相位排布,则相控阵发射装置100满足预设初始状态,从而完成相控阵发射装置100的相位校准。
在一些实施例中,请再参阅图4,相位阵检测装置200还可以包括:初始状态存储单元240。初始状态存储单元240与信号处理单元220中的数模转换模块222连接,初始状态存储单元240用于储存预设初始状态,数模转换模块222还用于从初始状态存储单元240获取预设初始状态。
在一些实施例中,探测单元210、信号处理单元220、驱动电路230和初始状态存储单元240可以集成在同一芯片上,例如基于硅基CMOS工艺进行加工,从而有效减小雷达300的尺寸,提高集成度。
在本申请实施例中,相控阵检测装置200通过探测单元210接收相控阵发射装置100输出的多个探测信号,并将多个探测信号转换为电信号,信号处理单元220根据电信号生成控制信号,驱动电路230用于根据控制信号驱动相控阵发射装置100的移相器122,直至相控阵发射装置100中各路光信号之间的相位差为0,从而实现相控阵发射装置100的相位校准,能够校准相控阵,且无需外接摄像头和人工调制。并且,相控阵检测装置200仅仅接收相控阵发射装置100没有发射出去的微弱信号就可以完成芯片上校准工作,不会对相控阵发射装置100的正常工作产生影响。
图6示出了本申请实施例提供的一种自动驾驶设备的结构示意图。如图6所示,自动驾驶设备500包括激光雷达300和车体400,激光雷达300设置于车体400。
其中,本实施例中的激光雷达300与上述实施例中的激光雷达300的结构 和功能均相同,对于激光雷达300的具体结构和功能可参阅上述实施例,此处不再一一赘述。
对于自动驾驶设备500能够探测周边物体的方位和距离,并且基于周边物体的方位和距离进行决策,从而能够实现自动驾驶等等。
在本申请实施例中,通过自动驾驶设备500中的激光雷达300实现相控阵的校准,无需外接摄像头和人工调制,并且,相控阵检测装置200仅仅接收相控阵发射装置100没有发射出去的微弱信号就可以完成芯片上校准工作,不会对相控阵发射装置100的正常工作产生影响。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本实施新型实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本实施新型实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本实施新型实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一 特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种相控阵检测装置(200),其特征在于,用于校准相控阵发射装置(100),所述相控阵检测装置(200)包括:
    探测单元(210),设于所述相控阵发射装置(100)的输出端,用于接收所述相控阵发射装置(100)输出的多个探测信号,并将所述多个探测信号转换为电信号,其中,所述多个探测信号为所述相控阵发射装置发射的全部光信号的一部分;
    信号处理单元(220),与所述探测单元(210)连接,用于根据所述电信号,生成控制信号;
    驱动电路(230),分别与所述信号处理单元(220)、所述相控阵发射装置(100)连接,用于根据所述控制信号,驱动所述相控阵发射装置(100);
    所述探测单元(210)、信号处理单元(220)和驱动电路(230)持续工作直至所述相控阵发射装置(100)满足预设初始状态。
  2. 根据权利要求1所述的装置(200),其特征在于,所述探测单元(210)包括:
    若干阵列波导(211),设于所述相控阵发射装置(100)的输出端,用于接收所述相控阵发射装置(100)输出的所述多个探测信号;
    星型耦合器(212),设于所述若干阵列波导(211)的输出端,用于将所述多个探测信号合成一总信号;
    探测器(213),设于所述星型耦合器(212)的输出端,用于将所述总信号转换为所述电信号,并输出至所述信号处理单元(220)。
  3. 根据权利要求2所述的装置(200),其特征在于,所述星型耦合器(212)设有若干输入波导(2121)和一输出波导(2122),一所述输入波导(2121)分别连接一所述阵列波导(211),一所述输出波导(2122)连接所述探测器(213)的输入端;
    所述输入波导(2121)将所述多个探测信号传输到所述输出波导(2122),以使所述多个探测信号在所述输出波导(2122)合成为所述总信号。
  4. 根据权利要求3所述的装置(200),其特征在于,各所述输入波导(2121)均匀排布在一圆弧上,所述输出波导(2122)设于所述圆弧的圆心,以使各所述输入波导(2121)到所述输出波导(2122)的距离相同。
  5. 根据权利要求3所述的装置(200),其特征在于,各所述探测信号在所述星型耦合器(212)中传播的距离相同。
  6. 根据权利要求1所述的装置(200),其特征在于,所述信号处理单元(220)包括:
    电压转换模块(221),与所述探测单元(210)连接,用于将所述电信号转换为电压值;
    数模转换模块(222),与所述电压转换模块(221)连接,用于根据所述电压值以及所述预设初始状态,生成所述控制信号,并输出至所述驱动电路(230)。
  7. 根据权利要求1-6任一项所述的装置(200),其特征在于,所述装置(200)还包括:
    初始状态存储单元(240),与所述信号处理单元(220)连接,用于储存所述预设初始状态。
  8. 一种激光雷达(300),其特征在于,包括相控阵发射装置(100)、相控阵接收装置、以及如权利要求1-7任一项所述的相控阵检测装置(200),相控阵发射装置(100)与所述相控阵检测装置(200)连接,所述相控阵发射装置(100)用于发射光信号,所述相控阵接收装置用于接收被测物体所反射的光信号。
  9. 根据权利要求8所述的激光雷达(300),其特征在于,
    所述相控阵发射装置(100)包括:
    激光单元(110),用于输出激光信号;
    相控阵单元(120),设于所述激光单元(110)的输出端,用于将所述激光 信号分成若干光信号,并分别发射到空间中的不同位置;
    所述探测单元(210)与所述相控阵单元(120)连接。
  10. 根据权利要求9所述的激光雷达(300),其特征在于,所述相控阵单元(120)包括:
    分光器(121),设于所述激光单元(110)的输出端;
    若干移相器(122),设于所述分光器(121)的输出端;
    若干发射天线(123),设于所述若干移相器(122)的输出端,并连接所述探测单元(210)。
  11. 一种自动驾驶设备(500),其特征在于,包括如权利要求8-10任一项所述的激光雷达(300)以及车体(400),所述激光雷达(300)设置于所述车体(400)。
PCT/CN2019/096769 2019-07-19 2019-07-19 相控阵检测装置、激光雷达和自动驾驶设备 WO2021012088A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/096769 WO2021012088A1 (zh) 2019-07-19 2019-07-19 相控阵检测装置、激光雷达和自动驾驶设备
CN201980002796.5A CN110720049A (zh) 2019-07-19 2019-07-19 相控阵检测装置、激光雷达和自动驾驶设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096769 WO2021012088A1 (zh) 2019-07-19 2019-07-19 相控阵检测装置、激光雷达和自动驾驶设备

Publications (1)

Publication Number Publication Date
WO2021012088A1 true WO2021012088A1 (zh) 2021-01-28

Family

ID=69216673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096769 WO2021012088A1 (zh) 2019-07-19 2019-07-19 相控阵检测装置、激光雷达和自动驾驶设备

Country Status (2)

Country Link
CN (1) CN110720049A (zh)
WO (1) WO2021012088A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111399305A (zh) * 2020-04-02 2020-07-10 中国科学院微电子研究所 一种用于光学相控阵芯片的接口、芯片和相位调制方法
CN111965623B (zh) * 2020-07-02 2023-03-10 深圳市速腾聚创科技有限公司 探测器检测方法及系统
CN111781580B (zh) * 2020-07-09 2023-04-14 香港中文大学(深圳) 一种相控阵馈相控制电路、方法、装置及系统
CN114391200A (zh) * 2020-07-31 2022-04-22 深圳市速腾聚创科技有限公司 相控阵的相位校准方法、装置、存储介质及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408507B1 (en) * 2005-03-15 2008-08-05 The United States Of America As Represented By The Secretary Of The Navy Antenna calibration method and system
CN106501791A (zh) * 2016-11-18 2017-03-15 深圳市速腾聚创科技有限公司 相控阵激光雷达及相控阵激光雷达控制方法
CN108363051A (zh) * 2018-01-26 2018-08-03 北京航空航天大学 一种用于光学相控阵光束扫描的自适应标定系统
CN109444849A (zh) * 2018-11-19 2019-03-08 深圳市速腾聚创科技有限公司 相控阵激光雷达
CN109633608A (zh) * 2019-01-16 2019-04-16 浙江大学 一种光波导相控阵激光雷达
CN109765437A (zh) * 2019-03-06 2019-05-17 鹰视云(深圳)科技有限公司 一种全空域相控阵天线的模拟曲面校准系统及方法
CN109782299A (zh) * 2019-02-14 2019-05-21 深圳市迈测科技股份有限公司 一种固态激光雷达装置
CN208888366U (zh) * 2018-10-16 2019-05-21 上海汽车集团股份有限公司 车辆雷达系统
CN109901263A (zh) * 2019-01-29 2019-06-18 浙江大学 一种基于共用电极的硅基集成光学相控阵芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656090B (zh) * 2015-02-06 2017-02-01 浙江大学 基于波长路由的光控相阵雷达系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408507B1 (en) * 2005-03-15 2008-08-05 The United States Of America As Represented By The Secretary Of The Navy Antenna calibration method and system
CN106501791A (zh) * 2016-11-18 2017-03-15 深圳市速腾聚创科技有限公司 相控阵激光雷达及相控阵激光雷达控制方法
CN108363051A (zh) * 2018-01-26 2018-08-03 北京航空航天大学 一种用于光学相控阵光束扫描的自适应标定系统
CN208888366U (zh) * 2018-10-16 2019-05-21 上海汽车集团股份有限公司 车辆雷达系统
CN109444849A (zh) * 2018-11-19 2019-03-08 深圳市速腾聚创科技有限公司 相控阵激光雷达
CN109633608A (zh) * 2019-01-16 2019-04-16 浙江大学 一种光波导相控阵激光雷达
CN109901263A (zh) * 2019-01-29 2019-06-18 浙江大学 一种基于共用电极的硅基集成光学相控阵芯片
CN109782299A (zh) * 2019-02-14 2019-05-21 深圳市迈测科技股份有限公司 一种固态激光雷达装置
CN109765437A (zh) * 2019-03-06 2019-05-17 鹰视云(深圳)科技有限公司 一种全空域相控阵天线的模拟曲面校准系统及方法

Also Published As

Publication number Publication date
CN110720049A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2021012088A1 (zh) 相控阵检测装置、激光雷达和自动驾驶设备
US11880000B2 (en) Switchable coherent pixel array for frequency modulated continuous wave light detection and ranging
CN110109083B (zh) 基于一维光相控阵的三维扫描激光雷达
US10634973B2 (en) Two-dimensional optical phased array
CN115639543B (zh) 调频连续波激光雷达及自动驾驶设备
WO2021012083A1 (zh) 相控阵发射装置、激光雷达和自动驾驶设备
US20220050187A1 (en) Scan-less 3d optical sensing devices and associated lidar based on stacking of integrated photonic chips, wavelength division demultiplexing and position-to-angle conversion of a lens
US20190154810A1 (en) Distance measuring sensor
CN112034657B (zh) 全固态芯片化大角度光学波束成形系统
CN115542345A (zh) Fmcw激光雷达、自动驾驶系统及可移动设备
CN111856481B (zh) 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN114791611A (zh) 调频连续波激光雷达
WO2021012084A1 (zh) 相控阵发射装置、激光雷达和自动驾驶设备
US11589140B2 (en) Optical beamforming device using phased array antenna and operating method thereof
CN116755189B (zh) 硅光芯片、激光雷达及可移动设备
US11927695B2 (en) Phased array emission apparatus, LiDAR, and automated driving device
US8508408B2 (en) Method and apparatus for reconfiguring a photonic TR beacon
CN115685136A (zh) 光学相控阵芯片及相控阵激光雷达
GB2267603A (en) Electronically scannable array of antenna elements.
WO2020215181A1 (zh) 相控阵发射阵列、相控阵接收阵列、雷达和智能感应设备
CN217902184U (zh) 一种用于激光检测装置的光源调节机构
CN220043424U (zh) 一种利用波分复用器的收发共轴紧凑激光收发装置
CN115065406B (zh) 一种阵列多波束并行无线激光通信系统及方法
CN220525999U (zh) 双波长激光测距仪
WO2023207600A1 (zh) 调频连续波激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938337

Country of ref document: EP

Kind code of ref document: A1