WO2021012085A1 - 一种智能制造系统 - Google Patents

一种智能制造系统 Download PDF

Info

Publication number
WO2021012085A1
WO2021012085A1 PCT/CN2019/096765 CN2019096765W WO2021012085A1 WO 2021012085 A1 WO2021012085 A1 WO 2021012085A1 CN 2019096765 W CN2019096765 W CN 2019096765W WO 2021012085 A1 WO2021012085 A1 WO 2021012085A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
detection unit
processing detection
intelligent manufacturing
global positioning
Prior art date
Application number
PCT/CN2019/096765
Other languages
English (en)
French (fr)
Inventor
刘锦潮
Original Assignee
爱佩仪测量设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 爱佩仪测量设备有限公司 filed Critical 爱佩仪测量设备有限公司
Priority to CN201980004462.1A priority Critical patent/CN111133395B/zh
Priority to PCT/CN2019/096765 priority patent/WO2021012085A1/zh
Publication of WO2021012085A1 publication Critical patent/WO2021012085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • G05B19/41895Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system using automatic guided vehicles [AGV]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32252Scheduling production, machining, job shop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of processing and manufacturing, in particular to an intelligent manufacturing system.
  • the existing intelligent manufacturing system has a small coverage area and the coordination between units is not flexible.
  • the existing intelligent manufacturing system relies on a large number of special processing equipment such as guide rails, displacement devices, tooling fixtures, checking fixtures, and drive units. These equipment not only occupy working space, are bulky and heavy, but also when the work object or product changes, Need to invest a lot of manpower and material resources to redesign the production line, and even have to directly discard the existing equipment; system accuracy needs to be shut down regularly for maintenance to correct system errors and drifts caused by operational shocks and environmental changes; a large number of consumables are needed to compensate the system Wear and consumption caused by operation.
  • the present invention proposes an intelligent manufacturing system, including a mobile motion unit, a processing detection unit, a global positioning unit, a networking coordination unit, and a system scheduling unit;
  • the mobile motion unit carries the processing detection unit and moves according to a predetermined trajectory
  • the processing detection unit performs detection, scanning, processing and process control of the work target;
  • the global positioning unit establishes a motion coordinate system to locate and guide the processing detection unit to move;
  • the networking coordination unit unites multiple global positioning units,
  • the coordinate system is unified to coordinate the operation of the mobile motion unit and the processing detection unit;
  • the system scheduling unit is used to allocate the work tasks of each work unit.
  • the mobile motion unit includes an AGV trolley, and the AGV trolley runs according to a ground detection path to perform system coarse positioning.
  • the processing detection unit includes a positioning shaft, a six-degree-of-freedom mechanical arm, and a structured light scanner; the positioning shaft is fixed to the mobile movement unit, the six-degree-of-freedom mechanical arm is slidably connected to the positioning shaft, and the structured light The scanner is installed at the end of the six-degree-of-freedom robotic arm.
  • the global positioning unit includes a tracker and a six-dimensional sensor; the tracker is used to determine the 3D or 6D position and posture of the end working unit of the processing detection unit; the six-dimensional sensor guides the processing detection unit to move in real time to perform Accuracy verification and compensation.
  • the global positioning unit further includes a fixed target, and the fixed target is used to periodically correct the position of the tracker and reposition the global coordinate system.
  • the networking coordination unit includes a 5G terminal module, a 5G cloud server, and a management terminal; the 5G terminal module is installed on the processing detection unit and the global positioning unit, and the 5G terminal module and the 5G cloud server implement communication between each unit.
  • the management terminal unifies each coordinate system and sends the unified coordinate data to each work unit.
  • the scheme management module performs registration, role assignment and scene control of virtual devices through the virtual device interface; realizes the operation simulation of the scheduling plan, or on-site real-time monitoring.
  • system scheduling unit includes a system health management unit, and the system health management unit detects system operating conditions in real time, makes predictions, and formulates a system maintenance plan.
  • the intelligent manufacturing system proposed by the present invention can be flexibly configured by combining mobile motion units and processing detection units of different specifications, adapting to various work tasks and scenarios, effectively improving processing efficiency, and reducing costs; through global positioning Units, network coordination units and system dispatch units can preview the management plan in the form of a virtual device network, and monitor and display the running status of the plan in real time to help plan adjustment and optimization.
  • Figure 1 is a schematic diagram of the structure of an intelligent manufacturing system
  • Figure 2 is a schematic diagram of the work unit structure
  • 1-work unit 2-tracker, 3-component under test, 4-six-dimensional sensor, 5-structured light scanning, 6-degree of freedom mechanical arm, 7-positioning axis, 8-AGV trolley.
  • an intelligent manufacturing system includes a mobile movement unit, a processing detection unit, a global positioning unit, a networking coordination unit, and a system scheduling unit;
  • the mobile movement unit carries the processing detection unit and moves according to a predetermined trajectory;
  • the processing detection unit performs detection, scanning, processing and process control of the work target;
  • the global positioning unit establishes a motion coordinate system to locate and direct the movement of the processing detection unit;
  • the networking coordination unit unites multiple global positioning units to unify the coordinates
  • the system coordinates the operation of the mobile motion unit and the processing detection unit; the system scheduling unit is used to allocate the work tasks of each work unit.
  • the mobile movement unit, the processing detection unit and the global positioning unit constitute a work unit 1 in the intelligent manufacturing system, and the work unit 1 detects and scans the tested part 3. According to processing requirements, the number of the working units 1 can be flexibly adjusted.
  • the mobile motion unit includes an AGV trolley 8, which runs according to a ground detection path to perform system coarse positioning.
  • the processing detection unit includes a positioning shaft 7, a six-degree-of-freedom mechanical arm 6 and a structured light scanner 5; the positioning shaft 7 is fixed to the mobile movement unit, and the six-degree-of-freedom mechanical arm 6 slides with the positioning shaft 7. Connected, the structured light scanner 5 is installed at the end of the six-degree-of-freedom mechanical arm 6.
  • the global positioning unit includes a tracker 2 and a six-dimensional sensor 4; the tracker 2 is used to determine the 3D or 6D position and posture of the end working unit of the processing detection unit; the six-dimensional sensor 4 guides processing detection in real time Unit movement, accuracy verification and compensation.
  • the global positioning unit further includes a fixed target, and the fixed target is used to periodically correct the position of the tracker and reposition the global coordinate system.
  • the tracker 2 can be installed upside down on the ceiling rack; it can also be fixed to the tripod on the ground; it can also be installed on the mobile mechanism, and the global coordinates can be repositioned by fixing the target on the ground after moving.
  • Tracker 2 can be used as a single unit or multiple units can work together to expand the range of motion of the mobile motion unit.
  • the networking coordination unit includes a 5G terminal module, a 5G cloud server, and a management terminal; the 5G terminal module is installed on the processing detection unit and the global positioning unit, and the 5G terminal module and the 5G cloud server implement communication between each unit.
  • the management terminal unifies each coordinate system and sends the unified coordinate data to each work unit.
  • the coordinate system mainly includes the robot arm base coordinate system and the laser tracker coordinate system.
  • the management terminal unifies the positions of the two coordinate systems to obtain the positioning of the robot arm base coordinate system in the global coordinate system, and further obtains that the working unit is in the same
  • the positioning information is transmitted to the mobile robot arm controller to control the operation of the robot arm.
  • the scheme management module performs registration, role assignment and scene control of virtual devices through the virtual device interface; realizes the operation simulation of the scheduling plan, or on-site real-time monitoring.
  • system scheduling unit includes a system health management unit, and the system health management unit detects system operating conditions in real time, makes predictions, and formulates a system maintenance plan.
  • the system can share solutions through cloud interaction and improve the self-learning ability of the system.
  • the six-degree-of-freedom manipulator 6 is positioned to the global coordinate system through the tracker 2 to compensate the positioning error of the AGV trolley 8;
  • the six-degree-of-freedom robotic arm 6 then scans and covers all reachable measurement areas according to the planned path.
  • the structured light scanner 5 at the end of the six-degree-of-freedom robotic arm 6 is positioned in real time by the tracker 2, and directly measures the points in the global coordinate system. Cloud data does not depend on the positioning accuracy of the six-free robotic arm 6.
  • the AGV trolley 8 can be automatically guided to the charging station for charging.
  • the program can be stored in a computer readable storage medium. When executed, it may include the processes of the above-mentioned method embodiments.
  • the storage medium can be a magnetic disk, an optical disk, ROM, RAM, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种智能制造系统,包括移动运动单元、加工检测单元、全局定位单元、组网协同单元和系统调度单元;移动运动单元承载加工检测单元,按预定轨迹运动;加工检测单元对工作目标进行检测、扫描、加工和过程控制;全局定位单元建立运动坐标系,定位、指引加工检测单元运动;组网协同单元联合多个全局定位单元,统一坐标系,协调移动运动单元和加工检测单元的运行;系统调度单元用于分配各工作单元工作任务。该方案能够灵活配置,适应各种工作任务、场景,有效提高工作效率,降低成本。

Description

一种智能制造系统 技术领域
本发明涉及加工制造领域,尤其涉及一种智能制造系统。
背景技术
大型加工场所通常需要大量人力维持,无疑会增加人力成本,而现有的智能制造系统,覆盖范围小,各单元之间配合不灵活。现有的智能制造系统依赖于大量专用加工设备如导轨、变位装置、工装夹具、检具,驱动单元,这些装备不但占用工作空间,体积和重量庞大,而且当工作对象或产品发生变化时,需要投入大量人力物力重新设计产线,甚至不得不直接废弃已有装备;系统精度需要定期停工维护,以修正运行冲击和环境变化带来的系统误差和漂移;需要大量的耗材,用于补偿系统运行造成的磨损和消耗。
发明概述
技术问题
问题的解决方案
技术解决方案
为了解决上述问题,本发明提出一种智能制造系统,包括移动运动单元、加工检测单元、全局定位单元、组网协同单元和系统调度单元;所述移动运动单元承载加工检测单元,按预定轨迹运动;所述加工检测单元对工作目标进行检测、扫描、加工和过程控制;所述全局定位单元建立运动坐标系,定位、指引加工检测单元运动;所述组网协同单元联合多个全局定位单元,统一坐标系,协调移动运动单元和加工检测单元的运行;所述系统调度单元用于分配各工作单元工作任务。
进一步的,所述移动运动单元包括AGV小车,所述AGV小车按照地面检测路径运行,执行系统粗定位。
进一步的,所述加工检测单元包括定位轴、六自由度机械臂和结构光扫描仪;所述定位轴固定在移动运动单元,所述六自由度机械臂与定位轴滑动连接,所 述结构光扫描仪安装于六自由度机械臂末端。
进一步的,所述全局定位单元包括跟踪仪和六维传感器;所述跟踪仪用于确定加工检测单元末端工作单元的3D或6D位置姿态;所述六维传感器实时导引加工检测单元运动,进行精度验证和补偿。
进一步的,所述全局定位单元还包括固定靶标,所述固定靶标用于定时修正跟踪仪位置,重新定位全局坐标系。
进一步的,所述组网协同单元包括5G终端模块、5G云服务器和管理终端;所述5G终端模块安装于加工检测单元和全局定位单元上,5G终端模块和5G云服务器实现各单元之间的数据交互,所述管理终端对各个坐标系进行统一,并将统一后的坐标数据发送至各工作单元。
进一步的,还包括方案管理模块和虚拟设备接口,所述方案管理模块通过虚拟设备接口对虚拟设备进行登记、角色分配和场景控制;实现调度计划的运行模拟,或现场实时监控。
进一步的,所述系统调度单元包括系统健康管理单元,所述系统健康管理单元实时检测系统运行状况,并进行预测,制定系统维护计划。
发明的有益效果
有益效果
本发明的有益效果在于:本发明提出的智能制造系统通过组合不同规格的移动运动单元和加工检测单元,能够灵活配置,适应各种工作任务、场景,有效提高加工效率,降低成本;通过全局定位单元,组网协调单元和系统调度单元,可以以虚拟设备网络的形式进行管理方案预览,方案运行状态实时监控显示,帮助方案调整、优化。
对附图的简要说明
附图说明
图1是智能制造系统结构示意图;
图2是工作单元结构示意图;
其中,1-工作单元,2-跟踪仪,3-被测零件,4-六维传感器,5-结构光扫描,6-六自由度机械臂,7-定位轴,8-AGV小车。
发明实施例
本发明的实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
如图1所示,一种智能制造系统,包括移动运动单元、加工检测单元、全局定位单元、组网协同单元和系统调度单元;所述移动运动单元承载加工检测单元,按预定轨迹运动;所述加工检测单元对工作目标进行检测、扫描、加工和过程控制;所述全局定位单元建立运动坐标系,定位、指引加工检测单元运动;所述组网协同单元联合多个全局定位单元,统一坐标系,协调移动运动单元和加工检测单元的运行;所述系统调度单元用于分配各工作单元工作任务。
所述移动移动运动单元、加工检测单元和全局定位单元组成智能制造系统中的一个工作单元1,工作单元1对被测零件3进行检测、扫描。根据加工需求,所述工作单元1的数量可灵活调整。
进一步的,所述移动运动单元包括AGV小车8,所述AGV小车8按照地面检测路径运行,执行系统粗定位。
进一步的,所述加工检测单元包括定位轴7、六自由度机械臂6和结构光扫描仪5;所述定位轴7固定在移动运动单元,所述六自由度机械臂6与定位轴7滑动连接,所述结构光扫描5仪安装于六自由度机械臂6末端。
进一步的,所述全局定位单元包括跟踪仪2和六维传感器4;所述跟踪仪2用于确定加工检测单元末端工作单元的3D或6D位置姿态;所述六维传感器4实时导引加工检测单元运动,进行精度验证和补偿。
进一步的,所述全局定位单元还包括固定靶标,所述固定靶标用于定时修正跟踪仪位置,重新定位全局坐标系。
根据现场建筑结构布设跟踪仪2,所述跟踪仪2可倒立安装于天花板行架;也可固定于地面的三脚架;也可安装在移动机构上,移动后通过地面固定靶标重新定位全局坐标。跟踪仪2可单台使用,也可多台联合工作,扩大移动运动单元的运动范围。
进一步的,所述组网协同单元包括5G终端模块、5G云服务器和管理终端;所 述5G终端模块安装于加工检测单元和全局定位单元上,5G终端模块和5G云服务器实现各单元之间的数据交互,所述管理终端对各个坐标系进行统一,并将统一后的坐标数据发送至各工作单元。
坐标系主要包括机械臂基座坐标系和激光跟踪仪坐标系,管理终端将两种坐标系的位置进行统一,得到机械臂基座坐标系在全局坐标系下的定位,进一步得到工作单元在同一坐标系下的定位,定位信息传输至移动机械臂控制器控制机械臂运行。
进一步的,还包括方案管理模块和虚拟设备接口,所述方案管理模块通过虚拟设备接口对虚拟设备进行登记、角色分配和场景控制;实现调度计划的运行模拟,或现场实时监控。
进一步的,所述系统调度单元包括系统健康管理单元,所述系统健康管理单元实时检测系统运行状况,并进行预测,制定系统维护计划。系统可通过云交互实现方案共享,提高系统自学能力。
本发明的一个系统工作流程实施例以扫描应用为例:
S1:根据工作要求规划AGV小车8运行路径和机械臂路径;
S2:驱动AGV小车8进入检测路径起点,执行粗定位;
S3:六自由度机械臂6通过跟踪仪2定位到全局坐标系,补偿AGV小车8的定位误差;
S4:六自由度机械臂6随后按照规划路径扫描覆盖所有可达测量区域,所述六自由度机械臂6末端结构光扫描仪5由跟踪仪2实时定位,直接测量得到全局坐标系下的点云数据,不依赖于六自由机械臂6的定位精度。
S5:完成一个工位后,进行下一个工位,重复上述步骤;
在工作过程中,AGV小车8能够自动导引到充电站充电。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和单元并不一定是本申请所必须的。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、ROM、RAM等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (8)

  1. 一种智能制造系统,其特征在于:包括移动运动单元、加工检测单元、全局定位单元、组网协同单元和系统调度单元;所述移动运动单元承载加工检测单元,按预定轨迹运动;所述加工检测单元对工作目标进行检测、扫描、加工和过程控制;所述全局定位单元建立运动坐标系,定位、指引加工检测单元运动;所述组网协同单元联合多个全局定位单元,统一坐标系,协调移动运动单元和加工检测单元的运行;所述系统调度单元用于分配各工作单元工作任务。
  2. 根据权利要求1所述的一种智能制造系统,其特征在于:所述移动运动单元包括AGV小车(8),所述AGV小车(8)按照地面检测路径运行,执行系统粗定位。
  3. 根据权利要求1所述的一种智能制造系统,其特征在于:所述加工检测单元包括定位轴(7)、六自由度机械臂(6)和结构光扫描仪(5);所述定位轴(7)固定在移动运动单元,所述六自由度机械臂(6)与定位轴(7)滑动连接,所述结构光扫描仪(5)安装于六自由度机械臂(6)末端。
  4. 根据权利要求1所述的一种智能制造系统,其特征在于:所述全局定位单元包括跟踪仪(2)和六维传感器(4);所述跟踪仪(2)用于确定加工检测单元末端工作单元的3D或6D位置姿态;所述六维传感器(4)实时导引加工检测单元运动,进行精度验证和补偿。
  5. 根据权利要求4所述的一种智能制造系统,其特征在于:所述全局定位单元还包括固定靶标,所述固定靶标用于定时修正跟踪仪位置,重新定位全局坐标系。
  6. 根据权利要求1所述的一种智能制造系统,其特征在于:所述组网协同单元包括5G终端模块、5G云服务器和管理终端;所述5G终端模块安装于加工检测单元和全局定位单元上,5G终端模块和5G云 服务器实现各单元之间的数据交互,所述管理终端对各个坐标系进行统一,并将统一后的坐标数据发送至各工作单元。
  7. 根据权利要求1所述的一种智能制造系统,其特征在于:还包括方案管理模块和虚拟设备接口,所述方案管理模块通过虚拟设备接口对虚拟设备进行登记、角色分配和场景控制;实现调度计划的运行模拟,或现场实时监控。
  8. 根据权利要求1所述的一种智能制造系统,其特征在于:所述系统调度单元包括系统健康管理单元,所述系统健康管理单元实时检测系统运行状况,并进行预测,制定系统维护计划。
PCT/CN2019/096765 2019-07-19 2019-07-19 一种智能制造系统 WO2021012085A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980004462.1A CN111133395B (zh) 2019-07-19 2019-07-19 一种智能制造系统
PCT/CN2019/096765 WO2021012085A1 (zh) 2019-07-19 2019-07-19 一种智能制造系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096765 WO2021012085A1 (zh) 2019-07-19 2019-07-19 一种智能制造系统

Publications (1)

Publication Number Publication Date
WO2021012085A1 true WO2021012085A1 (zh) 2021-01-28

Family

ID=70507754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096765 WO2021012085A1 (zh) 2019-07-19 2019-07-19 一种智能制造系统

Country Status (2)

Country Link
CN (1) CN111133395B (zh)
WO (1) WO2021012085A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319758A (zh) * 2022-03-14 2022-11-11 青岛大学 一种用于微波远场-近场扫描与成像任务的机械臂控制策略与优化方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113844675A (zh) * 2020-12-30 2021-12-28 上海飞机制造有限公司 一种检测系统和控制方法
CN112964196B (zh) * 2021-02-05 2023-01-03 杭州思锐迪科技有限公司 三维扫描方法、系统、电子装置和计算机设备
CN116437016B (zh) * 2023-06-13 2023-10-10 武汉中观自动化科技有限公司 物体扫描方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214588A (en) * 1989-05-02 1993-05-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for an fms line
EP0925157B1 (en) * 1996-09-03 2003-11-26 Amada Company Limited Apparatus and method for integrating intelligent manufacturing system with expert sheet metal planning and bending system
CN101268497A (zh) * 2005-09-14 2008-09-17 3M创新有限公司 监测来自制造过程的物品或材料的方法
CN206863574U (zh) * 2017-07-04 2018-01-09 武汉优力克自动化系统工程股份有限公司 一种用于生产线上车辆跟踪的定位装置
EP3364263A1 (en) * 2017-02-17 2018-08-22 Kollmorgen Automation AB Method for controlling the travel path of automated guided vehicles
CN109739187A (zh) * 2018-11-30 2019-05-10 惠州市德赛电池有限公司 一种基于直线电机的tco加工通用产线的控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108444383B (zh) * 2018-03-08 2019-06-28 大连理工大学 基于视觉激光组合式的加工过程一体化测量方法
CN108801142B (zh) * 2018-07-27 2020-10-16 复旦大学 一种特大尺寸工件双移动测量机器人系统及方法
CN109990701B (zh) * 2019-03-04 2020-07-10 华中科技大学 一种大型复杂曲面三维形貌机器人移动测量系统及方法
CN109916333A (zh) * 2019-04-04 2019-06-21 大连交通大学 一种基于agv的大尺寸目标高精度三维重建系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214588A (en) * 1989-05-02 1993-05-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for an fms line
EP0925157B1 (en) * 1996-09-03 2003-11-26 Amada Company Limited Apparatus and method for integrating intelligent manufacturing system with expert sheet metal planning and bending system
CN101268497A (zh) * 2005-09-14 2008-09-17 3M创新有限公司 监测来自制造过程的物品或材料的方法
EP3364263A1 (en) * 2017-02-17 2018-08-22 Kollmorgen Automation AB Method for controlling the travel path of automated guided vehicles
CN206863574U (zh) * 2017-07-04 2018-01-09 武汉优力克自动化系统工程股份有限公司 一种用于生产线上车辆跟踪的定位装置
CN109739187A (zh) * 2018-11-30 2019-05-10 惠州市德赛电池有限公司 一种基于直线电机的tco加工通用产线的控制系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115319758A (zh) * 2022-03-14 2022-11-11 青岛大学 一种用于微波远场-近场扫描与成像任务的机械臂控制策略与优化方法
CN115319758B (zh) * 2022-03-14 2024-01-30 青岛中电绿网新能源有限公司 一种用于微波远场-近场扫描与成像任务的机械臂控制策略与优化方法

Also Published As

Publication number Publication date
CN111133395A (zh) 2020-05-08
CN111133395B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
WO2021012085A1 (zh) 一种智能制造系统
US11282013B2 (en) Mobile vehicles in manufacturing
KR102342152B1 (ko) 환경 맵 생성 및 정렬을 위한 방법 및 시스템
US11846952B2 (en) Mobile robot platoon driving system and control method thereof
KR102028770B1 (ko) 로봇 프로그램의 자동 생성을 위한 시스템 및 방법
US20180117766A1 (en) Device, method, program and recording medium, for simulation of article arraying operation performed by robot
CN109196435B (zh) 稀疏网络下的多代理协调
EP3733355A1 (en) Robot motion optimization system and method
JP2016522089A (ja) 複雑な表面検査及び加工のための制御された自律型ロボットシステム
JP2021510433A (ja) ロボットの自律的動作計画及びナビゲーションのためのシステム並びに方法連邦政府による資金提供を受けた研究開発の記載
WO2018194834A1 (en) Determination of localization viability metrics for landmarks
KR20190044496A (ko) 자동화 장치
CN104354157A (zh) 一种轮胎搬运机器人及其控制方法
US20220100184A1 (en) Learning-based techniques for autonomous agent task allocation
CN114523475B (zh) 一种机器人装配系统误差自动标定与补偿装置及方法
CN102566552A (zh) 面向物联网和3d gis的公路隧道智能检修机器人
US20220390931A1 (en) Object Handling in an Absolute Coordinate System
CN116214531B (zh) 一种工业机器人的路径规划方法及装置
US20230050932A1 (en) Autonomous measuring robot system
CN108466264B (zh) 一种用于轨道板点云数据采集的机器人最优路径形成方法
CN112454354B (zh) 一种工业机器人的工作方法、装置及存储介质
CN202583824U (zh) 面向物联网和3d gis的公路隧道智能检修机器人
US20240094712A1 (en) Robot staging area management
CN220271771U (zh) 一种基于地图的轨道巡检机器人
RU2634069C2 (ru) Способ создания аппаратно-программного комплекса централизованного и децентрализованного управления группировкой робототехнических комплексов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938788

Country of ref document: EP

Kind code of ref document: A1