WO2021011958A1 - Compositions rafraîchissantes et méthodes de pulvérisation de compositions rafraîchissantes avec une cartouche microfluidique actionnée thermiquement - Google Patents

Compositions rafraîchissantes et méthodes de pulvérisation de compositions rafraîchissantes avec une cartouche microfluidique actionnée thermiquement Download PDF

Info

Publication number
WO2021011958A1
WO2021011958A1 PCT/US2020/070270 US2020070270W WO2021011958A1 WO 2021011958 A1 WO2021011958 A1 WO 2021011958A1 US 2020070270 W US2020070270 W US 2020070270W WO 2021011958 A1 WO2021011958 A1 WO 2021011958A1
Authority
WO
WIPO (PCT)
Prior art keywords
cas
composition
cartridge
microfluidic
less
Prior art date
Application number
PCT/US2020/070270
Other languages
English (en)
Inventor
Chisomaga Ugochi NWACHUKWU
Judith Ann Hollingshead
Andrew Joseph BUHRLAGE
Zaiyou Liu
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to CN202080045900.1A priority Critical patent/CN114007660A/zh
Priority to EP20750152.9A priority patent/EP3999125A1/fr
Priority to CA3145900A priority patent/CA3145900A1/fr
Priority to JP2021572631A priority patent/JP7464628B2/ja
Publication of WO2021011958A1 publication Critical patent/WO2021011958A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/02Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air by heating or combustion
    • A61L9/03Apparatus therefor
    • A61L9/032Apparatus therefor comprising a fan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/32Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/32Organic compounds
    • A61L2101/34Hydroxy compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/32Organic compounds
    • A61L2101/36Carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/133Replaceable cartridges, refills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/134Distributing means, e.g. baffles, valves, manifolds, nozzles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/13Dispensing or storing means for active compounds
    • A61L2209/135Vaporisers for active components

Definitions

  • the present invention is directed to a freshening composition and a method of atomizing a freshening composition from a thermally-activated microfluidic cartridge.
  • thermally-activated microfluidic devices may include a microfluidic die having a plurality of nozzles for dispensing the fluid composition.
  • thermally-activated microfluidic dies One problem with thermally-activated microfluidic dies is clogging of the nozzles after repeated use of the microfluidic delivery system. Once a nozzle(s) clogs, it can be difficult or impossible for a user to clear the blockage. As a result, flow rate out of the microfluidic delivery system may decline over time, resulting in decreased flow rates of fluid composition being dispensed or increased operating times to make up for the lower flow rates. As such, there remains a need for a fluid composition that minimizes clogging of the nozzles of a microfluidic die.
  • a microfluidic cartridge releasably connectable with a housing, wherein the cartridge comprises a reservoir for containing a fluid composition and microfluidic die in fluid communication with the reservoir, wherein the composition comprises greater than 5 wt. % of solubilizing materials that are liquid at 20°C, the solubilizing materials each having:
  • composition comprises less than 22 wt.% benzyl alcohol.
  • a method of jetting a composition comprising the steps of:
  • composition comprising greater than 5 wt. % of solubilizing materials that are liquid at 20°C, the solubilizing materials each having:
  • atomizing the heated composition from a nozzle in a direction that is from 0 degrees to 90 degrees from the direction of gravitational force.
  • step of atomizing the heated composition further comprises atomizing the heated composition from a nozzle of a microfluidic delivery member, the microfluidic delivery member comprising a silicon semiconductor substrate containing a plurality of heater resistors, at least one fluid chamber associated with each heater resistor, and at least one nozzle associated with each fluid chamber.
  • a microfluidic cartridge releasably connectable with a housing, wherein the cartridge comprises a reservoir for containing a fluid composition and microfluidic die in fluid communication with the reservoir, wherein the composition , wherein the microfluidic die is configured to dispense the fluid composition in a direction that is from 0 degrees to 90 degrees from the direction of gravitational force,
  • the fluid composition comprises greater than 5 wt. % of solubilizing materials that are liquid at 20°C, the solubilizing materials each having:
  • the cartridge of any of Paragraphs M through P wherein the solubilizing materials are selected from the group consisting of: phenylmethanol; 2-(2-hydroxypropoxy)propan-l-ol ; propane- 1 ,2-diol; 1 -((1 -propoxypropan-2-yl)oxy)propan-2-ol; 1 -(2-methoxypropoxy)propan-2-ol; 4-allyl-2-methoxyphenol; 2-phenylethan-l-ol; and combinations thereof.
  • the solubilizing materials are selected from the group consisting of: phenylmethanol; 2-(2-hydroxypropoxy)propan-l-ol ; propane- 1 ,2-diol; 1 -((1 -propoxypropan-2-yl)oxy)propan-2-ol; 1 -(2-methoxypropoxy)propan-2-ol; 4-allyl-2-methoxyphenol; 2-phenylethan-l-ol; and combinations thereof.
  • a microfluidic cartridge releasably connectable with a housing, wherein the cartridge comprises a reservoir for containing a fluid composition and microfluidic die in fluid communication with the reservoir, wherein the composition comprises greater than 5 wt. % of solubilizing materials that are liquid at 20°C, the solubilizing materials each having:
  • Fig. l is a perspective view of a microfluidic cartridge with an electric circuit and microfluidic die.
  • Fig. 2 is a sectional view of a microfluidic cartridge.
  • Fig. 3 is an exploded view of an electric circuit and microfluidic die on a microfluidic cartridge.
  • Fig. 4 is a sectional view of a microfluidic die.
  • Fig. 5 is a plan view of a portion of a microfluidic die.
  • Fig. 6 is a perspective view of the front of a microfluidic delivery device.
  • Fig. 7 is a perspective view of the back of a microfluidic delivery device.
  • Fig. 8 is a top, plan view of a microfluidic delivery device.
  • Fig. 9 is a grading scale for solubilizing materials of a fluid composition.
  • the fluid composition of the present invention is adapted to be jetted from a microfluidic cartridge of a microfluidic delivery device.
  • the microfluidic delivery device of the present disclosure overcomes challenges associated with dispensing a fluid composition in a horizontal or downward direction.
  • the microfluidic delivery device may include a housing electrically connectable with a power source, a cartridge releasably connectable with the housing.
  • the microfluidic cartridge has a reservoir for containing a fluid composition and a microfluidic die in fluid communication with the reservoir.
  • the microfluidic die is disposed on the microfluidic cartridge such that the fluid composition exits the microfluidic die in a direction that is from 0 degrees to 90 degrees from the direction of action of gravity.
  • Solidification of fluid composition on the surface of a nozzle plate or in the chamber of the microfluidic die can cause clogging of one or more of the nozzles. This is especially exaggerated when fluid exits the microfluidic die in a direction that is from 0 degrees to 90 degrees from the direction of action of gravity, as accumulation of some fluid on the nozzle layer is practically inevitable given the positive force that needs to be balanced for functionality.
  • the fluid compositions of the present invention may contain one or more solubilizing materials that are liquid at 20°C, where the solubilizing materials have a Hansen hydrogen-bonding parameter of greater than 9; a Hansen polarity parameter of greater than 5; and a vapor pressure of less than 267 Pa, measured at 25 °C.
  • the fluid composition may be configured as a freshening composition.
  • the freshening composition may comprise a perfume mixture, a malodor blocker(s), a reactive aldehyde(s), functional perfume components, water, adjuncts, and combinations thereof.
  • a fluid composition To operate satisfactorily in a microfluidic delivery system, many characteristics of a fluid composition are taken into consideration. Some factors include formulating fluid compositions with viscosities that are optimal to emit from the microfluidic delivery die, formulating fluid compositions with limited amounts or no suspended solids that would clog the microfluidic delivery die, formulating fluid compositions to be sufficiently stable to not dry and clog the microfluidic delivery member, formulating fluid compositions that are not flammable, etc. For adequate dispensing from a microfluidic die, proper atomization and effective delivery of an air freshening or malodor reducing composition may be considered in designing a fluid composition.
  • the fluid composition may exhibit a viscosity of less than 20 centipoise (“cps”), alternatively less than 18 cps, alternatively less than 16 cps, alternatively from about 3 cps to about 16 cps, alternatively about 4 cps to about 12 cps.
  • the fluid composition may have a surface tension below about 35, alternatively from about 20 to about 30 dynes per centimeter. Viscosity is reported in cps, as determined using an Anton Paar Kinematic SVM 3000 series Viscometer or equivalent measurement device capable of accurately measuring expected viscosity range of fluid at room temperature. This may also be a combination of instruments such as a Bohlin CVO Rheometer System in conjunction with a high sensitivity double gap geometry.
  • the fluid composition may be substantially free of suspended solids or solid particles existing in a mixture wherein particulate matter is dispersed within a liquid matrix.
  • the fluid composition may have less than 20 wt.% of suspended solids, alternatively less than 15 wt.% of suspended solids, alternatively less than 10 wt.% of suspends, alternatively less than 5 wt.% of suspended solids, alternatively less than 4 wt.% of suspended solids, alternatively less than 3 wt.% of suspended solids, alternatively less than 2 wt.% of suspended solids, alternatively less than 1 wt.% of suspended solids, alternatively less than 0.5 wt.% of suspended solids, or free of suspended solids. Suspended solids are distinguishable from dissolved solids that are characteristic of some perfume materials.
  • the fluid composition may comprise other volatile materials in addition to or in substitution for the perfume mixture including, but not limited to, volatile dyes; compositions that function as insecticides; essential oils or materials that acts to condition, modify, or otherwise modify the environment (e.g. to assist with sleep, wake, respiratory health, and like conditions); deodorants or malodor control compositions (e.g. odor neutralizing materials such as reactive aldehydes (as disclosed in U.S. 2005/0124512), odor blocking materials, odor masking materials, or sensory modifying materials such as ionones (also disclosed in U.S. 2005/0124512)).
  • volatile dyes e.g. odor neutralizing materials such as reactive aldehydes (as disclosed in U.S. 2005/0124512), odor blocking materials, odor masking materials, or sensory modifying materials such as ionones (also disclosed in U.S. 2005/0124512)
  • odor neutralizing materials such as reactive aldehydes (as disclosed in U.S. 2005/
  • the fluid composition may comprise a perfume mixture present in an amount greater than about 50%, by weight of the fluid composition, alternatively greater than about 60%, alternatively greater than about 70%, alternatively greater than about 75%, alternatively greater than about 80%, alternatively from about 50% to about 100%, alternatively from about 60% to about 100%, alternatively from about 70% to about 100%, alternatively from about 80% to about 100%, alternatively from about 90% to about 100%.
  • the perfume mixture may contain one or more perfume raw materials.
  • the raw perfume materials may be selected based on the materiaTs boiling point ("B.P.”).
  • the B.P. referred to herein is the boiling point under normal standard pressure of 760 mm Hg.
  • the perfume mixture may have a mole-weighted average log of the octanol-water partitioning coefficient (“ClogP”) of less than about 3.5, alternatively less than about 2.9, alternatively less than about 2.5, alternatively less than about 2.0.
  • ClogP octanol-water partitioning coefficient
  • the critical pressure may be optimized for bubble- formation energetics and critical temperature for kogation propensity.
  • the perfume mixture may have a mol-weighted average B.P. of less than 250 °C, alternatively less than 225 °C, alternatively less than 200 °C, alternatively less than about 150 °C, or alternatively about 150 °C to about 250 °C.
  • about 3 wt.% to about 25 wt.% of the perfume mixture may have a mol-weighted average B.P. of less than 200°C, alternatively about 5 wt.% to about 25 wt.% of the perfume mixture has a mol-weighted average B.P. of less than 200°C.
  • the perfume mixture boiling point is determined by the mole-weighted average boiling point of the individual perfume raw materials making up said perfume mixture. Where the boiling point of the individual perfume materials is not known from published experimental data, it is determined by the boiling point PhysChem model available from ACD/Labs.
  • Table 1 lists some non-limiting, exemplary individual perfume materials suitable for the perfume mixture.
  • Table 2 shows an exemplary perfume mixture having a total molar weighted average B.P. (“mol- weighted average boiling point”) less than 200°C.
  • mol- weighted average boiling point mol- weighted average boiling point
  • the boiling point of perfume raw materials that may be difficult to determine may be neglected if they comprise less than 15% by weight of the total perfume mixture, as exemplified in Table 2.
  • compositions of the present invention may contain one or more solubilizing materials that are liquid at 20°C, where the solubilizing materials have a Hansen hydrogen-bonding parameter of greater than 9; a Hansen polarity parameter of greater than 5; and a vapor pressure of less than 267 Pa, measured at 25 °C.
  • solubilizing materials regulate evaporation of any fluid composition deposited on the surface of the thermally- activated microfluidic die, thus limiting the mass transfer rate of liquid and transition of unstable materials in fluid to solid and preventing gel formation or solidification and blocking of the nozzles.
  • the basis of the Hansen solubility parameter (HSP) is that the total energy of vaporization of a liquid consists of several individual parts. Hansen has defined three types of contributions to the energy of vaporization, namely: dispersive (5d), polar (d R ), and hydrogen bonding (5h). Each parameter, 5d, d R , and dh, is generally measured in MPa 0 5 .
  • the hydrogen-bonding Hansen Solubility Parameter is based upon the hydrogen bonding cohesive energy contribution to the energy of vaporization.
  • the polar Hansen Solubility Parameter is based upon the polar cohesive energy contribution to the energy of vaporization.
  • the hydrogen-bonding Hansen Solubility Parameter and the polar Hansen Solubility Parameter can either be calculated or predicted using the HSPiP Software, available at the following web address https://www.hansen- solubility.com/HSPiP/.
  • the Sphere algorithm is as described in Hansen, C. M., Hansen Solubility Parameters: A User’s Handbook , CRC Press, Boca Raton FL, 2007.
  • the Y-MB methodology was developed by Dr Hiroshi Yamamoto of Asahi Glass Corporation.
  • HSPiP Software relies on a database with a limited number of materials. If HSPiP database does not have the material of interest, the following equations can be used to calculate the Hansen solubility parameters:
  • Ra 2 4(61) I-6D2) 2 + (6P1-6P2) 2 + (6H1-6H2) 2
  • compositions of the present invention may comprise or consist essentially of greater than 1 wt. %, or greater than 5 wt. %, or greater than 8 wt. %, or greater than 10 wt. %, or greater than 12 wt. %, or greater than 15 wt. %, or greater than 18 wt. %, or greater than 20 wt. % of a solubilizer having a Hansen hydrogen-bonding parameter of greater than 9 MPa 0 5 , a Hansen polarity parameter of greater than 5 MPa 0 5 , and a vapor pressure of less than 267 Pascals (Pa) measured at 25 °C.
  • solubilizer having a Hansen hydrogen-bonding parameter of greater than 9 MPa 0 5 , a Hansen polarity parameter of greater than 5 MPa 0 5 , and a vapor pressure of less than 267 Pascals (Pa) measured at 25 °C.
  • the Hansen hydrogen-bonding parameter may be greater than 9 MPa 0 5 , or greater than 10 MPa 0 5 , or greater than 12 MPa 0 5 , or greater than 15 MPa 0 5 .
  • the Hansen polarity parameter may be greater than 5 MPa 0 5 , or greater than 6 MPa 0 5 , or greater than 7 MPa 0 5 , or greater than 8 MPa 0 5 .
  • the vapor pressure may be less than 267 Pa, preferably less than 137 Pa, preferably less than 67 Pa, preferably less than 34 Pa, more preferably less than 14 Pa, and more preferably less than 1.5 Pa, measured at 25 °C.
  • a solubilizer having a Hansen hydrogen-bonding parameter of greater than 9 MPa 0 5 , a Hansen polarity parameter of greater than 5 MPa 0 5 , and a vapor pressure of less than 267 Pa measured at 25 °C may be selected from the group consisting of: 3-hydroxybutan-2-one (Acetyl Methyl Carbinol, CAS No. 513-86-0); l-hydroxypropan-2-one (ACETOL, CAS No.116-09-6); N,N- Dimethylacetamide (CAS No. 127-19-5); 3-hydroxypentan-2-one (acetyl ethyl carbinol, CAS No.
  • METHYLCYCLOHEXANOL (CAS No. 583-59-5); 3-(ethylthio)propan-l-ol (3- Ethylthiopropanol, CAS No. 18721-61-4); propyl 2-hydroxypropanoate (PROPYL LACTATE, CAS No. 616-09-1); (E)-hept-4-en-l-ol (cis-4-HEPTEN-l-OL, CAS No. 6191-71-5); thiophene- 2-carbaldehyde (2-THIOPHENECARBOXALDEHYDE, CAS No.
  • heptanoic acid heptanoic acid, CAS No. 111-14-8
  • DIMETHYL SULFONE CAS No. 67-71-0
  • Z -2-methylpent-2-enoic acid
  • E -4- methylpent-2-enoic acid
  • 4-METHYL-2-PENTENOIC ACID CAS No. 10321-71-8
  • 2,4- DIMETHYL-2-PENTENOIC ACID CAS No. 66634-97-7
  • 2-(ethoxymethyl)phenol alpha- ethoxy-ortho-cresol, CAS No. 20920-83-6
  • 3-mercaptopropanoic acid 3-mercaptopropanoic acid
  • MERCAPTOPROPIONIC ACID CAS No. 107-96-0
  • ethyl 2-hydroxybenzoate ETHYL SALICYLATE, CAS No. 118-61-6
  • mercaptoacetic acid CAS No. 68-11-1
  • 2-Pyrrolidone CAS No. 616-45-5
  • 3-phenylpropan-l-ol PHENYL PROPYL ALCOHOL, CAS No. 122-97-4
  • HEXYL LACTATE CAS No. 20279-51-0
  • l-(2- aminophenyl)ethan- 1 -one (2-AMINO ACETOPHENONE
  • a solubilizer having a Hansen hydrogen-bonding parameter of greater than 9 MPa 0 5 , a Hansen polarity parameter of greater than 5 MPa 0 5 , and a vapor pressure of less than 267 Pa measured at 25 °C may be selected from the group consisting of: phenylmethanol; 2-(2- hydroxypropoxy)propan-l-ol; propane- 1,2-diol; l-((l-propoxypropan-2-yl)oxy)propan-2-ol; l-(2- methoxypropoxy)propan-2-ol; 4-allyl-2-methoxyphenol; 2-phenylethan-l-ol; and combinations thereof.
  • the fluid composition may contain one or more secondary solubilizers in addition to the solubilizing materials disclosed above, such as a polyol (components comprising more than one hydroxyl functionality), a glycol ether, or a polyether. If the secondary solubilizers present in the fluid composition fall within the Hansen solubility parameters and vapor pressure of the solubilizing materials, the secondary solubilizers should be considered in the total weight percentage of the solubilizing materials in the freshening composition.
  • oxygenated solvents comprising polyols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, and/or glycerin.
  • the polyol used in the freshening composition of the present invention may be, for example glycerin, ethylene glycol, propylene glycol, dipropylene glycol.
  • Exemplary oxygenated solvents comprising polyethers are polyethylene glycol, and polypropylene glycol
  • Exemplary oxygenated solvents comprising glycol ethers are propylene glycol methyl ether, propylene glycol phenyl ether, propylene glycol methyl ether acetate, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, dipropylene glycol n-propyl ether, ethylene glycol phenyl ether, diethylene glycol n-butyl ether, dipropylene glycol n-butyl ether, diethylene glycol mono butyl ether, dipropylene glycol methyl ether, tripropylene glycol methyl ether, tripropylene glycol n-butyl ether, other glycol ethers, or mixtures thereof.
  • the oxygenated solvent may be ethylene glycol, propylene glycol, or mixtures thereof.
  • the glycol used may be dipropylene
  • the oxygenated solvent may be added to the composition at a level of from about 0.01 wt. % to about 50 wt. %, by weight of the composition, alternatively from about 0.01 wt. % to about 20 wt. %, by weight of the composition alternatively from about 0.05 wt. % to about 10 wt. %, alternatively from about 0.1 wt. % to about 5 wt. %, by weight of the overall composition.
  • the fluid composition may comprise water.
  • the fluid composition may comprise water in an amount from about 0.25 wt. % to about 20 wt. % water, alternatively about 0.25 wt.% to about 10 wt. % water, alternatively about 1% to about 5% water, alternatively from about 1% to about 3% water, alternatively from about 1% to about 2% water, by weight of the fluid composition.
  • water can be incorporated into the fluid composition at a level of about 0.25 wt. % to about 9.5 wt. %, alternatively about 0.25 wt.% to about 7.0 wt. %, by weight of the overall composition.
  • the fluid composition may include one or more malodor blockers that dull the sensor of smell to a human, while not unduly interfering with the scent of the fluid compositions.
  • exemplary malodor blockers may be selected from the group consisting of: l,l,2,3,3-pentamethyl-l,2,3,5,6,7- hexahydro-4H-inden-4-one (Cashmeran, 33704-61-9); 3a,4,5,6,7,7a-hexahydro-lH-4,7- methanoinden-6-yl acetate Flor (acetate/herbafl orate, CAS No.
  • dodecan-l-ol (1-dodecanol, CAS No.112-53-8); 8,8-dimethyl-3a,4,5,6,7,7a-hexahydro-lH-4,7-methanoinden-6-yl propionate (frutene, CAS No. 76842-49-4); (Z)-non-6-en-l-ol (CIS-6-NONEN-1-OL FCC, CAS No. 35854-86-5); dodecanenitrile (CLONAL, CAS No. 2437-25-4); (E)-dec-4-enal (DECENAL (TRANS -4), CAS No.
  • the fluid composition may comprise up to 2 wt.% of malodor blockers, or from 0.0001 wt.% to 2 wt.% of malodor blockers, based on the total weight of the fluid composition.
  • the fluid composition may include one or more reactive aldehydes that neutralize malodors in vapor and/or liquid phase via chemical reactions.
  • the reactive aldehydes provide a genuine malodor neutralization and function not merely by covering up or masking odors.
  • a genuine malodor neutralization provides a sensory and analytically measurable (e.g. gas chromatograph) malodor reduction.
  • Reactive aldehydes may react with amine-based odors, following the path of Schiff-base formation. Volatiles aldehydes may also react with sulfur-based odors, forming thiol acetals, hemi thiolacetals, and thiol esters in vapor and/or liquid phase. It may be desirable for these vapor and/or liquid phase reactive aldehydes to have virtually no negative impact on the desired perfume character of a product. Aldehydes that are partially volatile may be considered a reactive aldehyde as used herein.
  • Suitable reactive aldehydes may have a vapor pressure (VP) in the range of about 0.0001 torr to 100 torr, alternatively about 0.0001 torr to about 10 torr, alternatively about 0.001 torr to about 50 torr, alternatively about 0.001 torr to about 20 torr, alternatively about 0.001 torr to about 0.100 torr, alternatively about 0.001 torr to 0.06 torr, alternatively about 0.001 torr to 0.03 torr, alternatively about 0.005 torr to about 20 torr, alternatively about 0.01 torr to about 20 torr, alternatively about 0.01 torr to about 15 torr, alternatively about 0.01 torr to about 10 torr, alternatively about 0.05 torr to about 10 torr, measured at 25°C.
  • VP vapor pressure
  • the reactive aldehydes may also have a certain boiling point (B.P.) and octanol/water partition coefficient (P).
  • B.P. boiling point
  • P octanol/water partition coefficient
  • the boiling point referred to herein is measured under normal standard pressure of 760 mmHg.
  • the boiling points of many reactive aldehydes, at standard 760 mm Hg are given in, for example, "Perfume and Flavor Chemicals (Aroma Chemicals),” written and published by Steffen Arctander, 1969.
  • the octanol/water partition coefficient of a reactive aldehyde is the ratio between its equilibrium concentrations in octanol and in water.
  • the partition coefficients of the reactive aldehydes used in the fluid composition may be more conveniently given in the form of their logarithm to the base 10, logP.
  • the logP values of many reactive aldehydes have been reported. See, e.g., the Pomona92 database, available from Daylight Chemical Information Systems, Inc. (Daylight CIS), Irvine, California. However, the logP values are most conveniently calculated by the "CLOGP" program, also available from Daylight CIS. This program also lists experimental logP values when they are available in the Pomona92 database.
  • ClogP The "calculated logP” (ClogP) is determined by the fragment approach of Hansch and Leo (cf, A. Leo, in Comprehensive Medicinal Chemistry, Vol. 4, C. Hansch, P. G. Sammens, J. B. Taylor and C. A. Ramsden, Eds., p. 295, Pergamon Press, 1990).
  • the fragment approach is based on the chemical structure of each reactive aldehyde, and takes into account the numbers and types of atoms, the atom connectivity, and chemical bonding.
  • the ClogP values which are the most reliable and widely used estimates for this physicochemical property, are alternatively used instead of the experimental logP values in the selection of reactive aldehydes for the fluid composition.
  • the ClogP values may be defined by four groups and the reactive aldehydes may be selected from one or more of these groups.
  • the first group comprises reactive aldehydes that have a B.P. of about 250 °C or less and ClogP of about 3 or less.
  • the second group comprises reactive aldehydes that have a B.P. of 250°C or less and ClogP of 3.0 or more.
  • the third group comprises reactive aldehydes that have a B.P. of 250°C or more and ClogP of 3.0 or less.
  • the fourth group comprises reactive aldehydes that have a B.P. of 250°C or more and ClogP of 3.0 or more.
  • the fluid composition may comprise any combination of reactive aldehydes from one or more of the ClogP groups.
  • the fluid composition of the present invention may comprise, by total weight of the fluid composition, from about 0% to about 30% of reactive aldehydes from group 1, alternatively about 25%; and/or about 0% to about 10% of reactive aldehydes from group 2, alternatively about 10%; and/or from about 10% to about 30% of reactive aldehydes from group 3, alternatively about 30%; and/or from about 35% to about 60% of reactive aldehydes from group 4, alternatively about 35%.
  • Exemplary reactive aldehydes which may be used in a fluid composition of the present invention include, but are not limited to, Adoxal (2,6,10-Trimethyl-9-undecenal), Bourgeonal (4-t- butylbenzenepropionaldehyde), Lilestralis 33 (2-methyl-4-t-butylphenyl)propanal), Cinnamic aldehyde, cinnamaldehyde (phenyl propenal, 3-phenyl-2-propenal), Citral, Geranial, Neral (dimethyloctadienal, 3,7-dimethyl-2,6-octadien-l-al), Cyclal C (2,4-dimethyl-3-cyclohexen-l- carbaldehyde), Florhydral (3-(3-Isopropyl-phenyl)-butyraldehyde), Citronellal (3,7-dimethyl 6- octenal), Cymal, cyclamen aldehy
  • Still other exemplary reactive aldehydes include, but are not limited to, acetaldehyde (ethanal), pentanal, valeraldehyde, amylaldehyde, Scentenal (octahydro-5-methoxy-4,7-Methano-lH- indene-2-carboxaldehyde), propionaldehyde (propanal), Cyclocitral, beta-cyclocitral, (2,6,6- trimethyl- 1 -cyclohexene- 1 -acetaldehyde), Iso Cyclocitral (2,4,6-trimethyl-3-cyclohexene-l- carboxaldehyde), isobutyraldehyde, butyraldehyde, isovaleraldehyde (3-methyl butyraldehyde), methylbutyraldehyde (2-methyl butyraldehyde, 2-methyl butanal), Dihydrocitronellal (3,7-
  • the reactive aldehydes may be present in an amount up to 100%, by weight of the fluid composition, alternatively from 1% to about 100%, alternatively from about 2% to about 100%, alternatively from about 3% to about 100%, alternatively about 50% to about 100%, alternatively about 70% to about 100%, alternatively about 80% to about 100%, alternatively from about 1% to about 20%, alternatively from about 1% to about 10%, alternatively from about 1% to about 5%, alternatively from about 1% to about 3%, alternatively from about 2% to about 20%, alternatively from about 3% to about 20%, alternatively from about 4% to about 20%, alternatively from about 5% to about 20%, by weight of the composition.
  • the fluid composition of the present invention may include an effective amount of an acid catalyst to neutralize sulfur-based malodors. It has been found that certain mild acids have an impact on aldehyde reactivity with thiols in the liquid and vapor phase. It has been found that the reaction between thiol and aldehyde is a catalytic reaction that follows the mechanism of hemiacetal and acetal formation path. When the present fluid composition contains an acid catalyst and contacts a sulfur-based malodor, the reactive aldehyde reacts with thiol. This reaction may form a thiol acetal compound, thus, neutralizing the sulfur-based odor. Without an acid catalyst, only hemi- thiol acetal is formed.
  • Suitable acid catalysts have a VP, as reported by Scifmder, in the range of about 0.001 torr to about 38 torr, measured at 25°C, alternatively about 0.001 torr to about 14 torr, alternatively from about 0.001 to about 1, alternatively from about 0.001 to about 0.020, alternatively about 0.005 to about 0.020, alternatively about 0.010 to about 0.020.
  • the acid catalyst may be a weak acid.
  • a weak acid is characterized by an acid dissociation constant, K a, which is an equilibrium constant for the dissociation of a weak acid; the pKa being equal to minus the decimal logarithm of K a.
  • the acid catalyst may have a pKa from about 4.0 to about 6.0, alternatively from about 4.3 and 5.7, alternatively from about 4.5 to about 5, alternatively from about 4.7 to about 4.9.
  • Suitable acid catalyst include those listed in Table 3.
  • an acid catalyst may have a VP of about 0.001 torr to about 0.020 torr, measured at 25°C, alternatively about 0.005 torr to about 0.020 torr, alternatively about 0.010 torr to about 0.020 torr.
  • acid catalysts include 5-methyl thiophene carboxaldehyde with carboxylic acid impurity, succinic acid, or benzoic acid.
  • the composition may include about 0.05% to about 5%, alternatively about 0.1% to about 1.0%, alternatively about 0.1% to about 0.5%, alternatively about 0.1% to about 0.4%, alternatively about 0.4% to about 1.5%, alternatively about 0.4% of an acid catalyst by weight of the fluid composition.
  • the acid catalyst may increase the efficacy of the reactive aldehyde on malodors in comparison to the malodor efficacy of the reactive aldehyde on its own.
  • 1% reactive aldehyde and 1.5% benzoic acid provides malodor removal benefit equal to or better than 5% reactive aldehyde alone.
  • a microfluidic cartridge 10 comprises an interior 12 and an exterior 14.
  • the interior 12 of the microfluidic cartridge 10 comprises a reservoir 16 and one or more fluid channels 18 that are in fluid communication with the microfluidic die 51.
  • the reservoir 16 may be formed from a base wall 20 or a plurality of surfaces forming a base wall 20 and one or more side walls 22.
  • the reservoir 16 may be enclosed by a lid 24 of the microfluidic cartridge 10.
  • the fluid channel 18 extends from reservoir 16 to the exterior 14 of the microfluidic cartridge 10 at the fluid opening.
  • the reservoir may include an air vent.
  • the lid 24 may be integral with the reservoir 16 or may be constructed as a separate element that is connected with the reservoir 16.
  • the reservoir 16 of the microfluidic cartridge 10 may contain from about 5 mL to about 50 mL of fluid composition, alternatively from about 10 mL to about 30 mL of fluid composition, alternatively from about 15 mL to about 20 mL of fluid composition.
  • the reservoir 16 can be made of any suitable material for containing a fluid composition. Suitable materials for the containers include, but are not limited to, plastic, metal, ceramic, composite, and the like.
  • a microfluidic cartridge may be configured to have multiple reservoirs, each containing the same or a different composition.
  • the microfluidic delivery device may utilize one or more microfluidic cartridges, each containing a separate reservoir.
  • the reservoir 16 may also contain a porous material 19 such as a sponge that creates a back pressure to prevent the fluid composition from leaking from the microfluidic die when the microfluidic die is not in operation.
  • the fluid composition may travel through the porous material and to the microfluidic die through gravity force and/or capillary force acting on the fluid composition.
  • the porous material may comprise a metal or fabric mesh, open-cell polymer foam, or fibrous polyethylene terephthalate, polypropylene, or bi-components of fibers or porous wick, that contain multiple interconnected open cells that form fluid passages.
  • the sponge may be free of a polyurethane foam.
  • the exterior 14 of the microfluidic cartridge 10 is made up of two, three, or more faces. Each face is bounded by one or more edges. Two faces are connected along an edge. Each face may be flat, substantially flat, or contoured in various ways. The faces may connect to form various shapes, such as a cube, cylinder, cone, tetrahedron, triangular prism, cuboid, etc.
  • the microfluidic cartridge may be comprised of various materials, including plastic, metal, glass, ceramic, wood, composite, and combinations thereof. Different elements of the microfluidic cartridge may be comprised of the same or different materials.
  • the microfluidic cartridge 10 may comprise at least a first face 26 and a second face 28 joined along an edge 30.
  • the first face 26 may be a bottom face and the second face 28 may be a side face.
  • the microfluidic cartridge 10 may include a top face, a bottom face that opposes the top face, and four side faces extending between the top and bottom faces. Each joining face may be connected along an edge.
  • the microfluidic cartridge may include a top face, a bottom face opposing the top face, and a single curved side face extending between the top and bottom faces.
  • the fluid channel 18 of the microfluidic cartridge 10 may extend to a fluid opening that may be disposed in the second face 28 of the microfluidic cartridge 10.
  • the microfluidic cartridge 10 may include a microfluidic die 51 disposed on the second face 28.
  • the fluid channel 18 may open up to the microfluidic die 51 such that the fluid channel 18 is in fluid communication with the microfluidic die 51.
  • the primary components of a microfluidic die are a semiconductor substrate, a flow feature layer, and a nozzle plate layer.
  • the flow feature layer and the nozzle plate layer may be formed from two separate layers or one continuous layer.
  • the semiconductor substrate is preferably made of silicon and contains various passivation layers, conductive metal layers, resistive layers, insulative layers and protective layers deposited on a device surface thereof.
  • Fluid ejection actuators in the semiconductor substrate generate rapid pressure impulses to eject the fluid composition from the nozzles.
  • the rapid pressure impulses may be generated by a heater resistor that cause volatilization of a portion of a fluid composition within the fluid composition through rapid heating cycles (e.g., micro thermal nucleation).
  • individual heater resistors are defined in the resistive layers and each heater resistor corresponds to a nozzle in the nozzle plate for heating and ejecting the fluid composition from the nozzle.
  • the microfluidic die includes a semiconductor substrate 112 that may be a silicon semiconductor substrate 112 containing a plurality of fluid ejection actuators 114 such as heater resistors formed on a device side 116 of the substrate 112 as shown in the simplified illustration of Fig. 5.
  • fluid ejection actuators 114 Upon activation of fluid ejection actuators 114, fluid supplied through one or more fluid supply vias 118 in the semiconductor substrate 112 flows through a fluid supply channel 120 to a fluid chamber 122 in a thick film layer 124 where the fluid is caused to be ejected through nozzles 126 in a nozzle plate 128.
  • Fluid ejection actuators are formed on the device side 116 of the semiconductor substrate 112 by well-known semiconductor manufacturing techniques. Thick film layer 124 and nozzle plate 128 may be separate layers or may be one continuous layer.
  • the nozzle plate 128 may include an oleophobic surface coating.
  • the oleophobic surface coating may include polypropylene, polytetrafluoroethene, and the like.
  • the nozzle plate 128 may include about 4-200 nozzles 126, or about 6 - 120 nozzles, or about 8- 64 nozzles.
  • Each nozzle 126 may deliver about 0.5 to about 35 picoliters, or about 1 to about 20 picoliters, or about 2 to about 10 picoliters of a fluid composition per electrical firing pulse.
  • Individual nozzles 126 may have of a diameter typically about 0.0024 inches (5-50 microns).
  • the flow rate of fluid composition released from the microfluidic die 51 could be in the range of about 5 to about 70 mg/hour or any other suitable rate or range.
  • the microfluidic cartridge 10 comprises an electric circuit 52.
  • the electric circuit 52 may be in the form of a flexible circuit, semi-flexible circuit having rigid and flexible portions, and rigid circuit boards.
  • the electric circuit 52 may include a first end portion 54, a second end portion 56, and a central portion 58 separating the first and second end portions 54 and 56, respectively.
  • the first end portion 54 of the electric circuit 52 may include electrical contacts 60 for connecting with the electrical contacts of the housing of a microfluidic delivery device.
  • the second end portion 56 of the electric circuit 52 may be in electrical communication with the microfluidic die 51.
  • the electric circuit 52 may be disposed on and span two faces of the microfluidic cartridge 10.
  • the first end portion 54 of the electric circuit 52 may be disposed on the first face 26 of the microfluidic cartridge 10
  • the second end portion 56 of the electric circuit 52 may be disposed on the second face 28 of the microfluidic cartridge 10
  • the central portion 58 of the electric circuit 52 may span the first and second faces 26 and 28, respectively, of the microfluidic cartridge 10.
  • the electric circuit 52 may be disposed on a single face of the microfluidic cartridge 52 such that the microfluidic die 51 and the electrical contacts 60 are disposed on the same face.
  • the microfluidic cartridge 10 may also comprise one or more cartridge connectors 36 to provide mechanical connection between the microfluidic cartridge 10 and the housing.
  • a cartridge connector 36 on the microfluidic cartridge 10 may connect with or mate with a corresponding housing connector on the housing.
  • the cartridge connectors 36 may be configured as female connectors, such as openings that are configured to mate with one or more male connectors such as projections or guideposts, on the housing.
  • the cartridge connector 36 may be configured as a male connector may include one or more projections, such as guideposts, that are configured to mate with one or more female connectors such as openings on the housing.
  • the mechanical connection between the microfluidic cartridge and the housing may help to properly align and secure the microfluidic cartridge in the housing to provide a robust electrical connection between the microfluidic cartridge and the housing.
  • a microfluidic cartridge 10 may be configured to be releasably connectable with a housing 46 of a microfluidic delivery device 44.
  • the housing 46 may be connected with a power source 48.
  • the housing 46 may include a receptacle 64 having an opening 66 for receiving the microfluidic cartridge 10.
  • the receptacle 64 may receive a portion of the microfluidic cartridge 10 or the microfluidic cartridge 10 may be completely disposed within the receptacle 64.
  • the receptacle 64 of the housing 46 may include electrical contacts 68 that are configured to electrically connect with the electrical contacts 60 of the microfluidic cartridge 10.
  • the receptacle 64 may include one or more housing connectors 38 configured to be received by the one or more cartridge connectors 36 of the microfluidic cartridge 10.
  • the housing connectors 38 may be in the form of male connectors or female connectors.
  • the housing connectors 38 may be configured as male connectors, or vice versa.
  • the housing connectors 38 and cartridge connectors 36 may be sized and shaped to mate with each other for a sufficient mechanical and electrical connection to occur.
  • the housing 46 may include a faceplate 47 disposed on a front side of the housing 46.
  • the housing 46 may also include a fluid outlet 74 for releasing the fluid composition from the microfluidic cartridge 10 into the air.
  • the housing 46 may include an air outlet 76 for directing air toward the dispensed fluid composition upward and/or outward into the surrounding space.
  • the fluid outlet 74 and the air outlet 76 may be disposed in the faceplate 47.
  • the cartridge connectors 36 and the housing connectors 38 may be used to align, secure, and limit movement of the microfluidic cartridge 10 relative to the housing of a microfluidic delivery device 44 to establish a strong electrical connection between the microfluidic cartridge 10 and the housing.
  • the cartridge connectors 36 and the housing connectors 38 may be designed to provide either macro or micro alignment of the microfluidic cartridge 10. Mating the cartridge connectors 36 with the housing connectors 38 may prevent movement of the microfluidic cartridge 10 relative to the housing 46 of the microfluidic delivery device 44 in the X and Y-directions.
  • the microfluidic cartridge 10 may be spring-loaded with the housing 46 in order to provide a robust electrical connection between the microfluidic cartridge 10.
  • the microfluidic cartridge 10 may have a release button to release the microfluidic cartridge 10 from the housing 46. Or, the microfluidic cartridge 10 may be pushed toward the housing 46 to engage and/or disengage the microfluidic cartridge 10 from the housing 46. The microfluidic cartridge 10 may engage with a fastener 102 or clip to connect the microfluidic cartridge 10 into the housing 46.
  • the receptacle 64 may include one or more guiderails for directing the microfluidic cartridge 10 into the receptacle 64.
  • the microfluidic delivery device may be configured to be compact and easily portable. In such case, the microfluidic delivery device may be battery operated.
  • the microfluidic delivery device may be capable for use with electrical sources as 9-volt batteries, conventional dry cells such as "A”, “AA”, “AAA”, “C”, and “D” cells, button cells, watch batteries, solar cells, as well as rechargeable batteries with recharging base.
  • the microfluidic delivery device may include a fan for generating air flow to assist with delivering the fluid composition into the air. Any fan may be used that provides the desired air flow velocity, size, and power requirements for the microfluidic delivery device.
  • the fan may be used to push the fluid composition further into the air and/or may be used to direct the fluid composition in a different direction than the fluid composition is dispensed from the microfluidic die.
  • the fan may be disposed in the interior of the housing or at least partially in the interior of the housing, or at the exterior of the housing.
  • the fan may also be used to direct air over the microfluidic die 51 to minimize the amount of fluid composition that is deposited back onto the microfluidic die 51.
  • the microfluidic die 92 may be controlled and driven by an external microcontroller or microprocessor.
  • the external microcontroller or microprocessor may be provided in the housing.
  • a method of atomizing a fluid composition may include heating the fluid composition with a thermal actuator and atomizing the heated composition from a nozzle in a direction that is from 0 degrees to 90 degrees from the direction of action of gravity. Heating the fluid composition may be accomplished with a thermally-actuated microfluidic die.
  • the microfluidic delivery device and method of delivering a freshening composition may be used to deliver a fluid composition into the air.
  • the microfluidic delivery device may also be used to deliver a fluid composition into the air for ultimate deposition on one or more surfaces in a space. Exemplary surfaces include hard surfaces such as counters, appliances, floors, and the like. Exemplary surfaces also include carpets, furniture, clothing, bedding, linens, curtains, and the like.
  • the microfluidic delivery device may be used in homes, offices, businesses, open spaces, cars, temporary spaces, and the like.
  • the microfluidic delivery device may be used for freshening, malodor removal, insect repellant, and the like.
  • a fluid composition comprising 25% by weight of each solubilizer in Table 4 below is combined with 75% of the Perfume Mixture described in Table 5 below.
  • the fluid compositions were allowed to mix for about an hour, then were inserted into a microfluidic cartridge using a vacuum filler. Filled microfluidic cartridges were placed in electrical fixtures capable of firing the microfluidic cartridges at regular intervals for approximately 14 days, or until the fluid composition was exhausted.
  • each sample was preheated to 30°C immediately prior to ejecting droplets, each of the 32 thermal actuators was operated at 1000 Hz firing frequency, the firing energy is approximately 8% over the minimum energy required to fire a droplet, and each thermal actuator is fired 550 times every 10 seconds.
  • the minimum required firing energy was determined by the fixture using an algorithm that estimates the onset of jetting from the thermal response of the microfluidic die.
  • Visual images of the die were captured daily using a Keyence digital microscope at 500X magnification (Lens:VH-Z100R/W/T). Weights of each filled microfluidic cartridge were also recorded prior to filling, after filling, and with daily evaluations to track average dispensing rate per hour and any nozzle blockage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fats And Perfumes (AREA)
  • Detergent Compositions (AREA)
  • Coating Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

La présente invention concerne une composition rafraîchissante et une méthode d'éjection d'une composition rafraîchissante depuis un dispositif microfluidique. La composition comprend plus de 5 % en poids de matières solubilisantes qui sont liquides à 20°C. Chacune des matières solubilisantes présente un paramètre de polarité de Hansen (δp) supérieur à 5 MPa0,5 ; un paramètre de liaison hydrogène de Hansen (δh) supérieur à 9 MPa0,5 ; et une pression de vapeur inférieure à 267 Pa. La méthode comprend le chauffage de la composition rafraîchissante avec un actionneur thermique et la pulvérisation de la composition chauffée depuis une buse dans une direction comprise entre 0 degrés et 90 degrés par rapport à la direction de la force gravitationnelle.
PCT/US2020/070270 2019-07-17 2020-07-15 Compositions rafraîchissantes et méthodes de pulvérisation de compositions rafraîchissantes avec une cartouche microfluidique actionnée thermiquement WO2021011958A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080045900.1A CN114007660A (zh) 2019-07-17 2020-07-15 清新组合物和用热活化的微流体料盒雾化清新组合物的方法
EP20750152.9A EP3999125A1 (fr) 2019-07-17 2020-07-15 Compositions rafraîchissantes et méthodes de pulvérisation de compositions rafraîchissantes avec une cartouche microfluidique actionnée thermiquement
CA3145900A CA3145900A1 (fr) 2019-07-17 2020-07-15 Compositions rafraichissantes et methodes de pulverisation de compositions rafraichissantes avec une cartouche microfluidique actionnee thermiquement
JP2021572631A JP7464628B2 (ja) 2019-07-17 2020-07-15 清涼化組成物、及び熱作動型マイクロ流体カートリッジを用いて清涼化組成物を噴霧する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962875107P 2019-07-17 2019-07-17
US62/875,107 2019-07-17

Publications (1)

Publication Number Publication Date
WO2021011958A1 true WO2021011958A1 (fr) 2021-01-21

Family

ID=71895321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/070270 WO2021011958A1 (fr) 2019-07-17 2020-07-15 Compositions rafraîchissantes et méthodes de pulvérisation de compositions rafraîchissantes avec une cartouche microfluidique actionnée thermiquement

Country Status (5)

Country Link
EP (1) EP3999125A1 (fr)
JP (1) JP7464628B2 (fr)
CN (1) CN114007660A (fr)
CA (1) CA3145900A1 (fr)
WO (1) WO2021011958A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005907A1 (fr) * 1995-08-03 1997-02-20 S.C. Johnson & Son, Inc. Procede de desinfection de l'air
US20010026771A1 (en) * 1994-08-12 2001-10-04 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
US20020193281A1 (en) * 2001-03-23 2002-12-19 Gerd Mansfeld Use of fatty acid lower alkyl esters as wetting additives
US20050124512A1 (en) 2003-05-05 2005-06-09 Woo Ricky A. Air and fabric freshener
WO2018097952A1 (fr) * 2016-11-22 2018-05-31 The Procter & Gamble Company Composition de fluide et cartouche de distribution microfluidique la comprenant
WO2018191044A1 (fr) * 2017-04-10 2018-10-18 The Procter & Gamble Company Cartouche de distribution microfluidique destinée à être utilisée avec un dispositif de distribution microfluidique
US10322202B1 (en) * 2018-05-15 2019-06-18 The Procter & Gamble Company Microfluidic cartridge and microfluidic delivery device comprising the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007813A2 (fr) * 1996-08-19 1998-02-26 The Procter & Gamble Company COMPOSITIONS DE DETERGENTS A LESSIVE CONTENANT DES PRECURSEURS DE PARFUM β-CETOESTERS
AR032361A1 (es) * 2000-08-05 2003-11-05 Glaxo Group Ltd Derivados de androstano y sales y solvatos de los mismos, su uso para la fabricacion de medicamentos, composiciones farmaceuticas que comprenden tales compuestos, proceso para la preparacion de dichos compuestos, e intermediarios utiles en la preparacion de tales compuestos
CA2442751A1 (fr) * 2001-05-04 2002-11-14 The Procter & Gamble Company Compositions et articles desodorisants et procedes correspondants
JP2003113392A (ja) * 2001-10-04 2003-04-18 Kiyomitsu Kawasaki 芳香・消臭組成物および該芳香・消臭組成物を含有する人体用芳香・消臭剤
JP2006061551A (ja) 2004-08-30 2006-03-09 Canon Semiconductor Equipment Inc 香り発生装置
JP2008073856A (ja) 2006-09-19 2008-04-03 Ricoh Co Ltd 液体容器、液滴吐出装置および画像形成装置
US20150217015A1 (en) * 2014-02-04 2015-08-06 The Procter & Gamble Company Long lasting freshening compositions
US9211356B2 (en) 2014-03-18 2015-12-15 The Procter & Gamble Company Ink jet delivery system comprising an improved fluid mixture
GB201520246D0 (en) * 2015-11-17 2015-12-30 Givaudan Sa Perfume compositions
WO2017172568A1 (fr) * 2016-03-28 2017-10-05 The Procter & Gamble Company Produits de rafraîchissement de longue durée et procédé de rafraîchissement de l'air
GB201615581D0 (en) * 2016-09-14 2016-10-26 Givauden Sa Improvements in or relating to organic compounds
US10314934B2 (en) * 2017-06-26 2019-06-11 The Procter & Gamble Company System and method for dispensing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010026771A1 (en) * 1994-08-12 2001-10-04 The Procter & Gamble Company Uncomplexed cyclodextrin solutions for odor control on inanimate surfaces
WO1997005907A1 (fr) * 1995-08-03 1997-02-20 S.C. Johnson & Son, Inc. Procede de desinfection de l'air
US20020193281A1 (en) * 2001-03-23 2002-12-19 Gerd Mansfeld Use of fatty acid lower alkyl esters as wetting additives
US20050124512A1 (en) 2003-05-05 2005-06-09 Woo Ricky A. Air and fabric freshener
WO2018097952A1 (fr) * 2016-11-22 2018-05-31 The Procter & Gamble Company Composition de fluide et cartouche de distribution microfluidique la comprenant
WO2018191044A1 (fr) * 2017-04-10 2018-10-18 The Procter & Gamble Company Cartouche de distribution microfluidique destinée à être utilisée avec un dispositif de distribution microfluidique
US10322202B1 (en) * 2018-05-15 2019-06-18 The Procter & Gamble Company Microfluidic cartridge and microfluidic delivery device comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. LEO: "Comprehensive Medicinal Chemistry", vol. 4, 1990, PERGAMON PRESS, pages: 295
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. No. 123-42-2

Also Published As

Publication number Publication date
JP2022536316A (ja) 2022-08-15
CN114007660A (zh) 2022-02-01
JP7464628B2 (ja) 2024-04-09
EP3999125A1 (fr) 2022-05-25
CA3145900A1 (fr) 2021-01-21

Similar Documents

Publication Publication Date Title
US20210015957A1 (en) Method of atomizing a fluid composition
JP5475892B2 (ja) 酸触媒を有する悪臭制御組成物及びその方法
CA2781722C (fr) Composition de suppression des mauvaises odeurs possedant un melange d'aldehydes volatils et procedes associes
JP5866170B2 (ja) 悪臭中和方法
WO2021011958A1 (fr) Compositions rafraîchissantes et méthodes de pulvérisation de compositions rafraîchissantes avec une cartouche microfluidique actionnée thermiquement
US20210015958A1 (en) Method of atomizing a fluid composition
US20210016307A1 (en) Freshening compositions and methods of atomizing freshening compositions with a thermally-actuated microfluidic cartridge
CN101795731A (zh) 作为恶臭中和剂的二甲基环己基衍生物
JP2023529873A (ja) 香り送達を改善するための装置及び組成物
US20240166426A1 (en) Aerosol dispenser and nozzle with reduced drip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20750152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572631

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3145900

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020750152

Country of ref document: EP

Effective date: 20220217