WO2021010424A1 - 光モジュール及び光モジュール用部品の製造方法 - Google Patents

光モジュール及び光モジュール用部品の製造方法 Download PDF

Info

Publication number
WO2021010424A1
WO2021010424A1 PCT/JP2020/027552 JP2020027552W WO2021010424A1 WO 2021010424 A1 WO2021010424 A1 WO 2021010424A1 JP 2020027552 W JP2020027552 W JP 2020027552W WO 2021010424 A1 WO2021010424 A1 WO 2021010424A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
optical
opening
optical module
glass
Prior art date
Application number
PCT/JP2020/027552
Other languages
English (en)
French (fr)
Inventor
岡田 毅
Original Assignee
住友電工デバイス・イノベーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工デバイス・イノベーション株式会社 filed Critical 住友電工デバイス・イノベーション株式会社
Publication of WO2021010424A1 publication Critical patent/WO2021010424A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • This disclosure relates to an optical module and a method for manufacturing optical module parts.
  • This application claims priority based on Japanese application No. 2019-132128 filed on July 17, 2019, and incorporates all the contents described in the Japanese application.
  • Patent Document 1 discloses a technique relating to a laser diode module and an assembly method thereof.
  • the laser diode module comprises a laser diode (LD) assembly, a lens-fiber assembly, and a sleeve.
  • the LD assembly consists of a package and a holder fixed to the base of the package.
  • the holder is made of stainless steel and has an opening.
  • the base of the package consists of Kovar.
  • a carrier made of copper is fixed to the base, and a laser diode is mounted on the carrier.
  • the laser diode is surrounded by a cap fixed to the base.
  • the cap has a transmission window for the laser beam.
  • the lens-fiber assembly includes a casing made of stainless steel. An aspherical lens is inserted and fixed inside the casing. The casing is welded to the holder of the LD assembly.
  • the optical module of the present disclosure includes a metal stem, a semiconductor optical element provided on the upper side of the stem, a metal cap, and a light-transmitting optical window.
  • the cap has an end wall with a first opening at one end of the cylinder and a second opening at the other end of the cylinder.
  • the cap is joined to the stem at the other end of the cylinder and covers the semiconductor optical element on the stem.
  • the optical window closes a first opening provided at one end of the cylinder of the cap.
  • the optical window is made of glass material.
  • the outer surface of the optical window is fixed to the inner surface of the first opening of the cap.
  • a metal cap having a first opening provided at one end of a cylinder and a second opening provided at the other end of the cylinder, and a first opening are formed.
  • a method of manufacturing an optical module component comprising a glass optical window made of a light-transmitting glass material that closes and whose outer surface is fixed to the inner surface of the first opening.
  • the cap is placed in a first mold having a shape corresponding to the outer surface shape of the cap, and the cap is melted in the first opening of the cap placed in the first mold.
  • FIG. 1 is a perspective view showing an optical transmission module as an embodiment of the optical module of the present disclosure.
  • FIG. 2 is a perspective view showing the optical transmission module 1 in a state where the cap is removed.
  • FIG. 3 is a plan view of the cap as viewed from the direction of the optical axis.
  • FIG. 4 is a side sectional view of the cap along the IV-IV line of FIG. 3, showing a sectional view including an optical axis.
  • FIG. 5 is a perspective view showing an optical transmission device including an optical transmission module.
  • FIG. 6 is a diagram showing each process in the manufacturing method of the optical transmission module.
  • FIG. 7 is a diagram showing each process in the manufacturing method of the optical transmission module.
  • FIG. 8 is a diagram showing each process in the manufacturing method of the optical transmission module.
  • FIG. 6 is a diagram showing each process in the manufacturing method of the optical transmission module.
  • FIG. 9 is a diagram showing each process in the manufacturing method of the optical transmission module.
  • FIG. 10 is a diagram schematically showing a cross section of a cap used in a conventional optical transmission module.
  • FIG. 11 is a diagram schematically showing a cross section of a cap used in a conventional optical transmission module.
  • FIG. 12 is a diagram showing a state in which a cutting tool is inserted from the inside of the cap.
  • FIG. 13 is a diagram showing a state in which a cutting tool is inserted from the inside of the cap.
  • an optical module containing a semiconductor optical element such as a laser diode or a photodiode there is a module equipped with a so-called CAN package.
  • the CAN package has a metal disc-shaped stem and a metal cylindrical cap with one end joined to the stem. The other end of the cap is closed, and an optical window, such as a sapphire or glass plate or glass lens, is installed in the opening formed at the other end.
  • the optical window is fixed to a metal cap using low melting point glass or the like.
  • a metal tubular member that is, a sleeve is attached to the optical module.
  • the sleeve encloses the condenser lens and holds the optical fiber.
  • the metal tubular member is attached to the cap by welding such as YAG welding.
  • the low melting point glass may be melted by the heat at the time of welding, and the airtight sealing state in the package may be impaired.
  • the optical module includes a metal stem, a semiconductor optical element provided on the upper side of the stem, a metal cap, and a light-transmitting optical window.
  • the cap has an end wall with a first opening at one end of the cylinder and a second opening at the other end of the cylinder.
  • the cap is joined to the stem at the other end of the cylinder and covers the semiconductor optical element on the stem.
  • the optical window closes a first opening provided at one end of the cylinder of the cap.
  • the optical window is made of glass material and its outer surface is fixed to the inner surface of the first opening of the cap.
  • the optical window can be fixed to the cap with sufficient strength.
  • the optical window may have a central portion through which light passes and a peripheral portion surrounding the central portion and including an outer surface.
  • the central portion has a first surface facing the inside of the cap and a second surface facing the outside of the cap, and the normal direction of the first and second surfaces is with respect to the optical axis direction of the optical module. It may be tilted.
  • a cutting tool is inserted from the inside of the cap, a pedestal part for installing the optical window is formed around the opening of the cap, and the edge of the optical window is the pedestal part. May be placed in.
  • the cutting tool When installing the plate-shaped optical window in a state of being inclined with respect to the optical axis direction of the optical module, the cutting tool is inserted diagonally with respect to the depth direction of the cap.
  • the depth of the cap may be long, for example, because each component housed in the package is piled up high on the stem. In such a case, the cutting tool may interfere with the side wall portion of the cap, and the cutting tool may not be inserted.
  • the plate-shaped optical window can be arranged in a state of being inclined with respect to the optical axis direction of.
  • the peripheral portion may be thicker than the central portion in the optical axis direction of the optical module.
  • the optical window can be fixed to the cap with sufficient strength.
  • the optical axis of the light passing through the central portion moves slightly in parallel. This parallel movement contributes to the variation in the optical axis, and the amount of movement increases as the central portion becomes thicker.
  • the central portion is thinner than the peripheral portion, the amount of translation can be kept small. Further, since the peripheral portion is thicker than the central portion, stable airtight sealing can be realized.
  • the peripheral edge portion has a third surface facing the inside of the cap and a fourth surface facing the outside of the cap, and the normal direction of the third and fourth surfaces is the optical axis direction of the optical module. It may be along. As a result, the thickness of the entire optical window in the optical axis direction of the optical module can be suppressed, and the optical module can be miniaturized.
  • the first and second surfaces may be flat. Slopes may be provided at the stepped portion between the first surface and the third surface and at the stepped portion between the second surface and the fourth surface, respectively.
  • the above optical module may further include a temperature control device and a carrier.
  • the temperature control device is provided on the stem.
  • the carrier is provided on the temperature control device, and mounts the semiconductor optical element so that the optical axis of the semiconductor optical element passes through the optical window.
  • the temperature control device and the carrier are stacked on the stem, and the depth of the cap becomes long. Even in such a case, according to the above optical module, the optical window can be fixed to the cap without any problem.
  • the central axis of the cap cylinder may be parallel to the optical axis of the optical module. In that case, the central axis of the cap cylinder may coincide with the optical axis of the optical module. In the above optical module, the inner surface of the first opening may be along the central axis direction of the cylinder of the cap.
  • a method for manufacturing an optical module component includes a metal cap having a first opening provided at one end of the cylinder and a second opening provided at the other end of the cylinder, and a first. It is a method for manufacturing an optical module component including an optical window made of a light-transmitting glass material that closes an opening and whose outer surface is fixed to the inner surface of the first opening.
  • the cap is placed in a first mold having a shape corresponding to the outer surface shape of the cap, and the cap is melted in the first opening of the cap placed in the first mold.
  • the first mold and the second mold are cooled. It includes a step of cooling the glass and fixing the glass to the cap.
  • the metal cap and the glass optical window are integrally molded in this way, the outer surface of the optical window made of glass material can be fixed to the inner surface of the cap opening. Therefore, the above-mentioned optical module can be easily realized.
  • the optical window may be welded to the inner surface of the cap by removing the first mold and the second mold after the step of fixing the glass to the cap.
  • FIG. 1 is a perspective view showing an optical transmission module 1 as an embodiment of the optical module of the present disclosure.
  • FIG. 2 is a perspective view showing an optical transmission module 1 in a state where the cap 5 is removed.
  • the optical transmission module 1 includes a CAN package 4.
  • the CAN package 4 has a stem 3 and a cap 5. Both the stem 3 and the cap 5 are made of metal.
  • the material of the stem 3 is, for example, steel, and in one embodiment SPCC or Ni / Au plating.
  • the material of the cap 5 is, for example, stainless steel, and in one embodiment, SF20F.
  • the stem 3 has a substantially circular plate shape, and has a flat main surface 3a facing the internal space of the CAN package 4.
  • a plurality of lead pins 6 are provided in the CAN package 4. The plurality of lead pins 6 penetrate the stem 3 in the thickness direction. These lead pins 6 are used as input / output terminals for power supply, grounding, and electric signals.
  • the cap 5 has a cylindrical shape and has an end wall 7 at one end.
  • the central axis of the cylinder of the cap 5 is parallel to the optical axis S of the optical transmission module 1. In the illustrated example, the central axis of the cylinder of the cap 5 coincides with the optical axis S.
  • the thickness of the end wall 7 is, for example, 0.5 mm or more and 2.0 mm or less.
  • the end wall 7 has a circular opening 7a in the center thereof.
  • the opening 7a is the first opening in the present disclosure.
  • the inner surface of the opening 7a is along the direction of the optical axis S, that is, the direction of the central axis of the cylinder of the cap 5.
  • the opening 7a is airtightly closed by a light-transmitting optical window 8.
  • the cap 5 is joined to the stem 3 at the other end of the cylinder, and the space inside the CAN package 4 is kept airtight.
  • the method of joining the stem 3 and the cap 5 is, for example, resistance welding.
  • the diameter of the stem 3 that is, the outer diameter size may be 5.6 mm as an example.
  • thermoelectric conversion element 11 as a temperature control device
  • a semiconductor laser chip 40 as a semiconductor optical element
  • a monitor photodiode (monitor PD) 50 and a lens 60 are housed.
  • the cap 5 covers them on the stem 3.
  • the thermoelectric conversion element 11 is, for example, a Peltier element.
  • the thermoelectric conversion element 11 is provided on the main surface 3a of the stem 3.
  • one surface acts as one of the endothermic surface or the heat radiating surface
  • the other surface acts as the other of the endothermic surface or the heat radiating surface, depending on the direction of the supply current.
  • the thermoelectric conversion element 11 is provided between the pair of plate-shaped bodies 13, 15.
  • the thermoelectric conversion element 11 is provided on the main surface 3a of the stem 3 via the plate-shaped body 13.
  • These plate-shaped bodies 13 and 15 are made of an insulating material such as AlN or Al 2 O 3 . Since the thermoelectric conversion element 11 is built in the CAN package 4, the temperature of the semiconductor laser chip 40 is kept constant. For example, the temperature of the semiconductor laser chip 40 is adjusted within a wide temperature range of ⁇ 40 ° C. to 80 ° C.
  • the subcarrier 30 has a rectangular plate shape.
  • the subcarrier 30 is made of, for example, an insulating material.
  • the subcarrier 30 is made of ceramics such as AlN.
  • a semiconductor laser chip 40 is mounted on the upper surface of the subcarrier 30.
  • the semiconductor laser chip 40 is provided on the upper side of the stem 3 and emits light in the direction of the optical axis S.
  • the semiconductor laser chip 40 has a monolithic structure in which a laser diode and an optical modulator are integrated on a common substrate.
  • a high frequency wiring 42 is formed on the subcarrier 30 by metallizing.
  • the high frequency wiring 42 is electrically connected to the high frequency wiring 45a.
  • the high-frequency wiring 45a is formed by metallizing on the ceramic substrate 45 arranged on the main surface 3a of the stem 3.
  • the high-frequency wiring 42 and the high-frequency wiring 45a can be connected to each other by, for example, an Au wire having a diameter of 25 ⁇ m.
  • the thermistor 46 and the capacitor 47 are mounted on the upper surface of the subcarrier 30.
  • the carrier 20 has a rectangular plate shape.
  • the carrier 20 is arranged on the thermoelectric conversion element 11 or the plate-shaped body 15.
  • the carrier 20 is made of an insulating material.
  • the insulating material of the carrier 20 may be the same as or different from the insulating material of the subcarrier 30.
  • the carrier 20 is made of ceramics such as AlN.
  • a subcarrier 30 is mounted on the side surface 21 of the carrier 20.
  • the carrier 20 is equipped with a subcarrier 30 so that the optical axis S of the semiconductor laser chip 40 passes through the center of the optical window 8.
  • the monitor PD50 monitors the emitted light of the semiconductor laser chip 40.
  • the monitor PD50 is arranged on the plate-shaped body 15 at a position behind the semiconductor laser chip 40.
  • the monitor PD50 receives the back light emitted behind the semiconductor laser chip 40.
  • the lens 60 is fixed on the side surface 21 of the carrier 20 with an adhesive.
  • the light emitted from the semiconductor laser chip 40 is incident on the lens 60.
  • the lens 60 is a surface mount type resin lens.
  • the lens 60 is, for example, a collimating lens that converts the light emitted from the semiconductor laser chip 40 into collimating light.
  • a composite device such as 10G-EPON (10GigabitEthernet Passive Optical Network)
  • optical design, filter design, and the like can be facilitated by using collimated light as the light emitted from the optical transmission module 1.
  • FIG. 3 is a plan view of the cap 5 as viewed from the direction of the optical axis S.
  • FIG. 4 is a side sectional view of the cap 5 along the line IV-IV of FIG. 3, showing a cross section including the optical axis S.
  • the cap 5 has an opening 7b at the other end of the cylinder, that is, at the end on the stem 3 side.
  • the opening 7b is the second opening in the present disclosure.
  • the opening 7a of the cap 5 is airtightly closed by the optical window 8.
  • the optical window 8 is formed by integrally molding with the cap 5. That is, the optical window 8 is made of a glass material and is fixed to the opening 7a of the cap 5 without using low melting point glass. In one example, the optical window 8 is made of a single glass material.
  • the optical window 8 has a substantially disk shape.
  • the optical window 8 is fixed to the inner surface of the opening 7a of the cap 5 by welding the outer surface, that is, the outer peripheral surface 8a, to the inner surface of the opening 7a.
  • the glass material of the optical window 8 is, for example, high Tg glass having a glass transition point Tg of 500 ° C. or higher. Examples of such a glass material include U-LaK130M, K-VC89, L-LAH84 and the like.
  • the optical window 8 has a central portion 81 and a peripheral portion 82 that are integrally formed with each other.
  • the central portion 81 is a flat window through which light from the semiconductor laser chip 40 passes.
  • the central portion 81 is located at the central portion of the end wall 7 and overlaps with the optical axis S.
  • the planar shape of the central portion 81 is, for example, a circle.
  • the central portion 81 has a first surface 81a and a second surface 81b.
  • the surface 81a is a flat surface facing the inside of the cap 5.
  • the surface 81b is a flat surface facing the outside of the cap 5.
  • the normal directions of the surfaces 81a and 81b are inclined with respect to the direction of the optical axis S. In other words, the surfaces 81a and 81b are inclined with respect to the plane perpendicular to the optical axis S. This is to prevent the reflected return light from the optical window 8 from returning to the semiconductor laser chip 40.
  • the tilt angle is, for example, in the range of 4 ° to 8 °.
  • the thickness t1 of the central portion 81 is, for example, 0.3 mm or more and 1 mm or less.
  • the outer diameter of the central portion 81 is, for example, 0.6 mm or more and 1.5 mm or less.
  • the peripheral portion 82 is a portion surrounding the periphery of the central portion 81.
  • the peripheral edge portion 82 constitutes the outer edge of the optical window 8 and includes the outer surface 8a.
  • the optical axis S is separated from the peripheral edge portion 82.
  • the peripheral edge portion 82 mainly bears the joint with the cap 5 and the support of the central portion 81.
  • the planar shape of the peripheral edge portion 82 is, for example, an annular shape centered on the optical axis S.
  • the central portion 81 is located inside the annulus.
  • the thickness t2 of the peripheral edge portion 82 in the direction of the optical axis S of the optical transmission module 1 is thicker than the thickness t1 of the central portion 81 in the same direction.
  • the peripheral edge portion 82 has a third surface 82a and a fourth surface 82b.
  • the surface 82a faces the inside of the cap 5.
  • the surface 82b faces the outside of the cap 5.
  • the normal direction of the surfaces 82a and 82b is along the direction of the optical axis S. In other words, the surfaces 82a and 82b are along a plane perpendicular to the optical axis S.
  • the thickness t2 of the peripheral edge portion 82 is, for example, 0.5 mm or more and 1.5 mm or less.
  • the outer diameter of the peripheral edge portion 82, that is, the outer diameter of the optical window 8 is, for example, 0.8 mm or more and 2.5 mm or less.
  • a slope 83 is provided on the step portion.
  • the slope 83 is inclined to the side opposite to the surface 81a with respect to the optical axis S.
  • the inclination angle of the slope 83 is larger than the inclination angle of the surface 81a.
  • a slope 84 is provided on the step portion. The slope 84 is inclined to the side opposite to the surface 81b with respect to the optical axis S. The inclination angle of the slope 84 is larger than the inclination angle of the surface 81b.
  • FIG. 5 is a perspective view showing an optical transmitter (Transmitter optical sub-assembly: TOSA) 70 including the optical transmitter module 1.
  • the light transmission device 70 includes the light transmission module 1 of the present embodiment and a metal tubular member, that is, a sleeve 71, which includes a condenser lens and a stub.
  • the cap 5 of the light transmission module 1 and the tubular member 71 are joined to each other by, for example, YAG welding.
  • the optical transmission module 1 may be used as a bidirectional module (Bi-directional Optical SubAssembly: BOSA) in combination with an optical reception module.
  • BOSA Bi-directional Optical SubAssembly
  • an integrated module may be configured by arranging a plurality of light transmission modules 1 that output light having different wavelengths in parallel and combining these lights using optical components such as a filter and a mirror. Also in the bidirectional module and the integrated module, the optical transmission module 1 and the metal tubular member are joined to each other by, for example, YAG welding.
  • the manufacturing method of the optical transmission module 1 will be described with reference to FIGS. 6, 7, 8 and 9.
  • the cap 5 is prepared. It is desirable that the cap 5 has a thick end wall 7 in order to sufficiently withstand YAG welding with the tubular member 71. Therefore, it is desirable that the cap 5 is formed by cutting rather than press molding.
  • the cap 5 is arranged in the first mold 61.
  • the mold 61 has a shape corresponding to the outer surface shape of the cap 5 and the optical window 8.
  • the molten glass 51 is arranged in the opening 7a of the cap 5 so as to be in contact with the inner side surface of the opening 7a.
  • the second mold 62 is arranged on the cap 5, and the molten glass 51 is sandwiched between the mold 61 and the mold 62 to mold the glass 51.
  • the mold 62 has a shape corresponding to the inner surface shape of the cap 5 and the optical window 8.
  • the mold 61 and the mold 62 are cooled to cool the glass 51, and the glass 51 is fixed to the cap 5. After that, by removing the molds 61 and 62, as shown in FIG. 9, the optical module component 9 including the cap 5 and the optical window 8 fixed to the cap 5 is formed.
  • the subcarrier 30, the carrier 20, the semiconductor laser chip 40, the monitor PD50, and the lens 60 are arranged on the main surface 3a of the stem 3.
  • the cap 5 is joined to the main surface 3a of the stem 3, and the semiconductor laser chip 40 and the like are covered with the cap 5.
  • the joining method at this time is, for example, resistance welding.
  • FIG. 10 is a diagram schematically showing a cross section of a cap 105 used in a conventional optical transmission module.
  • a flat glass optical window 108 is attached to the opening 107a of the cap 105.
  • the optical window 108 is fixed to the cap 105 via the low melting point glass 109, and the inside of the CAN package is hermetically sealed.
  • the metal tubular member 71 is attached to the cap 105 by YAG welding. At that time, the low melting point glass 109 may be melted by the heat during welding, and the airtight sealing state in the CAN package may be impaired.
  • the optical window 8 of the present embodiment is made of a glass material, and the outer surface 8a is fixed to the cap 5 by welding to the inner surface of the opening 7a.
  • the outer surface 8a of the optical window 8 is welded to the inner surface of the opening 7a, for example, the metal and glass are integrally molded, so that the optical window 8 can be fixed to the cap 5 with sufficient strength.
  • the optical window 8 may have a central portion 81 through which light passes and a peripheral portion 82 that surrounds the central portion 81 and includes an outer surface 8a. Then, the normal direction of the surfaces 81a and 81b of the central portion 81 may be inclined with respect to the direction of the optical axis S.
  • the cutting tool B is inserted from the inside of the cap 105 as shown in FIG. Using this cutting tool B, a pedestal portion 107b on which the optical window 108 is installed is formed around the opening 107a of the cap 105. Then, the edge portion of the optical window 108 is arranged on the pedestal portion 107b.
  • the cutting tool B When the plate-shaped optical window 108 is attached in a state of being inclined with respect to the direction of the optical axis S, the cutting tool B is inserted obliquely with respect to the depth direction of the cap 105 as shown in FIG.
  • the depth of the cap 105 may be long, for example, because each component housed in the CAN package is stacked high on the stem. In such a case, as shown in the portion C in the drawing, the cutting tool B may interfere with the side wall portion of the cap 105, and the cutting tool B may not be inserted.
  • the normal directions of the surfaces 81a and 81b of the optical window 8 are inclined with respect to the optical axis S, so that even if the depth of the cap 5 is long.
  • the plate-shaped optical window 8 can be arranged in a state of being inclined with respect to the optical axis S.
  • the peripheral edge portion 82 may be thicker than the central portion 81 in the direction of the optical axis S of the optical transmission module 1.
  • the optical window 8 since the dimension of the outer surface 8a in the direction of the thickness t2 of the optical window 8 can be increased, the optical window 8 can be fixed to the cap 5 with sufficient strength.
  • the optical transmission module 1 of the present embodiment since the normal direction of the surfaces 81a and 81b is inclined with respect to the optical axis direction of the optical transmission module 1, the optical axis S of light passing through the central portion 81 Moves slightly in parallel. This parallel movement contributes to the variation in the optical axis, and the amount of movement increases as the central portion 81 becomes thicker.
  • the central portion 81 is thinner than the peripheral portion 82 as in the present embodiment, the amount of translation of the optical axis S can be suppressed to be small, and the variation in the optical axis can be reduced. Further, since the peripheral portion 82 is thicker than the central portion 81, stable airtight sealing can be realized. In this case, the normal direction of the surfaces 82a and 82b of the peripheral edge portion 82 may be along the direction of the optical axis S. As a result, the thickness of the entire optical window 8 in the direction of the optical axis S can be suppressed, and the optical transmission module 1 can be miniaturized.
  • the optical transmission module 1 is provided on the thermoelectric conversion element 11 provided on the stem 3 and the thermoelectric conversion element 11 so that the optical axis S of the semiconductor laser chip 40 passes through the optical window 8.
  • a carrier 20 and a subcarrier 30 on which the semiconductor laser chip 40 is mounted may be provided.
  • the thermoelectric conversion element 11 and the carrier are stacked on the stem 3, and the depth of the cap 5 becomes long. Even in such a case, according to the optical transmission module 1 of the present embodiment, the optical window 8 can be fixed to the cap 5 without any problem.
  • the method for manufacturing the optical transmission module 1 includes a step of arranging the cap 5 on a mold 61 having a shape corresponding to the outer surface shape of the optical window 8 and an opening of the cap 5.
  • the process of molding the glass 51 by sandwiching the molten glass 51 between the mold 61 and the mold 62, and cooling the mold 61 and the mold 62 cools the glass 51 to cool the glass 51. It includes a step of fixing to the cap 5.
  • the optical transmission module 1 of the present embodiment can be easily realized.
  • an optical transmission module is shown as an example of an optical module
  • a semiconductor laser chip 40 is shown as a semiconductor optical element.
  • the present disclosure is also applicable to an optical receiving module, in which case, as a semiconductor optical element.
  • a semiconductor light receiving element such as a photodiode is used.
  • the case where the normal direction of the optical window is inclined with respect to the optical axis direction is illustrated, but the normal direction of the optical window may be along the optical axis direction.
  • the flat optical window is illustrated, but the present disclosure can be applied to an optical window having a shape other than the flat plate, for example, a glass lens.
  • Optical transmission module 3 ... Stem 3a ... Main surface 4 ... CAN package 5 ... Cap 6 ... Lead pin 7 ... End wall 7a, 7b ... Aperture 8 ... Optical window 8a ... Outer surface 9 ... Optical module component 11 ... Thermoelectric conversion element 13,15 ... Plate 20 ... Carrier 21 ... Side 30 ... Subcarrier 40 ... Semiconductor laser chip 42 ... High frequency wiring 45 ... Ceramic substrate 45a ... High frequency wiring 46 ... Thermista 47 ... Condenser 51 ... Glass 60 ... Lens 61, 62 ... Mold 70 ... Optical transmitter 71 ... Cylindrical member 81 ... Central portion 81a, 81b ... Surface 82 ... Peripheral portion 82a, 82b ... Surface 83, 84 ... Slope B ... Cutting tool S ... Optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光モジュールは、金属製のステムと、ステム上に設けられた半導体光素子と、金属製のキャップと、光透過性の光学窓と、を備える。キャップは、円筒の一端に第1の開口を有する端壁を有し、円筒の他端に第2の開口を有する。キャップは、円筒の他端においてステムに接合されるとともに半導体光素子をステム上において覆う。光学窓は、キャップの円筒の一端に設けられた第1の開口を塞ぐ。光学窓は、ガラス材料からなり、外側面がキャップの第1の開口の内側面に固定されている。

Description

光モジュール及び光モジュール用部品の製造方法
 本開示は、光モジュール及び光モジュール用部品の製造方法に関する。本出願は、2019年7月17日出願の日本出願第2019-132128号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
 特許文献1には、レーザダイオードモジュール及びその組立方法に関する技術が開示されている。このレーザダイオードモジュールは、レーザダイオード(LD)アセンブリと、レンズ-ファイバアセンブリと、スリーブとを備える。LDアセンブリは、パッケージと、パッケージのベースに固定されたホルダとから構成される。ホルダはステンレス鋼からなり、開口を有する。パッケージのベースはコバールからなる。ベースには銅からなるキャリアが固定されており、キャリア上にはレーザダイオードが搭載されている。レーザダイオードはベースに固定されたキャップにより包囲されている。キャップはレーザビームの透過窓を有する。レンズ-ファイバアセンブリは、ステンレス鋼からなるケーシングを含む。ケーシングの内部には非球面レンズが挿入され、固定されている。ケーシングは、LDアセンブリのホルダに対して溶接により固定されている。
特開2001-281501号公報
 本開示の光モジュールは、金属製のステムと、ステム上側に設けられた半導体光素子と、金属製のキャップと、光透過性の光学窓と、を備える。キャップは、円筒の一端に第1の開口を有する端壁を有し、円筒の他端に第2の開口を有する。キャップは、円筒の他端においてステムに接合されるとともに半導体光素子をステム上において覆う。光学窓は、キャップの円筒の一端に設けられた第1の開口を塞ぐ。光学窓は、ガラス材料からなる。光学窓は、外側面がキャップの第1の開口の内側面に固定されている。
 本開示の光モジュール用部品の製造方法は、円筒の一端に設けられた第1の開口、及び円筒の他端に設けられた第2の開口を有する金属製のキャップと、第1の開口を塞ぐ光透過性のガラス材料からなり、外側面が第1の開口の内側面に固定されているガラス製の光学窓と、を備える光モジュール用部品の製造方法である。この製造方法は、キャップの外側の表面形状に対応する形状を有する第1の金型にキャップを配置する工程と、第1の金型に配置されているキャップの第1の開口に、溶融したガラスを、第1の開口の内側面に接するように配置する工程と、キャップの内側の表面形状に対応する形状を有する第2の金型をキャップ上に配置する工程と、第1の金型と第2の金型との間に溶融したガラスを挟んで、ガラスを成型する工程と、ガラスを成型する工程の後、第1の金型と第2の金型とを冷却することにより、ガラスを冷却し、ガラスをキャップに固着させる工程と、を含む
図1は、本開示の光モジュールの一実施形態としての光送信モジュールを示す斜視図である。 図2は、キャップが外された状態の光送信モジュール1を示す斜視図である。 図3は、光軸の方向から見たキャップの平面図である。 図4は、図3のIV-IV線に沿ったキャップの側断面図であって、光軸を含む断面を示す。 図5は、光送信モジュールを備える光送信装置を示す斜視図である。 図6は、光送信モジュールの製造方法における各工程を示す図である。 図7は、光送信モジュールの製造方法における各工程を示す図である。 図8は、光送信モジュールの製造方法における各工程を示す図である。 図9は、光送信モジュールの製造方法における各工程を示す図である。 図10は、従来の光送信モジュールに用いられるキャップの断面を模式的に示す図である。 図11は、従来の光送信モジュールに用いられるキャップの断面を模式的に示す図である。 図12は、キャップの内側から切削工具を挿入する様子を示す図である。 図13は、キャップの内側から切削工具を挿入する様子を示す図である。
[本開示が解決しようとする課題]
 レーザダイオードやフォトダイオードといった半導体光素子を内蔵する光モジュールとして、いわゆるCANパッケージを備えるものがある。CANパッケージは、金属製の円盤状のステムと、一端がステムに接合された金属製の円筒状のキャップとを有する。キャップの他端は閉塞されており、その他端に形成された開口内に、サファイヤ若しくはガラスの板又はガラスレンズといった、光学窓が設置される。通常、光学窓は金属製のキャップに対して低融点ガラスなどを用いて固定される。
 上記の光モジュールを光ファイバに結合させる際には、金属製の筒状部材すなわちスリーブが光モジュールに取り付けられる。スリーブは、集光レンズを内包するとともに光ファイバを保持する。その際、金属製の筒状部材は例えばYAG溶接などの溶接によってキャップに取り付けられる。しかし、キャップに光学窓が低融点ガラスを用いて固定されている場合、溶接時の熱によって低融点ガラスが溶融し、パッケージ内の気密封止状態が損なわれるおそれがある。
[本開示の効果]
 本開示によれば、金属製の筒状部材を溶接によってキャップに取り付ける際に、パッケージ内の気密封止状態が損なわれることを抑制できる光モジュール及び光モジュール用部品の製造方法を提供することが可能となる。
 [本開示の実施形態の説明]
 最初に、本開示の実施形態を列記して説明する。一実施形態に係る光モジュールは、金属製のステムと、ステム上側に設けられた半導体光素子と、金属製のキャップと、光透過性の光学窓と、を備える。キャップは、円筒の一端に第1の開口を有する端壁を有し、円筒の他端に第2の開口を有する。キャップは、円筒の他端においてステムに接合されるとともに半導体光素子をステム上において覆う。光学窓は、キャップの円筒の一端に設けられた第1の開口を塞ぐ。光学窓は、ガラス材料からなり、外側面がキャップの第1の開口の内側面に固定されている。このように、光学窓の外側面が開口の内側面に固定されることにより、光学窓を十分な強度でもってキャップに固定することができる。加えて、この場合、比較的高融点のガラス材料を用いることが可能である。したがって、金属製の筒状部材を溶接によってキャップに取り付ける際に、溶接の熱によるガラスの溶融を抑え、パッケージ内の気密封止状態が損なわれることを抑制できる。
 上記の光モジュールにおいて、光学窓は、光を通過させる中央部と、中央部を囲み外側面を含む周縁部とを有してもよい。中央部は、キャップの内側を向く第1の面と、キャップの外側を向く第2の面とを有し、第1及び第2の面の法線方向は光モジュールの光軸方向に対して傾斜してもよい。従来、板状の光学窓をキャップに取り付けるために、キャップの内側から切削工具を挿入し、光学窓を設置する台座部分をキャップの開口の周囲に形成し、光学窓の縁部をその台座部分に配置することがある。光モジュールの光軸方向に対して傾斜した状態で板状の光学窓を取り付ける場合には、キャップの奥行き方向に対して切削工具を斜めに挿入する。しかし、例えばパッケージ内に収容される各部品がステム上に高く積まれる等によってキャップの奥行きが長い場合がある。そのような場合、キャップの側壁部分に切削工具が干渉してしまい、切削工具を挿入できないことがある。これに対し、上記の光モジュールでは、光学窓の第1及び第2の面の法線方向が光軸方向に対して傾斜しているので、キャップの奥行きが長い場合であっても、光モジュールの光軸方向に対して傾斜した状態で板状の光学窓を配置することができる。
 上記の光モジュールにおいて、周縁部は光モジュールの光軸方向において中央部より厚くてもよい。この場合、光学窓の厚さ方向における外側面の寸法を大きくできるので、キャップに対して光学窓を十分な強さでもって固定することができる。加えて、第1及び第2の面の法線方向が光モジュールの光軸方向に対して傾斜している場合、中央部を通過する光の光軸は僅かに平行移動する。この平行移動は光軸ばらつきの一要因となり、その移動量は中央部が厚いほど大きくなる。上記のように、中央部が周縁部よりも薄いことによって、平行移動量を小さく抑えることができる。更に、周縁部が中央部よりも厚いことによって、安定した気密封止を実現することができる。この場合、周縁部は、キャップの内側を向く第3の面と、キャップの外側を向く第4の面とを有し、第3及び第4の面の法線方向は光モジュールの光軸方向に沿っていてもよい。これにより、光モジュールの光軸方向における光学窓全体の厚みを抑え、光モジュールを小型化することができる。第1及び第2の面は平坦であってもよい。第1の面と第3の面との間の段差部分、及び第2の面と第4の面との間の段差部分にそれぞれ斜面が設けられてもよい。
 上記の光モジュールは、温度制御装置と、キャリアと、を更に備えてもよい。温度制御装置は、ステム上に設けられる。キャリアは、温度制御装置上に設けられ、半導体光素子の光軸が光学窓を通るように半導体光素子を搭載する。この場合、ステム上に温度制御装置及びキャリアが積み上げられることとなり、キャップの奥行きが長くなる。このような場合であっても、上記の光モジュールによれば、キャップに光学窓を問題なく固定することができる。
 上記の光モジュールにおいて、キャップの円筒の中心軸線は、光モジュールの光軸と平行であってもよい。その場合、キャップの円筒の中心軸線は光モジュールの光軸と一致してもよい。上記の光モジュールにおいて、第1の開口の内側面は、キャップの円筒の中心軸線方向に沿っていてもよい。
 一実施形態に係る光モジュール用部品の製造方法は、円筒の一端に設けられた第1の開口、及び円筒の他端に設けられた第2の開口を有する金属製のキャップと、第1の開口を塞ぐ光透過性のガラス材料からなり、外側面が第1の開口の内側面に固定されているガラス製の光学窓と、を備える光モジュール用部品の製造方法である。この製造方法は、キャップの外側の表面形状に対応する形状を有する第1の金型にキャップを配置する工程と、第1の金型に配置されているキャップの第1の開口に、溶融したガラスを、第1の開口の内側面に接するように配置する工程と、キャップの内側の表面形状に対応する形状を有する第2の金型をキャップ上に配置する工程と、第1の金型と第2の金型との間に溶融したガラスを挟んで、ガラスを成型する工程と、ガラスを成型する工程の後、第1の金型と第2の金型とを冷却することにより、ガラスを冷却し、ガラスをキャップに固着させる工程と、を含む。例えばこのように、金属製のキャップとガラス製の光学窓とを一体成型すれば、ガラス材料からなる光学窓の外側面をキャップ開口の内側面に固定させることができる。故に、上述した光モジュールを容易に実現することができる。
 上記の製造方法において、ガラスをキャップに固着させる工程の後、第1の金型および第2の金型を取り去ることによって、光学窓をキャップの内側面に溶着させてもよい。
 [本開示の実施形態の詳細]
 本開示の光モジュール及び光モジュール用部品の製造方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 図1は、本開示の光モジュールの一実施形態としての光送信モジュール1を示す斜視図である。図2は、キャップ5が外された状態の光送信モジュール1を示す斜視図である。光送信モジュール1は、CANパッケージ4を備える。CANパッケージ4は、ステム3とキャップ5とを有する。ステム3及びキャップ5は共に金属製である。ステム3の材質は例えば鋼であり、一実施例ではSPCCすなわちNi/Auメッキである。キャップ5の材質は例えばステンレスであり、一実施例ではSF20Fである。ステム3は、略円形板状をなしており、CANパッケージ4の内部空間に面する平坦な主面3aを有している。CANパッケージ4には複数のリードピン6が設けられている。複数のリードピン6は、ステム3を厚み方向に貫通している。これらのリードピン6は、給電、接地及び電気信号の入出力端子として利用される。
 キャップ5は、円筒形状を有し、一端に端壁7を有している。キャップ5の円筒の中心軸線は、光送信モジュール1の光軸Sと平行である。図示例では、キャップ5の円筒の中心軸線は光軸Sと一致する。端壁7の厚さは例えば0.5mm以上2.0mm以下である。端壁7は、その中央に、円形状の開口7aを有する。開口7aは、本開示における第1の開口である。開口7aの内側面は、光軸Sの方向すなわちキャップ5の円筒の中心軸線方向に沿っている。開口7aは、光透過性の光学窓8によって気密に塞がれている。キャップ5は円筒の他端においてステム3に接合されており、CANパッケージ4の内部の空間は気密に保たれている。ステム3とキャップ5との接合方法は、例えば抵抗溶接である。SFP(Small Form-factor Pluggable)、SFP+等の小型光トランシーバに光送信モジュール1が搭載される場合、ステム3の直径すなわち外径サイズは、一例として5.6mmであってよい。
 CANパッケージ4の内部には、温度制御装置としての熱電変換素子11、サブキャリア30、キャリア20、半導体光素子としての半導体レーザチップ40、モニタフォトダイオード(モニタPD)50、及びレンズ60が収容されている。キャップ5は、ステム3上においてこれらを覆う。
 熱電変換素子11は、例えばペルチェ素子である。熱電変換素子11は、ステム3の主面3a上に設けられている。熱電変換素子11では、供給電流の方向に応じて、一方面が吸熱面又は放熱面の一方として作用し、他方面が吸熱面又は放熱面の他方として作用する。熱電変換素子11は、一対の板状体13,15の間に設けられている。熱電変換素子11は、板状体13を介してステム3の主面3a上に設けられている。これらの板状体13,15は、例えば、AlN、Al23といった絶縁性材料によって構成されている。CANパッケージ4内に熱電変換素子11が内蔵されていることによって、半導体レーザチップ40の温度が一定に保たれる。例えば、半導体レーザチップ40の温度は、-40℃から80℃といった広い温度範囲内で調整される。
 サブキャリア30は、矩形板状をなしている。サブキャリア30は、例えば絶縁性材料により構成されている。一例としては、サブキャリア30はAlN等のセラミックスにより構成されている。サブキャリア30の上面には、半導体レーザチップ40が搭載されている。半導体レーザチップ40は、ステム3の上側に設けられ、光軸Sの方向に光を出射する。半導体レーザチップ40は、レーザダイオードと光変調器とが共通基板上に集積されたモノリシック構造を有する。サブキャリア30にはメタライズによって高周波配線42が形成されている。この高周波配線42は、高周波配線45aと電気的に接続されている。高周波配線45aは、ステム3の主面3aに配置されたセラミック基板45上にメタライズにより形成されている。高周波配線42と高周波配線45aとは、例えば、直径25μmのAuワイヤによって互いに接続され得る。図示例においては、サブキャリア30の上面に、サーミスタ46及びコンデンサ47が搭載されている。
 キャリア20は、矩形板状をなしている。キャリア20は、熱電変換素子11上または板状体15上に配置されている。キャリア20は、絶縁性材料によって構成されている。キャリア20の絶縁性材料は、サブキャリア30の絶縁性材料と同じであってもよく、異なってもよい。一例としては、キャリア20はAlN等のセラミックスにより構成されている。キャリア20の側面21上には、サブキャリア30が搭載されている。キャリア20は、半導体レーザチップ40の光軸Sが光学窓8の中心を通るように、サブキャリア30を搭載している。
 モニタPD50は、半導体レーザチップ40の出射光をモニタする。図示例では、モニタPD50は、板状体15上であって、半導体レーザチップ40の後方の位置に配置されている。モニタPD50は、半導体レーザチップ40の後方に出射される背面光を受光する。
 レンズ60は、キャリア20の側面21上に接着剤によって固定されている。レンズ60には、半導体レーザチップ40からの出射光が入射される。一例として、レンズ60は表面実装型の樹脂レンズである。レンズ60は、例えば、半導体レーザチップ40からの出射光をコリメート光に変換するコリメートレンズである。例えば、10G-EPON(10 Gigabit Ethernet Passive Optical Network)等の複合デバイスでは、光送信モジュール1からの出射光をコリメート光とすることで光学設計、フィルタ設計等が容易となる。
 図3は、光軸Sの方向から見たキャップ5の平面図である。図4は、図3のIV-IV線に沿ったキャップ5の側断面図であって、光軸Sを含む断面を示す。キャップ5は、円筒の他端すなわちステム3側の端に開口7bを有する。開口7bは、本開示における第2の開口である。前述したように、キャップ5の開口7aは、光学窓8によって気密に塞がれている。光学窓8はキャップ5との一体成型により形成される。すなわち、光学窓8はガラス材料からなり、低融点ガラスによることなくキャップ5の開口7aに固着している。一例では、光学窓8は単一のガラス材料からなる。より具体的には、光学窓8は、略円板状を呈している。そして、光学窓8は、その外側面すなわち外周面8aが開口7aの内側面に溶着することにより、キャップ5の開口7aの内側面に固定されている。光学窓8のガラス材料は、例えばガラス転移点Tgが500℃以上である高Tgガラスである。このようなガラス材料としては、例えばU-LaK130M,K-VC89,L-LAH84等が挙げられる。光学窓8に高Tgガラスを使用することによって、図5に示す筒状部材71をキャップ5に溶接する際の熱による光学窓8とキャップ5との間の隙間の発生を抑制し、その隙間からのリークを抑制できる。
 光学窓8は、互いに一体に構成された中央部81および周縁部82を有する。中央部81は、半導体レーザチップ40からの光を通過させる平窓である。中央部81は、端壁7の中央部に位置し、光軸Sと重なる。中央部81の平面形状は例えば円形である。中央部81は、第1の面81aと、第2の面81bとを有する。面81aは、キャップ5の内側を向く平坦な面である。面81bは、キャップ5の外側を向く平坦な面である。これらの面81a,81bは互いに対向しており且つ互いに平行である。そして、面81a,81bの法線方向は、光軸Sの方向に対して傾斜している。言い換えると、面81a,81bは、光軸Sに対して垂直な平面に対して傾斜している。光学窓8からの反射戻り光が半導体レーザチップ40に戻らないようにするためである。傾斜角は例えば4°から8°の範囲内である。中央部81の厚みt1は、例えば0.3mm以上1mm以下である。中央部81の外径は、例えば0.6mm以上1.5mm以下である。
 周縁部82は、中央部81の周囲を囲む部分である。周縁部82は、光学窓8の外縁を構成しており、外側面8aを含む。光軸Sは周縁部82から離れている。周縁部82は、主にキャップ5との接合及び中央部81の支持を担う。周縁部82の平面形状は例えば光軸Sを中心とする円環状である。その円環の内側に、中央部81が位置する。光送信モジュール1の光軸Sの方向における周縁部82の厚みt2は、同方向における中央部81の厚みt1よりも厚い。周縁部82は、第3の面82aと、第4の面82bとを有する。面82aは、キャップ5の内側を向く。面82bは、キャップ5の外側を向く。面82a,82bの法線方向は、光軸Sの方向に沿っている。言い換えると、面82a,82bは、光軸Sに対して垂直な平面に沿っている。周縁部82の厚みt2は、例えば0.5mm以上1.5mm以下である。周縁部82の外径、すなわち光学窓8の外径は、例えば0.8mm以上2.5mm以下である。
 中央部81の面81aが傾斜していることにより、面81aと周縁部82の面82aとの間には段差が生じる。この段差部分には、斜面83が設けられている。斜面83は、光軸Sに対して面81aとは反対側に傾斜している。斜面83の傾斜角は、面81aの傾斜角よりも大きい。同様に、中央部81の面81bが傾斜していることにより、面81bと周縁部82の面82bとの間にも段差が生じる。この段差部分には、斜面84が設けられている。斜面84は、光軸Sに対して面81bとは反対側に傾斜している。斜面84の傾斜角は、面81bの傾斜角よりも大きい。
 図5は、光送信モジュール1を備える光送信装置(Transmitter optical sub-assembly:TOSA)70を示す斜視図である。光送信装置70は、本実施形態の光送信モジュール1と、集光レンズ及びスタブを内包する金属製の筒状部材すなわちスリーブ71とを備える。光送信モジュール1のキャップ5と、筒状部材71とは、例えばYAG溶接によって相互に接合されている。光送信モジュール1は、光受信モジュールと組み合わせて双方向モジュール(Bi-directional Optical SubAssembly:BOSA)として使用されてもよい。或いは、互いに波長が異なる光を出力する複数の光送信モジュール1を並設し、フィルタ、ミラー等の光学部品を用いてこれらの光を合波することによって、集積モジュールを構成してもよい。双方向モジュールや集積モジュールにおいても、光送信モジュール1と金属製の筒状部材とが、例えばYAG溶接によって相互に接合される。
 続いて、図6、図7、図8及び図9を参照しつつ、光送信モジュール1の製造方法について説明する。光送信モジュール1を製造する際には、まず、キャップ5を準備する。キャップ5は、筒状部材71とのYAG溶接に十分に耐えるために厚い端壁7を有することが望ましい。故に、キャップ5を、プレス成型ではなく切削加工により形成することが望ましい。
 次に、図6に示すように、第1の金型61内にキャップ5を配置する。金型61は、キャップ5及び光学窓8の外側の表面形状に対応する形状を有する。続いて、図7に示すように、溶融したガラス51を、キャップ5の開口7a内に、開口7aの内側面に接するように配置する。そして、図8に示すように、第2の金型62をキャップ5上に配置し、金型61と金型62との間に溶融したガラス51を挟んで、ガラス51を成型する。金型62は、キャップ5及び光学窓8の内側の表面形状に対応する形状を有する。その後、金型61と金型62とを冷却することにより、ガラス51を冷却し、ガラス51をキャップ5に固着させる。その後、金型61,62を取り去ることによって、図9に示すように、キャップ5と、キャップ5に固定された光学窓8とを備える光モジュール用部品9が形成される。
 続いて、図2に示したように、ステム3の主面3a上に、サブキャリア30、キャリア20、半導体レーザチップ40、モニタPD50、及びレンズ60を配置する。そして、図1に示したように、キャップ5をステム3の主面3aに接合し、半導体レーザチップ40等をキャップ5により覆う。このときの接合方法は例えば抵抗溶接である。以上の工程を経て、本実施形態の光送信モジュール1が作製される。
 以上の構成を備える本実施形態の光送信モジュール1及びその製造方法によって得られる効果について、従来の光送信モジュールが有する課題とともに説明する。図10は、従来の光送信モジュールに用いられるキャップ105の断面を模式的に示す図である。同図に示すように、キャップ105の開口107aには、平板状のガラス製の光学窓108が取り付けられる。光学窓108は、低融点ガラス109を介してキャップ105に固定され、CANパッケージの内部を気密に封止する。しかしながら、図11に示すように、金属製の筒状部材71が、YAG溶接によってキャップ105に取り付けられる。その際、溶接時の熱によって低融点ガラス109が溶融し、CANパッケージ内の気密封止状態が損なわれるおそれがある。
 上記の課題に対し、本実施形態の光学窓8は、ガラス材料からなり、外側面8aが開口7aの内側面に溶着することによりキャップ5に固定されている。このように、光学窓8の外側面8aが開口7aの内側面に溶着、例えば金属とガラスが一体成型されることにより、光学窓8を十分な強度でもってキャップ5に固定することができる。加えて、この場合、比較的高融点のガラス材料を用いることが可能である。したがって、金属製の筒状部材71を溶接によってキャップ5に取り付ける際に、溶接の熱によるガラスの溶融を抑え、CANパッケージ4内の気密封止状態が損なわれることを抑制できる。
 本実施形態のように、光学窓8は、光を通過させる中央部81と、中央部81を囲み外側面8aを含む周縁部82とを有してもよい。そして、中央部81の面81a,81bの法線方向は、光軸Sの方向に対して傾斜してもよい。従来、図10に示した板状の光学窓108をキャップ105に取り付ける際には、図12に示すようにキャップ105の内側から切削工具Bを挿入する。この切削工具Bを用いて、光学窓108を設置する台座部分107bを、キャップ105の開口107aの周囲に形成する。そして、光学窓108の縁部を、台座部分107bに配置する。光軸Sの方向に対して傾斜した状態で板状の光学窓108を取り付ける場合には、図13に示すように、キャップ105の奥行き方向に対して切削工具Bを斜めに挿入する。しかし、例えばCANパッケージ内に収容される各部品がステム上に高く積まれる等によって、キャップ105の奥行きが長い場合がある。そのような場合、図中の部分Cに示すように、キャップ105の側壁部分に切削工具Bが干渉してしまい、切削工具Bを挿入できないことがある。これに対し、本実施形態の光送信モジュール1では、光学窓8の面81a,81bの法線方向が光軸Sに対して傾斜しているので、キャップ5の奥行きが長い場合であっても、光軸Sに対して傾斜した状態で板状の光学窓8を配置することができる。換言すると、本実施形態の光送信モジュール1によれば、従来より長い奥行きを有するキャップ5を使用することが可能になる。
 本実施形態のように、周縁部82は光送信モジュール1の光軸Sの方向において中央部81より厚くてもよい。この場合、光学窓8の厚みt2の方向における外側面8aの寸法を大きくできるので、キャップ5に対して光学窓8を十分な強さでもって固定することができる。加えて、本実施形態の光送信モジュール1では、面81a,81bの法線方向が光送信モジュール1の光軸方向に対して傾斜しているので、中央部81を通過する光の光軸Sは僅かに平行移動する。この平行移動は光軸ばらつきの一要因となり、その移動量は中央部81が厚いほど大きくなる。本実施形態のように、中央部81が周縁部82よりも薄いことによって、光軸Sの平行移動量を小さく抑えることができ、光軸ばらつきを低減できる。更に、周縁部82が中央部81よりも厚いことによって、安定した気密封止を実現することができる。この場合、周縁部82の面82a,82bの法線方向は、光軸Sの方向に沿っていてもよい。これにより、光軸Sの方向における光学窓8全体の厚みを抑え、光送信モジュール1を小型化することができる。
 本実施形態のように、光送信モジュール1は、ステム3上に設けられた熱電変換素子11と、熱電変換素子11上に設けられ、半導体レーザチップ40の光軸Sが光学窓8を通るように半導体レーザチップ40を搭載するキャリア20及びサブキャリア30とを備えてもよい。この場合、ステム3上に熱電変換素子11及びキャリアが積み上げられることとなり、キャップ5の奥行きが長くなる。このような場合であっても、本実施形態の光送信モジュール1によれば、キャップ5に光学窓8を問題なく固定することができる。
 前述したように、本実施形態に係る光送信モジュール1の製造方法は、光学窓8の外側の表面形状に対応する形状を有する金型61上にキャップ5を配置する工程と、キャップ5の開口7a内に、溶融したガラス51を、開口7aの内側面に接するように配置する工程と、光学窓8の内側の表面形状に対応する形状を有する金型62をキャップ5上に配置する工程と、金型61と金型62との間に溶融したガラス51を挟んでガラス51を成型する工程と、金型61と金型62とを冷却することにより、ガラス51を冷却し、ガラス51をキャップ5に固着させる工程とを含む。例えばこのように、金属製のキャップ5とガラス製の光学窓8とを一体成型すれば、単一のガラス材料からなる光学窓8の外側面8aを開口7aの内側面に溶着させることができる。故に、本実施形態の光送信モジュール1を容易に実現することができる。
 本開示による光モジュール及び光モジュール用部品の製造方法は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では光モジュールの例として光送信モジュールを示し、半導体光素子として半導体レーザチップ40を示したが、本開示は光受信モジュールにも適用可能であり、その場合、半導体光素子としてフォトダイオードといった半導体受光素子が用いられる。上記実施形態では光学窓の法線方向が光軸方向に対して傾斜している場合を例示したが、光学窓の法線方向は光軸方向に沿っていてもよい。上記実施形態では平板状の光学窓を例示したが、例えばガラスレンズといった平板以外の形状を有する光学窓にも本開示を適用できる。
1…光送信モジュール
3…ステム
3a…主面
4…CANパッケージ
5…キャップ
6…リードピン
7…端壁
7a,7b…開口
8…光学窓
8a…外側面
9…光モジュール用部品
11…熱電変換素子
13,15…板状体
20…キャリア
21…側面
30…サブキャリア
40…半導体レーザチップ
42…高周波配線
45…セラミック基板
45a…高周波配線
46…サーミスタ
47…コンデンサ
51…ガラス
60…レンズ
61,62…金型
70…光送信装置
71…筒状部材
81…中央部
81a,81b…面
82…周縁部
82a,82b…面
83,84…斜面
B…切削工具
S…光軸

Claims (12)

  1.  金属製のステムと、
     前記ステム上側に設けられた半導体光素子と、
     円筒の一端に第1の開口を有する端壁を有し、前記円筒の他端に第2の開口を有し、前記円筒の前記他端において前記ステムに接合されるとともに前記半導体光素子を前記ステム上において覆う金属製のキャップと、
     前記キャップの前記円筒の一端に設けられた前記第1の開口を塞ぐ光透過性の光学窓と、を備え、
     前記光学窓は、ガラス材料からなり、外側面が前記キャップの前記第1の開口の内側面に固定されている、光モジュール。
  2.  前記光学窓は、光を通過させる中央部と、前記中央部を囲み前記外側面を含む周縁部とを有し、
     前記中央部は、前記キャップの内側を向く第1の面と、前記キャップの外側を向く第2の面とを有し、
     前記第1及び第2の面の法線方向は前記光モジュールの光軸方向に対して傾斜している、請求項1に記載の光モジュール。
  3.  前記周縁部は、前記光モジュールの光軸方向において前記中央部よりも厚い、請求項2に記載の光モジュール。
  4.  前記第1及び第2の面は平坦である、請求項2又は請求項3に記載の光モジュール。
  5.  前記周縁部は、前記キャップの内側を向く第3の面と、前記キャップの外側を向く第4の面とを有し、
     前記第3及び第4の面の法線方向は前記光モジュールの光軸方向に沿っている、請求項3又は請求項4に記載の光モジュール。
  6.  前記第1の面と前記第3の面との間の段差部分、及び前記第2の面と前記第4の面との間の段差部分にそれぞれ斜面が設けられている、請求項5に記載の光モジュール。
  7.  前記ステム上に設けられた温度制御装置と、
     前記温度制御装置上に設けられ、前記半導体光素子の光軸が前記光学窓を通るように前記半導体光素子を搭載するキャリアと、
     を更に備える、請求項1から請求項6のいずれか1項に記載の光モジュール。
  8.  前記キャップの円筒の中心軸線は光モジュールの前記光軸と平行である、請求項1から請求項7のいずれか1項に記載の光モジュール。
  9.  前記キャップの円筒の中心軸線は光モジュールの前記光軸と一致する、請求項8に記載の光モジュール。
  10.  前記第1の開口の内側面は、前記キャップの円筒の中心軸線方向に沿っている、請求項1から請求項9のいずれか1項に記載の光モジュール。
  11.  円筒の一端に設けられた第1の開口を有する端壁を有し、前記円筒の他端に設けられた第2の開口を有する金属製のキャップと、前記第1の開口を塞ぐ光透過性のガラス材料からなり、外側面が前記第1の開口の内側面に固定されているガラス製の光学窓と、を備える光モジュール用部品の製造方法であって、
     前記キャップの外側の表面形状に対応する形状を有する第1の金型に前記キャップを配置する工程と、
     前記第1の金型に配置されている前記キャップの前記第1の開口に、溶融したガラスを、前記第1の開口の内側面に接するように配置する工程と、
     前記キャップの内側の表面形状に対応する形状を有する第2の金型を前記キャップ上に配置する工程と、
     前記第1の金型と前記第2の金型との間に前記溶融したガラスを挟んで、前記ガラスを成型する工程と、
     前記ガラスを成型する工程の後、前記第1の金型と前記第2の金型とを冷却することにより、前記ガラスを冷却し、前記ガラスを前記キャップに固着させる工程と、
     を含む、光モジュール用部品の製造方法。
  12.  前記ガラスを前記キャップに固着させる工程の後、前記第1の金型および前記第2の金型を取り去ることによって、前記光学窓を前記キャップの前記内側面に溶着させる、請求項11に記載の光モジュール用部品の製造方法。
PCT/JP2020/027552 2019-07-17 2020-07-15 光モジュール及び光モジュール用部品の製造方法 WO2021010424A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-132128 2019-07-17
JP2019132128A JP2022126893A (ja) 2019-07-17 2019-07-17 光モジュール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021010424A1 true WO2021010424A1 (ja) 2021-01-21

Family

ID=74210919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027552 WO2021010424A1 (ja) 2019-07-17 2020-07-15 光モジュール及び光モジュール用部品の製造方法

Country Status (2)

Country Link
JP (1) JP2022126893A (ja)
WO (1) WO2021010424A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084693A1 (ja) * 2022-10-21 2024-04-25 三菱電機株式会社 半導体レーザ光源装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381995A (ja) * 1986-09-26 1988-04-12 Hitachi Ltd 光電子装置およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381995A (ja) * 1986-09-26 1988-04-12 Hitachi Ltd 光電子装置およびその製造方法

Also Published As

Publication number Publication date
JP2022126893A (ja) 2022-08-31

Similar Documents

Publication Publication Date Title
US7467897B2 (en) Light transmitting modules with optical power monitoring
US7543999B2 (en) Optical module hermetically packaged in micro-machined structures
US20060083517A1 (en) Optical sub-assembly having a thermo-electric cooler and an optical transceiver using the optical sub-assembly
US8475057B2 (en) Optical module with ceramic package
EP1684103A2 (en) Coaxial cooled laser modules with integrated thermal electric cooler and optical components
US20150116809A1 (en) Optical module
US20130209038A1 (en) Low profile fiber-to-module interface with relaxed alignment tolerances
US7176436B2 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
US10985525B2 (en) Transmitter module
JP5636877B2 (ja) 半導体レーザ装置及びその製造方法
US8475058B2 (en) Optical module with ceramic package reducing optical coupling stress
CN102377104A (zh) 具有陶瓷封装的光学模块
KR19990072802A (ko) 광학모듈및거기에적용가능한광반사부재
WO2021014568A1 (ja) To-can型光送信モジュール
WO2021010424A1 (ja) 光モジュール及び光モジュール用部品の製造方法
CN111712975B (zh) 光模块
US20050129372A1 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
JP2019140240A (ja) 光モジュール及び光モジュールの製造方法
JPH07199006A (ja) 光サブアセンブリ及び光モジュール
US7255494B2 (en) Low-profile package for housing an optoelectronic assembly
KR101164377B1 (ko) 집적형 두 파장 광 송신 모듈
JP4454233B2 (ja) 光パッケージ及びそれを用いた光モジュール
US7201521B2 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
US6724784B2 (en) Optical wavelength locker module having a high thermal conductive material
JPH07131106A (ja) 半導体レーザモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP