WO2021010380A1 - Semiconductor chip and methods for manufacturing semiconductor chip - Google Patents

Semiconductor chip and methods for manufacturing semiconductor chip Download PDF

Info

Publication number
WO2021010380A1
WO2021010380A1 PCT/JP2020/027282 JP2020027282W WO2021010380A1 WO 2021010380 A1 WO2021010380 A1 WO 2021010380A1 JP 2020027282 W JP2020027282 W JP 2020027282W WO 2021010380 A1 WO2021010380 A1 WO 2021010380A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
region
silicon carbide
carbide substrate
manufacturing
Prior art date
Application number
PCT/JP2020/027282
Other languages
French (fr)
Japanese (ja)
Inventor
一範 原田
秀人 玉祖
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021533072A priority Critical patent/JP7487739B2/en
Publication of WO2021010380A1 publication Critical patent/WO2021010380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Definitions

  • This disclosure relates to a semiconductor chip and a method for manufacturing a semiconductor chip.
  • a semiconductor device made of silicon carbide (SiC) is used for applications such as power electronics because it can pass a large current with a higher withstand voltage than a semiconductor device made of silicon (Si).
  • a silicon carbide semiconductor chip is used in a semiconductor device formed of such silicon carbide.
  • the semiconductor chip of the present disclosure has a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and a first electrode provided on the first surface of the silicon carbide substrate.
  • the first electrode has a first region containing silicide and a second region not containing VDD in a plan view.
  • FIG. 1 is a structural diagram of a silicon carbide substrate.
  • FIG. 2 is an explanatory diagram of the amount of warpage of the silicon carbide substrate.
  • FIG. 3 is a flowchart of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 4 is an explanatory diagram (1) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 5 is an explanatory diagram (2) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram (3) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 7 is an explanatory diagram (4) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 8 is an explanatory diagram (1) of the semiconductor chip of the first embodiment of the present disclosure.
  • FIG. 9 is an explanatory diagram (5) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 10 is an explanatory diagram (2) of the semiconductor chip of the first embodiment of the present disclosure.
  • FIG. 11 is an explanatory diagram (1) of a modified example of the method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 12 is an explanatory diagram (1) of a modified example of the semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 13 is an explanatory diagram (2) of a manufacturing method of a modified example of the semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 14 is an explanatory diagram (2) of a modified example of the semiconductor chip according to the first embodiment of the present disclosure.
  • FIG. 15 is a plan view of the semiconductor chip of the first embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view (1) of the semiconductor chip of the first embodiment of the present disclosure.
  • FIG. 17 is a cross-sectional view (2) of the semiconductor chip of the first embodiment of the present disclosure.
  • FIG. 18 is a cross-sectional view (3) of the semiconductor chip of the first embodiment of the present disclosure.
  • FIG. 19 is a flowchart of a method for manufacturing a semiconductor chip according to the second embodiment of the present disclosure.
  • FIG. 20 is an explanatory diagram (1) of a method for manufacturing a semiconductor chip according to the second embodiment of the present disclosure.
  • FIG. 21 is an explanatory diagram (2) of a method for manufacturing a semiconductor chip according to the second embodiment of the present disclosure.
  • Silicon carbide semiconductor chips are manufactured through various manufacturing processes such as film formation, heat treatment, and polishing. In such manufacturing steps, the silicon carbide substrate forming the semiconductor chip may warp. If the silicon carbide substrate is warped, problems may occur when the semiconductor chip is mounted. Therefore, a semiconductor chip having a small warp of the silicon carbide substrate is required.
  • the semiconductor chip according to one aspect of the present disclosure includes a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and a first surface provided on the first surface of the silicon carbide substrate.
  • the first electrode has one electrode, and in plan view, the first electrode has a first region containing SiO and a second region not containing VDD.
  • the shape of the first region in a plan view includes a pair of short sides parallel to each other and a pair of long sides orthogonal to the short side and longer than the short side and parallel to each other. It is a rectangle to have.
  • the length of the short side is 1.5 mm or more and 10.0 mm or less.
  • the shape of the semiconductor chip in a plan view is rectangular, and the length of the long side of the first region is the same as one side of the semiconductor chip.
  • the first region is surrounded by the second region.
  • the first electrode contains nickel or titanium.
  • the alloy layer in the first region can be silicidized with Si contained in the silicon carbide substrate.
  • the area of the first electrode with respect to the area of the first region is 73% or more and 98% or less.
  • the area of the first electrode with respect to the area of the first region is limited by the chip area and the chip thickness described later, and it is desirable to increase the electrode area in order not to reduce the drain current. Since the thickness of the semiconductor chip is about 100 ⁇ m to 200 ⁇ m, the area of the first electrode with respect to the area of the first region is 73% for the 1.5 mm square chip and 98% for the 10.0 mm square chip. It becomes.
  • a second electrode is provided on the second surface, the thickness of the silicon carbide substrate is t, and the length in the first direction in a plan view of the first region is Wdx.
  • Wsx the length of the first direction in which the second electrode is viewed in a plane
  • Wdx > Wsx + 2t
  • the second region is orthogonal to the first direction in which the first region is viewed in a plane.
  • the first region is wider than the second electrode by t or more on both sides.
  • the concentration of silicon contained in the first region is 32 wt% or more and 49 wt% or less.
  • NiSi which has the lowest resistivity among Ni-Si alloy systems.
  • the method for manufacturing a semiconductor chip includes a step of preparing a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and the first aspect of the silicon carbide substrate.
  • a step of forming an element region on two surfaces a step of grinding the first surface of the silicon carbide substrate, a step of forming a metal film on the ground first surface, and a step toward the first surface.
  • the first surface of the ground silicon carbide substrate has a concavely curved second surface, which comprises a step of forming VDD on a part of the metal film by irradiation with a laser beam.
  • the step of defining the first region and the second region between the first regions, and the step of forming VDD on a part of the metal film includes a laser in the second region. It has a step of irradiating the first region with a laser beam without irradiating the light.
  • the amount of warpage of the second surface of the silicon carbide substrate ground in the step of grinding the first surface of the silicon carbide substrate is 1 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 300 ⁇ m. It is as follows.
  • the metal film contains nickel or titanium.
  • the alloy layer in the first region can be silicidized with Si contained in the silicon carbide substrate.
  • the alloy layer in the first region can be silicidized with Si contained in the silicon carbide substrate.
  • the size of the silicon carbide substrate is 6 inches or more.
  • the present invention is particularly effective when the size of the silicon carbide substrate is 6 inches or more because the warp becomes remarkable as the size of the silicon carbide substrate increases.
  • the first area is in the shape of a strip.
  • the warpage of the silicon carbide substrate can be reduced in the semiconductor chip.
  • the silicon carbide substrate is separated by dicing and formed into chips.
  • the shape of the first region in a plan view is rectangular.
  • the shape of the chipped semiconductor chip in a plan view is rectangular, and the length of the long side of the first region is the same as one side of the semiconductor chip.
  • the first region is surrounded by the second region in a plan view.
  • the area of the first region with respect to the area of the first surface of the semiconductor chip is 75% or more and 96% or less.
  • the thickness of the semiconductor chip is 100 ⁇ m to 200 ⁇ m, which is 75% for the 1.5 mm square chip and 96% for the 10.0 mm square chip.
  • the X1-X2 direction, the Y1-Y2 direction, and the Z1-Z2 direction are defined as directions orthogonal to each other.
  • the surface including the X1-X2 direction and the Y1-Y2 direction is described as the XY surface
  • the surface including the Y1-Y2 direction and the Z1-Z2 direction is described as the YZ surface
  • the Z1-Z2 direction and the X1-X2 direction are described as the YZ surface.
  • the including surface is referred to as a ZX surface.
  • a silicon carbide substrate 10 having a first surface 10a and a second surface 10b opposite to the first surface 10a is prepared, and then a second surface of the silicon carbide substrate 10 is prepared. Ion implantation, electrode formation, film formation of an insulating film, heat treatment and the like are performed on 10b. After that, the first surface 10a of the silicon carbide substrate 10 is thinned by grinding, and the silicon carbide substrate 10 after grinding thinned through these steps has a concave second surface 10b as shown in FIG. , The first surface 10a may warp convexly.
  • the amount of warpage of the silicon carbide substrate 10 is the height difference between the second surface 10b of the silicon carbide substrate 10, that is, the height of the lowest portion and the highest portion of the second surface 10b of the silicon carbide substrate 10. It shall mean the difference between.
  • the lowest and highest parts of the second surface 10b can be identified by measuring the shape of the second surface 10b using a laser autofocus microscope.
  • an electrode is formed on the first surface 10a and separated into a semiconductor chip by a dicing saw.
  • the warp of the separated semiconductor chip also becomes large, so that the semiconductor chip can be separated.
  • the vacuum chuck becomes incomplete. Therefore, the semiconductor chip cannot be conveyed, which causes a problem when the semiconductor chip is mounted.
  • the silicon carbide substrate 10 is prepared.
  • the silicon carbide substrate 10 has a first surface 10a and a second surface 10b opposite to the first surface 10a, and has a thickness of 350 ⁇ m to 500 ⁇ m and a size of 350 ⁇ m to 500 ⁇ m. It is one of 4 inches, 6 inches, and 8 inches. Since this embodiment reduces the warp of the silicon carbide substrate 10, it is particularly preferable to apply it to the silicon carbide substrate 10 having a size of 6 inches or more. Therefore, in this description, the case where the 6-inch silicon carbide substrate 10 is used will be described.
  • step 104 a step of forming an element region on the second surface 10b of the silicon carbide substrate 10 is performed.
  • the element region 20 is formed as shown in FIG. 5, which will be described later, by performing ion implantation, electrode formation, film formation of an insulating film, heat treatment, and the like on the second surface 10b of the silicon carbide substrate 10.
  • step 106 a step of grinding the first surface 10a of the silicon carbide substrate 10 is performed.
  • the first surface 10a of the silicon carbide substrate 10 is ground by a back surface grinding machine (Grinder), CMP (chemical mechanical polishing), or the like until the thickness of the silicon carbide substrate 10 becomes 150 ⁇ m or more and 300 ⁇ m or less.
  • Grinder back surface grinding machine
  • CMP chemical mechanical polishing
  • step 108 the amount of warpage of the second surface 10b of the silicon carbide substrate 10 is measured. Specifically, as shown in FIG. 4, the amount of warpage in the X1-X2 direction and the Y1-Y2 direction is measured on the second surface 10b of the silicon carbide substrate 10.
  • the second surface 10b of the silicon carbide substrate 10 is curved in the X1-X2 direction or the Y1-Y2 direction, as shown in FIG. And.
  • the shape of the second surface 10b is measured using a laser autofocus microscope, the difference in height between the lowest part and the highest part of the second surface 10b is calculated, and this difference is used as the amount of warpage. And.
  • a metal film 30 is formed on the first surface 10a of the silicon carbide substrate 10 by sputtering or the like.
  • the metal film 30 is for forming an ohmic electrode, and is made of Ni (nickel), Ti (titanium), or the like.
  • the metal film 30 is formed of Ni having a film thickness of 90 nm or more and 110 nm or less.
  • step 112 laser light is irradiated.
  • the metal film 30 is formed on the first surface 10a side.
  • a strip-shaped laser irradiation region 41 long in the X1-X2 direction is set, and laser light is irradiated. That is, the region to be irradiated with the laser beam and the region not to be irradiated with the laser beam are defined according to the warp of the second surface 10b, and the laser beam is irradiated to the first surface 10a.
  • the metal film 30 of the strip-shaped laser irradiation region 41 long in the X1-X2 direction is irradiated while scanning the spot of the laser beam.
  • the metal film 30 and the like are heated, and the Ni contained in the metal film 30 and the Si contained in the silicon carbide substrate 10 form a NiSi alloy layer 31 to be an ohmic electrode, as shown in FIG.
  • the wavelength of the irradiated laser beam is, for example, 365 nm.
  • the case where the second surface 10b of the silicon carbide substrate 10 is warped concavely in the X1-X2 direction means that the second surface 10b of the silicon carbide substrate 10 is warped concavely as shown in FIG. Is.
  • the method for manufacturing a semiconductor chip of the present embodiment is performed when the amount of warpage of the second surface 10b of the silicon carbide substrate 10 in the X1-X2 direction or the Y1-Y2 direction is 1 ⁇ m or more and 500 ⁇ m or less. If the amount of warpage of the second surface 10b is less than 1 ⁇ m, it is not necessary to perform a process for correcting the warp. If the amount of warpage of the second surface 10b exceeds 500 ⁇ m, the element in the element region 20 may be destroyed, and it is unlikely that a good product can be obtained even if the warp is corrected.
  • the NiSi alloy layer 31 is formed by silicidizing the metal film 30 of the laser irradiation region 41 irradiated with the laser beam into a NiSi alloy. Therefore, the NiSi alloy layer is not formed because the laser unirradiated region 42 between the adjacent laser irradiation regions 41, which is not irradiated with the laser beam, is not silicated. Therefore, in the laser unirradiated region 42, the metal film 30 is still formed on the first surface 10a of the silicon carbide substrate 10. In this way, silicide is formed on a part of the metal film 30.
  • the region where the laser irradiation region 41 and the NiSi alloy layer 31 are formed is described as the first region, and the metal film 30 is formed on the laser non-irradiation region 42 and the first surface 10a of the silicon carbide substrate 10.
  • the as-is region is referred to as the second region.
  • an electrode on the first surface 10a side for example, a drain electrode is formed by the first region and the second region.
  • the NiSi alloy layer 31 is alloyed to generate stress that pulls the silicon carbide substrate 10. Therefore, by forming the NiSi alloy layer 31 so that the X1-X2 direction is the longitudinal direction, a stress that pulls the silicon carbide substrate 10 in the X1-X2 direction is generated, so that the second surface 10b of the silicon carbide substrate 10 is warped. The amount is small and can be made flat.
  • step 114 the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut by a dicing saw along the broken lines in the X1-X2 direction and the Y1-Y2 direction shown in FIG. As a result, the semiconductor chip 101 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG. That is, in the plan view of the first surface 10a, the semiconductor chip 101 having a region where the NiSi alloy layer 31 is formed and a region where the metal film 30 which is not silicidized remains as it is is formed.
  • the plan view means that the first surface 10a side of the silicon carbide substrate 10 is viewed from the Z2 direction, or the second surface 10b side of the silicon carbide substrate 10 is viewed from the Z1 direction.
  • the region to be irradiated with the laser beam and the region not to be irradiated with the laser beam are defined according to the warp of the second surface 10b, and the laser beam is irradiated to the first surface 10a.
  • the metal film 30 of the strip-shaped laser irradiation region 41 long in the Y1-Y2 direction is irradiated while scanning the spot of the laser beam.
  • the metal film 30 and the like are heated, and the NiSi alloy layer 31 is formed by the Ni contained in the metal film 30 and the Si contained in the silicon carbide substrate 10.
  • the NiSi alloy layer 31 is formed by silicating the metal film 30 in the laser irradiation region 41 irradiated with the laser beam.
  • the NiSi alloy layer is not formed because silicidization is not performed, and the metal film 30 is formed on the first surface 10a of the silicon carbide substrate 10. It is in a state of being. In this way, silicide is formed on a part of the metal film 30.
  • NiSi alloy layer 31 By forming the NiSi alloy layer 31 so that the Y1-Y2 direction is the longitudinal direction in this way, a stress that pulls the silicon carbide substrate 10 in the Y1-Y2 direction is generated, so that the second surface 10b of the silicon carbide substrate 10 is generated. The warp is reduced and it can be made flat.
  • step 114 the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut by a dicing saw along the broken lines in the X1-X2 direction and the Y1-Y2 direction shown in FIG. As a result, the semiconductor chip 102 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG.
  • the determination of whether to set the strip-shaped laser irradiation region 41 long in the Y1-Y2 direction or the long strip-shaped laser irradiation region 41 in the X1-X2 direction may be made in step 108.
  • the amount of warpage in the X1-X2 direction and the amount of warpage in the Y1-Y2 direction may be compared for judgment. For example, when the amount of warpage in the Y1-Y2 direction is larger than the amount of warpage in the X1-X2 direction, a strip-shaped laser irradiation region 41 long in the Y1-Y2 direction may be set.
  • a strip-shaped laser irradiation region 41 long in the X1-X2 direction may be set.
  • the width of the laser irradiation region 41 may be adjusted so that the amount of warpage is the smallest based on the amount of warpage obtained in step 108. For example, in the case shown in FIG. 6, the width of the laser irradiation region 41 in the Y1-Y2 direction may be adjusted, and in the case shown in FIG. 9, the width of the laser irradiation region 41 in the X1-X2 direction is adjusted. You may.
  • the above-mentioned semiconductor chips 101 and 102 are square semiconductor chips having a side of 6 mm square.
  • the width Wy of the NiSi alloy layer 31 in the Y1-Y2 direction is 1.3 ⁇ m or more and 9.8 ⁇ m or less, more preferably 2.8 ⁇ m or more and 5.8 ⁇ m or less. More preferably, it is 2.6 ⁇ m or more and 5.6 ⁇ m or less.
  • the shape of the NiSi alloy layer 31 is a rectangle having the long side in the X1-X2 direction and the short side in the Y1-Y2 direction, and the length of the long side in the X1-X2 direction is that of the semiconductor chip 101. Equal to the length of one side.
  • the width Wx in the X1-X2 direction of the NiSi alloy layer 31 is in the same range as the width Wy.
  • the shape of the NiSi alloy layer 31 formed on the semiconductor chip 102 is a rectangle having a long side in the Y1-Y2 direction and a short side in the X1-X2 direction, and the length of the long side in the Y1-Y2 direction is the semiconductor. Equal to the length of one side of the chip 102.
  • the laser irradiation region does not have to be strip-shaped as long as it is a rectangle long in a predetermined direction in the semiconductor chip.
  • the laser irradiation region 41 is irradiated with laser light.
  • the metal film 30 of the laser irradiation region 41 By irradiating the metal film 30 of the laser irradiation region 41 while scanning the spot of the laser beam, the metal film 30 and the like are heated, and NiSi contained in the metal film 30 and Si contained in the silicon carbide substrate 10 causes NiSi.
  • the alloy layer 31 is formed.
  • the region other than the laser irradiation region 41 is the laser unirradiated region 42 that is not irradiated with the laser beam, and in the laser unirradiated region 42, the metal film 30 is not silicated and remains the metal film 30.
  • the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut with a dicing saw along the broken line shown in FIG. As a result, the semiconductor chip 103 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG.
  • the NiSi alloy layer 31 is formed in a rectangular shape in which the length Wx1 in the X1-X2 direction is longer than the length Wy1 in the Y1-Y2 direction.
  • the length Wx1 in the X1-X2 direction is 9.8 ⁇ m
  • the length Wy1 in the Y1-Y2 direction is 4.9 ⁇ m.
  • the NiSi alloy layer 31 is formed by silicating the metal film 30 in the laser irradiation region 41 irradiated with the laser beam. Since the unirradiated region 42 of the laser that is not irradiated with the laser beam is not silicated, the metal film 30 remains formed on the first surface 10a of the silicon carbide substrate 10 in the unirradiated region 42 of the laser.
  • the laser irradiation region 41 is irradiated with laser light.
  • the metal film 30 of the laser irradiation region 41 By irradiating the metal film 30 of the laser irradiation region 41 while scanning the spot of the laser beam, the metal film 30 and the like are heated, and NiSi is generated by Ni contained in the metal film 30 and Si contained in the silicon carbide substrate 10.
  • the alloy layer 31 is formed.
  • the region other than the laser irradiation region 41 is the laser unirradiated region 42 that is not irradiated with the laser beam, and in the laser unirradiated region 42, the metal film 30 is not silicated and remains the metal film 30.
  • the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut with a dicing saw along the broken line shown in FIG. As a result, the semiconductor chip 104 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG.
  • the NiSi alloy layer 31 is formed in a rectangular shape in which the length Wy2 in the Y1-Y2 direction is longer than the length Wx2 in the X1-X2 direction.
  • the length Wx2 in the X1-X2 direction is 9.8 ⁇ m
  • the length Wy2 in the Y1-Y2 direction is 4.9 ⁇ m.
  • NiSi alloy layer 31 in a rectangular region having a long side in the Y1-Y2 direction, a stress for pulling the silicon carbide substrate 10 in the Y1-Y2 direction is generated, so that the second silicon carbide substrate 10 is used.
  • the amount of warpage of the surface 10b can be reduced to make the surface 10b almost flat.
  • the second region where the metal film 30 remains surrounds the NiSi alloy layer 31 which is the first region.
  • the lengths Wx1 and Wy2 of the long sides are 1.3 ⁇ m or more and 9.8 ⁇ m or less, more preferably 2.8 ⁇ m or more and 5.8 ⁇ m or less, and further preferably 2.6 ⁇ m or more. It is 5.6 ⁇ m or less.
  • the short side lengths Wy1 and Wx2 are 0.7 ⁇ m or more and 4.9 ⁇ m or less, more preferably 1.4 ⁇ m or more and 2.6 ⁇ m or less, still more preferably 1.3 ⁇ m or more and 2.8 ⁇ m. It is as follows. This is the length Wx and Wy2 of the long side of the alloy layer required when assuming a chip thickness of 100 ⁇ m, an upper limit of 10.0 mm square chips, and a lower limit of 1.5 mm square chips.
  • the area of the NiSi alloy layer 31 with respect to the area of the second surface of the semiconductor chip is 75% or more and 96% or less, more preferably 85% or more and 90% or less.
  • FIG. 15 is a plan view of the semiconductor chip in this embodiment.
  • 16 is a cross-sectional view cut along the alternate long and short dash line 15A-15B in FIG.
  • FIG. 17 is a sectional view cut along the alternate long and short dash line 15C-15D in FIG.
  • FIG. 18 is a sectional view taken along the alternate long and short dash line 15C-15D. It is sectional drawing which cut at -15F.
  • a plurality of gate electrodes 21, a gate runner 22, and a gate electrode pad 23 are formed on the second surface 10b of the silicon carbide substrate 10, and an insulating film 24 covering each gate electrode 21 is further formed. It is formed.
  • Each gate electrode 21 is formed long in the X1-X2 direction, and the source electrode 25 is formed on the insulating film 24 and on the second surface 10b of the silicon carbide substrate 10 between the insulating film 24 and the insulating film 24. Is formed.
  • a drain electrode 33 is formed on the first surface 10a of the silicon carbide substrate 10 by the NiSi alloy layer 31 and the remaining metal film 30. In the present application, the drain electrode 33 may be referred to as a first electrode.
  • the gate electrode 21 is made of polysilicon, and the gate runner 22 has a cross-sectional structure in which polysilicon is covered with Al (aluminum).
  • the insulating film 24 is made of silicon oxide, and the source electrode 25 is made of a material containing aluminum.
  • the semiconductor chip 100 is formed so that the NiSi alloy layer 31 of the drain electrode 33 is wider than the source electrode 25 in the X1-X2 direction and the Y1-Y2 direction.
  • the source electrode 25 may be referred to as a second electrode.
  • the NiSi alloy layer 31 is narrower than the source electrode 25, the amount of current flowing between the source electrode 25 and the NiSi alloy layer 31 of the drain electrode 33 may decrease. If the NiSi alloy layer 31 is formed to a region wider than the range extending at an angle of 45 ° from both ends of the source electrode 25, it flows between the source electrode 25 and the NiSi alloy layer 31 of the drain electrode 33. It is considered that there is almost no effect on the amount of current. Therefore, when the thickness of the silicon carbide substrate 10 is t, the NiSi alloy layer 31 of the drain electrode 33 is formed to a region wider than t on the outside of each region corresponding to the source electrode 25. .. Therefore, the length of the NiSi alloy layer 31 is formed to be longer than the value obtained by adding 2t to the length of the source electrode 25.
  • the NiSi alloy layer 31 is formed wider than the source electrode 25 in both the X1 direction and the X2 direction by t or more.
  • the NiSi alloy layer 31 is formed wider than the source electrode 25 in both the Y1 direction and the Y2 direction by t or more.
  • a step of forming a silicon film is performed in step 210 (S210) after the step of forming a metal film in step 110.
  • S210 silicon carbide substrate
  • S104 element region
  • S106 grinding
  • S108 measuring the amount of warpage of the silicon carbide substrate
  • S110 metal film
  • a silicon film is formed (S210).
  • the silicon film 150 is formed on the metal film 30 as shown in FIG.
  • the film thickness of the silicon film 150 to be formed is, for example, about 100 nm.
  • step 110 and step 210 may be performed continuously.
  • the NiSi alloy layer 131 is formed by the irradiation of the laser beam with the Ni of the metal film 30 and the Si of the silicon film 150 mainly. Therefore, it is possible to prevent a shortage of silicon supply from the silicon carbide substrate and stably form a NiSi alloy layer having a low resistivity.
  • dicing is performed to obtain the semiconductor chip of the present embodiment.
  • the concentration of Si in the NiSi alloy layer 131 formed in this way is 32 wt% or more and 49 wt% or less.
  • concentration of Si is 32 wt% or more and 49 wt% or less.
  • the concentration of Si is determined by the secondary ion mass spectroscopy (SIMS) method, X-ray Photoelectron Spectroscopy (XPS) method, and energy dispersion X-ray spectroscopy (EDX). It can be measured by the method, Auger electron spectroscopy (AES) method, and inductively coupled plasma spectroscopy (ICP-MS) method.
  • Silicon carbide substrate 10a 1st surface 10b 2nd surface 20 Element region 21 Gate electrode 22 Gate runner 23 Gate electrode pad 24 Insulation film 25 Source electrode 30 Metal film 31 NiSi alloy layer 33 Drain electrode 41 Laser irradiation region 42 Laser non-irradiation region 100 Semiconductor chips 101, 102, 103, 104 Semiconductor chips 131 NiSi alloy layer 150 Silicon film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor chip comprises: a silicon carbide substrate having a first surface and a second surface opposite to the first surface; and a first electrode provided on the first surface of the silicon carbide substrate, wherein the first electrode has, in a plan view, a first region including a silicide and a second region not including a silicide.

Description

半導体チップ及び半導体チップの製造方法Semiconductor chips and methods for manufacturing semiconductor chips
 本開示は、半導体チップ及び半導体チップの製造方法に関する。 This disclosure relates to a semiconductor chip and a method for manufacturing a semiconductor chip.
 本出願は、2019年7月17日出願の日本出願第2019-131804号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This application claims the priority based on Japanese Application No. 2019-131804 filed on July 17, 2019, and incorporates all the contents described in the Japanese application.
 炭化珪素(SiC)により形成された半導体装置は、シリコン(Si)により形成された半導体装置よりも、高耐圧で大電流を流すことができるため、パワーエレクトロニクス等の用途に用いられている。このような炭化珪素により形成された半導体装置には、炭化珪素の半導体チップが用いられている。 A semiconductor device made of silicon carbide (SiC) is used for applications such as power electronics because it can pass a large current with a higher withstand voltage than a semiconductor device made of silicon (Si). A silicon carbide semiconductor chip is used in a semiconductor device formed of such silicon carbide.
日本国特開2016-9695号公報Japanese Patent Application Laid-Open No. 2016-9695 日本国特開2014-196209号公報Japanese Patent Application Laid-Open No. 2014-196209
 本開示の半導体チップは、第1面と第1面とは反対の第2面を有する炭化珪素基板と、炭化珪素基板の第1面に設けられた第1の電極と、を有する。第1の電極は、平面視において、シリサイドを含む第1の領域と、シリサイドを含まない第2の領域と、を有する。 The semiconductor chip of the present disclosure has a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and a first electrode provided on the first surface of the silicon carbide substrate. The first electrode has a first region containing silicide and a second region not containing VDD in a plan view.
図1は、炭化珪素基板の構造図である。FIG. 1 is a structural diagram of a silicon carbide substrate. 図2は、炭化珪素基板の反り量の説明図である。FIG. 2 is an explanatory diagram of the amount of warpage of the silicon carbide substrate. 図3は、本開示の第1の実施形態の半導体チップの製造方法のフローチャートである。FIG. 3 is a flowchart of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図4は、本開示の第1の実施形態の半導体チップの製造方法の説明図(1)である。FIG. 4 is an explanatory diagram (1) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図5は、本開示の第1の実施形態の半導体チップの製造方法の説明図(2)である。FIG. 5 is an explanatory diagram (2) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図6は、本開示の第1の実施形態の半導体チップの製造方法の説明図(3)である。FIG. 6 is an explanatory diagram (3) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図7は、本開示の第1の実施形態の半導体チップの製造方法の説明図(4)である。FIG. 7 is an explanatory diagram (4) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図8は、本開示の第1の実施形態の半導体チップの説明図(1)である。FIG. 8 is an explanatory diagram (1) of the semiconductor chip of the first embodiment of the present disclosure. 図9は、本開示の第1の実施形態の半導体チップの製造方法の説明図(5)である。FIG. 9 is an explanatory diagram (5) of a method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図10は、本開示の第1の実施形態の半導体チップの説明図(2)である。FIG. 10 is an explanatory diagram (2) of the semiconductor chip of the first embodiment of the present disclosure. 図11は、本開示の第1の実施形態の半導体チップの製造方法の変形例の説明図(1)である。FIG. 11 is an explanatory diagram (1) of a modified example of the method for manufacturing a semiconductor chip according to the first embodiment of the present disclosure. 図12は、本開示の第1の実施形態の半導体チップの変形例の説明図(1)である。FIG. 12 is an explanatory diagram (1) of a modified example of the semiconductor chip according to the first embodiment of the present disclosure. 図13は、本開示の第1の実施形態の半導体チップの変形例の製造方法の説明図(2)である。FIG. 13 is an explanatory diagram (2) of a manufacturing method of a modified example of the semiconductor chip according to the first embodiment of the present disclosure. 図14は、本開示の第1の実施形態の半導体チップの変形例の説明図(2)である。FIG. 14 is an explanatory diagram (2) of a modified example of the semiconductor chip according to the first embodiment of the present disclosure. 図15は、本開示の第1の実施形態の半導体チップの平面図である。FIG. 15 is a plan view of the semiconductor chip of the first embodiment of the present disclosure. 図16は、本開示の第1の実施形態の半導体チップの断面図(1)である。FIG. 16 is a cross-sectional view (1) of the semiconductor chip of the first embodiment of the present disclosure. 図17は、本開示の第1の実施形態の半導体チップの断面図(2)である。FIG. 17 is a cross-sectional view (2) of the semiconductor chip of the first embodiment of the present disclosure. 図18は、本開示の第1の実施形態の半導体チップの断面図(3)である。FIG. 18 is a cross-sectional view (3) of the semiconductor chip of the first embodiment of the present disclosure. 図19は、本開示の第2の実施形態の半導体チップの製造方法のフローチャートである。FIG. 19 is a flowchart of a method for manufacturing a semiconductor chip according to the second embodiment of the present disclosure. 図20は、本開示の第2の実施形態の半導体チップの製造方法の説明図(1)である。FIG. 20 is an explanatory diagram (1) of a method for manufacturing a semiconductor chip according to the second embodiment of the present disclosure. 図21は、本開示の第2の実施形態の半導体チップの製造方法の説明図(2)である。FIG. 21 is an explanatory diagram (2) of a method for manufacturing a semiconductor chip according to the second embodiment of the present disclosure.
 [本開示が解決しようとする課題]
 炭化珪素の半導体チップは、成膜、熱処理、研磨等の様々な製造工程を経て製造されるが、このような製造工程において、半導体チップを形成している炭化珪素基板が反る場合がある。炭化珪素基板が反ってしまうと、半導体チップの実装等の際に支障が生じる場合があることから、炭化珪素基板の反りの小さい半導体チップが求められている。
[Issues to be solved by this disclosure]
Silicon carbide semiconductor chips are manufactured through various manufacturing processes such as film formation, heat treatment, and polishing. In such manufacturing steps, the silicon carbide substrate forming the semiconductor chip may warp. If the silicon carbide substrate is warped, problems may occur when the semiconductor chip is mounted. Therefore, a semiconductor chip having a small warp of the silicon carbide substrate is required.
 [本開示の効果]
 本開示によれば、炭化珪素基板の反りの小さい半導体チップを提供できる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a semiconductor chip having a small warp of a silicon carbide substrate.
 実施するための形態について、以下に説明する。 The mode for implementation will be described below.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. In the following description, the same or corresponding elements are designated by the same reference numerals, and the same description is not repeated for them.
 〔1〕 本開示の一態様に係る半導体チップは、第1面と前記第1面とは反対の第2面を有する炭化珪素基板と、前記炭化珪素基板の前記第1面に設けられた第1の電極と、を有し、前記第1の電極は、平面視において、シリサイドを含む第1の領域と、シリサイドを含まない第2の領域と、を有する。 [1] The semiconductor chip according to one aspect of the present disclosure includes a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and a first surface provided on the first surface of the silicon carbide substrate. The first electrode has one electrode, and in plan view, the first electrode has a first region containing SiO and a second region not containing VDD.
 これにより、炭化珪素基板における反りの小さい半導体チップを提供できる。 This makes it possible to provide a semiconductor chip having a small warp in a silicon carbide substrate.
 〔2〕 平面視における前記第1の領域の形状は、互いに平行な1対の短辺と、前記短辺に直交し、前記短辺よりも長く、互いに平行な1対の長辺と、を有する長方形である。 [2] The shape of the first region in a plan view includes a pair of short sides parallel to each other and a pair of long sides orthogonal to the short side and longer than the short side and parallel to each other. It is a rectangle to have.
 これにより、更に炭化珪素基板における反りの小さい半導体チップを提供できる。 This makes it possible to further provide a semiconductor chip having a small warp in the silicon carbide substrate.
 〔3〕 前記短辺の長さは、1.5mm以上、10.0mm以下である。 [3] The length of the short side is 1.5 mm or more and 10.0 mm or less.
 半導体チップは、チップ面積が大きいほど大電流を流すことができる。また、チップ面積が小さいほど結晶欠陥による不良が低減し、特に、チップが10.0mm角を超えると著しく不良率が増加するためである。 The larger the chip area, the larger the current can flow through the semiconductor chip. Further, the smaller the chip area, the less defects due to crystal defects, and in particular, when the chip exceeds 10.0 mm square, the defect rate increases remarkably.
 〔4〕 平面視における前記半導体チップの形状は、長方形であって、前記第1の領域の長辺の長さは、前記半導体チップの一辺と同じである。 [4] The shape of the semiconductor chip in a plan view is rectangular, and the length of the long side of the first region is the same as one side of the semiconductor chip.
 これにより、更に炭化珪素基板における反りの小さい半導体チップを提供できる。 This makes it possible to further provide a semiconductor chip having a small warp in the silicon carbide substrate.
 〔5〕 平面視において、前記第1の領域は、前記第2の領域に囲まれている。 [5] In a plan view, the first region is surrounded by the second region.
 この場合においても、炭化珪素基板における反りの小さい半導体チップを提供できる。 Even in this case, it is possible to provide a semiconductor chip having a small warp in the silicon carbide substrate.
 〔6〕 前記第1の電極は、ニッケルまたはチタンを含む。 [6] The first electrode contains nickel or titanium.
 これにより、第1の領域の合金層を炭化珪素基板に含まれるSiとによりシリサイド化できる。 As a result, the alloy layer in the first region can be silicidized with Si contained in the silicon carbide substrate.
 〔7〕 平面視において、前記第1の領域の面積に対する前記第1の電極の面積は、73%以上、98%以下である。 [7] In a plan view, the area of the first electrode with respect to the area of the first region is 73% or more and 98% or less.
 前記第1の領域の面積に対する前記第1の電極の面積は、チップ面積と後述のチップ厚さとによって制限され、ドレイン電流を下げないためには、電極面積を大きくすることが望ましい。半導体チップの厚さは100μm~200μm程度のため、前記第1の領域の面積に対する前記第1の電極の面積は1.5mm角のチップでは73%であり、10.0mm角のチップでは98%となる。 The area of the first electrode with respect to the area of the first region is limited by the chip area and the chip thickness described later, and it is desirable to increase the electrode area in order not to reduce the drain current. Since the thickness of the semiconductor chip is about 100 μm to 200 μm, the area of the first electrode with respect to the area of the first region is 73% for the 1.5 mm square chip and 98% for the 10.0 mm square chip. It becomes.
 〔8〕 前記第2面には、第2の電極が設けられており、前記炭化珪素基板の厚さをtとし、前記第1の領域を平面視した第1の方向の長さをWdxとし、前記第2の電極を平面視した前記第1の方向の長さをWsxとした場合、Wdx>Wsx+2tであり、前記第1の領域を平面視した前記第1の方向と直交する第2の方向の長さをWdyとし、前記第2の電極を平面視した前記第2の方向の長さをWsyとした場合、Wdy>Wsy+2tである。 [8] A second electrode is provided on the second surface, the thickness of the silicon carbide substrate is t, and the length in the first direction in a plan view of the first region is Wdx. When the length of the first direction in which the second electrode is viewed in a plane is Wsx, Wdx> Wsx + 2t, and the second region is orthogonal to the first direction in which the first region is viewed in a plane. When the length in the direction is Wdy and the length in the second direction when the second electrode is viewed in a plane is Wsy, Wdy> Wsy + 2t.
 これにより、ドレイン電流に影響を与えることのない反りの小さい半導体チップを提供できる。 This makes it possible to provide a semiconductor chip with small warpage that does not affect the drain current.
 〔9〕 前記第1の方向及び前記第2の方向において、前記第1の領域は、前記第2の電極よりも両側にt以上広い。 [9] In the first direction and the second direction, the first region is wider than the second electrode by t or more on both sides.
 これにより、更にドレイン電流に影響を与えることのない反りの小さい半導体チップを提供できる。 As a result, it is possible to provide a semiconductor chip having a small warp that does not further affect the drain current.
 〔10〕 前記第1の領域に含まれるシリコンの濃度は、32wt%以上、49wt%以下である。 [10] The concentration of silicon contained in the first region is 32 wt% or more and 49 wt% or less.
 これにより、Ni-Si合金系の中で最も抵抗率が低いNiSiを形成できる。 This makes it possible to form NiSi, which has the lowest resistivity among Ni-Si alloy systems.
 〔11〕 本開示の一態様に係る半導体チップの製造方法は、第1面と前記第1面とは反対の第2面を有する炭化珪素基板を準備する工程と、前記炭化珪素基板の前記第2面に素子領域を形成する工程と、前記炭化珪素基板の前記第1面を研削する工程と、前記研削された前記第1面に金属膜を成膜する工程と、前記第1面に向けたレーザ光の照射により前記金属膜の一部にシリサイドを形成する工程と、を有し、前記研削された前記炭化珪素基板は、前記第2面が凹に反っており、前記第1面を研削する工程と前記金属膜の一部にシリサイドを形成する工程との間に、平面視した前記第1面において直交する第1の方向と第2の方向のうち反り量の大きな方向に長い複数の第1の領域と、前記第1の領域の間の第2の領域とを画定する工程を有し、前記金属膜の一部にシリサイドを形成する工程は、前記第2の領域にはレーザ光を照射することなく、前記第1の領域にレーザ光を照射する工程を有する。 [11] The method for manufacturing a semiconductor chip according to one aspect of the present disclosure includes a step of preparing a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and the first aspect of the silicon carbide substrate. A step of forming an element region on two surfaces, a step of grinding the first surface of the silicon carbide substrate, a step of forming a metal film on the ground first surface, and a step toward the first surface. The first surface of the ground silicon carbide substrate has a concavely curved second surface, which comprises a step of forming VDD on a part of the metal film by irradiation with a laser beam. Between the step of grinding and the step of forming VDD on a part of the metal film, a plurality of long ones in a direction having a large amount of warpage among a first direction and a second direction orthogonal to each other on the first surface in a plan view. The step of defining the first region and the second region between the first regions, and the step of forming VDD on a part of the metal film, includes a laser in the second region. It has a step of irradiating the first region with a laser beam without irradiating the light.
 これにより、半導体チップを製造するための炭化珪素基板の反りを小さくできる。 As a result, the warpage of the silicon carbide substrate for manufacturing the semiconductor chip can be reduced.
 〔12〕 前記炭化珪素基板の前記第1面を研削する工程において研削された前記炭化珪素基板の前記第2面の反り量は、1μm以上、500μm以下であり、より好ましくは、50μm以上、300μm以下である。 [12] The amount of warpage of the second surface of the silicon carbide substrate ground in the step of grinding the first surface of the silicon carbide substrate is 1 μm or more and 500 μm or less, more preferably 50 μm or more and 300 μm. It is as follows.
 反り量が小さい基板では反りを補正する必要はなく、また反りが大きすぎる基板では、変形により半導体チップが破壊されている可能性が高くなるため、反りを補正しても良品が得られる可能性が低いからである。 It is not necessary to correct the warp on a board with a small amount of warpage, and on a board with an excessively large warp, there is a high possibility that the semiconductor chip is destroyed by deformation, so even if the warp is corrected, a good product may be obtained. Is low.
 〔13〕 前記金属膜は、ニッケルまたはチタンを含む。 [13] The metal film contains nickel or titanium.
 これにより、第1の領域の合金層を炭化珪素基板に含まれるSiとによりシリサイド化できる。 As a result, the alloy layer in the first region can be silicidized with Si contained in the silicon carbide substrate.
 〔14〕 前記金属膜を成膜する工程と前記金属膜の一部にシリサイドを形成する工程との間に、シリコン膜を成膜する工程を有する。 [14] There is a step of forming a silicon film between the step of forming the metal film and the step of forming VDD on a part of the metal film.
 これにより、第1の領域の合金層を炭化珪素基板に含まれるSiとによりシリサイド化できる。 As a result, the alloy layer in the first region can be silicidized with Si contained in the silicon carbide substrate.
 〔15〕 前記炭化珪素基板の大きさは、6インチ以上である。 [15] The size of the silicon carbide substrate is 6 inches or more.
 炭化珪素基板の大きさが大きくなると、反りも顕著になるため、本発明は炭化珪素基板の大きさが6インチ以上の場合に、特に効果があるからである。 This is because the present invention is particularly effective when the size of the silicon carbide substrate is 6 inches or more because the warp becomes remarkable as the size of the silicon carbide substrate increases.
 〔16〕 前記第1の領域は、短冊状である。 [16] The first area is in the shape of a strip.
 これにより、半導体チップにおいて、炭化珪素基板の反りを小さくできる。 As a result, the warpage of the silicon carbide substrate can be reduced in the semiconductor chip.
 〔17〕 前記金属膜の一部にシリサイドを形成する工程の後、前記炭化珪素基板をダイシングにより分離しチップ化する工程を有する。 [17] After the step of forming VDD on a part of the metal film, the silicon carbide substrate is separated by dicing and formed into chips.
 これにより、半導体チップが得られる。 As a result, a semiconductor chip can be obtained.
 〔18〕 前記チップ化された半導体チップは、平面視における前記第1の領域の形状は、長方形である。 [18] In the chipped semiconductor chip, the shape of the first region in a plan view is rectangular.
 これにより、反りの小さな半導体チップが得られる。 As a result, a semiconductor chip with a small warp can be obtained.
 〔19〕 前記チップ化された半導体チップの平面視における形状は、長方形であって、前記第1の領域の長辺の長さは、前記半導体チップの一辺と同じである。 [19] The shape of the chipped semiconductor chip in a plan view is rectangular, and the length of the long side of the first region is the same as one side of the semiconductor chip.
 これにより、反りの小さな半導体チップが得られる。 As a result, a semiconductor chip with a small warp can be obtained.
 〔20〕 前記チップ化された半導体チップは、平面視において、前記第1の領域は、前記第2の領域に囲まれている。 [20] In the chipped semiconductor chip, the first region is surrounded by the second region in a plan view.
 この場合においても、炭化珪素基板における反りの小さい半導体チップを提供できる。 Even in this case, it is possible to provide a semiconductor chip having a small warp in the silicon carbide substrate.
 〔21〕 前記チップ化された半導体チップは、平面視において、前記半導体チップの第1面の面積に対する前記第1の領域の面積は、75%以上、96%以下である。 [21] In the plan view of the chipped semiconductor chip, the area of the first region with respect to the area of the first surface of the semiconductor chip is 75% or more and 96% or less.
 前記半導体チップ第1面の面積に対する前記第1の領域の面積を大きくするほど、ドレイン電流が下がるのを防ぐことができる。前述のチップ厚さによる制限により、半導体チップの厚さ100μm~200μmに対して、1.5mm角のチップでは75%であり、10.0mm角のチップでは96%となる。 The larger the area of the first region with respect to the area of the first surface of the semiconductor chip, the more it is possible to prevent the drain current from decreasing. Due to the above-mentioned limitation by the chip thickness, the thickness of the semiconductor chip is 100 μm to 200 μm, which is 75% for the 1.5 mm square chip and 96% for the 10.0 mm square chip.
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態について詳細に説明するが、本実施形態はこれらに限定されるものではない。また、本開示においては、X1-X2方向、Y1-Y2方向、Z1-Z2方向を相互に直交する方向とする。また、X1-X2方向及びY1-Y2方向を含む面をXY面と記載し、Y1-Y2方向及びZ1-Z2方向を含む面をYZ面と記載し、Z1-Z2方向及びX1-X2方向を含む面をZX面と記載する。
[Details of Embodiments of the present disclosure]
Hereinafter, one embodiment of the present disclosure will be described in detail, but the present embodiment is not limited thereto. Further, in the present disclosure, the X1-X2 direction, the Y1-Y2 direction, and the Z1-Z2 direction are defined as directions orthogonal to each other. Further, the surface including the X1-X2 direction and the Y1-Y2 direction is described as the XY surface, the surface including the Y1-Y2 direction and the Z1-Z2 direction is described as the YZ surface, and the Z1-Z2 direction and the X1-X2 direction are described as the YZ surface. The including surface is referred to as a ZX surface.
 〔第1の実施形態〕
 最初に、半導体チップにおける反りについて説明する。
[First Embodiment]
First, the warp in the semiconductor chip will be described.
 まず、図1に示されるように、第1面10aと第1面10aとは反対側の第2面10bとを有する炭化珪素基板10を準備し、次に、炭化珪素基板10の第2面10bに、イオン注入、電極形成、絶縁膜の成膜、熱処理等を行う。この後、炭化珪素基板10の第1面10aを研削により薄くするが、これらの工程を経て薄くなった研削後の炭化珪素基板10は、図2に示されるように、第2面10bが凹、第1面10aが凸に反る場合がある。本願においては、炭化珪素基板10の反り量とは、炭化珪素基板10の第2面10bにおける高低差、即ち、炭化珪素基板10の第2面10bにおいて、最も低い部分と最も高い部分の高さの差を意味するものとする。第2面10bにおいて最も低い部分及び最も高い部分は、レーザオートフォーカス顕微鏡を用いた第2面10bの形状の測定を通じて特定できる。 First, as shown in FIG. 1, a silicon carbide substrate 10 having a first surface 10a and a second surface 10b opposite to the first surface 10a is prepared, and then a second surface of the silicon carbide substrate 10 is prepared. Ion implantation, electrode formation, film formation of an insulating film, heat treatment and the like are performed on 10b. After that, the first surface 10a of the silicon carbide substrate 10 is thinned by grinding, and the silicon carbide substrate 10 after grinding thinned through these steps has a concave second surface 10b as shown in FIG. , The first surface 10a may warp convexly. In the present application, the amount of warpage of the silicon carbide substrate 10 is the height difference between the second surface 10b of the silicon carbide substrate 10, that is, the height of the lowest portion and the highest portion of the second surface 10b of the silicon carbide substrate 10. It shall mean the difference between. The lowest and highest parts of the second surface 10b can be identified by measuring the shape of the second surface 10b using a laser autofocus microscope.
 この後、第1面10aに電極を形成し、ダイシングソーにより半導体チップに分離するが、炭化珪素基板10の反り量が大きいと、分離された半導体チップの反りも大きくなるため、半導体チップへの真空チャックが不完全となる。このため、半導体チップを搬送することができなくなり、半導体チップを実装する際にも支障が生じる。 After that, an electrode is formed on the first surface 10a and separated into a semiconductor chip by a dicing saw. However, if the amount of warpage of the silicon carbide substrate 10 is large, the warp of the separated semiconductor chip also becomes large, so that the semiconductor chip can be separated. The vacuum chuck becomes incomplete. Therefore, the semiconductor chip cannot be conveyed, which causes a problem when the semiconductor chip is mounted.
 (半導体チップの製造方法)
 第1の実施形態の半導体チップの製造方法について、図3に基づき説明する。
(Manufacturing method of semiconductor chip)
The method for manufacturing the semiconductor chip of the first embodiment will be described with reference to FIG.
 最初に、ステップ102(S102)において、炭化珪素基板10を準備する。炭化珪素基板10は、図1に示されるように、第1面10aと第1面10aとは反対側の第2面10bとを有しており、厚さが350μm~500μm、大きさは、4インチ、6インチ、8インチのうちのいずれかである。本実施形態は炭化珪素基板10の反りを小さくするものであるため、6インチ以上の大きさの炭化珪素基板10に適用することが、特に好ましい。よって、この説明では、6インチの炭化珪素基板10を用いた場合について説明する。 First, in step 102 (S102), the silicon carbide substrate 10 is prepared. As shown in FIG. 1, the silicon carbide substrate 10 has a first surface 10a and a second surface 10b opposite to the first surface 10a, and has a thickness of 350 μm to 500 μm and a size of 350 μm to 500 μm. It is one of 4 inches, 6 inches, and 8 inches. Since this embodiment reduces the warp of the silicon carbide substrate 10, it is particularly preferable to apply it to the silicon carbide substrate 10 having a size of 6 inches or more. Therefore, in this description, the case where the 6-inch silicon carbide substrate 10 is used will be described.
 次に、ステップ104(S104)において、炭化珪素基板10の第2面10bに素子領域を形成する工程を行う。具体的には、炭化珪素基板10の第2面10bにイオン注入、電極形成、絶縁膜の成膜、熱処理等を行うことにより、後述する、図5に示されるように素子領域20が形成される。 Next, in step 104 (S104), a step of forming an element region on the second surface 10b of the silicon carbide substrate 10 is performed. Specifically, the element region 20 is formed as shown in FIG. 5, which will be described later, by performing ion implantation, electrode formation, film formation of an insulating film, heat treatment, and the like on the second surface 10b of the silicon carbide substrate 10. To.
 次に、ステップ106(S106)において、炭化珪素基板10の第1面10aを研削する工程を行う。炭化珪素基板10の第1面10aの研削は、裏面研削装置(Grinder)やCMP(chemical mechanical polishing)等により、炭化珪素基板10の厚さが150μm以上、300μm以下になるまで行う。 Next, in step 106 (S106), a step of grinding the first surface 10a of the silicon carbide substrate 10 is performed. The first surface 10a of the silicon carbide substrate 10 is ground by a back surface grinding machine (Grinder), CMP (chemical mechanical polishing), or the like until the thickness of the silicon carbide substrate 10 becomes 150 μm or more and 300 μm or less.
 次に、ステップ108(S108)において、炭化珪素基板10の第2面10bの反り量を測定する。具体的には、図4に示されるように、炭化珪素基板10の第2面10bにおいて、X1-X2方向及びY1-Y2方向における反り量を測定する。本実施形態は、この工程において、炭化珪素基板10は、X1-X2方向またはY1-Y2方向に、図2に示されるように、炭化珪素基板10の第2面10bが凹に反っているものとする。反り量の測定では、レーザオートフォーカス顕微鏡を用いて第2面10bの形状を測定し、第2面10bにおいて最も低い部分と最も高い部分との高さの差を計算し、この差を反り量とする。 Next, in step 108 (S108), the amount of warpage of the second surface 10b of the silicon carbide substrate 10 is measured. Specifically, as shown in FIG. 4, the amount of warpage in the X1-X2 direction and the Y1-Y2 direction is measured on the second surface 10b of the silicon carbide substrate 10. In this embodiment, in the silicon carbide substrate 10, the second surface 10b of the silicon carbide substrate 10 is curved in the X1-X2 direction or the Y1-Y2 direction, as shown in FIG. And. In the measurement of the amount of warpage, the shape of the second surface 10b is measured using a laser autofocus microscope, the difference in height between the lowest part and the highest part of the second surface 10b is calculated, and this difference is used as the amount of warpage. And.
 次に、ステップ110(S110)において、図5に示されるように、炭化珪素基板10の第1面10aに、スパッタリング等により、金属膜30を成膜する。金属膜30は、オーミック電極を形成するためのものであり、Ni(ニッケル)、Ti(チタン)等により形成されている。本実施形態においては、例えば、膜厚が90nm以上、110nm以下のNiにより金属膜30が形成されている。 Next, in step 110 (S110), as shown in FIG. 5, a metal film 30 is formed on the first surface 10a of the silicon carbide substrate 10 by sputtering or the like. The metal film 30 is for forming an ohmic electrode, and is made of Ni (nickel), Ti (titanium), or the like. In the present embodiment, for example, the metal film 30 is formed of Ni having a film thickness of 90 nm or more and 110 nm or less.
 次に、ステップ112(S112)において、レーザ光の照射を行う。例えば、X1-X2方向において、炭化珪素基板10の第2面10bが凹に反っている場合には、図6に示されるように、金属膜30が成膜されている第1面10a側に、X1-X2方向に長い短冊状のレーザ照射領域41を設定し、レーザ光を照射する。つまり、第2面10bの反りに応じて、レーザ光を照射する領域と、レーザ光を照射しない領域とを画定し、第1面10aに向けたレーザ光の照射を行う。具体的には、X1-X2方向に長い短冊状のレーザ照射領域41の金属膜30に、レーザ光のスポットを走査しながら照射する。これにより、金属膜30等が加熱され、金属膜30に含まれるNiと炭化珪素基板10に含まれるSiにより、図7に示されるように、オーミック電極となるNiSi合金層31が形成される。照射されるレーザ光の波長は、例えば、365nmである。尚、X1-X2方向において炭化珪素基板10の第2面10bが凹に反っている場合とは、図5に示されるように、炭化珪素基板10の第2面10bが凹に反っている場合である。 Next, in step 112 (S112), laser light is irradiated. For example, in the X1-X2 direction, when the second surface 10b of the silicon carbide substrate 10 is curved in a concave shape, as shown in FIG. 6, the metal film 30 is formed on the first surface 10a side. , A strip-shaped laser irradiation region 41 long in the X1-X2 direction is set, and laser light is irradiated. That is, the region to be irradiated with the laser beam and the region not to be irradiated with the laser beam are defined according to the warp of the second surface 10b, and the laser beam is irradiated to the first surface 10a. Specifically, the metal film 30 of the strip-shaped laser irradiation region 41 long in the X1-X2 direction is irradiated while scanning the spot of the laser beam. As a result, the metal film 30 and the like are heated, and the Ni contained in the metal film 30 and the Si contained in the silicon carbide substrate 10 form a NiSi alloy layer 31 to be an ohmic electrode, as shown in FIG. The wavelength of the irradiated laser beam is, for example, 365 nm. The case where the second surface 10b of the silicon carbide substrate 10 is warped concavely in the X1-X2 direction means that the second surface 10b of the silicon carbide substrate 10 is warped concavely as shown in FIG. Is.
 尚、炭化珪素基板10が反っていない場合には、第1面10a側の全面にレーザ光を照射する。従って、本実施形態の半導体チップの製造方法は、X1-X2方向またはY1-Y2方向おける炭化珪素基板10の第2面10bの反り量が、1μm以上、500μm以下の場合に行われる。第2面10bの反り量が1μm未満であれば、反りを矯正するための処理を行わなくてよい。第2面10bの反り量が500μm超であると、素子領域20内の素子が破壊されているおそれがあり、反りを矯正しても良品が得られる可能性が低い。 If the silicon carbide substrate 10 is not warped, the entire surface on the first surface 10a side is irradiated with laser light. Therefore, the method for manufacturing a semiconductor chip of the present embodiment is performed when the amount of warpage of the second surface 10b of the silicon carbide substrate 10 in the X1-X2 direction or the Y1-Y2 direction is 1 μm or more and 500 μm or less. If the amount of warpage of the second surface 10b is less than 1 μm, it is not necessary to perform a process for correcting the warp. If the amount of warpage of the second surface 10b exceeds 500 μm, the element in the element region 20 may be destroyed, and it is unlikely that a good product can be obtained even if the warp is corrected.
 NiSi合金層31は、レーザ光が照射されたレーザ照射領域41の金属膜30がシリサイド化し、NiSi合金となることにより形成される。このため隣り合うレーザ照射領域41間のレーザ光の照射されないレーザ未照射領域42ではシリサイド化されないためNiSi合金層は形成されない。よって、レーザ未照射領域42では、炭化珪素基板10の第1面10aに金属膜30が形成されたままの状態にある。このように、金属膜30の一部にシリサイドが形成される。 The NiSi alloy layer 31 is formed by silicidizing the metal film 30 of the laser irradiation region 41 irradiated with the laser beam into a NiSi alloy. Therefore, the NiSi alloy layer is not formed because the laser unirradiated region 42 between the adjacent laser irradiation regions 41, which is not irradiated with the laser beam, is not silicated. Therefore, in the laser unirradiated region 42, the metal film 30 is still formed on the first surface 10a of the silicon carbide substrate 10. In this way, silicide is formed on a part of the metal film 30.
 本願においては、レーザ照射領域41及びNiSi合金層31が形成された領域を第1の領域と記載し、レーザ未照射領域42及び炭化珪素基板10の第1面10aに金属膜30が形成されたままの領域を第2の領域と記載する。また、第1の領域と第2の領域とにより第1面10a側の電極、例えば、ドレイン電極が形成される。 In the present application, the region where the laser irradiation region 41 and the NiSi alloy layer 31 are formed is described as the first region, and the metal film 30 is formed on the laser non-irradiation region 42 and the first surface 10a of the silicon carbide substrate 10. The as-is region is referred to as the second region. Further, an electrode on the first surface 10a side, for example, a drain electrode is formed by the first region and the second region.
 NiSi合金層31は合金化により、炭化珪素基板10を引っ張る応力が生じる。よって、X1-X2方向が長手方向となるようにNiSi合金層31を形成することにより、X1-X2方向において炭化珪素基板10を引っ張る応力が生じるため、炭化珪素基板10の第2面10bの反り量が小さくなり、平坦に近づけることができる。 The NiSi alloy layer 31 is alloyed to generate stress that pulls the silicon carbide substrate 10. Therefore, by forming the NiSi alloy layer 31 so that the X1-X2 direction is the longitudinal direction, a stress that pulls the silicon carbide substrate 10 in the X1-X2 direction is generated, so that the second surface 10b of the silicon carbide substrate 10 is warped. The amount is small and can be made flat.
 次に、ステップ114(S114)において、炭化珪素基板10をダイシングによりチップ化する。具体的には、図6に示されるX1-X2方向及びY1-Y2方向の破線に沿って、炭化珪素基板10をダイシングソーにより切断する。これにより、図8に示されるような、第1面10aのレーザ照射領域41において、NiSi合金層31が形成された半導体チップ101が得られる。即ち、第1面10aの平面視において、NiSi合金層31が形成された領域とシリサイド化されていない金属膜30の状態のままの領域とを有する半導体チップ101が形成される。尚、本願において、平面視とは、炭化珪素基板10の第1面10a側をZ2方向より見ること、または、炭化珪素基板10の第2面10b側をZ1方向より見ることを意味する。 Next, in step 114 (S114), the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut by a dicing saw along the broken lines in the X1-X2 direction and the Y1-Y2 direction shown in FIG. As a result, the semiconductor chip 101 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG. That is, in the plan view of the first surface 10a, the semiconductor chip 101 having a region where the NiSi alloy layer 31 is formed and a region where the metal film 30 which is not silicidized remains as it is is formed. In the present application, the plan view means that the first surface 10a side of the silicon carbide substrate 10 is viewed from the Z2 direction, or the second surface 10b side of the silicon carbide substrate 10 is viewed from the Z1 direction.
 次に、図4に示されるY1-Y2方向において、炭化珪素基板10の第2面10bが凹に反っている場合、即ち、Y1-Y2方向の炭化珪素基板10の第2面10bが、図5に示されるように反っている場合について説明する。この場合には、ステップ112のレーザ光の照射の際には、図9に示されるように、金属膜30が成膜されている第1面10a側に、Y1-Y2方向に長い短冊状のレーザ照射領域41を設定し、レーザ光を照射する。つまり、第2面10bの反りに応じて、レーザ光を照射する領域と、レーザ光を照射しない領域とを画定し、第1面10aに向けたレーザ光の照射を行う。具体的には、Y1-Y2方向に長い短冊状のレーザ照射領域41の金属膜30に、レーザ光のスポットを走査しながら照射する。これにより、金属膜30等が加熱され、金属膜30に含まれるNiと炭化珪素基板10に含まれるSiにより、NiSi合金層31が形成される。NiSi合金層31は、レーザ光が照射されたレーザ照射領域41における金属膜30がシリサイド化することにより形成される。このため隣り合うレーザ照射領域41間のレーザ光の照射されないレーザ未照射領域42では、シリサイド化されないためNiSi合金層は形成されず、炭化珪素基板10の第1面10aに金属膜30が形成されたままの状態にある。このように、金属膜30の一部にシリサイドが形成される。 Next, when the second surface 10b of the silicon carbide substrate 10 is concavely warped in the Y1-Y2 direction shown in FIG. 4, that is, the second surface 10b of the silicon carbide substrate 10 in the Y1-Y2 direction is shown in FIG. The case of warpage as shown in 5 will be described. In this case, when the laser beam of step 112 is irradiated, as shown in FIG. 9, a strip-shaped long strip in the Y1-Y2 direction is formed on the first surface 10a side on which the metal film 30 is formed. The laser irradiation region 41 is set and the laser beam is irradiated. That is, the region to be irradiated with the laser beam and the region not to be irradiated with the laser beam are defined according to the warp of the second surface 10b, and the laser beam is irradiated to the first surface 10a. Specifically, the metal film 30 of the strip-shaped laser irradiation region 41 long in the Y1-Y2 direction is irradiated while scanning the spot of the laser beam. As a result, the metal film 30 and the like are heated, and the NiSi alloy layer 31 is formed by the Ni contained in the metal film 30 and the Si contained in the silicon carbide substrate 10. The NiSi alloy layer 31 is formed by silicating the metal film 30 in the laser irradiation region 41 irradiated with the laser beam. Therefore, in the laser unirradiated region 42 between the adjacent laser irradiation regions 41 where the laser beam is not irradiated, the NiSi alloy layer is not formed because silicidization is not performed, and the metal film 30 is formed on the first surface 10a of the silicon carbide substrate 10. It is in a state of being. In this way, silicide is formed on a part of the metal film 30.
 このように、Y1-Y2方向が長手方向となるようにNiSi合金層31を形成することにより、Y1-Y2方向において炭化珪素基板10を引っ張る応力が生じるため、炭化珪素基板10の第2面10bの反りが小さくなり、平坦に近づけることができる。 By forming the NiSi alloy layer 31 so that the Y1-Y2 direction is the longitudinal direction in this way, a stress that pulls the silicon carbide substrate 10 in the Y1-Y2 direction is generated, so that the second surface 10b of the silicon carbide substrate 10 is generated. The warp is reduced and it can be made flat.
 この後、ステップ114(S114)において、炭化珪素基板10をダイシングによりチップ化する。具体的には、図9に示されるX1-X2方向及びY1-Y2方向の破線に沿って、炭化珪素基板10をダイシングソーにより切断する。これにより、図10に示されるような、第1面10aのレーザ照射領域41において、NiSi合金層31が形成された半導体チップ102が得られる。 After that, in step 114 (S114), the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut by a dicing saw along the broken lines in the X1-X2 direction and the Y1-Y2 direction shown in FIG. As a result, the semiconductor chip 102 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG.
 尚、Y1-Y2方向に長い短冊状のレーザ照射領域41を設定するか、X1-X2方向に長い短冊状のレーザ照射領域41を設定するかの判断は、ステップ108において行ってもよい。この場合、X1-X2方向おける反り量とY1-Y2方向における反り量とを比較して判断してもよい。例えば、X1-X2方向おける反り量よりも、Y1-Y2方向における反り量が大きい場合には、Y1-Y2方向に長い短冊状のレーザ照射領域41を設定してもよい。また、Y1-Y2方向おける反り量よりも、X1-X2方向における反り量が大きい場合には、X1-X2方向に長い短冊状のレーザ照射領域41を設定してもよい。また、本実施形態においては、ステップ108において得られた反り量に基づき、反り量が最も小さくなるように、レーザ照射領域41の幅を調整してもよい。例えば、図6に示される場合では、レーザ照射領域41のY1-Y2方向の幅を調整してもよく、図9に示される場合では、レーザ照射領域41のX1-X2方向の幅を調整してもよい。 It should be noted that the determination of whether to set the strip-shaped laser irradiation region 41 long in the Y1-Y2 direction or the long strip-shaped laser irradiation region 41 in the X1-X2 direction may be made in step 108. In this case, the amount of warpage in the X1-X2 direction and the amount of warpage in the Y1-Y2 direction may be compared for judgment. For example, when the amount of warpage in the Y1-Y2 direction is larger than the amount of warpage in the X1-X2 direction, a strip-shaped laser irradiation region 41 long in the Y1-Y2 direction may be set. Further, when the amount of warpage in the X1-X2 direction is larger than the amount of warpage in the Y1-Y2 direction, a strip-shaped laser irradiation region 41 long in the X1-X2 direction may be set. Further, in the present embodiment, the width of the laser irradiation region 41 may be adjusted so that the amount of warpage is the smallest based on the amount of warpage obtained in step 108. For example, in the case shown in FIG. 6, the width of the laser irradiation region 41 in the Y1-Y2 direction may be adjusted, and in the case shown in FIG. 9, the width of the laser irradiation region 41 in the X1-X2 direction is adjusted. You may.
 上記の半導体チップ101及び102は、1辺が6mm角の正方形の半導体チップである。 The above-mentioned semiconductor chips 101 and 102 are square semiconductor chips having a side of 6 mm square.
 図8に示されるように、半導体チップ101において、NiSi合金層31のY1-Y2方向の幅Wyは、1.3μm以上、9.8μm以下、より好ましくは、2.8μm以上、5.8μm以下、更に好ましくは、2.6μm以上、5.6μm以下である。これはチップ厚100μmとして、上限は10.0mm角チップ、下限は1.5mm角チップを想定した場合に必要な合金層の幅Wyである。半導体チップ101においてNiSi合金層31の形状は、X1-X2方向を長辺とし、Y1-Y2方向を短辺とする長方形であり、X1-X2方向の長辺の長さは、半導体チップ101の一辺の長さと等しい。 As shown in FIG. 8, in the semiconductor chip 101, the width Wy of the NiSi alloy layer 31 in the Y1-Y2 direction is 1.3 μm or more and 9.8 μm or less, more preferably 2.8 μm or more and 5.8 μm or less. More preferably, it is 2.6 μm or more and 5.6 μm or less. This is the width Wy of the alloy layer required when the chip thickness is 100 μm, the upper limit is a 10.0 mm square chip, and the lower limit is a 1.5 mm square chip. In the semiconductor chip 101, the shape of the NiSi alloy layer 31 is a rectangle having the long side in the X1-X2 direction and the short side in the Y1-Y2 direction, and the length of the long side in the X1-X2 direction is that of the semiconductor chip 101. Equal to the length of one side.
 図10に示されるように、半導体チップ102においては、NiSi合金層31におけるX1-X2方向の幅Wxは、上記幅Wyと同じ範囲である。半導体チップ102に形成されるNiSi合金層31の形状は、Y1-Y2方向を長辺とし、X1-X2方向を短辺とする長方形であり、Y1-Y2方向の長辺の長さは、半導体チップ102の一辺の長さと等しい。 As shown in FIG. 10, in the semiconductor chip 102, the width Wx in the X1-X2 direction of the NiSi alloy layer 31 is in the same range as the width Wy. The shape of the NiSi alloy layer 31 formed on the semiconductor chip 102 is a rectangle having a long side in the Y1-Y2 direction and a short side in the X1-X2 direction, and the length of the long side in the Y1-Y2 direction is the semiconductor. Equal to the length of one side of the chip 102.
 (変形例)
 次に、本実施形態の変形例について説明する。レーザ照射領域は、半導体チップにおいて所定の方向に長い長方形であれば、短冊状でなくてもよい。
(Modification example)
Next, a modified example of this embodiment will be described. The laser irradiation region does not have to be strip-shaped as long as it is a rectangle long in a predetermined direction in the semiconductor chip.
 例えば、図4に示されるX1-X2方向において、炭化珪素基板10の第2面10bが凹に反っている場合には、図11及び図12に示されるように、各々の半導体チップ内において、X1-X2方向が長辺となる長方形のレーザ照射領域41を設定する。本変形例では、図3のステップ112において、このレーザ照射領域41に、レーザ光を照射する。レーザ照射領域41の金属膜30に、レーザ光のスポットを走査しながら照射することにより、金属膜30等が加熱され、金属膜30に含まれるNiと炭化珪素基板10に含まれるSiにより、NiSi合金層31が形成される。尚、レーザ照射領域41以外の領域がレーザ光の照射されないレーザ未照射領域42となり、レーザ未照射領域42においては、金属膜30はシリサイド化されず、金属膜30のままである。 For example, in the X1-X2 direction shown in FIG. 4, when the second surface 10b of the silicon carbide substrate 10 is curved in a concave shape, as shown in FIGS. 11 and 12, in each semiconductor chip, A rectangular laser irradiation region 41 having a long side in the X1-X2 direction is set. In this modification, in step 112 of FIG. 3, the laser irradiation region 41 is irradiated with laser light. By irradiating the metal film 30 of the laser irradiation region 41 while scanning the spot of the laser beam, the metal film 30 and the like are heated, and NiSi contained in the metal film 30 and Si contained in the silicon carbide substrate 10 causes NiSi. The alloy layer 31 is formed. The region other than the laser irradiation region 41 is the laser unirradiated region 42 that is not irradiated with the laser beam, and in the laser unirradiated region 42, the metal film 30 is not silicated and remains the metal film 30.
 次のステップ114では、炭化珪素基板10をダイシングによりチップ化する。具体的には、図11に示される破線に沿って、炭化珪素基板10をダイシングソーにより切断する。これにより、図12に示されるような、第1面10aのレーザ照射領域41において、NiSi合金層31が形成された半導体チップ103が得られる。 In the next step 114, the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut with a dicing saw along the broken line shown in FIG. As a result, the semiconductor chip 103 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG.
 図12に示される半導体チップ103においては、NiSi合金層31は、X1-X2方向における長さWx1が、Y1-Y2方向における長さWy1よりも長い長方形の形状で形成される。例えば、X1-X2方向における長さWx1は9.8μmであり、Y1-Y2方向における長さWy1は4.9μmである。 In the semiconductor chip 103 shown in FIG. 12, the NiSi alloy layer 31 is formed in a rectangular shape in which the length Wx1 in the X1-X2 direction is longer than the length Wy1 in the Y1-Y2 direction. For example, the length Wx1 in the X1-X2 direction is 9.8 μm, and the length Wy1 in the Y1-Y2 direction is 4.9 μm.
 NiSi合金層31は、レーザ光が照射されたレーザ照射領域41における金属膜30がシリサイド化することにより形成される。レーザ光の照射されないレーザ未照射領域42ではシリサイド化されないため、レーザ未照射領域42では、炭化珪素基板10の第1面10aに金属膜30が形成されたままの状態にある。 The NiSi alloy layer 31 is formed by silicating the metal film 30 in the laser irradiation region 41 irradiated with the laser beam. Since the unirradiated region 42 of the laser that is not irradiated with the laser beam is not silicated, the metal film 30 remains formed on the first surface 10a of the silicon carbide substrate 10 in the unirradiated region 42 of the laser.
 よって、X1-X2方向が長辺となるような長方形のNiSi合金層31を形成することにより、X1-X2方向において炭化珪素基板10を引っ張る応力が生じるため、炭化珪素基板10の第2面10bの反り量を小さくし、平坦に近づけることができる。 Therefore, by forming the rectangular NiSi alloy layer 31 having a long side in the X1-X2 direction, a stress for pulling the silicon carbide substrate 10 is generated in the X1-X2 direction, so that the second surface 10b of the silicon carbide substrate 10 is generated. The amount of warpage can be reduced to make it more flat.
 また、図4に示されるY1-Y2方向において、炭化珪素基板10の第2面10bが凹に反っている場合には、図13及び図14に示されるように、各々の半導体チップ内において、Y1-Y2方向が長辺となる長方形のレーザ照射領域41を設定する。本変形例では、図3のステップ112において、このレーザ照射領域41に、レーザ光を照射する。このレーザ照射領域41の金属膜30に、レーザ光のスポットを走査しながら照射することにより、金属膜30等が加熱され、金属膜30に含まれるNiと炭化珪素基板10に含まれるSiによりNiSi合金層31が形成される。尚、レーザ照射領域41以外の領域がレーザ光の照射されないレーザ未照射領域42となり、レーザ未照射領域42においては、金属膜30はシリサイド化されず、金属膜30のままである。 Further, in the Y1-Y2 direction shown in FIG. 4, when the second surface 10b of the silicon carbide substrate 10 is curved in a concave shape, as shown in FIGS. 13 and 14, in each semiconductor chip, A rectangular laser irradiation region 41 having a long side in the Y1-Y2 direction is set. In this modification, in step 112 of FIG. 3, the laser irradiation region 41 is irradiated with laser light. By irradiating the metal film 30 of the laser irradiation region 41 while scanning the spot of the laser beam, the metal film 30 and the like are heated, and NiSi is generated by Ni contained in the metal film 30 and Si contained in the silicon carbide substrate 10. The alloy layer 31 is formed. The region other than the laser irradiation region 41 is the laser unirradiated region 42 that is not irradiated with the laser beam, and in the laser unirradiated region 42, the metal film 30 is not silicated and remains the metal film 30.
 次のステップ114では、炭化珪素基板10をダイシングによりチップ化する。具体的には、図13に示される破線に沿って、炭化珪素基板10をダイシングソーにより切断する。これにより、図14に示されるような、第1面10aのレーザ照射領域41において、NiSi合金層31が形成された半導体チップ104が得られる。 In the next step 114, the silicon carbide substrate 10 is made into chips by dicing. Specifically, the silicon carbide substrate 10 is cut with a dicing saw along the broken line shown in FIG. As a result, the semiconductor chip 104 on which the NiSi alloy layer 31 is formed can be obtained in the laser irradiation region 41 of the first surface 10a as shown in FIG.
 図14に示される半導体チップ104においては、NiSi合金層31は、Y1-Y2方向における長さWy2が、X1-X2方向における長さWx2よりも長い長方形の形状で形成される。例えば、X1-X2方向における長さWx2は9.8μmであり、Y1-Y2方向における長さWy2は4.9μmである。 In the semiconductor chip 104 shown in FIG. 14, the NiSi alloy layer 31 is formed in a rectangular shape in which the length Wy2 in the Y1-Y2 direction is longer than the length Wx2 in the X1-X2 direction. For example, the length Wx2 in the X1-X2 direction is 9.8 μm, and the length Wy2 in the Y1-Y2 direction is 4.9 μm.
 よって、Y1-Y2方向が長辺となるような長方形の領域にNiSi合金層31を形成することにより、Y1-Y2方向において炭化珪素基板10を引っ張る応力が生じるため、炭化珪素基板10の第2面10bの反り量を小さくし、平坦に近づけることができる。 Therefore, by forming the NiSi alloy layer 31 in a rectangular region having a long side in the Y1-Y2 direction, a stress for pulling the silicon carbide substrate 10 in the Y1-Y2 direction is generated, so that the second silicon carbide substrate 10 is used. The amount of warpage of the surface 10b can be reduced to make the surface 10b almost flat.
 この変形例における半導体チップ103及び104は、第1面10aでは、第1の領域となるNiSi合金層31の周囲を金属膜30が残存している第2の領域が囲んでいる。 In the semiconductor chips 103 and 104 in this modification, on the first surface 10a, the second region where the metal film 30 remains surrounds the NiSi alloy layer 31 which is the first region.
 本変形例では、長辺の長さWx1及びWy2は、1.3μm以上、9.8μm以下であり、より好ましくは、2.8μm以上、5.8μm以下、更に好ましくは、2.6μm以上、5.6μm以下である。また、短辺の長さWy1及びWx2は、0.7μm以上、4.9μm以下であり、より好ましくは、1.4μm以上、2.6μm以下、更に好ましくは、1.3μm以上、2.8μm以下である。これはチップ厚100μmとして、上限は10.0mm角チップ、下限は1.5mm角チップを想定した場合に必要な合金層の長辺の長さWxおよびWy2である。 In this modification, the lengths Wx1 and Wy2 of the long sides are 1.3 μm or more and 9.8 μm or less, more preferably 2.8 μm or more and 5.8 μm or less, and further preferably 2.6 μm or more. It is 5.6 μm or less. The short side lengths Wy1 and Wx2 are 0.7 μm or more and 4.9 μm or less, more preferably 1.4 μm or more and 2.6 μm or less, still more preferably 1.3 μm or more and 2.8 μm. It is as follows. This is the length Wx and Wy2 of the long side of the alloy layer required when assuming a chip thickness of 100 μm, an upper limit of 10.0 mm square chips, and a lower limit of 1.5 mm square chips.
 また、平面視において、半導体チップの第2面の面積に対するNiSi合金層31の面積は、75%以上、96%以下、より好ましくは、85%以上、90%以下である。これにより、1.5mm角から10.0mm角チップにおいても十分なNiSi合金層の面積を確保し、ドレイン電流の低下を防ぐことができる。 Further, in a plan view, the area of the NiSi alloy layer 31 with respect to the area of the second surface of the semiconductor chip is 75% or more and 96% or less, more preferably 85% or more and 90% or less. As a result, a sufficient area of the NiSi alloy layer can be secured even for a 1.5 mm square to 10.0 mm square chip, and a decrease in drain current can be prevented.
 (半導体チップ)
 次に、第1の実施形態における半導体チップ100について、図15から図18に基づき説明する。本実施形態における半導体チップは、本実施形態における半導体チップの製造方法により製造することができる。図15は、本実施形態における半導体チップの平面図である。図16は、図15における一点鎖線15A-15Bにおいて切断した断面図であり、図17は、図15における一点鎖線15C-15Dにおいて切断した断面図であり、図18は、図15における一点鎖線15E-15Fにおいて切断した断面図である。
(Semiconductor chip)
Next, the semiconductor chip 100 in the first embodiment will be described with reference to FIGS. 15 to 18. The semiconductor chip in this embodiment can be manufactured by the method for manufacturing a semiconductor chip in this embodiment. FIG. 15 is a plan view of the semiconductor chip in this embodiment. 16 is a cross-sectional view cut along the alternate long and short dash line 15A-15B in FIG. 15, FIG. 17 is a sectional view cut along the alternate long and short dash line 15C-15D in FIG. 15, and FIG. 18 is a sectional view taken along the alternate long and short dash line 15C-15D. It is sectional drawing which cut at -15F.
 この半導体チップ100では、炭化珪素基板10の第2面10bに、複数のゲート電極21、ゲートランナー22、ゲート電極パッド23が形成されており、更に、各々のゲート電極21を覆う絶縁膜24が形成されている。各々のゲート電極21は、X1-X2方向に長く形成されており、絶縁膜24の上及び絶縁膜24と絶縁膜24との間の炭化珪素基板10の第2面10bには、ソース電極25が形成されている。また、炭化珪素基板10の第1面10aには、NiSi合金層31と残存してる金属膜30によりドレイン電極33が形成されている。本願においては、ドレイン電極33を第1の電極と記載する場合がある。 In the semiconductor chip 100, a plurality of gate electrodes 21, a gate runner 22, and a gate electrode pad 23 are formed on the second surface 10b of the silicon carbide substrate 10, and an insulating film 24 covering each gate electrode 21 is further formed. It is formed. Each gate electrode 21 is formed long in the X1-X2 direction, and the source electrode 25 is formed on the insulating film 24 and on the second surface 10b of the silicon carbide substrate 10 between the insulating film 24 and the insulating film 24. Is formed. Further, a drain electrode 33 is formed on the first surface 10a of the silicon carbide substrate 10 by the NiSi alloy layer 31 and the remaining metal film 30. In the present application, the drain electrode 33 may be referred to as a first electrode.
 尚、ゲート電極21はポリシリコンにより形成されており、ゲートランナー22は、断面構造が、ポリシリコンがAl(アルミニウム)に覆われている。絶縁膜24は酸化シリコンにより形成されており、ソース電極25はアルミニウムを含む材料により形成されている。 The gate electrode 21 is made of polysilicon, and the gate runner 22 has a cross-sectional structure in which polysilicon is covered with Al (aluminum). The insulating film 24 is made of silicon oxide, and the source electrode 25 is made of a material containing aluminum.
 本実施形態においては、半導体チップ100は、X1-X2方向、及び、Y1-Y2方向において、ソース電極25よりも、ドレイン電極33のNiSi合金層31が広くなるように形成されている。尚、本願においては、ソース電極25を第2の電極と記載する場合がある。 In the present embodiment, the semiconductor chip 100 is formed so that the NiSi alloy layer 31 of the drain electrode 33 is wider than the source electrode 25 in the X1-X2 direction and the Y1-Y2 direction. In the present application, the source electrode 25 may be referred to as a second electrode.
 ソース電極25よりもNiSi合金層31が狭いと、ソース電極25とドレイン電極33のNiSi合金層31との間に流れる電流量が減少する場合がある。ソース電極25の両側の端部より45°の角度で広がる範囲よりも広い領域まで、NiSi合金層31が形成されていれば、ソース電極25とドレイン電極33のNiSi合金層31との間に流れる電流量への影響は殆どないものと考えられる。よって、炭化珪素基板10の厚さをtとした場合、ドレイン電極33のNiSi合金層31は、ソース電極25に対応する領域よりも、各々の外側にtよりも広がった領域まで形成されている。従って、NiSi合金層31の長さは、ソース電極25の長さに2tを加えた値よりも長く形成されている。 If the NiSi alloy layer 31 is narrower than the source electrode 25, the amount of current flowing between the source electrode 25 and the NiSi alloy layer 31 of the drain electrode 33 may decrease. If the NiSi alloy layer 31 is formed to a region wider than the range extending at an angle of 45 ° from both ends of the source electrode 25, it flows between the source electrode 25 and the NiSi alloy layer 31 of the drain electrode 33. It is considered that there is almost no effect on the amount of current. Therefore, when the thickness of the silicon carbide substrate 10 is t, the NiSi alloy layer 31 of the drain electrode 33 is formed to a region wider than t on the outside of each region corresponding to the source electrode 25. .. Therefore, the length of the NiSi alloy layer 31 is formed to be longer than the value obtained by adding 2t to the length of the source electrode 25.
 例えば、図16に示されるように、Y1-Y2方向において、NiSi合金層31の長さをWdyとし、ソース電極25の長さをWsyとした場合、
 Wdy>Wsy+2t
 となり、
 また、図18に示されるように、X1-X2方向において、NiSi合金層31の長さをWdxとし、ソース電極25の長さをWsxとした場合、
 Wdx>Wsx+2t
 となるように形成されている。
For example, as shown in FIG. 16, when the length of the NiSi alloy layer 31 is Wdy and the length of the source electrode 25 is Wsy in the Y1-Y2 direction,
Wdy> Wsy + 2t
Next,
Further, as shown in FIG. 18, when the length of the NiSi alloy layer 31 is Wdx and the length of the source electrode 25 is Wsx in the X1-X2 direction,
Wdx> Wsx + 2t
It is formed so as to be.
 更に、図16に示されるように、Y1-Y2方向において、NiSi合金層31は、ソース電極25よりも、X1方向及びX2方向に、ともにt以上広く形成されている。 Further, as shown in FIG. 16, in the Y1-Y2 direction, the NiSi alloy layer 31 is formed wider than the source electrode 25 in both the X1 direction and the X2 direction by t or more.
 また、図18に示されるように、X1-X2方向において、NiSi合金層31は、ソース電極25よりも、Y1方向及びY2方向に、ともにt以上広く形成されている。 Further, as shown in FIG. 18, in the X1-X2 direction, the NiSi alloy layer 31 is formed wider than the source electrode 25 in both the Y1 direction and the Y2 direction by t or more.
 〔第2の実施形態〕
 次に、第2の実施形態における半導体チップの製造方法について、図19に基づき説明する。
[Second Embodiment]
Next, the method of manufacturing the semiconductor chip in the second embodiment will be described with reference to FIG.
 本実施形態における半導体チップの製造方法は、図19に示されるように、ステップ110の金属膜の成膜工程の後、ステップ210(S210)において、シリコン膜を成膜する工程を行う。具体的には、炭化珪素基板の準備(S102)、素子領域形成(S104)、研削(S106)、炭化珪素基板の反り量の測定(S108)、金属膜の成膜(S110)を行った後、シリコン膜の成膜(S210)を行う。シリコン膜を成膜する工程では、図20に示されるように、金属膜30の上にシリコン膜150を成膜する。成膜されるシリコン膜150の膜厚は、例えば、約100nmである。尚、ステップ110とステップ210は連続して行ってもよい。 In the method for manufacturing a semiconductor chip in the present embodiment, as shown in FIG. 19, a step of forming a silicon film is performed in step 210 (S210) after the step of forming a metal film in step 110. Specifically, after preparing the silicon carbide substrate (S102), forming the element region (S104), grinding (S106), measuring the amount of warpage of the silicon carbide substrate (S108), and forming a metal film (S110). , A silicon film is formed (S210). In the step of forming the silicon film, the silicon film 150 is formed on the metal film 30 as shown in FIG. The film thickness of the silicon film 150 to be formed is, for example, about 100 nm. In addition, step 110 and step 210 may be performed continuously.
 この後、レーザ光の照射(S112)を行う。本実施形態は、レーザ光の照射により、図21に示されるように、金属膜30のNiと、主にシリコン膜150のSiとにより、NiSi合金層131が形成される。このため、炭化珪素基板からのシリコン供給不足を防ぎ、低抵抗率のNiSi合金層を安定して形成できる。この後、ダイシング(S114)を行うことにより、本実施形態の半導体チップが得られる。 After that, laser light irradiation (S112) is performed. In the present embodiment, as shown in FIG. 21, the NiSi alloy layer 131 is formed by the irradiation of the laser beam with the Ni of the metal film 30 and the Si of the silicon film 150 mainly. Therefore, it is possible to prevent a shortage of silicon supply from the silicon carbide substrate and stably form a NiSi alloy layer having a low resistivity. After that, dicing (S114) is performed to obtain the semiconductor chip of the present embodiment.
 このように形成されるNiSi合金層131におけるSiの濃度は32wt%以上、49wt%以下である。Siの濃度が32wt%以上、49wt%以下であると、NiSi合金層131の抵抗率を低く抑えられる。Siの濃度は二次イオン質量分析(secondary ion mass spectrometry:SIMS)法、X線光電子分光(X-ray Photoelectron Spectroscopy:XPS)法、エネルギー分散型X線分析(Energy dispersive X-ray spectroscopy:EDX)法、オージェ電子分光(Auger electron spectroscopy:AES)法、誘導結合プラズマ質量分析法(Inductively Coupled Plasma - Mass Spectrometry:ICP-MS)法により測定できる。 The concentration of Si in the NiSi alloy layer 131 formed in this way is 32 wt% or more and 49 wt% or less. When the concentration of Si is 32 wt% or more and 49 wt% or less, the resistivity of the NiSi alloy layer 131 can be suppressed low. The concentration of Si is determined by the secondary ion mass spectroscopy (SIMS) method, X-ray Photoelectron Spectroscopy (XPS) method, and energy dispersion X-ray spectroscopy (EDX). It can be measured by the method, Auger electron spectroscopy (AES) method, and inductively coupled plasma spectroscopy (ICP-MS) method.
 尚、上記以外の内容については、第1の実施形態と同様である。 The contents other than the above are the same as those in the first embodiment.
 以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。 Although the embodiments have been described in detail above, the embodiments are not limited to the specific embodiments, and various modifications and changes can be made within the scope of the claims.
10    炭化珪素基板
10a   第1面
10b   第2面
20    素子領域
21    ゲート電極
22    ゲートランナー
23    ゲート電極パッド
24    絶縁膜
25    ソース電極
30    金属膜
31    NiSi合金層
33    ドレイン電極
41    レーザ照射領域
42    レーザ未照射領域
100   半導体チップ
101、102、103、104   半導体チップ
131   NiSi合金層
150   シリコン膜
10 Silicon carbide substrate 10a 1st surface 10b 2nd surface 20 Element region 21 Gate electrode 22 Gate runner 23 Gate electrode pad 24 Insulation film 25 Source electrode 30 Metal film 31 NiSi alloy layer 33 Drain electrode 41 Laser irradiation region 42 Laser non-irradiation region 100 Semiconductor chips 101, 102, 103, 104 Semiconductor chips 131 NiSi alloy layer 150 Silicon film

Claims (21)

  1.  第1面と前記第1面とは反対の第2面を有する炭化珪素基板と、
     前記炭化珪素基板の前記第1面に設けられた第1の電極と、
     を有し、
     前記第1の電極は、平面視において、シリサイドを含む第1の領域と、シリサイドを含まない第2の領域と、を有する半導体チップ。
    A silicon carbide substrate having a first surface and a second surface opposite to the first surface,
    With the first electrode provided on the first surface of the silicon carbide substrate,
    Have,
    The first electrode is a semiconductor chip having a first region containing VDD and a second region not containing VDD in a plan view.
  2.  平面視における前記第1の領域の形状は、
     互いに平行な1対の短辺と、
     前記短辺に直交し、前記短辺よりも長く、互いに平行な1対の長辺と、
     を有する長方形である請求項1に記載の半導体チップ。
    The shape of the first region in a plan view is
    A pair of short sides parallel to each other,
    A pair of long sides that are orthogonal to the short side, longer than the short side, and parallel to each other.
    The semiconductor chip according to claim 1, which is a rectangle having.
  3.  前記短辺の長さは、1.5mm以上、10.0mm以下である請求項2に記載の半導体チップ。 The semiconductor chip according to claim 2, wherein the length of the short side is 1.5 mm or more and 10.0 mm or less.
  4.  平面視における前記半導体チップの形状は、長方形であって、
     前記第1の領域の長辺の長さは、前記半導体チップの一辺と同じである請求項2または請求項3に記載の半導体チップ。
    The shape of the semiconductor chip in a plan view is rectangular,
    The semiconductor chip according to claim 2 or 3, wherein the length of the long side of the first region is the same as one side of the semiconductor chip.
  5.  平面視において、前記第1の領域は、前記第2の領域に囲まれている請求項1から請求項3のいずれか一項に記載の半導体チップ。 The semiconductor chip according to any one of claims 1 to 3, wherein the first region is surrounded by the second region in a plan view.
  6.  前記第1の電極は、ニッケルまたはチタンを含む請求項1から請求項5のいずれか一項に記載の半導体チップ。 The semiconductor chip according to any one of claims 1 to 5, wherein the first electrode contains nickel or titanium.
  7.  平面視において、前記第1の電極の面積に対する前記第1の領域の面積は、73%以上、98%以下である請求項1から請求項6のいずれか一項に記載の半導体チップ。 The semiconductor chip according to any one of claims 1 to 6, wherein the area of the first region with respect to the area of the first electrode is 73% or more and 98% or less in a plan view.
  8.  前記第2面には、第2の電極が設けられており、
     前記炭化珪素基板の厚さをtとし、前記第1の領域を平面視した第1の方向の長さをWdxとし、前記第2の電極を平面視した前記第1の方向の長さをWsxとした場合、
     Wdx>Wsx+2t
     であり、
     前記第1の領域を平面視した前記第1の方向と直交する第2の方向の長さをWdyとし、前記第2の電極を平面視した前記第2の方向の長さをWsyとした場合、
     Wdy>Wsy+2t
     である請求項1から請求項7のいずれか一項に記載の半導体チップ。
    A second electrode is provided on the second surface.
    The thickness of the silicon carbide substrate is t, the length in the first direction when the first region is viewed in a plane is Wdx, and the length in the first direction when the second electrode is viewed in a plane is Wsx. If,
    Wdx> Wsx + 2t
    And
    When the length in the second direction orthogonal to the first direction in which the first region is viewed in a plane is Wdy, and the length in the second direction in which the second electrode is viewed in a plane is Wsy. ,
    Wdy> Wsy + 2t
    The semiconductor chip according to any one of claims 1 to 7.
  9.  前記第1の方向及び前記第2の方向において、前記第1の領域は、前記第2の電極よりも両側にt以上広い請求項8に記載の半導体チップ。 The semiconductor chip according to claim 8, wherein in the first direction and the second direction, the first region is wider than t on both sides of the second electrode.
  10.  前記第1の領域に含まれるシリコンの濃度は、32wt%以上、49wt%以下である請求項1から請求項9のいずれか一項に記載の半導体チップ。 The semiconductor chip according to any one of claims 1 to 9, wherein the concentration of silicon contained in the first region is 32 wt% or more and 49 wt% or less.
  11.  第1面と前記第1面とは反対の第2面を有する炭化珪素基板を準備する工程と、
     前記炭化珪素基板の前記第2面に素子領域を形成する工程と、
     前記炭化珪素基板の前記第1面を研削する工程と、
     前記研削された前記第1面に金属膜を成膜する工程と、
     前記第1面に向けたレーザ光の照射により前記金属膜の一部にシリサイドを形成する工程と、
     を有し、
     前記研削された前記炭化珪素基板は、前記第2面が凹に反っており、
     前記第1面を研削する工程と前記金属膜の一部にシリサイドを形成する工程との間に、平面視した前記第1面において直交する第1の方向と第2の方向のうち反り量の大きな方向に長い複数の第1の領域と、前記第1の領域の間の第2の領域とを画定する工程を有し、
     前記金属膜の一部にシリサイドを形成する工程は、前記第2の領域にはレーザ光を照射することなく、前記第1の領域にレーザ光を照射する工程を有する半導体チップの製造方法。
    A step of preparing a silicon carbide substrate having a first surface and a second surface opposite to the first surface, and
    A step of forming an element region on the second surface of the silicon carbide substrate, and
    The step of grinding the first surface of the silicon carbide substrate and
    A step of forming a metal film on the ground first surface, and
    A step of forming silicide on a part of the metal film by irradiating the first surface with a laser beam, and
    Have,
    The second surface of the ground silicon carbide substrate is curved in a concave shape.
    The amount of warpage in the first direction and the second direction orthogonal to each other in the first surface viewed in a plan view between the step of grinding the first surface and the step of forming silicide on a part of the metal film. It comprises a step of defining a plurality of first regions that are long in a large direction and a second region between the first regions.
    A method for manufacturing a semiconductor chip, which comprises a step of irradiating the first region with a laser beam without irradiating the second region with a laser beam, in a step of forming VDD on a part of the metal film.
  12.  前記炭化珪素基板の前記第1面を研削する工程において研削された前記炭化珪素基板の前記第2面の反り量は、1μm以上、500μm以下である請求項11に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to claim 11, wherein the amount of warpage of the second surface of the silicon carbide substrate ground in the step of grinding the first surface of the silicon carbide substrate is 1 μm or more and 500 μm or less.
  13.  前記金属膜は、ニッケルまたはチタンを含む請求項11または請求項12に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to claim 11 or 12, wherein the metal film contains nickel or titanium.
  14.  前記金属膜を成膜する工程と前記金属膜の一部にシリサイドを形成する工程との間に、シリコン膜を成膜する工程を有する請求項11から請求項13のいずれか一項に記載の半導体チップの製造方法。 The method according to any one of claims 11 to 13, further comprising a step of forming a silicon film between the step of forming the metal film and the step of forming silicide on a part of the metal film. A method for manufacturing a semiconductor chip.
  15.  前記炭化珪素基板の大きさは、6インチ以上である請求項11から請求項14のいずれか一項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 11 to 14, wherein the size of the silicon carbide substrate is 6 inches or more.
  16.  前記第1の領域は、短冊状である請求項11から請求項15のいずれか一項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 11 to 15, wherein the first region is a strip-shaped strip.
  17.  前記金属膜の一部にシリサイドを形成する工程の後、前記炭化珪素基板をダイシングにより分離しチップ化する工程を有する請求項11から請求項16のいずれか一項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 11 to 16, further comprising a step of forming the silicide on a part of the metal film and then separating the silicon carbide substrate into chips by dicing. ..
  18.  前記チップ化された半導体チップは、平面視における前記第1の領域の形状は、長方形である請求項17に記載の半導体チップの製造方法。 The semiconductor chip manufacturing method according to claim 17, wherein the chipped semiconductor chip has a rectangular shape in the first region in a plan view.
  19.  前記チップ化された半導体チップの平面視における形状は、長方形であって、
     前記第1の領域の長辺の長さは、前記半導体チップの一辺と同じである請求項18に記載の半導体チップの製造方法。
    The shape of the chipped semiconductor chip in a plan view is rectangular.
    The method for manufacturing a semiconductor chip according to claim 18, wherein the length of the long side of the first region is the same as one side of the semiconductor chip.
  20.  前記チップ化された半導体チップは、平面視において、前記第1の領域は、前記第2の領域に囲まれている請求項17または請求項18に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to claim 17 or 18, wherein the first region is surrounded by the second region in a plan view of the chipped semiconductor chip.
  21.  前記チップ化された半導体チップは、平面視において、前記半導体チップの第1面の面積に対する前記第1の領域の面積は、75%以上、96%以下である請求項17から請求項20のいずれか一項に記載の半導体チップの製造方法。 The chipped semiconductor chip has any of claims 17 to 20, wherein the area of the first region with respect to the area of the first surface of the semiconductor chip is 75% or more and 96% or less in plan view. The method for manufacturing a semiconductor chip according to claim 1.
PCT/JP2020/027282 2019-07-17 2020-07-13 Semiconductor chip and methods for manufacturing semiconductor chip WO2021010380A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533072A JP7487739B2 (en) 2019-07-17 2020-07-13 Semiconductor chip and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-131804 2019-07-17
JP2019131804 2019-07-17

Publications (1)

Publication Number Publication Date
WO2021010380A1 true WO2021010380A1 (en) 2021-01-21

Family

ID=74210793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027282 WO2021010380A1 (en) 2019-07-17 2020-07-13 Semiconductor chip and methods for manufacturing semiconductor chip

Country Status (2)

Country Link
JP (1) JP7487739B2 (en)
WO (1) WO2021010380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170619A (en) * 2020-04-17 2021-10-28 三菱電機株式会社 Method for manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165179A (en) * 2004-12-06 2006-06-22 Denso Corp Semiconductor device and manufacturing method therefor
JP2017063145A (en) * 2015-09-25 2017-03-30 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method for the same
WO2017098659A1 (en) * 2015-12-11 2017-06-15 新電元工業株式会社 Method for manufacturing silicon carbide semiconductor device, method for manufacturing semiconductor base body, silicon carbide semiconductor device, and apparatus for manufacturing silicon carbide semiconductor device
JP2017168675A (en) * 2016-03-16 2017-09-21 富士電機株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165179A (en) * 2004-12-06 2006-06-22 Denso Corp Semiconductor device and manufacturing method therefor
JP2017063145A (en) * 2015-09-25 2017-03-30 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method for the same
WO2017098659A1 (en) * 2015-12-11 2017-06-15 新電元工業株式会社 Method for manufacturing silicon carbide semiconductor device, method for manufacturing semiconductor base body, silicon carbide semiconductor device, and apparatus for manufacturing silicon carbide semiconductor device
JP2017168675A (en) * 2016-03-16 2017-09-21 富士電機株式会社 Semiconductor device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170619A (en) * 2020-04-17 2021-10-28 三菱電機株式会社 Method for manufacturing semiconductor device
JP7384106B2 (en) 2020-04-17 2023-11-21 三菱電機株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPWO2021010380A1 (en) 2021-01-21
JP7487739B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
US9685513B2 (en) Semiconductor structure or device integrated with diamond
JP5550738B2 (en) Method for manufacturing silicon carbide semiconductor element
WO2017187760A1 (en) Silicon carbide semiconductor device and method for producing same
US11715768B2 (en) Silicon carbide components and methods for producing silicon carbide components
CN107068564B (en) Method of forming semiconductor device
US10553676B2 (en) Compound semiconductor device, method for producing same, and resin-sealed type semiconductor device
US11302596B2 (en) Semiconductor device
WO2021010380A1 (en) Semiconductor chip and methods for manufacturing semiconductor chip
US20240145558A1 (en) Semiconductor device
US11387326B2 (en) Silicon carbide semiconductor device and method for manufacturing the same
US20230343578A1 (en) Semiconductor device manufacturing method and wafer structural object
JP6455109B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP6034694B2 (en) Semiconductor device manufacturing method and semiconductor device
WO2013021786A1 (en) Semiconductor device manufacturing method
US10573603B2 (en) Semiconductor device having a three-sided textured substrate
US11881406B2 (en) Method of manufacturing a semiconductor device and semiconductor wafer
WO2022210680A1 (en) Power semiconductor and method for manufacturing same
WO2022059473A1 (en) Semiconductor device manufacturing method and wafer structural object
JP2022139453A (en) Manufacturing method for silicon carbide semiconductor device
EP4297070A1 (en) Nitride semiconductor device and method for producing nitride semiconductor device
US10665459B2 (en) Method for manufacturing semiconductor device
JP2019140234A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839704

Country of ref document: EP

Kind code of ref document: A1