WO2021010334A1 - Composition for dip molding, method for producing glove, and glove - Google Patents

Composition for dip molding, method for producing glove, and glove Download PDF

Info

Publication number
WO2021010334A1
WO2021010334A1 PCT/JP2020/027068 JP2020027068W WO2021010334A1 WO 2021010334 A1 WO2021010334 A1 WO 2021010334A1 JP 2020027068 W JP2020027068 W JP 2020027068W WO 2021010334 A1 WO2021010334 A1 WO 2021010334A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
dip molding
epoxy
composition
linking agent
Prior art date
Application number
PCT/JP2020/027068
Other languages
French (fr)
Japanese (ja)
Inventor
憲秀 榎本
充志 森永
Original Assignee
ミドリ安全株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミドリ安全株式会社 filed Critical ミドリ安全株式会社
Priority to JP2021533045A priority Critical patent/JP7270738B2/en
Publication of WO2021010334A1 publication Critical patent/WO2021010334A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/04Appliances for making gloves; Measuring devices for glove-making
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a composition for dip molding, a method for manufacturing a glove, and a glove.
  • gloves manufactured by dip molding using a latex composition crosslinked with a sulfur-based sulfur-based vulcanization accelerator have been widely used in various industrial fields and medical fields.
  • sulfur cross-linking agents and sulfur-based vulcanization accelerators cause type IV allergies
  • vulcanization accelerator-free gloves that do not use them have been proposed.
  • These include a self-crosslinking type in which an organic crosslinkable compound is included in latex polymerization, and an external crosslinking agent type in which crosslinks are made with a polycarbodiimide or an epoxy crosslinker.
  • Patent Document 1 describes a method for producing a self-crosslinking glove.
  • Patent Document 2 describes a method for producing gloves using polycarbodiimide as the external cross-linking type
  • Patent Document 3 describes a method for producing gloves using an epoxy cross-linking agent as the external cross-linking type.
  • the elastomer contained in the composition for dip molding has a carboxyl group derived from unsaturated carboxylic acid, which is a constituent unit thereof, and the carboxyl group is oriented inside and outside the particles of the elastomer. Further, it is considered that the inside of the elastomer particles is lipophilic, while the outside of the particles is hydrophilic.
  • a crosslinked structure is formed by the above-mentioned cross-linking reaction via the carboxyl group.
  • the type of bond when forming the crosslinked structure specifically, the difference between a covalent bond and an ionic bond, and the number of crosslinked structures have a great influence on the physical properties of the dip molded product. That is, the control of the crosslinked structure of the carboxyl group of the elastomer and the crosslinking agent has a great influence on the physical properties of the dip molded product, for example, tensile strength, fatigue durability, and stress retention rate.
  • the polycarbodiimide described in Patent Document 2 is a hydrophilic substance because it has a hydrophilic segment in the molecular structure.
  • the epoxy cross-linking agent described in Patent Document 3 is mainly lipophilic based on the value of the MIBK / water distribution ratio.
  • the inside of the elastomer particles is lipophilic, while the outside of the particles is considered to be hydrophilic. Therefore, the carboxyl group oriented inside the elastomer particles and the carboxyl oriented outside the elastomer particles. It is considered that the properties of the cross-linking agent that can participate in cross-linking are different from those of the group.
  • a cross-linked structure can be formed by a cross-linking reaction with the carboxyl group oriented in the elastomer particles, whereas the hydrophilic cross-linking agent is the elastomer particles. It is considered that a crosslinked structure can be formed by a crosslinking reaction with a carboxyl group oriented outward.
  • cross-linking agents having different properties, specifically, hydrophilic ones and lipophilic ones in combination. It was.
  • a dip-molded product having good physical properties for example, tensile strength, fatigue durability, and stress retention rate, which cannot be obtained by the prior art. It is an object of the present invention to obtain gloves and to provide a dip molding composition or the like used for producing the dip molded product.
  • An embodiment of the present invention relates to the following dip molding composition, a method for producing a glove, and a glove obtained by the method for producing the glove.
  • gloves obtained by using a dip molding composition containing an epoxy cross-linking agent and polycarbodiimide may be abbreviated as "cross-linked gloves of the present invention”.
  • gloves obtained by using a dip molding composition containing a sulfur cross-linking agent and a sulfur-based vulcanization accelerator may be abbreviated as "sulfur cross-linking gloves”.
  • the structural unit derived from (meth) acrylonitrile is 12 to 36% by weight
  • the structural unit derived from unsaturated carboxylic acid is 2 to 10% by weight
  • the structural unit derived from butadiene is 50 to 75% by weight.
  • the epoxy cross-linking agent contains an epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule.
  • the polycarbodiimide is a composition for dip molding, which comprises at least one polycarbodiimide containing a hydrophilic segment in the molecular structure.
  • MIBK / water distribution rate measurement method 5.0 g of water, 5.0 g of methyl isobutyl ketone (MIBK) and 0.5 g of epoxy cross-linking agent are precisely weighed in a test tube, stirred at 23 ° C ⁇ 2 ° C for 3 minutes, and mixed.
  • MIBK / water distribution rate (%) (MIBK layer weight after distribution (g) -MIBK weight before distribution (g)) / crosslinker addition weight (g) x 100 The above measurement is performed three times, and the average value is taken as MIBK / water distribution ratio.
  • the dispersant of the epoxy cross-linking agent is a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and a table represented by the following formula (3).
  • R 1 represents a hydrogen or methyl group
  • R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It represents a hydrocarbon group
  • n2 represents an integer of 0 to 3.
  • R 2 O- (CH 2 CHR 1- O) n3- (C O) -CH 3 (3)
  • R 1 represents a hydrogen or methyl group
  • R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • n 3 represents an integer of 0 to 3.
  • the amount of the epoxy cross-linking agent added to the dip molding composition is 0.2 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer contained in the dip molding composition.
  • the amount of polycarbodiimide added to the dip molding composition is 0.2 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer contained in the dip molding composition [1] to The composition for dip molding according to any one of [5].
  • [8] (1) A step of immersing a glove molding die in a coagulant solution containing calcium ions to attach the coagulant to the glove molding die. (2) A step of stirring the dip molding composition according to any one of [1] to [7], wherein the pH is adjusted to 9.5 to 12.0 with a pH adjuster. (3) The glove molding mold to which the coagulant of (1) is attached is immersed in the dip molding composition that has undergone the step (2), and the dip molding composition is coagulated in the glove molding mold to form a film. Dipping process to form, (4) A gelling step of gelling a film formed on a glove molding mold to prepare a cured film precursor.
  • a method for manufacturing gloves which comprises the above steps (3) to (7) in the above order. [9] The method for manufacturing gloves according to [8], wherein the steps (3) and (4) above are repeated twice in that order. [10] The precuring step of heating and drying the cured film precursor at a temperature lower than the temperature of the step (7) is further included between the steps (6) and (7), [8] or [ 9] The method for manufacturing gloves. [11] Gloves produced by the production method according to any one of [8] to [10].
  • dip molding composition or the like used for producing a dip molded product having good tensile strength, fatigue durability, and stress retention rate.
  • weight and “mass” are used interchangeably in the present specification, they will be collectively referred to as “weight” below.
  • fatigue durability means resistance to a glove being broken due to deterioration in performance due to sweat of a user (worker). The specific evaluation method will be described later.
  • fatigue durability since the finger crotch part of a glove is usually easily torn, it is a practical pass line that the finger crotch part exceeds 90 minutes, but in the present invention, a film is produced on a ceramic plate.
  • the passing line of the fatigue durability test in the present invention is set to 240 minutes.
  • the tensile strength is expressed in MPa, which is a value obtained by dividing the load at break (N) by the cross-sectional area of the test piece, and is a value excluding the influence of the thickness.
  • the value is 20 MPa.
  • the EN standard EN 455) is based on a load of 6 N at break, and thinner gloves (2.7 to 3.2 g: film thickness 50 to 60 ⁇ m) are required to have a performance exceeding 35 MPa.
  • the dip molding composition of the present embodiment contains a specific elastomer, a specific epoxy cross-linking agent, a specific polycarbodiimide, water, and a pH adjuster. And, if necessary, a metal cross-linking agent or the like.
  • This dip molding composition is an emulsion which is adjusted to have a pH of about 9.5 to 12.0 as a dipping liquid for gloves, and each solid content is agitated by maturation and dispersed almost uniformly.
  • the composition for dip molding is a latex containing XNBR (carboxylated (meth) acrylonitrile butadiene elastomer), and XNBR forms particles having a particle diameter of about 50 to 250 nm as an aqueous emulsion.
  • XNBR carboxylated (meth) acrylonitrile butadiene elastomer
  • the environment inside and outside the particle is significantly different, and the inside of the particle is lipophilic because it is mainly composed of hydrocarbons composed of butadiene residue, (meth) acrylonitrile residue, (meth) acrylic acid and the like.
  • the outside of the particles is composed of water and a water-soluble component (for example, a pH adjuster, etc.), the outside of the particles is hydrophilic.
  • the carboxyl group oriented outside the particles of the elastomer reacts with the polycarbodiimide contained in the dip molding composition to form a crosslinked structure.
  • the epoxy cross-linking agent stays in the hydrophilic region outside the particles, it will be inactivated by hydrolysis, so more of it will enter the lipophilic region inside the particles where contact with water can be avoided. It is thought that the epoxy cross-linking agent that can be used avoids inactivation, and as a result, contributes to the formation of many cross-linked structures.
  • the dip molding composition according to the embodiment of the present invention includes, for example, medical supplies such as a nipple for a baby bottle, a dropper, a conduit, and a water pillow, and toys such as balloons, dolls, and balls, in addition to the composition for molding gloves. It can be used for molding industrial supplies such as exercise equipment, pressure molding bags, gas storage bags, and dip molded products such as surgical, household, agricultural, fishing and industrial gloves, and finger cots. Next, the solid content of the dip molding composition will be described.
  • the elastomer contains at least a structural unit derived from (meth) acrylonitrile, a structural unit derived from an unsaturated carboxylic acid, and a structural unit derived from butadiene in the polymer main chain.
  • This elastomer is also referred to as a carboxylated (meth) acrylonitrile butadiene elastomer or simply "XNBR”.
  • gloves obtained by using XNBR as an elastomer are also simply referred to as "XNBR gloves”.
  • the ratio of each structural unit is that the structural unit derived from (meth) acrylonitrile, that is, the structural unit derived from unsaturated carboxylic acid, that is, 12 to 36% by weight of the (meth) acrylonitrile residue, in the elastomer for producing gloves. That is, the unsaturated carboxylic acid residue is in the range of 2 to 10% by weight, and the structural unit derived from butadiene, that is, the butadiene residue is in the range of 50 to 75% by weight.
  • the ratio of these structural units can be easily obtained from the weight ratio of the raw materials used for producing the elastomer.
  • the structural unit derived from (meth) acrylonitrile is an element that mainly gives strength to gloves. If it is too small, the strength will be insufficient, and if it is too large, the chemical resistance will increase but it will be too hard.
  • the ratio of structural units derived from (meth) acrylonitrile in the elastomer is more preferably 12 to 36% by weight. In conventional XNBR gloves, the ratio of structural units derived from (meth) acrylonitrile is usually 25 to 30% by weight, but in recent years, XNBR of less than 25% by weight has also been developed.
  • the amount of the structural unit derived from (meth) acrylonitrile can be obtained by converting the amount of nitrile groups from the amount of nitrogen atoms obtained by elemental analysis.
  • Butadiene-derived structural units are elements that give gloves flexibility, and usually lose flexibility below 50% by weight.
  • the ratio of the structural unit derived from butadiene in the elastomer is more preferably 55 to 70% by weight, and particularly preferably about 60% by weight.
  • the amount of the structural unit derived from the unsaturated carboxylic acid is preferably 2 to 10% by weight, preferably 2 to 9% by weight, in order to maintain the physical properties of the final product, the glove, which has an appropriate crosslinked structure. It is more preferably 2 to 6% by weight in this order.
  • the amount of the structural unit derived from the unsaturated carboxylic acid can be determined by the back titration method of the carboxyl group and the quantification of the carbonyl group derived from the carboxyl group by infrared spectroscopy (IR) or the like.
  • the unsaturated carboxylic acid that forms the structural unit derived from the unsaturated carboxylic acid is not particularly limited, and may be a monocarboxylic acid or a polycarboxylic acid. More specifically, acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and the like can be mentioned. Among them, acrylic acid and / or methacrylic acid (hereinafter referred to as "(meth) acrylic acid”) is preferably used, and more preferably methacrylic acid is used. Unsaturated carboxylic acids not illustrated here may be used, or two or more unsaturated carboxylic acids may be used.
  • the structural unit derived from butadiene is preferably a structural unit derived from 1,3-butadiene.
  • the polymer backbone is preferably composed of structural units derived from (meth) acrylonitrile, unsaturated carboxylic acids, and butadiene, but other structural units derived from polymerizable monomers. It may be included.
  • the polymer main chain includes unsaturated monomers having a crosslinkable functional group as described in Patent Document 1, and self-crosslinkable compounds described in International Publication No. 2016/0136666. It is preferable that the constituent unit from which it is derived is not included.
  • the structural unit derived from the other polymerizable monomer is preferably 30% by weight or less, more preferably 20% by weight or less, and further preferably 15% by weight or less in the elastomer.
  • Preferred polymerizable monomers include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene and dimethylstyrene; ethylenically unsaturated carboxylic acid amides such as (meth) acrylamide and N, N-dimethylacrylamide; (meth). ) Ethylene unsaturated carboxylic acid alkyl ester monomers such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; and vinyl acetate. These can be arbitrarily used by any one type or a combination of a plurality of types.
  • the elastomer unsaturated carboxylic acids such as (meth) acrylonitrile and (meth) acrylic acid, butadiene such as 1,3-butadiene, and other polymerizable monomers as necessary are used, and emulsifiers usually used according to a conventional method. It can be prepared by emulsion polymerization using a polymerization initiator, a molecular weight modifier, or the like.
  • the water at the time of emulsion polymerization is preferably contained in an amount having a solid content of 30 to 60% by weight, and more preferably contained in an amount having a solid content of 35 to 55% by weight.
  • the emulsion polymerization solution after the elastomer synthesis can be used as it is as an elastomer component of the composition for dip molding.
  • emulsifier examples include anionic surfactants such as dodecylbenzene sulfonates and aliphatic sulfonates; nonionic surfactants such as polyethylene glycol alkyl ethers and polyethylene glycol alkyl esters, and preferred anions.
  • anionic surfactants such as dodecylbenzene sulfonates and aliphatic sulfonates
  • nonionic surfactants such as polyethylene glycol alkyl ethers and polyethylene glycol alkyl esters
  • preferred anions such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate
  • the polymerization initiator is not particularly limited as long as it is a radical initiator, but is an inorganic peroxide such as ammonium persulfate and potassium perphosphate; t-butyl peroxide, cumene hydroperoxide, p-menthan hydroperoxide, t.
  • an inorganic peroxide such as ammonium persulfate and potassium perphosphate; t-butyl peroxide, cumene hydroperoxide, p-menthan hydroperoxide, t.
  • -Organic peroxides such as butyl cumyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4- Examples thereof include azo compounds such as dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl azobisisobutyrate.
  • the molecular weight adjusting agent examples include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, and t-dodecyl mercaptan; n-dodecyl mercaptan and the like. Mercaptans are preferred.
  • the tensile strength is about 15 MPa, and when the Mooney viscosity is 100, the tensile strength is about 20 MPa. Therefore, it is preferable to select an elastomer having a Mooney viscosity of about 100 to 150.
  • the upper limit of the Mooney viscosity is about 220 because the measurement limit of the Mooney viscosity itself is 220, and if the Mooney viscosity is too high, a problem of molding processability occurs.
  • an elastomer having a Mooney viscosity too low is used, tensile strength is not obtained.
  • the elastomer chain has few branches and is linear>
  • an elastomer having few branches of the elastomer chain and being linear is preferable.
  • Elastomers with few branches have been devised at the time of manufacture by each latex manufacturer, but generally speaking, cold rubber (polymerization temperature 5 to 25 ° C) with a lower polymerization temperature is hot rubber (polymerization temperature 25 to 25 to 25 ° C.). 50 ° C.) is considered to be more preferable.
  • the gel fraction is small.
  • the insoluble matter of methyl ethyl ketone (MEK) it is preferably 40% by weight or less, and more preferably 10% by weight or less.
  • the MEK insoluble matter has no correlation with the tensile strength such as Mooney viscosity. It can be said that an elastomer having a large amount of acetone-soluble components of the elastomer is preferable, and the epoxy cross-linking agent penetrates into the elastomer particles in a lipophilic environment to protect the elastomer. Therefore, the fatigue durability of the elastomer Is also expected to be higher.
  • the elastomer used in the embodiment of the present invention forms particles having a particle diameter of about 50 to 250 nm as an aqueous emulsion.
  • Cross-linking between particles is performed smoothly. Therefore, if XNBR having high water separation is used, the cross-linking temperature can be lowered.
  • the content of the sulfur element detected by the neutralization titration method of the combustion gas is preferably 1% by weight or less based on the weight of the elastomer.
  • 0.01 g of an elastomer sample is burned in air at 1350 ° C. for 10 to 12 minutes, and the combustion gas generated is absorbed by a hydrogen peroxide solution containing a mixing indicator, and a 0.01 N NaOH aqueous solution is used. It can be carried out by the method of neutralization titration with.
  • the composition for dip molding may contain a combination of a plurality of types of elastomers.
  • the content of the elastomer in the dip molding composition is not particularly limited, but is preferably about 15 to 35% by weight, more preferably 18 to 30% by weight, based on the total amount of the dip molding composition. preferable.
  • Epoxy cross-linking agent (a) Epoxy cross-linking agent according to the embodiment of the present invention
  • the epoxy cross-linking agent according to the embodiment of the present invention contains an epoxy compound having three or more epoxy groups in one molecule. It is an epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more, more preferably 50% or more. The following will be described step by step.
  • Epoxy compounds having 3 or more epoxy groups in one molecule are usually a plurality of glycidyl ether groups and alicyclic, aliphatic or aromatic hydrocarbons. It has a mother skeleton having (hereinafter, also referred to as "trivalent or higher valent epoxy compound").
  • an epoxy compound having 3 or more glycidyl ether groups can be preferably mentioned.
  • An epoxy compound having 3 or more glycidyl ether groups can usually be produced by reacting epihalohydrin with an alcohol having 3 or more hydroxyl groups in one molecule.
  • Examples of the epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule include polyglycidylamine, polyglycidyl ester, epoxidized polybutadiene, and epoxidized soybean oil.
  • Alcohols having three or more hydroxyl groups that form the matrix of a trivalent or higher epoxy compound include aliphatic glycerol, diglycerol, triglycerol, polyglycerol, sorbitol, sorbitan, xylitol, erythritol, trimethylolpropane, and tri. Examples include methylolethane, pentaerythritol, aromatic cresol novolac, and trishydroxyphenylmethane.
  • the epoxy compounds having a valence of 3 or more it is preferable to use polyglycidyl ether.
  • glycerol triglycidyl ether trimethylolpropane triglycidyl ether, trimethylolethane triglycidyl ether, sorbitol triglycidyl ether, sorbitol tetraglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, diglycerol triglycidyl ether.
  • Epoxy cross-linking agent containing an epoxy compound having 3 or more epoxy groups in one molecule (hereinafter, also referred to as a trivalent or higher-valent epoxy cross-linking agent)
  • epoxy cross-linking agents those containing an epoxy compound having a glycidyl ether group
  • the hydroxyl group of an alcohol and epihalohydrin can be reacted as follows to produce the product.
  • a monohydric alcohol is used as the alcohol and epichlorohydrin is used as the epichlorohydrin in order to simplify the explanation.
  • the epoxy compound contained in the epoxy cross-linking agent ranges from divalent to approximately octavalent depending on the number of hydroxyl groups of the raw material alcohol.
  • the trivalent epoxy cross-linking agent is generally a mixture of divalent and trivalent epoxy compounds.
  • a trivalent epoxy cross-linking agent is said to have a content of about 50% of the trivalent epoxy compound which is the main component.
  • some epoxy cross-linking agents are difficult to dissolve in water, and this is greatly affected by chlorine and the like contained in the structure of the epoxy compound.
  • the epoxy cross-linking agent used in the present invention contains an epoxy compound having a glycidyl ether group, it usually contains a trivalent or higher valent epoxy compound obtained by reacting epihalohydrin with an alcohol having three or more hydroxyl groups. It is an epoxy cross-linking agent. More specifically, from the viewpoint of good tensile strength, fatigue durability, and stress retention of the dip molded product, Denacol Ex-313, Ex-314, Ex-321, Ex-321B, Ex, manufactured by Nagase ChemteX Corporation. Examples thereof include products such as -411, Ex-421, Ex-612, and Ex-622.
  • epihalohydrin one or more selected from epichlorohydrin, epibromohydrin, and epiiaiodite hydrin can be used. Among these, it is preferable to use epichlorohydrin. Further, a trivalent or higher valent epoxy cross-linking agent and a divalent epoxy cross-linking agent can be mixed and used. Alternatively, when producing a trivalent or higher valent epoxy cross-linking agent, an alcohol having three or more hydroxyl groups and an alcohol having two hydroxyl groups can be mixed and reacted.
  • the conventional divalent epoxy crosslinkers are two-point crosslinks that crosslink between two carboxyl groups with one molecule of the epoxy compound.
  • the epoxy compound contained in the epoxy cross-linking agent used in the embodiment of the present invention is characterized in that one molecule can carry out multi-point cross-linking for cross-linking between three or more carboxyl groups. It is considered that this results in more cross-linking between elastomer molecules, resulting in overwhelming fatigue durability as compared with conventional two-point cross-linked gloves.
  • the upper limit of the number of epoxy groups contained in one molecule of the epoxy compound contained in the epoxy cross-linking agent is not particularly limited, and examples thereof include 8. Further, in the case of a divalent epoxy compound conventionally used as a main component, the epoxy compound loses its cross-linking function even if only one epoxy group is deactivated. On the other hand, in the epoxy cross-linking agent containing a trivalent or higher valent epoxy compound used in the present invention, even if one of the epoxy groups of the epoxy compound is deactivated, two or more epoxy groups remain, so that the cross-linking function is provided. It will remain. As a result, the present invention can perform cross-linking more efficiently than when a conventional divalent epoxy compound is used. As a result, gloves having the same performance can be obtained with a smaller amount of epoxy cross-linking agent added than in the past.
  • the epoxy crosslinking occurs by the following reaction.
  • the epoxy compound shown in (II) below is a monovalent epoxy compound from the viewpoint of simplifying the explanation. It is the carboxyl group in the XNBR that the epoxy compound forms a crosslink, and in order to form a crosslink with the epoxy compound, the optimum condition is to heat the epoxy compound at 90 ° C. or higher in the curing step to open the epoxy group. Can be mentioned.
  • the epoxy cross-linking agent contained in the dip molding composition which had escaped deactivation in the lipophilic environment in the particles of XNBR, became a cured film precursor and was heated as a whole in the curing process as a lipophilic environment. At that time, it reacts with the carboxyl group of XNBR protruding outside the particle. At this time, by selecting XNBR having good water separation, the crosslinking efficiency can be increased and the crosslinking temperature can be lowered.
  • ⁇ Average number of epoxy groups> As described above, even if the epoxy cross-linking agent has a trivalent value or higher, a divalent epoxy compound may be contained as a side reaction. Therefore, when evaluating each product, the average number of epoxy groups is grasped and the trivalent epoxy compound is used. It is important to know the proportion of compounds that have epoxy groups. The average number of epoxy groups is obtained by specifying each epoxy compound contained in the epoxy cross-linking agent by GPC and multiplying the number of epoxy groups in one molecule of each epoxy compound by the number of moles of the epoxy compound.
  • the average number of epoxy groups of the epoxy cross-linking agent used in the embodiment of the present invention is more than 2.0, and from the viewpoint of obtaining good fatigue durability of gloves, the average number of epoxy groups is preferably 2.3 or more. 2.5 or more is more preferable.
  • the upper limit of the average number of epoxy groups is not particularly limited, and for example, 10.0 or less can be mentioned.
  • the epoxy equivalent of the epoxy cross-linking agent is 100 g / eq. 230 g / eq. The following is preferable. Even if the epoxy equivalents are similar, the trivalent epoxy cross-linking agent tends to have better fatigue durability than the divalent epoxy cross-linking agent.
  • the epoxy equivalent of the epoxy cross-linking agent is a value obtained by dividing the average molecular weight of the epoxy cross-linking agent by the average number of epoxy groups, and indicates the average weight per epoxy group. This value can be measured by the perchloric acid method.
  • the molecular weight of the epoxy compound contained in the epoxy cross-linking agent is preferably 150 to 1500, more preferably 175 to 1400, and even more preferably 200 to 1300.
  • Amount of Epoxy Crosslinker Added depends on the number and purity of epoxy groups in one molecule of the epoxy compound from the viewpoint of introducing a sufficient crosslinked structure between the elastomers to ensure fatigue durability. However, 0.2 parts by weight or more can be mentioned with respect to 100 parts by weight of the elastomer. Practically, even if it is extremely thin (2.7 g glove, film thickness is about 50 ⁇ m), it is possible to manufacture a glove having sufficient performance with 0.4 parts by weight or more with respect to 100 parts by weight of the elastomer. On the other hand, if the amount added is excessive, the properties of the elastomer may be deteriorated.
  • the upper limit of the amount of the epoxy cross-linking agent added to the dip molding composition is 5 parts by weight with respect to 100 parts by weight of the elastomer. Is considered to be preferable.
  • the amount of the epoxy cross-linking agent added is preferably 0.4 to 1.0 parts by weight, more preferably 0.5 to 0.7 parts by weight, based on 100 parts by weight of the elastomer. ..
  • thick gloves thinness of more than 200 to 300 ⁇ m
  • Epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more an epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more, preferably 50% or more, more preferably 70% or more by the following measurement method is used. Therefore, it is considered that a dip molding composition for obtaining a dip molded product having a high stress retention rate can be obtained.
  • the MIBK / water distribution ratio can be measured as follows. First, about 5.0 g of water, about 5.0 g of MIBK, and about 0.5 g of an epoxy cross-linking agent are precisely weighed and added to a test tube. Let the weight of MIBK be M (g) and the weight of the epoxy crosslinker be E (g). This mixture is well stirred and mixed at a temperature of 23 ° C. ⁇ 2 ° C. for 3 minutes, and then centrifuged under the condition of 1.0 ⁇ 10 3 G for 10 minutes to separate an aqueous layer and a MIBK layer. Next, the weight of the MIBK layer is measured, and this is designated as ML (g).
  • MIBK / water distribution rate (%) (ML (g) -M (g)) / E (g) x 100
  • MIBK / water measurement method in this specification was measured based on the weight of water and MIBK, but since MIBK dissolves water slightly, minus% is obtained as an experimental value, but the measurement is performed using the same standard. Therefore, I thought that it could be adopted as a standard.
  • the dispersant of the epoxy cross-linking agent is a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and an ester represented by the following formula (3). It is preferable that the amount is one or more selected from the group consisting of.
  • R 1 represents a hydrogen or methyl group, and n 1 represents an integer of 1 to 3.
  • R 1 represents a hydrogen or methyl group
  • R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It represents a hydrocarbon group
  • n2 represents an integer of 0 to 3.
  • R 1 represents a hydrogen or methyl group
  • R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • n 3 represents an integer of 0 to 3.
  • Examples of the monohydric lower alcohol include methanol and ethanol.
  • Examples of the glycol represented by the formula (1) include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and tripropylene glycol.
  • the glycol ethers include diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, and tripropylene glycol. Examples thereof include monomethyl ether and triethylene glycol dimethyl ether.
  • the ester represented by the formula (3) include diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate.
  • the present inventor examined the use of an organic solvent as a dispersant, and as a result of first selecting a solvent that is not harmful to the human body, it was found that alcohol is preferable.
  • alcohol it is preferable to use methanol, ethanol and diethylene glycol, and it is particularly preferable to use diethylene glycol from the viewpoint of volatility and flammability.
  • diethylene glycol is suitable because it has a highly hydrophilic glycol group and an ether structure, and at the same time contains a lipophilic hydrocarbon structure, and is easily dissolved in water and an elastomer.
  • the weight ratio of the epoxy cross-linking agent to the dispersant in the dip molding composition is preferably 1: 4 to 1: 1.
  • an epoxy cross-linking agent having a low water content is used when preparing the composition for dip molding, the epoxy cross-linking agent is dissolved in the dispersant of the epoxy cross-linking agent in advance, and then the composition for dip molding is added. It is preferable to mix with the constituents of.
  • the dip molding composition according to the embodiment of the present invention contains polycarbodiimide as a cross-linking agent.
  • the polycarbodiimide used in the embodiment of the present invention comprises a central portion that undergoes a cross-linking reaction with a carboxyl group and a hydrophilic segment added to the end portion thereof. Further, a part of the end portion may be sealed with a sealant.
  • the carboxyl groups of the elastomer (XNBR) used in the embodiment of the present invention can be crosslinked at multiple points, and thus the elastomer (XNBR) used in the embodiment of the present invention can be largely summarized. Therefore, it is considered that this is a factor for obtaining very good fatigue durability as compared with the conventional two-point cross-linking agent.
  • the central portion of the polycarbodiimide is usually formed by decarboxylation of diisocyanate and has isocyanate residues at both ends. Examples of the diisocyanate include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof.
  • 1,5-naphthylene diisocyanate, 4,4-diphenylmethane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4 , 4'-Diisocyanate, methylcyclohexanediisocyanate, tetramethylxylylene diisocyanate and the like can be exemplified.
  • polycarbodiimide produced by a condensation reaction of an aliphatic or alicyclic diisocyanate accompanied by decarbonization That is, since the diisocyanates do not have double bonds, the polycarbodiimides produced from them are less likely to be deteriorated by ultraviolet rays or the like.
  • a typical type of diisocyanate is dicyclohexylmethane-4,4'-diisocyanate.
  • the purpose of the dip molding composition according to the embodiment of the present invention is to protect the carbodiimide group from water so as not to lose the reactivity with the elastomer (XNBR) used in the embodiment of the present invention.
  • the structure of the hydrophilic segment is shown in the following equation (2).
  • R 2 is an alkyl group having 1 to 4 carbon atoms
  • R 3 is a hydrogen atom or a methyl group
  • n is an integer of 5 to 30.
  • the hydrophilic segment has a function of protecting the carbodiimide group by surrounding the central portion of polycarbodiimide which easily reacts with water in the dip molding composition (dip liquid) (in water) (shell / core structure). On the other hand, when dried, the hydrophilic segment opens and a carbodiimide group appears, and the reaction is ready.
  • the hydrophilic segments may be located at both ends of the central portion or may be located at one side. It may also be a mixture of those having a hydrophilic segment and those having no hydrophilic segment. The end to which the hydrophilic segment is not added is sealed with a sealant.
  • the formula of the sealant is represented by the following formula (3).
  • R 4 is an alkyl group having 6 or less carbon atoms, and is preferably an alkyl group having 4 or less carbon atoms from the viewpoint of availability.
  • R 5 is an alkylene having 1 to 10 carbon atoms or a polyoxyalkylene.
  • the number of carbodiimide functional groups in the polycarbodiimide used in the embodiment of the present invention is preferably 4 or more.
  • the numerical value of the number of carbodiimide functional groups can be obtained from the values of the polycarbodiimide equivalent and the number average molecular weight, which will be described later.
  • the number of carbodiimide functional groups per molecule the average degree of polymerization of polycarbodiimide (number average molecular weight / carbodiimide equivalent) is 3.8 or more, more preferably 9 or more. This is necessary in order to appropriately form the multi-point crosslinked structure, which is a feature of the glove according to the embodiment of the present invention, and to give the glove high fatigue durability.
  • the molecular weight of the polycarbodiimide is preferably 500 to 5000 in terms of number average molecular weight, and even more preferably 1000 to 4000.
  • the number average molecular weight can be measured by the GPC method (calculated by polystyrene conversion) as follows.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation Column: Shodex KF-G + KF-805Lx 2 + KF-800D Eluent: THF Measurement temperature: Column constant temperature bath 40 ° C Flow velocity: 1.0 mL / min Concentration: 0.1% by weight / volume Solubility: Complete dissolution Pretreatment After air-drying the sample with nitrogen, vacuum-dry it at 70 ° C. for 16 hours to adjust. Filter with a 0.2 ⁇ m filter before measurement Detector: Differential refractometer (RI) The number average molecular weight is converted using a monodisperse polystyrene standard sample.
  • RI Differential refractometer
  • the carbodiimide equivalent is preferably in the range of 260 to 600 from the viewpoint of fatigue durability, and more preferably 260 to 440 from the viewpoint of improving fatigue durability.
  • the carbodiimide equivalent is a value calculated by the following formula (I) from the carbodiimide group concentration quantified by the back titration method using oxalic acid.
  • Carbodiimide equivalent number of carbodiimide groups (40) x 100 / carbodiimide group concentration (%) (I)
  • the amount of the polycarbodiimide added to the dip molding composition according to the embodiment of the present invention is 0.2 parts by weight or more and 5.0 parts by weight with respect to 100 parts by weight of the elastomer contained in the dip molding composition.
  • the number of parts is preferably 0.3 parts by weight or more and 2.5 parts by weight or less, and more preferably 0.3 parts by weight or more and 2.0 parts by weight or less.
  • the range of content while profitability deteriorates when it exceeds 5.0 parts by weight, even a small amount of 0.2 parts by weight or more should have a high stress retention rate that exceeds that of other sulfur-based gloves. We are verifying that we can do it.
  • the weight ratio of the amount of the above-mentioned epoxy cross-linking agent added to the composition for dip molding and the amount of the polycarbodiimide added is, for example, 0.1 to 10.0 when the epoxy cross-linking agent is 1. It is preferably 0.3 to 5.0, and more preferably 0.3 to 5.0.
  • the dip molding composition needs to be adjusted to be alkaline at the stage of the maturation step described later.
  • the alkaline in order to perform the crosslinking sufficiently, the -COOH of particles of elastomeric -COO - as oriented to the outside of the particles, in order to sufficiently perform the inter-particle crosslinking.
  • the preferable pH value is 9.5 to 12.0.
  • the pH adjuster one or more obtained from ammonia, ammonium compounds, amine compounds and alkali metal hydroxides can be used.
  • alkali metal hydroxides are preferably used because the production conditions such as pH adjustment and gelling conditions are easy, and among them, potassium hydroxide (hereinafter, also referred to as KOH) is the easiest to use.
  • KOH potassium hydroxide
  • the amount of the pH adjuster added can be about 0.1 to 4.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition, but is usually 1.8 to 2 in industry. Use about 0.0 parts by weight.
  • the temperature at the time of pH measurement is 30 ° C.
  • the elastomer constituting the gloves according to the embodiment of the present invention has a crosslinked structure combined with calcium ion bonding when an elastomer containing calcium ions is used as the coagulant.
  • Calcium tends to elute immediately in an artificial sweat solution that imitates human sweat, so the tensile strength tends to decrease.
  • calcium ions have a larger ionic radius than other metal cross-linking agents such as zinc oxide or aluminum complexes, and the impermeableness of organic solvents is insufficient. Therefore, it is considered effective to replace some calcium crosslinks with zinc crosslinks or aluminum crosslinks.
  • the tensile strength and chemical resistance can be controlled by increasing the amount of zinc oxide or aluminum complex.
  • the crosslinked aluminum has an advantage that it is very difficult to elute into a sweat-like solution such as artificial sweat liquid.
  • the polyvalent metal compound used as a metal cross-linking agent crosslinks by ionic bonding between functional groups such as unreacted carboxyl groups in the elastomer.
  • As the multivalent metal compound zinc oxide, which is a divalent metal oxide, is usually used.
  • aluminum which is a trivalent metal, can be used as a cross-linking agent by forming a complex thereof. It is difficult to obtain a high stress retention rate for gloves by cross-linking by ionic bonding using zinc oxide. Aluminum has the smallest ionic radius among the above and is most suitable for obtaining chemical resistance and tensile strength, but it is difficult to handle because the glove becomes too hard if too much is added.
  • the amount of the divalent metal oxide, for example zinc oxide, and / or the aluminum complex added is usually 2.0 parts by weight or less, preferably 2.0 parts by weight or less, based on 100 parts by weight of the elastomer in the composition for dip molding. It is preferably 0 parts by weight or less, and is substantially not added from the viewpoint of improving the stress retention rate. Substantially no addition means that their content in the dip molding composition is below the detection limit.
  • aqueous solutions of citric acid, malic acid, tartaric acid, lactic acid and the like can be used as the polybasic hydroxycarboxylic acid.
  • malic acid is preferably used as a ligand from the viewpoint of tensile strength and fatigue durability of gloves
  • citric acid is preferably used as a ligand from the viewpoint of stability of an aqueous aluminum solution.
  • composition for dip molding contains the above-mentioned components and water, and usually contains other optional components.
  • content of water in the composition for dip molding can usually be 78 to 92% by weight.
  • the composition for dip molding may further contain a dispersant.
  • a dispersant an anionic surfactant is preferable, and for example, a carboxylate, a sulfonate, a phosphate, a polyphosphoric acid ester, a polymerized alkylarylsulfonate, a polymerized sulfonated naphthalene, and a polymerized naphthalene / formaldehyde Condensation polymers and the like are mentioned, and sulfonates are preferably used.
  • the dispersant for example, "Tamol NN9104" manufactured by BASF may be used.
  • the amount used is preferably about 0.5 to 2.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition.
  • the composition for dip molding can further contain various other additives.
  • the additive include antioxidants, pigments, chelating agents and the like.
  • the antioxidant a hindered phenol type antioxidant, for example, WingstayL can be used.
  • the pigment for example, titanium dioxide is used.
  • the chelating agent sodium ethylenediaminetetraacetate or the like can be used.
  • the dip molding composition of the present embodiment is a conventional mixture of elastomers, epoxy crosslinkers, polycarbodiimides, pH adjusters, and water, and if necessary, additives such as moisturizers, dispersants, and antioxidants. It can be made by mixing by means, for example, a mixer or the like.
  • the glove of the present embodiment can be preferably manufactured by the following manufacturing method. That is, (1) Coagulant adhesion step (step of adhering coagulant to glove molding mold), (2) Maturation step (step of adjusting and stirring the composition for dip molding), (3) Dip molding step (step of immersing the glove molding die in the dip molding composition), (4) Gelling step (step of gelling the film formed on the glove molding to make a cured film precursor), (5) Reaching step (step of removing impurities from the cured film precursor formed on the glove molding die), (6) Beading process (process of making a roll around the cuffs of gloves), (7) Precure ring step (step of heating and drying the cured film precursor at a lower temperature than the curing step) However, this step is an optional step.
  • Curing step step of heating and drying at the temperature required for the cross-linking reaction
  • the above-mentioned manufacturing method also includes a method of manufacturing gloves by so-called double dipping, in which the steps (3) and (4) are repeated twice.
  • the cured film precursor is a film composed of an elastomer aggregated on a glove molding by a coagulant in a dipping step, and calcium is dispersed in the film in a subsequent gelling step.
  • Coagulant Adhesion Step (a) A mold or former (glove molding type) is contained in a coagulant solution containing 5 to 40% by weight, preferably 8 to 35% by weight of Ca 2+ ions as a coagulant and a gelling agent. Soak in. Here, the time for adhering the coagulant or the like to the surface of the mold or former is appropriately determined, and is usually about 10 to 20 seconds.
  • the coagulant calcium nitrate or chloride is used. Other inorganic salts having the effect of precipitating the elastomer may be used. Above all, it is preferable to use calcium nitrate.
  • This coagulant is usually used as an aqueous solution containing 5 to 40% by weight.
  • the solution containing the coagulant preferably contains potassium stearate, calcium stearate, mineral oil, ester-based oil, or the like as a release agent in an amount of about 0.5 to 2% by weight, for example, about 1% by weight.
  • the mold or former to which the coagulant solution is attached is placed in an oven having a furnace temperature of about 110 ° C. to 140 ° C. for 1 to 3 minutes and dried to allow the coagulant to adhere to the entire surface or a part of the glove molding mold. At this time, it should be noted that the surface temperature of the hand mold after drying is about 60 ° C., which affects the subsequent reaction.
  • (C) Calcium contributes not only to the coagulant function for forming a film on the surface of the glove molding mold, but also to the cross-linking function of a considerable part of the finally completed glove.
  • the metal cross-linking agent added later can be said to reinforce the weakness of the cross-linking function of calcium.
  • the dip molding composition (dip liquid) according to the embodiment of the present invention that has been stirred is poured into a dip tank, and the coagulant is adhered into the dip tank in the coagulant adhering step.
  • This is a step of immersing the dried mold or former for 1 to 60 seconds under a temperature condition of 25 to 35 ° C.
  • the calcium ions contained in the coagulant agglomerate the elastomer contained in the dip molding composition on the surface of the mold or former to form a film.
  • This condition is a condition when KOH is used as the pH adjuster, and when an ammonia compound or an amine compound is used as the pH adjuster, a condition different from this may be adopted.
  • the gelling conditions when using an epoxy cross-linking agent in general mass production include that the mold or former already has a certain temperature, and that the ambient temperature in the factory is often about 50 ° C. It is determined from. Furthermore, regarding the upper limit of the temperature of the gelling process, in order to improve the quality, it is assumed that the temperature is intentionally heated. In addition, the time of the gelling step can usually be 1 minute 30 seconds to 4 minutes.
  • the leaching step is a step of washing and removing calcium precipitated on the surface of the cured film precursor and impurities that interfere with subsequent curing such as excess water-soluble substances. Usually, the former is brought into contact with warm water at 40 to 60 ° C. for about 1.5 to 4 minutes. As a specific contact method, immersion in water can be mentioned.
  • the composition for dip molding contains zinc oxide and / or an aluminum complex as a metal cross-linking agent
  • another role of the leaching step is to wash the cured film precursor which has been adjusted to be alkaline with water. The purpose is to bring the zinc oxide or aluminum complex ions contained in the cured film precursor into Zn 2+ and Al 3+ so that metal crosslinks can be formed in the subsequent curing step.
  • Beading step This is a step of winding up the cuff end of the glove of the cured film precursor for which the leaching step has been completed to make a ring having an appropriate thickness and reinforcing it.
  • the adhesiveness of the roll portion is good.
  • Precure ring step (a) After the beading step, the cured film precursor is heated and dried at a lower temperature than the subsequent curing step. Usually, in this step, heating and drying are performed at 60 to 90 ° C. for about 30 seconds to 5 minutes. If the high-temperature curing process is performed without going through the pre-curing process, the water will evaporate rapidly and convex parts like swelling may be formed on the gloves, which may impair the quality, but without going through this process. You may move to the curing process. (B) The temperature may be raised to the final temperature of the curing step without going through this step, but if curing is performed in multiple drying furnaces and the temperature of the first-stage drying furnace is slightly lowered, this first step Dry eyes correspond to the precuring process.
  • the curing step is a step of heating and drying at a high temperature to finally complete cross-linking and form a cured film as a glove. Gloves using polycarbodiimide and an epoxy cross-linking agent are insufficiently cross-linked unless they are at a high temperature. Therefore, they are heated and dried at 90 to 150 ° C. for 10 to 30 minutes, preferably about 15 to 30 minutes. A preferable temperature in the curing step is 100 to 140 ° C.
  • the dipping step and the gelling step may be performed twice or more, and this is usually called double dipping.
  • Double dipping is performed for the purpose of preventing the formation of pinholes when manufacturing thick gloves (thickness of more than 200 to 300 ⁇ m) and also in the manufacturing method of thin gloves.
  • the gloves in the first embodiment are of an elastomer containing (meth) acrylonitrile-derived structural units, unsaturated carboxylic acid-derived structural units, and butadiene-derived structural units in the polymer main chain.
  • the elastomer is a glove made of a cured film, and the elastomer has a crosslinked structure of a carboxyl group of a structural unit derived from an unsaturated carboxylic acid, a polycarbodiimide, and an epoxy compound.
  • this glove also has a crosslinked structure of calcium derived from a coagulant and a carboxyl group.
  • This glove can preferably be produced using the above-mentioned dip molding composition of the present embodiment.
  • the elastomer preferably contains 12 to 36% by weight of structural units derived from (meth) acrylonitrile, 2 to 10% by weight of structural units derived from unsaturated carboxylic acid, and 50 to 75% by weight of structural units derived from butadiene. ..
  • the glove in the second embodiment has a crosslinked structure of a carboxyl group of an elastomer and zinc and / or aluminum in addition to the crosslinked structure of the first embodiment.
  • the present invention in the above embodiment, by curing the dip molding composition containing both the polycarbodiimide and the epoxy cross-linking agent, gloves having good tensile strength, fatigue durability and stress retention can be produced. ..
  • the film thickness of the glove according to the embodiment of the present invention may be, but is not limited to, 0.04 to 0.2 mm. Within this film thickness range, more than 0.09 to 0.2 mm (more than 90 to 200 ⁇ m) is the range of normal thickness of commercially available gloves.
  • the gloves according to the first embodiment are particularly effective in producing thick gloves (thickness over 200 to 300 ⁇ m). This is because if the film thickness is thick, tensile strength, fatigue durability, and the like can be obtained.
  • the weak point of calcium cross-linking may be supplemented with zinc and / or aluminum cross-linking.
  • the strength as the initial performance can be maintained by the calcium cross-linking, the drawback of easily causing a decrease in strength due to the elution of calcium in salt water and easily permeating chemicals can be compensated by the zinc and / or aluminum cross-linking.
  • the gloves according to the second embodiment are particularly preferable when producing ultra-thin to thin gloves (thickness 40 to 90 ⁇ m). As described above, the glove according to the second embodiment can change the performance of the glove by changing the ratio of epoxy cross-linking, calcium cross-linking, zinc and / or aluminum cross-linking.
  • Gloves according to the embodiment of the present invention like other vulcanization accelerator-free gloves, have sulfur and vulcanization promotion like conventional XNBR gloves. Since it contains virtually no agent, it is characterized by not causing type IV allergy. However, since sulfur is contained in the surfactant and the like during the production of the elastomer, a very small amount of sulfur may be detected.
  • the tensile strength is measured by a tensile test described later and is currently on the market.
  • the lower limit of 20 MPa of the actual product is set as the acceptance standard.
  • the European standard As a passing standard for the tensile strength of gloves, the European standard (EN 455) states that the load at break is 6 N or more.
  • the elongation at break during the tensile test described later is within the range of 500 to 750%
  • the 100% modulus (tensile stress at 100% elongation) is within the range of 3 to 10 MPa
  • the fatigue durability is the finger crotch.
  • the acceptance criteria are 90 minutes or more for the part (equivalent to 240 minutes or more for the palm).
  • the gloves according to the embodiment of the present invention satisfy the above physical characteristics.
  • a metal cross-linking agent such as zinc and / or aluminum is further added to the dip molding composition used for producing the glove according to the second embodiment of the present invention, whereby a person at the time of wearing is added. It is possible to obtain gloves with enhanced chemical impermeableness by preventing the decrease in strength due to sweat.
  • the calibration curve was prepared from a sample in which polyacrylic acid was added as an internal standard substance to each elastomer and the amount of acrylonitrile groups was known.
  • the amount of unsaturated carboxylic acid residue was calculated from the following formula.
  • Unsaturated carboxylic acid residue amount (wt%) [Abs (1699 cm -1 ) / Abs (2237 cm -1 )] /0.2661
  • the coefficient 0.2661 is a converted value obtained by preparing a calibration curve from a plurality of samples in which the ratio of the unsaturated carboxylic acid group amount and the acrylonitrile group amount is known.
  • MEK insoluble amount The MEK (methyl ethyl ketone) insoluble (gel) component was measured as follows. A 0.2 g XNBR latex dried product sample was placed in a weighed mesh basket (80 mesh), immersed in 80 mL of MEK solvent in a 100 mL beaker together with the basket, and the beaker was covered with Parafilm. Allowed for hours in the draft. Then, the mesh basket was taken out from the beaker, suspended in the air in the draft, and dried for 1 hour. This was dried under reduced pressure at 105 ° C. for 1 hour, then weighed, and the weight of the basket was subtracted to obtain the weight after immersion of the XNBR latex dried product.
  • the content (insoluble amount) of the MEK insoluble component was calculated from the following formula.
  • Insoluble component content (% by weight) (weight g after immersion / weight g before immersion) ⁇ 100
  • the XNBR latex dried product sample was prepared as follows. That is, after stirring the XNBR latex at a rotation speed of 500 rpm for 30 minutes in a 500 mL bottle, 14 g of the latex was weighed in a 180 ⁇ 115 mm stainless steel vat, and the latex was 23 ° C. ⁇ 2 ° C. and humidity 50 ⁇ 10 RH% for 5 days. It was dried to obtain a cast film, and the film was cut into 5 mm squares to prepare an XNBR latex dried product sample.
  • Epoxy cross-linking agent used Table 2 shows the epoxy cross-linking agent used in this experimental example.
  • the epoxy equivalent is based on the catalog value of each company, and the average number of epoxy groups is an analytical value.
  • MIBK Methyl isobutyl ketone
  • water partition rate % is a value measured to confirm how much the epoxy cross-linking agent moves to the MIBK layer in an environment similar to that in a latex solution.
  • the reason why MIBK was used as the organic layer is that the physical properties of latex are similar to those of methyl ethyl ketone (MEK), so it is thought that the properties are similar to MEK, the solubility in water is lower than MEK, and the layer can be clearly separated. Because it was done.
  • the MIBK / water distribution ratio was measured by the following procedure. 1.
  • 1. Accurately weigh 5.0 g of pure water and 5.0 g of methyl isobutyl ketone (MIBK) in a hole screw cap test tube ( ⁇ 16.5 ⁇ 105 ⁇ ⁇ 10.0 12 mL NR-10H manufactured by Maruem), and crosslinker sample 0.
  • Centrifuge manufactured by Kokusan Co., Ltd., desktop centrifuge H-103N
  • 3000 rpm for 10 minutes (1.0 ⁇ 10 3 G) to separate the aqueous layer and the MIBK layer.
  • MIBK / water distribution ratio is calculated by the following formula.
  • MIBK / water distribution rate (%) (MIBK layer weight after distribution (g) -MIBK weight before distribution (g)) / (crosslinking agent addition weight (g)) ⁇ 100 5. This measurement was performed three times, the average value was calculated, and the value was used as the value of MIBK / water distribution rate. In addition, procedure 2. A vortex mixer (manufactured by Scientific Industries, Inc., standard model, VORTEX-GENIE 2 Mixer) was used for stirring.
  • the polycarbodiimide used in this example is mainly V-02-L2 manufactured by Nisshinbo Chemical Co., Ltd. Its physical characteristics are as follows. Average particle size: 11.3 nm Number average molecular weight: 3600 Number of carbodiimide functional groups per molecule: 9.4
  • the obtained cured film was peeled off cleanly from the ceramic plate and stored in an environment of 23 ° C. ⁇ 2 ° C. and a humidity of 50% ⁇ 10% until it was subjected to a physical characteristic test.
  • the tensile strength is considered to be 14 MPa or more, and the elongation rate is considered to be 500% or more.
  • the modulus especially from the viewpoint of satisfying the flexibility that does not hinder the movement of the finger when wearing gloves, the modulus at the time of 100% elongation (100% modulus) and the modulus at the time of 300% elongation (300%). We focused on the modulus (500% modulus) at the time of 500% elongation.
  • a JIS K6251 No. 1 dumbbell test piece was cut out from the cured film, and this was mixed with an artificial sweat solution (20 g of sodium chloride, 17.5 g of ammonium chloride, 17.05 g of lactic acid, 5.01 g of acetic acid in 1 liter, and an aqueous sodium hydroxide solution. The pH was adjusted to 4.7), and the fatigue durability was evaluated using the above-mentioned durability test apparatus. That is, 15 mm from each of the two ends of the 120 mm long dumbbell test piece was sandwiched between the fixed chuck and the movable chuck, and 60 mm from the bottom of the test piece on the fixed chuck side was immersed in the artificial sweat solution.
  • the test piece After moving the movable chuck to the minimum position (relaxed state) of 147 mm (123%) and holding it for 11 seconds, the test piece reaches the maximum position (extended state) of 195 mm (163%) and the minimum again. It was moved to the position (relaxed state) over 1.8 seconds, and a cycle test was conducted with this as one cycle.
  • the time of one cycle was 12.8 seconds, and the time (minutes) of fatigue durability was obtained by multiplying by the number of cycles until the test piece broke.
  • the fatigue durability is preferably 240 minutes or more from the viewpoint of practical use as gloves.
  • a test piece is prepared from the cured film using a punching cutter (Super Straight Cutter SK-1000-D manufactured by Dumbbell) according to the strip No. 2 specified in JIS K 6263, and the speed is 100 mm at both ends of the test piece.
  • Tensile stress was applied at / min or 500 mm / min, and when the test piece stretched twice (100%), stretching was stopped and tensile stress M100 (0) was measured, and 6 minutes passed as it was. The subsequent tensile stress M100 (6) was measured. Then, the percentage of M100 (6) with respect to M100 (0) was defined as the stress retention rate.
  • the higher the stress retention rate the higher the stress is maintained after stretching, and the higher the elastic deformation force that tries to return to the original shape when the external force is removed, the fit of the glove and the hem.
  • the tightening of the part is improved and wrinkles are reduced.
  • the stress retention rate measured by the above method since the stress retention rate of the conventional sulfur-crosslinked XNBR glove is in the 30% range, if the molded product of the present embodiment is 50% or more, it is good as an XNBR glove. More preferably, it is 60% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

The present invention provides a composition for dip molding, said composition containing at least: an elastomer which contains, in the polymer main chain, a structural unit derived from (meth)acrylonitrile, a structural unit derived from an unsaturated carboxylic acid, and a structural unit derived from butadiene; a polycarbodiimide; an epoxy crosslinking agent; water; and a pH adjuster. With respect to this composition for dip molding, the elastomer contains from 12% by weight to 36% by weight of the structural unit derived from (meth)acrylonitrile, from 2% by weight to 10% by weight of the structural unit derived from an unsaturated carboxylic acid, and from 50% by weight to 75% by weight of the structural unit derived from butadiene; the epoxy crosslinking agent includes an epoxy crosslinking agent containing an epoxy compound that has three or more epoxy groups in each molecule; and the polycarbodiimide includes at least one polycarbodiimide that contains a hydrophilic segment in the molecular structure.

Description

ディップ成形用組成物、手袋の製造方法及び手袋Dip molding composition, glove manufacturing method and gloves
 本発明は、ディップ成形用組成物、手袋の製造方法及び手袋に関する。 The present invention relates to a composition for dip molding, a method for manufacturing a glove, and a glove.
 従来、硫黄及びチアゾール系の硫黄系加硫促進剤で架橋してなるラテックス組成物を用いてディップ成形することにより製造された手袋が種々の工業分野及び医療分野等において幅広く使用されていた。しかし、硫黄架橋剤及び硫黄系加硫促進剤はIV型アレルギーを引き起こすため、これを用いない加硫促進剤フリーの手袋が提案された。これには、ラテックス重合中に有機架橋性化合物を含ませる自己架橋型と、ポリカルボジイミドまたはエポキシ架橋剤で架橋する外部架橋剤型がある。自己架橋型の手袋の製造方法については特許文献1に記載がある。外部架橋型としてポリカルボジイミドを用いる手袋の製造方法については特許文献2に記載があり、外部架橋型としてエポキシ架橋剤を用いる手袋の製造方法については特許文献3に記載がある。 Conventionally, gloves manufactured by dip molding using a latex composition crosslinked with a sulfur-based sulfur-based vulcanization accelerator have been widely used in various industrial fields and medical fields. However, since sulfur cross-linking agents and sulfur-based vulcanization accelerators cause type IV allergies, vulcanization accelerator-free gloves that do not use them have been proposed. These include a self-crosslinking type in which an organic crosslinkable compound is included in latex polymerization, and an external crosslinking agent type in which crosslinks are made with a polycarbodiimide or an epoxy crosslinker. Patent Document 1 describes a method for producing a self-crosslinking glove. Patent Document 2 describes a method for producing gloves using polycarbodiimide as the external cross-linking type, and Patent Document 3 describes a method for producing gloves using an epoxy cross-linking agent as the external cross-linking type.
特開2010-144163号公報JP-A-2010-144163 国際公開第2018/117109号International Publication No. 2018/117109 国際公開第2019/102985号International Publication No. 2019/102985
 ディップ成形用組成物に含まれるエラストマーは、その構成単位である不飽和カルボン酸に由来するカルボキシル基を有しており、エラストマーの粒子内及び粒子の外側にカルボキシル基が配向している。また、エラストマーの粒子内は親油性である一方で、粒子の外側は親水性であると考えられている。ディップ成形用組成物を用いて得るディップ成形品の成形時には、上記のカルボキシル基を介した架橋反応が起こることにより架橋構造が形成される。そして、その架橋構造を形成する際の結合の種類、具体的には、共有結合か、またはイオン結合かの違いや、架橋構造の数の多寡がディップ成形品の物性に大きな影響を与える。つまり、エラストマーが有するカルボキシル基と架橋剤との架橋構造の制御が、ディップ成形品の物性、例えば、引張強度、疲労耐久性、応力保持率に大きな影響をもたらす。 The elastomer contained in the composition for dip molding has a carboxyl group derived from unsaturated carboxylic acid, which is a constituent unit thereof, and the carboxyl group is oriented inside and outside the particles of the elastomer. Further, it is considered that the inside of the elastomer particles is lipophilic, while the outside of the particles is hydrophilic. At the time of molding a dip molded product obtained by using the dip molding composition, a crosslinked structure is formed by the above-mentioned cross-linking reaction via the carboxyl group. The type of bond when forming the crosslinked structure, specifically, the difference between a covalent bond and an ionic bond, and the number of crosslinked structures have a great influence on the physical properties of the dip molded product. That is, the control of the crosslinked structure of the carboxyl group of the elastomer and the crosslinking agent has a great influence on the physical properties of the dip molded product, for example, tensile strength, fatigue durability, and stress retention rate.
 特許文献2に記載のポリカルボジイミドは分子構造内に親水性セグメントを有していることから、親水性の物質である。一方で、特許文献3に記載されたエポキシ架橋剤は、そのMIBK/水分配率の数値に基づくと、主だったものは親油性であると言える。
 上記のようにエラストマーの粒子内は親油性であるのに対し、その粒子の外側は親水性であると考えられることから、エラストマー粒子内に配向するカルボキシル基と、エラストマー粒子の外側に配向するカルボキシル基とでは、架橋に関与できる架橋剤の性質が異なると考えられる。具体的には、親油性の架橋剤はエラストマー粒子内にまで入り込めるので、エラストマー粒子内に配向するカルボキシル基と架橋反応することで架橋構造を形成できるのに対し、親水性の架橋剤はエラストマー粒子の外側に配向するカルボキシル基と架橋反応することで架橋構造を形成できると考えられる。
 従来技術では、エラストマー粒子内とエラストマー粒子の外側の親水性の違いに着目して、性質が異なる架橋剤、具体的には親水性のものと親油性のものを併用することは検討されてこなかった。
 そこで、本発明では、性質が異なる架橋剤を併用することにより、従来技術では得られなかった良好な物性、例えば、引張強度、疲労耐久性、および応力保持率が良好なディップ成形品、具体的には手袋を得ること、またそのディップ成形品の作製に用いるディップ成形用組成物等を提供することを課題とする。
The polycarbodiimide described in Patent Document 2 is a hydrophilic substance because it has a hydrophilic segment in the molecular structure. On the other hand, it can be said that the epoxy cross-linking agent described in Patent Document 3 is mainly lipophilic based on the value of the MIBK / water distribution ratio.
As described above, the inside of the elastomer particles is lipophilic, while the outside of the particles is considered to be hydrophilic. Therefore, the carboxyl group oriented inside the elastomer particles and the carboxyl oriented outside the elastomer particles. It is considered that the properties of the cross-linking agent that can participate in cross-linking are different from those of the group. Specifically, since the lipophilic cross-linking agent can penetrate into the elastomer particles, a cross-linked structure can be formed by a cross-linking reaction with the carboxyl group oriented in the elastomer particles, whereas the hydrophilic cross-linking agent is the elastomer particles. It is considered that a crosslinked structure can be formed by a crosslinking reaction with a carboxyl group oriented outward.
In the prior art, focusing on the difference in hydrophilicity between the inside of the elastomer particles and the outside of the elastomer particles, it has not been studied to use cross-linking agents having different properties, specifically, hydrophilic ones and lipophilic ones in combination. It was.
Therefore, in the present invention, by using a cross-linking agent having different properties in combination, a dip-molded product having good physical properties, for example, tensile strength, fatigue durability, and stress retention rate, which cannot be obtained by the prior art, is specified. It is an object of the present invention to obtain gloves and to provide a dip molding composition or the like used for producing the dip molded product.
 本発明の実施形態は、以下のディップ成形用組成物、手袋の製造方法及びその手袋の製造方法により得られる手袋に関する。なお、以降、エポキシ架橋剤とポリカルボジイミドを含むディップ成形用組成物を用いて得た手袋を、「本発明の架橋手袋」と略すことがある。また、硫黄架橋剤や硫黄系加硫促進剤を含むディップ成形用組成物を用いて得た手袋を、「硫黄架橋手袋」と略すことがある。
[1](メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーと、ポリカルボジイミドと、エポキシ架橋剤と、水と、及びpH調整剤とを少なくとも含むディップ成形用組成物であって、
 前記エラストマーにおいて、(メタ)アクリロニトリル由来の構造単位が12~36重量%、不飽和カルボン酸由来の構造単位が2~10重量%、及びブタジエン由来の構造単位が50~75重量%であり、
 前記エポキシ架橋剤は、1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤を含み、
 前記ポリカルボジイミドは、分子構造内に親水性セグメントを含むポリカルボジイミドを少なくとも1種含むものである、ディップ成形用組成物。
[2]前記エポキシ架橋剤の下記測定方法によるMIBK/水分配率が27%以上である、[1]に記載のディップ成形用組成物。
 MIBK/水分配率測定方法:試験管に水5.0g、メチルイソブチルケトン(MIBK)5.0gおよびエポキシ架橋剤0.5gを精秤し、23℃±2℃で3分間攪拌、混合した後、1.0×103Gで10分間遠心分離し、水層とMIBK層に分離させる。次いで、MIBK層を分取、計量し、次式によりMIBK/水分配率を算出する。
MIBK/水分配率(%)=(分配後MIBK層重量(g)-分配前MIBK重量(g))/架橋剤添加重量(g)×100
上記測定を3回行い、平均値をMIBK/水分配率とする。
[3]前記pH調整剤がアルカリ金属の水酸化物である、[1]または[2]に記載のディップ成形用組成物。
[4]さらにエポキシ架橋剤の分散剤を含む、[1]~[3]のいずれかに記載のディップ成形用組成物。

[5]前記エポキシ架橋剤の分散剤が、一価の低級アルコール、以下の式(1)で表されるグリコール、以下の式(2)で表されるエーテル、以下の式(3)で表されるエステルからなる群から選択される1種以上である、[4]に記載のディップ成形用組成物。
 HO-(CH2CHR1-O)n1-H  (1)
[式(1)中、R1は、水素またはメチル基を表し、n1は1~3の整数を表す。]
 R2O-(CH2CHR1-O)n2-R3  (2)
[式(2)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、R3は、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
 R2O-(CH2CHR1-O)n3-(C=O)-CH3 (3)
[式(3)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。]
[6]ディップ成形用組成物に対するエポキシ架橋剤の添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上、5.0重量部以下であり、ディップ成形用組成物に対するポリカルボジイミドの添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上、5.0重量部以下である、[1]~[5]のいずれかに記載のディップ成形用組成物。
[7]前記ディップ成形用組成物における、酸化亜鉛の含有量が、前記エラストマー100重量部に対して0.5重量部以下である、[1]~[6]のいずれかに記載のディップ成形用組成物。
[8](1)手袋成形型を、カルシウムイオンを含む凝固剤液中に浸して、該凝固剤を手袋成形型に付着させる工程、
(2)pH調整剤によりpHを9.5~12.0に調整した[1]~[7]のいずれか1つに記載のディップ成形用組成物を撹拌する工程、
(3)前記(1)の凝固剤が付着した手袋成形型を、前記(2)の工程を経たディップ成形用組成物に浸漬し、手袋成形型にディップ成形用組成物を凝固させ、膜を形成させるディッピング工程、
(4)手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作製するゲリング工程、
(5)手袋成形型上に形成された硬化フィルム前駆体から不純物を除去するリーチング工程、
(6)前記リーチング工程の後に、手袋の袖口部分に巻きを作るビーディング工程、
(7)硬化フィルム前駆体を加熱及び乾燥し、硬化フィルムを得る、キュアリング工程、
を含み、上記(3)~(7)の工程を上記の順序で行う、手袋の製造方法。
[9]上記(3)及び(4)の工程をその順序で2回繰り返す、[8]に記載の手袋の製造方法。
[10]上記(6)と(7)の工程の間に、前記硬化フィルム前駆体を(7)の工程の温度よりも低温で加熱及び乾燥するプリキュアリング工程をさらに含む、[8]または[9]に記載の手袋の製造方法。
[11][8]~[10]のいずれかに記載された製造方法により作製された、手袋。
An embodiment of the present invention relates to the following dip molding composition, a method for producing a glove, and a glove obtained by the method for producing the glove. Hereinafter, gloves obtained by using a dip molding composition containing an epoxy cross-linking agent and polycarbodiimide may be abbreviated as "cross-linked gloves of the present invention". Further, gloves obtained by using a dip molding composition containing a sulfur cross-linking agent and a sulfur-based vulcanization accelerator may be abbreviated as "sulfur cross-linking gloves".
[1] Elastomers containing (meth) acrylonitrile-derived structural units, unsaturated carboxylic acid-derived structural units, and butadiene-derived structural units in the polymer main chain, polycarbodiimides, epoxy crosslinkers, water, and pH. A composition for dip molding containing at least a regulator.
In the elastomer, the structural unit derived from (meth) acrylonitrile is 12 to 36% by weight, the structural unit derived from unsaturated carboxylic acid is 2 to 10% by weight, and the structural unit derived from butadiene is 50 to 75% by weight.
The epoxy cross-linking agent contains an epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule.
The polycarbodiimide is a composition for dip molding, which comprises at least one polycarbodiimide containing a hydrophilic segment in the molecular structure.
[2] The composition for dip molding according to [1], wherein the MIBK / water distribution ratio according to the following measuring method of the epoxy cross-linking agent is 27% or more.
MIBK / water distribution rate measurement method: 5.0 g of water, 5.0 g of methyl isobutyl ketone (MIBK) and 0.5 g of epoxy cross-linking agent are precisely weighed in a test tube, stirred at 23 ° C ± 2 ° C for 3 minutes, and mixed. Centrifuge at 1.0 × 10 3 G for 10 minutes to separate into an aqueous layer and a MIBK layer. Next, the MIBK layer is separated and weighed, and the MIBK / water distribution ratio is calculated by the following formula.
MIBK / water distribution rate (%) = (MIBK layer weight after distribution (g) -MIBK weight before distribution (g)) / crosslinker addition weight (g) x 100
The above measurement is performed three times, and the average value is taken as MIBK / water distribution ratio.
[3] The composition for dip molding according to [1] or [2], wherein the pH adjuster is an alkali metal hydroxide.
[4] The composition for dip molding according to any one of [1] to [3], which further contains a dispersant for an epoxy cross-linking agent.

[5] The dispersant of the epoxy cross-linking agent is a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and a table represented by the following formula (3). The composition for dip molding according to [4], which is one or more selected from the group consisting of the esters to be formed.
HO- (CH 2 CHR 1- O) n1- H (1)
[In formula (1), R 1 represents a hydrogen or methyl group, and n1 represents an integer of 1 to 3. ]
R 2 O- (CH 2 CHR 1- O) n2- R 3 (2)
[In formula (2), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It represents a hydrocarbon group, and n2 represents an integer of 0 to 3. ]
R 2 O- (CH 2 CHR 1- O) n3- (C = O) -CH 3 (3)
[In formula (3), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n 3 represents an integer of 0 to 3. ]
[6] The amount of the epoxy cross-linking agent added to the dip molding composition is 0.2 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer contained in the dip molding composition. The amount of polycarbodiimide added to the dip molding composition is 0.2 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer contained in the dip molding composition [1] to The composition for dip molding according to any one of [5].
[7] The dip molding according to any one of [1] to [6], wherein the zinc oxide content in the dip molding composition is 0.5 parts by weight or less with respect to 100 parts by weight of the elastomer. Composition for.
[8] (1) A step of immersing a glove molding die in a coagulant solution containing calcium ions to attach the coagulant to the glove molding die.
(2) A step of stirring the dip molding composition according to any one of [1] to [7], wherein the pH is adjusted to 9.5 to 12.0 with a pH adjuster.
(3) The glove molding mold to which the coagulant of (1) is attached is immersed in the dip molding composition that has undergone the step (2), and the dip molding composition is coagulated in the glove molding mold to form a film. Dipping process to form,
(4) A gelling step of gelling a film formed on a glove molding mold to prepare a cured film precursor.
(5) A leaching step of removing impurities from the cured film precursor formed on the glove molding mold,
(6) A beading step of making a roll around the cuffs of a glove after the leaching step.
(7) A curing step of heating and drying the cured film precursor to obtain a cured film.
A method for manufacturing gloves, which comprises the above steps (3) to (7) in the above order.
[9] The method for manufacturing gloves according to [8], wherein the steps (3) and (4) above are repeated twice in that order.
[10] The precuring step of heating and drying the cured film precursor at a temperature lower than the temperature of the step (7) is further included between the steps (6) and (7), [8] or [ 9] The method for manufacturing gloves.
[11] Gloves produced by the production method according to any one of [8] to [10].
 引張強度、疲労耐久性、応力保持率が良好なディップ成形品の作製に用いられるディップ成形用組成物等を提供する。 Provided is a dip molding composition or the like used for producing a dip molded product having good tensile strength, fatigue durability, and stress retention rate.
疲労耐久性試験装置の一例を模式的に示した断面図である。It is sectional drawing which shows typically an example of the fatigue durability test apparatus.
 以下、本発明の好ましい実施形態について説明するが、本発明がこれらの実施形態に限定されることはなく、様々な修正や変更を加えてもよいことは言うまでもない。なお、本明細書において「重量」と「質量」は同じ意味で用いられるので、以下、「重量」に統一して記載する。
 本明細書において、「疲労耐久性」とは、手袋が、使用者(作業者)の汗により性能が劣化して破断することに対する耐性を意味する。その具体的な評価方法については後述する。
 また、疲労耐久性については、通常、手袋の指股部分が破れやすいため、指股部分が90分を超えることを実用上の合格ラインとしているが、本発明においては、陶板上でフィルムを作製し、疲労耐久性を見ているため、手のひら部分に相当する疲労耐久性で見ることになる。手のひら部分と指股部分の疲労耐久性については、下式で変換可能である。
 式(手のひら疲労耐久性(分)+21.43)÷2.7928=指股疲労耐久性(分)
 よって、本発明における疲労耐久性試験の合格ラインは240分とする。
 また、本発明においては、引張強度はMPaで表示しており、破断時荷重(N)を試験片の断面積で除した値であり、厚みによる影響を除いた数値であり、合格ラインを通常の薄手手袋(3.2g超~4.5g:膜厚60μm超~90μm)では20MPaとしている。一方、EN規格(EN 455)では、破断時荷重6Nを基準としており、より薄手の手袋(2.7~3.2g:膜厚50~60μm)の手袋においては、35MPaを超える性能が要求される。
Hereinafter, preferred embodiments of the present invention will be described, but it goes without saying that the present invention is not limited to these embodiments, and various modifications and changes may be made. Since "weight" and "mass" are used interchangeably in the present specification, they will be collectively referred to as "weight" below.
As used herein, the term "fatigue durability" means resistance to a glove being broken due to deterioration in performance due to sweat of a user (worker). The specific evaluation method will be described later.
Regarding fatigue durability, since the finger crotch part of a glove is usually easily torn, it is a practical pass line that the finger crotch part exceeds 90 minutes, but in the present invention, a film is produced on a ceramic plate. However, since we are looking at fatigue durability, we will look at fatigue durability equivalent to the palm part. The fatigue durability of the palm and finger crotch can be converted by the following formula.
Formula (palm fatigue durability (minutes) + 21.43) ÷ 2.7928 = finger crotch fatigue durability (minutes)
Therefore, the passing line of the fatigue durability test in the present invention is set to 240 minutes.
Further, in the present invention, the tensile strength is expressed in MPa, which is a value obtained by dividing the load at break (N) by the cross-sectional area of the test piece, and is a value excluding the influence of the thickness. For thin gloves (over 3.2 g to 4.5 g: film thickness over 60 μm to 90 μm), the value is 20 MPa. On the other hand, the EN standard (EN 455) is based on a load of 6 N at break, and thinner gloves (2.7 to 3.2 g: film thickness 50 to 60 μm) are required to have a performance exceeding 35 MPa. To.
1.ディップ成形用組成物
(1)ディップ成形用組成物の概要
 本実施形態のディップ成形用組成物は、特定のエラストマーと、特定のエポキシ架橋剤と、特定のポリカルボジイミドと、水と、pH調整剤とを少なくとも含み、さらに必要に応じて金属架橋剤等を含むものである。
 このディップ成形用組成物は、手袋用のディッピング液としてpH9.5~12.0程度に調整され、各固形分はマチュレーションによって攪拌され、ほぼ均一に分散していると考えられるエマルションである。
 ディップ成形用組成物は、XNBR(カルボキシル化(メタ)アクリロニトリルブタジエンエラストマー)を含有するラテックスであり、XNBRが水系エマルションとして粒子径50~250nm程度の粒子を形成している。粒子内と粒子外では環境が大きく異なり、粒子内はブタジエン残基、(メタ)アクリロニトリル残基、(メタ)アクリル酸等から構成される炭化水素を主成分としているため、親油性である。一方、粒子外は、水および水溶性成分(例えばpH調整剤、他)から構成されているため、粒子外は親水性を有している。
 エラストマーの粒子外側に配向するカルボキシル基は、ディップ成形用組成物に含まれるポリカルボジイミドと反応することで架橋構造を形成する。
 一方、粒子外の親水性領域にエポキシ架橋剤が留まるときは、加水分解により失活してしまうことを考えると、水と接触を避けることができる粒子内の親油性領域に、より多く入ることのできるエポキシ架橋剤の方が失活を免れ、その結果、多くの架橋構造の形成に寄与すると考えられる。
1. 1. Dip Molding Composition (1) Outline of Dip Molding Composition The dip molding composition of the present embodiment contains a specific elastomer, a specific epoxy cross-linking agent, a specific polycarbodiimide, water, and a pH adjuster. And, if necessary, a metal cross-linking agent or the like.
This dip molding composition is an emulsion which is adjusted to have a pH of about 9.5 to 12.0 as a dipping liquid for gloves, and each solid content is agitated by maturation and dispersed almost uniformly.
The composition for dip molding is a latex containing XNBR (carboxylated (meth) acrylonitrile butadiene elastomer), and XNBR forms particles having a particle diameter of about 50 to 250 nm as an aqueous emulsion. The environment inside and outside the particle is significantly different, and the inside of the particle is lipophilic because it is mainly composed of hydrocarbons composed of butadiene residue, (meth) acrylonitrile residue, (meth) acrylic acid and the like. On the other hand, since the outside of the particles is composed of water and a water-soluble component (for example, a pH adjuster, etc.), the outside of the particles is hydrophilic.
The carboxyl group oriented outside the particles of the elastomer reacts with the polycarbodiimide contained in the dip molding composition to form a crosslinked structure.
On the other hand, when the epoxy cross-linking agent stays in the hydrophilic region outside the particles, it will be inactivated by hydrolysis, so more of it will enter the lipophilic region inside the particles where contact with water can be avoided. It is thought that the epoxy cross-linking agent that can be used avoids inactivation, and as a result, contributes to the formation of many cross-linked structures.
 なお、本発明の実施形態にかかるディップ成形用組成物は、手袋の成形用以外にも、例えば、哺乳瓶用乳首、スポイト、導管、水枕等の医療用品、風船、人形、ボール等の玩具や運動具、加圧成形用バッグ、ガス貯蔵用バッグ等の工業用品、手術用、家庭用、農業用、漁業用及び工業用の手袋、指サック等のディップ成形品の成形に用いることができる。次に、ディップ成形用組成物の固形分につき説明する。 The dip molding composition according to the embodiment of the present invention includes, for example, medical supplies such as a nipple for a baby bottle, a dropper, a conduit, and a water pillow, and toys such as balloons, dolls, and balls, in addition to the composition for molding gloves. It can be used for molding industrial supplies such as exercise equipment, pressure molding bags, gas storage bags, and dip molded products such as surgical, household, agricultural, fishing and industrial gloves, and finger cots. Next, the solid content of the dip molding composition will be described.
(2)エラストマー
 エラストマーは、(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に少なくとも含む。このエラストマーを、カルボキシル化(メタ)アクリロニトリルブタジエンエラストマー又は単に「XNBR」とも記す。またエラストマーとしてXNBRを用いて得た手袋のことを単に「XNBR手袋」ともいう。
(2) Elastomer The elastomer contains at least a structural unit derived from (meth) acrylonitrile, a structural unit derived from an unsaturated carboxylic acid, and a structural unit derived from butadiene in the polymer main chain. This elastomer is also referred to as a carboxylated (meth) acrylonitrile butadiene elastomer or simply "XNBR". Further, gloves obtained by using XNBR as an elastomer are also simply referred to as "XNBR gloves".
 各構造単位の比率は、手袋を製造するためにはエラストマー中に、(メタ)アクリロニトリル由来の構造単位、すなわち(メタ)アクリロニトリル残基が12~36重量%、不飽和カルボン酸由来の構造単位、すなわち不飽和カルボン酸残基が2~10重量%、及びブタジエン由来の構造単位、すなわちブタジエン残基が50~75重量%の範囲である。これらの構造単位の比率は、簡便には、エラストマーを製造するための使用原料の重量比率から求めることができる。 The ratio of each structural unit is that the structural unit derived from (meth) acrylonitrile, that is, the structural unit derived from unsaturated carboxylic acid, that is, 12 to 36% by weight of the (meth) acrylonitrile residue, in the elastomer for producing gloves. That is, the unsaturated carboxylic acid residue is in the range of 2 to 10% by weight, and the structural unit derived from butadiene, that is, the butadiene residue is in the range of 50 to 75% by weight. The ratio of these structural units can be easily obtained from the weight ratio of the raw materials used for producing the elastomer.
 (メタ)アクリロニトリル由来の構造単位は、主に手袋に強度を与える要素であり、少なすぎると強度が不十分となり、多すぎると耐薬品性は上がるが硬くなりすぎる。エラストマー中における(メタ)アクリロニトリル由来の構造単位の比率は、12~36重量%であることがより好ましい。従来のXNBR手袋においては(メタ)アクリロニトリル由来の構造単位の比率は25~30重量%が通常であったが、近年25重量%未満のXNBRも開発されている。(メタ)アクリロニトリル由来の構造単位の量は、ニトリル基の量を元素分析により求められる窒素原子の量から換算して求めることができる。 The structural unit derived from (meth) acrylonitrile is an element that mainly gives strength to gloves. If it is too small, the strength will be insufficient, and if it is too large, the chemical resistance will increase but it will be too hard. The ratio of structural units derived from (meth) acrylonitrile in the elastomer is more preferably 12 to 36% by weight. In conventional XNBR gloves, the ratio of structural units derived from (meth) acrylonitrile is usually 25 to 30% by weight, but in recent years, XNBR of less than 25% by weight has also been developed. The amount of the structural unit derived from (meth) acrylonitrile can be obtained by converting the amount of nitrile groups from the amount of nitrogen atoms obtained by elemental analysis.
 ブタジエン由来の構造単位は、手袋に柔軟性を持たせる要素であり、通常50重量%を下回ると柔軟性を失う。エラストマー中におけるブタジエン由来の構造単位の比率は、55~70重量%であることがより好ましく、60重量%程度が特に好ましい。 Butadiene-derived structural units are elements that give gloves flexibility, and usually lose flexibility below 50% by weight. The ratio of the structural unit derived from butadiene in the elastomer is more preferably 55 to 70% by weight, and particularly preferably about 60% by weight.
 不飽和カルボン酸由来の構造単位の量は、適度な架橋構造を有し最終製品である手袋の物性を維持するために、2~10重量%であることが好ましく、2~9重量%、及び2~6重量%であることが、この順により好ましい。不飽和カルボン酸由来の構造単位の量は、カルボキシル基の逆滴定法、及びカルボキシル基由来のカルボニル基を赤外分光(IR)等により定量することによって、求めることができる。 The amount of the structural unit derived from the unsaturated carboxylic acid is preferably 2 to 10% by weight, preferably 2 to 9% by weight, in order to maintain the physical properties of the final product, the glove, which has an appropriate crosslinked structure. It is more preferably 2 to 6% by weight in this order. The amount of the structural unit derived from the unsaturated carboxylic acid can be determined by the back titration method of the carboxyl group and the quantification of the carbonyl group derived from the carboxyl group by infrared spectroscopy (IR) or the like.
 不飽和カルボン酸由来の構造単位を形成する不飽和カルボン酸としては、特に限定はされず、モノカルボン酸でもよいし、ポリカルボン酸でもよい。より具体的には、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸等が挙げられる。なかでも、アクリル酸及び/又はメタクリル酸(以下「(メタ)アクリル酸」という。)が好ましく使用され、より好ましくはメタクリル酸が使用される。ここに例示されていない不飽和カルボン酸を使用してもよく、不飽和カルボン酸を2種類以上使用してもよい。
 ブタジエン由来の構造単位は、1,3-ブタジエン由来の構造単位であることが好ましい。
The unsaturated carboxylic acid that forms the structural unit derived from the unsaturated carboxylic acid is not particularly limited, and may be a monocarboxylic acid or a polycarboxylic acid. More specifically, acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and the like can be mentioned. Among them, acrylic acid and / or methacrylic acid (hereinafter referred to as "(meth) acrylic acid") is preferably used, and more preferably methacrylic acid is used. Unsaturated carboxylic acids not illustrated here may be used, or two or more unsaturated carboxylic acids may be used.
The structural unit derived from butadiene is preferably a structural unit derived from 1,3-butadiene.
 ポリマー主鎖は、実質的に、(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位からなることが好ましいが、その他の重合性モノマー由来の構造単位を含んでいてもよい。一方で、ポリマー主鎖には、例えば特許文献1に記載されているような、架橋性官能基を有する不飽和単量体や、国際公開第2016/013666号に記載された自己架橋性化合物に由来する構成単位を含まないことが好ましい。
 その他の重合性モノマー由来の構造単位は、エラストマー中に30重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であることが一層好ましい。
The polymer backbone is preferably composed of structural units derived from (meth) acrylonitrile, unsaturated carboxylic acids, and butadiene, but other structural units derived from polymerizable monomers. It may be included. On the other hand, the polymer main chain includes unsaturated monomers having a crosslinkable functional group as described in Patent Document 1, and self-crosslinkable compounds described in International Publication No. 2016/0136666. It is preferable that the constituent unit from which it is derived is not included.
The structural unit derived from the other polymerizable monomer is preferably 30% by weight or less, more preferably 20% by weight or less, and further preferably 15% by weight or less in the elastomer.
 好ましく使用できる重合性モノマーとしては、スチレン、α-メチルスチレン、ジメチルスチレンなどの芳香族ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド等のエチレン性不飽和カルボン酸アミド;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのエチレン性不飽和カルボン酸アルキルエステル単量体;及び酢酸ビニル等が挙げられる。これらは、いずれか1種、又は複数種を組み合わせて、任意に用いることができる。 Preferred polymerizable monomers include aromatic vinyl monomers such as styrene, α-methylstyrene and dimethylstyrene; ethylenically unsaturated carboxylic acid amides such as (meth) acrylamide and N, N-dimethylacrylamide; (meth). ) Ethylene unsaturated carboxylic acid alkyl ester monomers such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; and vinyl acetate. These can be arbitrarily used by any one type or a combination of a plurality of types.
 エラストマーは、(メタ)アクリロニトリル、(メタ)アクリル酸等の不飽和カルボン酸、1,3-ブタジエン等のブタジエン、及び必要に応じてその他の重合性モノマーを用い、定法に従い、通常用いられる乳化剤、重合開始剤、分子量調整剤等を使用した乳化重合によって、調製することができる。
 乳化重合時の水は、固形分が30~60重量%である量で含まれることが好ましく、固形分が35~55重量%となる量で含まれることがより好ましい。
 エラストマー合成後の乳化重合液を、そのまま、ディップ成形用組成物のエラストマー成分として用いることができる。
As the elastomer, unsaturated carboxylic acids such as (meth) acrylonitrile and (meth) acrylic acid, butadiene such as 1,3-butadiene, and other polymerizable monomers as necessary are used, and emulsifiers usually used according to a conventional method. It can be prepared by emulsion polymerization using a polymerization initiator, a molecular weight modifier, or the like.
The water at the time of emulsion polymerization is preferably contained in an amount having a solid content of 30 to 60% by weight, and more preferably contained in an amount having a solid content of 35 to 55% by weight.
The emulsion polymerization solution after the elastomer synthesis can be used as it is as an elastomer component of the composition for dip molding.
 乳化剤としては、ドデシルベンゼンスルホン酸塩、脂肪族スルホン酸塩、等のアニオン性界面活性剤;ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルキルエステル、等の非イオン性界面活性剤が挙げられ、好ましくは、アニオン性界面活性剤が使用される。 Examples of the emulsifier include anionic surfactants such as dodecylbenzene sulfonates and aliphatic sulfonates; nonionic surfactants such as polyethylene glycol alkyl ethers and polyethylene glycol alkyl esters, and preferred anions. Sexual surfactants are used.
 重合開始剤としては、ラジカル開始剤であれば特に限定されないが、過硫酸アンモニウム、過リン酸カリウム等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物等を挙げることができる。 The polymerization initiator is not particularly limited as long as it is a radical initiator, but is an inorganic peroxide such as ammonium persulfate and potassium perphosphate; t-butyl peroxide, cumene hydroperoxide, p-menthan hydroperoxide, t. -Organic peroxides such as butyl cumyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4- Examples thereof include azo compounds such as dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl azobisisobutyrate.
 分子量調整剤としては、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類、四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素が挙げられ、t-ドデシルメルカプタン;n-ドデシルメルカプタン等のメルカプタン類が好ましい。 Examples of the molecular weight adjusting agent include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan, halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, and t-dodecyl mercaptan; n-dodecyl mercaptan and the like. Mercaptans are preferred.
 本発明の実施形態にかかる手袋に使用する好適なエラストマーの特徴につき、以下説明する。
<ムーニー粘度(ML(1+4)(100℃))によるエラストマーの選択>
 手袋は、種々の架橋剤による架橋部分を除いた相当の部分が、凝固剤であるカルシウムで架橋されている(凝固剤としてカルシウムイオンを含むものを用いた場合)。本発明で金属架橋剤を使用しない場合、引張強度はカルシウム架橋によって保持される。
 カルシウム架橋による引張強度はエラストマーのムーニー粘度の高さにほぼ比例することがわかっている。有機架橋剤を用いる架橋を行わない場合でムーニー粘度が80のエラストマーを用いた場合は約15MPa、ムーニー粘度が100の場合は約20MPaの引張強度になる。したがって、ムーニー粘度が100~150程度のエラストマーを選択することが好適である。
 ムーニー粘度の上限は、ムーニー粘度そのものの測定限界が220であり、ムーニー粘度が高すぎると成形加工性の問題が生じるので、概ね220である。一方、ムーニー粘度が低すぎるエラストマーを用いた場合には引張強度が出ない。
The characteristics of the suitable elastomer used for the gloves according to the embodiment of the present invention will be described below.
<Selection of elastomer by Mooney viscosity (ML (1 + 4) (100 ° C))>
In gloves, a considerable part excluding the cross-linked portion by various cross-linking agents is cross-linked with calcium which is a coagulant (when a glove containing calcium ions is used as the coagulant). When no metal cross-linking agent is used in the present invention, the tensile strength is maintained by calcium cross-linking.
It is known that the tensile strength due to calcium cross-linking is almost proportional to the height of the Mooney viscosity of the elastomer. When cross-linking with an organic cross-linking agent is not performed and an elastomer having a Mooney viscosity of 80 is used, the tensile strength is about 15 MPa, and when the Mooney viscosity is 100, the tensile strength is about 20 MPa. Therefore, it is preferable to select an elastomer having a Mooney viscosity of about 100 to 150.
The upper limit of the Mooney viscosity is about 220 because the measurement limit of the Mooney viscosity itself is 220, and if the Mooney viscosity is too high, a problem of molding processability occurs. On the other hand, when an elastomer having a Mooney viscosity too low is used, tensile strength is not obtained.
<エラストマー鎖の分岐が少なく直鎖状であること>
 エポキシ架橋剤がエラストマー鎖内部(粒子内)に侵入しやすくするためには、エラストマー鎖の分岐が少なく、直鎖状であるエラストマーが好適である。分岐の少ないエラストマーは、各ラテックスメーカーにおいてその製造時に各種の工夫がなされているが、概して言えば、重合温度の低いコールドラバー(重合温度5~25℃)の方がホットラバー(重合温度25~50℃)より好ましいと考えられる。
<The elastomer chain has few branches and is linear>
In order to facilitate the penetration of the epoxy cross-linking agent into the inside of the elastomer chain (inside the particles), an elastomer having few branches of the elastomer chain and being linear is preferable. Elastomers with few branches have been devised at the time of manufacture by each latex manufacturer, but generally speaking, cold rubber (polymerization temperature 5 to 25 ° C) with a lower polymerization temperature is hot rubber (polymerization temperature 25 to 25 to 25 ° C.). 50 ° C.) is considered to be more preferable.
<エラストマーのゲル分率(MEK不溶解分)>
 本発明の実施形態に用いるエラストマーにおいては、ゲル分率は少ない方が好ましい。
 メチルエチルケトン(MEK)不溶解分の測定では、40重量%以下であることが好ましく、10重量%以下であることがより好ましい。ただし、MEK不溶解分は、ムーニー粘度のような引張強度との相関性はない。
 なお、このことは、エラストマーのアセトン可溶成分が多いエラストマーが好適であるとも言え、これによってエポキシ架橋剤が親油性環境であるエラストマー粒子内に侵入して保護されるので、エラストマーの疲労耐久性も高くなると考えられる。
<Gel fraction of elastomer (MEK insoluble matter)>
In the elastomer used in the embodiment of the present invention, it is preferable that the gel fraction is small.
In the measurement of the insoluble matter of methyl ethyl ketone (MEK), it is preferably 40% by weight or less, and more preferably 10% by weight or less. However, the MEK insoluble matter has no correlation with the tensile strength such as Mooney viscosity.
It can be said that an elastomer having a large amount of acetone-soluble components of the elastomer is preferable, and the epoxy cross-linking agent penetrates into the elastomer particles in a lipophilic environment to protect the elastomer. Therefore, the fatigue durability of the elastomer Is also expected to be higher.
<エラストマーの離水性>
 本発明の実施形態に用いるエラストマーは、水系エマルションとして粒子径50~250nm程度の粒子を形成している。エラストマーには、水との親和性が比較的高いものと低いものがあり水との親和性が低いほど、粒子間の水の抜けやすさ(離水性)が高くなり、離水性が高いほどエラストマー粒子間の架橋が円滑に行われる。
 このため、離水性の高いXNBRを使用すれば架橋温度もより低くすることができる。
<Elastomer water release>
The elastomer used in the embodiment of the present invention forms particles having a particle diameter of about 50 to 250 nm as an aqueous emulsion. There are two types of elastomers, one with a relatively high affinity for water and the other with a low affinity for water. The lower the affinity for water, the easier it is for water to escape between particles (water separation), and the higher the water separation, the higher the elastomer. Cross-linking between particles is performed smoothly.
Therefore, if XNBR having high water separation is used, the cross-linking temperature can be lowered.
<エラストマー中の硫黄元素の含有量>
 本発明の実施形態に用いるエラストマーにおいて、燃焼ガスの中和滴定法により検出される硫黄元素の含有量は、エラストマー重量の1重量%以下であることが好ましい。
 硫黄元素の定量は、エラストマー試料0.01gを空気中、1350℃で10~12分間燃焼させて発生する燃焼ガスを、混合指示薬を加えた過酸化水素水に吸収させ、0.01NのNaOH水溶液で中和滴定する方法により行うことができる。
<Content of sulfur element in elastomer>
In the elastomer used in the embodiment of the present invention, the content of the sulfur element detected by the neutralization titration method of the combustion gas is preferably 1% by weight or less based on the weight of the elastomer.
To quantify the sulfur element, 0.01 g of an elastomer sample is burned in air at 1350 ° C. for 10 to 12 minutes, and the combustion gas generated is absorbed by a hydrogen peroxide solution containing a mixing indicator, and a 0.01 N NaOH aqueous solution is used. It can be carried out by the method of neutralization titration with.
 ディップ成形用組成物には、複数種のエラストマーを組み合わせて含ませてもよい。ディップ成形用組成物中のエラストマーの含有量は、特に限定されないが、ディップ成形用組成物の全量に対して15~35重量%程度であることが好ましく、18~30重量%であることがより好ましい。 The composition for dip molding may contain a combination of a plurality of types of elastomers. The content of the elastomer in the dip molding composition is not particularly limited, but is preferably about 15 to 35% by weight, more preferably 18 to 30% by weight, based on the total amount of the dip molding composition. preferable.
(3)エポキシ架橋剤
(a)本発明の実施形態にかかるエポキシ架橋剤
 本発明の実施形態にかかるエポキシ架橋剤は、1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するものであり、MIBK/水分配率が27%以上、より好ましくは50%以上であるエポキシ架橋剤である。
 以下、順を追って説明する。
(3) Epoxy cross-linking agent (a) Epoxy cross-linking agent according to the embodiment of the present invention The epoxy cross-linking agent according to the embodiment of the present invention contains an epoxy compound having three or more epoxy groups in one molecule. It is an epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more, more preferably 50% or more.
The following will be described step by step.
(b)1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤
i.1分子中に3個以上のエポキシ基を有するエポキシ化合物
 1分子中に3個以上のエポキシ基を有するエポキシ化合物は、通常複数のグリシジルエーテル基と、脂環族、脂肪族又は芳香族の炭化水素を有する母骨格を持つもの(以下「3価以上のエポキシ化合物」ともいう)である。3価以上のエポキシ化合物は、3個以上のグリシジルエーテル基を有するエポキシ化合物を好ましく挙げることができる。3個以上のグリシジルエーテル基を有するエポキシ化合物は、通常、エピハロヒドリンと1分子中に3個以上の水酸基を持つアルコールとを反応させて製造することができる。
 1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤としては、その他ポリグリシジルアミン、ポリグリシジルエステル、エポキシ化ポリブタジエン、エポキシ化大豆油等を挙げることができる。
(B) An epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule i. Epoxy compounds having 3 or more epoxy groups in one molecule Epoxy compounds having 3 or more epoxy groups in one molecule are usually a plurality of glycidyl ether groups and alicyclic, aliphatic or aromatic hydrocarbons. It has a mother skeleton having (hereinafter, also referred to as "trivalent or higher valent epoxy compound"). As the epoxy compound having a valence of 3 or more, an epoxy compound having 3 or more glycidyl ether groups can be preferably mentioned. An epoxy compound having 3 or more glycidyl ether groups can usually be produced by reacting epihalohydrin with an alcohol having 3 or more hydroxyl groups in one molecule.
Examples of the epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule include polyglycidylamine, polyglycidyl ester, epoxidized polybutadiene, and epoxidized soybean oil.
 3価以上のエポキシ化合物の母骨格を形成する3個以上の水酸基を持つアルコールとしては、脂肪族のグリセロール、ジグリセロール、トリグリセロール、ポリグリセロール、ソルビトール、ソルビタン、キシリトール、エリスリトール、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、芳香族のクレゾールノボラック、トリスヒドロキシフェニルメタンが挙げられる。
 3価以上のエポキシ化合物の中でも、ポリグリシジルエーテルを用いることが好ましい。
 具体的には、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ソルビトールトリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ジグリセロールトリグリシジルエーテルから選択される少なくとも一種を含むエポキシ架橋剤を用いることが好ましく、中でもトリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、グリセロールトリグリシジルエーテル、ジグリセロールトリグリシジルエーテル及びペンタエリスリトールテトラグリシジルエーテルの中から選択される少なくとも一種を含むエポキシ架橋剤を用いることがさらに好ましい。また、ソルビトール骨格を有さないエポキシ化合物を含むエポキシ架橋剤を用いることが好ましい。
Alcohols having three or more hydroxyl groups that form the matrix of a trivalent or higher epoxy compound include aliphatic glycerol, diglycerol, triglycerol, polyglycerol, sorbitol, sorbitan, xylitol, erythritol, trimethylolpropane, and tri. Examples include methylolethane, pentaerythritol, aromatic cresol novolac, and trishydroxyphenylmethane.
Among the epoxy compounds having a valence of 3 or more, it is preferable to use polyglycidyl ether.
Specifically, glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, trimethylolethane triglycidyl ether, sorbitol triglycidyl ether, sorbitol tetraglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, diglycerol triglycidyl ether. It is preferable to use an epoxy cross-linking agent containing at least one selected from ethers, among which among trimethylolpropane triglycidyl ether, pentaerythritol triglycidyl ether, glycerol triglycidyl ether, diglycerol triglycidyl ether and pentaerythritol tetraglycidyl ether. It is more preferable to use an epoxy cross-linking agent containing at least one selected from. Further, it is preferable to use an epoxy cross-linking agent containing an epoxy compound having no sorbitol skeleton.
ii.1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤(以下、3価以上のエポキシ架橋剤ともいう)について
 エポキシ架橋剤の中でも、グリシジルエーテル基を有するエポキシ化合物を含むものについては、一般にアルコールの水酸基とエピハロヒドリンを以下のように反応させて製造することができる。なお、以下の(I)では、説明を簡略化するために、アルコールとして1価のものを使用し、エピハロヒドリンとしてエピクロロヒドリンを使用している。
Figure JPOXMLDOC01-appb-C000001
 エポキシ架橋剤に含まれるエポキシ化合物は、原料のアルコールの水酸基の数によって、2価から概ね8価までのものがある。ただし、反応の過程での副反応により、例えば3価のエポキシ化合物を目的物として合成した場合でも、数種類の化合物が生成し、通常、その中に2価のエポキシ化合物も含まれる。
 そのため、例えば、3価のエポキシ架橋剤は、2価及び3価のエポキシ化合物の混合物となることが一般的である。通常、3価のエポキシ架橋剤といわれているものも、主成分である3価のエポキシ化合物の含有率は50%程度といわれている。
 また、エポキシ架橋剤には水に溶けにくいものがあり、これは、エポキシ化合物の構造中に含まれる塩素等の影響が大きい。
 本発明において使用するエポキシ架橋剤は、グリシジルエーテル基を有するエポキシ化合物を含むものである場合、通常、エピハロヒドリンと、3個以上の水酸基を有するアルコールとを反応させて得られる3価以上のエポキシ化合物を含有するエポキシ架橋剤である。
 より具体的には、ディップ成形品の良好な引張強度、疲労耐久性、および応力保持率の観点から、ナガセケムテックス社製デナコールEx-313、Ex-314、Ex-321、Ex-321B、Ex-411、Ex-421、Ex-612、Ex-622等の製品が挙げられる。
 なお、エピハロヒドリンとして、エピクロロヒドリン、エピブロモヒドリン、及びエピアイオダイトヒドリンから選ばれる一種以上を使用することができる。これらの中でもエピクロロヒドリンを用いることが好ましい。また、3価以上のエポキシ架橋剤と、2価のエポキシ架橋剤を混ぜて使用することができる。あるいは、3価以上のエポキシ架橋剤を製造する際に、3個以上の水酸基を有するアルコールと、2個の水酸基を有するアルコールを混合して反応させることもできる。
ii. Epoxy cross-linking agent containing an epoxy compound having 3 or more epoxy groups in one molecule (hereinafter, also referred to as a trivalent or higher-valent epoxy cross-linking agent) Among epoxy cross-linking agents, those containing an epoxy compound having a glycidyl ether group In general, the hydroxyl group of an alcohol and epihalohydrin can be reacted as follows to produce the product. In (I) below, a monohydric alcohol is used as the alcohol and epichlorohydrin is used as the epichlorohydrin in order to simplify the explanation.
Figure JPOXMLDOC01-appb-C000001
The epoxy compound contained in the epoxy cross-linking agent ranges from divalent to approximately octavalent depending on the number of hydroxyl groups of the raw material alcohol. However, even when a trivalent epoxy compound is synthesized as a target substance by a side reaction in the process of the reaction, several kinds of compounds are produced, and usually, a divalent epoxy compound is also included in the compound.
Therefore, for example, the trivalent epoxy cross-linking agent is generally a mixture of divalent and trivalent epoxy compounds. Usually, even what is called a trivalent epoxy cross-linking agent is said to have a content of about 50% of the trivalent epoxy compound which is the main component.
In addition, some epoxy cross-linking agents are difficult to dissolve in water, and this is greatly affected by chlorine and the like contained in the structure of the epoxy compound.
When the epoxy cross-linking agent used in the present invention contains an epoxy compound having a glycidyl ether group, it usually contains a trivalent or higher valent epoxy compound obtained by reacting epihalohydrin with an alcohol having three or more hydroxyl groups. It is an epoxy cross-linking agent.
More specifically, from the viewpoint of good tensile strength, fatigue durability, and stress retention of the dip molded product, Denacol Ex-313, Ex-314, Ex-321, Ex-321B, Ex, manufactured by Nagase ChemteX Corporation. Examples thereof include products such as -411, Ex-421, Ex-612, and Ex-622.
As the epihalohydrin, one or more selected from epichlorohydrin, epibromohydrin, and epiiaiodite hydrin can be used. Among these, it is preferable to use epichlorohydrin. Further, a trivalent or higher valent epoxy cross-linking agent and a divalent epoxy cross-linking agent can be mixed and used. Alternatively, when producing a trivalent or higher valent epoxy cross-linking agent, an alcohol having three or more hydroxyl groups and an alcohol having two hydroxyl groups can be mixed and reacted.
iii.従来の2価のエポキシ架橋剤と3価以上のエポキシ架橋剤の比較
 従来から用いられていた2価のエポキシ架橋剤では、エポキシ化合物の1分子で2つのカルボキシル基間を架橋する2点架橋であったのに対し、本発明の実施形態で用いるエポキシ架橋剤に含まれるエポキシ化合物は、1分子で3以上のカルボキシル基間を架橋する多点架橋ができることが特徴である。これによりエラストマー分子間の架橋が多くなって、従来の2点架橋の手袋に比較して、圧倒的な疲労耐久性をもたらしていると考えられる。より良好な疲労耐久性を得るために、エポキシ架橋剤に含まれるエポキシ化合物の1分子中に含まれるエポキシ基の数の上限値は、特に限定されないが、例えば8を挙げることができる。また、従来メインとして使用されている2価のエポキシ化合物だとエポキシ基が1つ失活するだけでエポキシ化合物が架橋機能を失ってしまう。
 これに対し、本発明において用いる3価以上のエポキシ化合物を含むエポキシ架橋剤だと、エポキシ化合物のエポキシ基の1つが失活しても、2個以上のエポキシ基が残存するので、架橋機能が残ることになる。これにより、本発明は従来の2価のエポキシ化合物を用いた場合と比べてより効率的に架橋を行うことができる。
 これにより、従来に比べて少ない添加量のエポキシ架橋剤で同一性能の手袋が得られる。
iii. Comparison of conventional divalent epoxy crosslinkers and trivalent or higher valent epoxy crosslinkers The conventional divalent epoxy crosslinkers are two-point crosslinks that crosslink between two carboxyl groups with one molecule of the epoxy compound. On the other hand, the epoxy compound contained in the epoxy cross-linking agent used in the embodiment of the present invention is characterized in that one molecule can carry out multi-point cross-linking for cross-linking between three or more carboxyl groups. It is considered that this results in more cross-linking between elastomer molecules, resulting in overwhelming fatigue durability as compared with conventional two-point cross-linked gloves. In order to obtain better fatigue durability, the upper limit of the number of epoxy groups contained in one molecule of the epoxy compound contained in the epoxy cross-linking agent is not particularly limited, and examples thereof include 8. Further, in the case of a divalent epoxy compound conventionally used as a main component, the epoxy compound loses its cross-linking function even if only one epoxy group is deactivated.
On the other hand, in the epoxy cross-linking agent containing a trivalent or higher valent epoxy compound used in the present invention, even if one of the epoxy groups of the epoxy compound is deactivated, two or more epoxy groups remain, so that the cross-linking function is provided. It will remain. As a result, the present invention can perform cross-linking more efficiently than when a conventional divalent epoxy compound is used.
As a result, gloves having the same performance can be obtained with a smaller amount of epoxy cross-linking agent added than in the past.
iv.エポキシ化合物とXNBRのカルボキシル基との架橋反応
以下の式(II)で示すように、エポキシ架橋は以下の反応により生じる。なお、以下(II)で示すエポキシ化合物は説明を簡略化する観点から1価のものを用いている。
Figure JPOXMLDOC01-appb-C000002
 エポキシ化合物が架橋を形成するのは、XNBR中のカルボキシル基であり、エポキシ化合物で架橋を形成するには、最適の条件として、キュアリング工程において90℃以上で加熱し、エポキシ基の開環反応を起こさせることが挙げられる。
 ディップ成形用組成物に含まれるXNBRの粒子内の親油性環境下で失活を免れていたエポキシ架橋剤は、硬化フィルム前駆体となり、キュアリング工程において全体が親油環境となって加熱されたとき、粒子外に突き出たXNBRのカルボキシル基と反応する。このとき、離水性の良いXNBRを選定することにより架橋効率が上がり、架橋温度を下げることができる。
iv. Crosslinking reaction between an epoxy compound and the carboxyl group of XNBR As shown by the following formula (II), the epoxy crosslinking occurs by the following reaction. The epoxy compound shown in (II) below is a monovalent epoxy compound from the viewpoint of simplifying the explanation.
Figure JPOXMLDOC01-appb-C000002
It is the carboxyl group in the XNBR that the epoxy compound forms a crosslink, and in order to form a crosslink with the epoxy compound, the optimum condition is to heat the epoxy compound at 90 ° C. or higher in the curing step to open the epoxy group. Can be mentioned.
The epoxy cross-linking agent contained in the dip molding composition, which had escaped deactivation in the lipophilic environment in the particles of XNBR, became a cured film precursor and was heated as a whole in the curing process as a lipophilic environment. At that time, it reacts with the carboxyl group of XNBR protruding outside the particle. At this time, by selecting XNBR having good water separation, the crosslinking efficiency can be increased and the crosslinking temperature can be lowered.
v.好適なエポキシ架橋剤の性質
 <平均エポキシ基数>
 上述のように3価以上のエポキシ架橋剤であっても、2価のエポキシ化合物も副反応として含まれることがあるので、各製品を評価するうえでは、平均エポキシ基数を把握して3価のエポキシ基を有する化合物の割合を把握しておくことが重要である。
 平均エポキシ基数は、エポキシ架橋剤に含まれる各エポキシ化合物をGPCにより特定し、それぞれのエポキシ化合物の1分子中のエポキシ基の数に、該エポキシ化合物のモル数を乗じて得たエポキシ基数を、各エポキシ化合物について求め、それらの合計値をエポキシ架橋剤に含まれる全てのエポキシ化合物に含まれる全てのエポキシ化合物の合計モル数で割って得られる。
 本発明の実施形態に用いるエポキシ架橋剤の平均エポキシ基数は2.0を超えるものであり、手袋の良好な疲労耐久性を得る観点から、平均エポキシ基数が2.3以上であることが好ましく、2.5以上がより好ましい。一方、平均エポキシ基数の上限については特段制限されないが、例えば10.0以下を挙げることができる。
v. Properties of suitable epoxy cross-linking agent <Average number of epoxy groups>
As described above, even if the epoxy cross-linking agent has a trivalent value or higher, a divalent epoxy compound may be contained as a side reaction. Therefore, when evaluating each product, the average number of epoxy groups is grasped and the trivalent epoxy compound is used. It is important to know the proportion of compounds that have epoxy groups.
The average number of epoxy groups is obtained by specifying each epoxy compound contained in the epoxy cross-linking agent by GPC and multiplying the number of epoxy groups in one molecule of each epoxy compound by the number of moles of the epoxy compound. It is obtained for each epoxy compound, and the total value thereof is divided by the total number of moles of all the epoxy compounds contained in all the epoxy compounds contained in the epoxy cross-linking agent.
The average number of epoxy groups of the epoxy cross-linking agent used in the embodiment of the present invention is more than 2.0, and from the viewpoint of obtaining good fatigue durability of gloves, the average number of epoxy groups is preferably 2.3 or more. 2.5 or more is more preferable. On the other hand, the upper limit of the average number of epoxy groups is not particularly limited, and for example, 10.0 or less can be mentioned.
 <当量>
 好適な疲労耐久性を得る観点から、エポキシ架橋剤のエポキシ当量は、100g/eq.以上230g/eq.以下であることが好ましい。エポキシ当量が同程度であっても、3価のエポキシ架橋剤の方が、2価のエポキシ架橋剤に比較して疲労耐久性が良い傾向がある。
 エポキシ架橋剤のエポキシ当量は、エポキシ架橋剤の平均分子量を平均エポキシ基数で除した値であり、エポキシ基1個当たりの平均重量を示す。この値は過塩素酸法により計測することができる。
<Equivalent>
From the viewpoint of obtaining suitable fatigue durability, the epoxy equivalent of the epoxy cross-linking agent is 100 g / eq. 230 g / eq. The following is preferable. Even if the epoxy equivalents are similar, the trivalent epoxy cross-linking agent tends to have better fatigue durability than the divalent epoxy cross-linking agent.
The epoxy equivalent of the epoxy cross-linking agent is a value obtained by dividing the average molecular weight of the epoxy cross-linking agent by the average number of epoxy groups, and indicates the average weight per epoxy group. This value can be measured by the perchloric acid method.
 <分子量>
 また、水中分散性の観点から、エポキシ架橋剤が含有するエポキシ化合物の分子量は150~1500であることが好ましく、175~1400であることがより好ましく、200~1300であることがより好ましい。
<Molecular weight>
From the viewpoint of dispersibility in water, the molecular weight of the epoxy compound contained in the epoxy cross-linking agent is preferably 150 to 1500, more preferably 175 to 1400, and even more preferably 200 to 1300.
vi.エポキシ架橋剤の添加量
 エポキシ架橋剤の添加量は、エラストマー間に充分な架橋構造を導入して疲労耐久性を確保する観点から、エポキシ化合物の1分子中のエポキシ基の数や純度にも依るが、エラストマー100重量部に対して0.2重量部以上を挙げることができる。実用的には、極薄(2.7g手袋、膜厚50μm程度)であってもエラストマー100重量部に対して0.4重量部以上で十分な性能の手袋を製造できる。一方、添加量が過剰量となるとかえってエラストマーの特性を低下させる恐れがあることから、エポキシ架橋剤のディップ成形用組成物への添加量の上限は、エラストマーを100重量部に対して5重量部であることが好ましいと考えられる。
 一方、本発明においては、薄手手袋の場合、エポキシ架橋剤の添加量はエラストマー100重量部に対して0.4~1.0重量部が好ましく、0.5~0.7重量部がより好ましい。
 ただし、厚手手袋(膜厚200超~300μm程度)の場合のように、亜鉛を減らすときには、さらにエポキシ架橋剤の添加量を増やすことも考えられる。
vi. Amount of Epoxy Crosslinker Added The amount of epoxy crosslinker added depends on the number and purity of epoxy groups in one molecule of the epoxy compound from the viewpoint of introducing a sufficient crosslinked structure between the elastomers to ensure fatigue durability. However, 0.2 parts by weight or more can be mentioned with respect to 100 parts by weight of the elastomer. Practically, even if it is extremely thin (2.7 g glove, film thickness is about 50 μm), it is possible to manufacture a glove having sufficient performance with 0.4 parts by weight or more with respect to 100 parts by weight of the elastomer. On the other hand, if the amount added is excessive, the properties of the elastomer may be deteriorated. Therefore, the upper limit of the amount of the epoxy cross-linking agent added to the dip molding composition is 5 parts by weight with respect to 100 parts by weight of the elastomer. Is considered to be preferable.
On the other hand, in the present invention, in the case of thin gloves, the amount of the epoxy cross-linking agent added is preferably 0.4 to 1.0 parts by weight, more preferably 0.5 to 0.7 parts by weight, based on 100 parts by weight of the elastomer. ..
However, as in the case of thick gloves (thickness of more than 200 to 300 μm), when reducing zinc, it is conceivable to further increase the amount of the epoxy cross-linking agent added.
vii.MIBK/水分配率が27%以上であるエポキシ架橋剤
 本発明において、下記測定方法によるMIBK/水分配率が27%以上、好ましくは50%以上、さらに好ましくは70%以上のエポキシ架橋剤を用いることで、応力保持率の高いディップ成形物を得るためのディップ成形用組成物が得られると考えられる。
vii. Epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more In the present invention, an epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more, preferably 50% or more, more preferably 70% or more by the following measurement method is used. Therefore, it is considered that a dip molding composition for obtaining a dip molded product having a high stress retention rate can be obtained.
 MIBK/水分配率は以下のようにして測定することができる。
 まず、試験管に水約5.0g、MIBK約5.0g、エポキシ架橋剤約0.5gを精秤して加える。MIBKの重量をM(g)、エポキシ架橋剤の重量をE(g)とする。
 この混合物を23℃±2℃の温度下で3分間良く攪拌混合した後、1.0×103Gの条件で10分間遠心分離し、水層とMIBK層に分ける。次いで、MIBK層の重量を測定し、これをML(g)とする。
 MIBK/水分配率(%)=(ML(g)-M(g))/E(g)×100
 なお、本明細書におけるMIBK/水測定法については、水とMIBKの重量を基準に計測したが、MIBKが水を若干溶解するため、実験数値としてマイナス%が出るが、同一基準で計測しているので、基準として採用可能であると考えた。
The MIBK / water distribution ratio can be measured as follows.
First, about 5.0 g of water, about 5.0 g of MIBK, and about 0.5 g of an epoxy cross-linking agent are precisely weighed and added to a test tube. Let the weight of MIBK be M (g) and the weight of the epoxy crosslinker be E (g).
This mixture is well stirred and mixed at a temperature of 23 ° C. ± 2 ° C. for 3 minutes, and then centrifuged under the condition of 1.0 × 10 3 G for 10 minutes to separate an aqueous layer and a MIBK layer. Next, the weight of the MIBK layer is measured, and this is designated as ML (g).
MIBK / water distribution rate (%) = (ML (g) -M (g)) / E (g) x 100
The MIBK / water measurement method in this specification was measured based on the weight of water and MIBK, but since MIBK dissolves water slightly, minus% is obtained as an experimental value, but the measurement is performed using the same standard. Therefore, I thought that it could be adopted as a standard.
(4)エポキシ架橋剤の分散剤
 上述したエポキシ架橋剤は、ディップ成形用組成物中において均一な分散状態に保つ必要がある。一方、本発明の実施形態におけるMIBK/水分配率が27%以上のエポキシ架橋剤においては、MIBK/水分配率が高いものほどラテックス溶液に架橋剤を添加するのが難しく、また分散しにくいという問題があることが分かってきた。
 特に、MIBK/水分配率が50%以上のエポキシ架橋剤は、水に溶かしたときに白濁が見られるので、分散剤による分散を行うことが好ましい。
(4) Dispersant of Epoxy Crosslinker The above-mentioned epoxy crosslinker needs to be kept in a uniform dispersed state in the composition for dip molding. On the other hand, in the epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more in the embodiment of the present invention, it is said that the higher the MIBK / water partition ratio, the more difficult it is to add the cross-linking agent to the latex solution and the more difficult it is to disperse. It turns out that there is a problem.
In particular, an epoxy cross-linking agent having a MIBK / water distribution ratio of 50% or more is cloudy when dissolved in water, so it is preferable to disperse with a dispersant.
 前記エポキシ架橋剤の分散剤は、一価の低級アルコール、以下の式(1)で表されるグリコール、以下の式(2)で表されるエーテル、以下の式(3)で表されるエステルからなる群から選択される1種以上であることが好ましい。
 HO-(CH2CHR1-O)n1-H (1)
(式(1)中、R1は、水素またはメチル基を表し、n1は1~3の整数を表す。)
 R2O-(CH2CHR1-O)n2-R3 (2)
[式(2)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、R3は、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
 R2O-(CH2CHR1-O)n3-(C=O)-CH3 (3)
[式(3)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。]
The dispersant of the epoxy cross-linking agent is a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and an ester represented by the following formula (3). It is preferable that the amount is one or more selected from the group consisting of.
HO- (CH 2 CHR 1- O) n1- H (1)
(In formula (1), R 1 represents a hydrogen or methyl group, and n 1 represents an integer of 1 to 3.)
R 2 O- (CH 2 CHR 1- O) n2- R 3 (2)
[In formula (2), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It represents a hydrocarbon group, and n2 represents an integer of 0 to 3. ]
R 2 O- (CH 2 CHR 1- O) n3- (C = O) -CH 3 (3)
[In formula (3), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n 3 represents an integer of 0 to 3. ]
 一価の低級アルコールとしては、メタノール、エタノールなどを挙げることができる。
 式(1)で表されるグリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどを挙げることができる。
 式(2)で表されるエーテルの内、グリコールエーテルとしては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテルなどが挙げられる。また、式(2)で表されるエーテルとして、n2=0のエーテルも用いることができる。
 式(3)で表されるエステルとしては、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどを挙げることができる。
 上記のエポキシ架橋剤の分散剤を用いる場合は、一種のみを用いてもよく、2種以上を組み合わせて用いてもよい。なお、上記分散剤は、予め水と混合せずに使用することが好ましい。
Examples of the monohydric lower alcohol include methanol and ethanol.
Examples of the glycol represented by the formula (1) include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and tripropylene glycol.
Among the ethers represented by the formula (2), the glycol ethers include diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, and tripropylene glycol. Examples thereof include monomethyl ether and triethylene glycol dimethyl ether. Further, as the ether represented by the formula (2), an ether having n2 = 0 can also be used.
Examples of the ester represented by the formula (3) include diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate.
When the above-mentioned dispersant of the epoxy cross-linking agent is used, only one kind may be used, or two or more kinds may be used in combination. The dispersant is preferably used without being mixed with water in advance.
 本発明者は、分散剤として有機溶媒を用いることを検討し、有機溶媒については、まず人体に有害でない溶媒を選別した結果、アルコールが好ましいことが分かった。
 上記の中でも、メタノール、エタノール、ジエチレングリコールを用いることが好ましく、揮発性、引火性の観点からジエチレングリコールを用いることが特に好ましい。
 ジエチレングリコールは、親水性の高いグリコール基とエーテル構造を有すると同時に親油性のある炭化水素構造が含まれ、水にもエラストマーにも溶けやすいので好適であると推測される。
The present inventor examined the use of an organic solvent as a dispersant, and as a result of first selecting a solvent that is not harmful to the human body, it was found that alcohol is preferable.
Among the above, it is preferable to use methanol, ethanol and diethylene glycol, and it is particularly preferable to use diethylene glycol from the viewpoint of volatility and flammability.
It is presumed that diethylene glycol is suitable because it has a highly hydrophilic glycol group and an ether structure, and at the same time contains a lipophilic hydrocarbon structure, and is easily dissolved in water and an elastomer.
 ディップ成形用組成物における、エポキシ架橋剤と分散剤の重量比は、1:4~1:1であることが好ましい。
 ディップ成形用組成物を調製する際に、水溶率が低いエポキシ架橋剤を用いる場合には、予めそのエポキシ架橋剤をエポキシ架橋剤の分散剤に溶解させた上で、ディップ成形用組成物の他の構成成分と混合することが好ましい。
The weight ratio of the epoxy cross-linking agent to the dispersant in the dip molding composition is preferably 1: 4 to 1: 1.
When an epoxy cross-linking agent having a low water content is used when preparing the composition for dip molding, the epoxy cross-linking agent is dissolved in the dispersant of the epoxy cross-linking agent in advance, and then the composition for dip molding is added. It is preferable to mix with the constituents of.
(5)ポリカルボジイミド
 本発明の実施形態に係るディップ成形用組成物は、架橋剤としてポリカルボジイミドを含有する。本発明の実施形態で用いるポリカルボジイミドは、カルボキシル基との架橋反応を行う中心部分とその端部に付加した親水性セグメントからなる。また、一部の端部は、封止剤で封止されていてもよい。
 以下、ポリカルボジイミドの各部分について説明する。
(5) Polycarbodiimide The dip molding composition according to the embodiment of the present invention contains polycarbodiimide as a cross-linking agent. The polycarbodiimide used in the embodiment of the present invention comprises a central portion that undergoes a cross-linking reaction with a carboxyl group and a hydrophilic segment added to the end portion thereof. Further, a part of the end portion may be sealed with a sealant.
Hereinafter, each portion of polycarbodiimide will be described.
<ポリカルボジイミドの中心部分>
 まず、本発明の実施形態において使用するポリカルボジイミドの中心部分の化学式を原料となるジイソシアネートの形で以下に示す。
 (1)OCN-(R1-(N=C=N)-)m-R1-NCO
 上記式(1)の-N=C=N-はカルボジイミド基でありXNBRのカルボキシル基と反応する。
 式中、R1は後述するジイソシアネートにより例示される。
 mは、4~20の整数であり、重合度(ポリカルボジイミドの1分子あたりのカルボジイミド官能基数)を示す。mを4以上とすることにより、本発明の実施形態で用いるエラストマー(XNBR)のカルボキシル基間を多点架橋することができ、これで本発明の実施形態で用いるエラストマー(XNBR)を大きくまとめられることによって従来の2点架橋の架橋剤に比べ、非常に良好な疲労耐久性が得られる要因になっていると考えられる。
 ポリカルボジイミドの上記中心部分は、通常ジイソシアネートの脱炭酸縮合により生じたものであり、両末端にイソシアネート残基を有する。
 ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネート、又はこれらの混合物を挙げることができる。具体的には1,5-ナフチレンジイソシアネート、4,4-ジフェニルメタンジイソシアネート、4,4-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネート、及びテトラメチルキシリレンジイソシアネートなどを例示できる。耐候性の観点より、脂肪族または脂環族ジイソシアネートの脱二酸化炭素を伴う縮合反応により生成するポリカルボジイミドを配合することが好適である。すなわち、上記ジイソシアネートは二重結合を持たないため、これらから生成したポリカルボジイミドは紫外線等による劣化が起きにくい。
 ジイソシアネートの種類の代表的なものはジシクロヘキシルメタン-4,4’-ジイソシアネートである。
<Central part of polycarbodiimide>
First, the chemical formula of the central portion of the polycarbodiimide used in the embodiment of the present invention is shown below in the form of diisocyanate as a raw material.
(1) OCN- (R 1- (N = C = N)-) m- R 1- NCO
-N = C = N- in the above formula (1) is a carbodiimide group and reacts with the carboxyl group of XNBR.
In the formula, R 1 is exemplified by diisocyanate described later.
m is an integer of 4 to 20 and indicates the degree of polymerization (the number of carbodiimide functional groups per molecule of polycarbodiimide). By setting m to 4 or more, the carboxyl groups of the elastomer (XNBR) used in the embodiment of the present invention can be crosslinked at multiple points, and thus the elastomer (XNBR) used in the embodiment of the present invention can be largely summarized. Therefore, it is considered that this is a factor for obtaining very good fatigue durability as compared with the conventional two-point cross-linking agent.
The central portion of the polycarbodiimide is usually formed by decarboxylation of diisocyanate and has isocyanate residues at both ends.
Examples of the diisocyanate include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof. Specifically, 1,5-naphthylene diisocyanate, 4,4-diphenylmethane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,3-phenylenediocyanate, 1,4-phenylenediocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4 , 4'-Diisocyanate, methylcyclohexanediisocyanate, tetramethylxylylene diisocyanate and the like can be exemplified. From the viewpoint of weather resistance, it is preferable to add polycarbodiimide produced by a condensation reaction of an aliphatic or alicyclic diisocyanate accompanied by decarbonization. That is, since the diisocyanates do not have double bonds, the polycarbodiimides produced from them are less likely to be deteriorated by ultraviolet rays or the like.
A typical type of diisocyanate is dicyclohexylmethane-4,4'-diisocyanate.
<親水性セグメント>
 カルボジイミド基は、水と反応しやすいため本発明の実施形態にかかるディップ成形用組成物中では、本発明の実施形態に用いるエラストマー(XNBR)との反応力を失わないよう水から保護する目的で、ポリカルボジイミドの一部には、親水性セグメントを末端(イソシアネート基)に付加することが必須である。
 親水性セグメントの構造を下式(2)に示す。
 (2)R2-O-(CH2-CHR3-O-)n-H
 上記式(2)中、R2は炭素数1~4のアルキル基、R3は水素原子又はメチル基であり、nは5~30の整数である。
 親水性セグメントは、ディップ成形用組成物(ディップ液)中(水中)においては、水と反応しやすいポリカルボジイミドの中心部分を取り巻いてカルボジイミド基を保護する機能を持つ(シェル/コア構造)。
 一方、乾燥すると親水性セグメントが開いてカルボジイミド基が現れ、反応できる状態になる。そのため、本発明のディップ成形による手袋製造においては、後述するキュアリング工程のときにはじめて水分量を低下させ、親水性セグメントを開いてカルボジイミド基をXNBRのカルボキシル基と架橋させることが重要である。この目的で、後述する保湿剤をゲリング工程において、離漿性の高いXNBRを乾燥させないためにディップ成形用組成物に加えることも有効である。
 なお、親水性セグメントは、中心部分の両端にあってもよいし片方にあってもよい。また親水性セグメントを有するものと有しないものの混合物でもよい。
 親水性セグメントを付加していない端部は、封止剤で封止されている。
<Hydrophilic segment>
Since the carbodiimide group easily reacts with water, the purpose of the dip molding composition according to the embodiment of the present invention is to protect the carbodiimide group from water so as not to lose the reactivity with the elastomer (XNBR) used in the embodiment of the present invention. , It is essential to add a hydrophilic segment to the terminal (isocyanate group) of a part of polycarbodiimide.
The structure of the hydrophilic segment is shown in the following equation (2).
(2) R 2- O- (CH 2- CHR 3- O-) n- H
In the above formula (2), R 2 is an alkyl group having 1 to 4 carbon atoms, R 3 is a hydrogen atom or a methyl group, and n is an integer of 5 to 30.
The hydrophilic segment has a function of protecting the carbodiimide group by surrounding the central portion of polycarbodiimide which easily reacts with water in the dip molding composition (dip liquid) (in water) (shell / core structure).
On the other hand, when dried, the hydrophilic segment opens and a carbodiimide group appears, and the reaction is ready. Therefore, in the production of gloves by dip molding of the present invention, it is important to reduce the water content for the first time in the curing step described later, open the hydrophilic segment, and crosslink the carbodiimide group with the carboxyl group of XNBR. For this purpose, it is also effective to add a moisturizer, which will be described later, to the dip molding composition in the gelling step so as not to dry the highly syneretic XNBR.
The hydrophilic segments may be located at both ends of the central portion or may be located at one side. It may also be a mixture of those having a hydrophilic segment and those having no hydrophilic segment.
The end to which the hydrophilic segment is not added is sealed with a sealant.
<封止剤>
 封止剤の式は以下の式(3)で示される。
 (3)(R42N-R5-OH
 上記式(3)中、R4は炭素数が6以下のアルキル基であり、入手性の観点から、4以下のアルキル基であることが好ましい。R5は炭素数1~10のアルキレン、又はポリオキシアルキレンである。
<Sealant>
The formula of the sealant is represented by the following formula (3).
(3) (R 4 ) 2 N-R 5- OH
In the above formula (3), R 4 is an alkyl group having 6 or less carbon atoms, and is preferably an alkyl group having 4 or less carbon atoms from the viewpoint of availability. R 5 is an alkylene having 1 to 10 carbon atoms or a polyoxyalkylene.
 <1分子あたりのカルボジイミド官能基数、重合度、分子量、当量>
 本発明の実施形態で用いるポリカルボジイミドにおける、カルボジイミド官能基数は、4以上であることが好ましい。カルボジイミド官能基数が4以上であることで、多点架橋が確実に行われ、実施上必要な疲労特性が満たされる。
 カルボジイミド官能基数の数値については、後述するポリカルボジイミド当量と、数平均分子量の値から求めることができる。
 1分子あたりのカルボジイミド官能基数=ポリカルボジイミドの平均重合度(数平均分子量/カルボジイミド当量)は3.8以上であり、さらに好ましくは9以上である。これは本発明の実施形態にかかる手袋の特徴である多点架橋の構造を適切に形成し、高い疲労耐久性を手袋に持たせるために必要である。
 ポリカルボジイミドの分子量は、数平均分子量で500~5000が好ましく、1000~4000であればなおよい。
 数平均分子量の測定は、GPC法(ポリスチレン換算により算出)により次のように行うことができる。
 測定装置:東ソー株式会社製 HLC-8220GPC
 カラム:Shodex KF-G+KF-805Lx 2本+KF-800D
 溶離液:THF
 測定温度:カラム恒温槽40℃
 流速:1.0mL/min
 濃度:0.1重量/体積%
 溶解性:完全溶解
 前処理 試料を窒素風乾後、70℃、16時間真空乾燥を行い、調整する。
     測定前に0.2μmフィルタでろ過する
 検出器:示差屈折計(RI)
 数平均分子量は、単分散ポリスチレン標準試料を用いて換算する。
<Number of carbodiimide functional groups per molecule, degree of polymerization, molecular weight, equivalent>
The number of carbodiimide functional groups in the polycarbodiimide used in the embodiment of the present invention is preferably 4 or more. When the number of carbodiimide functional groups is 4 or more, multipoint cross-linking is surely performed and the fatigue characteristics required for implementation are satisfied.
The numerical value of the number of carbodiimide functional groups can be obtained from the values of the polycarbodiimide equivalent and the number average molecular weight, which will be described later.
The number of carbodiimide functional groups per molecule = the average degree of polymerization of polycarbodiimide (number average molecular weight / carbodiimide equivalent) is 3.8 or more, more preferably 9 or more. This is necessary in order to appropriately form the multi-point crosslinked structure, which is a feature of the glove according to the embodiment of the present invention, and to give the glove high fatigue durability.
The molecular weight of the polycarbodiimide is preferably 500 to 5000 in terms of number average molecular weight, and even more preferably 1000 to 4000.
The number average molecular weight can be measured by the GPC method (calculated by polystyrene conversion) as follows.
Measuring device: HLC-8220GPC manufactured by Tosoh Corporation
Column: Shodex KF-G + KF-805Lx 2 + KF-800D
Eluent: THF
Measurement temperature: Column constant temperature bath 40 ° C
Flow velocity: 1.0 mL / min
Concentration: 0.1% by weight / volume
Solubility: Complete dissolution Pretreatment After air-drying the sample with nitrogen, vacuum-dry it at 70 ° C. for 16 hours to adjust.
Filter with a 0.2 μm filter before measurement Detector: Differential refractometer (RI)
The number average molecular weight is converted using a monodisperse polystyrene standard sample.
 カルボジイミド当量は疲労耐久性の観点から260~600の範囲が好ましく、さらに疲労耐久性を良好にする観点から260~440が好ましい。
 カルボジイミド当量は、シュウ酸を用いた逆滴定法により定量されたカルボジイミド基濃度から次式(I)で算出される値である。
 カルボジイミド当量=カルボジイミド基の式数(40)×100/カルボジイミド基濃度(%) (I)
 本発明の実施形態にかかるディップ成形用組成物における、上記のポリカルボジイミドの添加量は、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上5.0重量部以下を挙げることができ、0.3重量部以上2.5重量部以下であることが好ましく、0.3重量部以上2.0重量部以下であることがより好ましい。含有量の範囲については、5.0重量部を超えると採算性が悪化するのに対し、0.2重量部以上という少ない添加量でも他の硫黄系手袋を超える高い応力保持率を持たせることができることを検証している。
The carbodiimide equivalent is preferably in the range of 260 to 600 from the viewpoint of fatigue durability, and more preferably 260 to 440 from the viewpoint of improving fatigue durability.
The carbodiimide equivalent is a value calculated by the following formula (I) from the carbodiimide group concentration quantified by the back titration method using oxalic acid.
Carbodiimide equivalent = number of carbodiimide groups (40) x 100 / carbodiimide group concentration (%) (I)
The amount of the polycarbodiimide added to the dip molding composition according to the embodiment of the present invention is 0.2 parts by weight or more and 5.0 parts by weight with respect to 100 parts by weight of the elastomer contained in the dip molding composition. The number of parts is preferably 0.3 parts by weight or more and 2.5 parts by weight or less, and more preferably 0.3 parts by weight or more and 2.0 parts by weight or less. Regarding the range of content, while profitability deteriorates when it exceeds 5.0 parts by weight, even a small amount of 0.2 parts by weight or more should have a high stress retention rate that exceeds that of other sulfur-based gloves. We are verifying that we can do it.
 ディップ成形用組成物に添加する、上記のエポキシ架橋剤の添加量と、ポリカルボジイミドの添加量の重量比は、エポキシ架橋剤を1としたときに、ポリカルボジイミドを例えば0.1~10.0とすることが好ましく、0.3~5.0とすることがより好ましい。 The weight ratio of the amount of the above-mentioned epoxy cross-linking agent added to the composition for dip molding and the amount of the polycarbodiimide added is, for example, 0.1 to 10.0 when the epoxy cross-linking agent is 1. It is preferably 0.3 to 5.0, and more preferably 0.3 to 5.0.
(6)pH調整剤
 ディップ成形用組成物は、後述するマチュレーション工程の段階でアルカリ性に調整しておく必要がある。アルカリ性にする理由のひとつは、架橋を十分に行うために、エラストマーの粒子から-COOHを-COO-として粒子の外側に配向させ、粒子間架橋を十分に行わせるためである。
 好ましいpHの値は9.5~12.0であり、pHが低くなると-COOHの粒子外への配向が少なくなり架橋が不十分となり、pHが高くなりすぎるとラテックスの安定性が悪くなる。
 pH調整剤としては、アンモニア、アンモニウム化合物、アミン化合物及びアルカリ金属の水酸化物から得られる一種以上を使用できる。これらの中でも、pH調整やゲリング条件などの製造条件が容易であるため、アルカリ金属の水酸化物を用いることが好ましく、その中でも水酸化カリウム(以下、KOHともいう)が最も使用しやすい。以下、実施例ではpH調整剤はKOHを主に使用して説明する。
 pH調整剤の添加量は、ディップ成形用組成物中のエラストマー100重量部に対して0.1~4.0重量部程度を挙げることができるが、通常、工業的には1.8~2.0重量部程度を使用する。なお、pH測定時の温度は30℃とする。
(6) pH adjuster The dip molding composition needs to be adjusted to be alkaline at the stage of the maturation step described later. One reason that the alkaline, in order to perform the crosslinking sufficiently, the -COOH of particles of elastomeric -COO - as oriented to the outside of the particles, in order to sufficiently perform the inter-particle crosslinking.
The preferable pH value is 9.5 to 12.0. When the pH is low, the orientation of −COOH to the outside of the particles is small and the cross-linking is insufficient, and when the pH is too high, the stability of the latex is deteriorated.
As the pH adjuster, one or more obtained from ammonia, ammonium compounds, amine compounds and alkali metal hydroxides can be used. Among these, alkali metal hydroxides are preferably used because the production conditions such as pH adjustment and gelling conditions are easy, and among them, potassium hydroxide (hereinafter, also referred to as KOH) is the easiest to use. Hereinafter, in the examples, KOH will be mainly used as the pH adjuster.
The amount of the pH adjuster added can be about 0.1 to 4.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition, but is usually 1.8 to 2 in industry. Use about 0.0 parts by weight. The temperature at the time of pH measurement is 30 ° C.
(7)金属架橋剤
 本発明の実施形態にかかる手袋を構成するエラストマーにおいては、凝固剤としてカルシウムイオンを含むものを用いた場合、カルシウムのイオン結合と組み合わされた架橋構造を持っている。
 カルシウムは、人の汗を模した人工汗液中ですぐに溶出しやすいので引張強度が低下しやすい。また、カルシウムイオンは、他の金属架橋剤である酸化亜鉛またはアルミニウム錯体に比べイオン半径が大きく有機溶媒の非透過性が不十分である。そのため、亜鉛架橋またはアルミニウム架橋によって一部のカルシウム架橋を置換しておくことは有効であると考えられる。また、酸化亜鉛またはアルミニウム錯体の量を増やすことによって引張強度、耐薬性をコントロールすることができる。特に架橋後のアルミニウムは、人工汗液のような汗を模した溶液中に非常に溶出しにくいという利点がある。
(7) Metal Crosslinking Agent The elastomer constituting the gloves according to the embodiment of the present invention has a crosslinked structure combined with calcium ion bonding when an elastomer containing calcium ions is used as the coagulant.
Calcium tends to elute immediately in an artificial sweat solution that imitates human sweat, so the tensile strength tends to decrease. In addition, calcium ions have a larger ionic radius than other metal cross-linking agents such as zinc oxide or aluminum complexes, and the impermeableness of organic solvents is insufficient. Therefore, it is considered effective to replace some calcium crosslinks with zinc crosslinks or aluminum crosslinks. Further, the tensile strength and chemical resistance can be controlled by increasing the amount of zinc oxide or aluminum complex. In particular, the crosslinked aluminum has an advantage that it is very difficult to elute into a sweat-like solution such as artificial sweat liquid.
 金属架橋剤として用いられる多価金属化合物は、エラストマー中の未反応のカルボキシル基等の官能基間をイオン結合することにより架橋するものである。多価金属化合物としては、二価金属酸化物である酸化亜鉛が通常に用いられる。また、三価金属であるアルミニウムはこれを錯体にすることで架橋剤に用いることができる。
 酸化亜鉛を用いたイオン結合による架橋では、手袋に高い応力保持率をもたらすことは難しい。
 アルミニウムは、イオン半径が上記の中で最も小さく、耐薬性、引張強度を出すには最適であるが、あまり多く添加すると手袋が硬くなりすぎるので、その取り扱いは難しい。
 二価金属酸化物、例えば酸化亜鉛、及び/またはアルミニウム錯体の添加量は、ディップ成形用組成物中のエラストマー100重量部に対して、通常、2.0重量部以下であり、好ましくは1.0重量部以下であり、応力保持率を良好にする観点で、実質的に添加しないことが好ましい。実質的に添加しないとは、ディップ成形用組成物におけるこれらの含有量が検出限界以下ということである。
The polyvalent metal compound used as a metal cross-linking agent crosslinks by ionic bonding between functional groups such as unreacted carboxyl groups in the elastomer. As the multivalent metal compound, zinc oxide, which is a divalent metal oxide, is usually used. Further, aluminum, which is a trivalent metal, can be used as a cross-linking agent by forming a complex thereof.
It is difficult to obtain a high stress retention rate for gloves by cross-linking by ionic bonding using zinc oxide.
Aluminum has the smallest ionic radius among the above and is most suitable for obtaining chemical resistance and tensile strength, but it is difficult to handle because the glove becomes too hard if too much is added.
The amount of the divalent metal oxide, for example zinc oxide, and / or the aluminum complex added is usually 2.0 parts by weight or less, preferably 2.0 parts by weight or less, based on 100 parts by weight of the elastomer in the composition for dip molding. It is preferably 0 parts by weight or less, and is substantially not added from the viewpoint of improving the stress retention rate. Substantially no addition means that their content in the dip molding composition is below the detection limit.
 アルミニウムを架橋剤として使用するためには、コンパウンドするときに、中性~弱塩基性の溶液でXNBRラテックスに加える必要がある。
 しかし、アルミニウム塩の水溶液は中性~弱塩基性の時は水酸化アルミニウムのゲルとなってしまい、架橋剤として用いることができない。それを解決するために、配位子として多塩基性ヒドロキシカルボン酸を用いた手法が考えられる。ここでの多塩基性ヒドロキシカルボン酸としては、クエン酸、リンゴ酸、酒石酸、乳酸などの水溶液が利用できる。
 この中では、手袋の引張強度、疲労耐久性の点からはリンゴ酸が、アルミニウム水溶液の安定性の点からは、クエン酸を配位子として用いることが好ましい。
In order to use aluminum as a cross-linking agent, it is necessary to add it to the XNBR latex in a neutral to weakly basic solution when compounding.
However, when the aqueous solution of the aluminum salt is neutral to weakly basic, it becomes a gel of aluminum hydroxide and cannot be used as a cross-linking agent. In order to solve this problem, a method using a polybasic hydroxycarboxylic acid as a ligand can be considered. As the polybasic hydroxycarboxylic acid here, aqueous solutions of citric acid, malic acid, tartaric acid, lactic acid and the like can be used.
Among these, malic acid is preferably used as a ligand from the viewpoint of tensile strength and fatigue durability of gloves, and citric acid is preferably used as a ligand from the viewpoint of stability of an aqueous aluminum solution.
(8)その他の成分
 ディップ成形用組成物は、上記の成分と水を含むものであり、それ以外にも、通常は、その他の任意成分を含んでいる。ディップ成形用組成物における水の含有量は、通常、78~92重量%を挙げることができる。
(8) Other components The composition for dip molding contains the above-mentioned components and water, and usually contains other optional components. The content of water in the composition for dip molding can usually be 78 to 92% by weight.
 ディップ成形用組成物は、さらに、分散剤を含んでいてもよい。分散剤としては、アニオン界面活性剤が好ましく、例えば、カルボン酸塩、スルホン酸塩、リン酸塩、ポリリン酸エステル、高分子化アルキルアリールスルホネート、高分子化スルホン化ナフタレン、高分子化ナフタレン/ホルムアルデヒド縮合重合体等が挙げられ、好ましくはスルホン酸塩が使用される。 The composition for dip molding may further contain a dispersant. As the dispersant, an anionic surfactant is preferable, and for example, a carboxylate, a sulfonate, a phosphate, a polyphosphoric acid ester, a polymerized alkylarylsulfonate, a polymerized sulfonated naphthalene, and a polymerized naphthalene / formaldehyde Condensation polymers and the like are mentioned, and sulfonates are preferably used.
 分散剤には市販品を使用することができる。例えば、BASF社製「Tamol NN9104」などを用いることができる。その使用量は、ディップ成形用組成物中のエラストマー100重量部に対し0.5~2.0重量部程度であることが好ましい。 Commercially available products can be used as the dispersant. For example, "Tamol NN9104" manufactured by BASF may be used. The amount used is preferably about 0.5 to 2.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition.
 ディップ成形用組成物は、さらにその他の各種の添加剤を含むことができる。該添加剤としては、酸化防止剤、顔料、キレート剤等が挙げられる。酸化防止剤として、ヒンダードフェノールタイプの酸化防止剤、例えば、WingstayLを用いることができる。また、顔料としては、例えば二酸化チタンが使用される。キレート化剤としては、エチレンジアミン四酢酸ナトリウム等を使用することができる。 The composition for dip molding can further contain various other additives. Examples of the additive include antioxidants, pigments, chelating agents and the like. As the antioxidant, a hindered phenol type antioxidant, for example, WingstayL can be used. Further, as the pigment, for example, titanium dioxide is used. As the chelating agent, sodium ethylenediaminetetraacetate or the like can be used.
 本実施形態のディップ成形用組成物は、エラストマー、エポキシ架橋剤、ポリカルボジイミド、pH調整剤、及び水、必要に応じて保湿剤、分散剤、酸化防止剤等の各添加剤を、慣用の混合手段、例えば、ミキサー等で混合して作ることができる。 The dip molding composition of the present embodiment is a conventional mixture of elastomers, epoxy crosslinkers, polycarbodiimides, pH adjusters, and water, and if necessary, additives such as moisturizers, dispersants, and antioxidants. It can be made by mixing by means, for example, a mixer or the like.
2.手袋の製造方法
 本実施形態の手袋は、以下の製造方法により好ましく製造することができる。
 すなわち、
 (1)凝固剤付着工程(手袋成形型に凝固剤を付着させる工程)、
 (2)マチュレーション工程(ディップ成形用組成物を調整し、攪拌する工程)、
 (3)ディッピング工程(手袋成形型をディップ成形用組成物に浸漬する工程)、
 (4)ゲリング工程(手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作る工程)、
 (5)リーチング工程(手袋成形型上に形成された硬化フィルム前駆体から不純物を除去する工程)、
 (6)ビーディング工程(手袋の袖口部分に巻きを作る工程)、
 (7)プリキュアリング工程、(硬化フィルム前駆体をキュアリング工程よりも低温で加熱及び乾燥する工程)ただし、本工程は任意工程である。
 (8)キュアリング工程(架橋反応に必要な温度で加熱及び乾燥する工程)
 を含み、上記(3)~(8)の工程を上記の順序で行う手袋の製造方法である。
 また、上記の製造方法において、上記(3)(4)の工程を2回繰り返す、いわゆるダブルディッピングによる手袋の製造方法も含む。
2. 2. Glove Manufacturing Method The glove of the present embodiment can be preferably manufactured by the following manufacturing method.
That is,
(1) Coagulant adhesion step (step of adhering coagulant to glove molding mold),
(2) Maturation step (step of adjusting and stirring the composition for dip molding),
(3) Dip molding step (step of immersing the glove molding die in the dip molding composition),
(4) Gelling step (step of gelling the film formed on the glove molding to make a cured film precursor),
(5) Reaching step (step of removing impurities from the cured film precursor formed on the glove molding die),
(6) Beading process (process of making a roll around the cuffs of gloves),
(7) Precure ring step (step of heating and drying the cured film precursor at a lower temperature than the curing step) However, this step is an optional step.
(8) Curing step (step of heating and drying at the temperature required for the cross-linking reaction)
This is a method for manufacturing gloves, which comprises the above steps (3) to (8) in the above order.
The above-mentioned manufacturing method also includes a method of manufacturing gloves by so-called double dipping, in which the steps (3) and (4) are repeated twice.
 なお、本明細書において、硬化フィルム前駆体とは、ディッピング工程で凝固剤により手袋成形型上に凝集されたエラストマーから構成される膜であり、続くゲリング工程において該膜中にカルシウムが分散してある程度ゲル化された膜であって、最終的なキュアリングを行う以前のものを指す。 In the present specification, the cured film precursor is a film composed of an elastomer aggregated on a glove molding by a coagulant in a dipping step, and calcium is dispersed in the film in a subsequent gelling step. A film that has been gelled to some extent and has not been finally cured.
以下、各工程ごとに詳細を説明する。
(1)凝固剤付着工程
 (a)モールド又はフォーマ(手袋成形型)を、凝固剤及びゲル化剤としてCa2+イオンを5~40重量%、好ましくは8~35重量%含む凝固剤溶液中に浸す。ここで、モールド又はフォーマの表面に凝固剤等を付着させる時間は適宜定められ、通常、10~20秒間程度である。凝固剤としては、カルシウムの硝酸塩又は塩化物が用いられる。エラストマーを析出させる効果を有する他の無機塩を用いてもよい。中でも、硝酸カルシウムを用いることが好ましい。この凝固剤は、通常、5~40重量%含む水溶液として使用される。
 また、凝固剤を含む溶液は離型剤としてステアリン酸カリウム、ステアリン酸カルシウム、鉱油、又はエステル系油等を0.5~2重量%程度、例えば1重量%程度含むことが好ましい。
 (b)凝固剤溶液が付着したモールド又はフォーマを炉内温度110℃~140℃程度のオーブンに1~3分入れ、乾燥させ手袋成形型の表面全体又は一部に凝固剤を付着させる。この時注意すべきは、乾燥後の手型の表面温度は60℃程度になっており、これが以降の反応に影響する。
 (c)カルシウムは、手袋成形型の表面に膜を形成するための凝固剤機能としてばかりでなく、最終的に完成した手袋の相当部分の架橋機能に寄与している。後で添加される金属架橋剤は、このカルシウムの架橋機能の弱点を補強するためのものともいえる。
Details will be described below for each step.
(1) Coagulant Adhesion Step (a) A mold or former (glove molding type) is contained in a coagulant solution containing 5 to 40% by weight, preferably 8 to 35% by weight of Ca 2+ ions as a coagulant and a gelling agent. Soak in. Here, the time for adhering the coagulant or the like to the surface of the mold or former is appropriately determined, and is usually about 10 to 20 seconds. As the coagulant, calcium nitrate or chloride is used. Other inorganic salts having the effect of precipitating the elastomer may be used. Above all, it is preferable to use calcium nitrate. This coagulant is usually used as an aqueous solution containing 5 to 40% by weight.
The solution containing the coagulant preferably contains potassium stearate, calcium stearate, mineral oil, ester-based oil, or the like as a release agent in an amount of about 0.5 to 2% by weight, for example, about 1% by weight.
(B) The mold or former to which the coagulant solution is attached is placed in an oven having a furnace temperature of about 110 ° C. to 140 ° C. for 1 to 3 minutes and dried to allow the coagulant to adhere to the entire surface or a part of the glove molding mold. At this time, it should be noted that the surface temperature of the hand mold after drying is about 60 ° C., which affects the subsequent reaction.
(C) Calcium contributes not only to the coagulant function for forming a film on the surface of the glove molding mold, but also to the cross-linking function of a considerable part of the finally completed glove. The metal cross-linking agent added later can be said to reinforce the weakness of the cross-linking function of calcium.
(2)マチュレーション工程
 (a)ディップ成形用組成物のpH調整剤の項目で説明したように、本発明の実施形態にかかるディップ成形用組成物をpH9.5~12.0に調整し、攪拌する工程である。この工程により、ディップ成形用組成物中の成分が分散・均一化すると考えられる。
 (b)実際の手袋の製造工程においては、通常大規模なタンクで本工程を行うため、マチュレーションにも24時間程度かかることがある。これをディップ槽に流し、ディッピングしていくがディップ槽の水位が下がるのに応じて継ぎ足していく。
(2) Maturation Step (a) As described in the section of pH adjuster for dip molding composition, the dip molding composition according to the embodiment of the present invention is adjusted to pH 9.5 to 12.0. This is the step of stirring. It is considered that the components in the dip molding composition are dispersed and homogenized by this step.
(B) In the actual manufacturing process of gloves, since this process is usually performed in a large-scale tank, maturation may take about 24 hours. This is poured into a dip tank and dipping is performed, but it is added as the water level in the dip tank drops.
(3)ディッピング工程
 前記マチュレーション工程で、攪拌した本発明の実施形態にかかるディップ成形用組成物(ディップ液)をディップ槽に流し入れ、このディップ槽中に上記凝固剤付着工程で凝固剤を付着、乾燥した後のモールド又はフォーマを通常、1~60秒間、25~35℃の温度条件下で浸漬する工程である。
 この工程で凝固剤に含まれるカルシウムイオンにより、ディップ成形用組成物に含まれるエラストマーをモールド又はフォーマの表面に凝集させて膜を形成させる。
(3) Diping Step In the maturation step, the dip molding composition (dip liquid) according to the embodiment of the present invention that has been stirred is poured into a dip tank, and the coagulant is adhered into the dip tank in the coagulant adhering step. This is a step of immersing the dried mold or former for 1 to 60 seconds under a temperature condition of 25 to 35 ° C.
In this step, the calcium ions contained in the coagulant agglomerate the elastomer contained in the dip molding composition on the surface of the mold or former to form a film.
(4)ゲリング工程
 (a)従来の硫黄架橋手袋においては、ゲリングオーブンで100℃近くまで加熱することが常識であった。これは、ラテックスの架橋を若干進ませて、後のリーチングの時に膜が変形しないように一定程度ゲル化するためであった。同時に、膜中にカルシウムを分散させ、後にカルシウム架橋を十分にさせる目的もあった。
 これに対し、本発明のようにポリカルボジイミドとエポキシ架橋剤を用いる場合のゲリング条件は、ポリカルボジイミドが乾燥して開環しないようにする条件を用いる。
通常、20℃~70℃程度の温度範囲内で20秒以上である。
 この条件はpH調整剤としてKOHを使用する場合の条件であり、pH調整剤としてアンモニア化合物やアミン化合物を使用するときは、これとは異なる条件を採用してもよい。
 (b)一般量産においてエポキシ架橋剤を使用する際のゲリング条件は、すでにモールド又はフォーマがある程度の温度を有していることや、工場内の周囲温度が50℃程度である場合が多いことなどから定められたものである。さらに、ゲリング工程の温度の上限については、品質を上げるため、あえて加熱するケースも想定したものである。
 また、ゲリング工程の時間については、通常1分30秒~4分を挙げることもできる。
(4) Gelling step (a) In the conventional sulfur cross-linked gloves, it was common sense to heat to nearly 100 ° C. in a gelling oven. This was because the cross-linking of the latex was slightly advanced and the film gelled to a certain extent so as not to be deformed during the subsequent leaching. At the same time, it also had the purpose of dispersing calcium in the membrane and later sufficient for calcium cross-linking.
On the other hand, as the gelling condition when the polycarbodiimide and the epoxy cross-linking agent are used as in the present invention, the condition for preventing the polycarbodiimide from drying and opening the ring is used.
Usually, it takes 20 seconds or more in a temperature range of about 20 ° C. to 70 ° C.
This condition is a condition when KOH is used as the pH adjuster, and when an ammonia compound or an amine compound is used as the pH adjuster, a condition different from this may be adopted.
(B) The gelling conditions when using an epoxy cross-linking agent in general mass production include that the mold or former already has a certain temperature, and that the ambient temperature in the factory is often about 50 ° C. It is determined from. Furthermore, regarding the upper limit of the temperature of the gelling process, in order to improve the quality, it is assumed that the temperature is intentionally heated.
In addition, the time of the gelling step can usually be 1 minute 30 seconds to 4 minutes.
(5)リーチング工程
 (a)リーチング工程は、硬化フィルム前駆体の表面に析出したカルシウムや、余剰の水溶性物質等の後のキュアリングに支障となる不純物を水洗除去する工程である。通常は、フォーマを40~60℃の温水に1.5~4分程度接触させる。具体的な接触方法として水に浸漬することが挙げられる。
 (b)金属架橋剤として酸化亜鉛及び/又はアルミニウム錯体をディップ成形用組成物が含む場合、リーチング工程のもう1つの役割は、それまでアルカリ性に調整していた硬化フィルム前駆体を水洗して中性に近づけ、硬化フィルム前駆体中に含まれている酸化亜鉛又はアルミニウム錯イオンをZn2+、Al3+にし、後のキュアリング工程で金属架橋を形成できるようにすることである。
(5) Reaching Step (a) The leaching step is a step of washing and removing calcium precipitated on the surface of the cured film precursor and impurities that interfere with subsequent curing such as excess water-soluble substances. Usually, the former is brought into contact with warm water at 40 to 60 ° C. for about 1.5 to 4 minutes. As a specific contact method, immersion in water can be mentioned.
(B) When the composition for dip molding contains zinc oxide and / or an aluminum complex as a metal cross-linking agent, another role of the leaching step is to wash the cured film precursor which has been adjusted to be alkaline with water. The purpose is to bring the zinc oxide or aluminum complex ions contained in the cured film precursor into Zn 2+ and Al 3+ so that metal crosslinks can be formed in the subsequent curing step.
(6)ビーディング工程
 リーチング工程が終了した硬化フィルム前駆体の手袋の袖口端部を巻き上げて適当な太さのリングを作り、補強する工程である。リーチング工程後の湿潤状態で行うと、ロール部分の接着性が良い。
(6) Beading step This is a step of winding up the cuff end of the glove of the cured film precursor for which the leaching step has been completed to make a ring having an appropriate thickness and reinforcing it. When performed in a wet state after the leaching step, the adhesiveness of the roll portion is good.
(7)プリキュアリング工程
 (a)前記ビーディング工程の後、硬化フィルム前駆体を後のキュアリング工程よりも低温で加熱及び乾燥する工程である。通常、この工程では60~90℃で30秒間~5分間程度、加熱及び乾燥を行う。プリキュアリング工程を経ずに高温のキュアリング工程を行うと、水分が急激に蒸発し、手袋に水膨れのような凸部ができて、品質を損なうことがあるが、本工程を経ずにキュアリング工程に移行してもよい。
 (b)本工程を経ずに、キュアリング工程の最終温度まで温度を上げることもあるが、キュアリングを複数の乾燥炉で行いその一段目の乾燥炉の温度を若干低くした場合、この一段目の乾燥はプリキュアリング工程に該当する。
(7) Precure ring step (a) After the beading step, the cured film precursor is heated and dried at a lower temperature than the subsequent curing step. Usually, in this step, heating and drying are performed at 60 to 90 ° C. for about 30 seconds to 5 minutes. If the high-temperature curing process is performed without going through the pre-curing process, the water will evaporate rapidly and convex parts like swelling may be formed on the gloves, which may impair the quality, but without going through this process. You may move to the curing process.
(B) The temperature may be raised to the final temperature of the curing step without going through this step, but if curing is performed in multiple drying furnaces and the temperature of the first-stage drying furnace is slightly lowered, this first step Dry eyes correspond to the precuring process.
(8)キュアリング工程
 (a)キュアリング工程は、高温で加熱及び乾燥し、最終的に架橋を完成させ、手袋としての硬化フィルムにする工程である。ポリカルボジイミドとエポキシ架橋剤を用いる手袋は、高温でないと架橋が不十分となるので、90~150℃で10~30分、好ましくは15~30分程、加熱及び乾燥させる。キュアリング工程の好ましい温度としては、100~140℃を挙げることができる。
 (a)このキュアリング工程において、手袋の架橋は完成するが、この手袋はXNBRのカルボキシル基とカルシウム架橋、ポリカルボジイミドによる架橋、エポキシ架橋剤による架橋とから形成されている。
(8) Curing step (a) The curing step is a step of heating and drying at a high temperature to finally complete cross-linking and form a cured film as a glove. Gloves using polycarbodiimide and an epoxy cross-linking agent are insufficiently cross-linked unless they are at a high temperature. Therefore, they are heated and dried at 90 to 150 ° C. for 10 to 30 minutes, preferably about 15 to 30 minutes. A preferable temperature in the curing step is 100 to 140 ° C.
(A) In this curing step, the cross-linking of the glove is completed, and the glove is formed by cross-linking the carboxyl group of XNBR with calcium, cross-linking with polycarbodiimide, and cross-linking with an epoxy cross-linking agent.
(9)ダブルディッピング
 手袋の製造方法について、上記ではいわゆるシングルディッピングの説明を行った。これに対し、ディッピング工程とゲリング工程を2回以上行うことがあり、これを通常ダブルディッピングという。
 ダブルディッピングは、厚手手袋(膜厚200超~300μm程度)を製造するときや、薄手手袋の製造方法においても、ピンホールの生成防止等の目的で行われる。
(9) Regarding the method for manufacturing double dipping gloves, so-called single dipping has been described above. On the other hand, the dipping step and the gelling step may be performed twice or more, and this is usually called double dipping.
Double dipping is performed for the purpose of preventing the formation of pinholes when manufacturing thick gloves (thickness of more than 200 to 300 μm) and also in the manufacturing method of thin gloves.
3.手袋
(1)本実施形態における手袋の構造
 第1の実施形態における手袋は(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーの硬化フィルムからなる手袋であって、前記エラストマーは不飽和カルボン酸由来の構造単位が有するカルボキシル基と、ポリカルボジイミドとの架橋構造、及びエポキシ化合物との架橋構造を有している。
 また、本手袋は、これに加え、凝固剤由来のカルシウムとカルボキシル基との架橋構造も有している。
 この手袋は、好ましくは上述の本実施形態のディップ成形用組成物を用いて製造することができる。エラストマーは、(メタ)アクリロニトリル由来の構造単位が12~36重量%、不飽和カルボン酸由来の構造単位が2~10重量%、及びブタジエン由来の構造単位が50~75重量%であることが好ましい。
 第2の実施形態における手袋は、第1の実施形態における架橋構造に加え、エラストマーのカルボキシル基と、亜鉛および/またはアルミニウムとの架橋構造を持つものである。
3. 3. Gloves (1) Structure of gloves in the present embodiment The gloves in the first embodiment are of an elastomer containing (meth) acrylonitrile-derived structural units, unsaturated carboxylic acid-derived structural units, and butadiene-derived structural units in the polymer main chain. The elastomer is a glove made of a cured film, and the elastomer has a crosslinked structure of a carboxyl group of a structural unit derived from an unsaturated carboxylic acid, a polycarbodiimide, and an epoxy compound.
In addition to this, this glove also has a crosslinked structure of calcium derived from a coagulant and a carboxyl group.
This glove can preferably be produced using the above-mentioned dip molding composition of the present embodiment. The elastomer preferably contains 12 to 36% by weight of structural units derived from (meth) acrylonitrile, 2 to 10% by weight of structural units derived from unsaturated carboxylic acid, and 50 to 75% by weight of structural units derived from butadiene. ..
The glove in the second embodiment has a crosslinked structure of a carboxyl group of an elastomer and zinc and / or aluminum in addition to the crosslinked structure of the first embodiment.
 本発明では、上記実施形態において、ポリカルボジイミドとエポキシ架橋剤の両方を含むディップ成形用組成物を硬化することで、引張強度、疲労耐久性および応力保持率が良好な手袋を製造することができる。
 本発明の実施形態にかかる手袋の膜厚として、0.04~0.2mmを挙げることができるが、これに限定されない。この膜厚の範囲のうち、0.09超~0.2mm(90超~200μm)は市販される手袋の普通の厚みの範囲である。
 他方で、第1の実施形態における手袋は、特に厚手(膜厚200超~300μm)の手袋を製造する際に有効である。フィルムの膜厚が厚ければ、引張強度、疲労耐久性等を出せるからである。
 一方で、第2の実施形態における手袋として、カルシウム架橋の弱点を、亜鉛および/またはアルミニウム架橋で補ったものを挙げることができる。カルシウム架橋は、初期性能としての強度は維持できるものの、塩水中でのカルシウムの溶出による強度低下を起こしやすく、薬品を透過しやすいという欠点を亜鉛および/またはアルミニウム架橋で補うことができる。
 第2の実施形態にかかる手袋は、特に、超薄手~薄手の手袋(膜厚40~90μm)を製造する際に好ましい。
 以上のように、第2の実施形態による手袋は、エポキシ架橋、カルシウム架橋、亜鉛および/またはアルミニウム架橋の比率を変えることによって、手袋の性能を変化させることができる。
In the present invention, in the above embodiment, by curing the dip molding composition containing both the polycarbodiimide and the epoxy cross-linking agent, gloves having good tensile strength, fatigue durability and stress retention can be produced. ..
The film thickness of the glove according to the embodiment of the present invention may be, but is not limited to, 0.04 to 0.2 mm. Within this film thickness range, more than 0.09 to 0.2 mm (more than 90 to 200 μm) is the range of normal thickness of commercially available gloves.
On the other hand, the gloves according to the first embodiment are particularly effective in producing thick gloves (thickness over 200 to 300 μm). This is because if the film thickness is thick, tensile strength, fatigue durability, and the like can be obtained.
On the other hand, as the glove in the second embodiment, the weak point of calcium cross-linking may be supplemented with zinc and / or aluminum cross-linking. Although the strength as the initial performance can be maintained by the calcium cross-linking, the drawback of easily causing a decrease in strength due to the elution of calcium in salt water and easily permeating chemicals can be compensated by the zinc and / or aluminum cross-linking.
The gloves according to the second embodiment are particularly preferable when producing ultra-thin to thin gloves (thickness 40 to 90 μm).
As described above, the glove according to the second embodiment can change the performance of the glove by changing the ratio of epoxy cross-linking, calcium cross-linking, zinc and / or aluminum cross-linking.
(2)本発明の実施形態にかかる手袋の特徴
 (a)本発明の実施形態にかかる手袋は、他の加硫促進剤フリーの手袋と同じく、従来のXNBR手袋のように硫黄及び加硫促進剤を実質的に含まないので、IV型アレルギーを生じさせないことが特徴である。ただし、エラストマー製造時の界面活性剤等に硫黄が含まれているため、ごく微量の硫黄は検出されることがある。
(2) Features of gloves according to the embodiment of the present invention (a) Gloves according to the embodiment of the present invention, like other vulcanization accelerator-free gloves, have sulfur and vulcanization promotion like conventional XNBR gloves. Since it contains virtually no agent, it is characterized by not causing type IV allergy. However, since sulfur is contained in the surfactant and the like during the production of the elastomer, a very small amount of sulfur may be detected.
 (b)一般に、手袋の物性としては、引張強度、伸び率、疲労耐久性を見るのが通常であり、本発明においては、引張強度は後述する引張試験により測定し、現在市場に出ている実製品の下限値である20MPaを合格基準として設定している。なお、手袋の引張強度の合格基準としては、ヨーロッパの規格(EN 455)においては破断時荷重が6N以上とされている。
 手袋の伸びについては、後述する引張試験時の破断時伸び率が500~750%、100%モジュラス(伸び100%時における引張応力)が、3~10MPaの範囲内、疲労耐久性については指股部分で90分以上(手のひらでは240分以上に相当)が合格基準である。
 本発明の実施形態にかかる手袋は、上記の物性を満たすものである。
(B) Generally, as the physical properties of gloves, tensile strength, elongation, and fatigue durability are usually observed. In the present invention, the tensile strength is measured by a tensile test described later and is currently on the market. The lower limit of 20 MPa of the actual product is set as the acceptance standard. As a passing standard for the tensile strength of gloves, the European standard (EN 455) states that the load at break is 6 N or more.
Regarding the elongation of gloves, the elongation at break during the tensile test described later is within the range of 500 to 750%, the 100% modulus (tensile stress at 100% elongation) is within the range of 3 to 10 MPa, and the fatigue durability is the finger crotch. The acceptance criteria are 90 minutes or more for the part (equivalent to 240 minutes or more for the palm).
The gloves according to the embodiment of the present invention satisfy the above physical characteristics.
 (c)本発明の第2の実施形態にかかる手袋の作製に用いるディップ成形用組成物には、さらに亜鉛および/またはアルミニウム等の金属架橋剤を添加しているが、これによって装着時の人の汗による強度低下を防ぎ、薬品非透過性を強化した手袋が得られる。 (C) A metal cross-linking agent such as zinc and / or aluminum is further added to the dip molding composition used for producing the glove according to the second embodiment of the present invention, whereby a person at the time of wearing is added. It is possible to obtain gloves with enhanced chemical impermeableness by preventing the decrease in strength due to sweat.
1.実施方法
 以下、本発明を実施例に基づきより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。特に断らない限り、「%」は「重量%」であり、「部」は「重量部」である。
 また、以下の説明において「重量部」は、原則としてエラストマー100重量部に対しての重量部数を示す。
 各添加剤の重量部数は固形分量によるものであり、エポキシ架橋剤の重量部数については架橋剤の総重量によるものである。
 また、ディップ成形用組成物に使用したXNBRとエポキシ架橋剤の種類については、各表に記載している。
1. 1. Implementation Method Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples. Unless otherwise specified, "%" is "% by weight" and "part" is "part by weight".
Further, in the following description, "parts by weight" indicates, in principle, the number of parts by weight with respect to 100 parts by weight of the elastomer.
The number of parts by weight of each additive is based on the solid content, and the number of parts by weight of the epoxy cross-linking agent is based on the total weight of the cross-linking agent.
The types of XNBR and epoxy cross-linking agent used in the dip molding composition are described in each table.
(1)使用したXNBR
 本実験例で用いたXNBRの特性を表1に記載する。
Figure JPOXMLDOC01-appb-T000003
(1) XNBR used
The characteristics of XNBR used in this experimental example are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
 本実験例で用いたXNBRの特性は、次のようにして測定した。
<アクリロニトリル(AN)残基量及び不飽和カルボン酸(MMA)残基量>
 上記各エラストマーを乾燥して、フィルムを作製した。該フィルムをFT-IRで測定し、アクリロニトリル基に由来する吸収波数2237cm-1とカルボン酸基に由来する吸収波数1699cm-1における吸光度(Abs)を求め、アクリロニトリル(AN)残基量及び不飽和カルボン酸(MMA)残基量を求めた。
 アクリロニトリル残基量(%)は、予め作成した検量線から求めた。検量線は、各エラストマーに内部標準物質としてポリアクリル酸を加えた、アクリロニトリル基量が既知の試料から作成したものである。不飽和カルボン酸残基量は、下記式から求めた。
 不飽和カルボン酸残基量(wt%)=[Abs(1699cm-1)/Abs(2237cm-1)]/0.2661
 上式において、係数0.2661は、不飽和カルボン酸基量とアクリロニトリル基量の割合が既知の、複数の試料から検量線を作成して求めた換算値である。
The characteristics of XNBR used in this experimental example were measured as follows.
<Acrylonitrile (AN) residue amount and unsaturated carboxylic acid (MMA) residue amount>
Each of the above elastomers was dried to prepare a film. The film was measured by FT-IR, absorbance at absorption wave 1699Cm -1 derived from absorption wave 2237 cm-1 and carboxylic acid groups derived from acrylonitrile based seeking (Abs), acrylonitrile (AN) residues weight and unsaturated The amount of carboxylic acid (MMA) residue was determined.
The amount of acrylonitrile residue (%) was determined from a calibration curve prepared in advance. The calibration curve was prepared from a sample in which polyacrylic acid was added as an internal standard substance to each elastomer and the amount of acrylonitrile groups was known. The amount of unsaturated carboxylic acid residue was calculated from the following formula.
Unsaturated carboxylic acid residue amount (wt%) = [Abs (1699 cm -1 ) / Abs (2237 cm -1 )] /0.2661
In the above formula, the coefficient 0.2661 is a converted value obtained by preparing a calibration curve from a plurality of samples in which the ratio of the unsaturated carboxylic acid group amount and the acrylonitrile group amount is known.
<ムーニー粘度(ML(1+4)100℃)>
 硝酸カルシウムと炭酸カルシウムとの4:1混合物の飽和水溶液200mlを室温にて攪拌した状態で、各エラストマーラテックスをピペットにより滴下し、固形ゴムを析出させた。得られた固形ゴムを取り出し、イオン交換水約1Lでの攪拌洗浄を10回繰り返した後、固形ゴムを搾って脱水し、真空乾燥(60℃、72時間)して、測定用ゴム試料を調製した。得られた測定用ゴムを、ロール温度50℃、ロール間隙約0.5mmの6インチロールに、ゴムがまとまるまで数回通したものを用い、JIS K6300-1:2001「未加硫ゴム-物理特性、第1部ムーニー粘度計による粘度およびスコ-チタイムの求め方」に準拠して、100℃にて大径回転体を用いて測定した。
<Moony viscosity (ML (1 + 4) 100 ° C)>
With 200 ml of a saturated aqueous solution of a 4: 1 mixture of calcium nitrate and calcium carbonate stirred at room temperature, each elastomer latex was added dropwise with a pipette to precipitate solid rubber. The obtained solid rubber is taken out, and after repeating stirring and washing with about 1 L of ion-exchanged water 10 times, the solid rubber is squeezed and dehydrated, and vacuum dried (60 ° C., 72 hours) to prepare a rubber sample for measurement. did. The obtained rubber for measurement was passed through a 6-inch roll having a roll temperature of 50 ° C. and a roll gap of about 0.5 mm several times until the rubber was collected, and JIS K6300-1: 2001 "Unvulcanized rubber-physical". Measurement was performed using a large-diameter rotating body at 100 ° C. in accordance with "Characteristics, Part 1 How to determine viscosity and vulcanization time by Mooney viscometer".
<MEK不溶解分量>
 MEK(メチルエチルケトン)不溶解(ゲル)成分は、次のように測定した。0.2gのXNBRラテックス乾燥物試料を、重量を測定したメッシュ籠(80メッシュ)に入れて、籠ごと100mLビーカー内のMEK溶媒80mL中に浸漬し、パラフィルムでビーカーに蓋をして、24時間、ドラフト内で静置した。その後、メッシュ籠をビーカーから取り出し、ドラフト内にて宙吊りにして1時間乾燥させた。これを、105℃で1時間減圧乾燥したのち、重量を測定し、籠の重量を差し引いて、XNBRラテックス乾燥物の浸漬後重量とした。
 MEK不溶解成分の含有率(不溶解分量)は、次の式から算出した。
 不溶解成分含有率(重量%)=(浸漬後重量g/浸漬前重量g)×100
 なお、XNBRラテックス乾燥物試料は、次のようにして作製した。すなわち、500mLのボトル中で、回転速度500rpmでXNBRラテックスを30分間攪拌したのち、180×115mmのステンレスバットに14gの該ラテックスを量り取り、23℃±2℃、湿度50±10RH%で5日間乾燥させてキャストフィルムとし、該フィルムを5mm四方にカットして、XNBRラテックス乾燥物試料とした。
<MEK insoluble amount>
The MEK (methyl ethyl ketone) insoluble (gel) component was measured as follows. A 0.2 g XNBR latex dried product sample was placed in a weighed mesh basket (80 mesh), immersed in 80 mL of MEK solvent in a 100 mL beaker together with the basket, and the beaker was covered with Parafilm. Allowed for hours in the draft. Then, the mesh basket was taken out from the beaker, suspended in the air in the draft, and dried for 1 hour. This was dried under reduced pressure at 105 ° C. for 1 hour, then weighed, and the weight of the basket was subtracted to obtain the weight after immersion of the XNBR latex dried product.
The content (insoluble amount) of the MEK insoluble component was calculated from the following formula.
Insoluble component content (% by weight) = (weight g after immersion / weight g before immersion) × 100
The XNBR latex dried product sample was prepared as follows. That is, after stirring the XNBR latex at a rotation speed of 500 rpm for 30 minutes in a 500 mL bottle, 14 g of the latex was weighed in a 180 × 115 mm stainless steel vat, and the latex was 23 ° C. ± 2 ° C. and humidity 50 ± 10 RH% for 5 days. It was dried to obtain a cast film, and the film was cut into 5 mm squares to prepare an XNBR latex dried product sample.
(2)使用したエポキシ架橋剤
 本実験例において使用したエポキシ架橋剤は表2のとおりである。
Figure JPOXMLDOC01-appb-T000004
 なお、エポキシ当量は各社カタログ値によるものであり、平均エポキシ基数については分析値である。
(2) Epoxy cross-linking agent used Table 2 shows the epoxy cross-linking agent used in this experimental example.
Figure JPOXMLDOC01-appb-T000004
The epoxy equivalent is based on the catalog value of each company, and the average number of epoxy groups is an analytical value.
<MIBK/水分配率>
 メチルイソブチルケトン(MIBK)/水分配率(%)は、ラテックス液中と類似した環境でエポキシ架橋剤がどれほどMIBK層へ移動するかを確認するために計測した値である。
 有機層としてMIBKを用いたのは、ラテックスの物性がメチルエチルケトン(MEK)と類似しているため、MEKと性質が近く、かつ水への溶解性がMEKより低く、層の分離がはっきりできると考えられたためである。
<MIBK / water distribution rate>
Methyl isobutyl ketone (MIBK) / water partition rate (%) is a value measured to confirm how much the epoxy cross-linking agent moves to the MIBK layer in an environment similar to that in a latex solution.
The reason why MIBK was used as the organic layer is that the physical properties of latex are similar to those of methyl ethyl ketone (MEK), so it is thought that the properties are similar to MEK, the solubility in water is lower than MEK, and the layer can be clearly separated. Because it was done.
 MIBK/水分配率は以下の手順で測定した。
1.ホールねじ口試験管(マルエム社製φ16.5×105×φ10.0 12mL NR-10H)に純水5.0g、メチルイソブチルケトン(MIBK)5.0gを正確に秤量し、架橋剤試料0.5gを加え室温(23±2℃)で攪拌(3分間)し、よく混合させる。
2.遠心分離機(株式会社コクサン製、卓上遠心分離機 H-103N)に3000rpm、10分の条件(1.0×103G)でかけ、水層とMIBK層に分離させる。
3.分離したMIBK層をパスツールピペットで、ディスポカップに分取、計量する。
4.次式でMIBK/水分配率を算出する。
MIBK/水分配率(%)=(分配後MIBK層重量(g)-分配前MIBK重量(g))/(架橋剤添加重量(g))×100
5.この計測を3回行い、平均値を算出し、MIBK/水分配率の数値とした。
なお、手順2.の攪拌時には、ボルテックスミキサー(Scientific Industries, Inc.製、スタンダードモデル、VORTEX-GENIE 2 Mixer)を使用した。
The MIBK / water distribution ratio was measured by the following procedure.
1. 1. Accurately weigh 5.0 g of pure water and 5.0 g of methyl isobutyl ketone (MIBK) in a hole screw cap test tube (φ16.5 × 105 × φ10.0 12 mL NR-10H manufactured by Maruem), and crosslinker sample 0. Add 5 g and stir (3 minutes) at room temperature (23 ± 2 ° C.) to mix well.
2. 2. Centrifuge (manufactured by Kokusan Co., Ltd., desktop centrifuge H-103N) is subjected to a condition of 3000 rpm for 10 minutes (1.0 × 10 3 G) to separate the aqueous layer and the MIBK layer.
3. 3. Separate and weigh the separated MIBK layer into a disposable cup with a Pasteur pipette.
4. The MIBK / water distribution ratio is calculated by the following formula.
MIBK / water distribution rate (%) = (MIBK layer weight after distribution (g) -MIBK weight before distribution (g)) / (crosslinking agent addition weight (g)) × 100
5. This measurement was performed three times, the average value was calculated, and the value was used as the value of MIBK / water distribution rate.
In addition, procedure 2. A vortex mixer (manufactured by Scientific Industries, Inc., standard model, VORTEX-GENIE 2 Mixer) was used for stirring.
(3)使用したポリカルボジイミド
 本実施例で使用したポリカルボジイミドは、主に日清紡ケミカル社製V-02-L2である。その物性は以下のとおりである。
  平均粒子径:11.3nm
  数平均分子量:3600
  1分子あたりのカルボジイミド官能基数:9.4
(3) Polycarbodiimide used The polycarbodiimide used in this example is mainly V-02-L2 manufactured by Nisshinbo Chemical Co., Ltd. Its physical characteristics are as follows.
Average particle size: 11.3 nm
Number average molecular weight: 3600
Number of carbodiimide functional groups per molecule: 9.4
(4)硬化フィルムの作成と評価
(a)ディップ成形用組成物の調製
 表1に記載したXNBRの溶液250gに、水100gを加えて希釈し攪拌を開始した。
 その後、5重量%水酸化カリウム水溶液を使用して予備的にpH9.2~9.3に調整した。
 表2に示すエポキシ架橋剤1.0重量部とジエチレングリコール1.0重量部と混合したものと、上記(3)のポリカルボジイミド0.5重量部とを、上記溶液に加えた。
 さらに、酸化防止剤0.2重量部(Farben Technique(M)社製「CVOX-50」(固形分53%))、酸化亜鉛1.0重量部(Farben Technique(M)社製、商品名「CZnO-50」)及び酸化チタン1.5重量部(Farben Technique(M)社製、「PW-601」(固形分71%))を添加し、終夜(16時間)撹拌混合した。その後、5重量%水酸化カリウム水溶液を使用してpHを10~10.5に調整した後、ディップ成形用組成物の固形分濃度を、水を加えて22%に調整し、使用するまでビーカー内で撹拌を続け、ディップ成形用組成物を得た。
 なお、固形分濃度は凝固液のカルシウム濃度と組み合わせ、フィルムの膜厚を調整するためのもので、この場合の固形分濃度22%は、凝固液のカルシウム濃度20%とによってフィルムの膜厚を80μmに調整できる。
(4) Preparation and Evaluation of Cured Film (a) Preparation of Dip Molding Composition To 250 g of the XNBR solution shown in Table 1, 100 g of water was added to dilute and stirring was started.
Then, the pH was preliminarily adjusted to 9.2 to 9.3 using a 5 wt% potassium hydroxide aqueous solution.
A mixture of 1.0 part by weight of the epoxy cross-linking agent shown in Table 2 and 1.0 part by weight of diethylene glycol, and 0.5 part by weight of the polycarbodiimide of (3) above were added to the above solution.
Further, 0.2 parts by weight of the antioxidant (“CVOX-50” (solid content 53%) manufactured by Farben Technique (M)), 1.0 part by weight of zinc oxide (manufactured by Farben Technique (M)), trade name “ CZnO-50 ”) and 1.5 parts by weight of titanium oxide (“PW-601” (solid content 71%) manufactured by Farben Technique (M)) were added, and the mixture was stirred and mixed overnight (16 hours). Then, after adjusting the pH to 10 to 10.5 using a 5 wt% potassium hydroxide aqueous solution, the solid content concentration of the dip molding composition was adjusted to 22% by adding water, and the beaker was used until it was used. Stirring was continued in the inside to obtain a composition for dip molding.
The solid content concentration is for adjusting the film thickness by combining with the calcium concentration of the coagulation liquid. In this case, the solid content concentration of 22% is the film thickness of the coagulation liquid of 20%. It can be adjusted to 80 μm.
(b)凝固液の調製
 ハンツマン社(Huntsman Corporation)製の界面活性剤「Teric 320」0.56gを水42.0gに溶解した液に、離型剤としてCRESTAGE INDUSTRY社製「S-9」(固形分濃度25.46%)19.6gを、あらかじめ計量しておいた水30gの一部を用いて約2倍に希釈した後にゆっくり加えた。容器に残ったS-9を残った水で洗い流しながら全量を加え、3~4時間撹拌し、S-9分散液を作成する。
 別のビーカーに硝酸カルシウム四水和物143.9gを水153.0gに溶解させたものを用意し、撹拌しながら、先に調製したS-9分散液を硝酸カルシウム水溶液に加えた。
 5%アンモニア水でpHを8.5~9.5に調整し、最終的に硝酸カルシウムが無水物として20%、S-9が1.2%の固形分濃度となるように水を加え、500gの凝固液を得た。得られた凝固液は、使用するまで1Lビーカーで撹拌を継続した。
(B) Preparation of coagulating liquid CRESTAGE INDUSTRY "S-9" (S-9) as a release agent in a liquid prepared by dissolving 0.56 g of a surfactant "Teric 320" manufactured by Huntsman Corporation in 42.0 g of water. 19.6 g (solid content concentration 25.46%) was diluted about 2-fold with a portion of 30 g of pre-weighed water and then slowly added. Rinse the S-9 remaining in the container with the remaining water, add the whole amount, and stir for 3 to 4 hours to prepare an S-9 dispersion.
143.9 g of calcium nitrate tetrahydrate dissolved in 153.0 g of water was prepared in another beaker, and the S-9 dispersion prepared above was added to the aqueous calcium nitrate solution with stirring.
Adjust the pH to 8.5 to 9.5 with 5% aqueous ammonia, and finally add water so that calcium nitrate has a solid content concentration of 20% as an anhydride and S-9 has a solid content concentration of 1.2%. 500 g of coagulant was obtained. The obtained coagulant was continuously stirred in a 1 L beaker until it was used.
(c)陶板への凝固剤付着
 上記凝固液を撹拌しながら50℃程度に加温し、200メッシュのナイロンフィルターでろ過した後、浸漬用容器に入れ、洗浄後70℃に温めた陶製の板(200×80×3mm、以下「陶板」と記す。)を浸漬した。具体的には、陶板の先端が凝固液の液面に接触してから、陶板の先端から18cmの位置までを4秒かけて浸漬させ、浸漬したまま4秒保持し、3秒間かけて抜き取った。速やかに陶板表面に付着した凝固液を振り落し、陶板表面を乾燥させた。乾燥後の陶板は、ディップ成形用組成物(ラテックス)浸漬に備えて、再び70℃まで温めた。
(C) Adhesion of coagulant to porcelain plate The coagulant is heated to about 50 ° C. with stirring, filtered through a 200 mesh nylon filter, placed in a dipping container, washed, and then warmed to 70 ° C. (200 x 80 x 3 mm, hereinafter referred to as "porcelain plate") was immersed. Specifically, after the tip of the porcelain plate came into contact with the liquid surface of the coagulating liquid, the porcelain plate was immersed at a position 18 cm from the tip of the porcelain plate for 4 seconds, held for 4 seconds while being immersed, and withdrawn over 3 seconds. .. The coagulant adhering to the surface of the ceramic plate was quickly shaken off to dry the surface of the ceramic plate. The dried porcelain plate was warmed again to 70 ° C. in preparation for dipping in the dip molding composition (latex).
(d)硬化フィルムの製造
 上記ディップ成形用組成物を、室温のまま200メッシュナイロンフィルターでろ過した後、浸漬用容器に入れ、上記の凝固液を付着させた60℃の陶板を浸漬した。具体的には、陶板を6秒かけて浸漬し、4秒間保持し、3秒かけて抜き取った。ディップ成形用組成物が垂れなくなるまで空中で保持し、先端に付着したラテックス滴を軽く振り落した。
 ディップ成形用組成物に浸漬した陶板を50℃で2分間放置して硬化フィルム前駆体を作製した。(ゲリング)。
 次いで、50℃の脱イオン水で硬化フィルム前駆体を2分間リーチングした。
 このフィルムを、70℃で5分間乾燥させ(プレキュアリング)、主に140℃で30分間、熱硬化させた(キュアリング)。
 得られた硬化フィルムを陶板からきれいに剥がし、物性試験に供するまで、23℃±2℃、湿度50%±10%の環境で保管した。
(D) Production of Cured Film The dip molding composition was filtered through a 200 mesh nylon filter at room temperature, placed in a dipping container, and immersed in a porcelain plate at 60 ° C. to which the coagulating liquid was attached. Specifically, the porcelain plate was immersed for 6 seconds, held for 4 seconds, and withdrawn over 3 seconds. The dip molding composition was held in the air until it did not drip, and the latex droplets adhering to the tip were gently shaken off.
A porcelain plate immersed in the dip molding composition was left at 50 ° C. for 2 minutes to prepare a cured film precursor. (Gering).
The cured film precursor was then leached with deionized water at 50 ° C. for 2 minutes.
The film was dried at 70 ° C. for 5 minutes (precuring) and mainly thermoset at 140 ° C. for 30 minutes (curing).
The obtained cured film was peeled off cleanly from the ceramic plate and stored in an environment of 23 ° C. ± 2 ° C. and a humidity of 50% ± 10% until it was subjected to a physical characteristic test.
(e)硬化フィルムの評価
<引張強度、モジュラス及び伸び率>
 ディップ成形体の引張強度、モジュラス及び伸び率の測定は、ASTM D412記載の方法に従って行った。ディップ成形体をダンベル社製DieCを用いて打ち抜き、試験片を作製した。試験片はA&D社製のTENSILON万能引張試験機RTC-1310Aを用い、試験速度500mm/分、チャック間距離75mm、標線間距離25mmで測定される。
 手袋物性としては、引張強度は14MPa以上、伸び率としては500%以上を基準として考えている。
 モジュラスについては、特に、手袋装着時の指の動きを妨げないような柔軟性を満たす観点から、100%伸びの時点でのモジュラス(100%モジュラス)、300%伸びの時点でのモジュラス(300%モジュラス)、500%伸びの時点でのモジュラス(500%モジュラス)に着目した。
(E) Evaluation of cured film <tensile strength, modulus and elongation>
The tensile strength, modulus and elongation of the dip molded article were measured according to the method described in ASTM D412. The dip molded product was punched out using DieC manufactured by Dumbbell Co., Ltd. to prepare a test piece. The test piece is measured using a TENSILON universal tensile tester RTC-1310A manufactured by A & D Co., Ltd. at a test speed of 500 mm / min, a distance between chucks of 75 mm, and a distance between marked lines of 25 mm.
As for the physical characteristics of gloves, the tensile strength is considered to be 14 MPa or more, and the elongation rate is considered to be 500% or more.
Regarding the modulus, especially from the viewpoint of satisfying the flexibility that does not hinder the movement of the finger when wearing gloves, the modulus at the time of 100% elongation (100% modulus) and the modulus at the time of 300% elongation (300%). We focused on the modulus (500% modulus) at the time of 500% elongation.
<疲労耐久性>
 硬化フィルムからJIS K6251の1号ダンベル試験片を切り出し、これを、人工汗液(1リットル中に塩化ナトリウム20g、塩化アンモニウム17.5g、乳酸17.05g、酢酸5.01gを含み、水酸化ナトリウム水溶液によりpH4.7に調整)中に浸漬して、上述の耐久性試験装置を用いて疲労耐久性を評価した。
 すなわち、長さ120mmのダンベル試験片の2端部からそれぞれ15mmの箇所を固定チャック及び可動チャックで挟み、固定チャック側の試験片の下から60mmまでを人工汗液中に浸漬した。可動チャックを、147mm(123%)となるミニマムポジション(緩和状態)に移動させて11秒間保持したのち、試験片の長さが195mm(163%)となるマックスポジション(伸長状態)と、再びミニマムポジション(緩和状態)に1.8秒かけて移動させ、これを1サイクルとしてサイクル試験を行った。1サイクルの時間は12.8秒であり、試験片が破れるまでのサイクル数を乗じて、疲労耐久性の時間(分)を得た。
 疲労耐久性は、手袋としての実用化の観点から、240分以上であることが好ましい。
<Fatigue durability>
A JIS K6251 No. 1 dumbbell test piece was cut out from the cured film, and this was mixed with an artificial sweat solution (20 g of sodium chloride, 17.5 g of ammonium chloride, 17.05 g of lactic acid, 5.01 g of acetic acid in 1 liter, and an aqueous sodium hydroxide solution. The pH was adjusted to 4.7), and the fatigue durability was evaluated using the above-mentioned durability test apparatus.
That is, 15 mm from each of the two ends of the 120 mm long dumbbell test piece was sandwiched between the fixed chuck and the movable chuck, and 60 mm from the bottom of the test piece on the fixed chuck side was immersed in the artificial sweat solution. After moving the movable chuck to the minimum position (relaxed state) of 147 mm (123%) and holding it for 11 seconds, the test piece reaches the maximum position (extended state) of 195 mm (163%) and the minimum again. It was moved to the position (relaxed state) over 1.8 seconds, and a cycle test was conducted with this as one cycle. The time of one cycle was 12.8 seconds, and the time (minutes) of fatigue durability was obtained by multiplying by the number of cycles until the test piece broke.
The fatigue durability is preferably 240 minutes or more from the viewpoint of practical use as gloves.
<応力保持率>
 硬化フィルムから、JIS K 6263に規定の短冊2号に準じて打ち抜きカッター(ダンベル社製 スーパーストレートカッター SK-1000-D)を用いて、試験片を作製し、該試験片の両端に速度100 mm/分もしくは500 mm/分にて引張応力をかけ、該試験片が2倍(100%)に伸張した時点で伸張を止めると共に引張応力M100(0)を測定し、また、そのまま6分間経過した後の引張応力M100(6)を測定した。そして、M100(0)に対するM100(6)の百分率を応力保持率とした。
 応力保持率が高いほど、伸長後により応力が維持される状態を示しており、外力が取り除かれた際に元の形に戻ろうとする弾性変形力が高いことを示し、手袋のフィット感、裾部の締め付けが良好になり、しわ寄りが少なくなる。
 上記の方法で測定された応力保持率は、従来の硫黄架橋XNBR手袋の応力保持率が30%台であるので、本実施形態の成形体は50%以上あればXNBR手袋としては良好であり、60%以上であることがより好ましい。
<Stress retention rate>
A test piece is prepared from the cured film using a punching cutter (Super Straight Cutter SK-1000-D manufactured by Dumbbell) according to the strip No. 2 specified in JIS K 6263, and the speed is 100 mm at both ends of the test piece. Tensile stress was applied at / min or 500 mm / min, and when the test piece stretched twice (100%), stretching was stopped and tensile stress M100 (0) was measured, and 6 minutes passed as it was. The subsequent tensile stress M100 (6) was measured. Then, the percentage of M100 (6) with respect to M100 (0) was defined as the stress retention rate.
The higher the stress retention rate, the higher the stress is maintained after stretching, and the higher the elastic deformation force that tries to return to the original shape when the external force is removed, the fit of the glove and the hem. The tightening of the part is improved and wrinkles are reduced.
As for the stress retention rate measured by the above method, since the stress retention rate of the conventional sulfur-crosslinked XNBR glove is in the 30% range, if the molded product of the present embodiment is 50% or more, it is good as an XNBR glove. More preferably, it is 60% or more.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記実験例1及び2の結果から、架橋剤として金属架橋剤(亜鉛)を含まないものでも、引張強度、伸び率、疲労耐久性、応力保持率が良好なディップ成形品を得ることができた。なお、市販されている硫黄架橋手袋では応力保持率が40%程度、500%モジュラスが30MPa程度であり、本発明のディップ成形品の方が応力保持率が明らかに高く、500%モジュラスが低い。500%モジュラスが低いということは、伸び500%時における引張応力が低いことを意味し、柔軟性が高いことを意味する。 From the results of Experimental Examples 1 and 2, it was possible to obtain a dip molded product having good tensile strength, elongation, fatigue durability, and stress retention even when the cross-linking agent did not contain a metal cross-linking agent (zinc). .. The commercially available sulfur-crosslinked gloves have a stress retention rate of about 40% and a 500% modulus of about 30 MPa, and the dip molded product of the present invention has a clearly higher stress retention rate and a lower 500% modulus. A low 500% modulus means a low tensile stress at 500% elongation and a high flexibility.

Claims (11)

  1.  (メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーと、ポリカルボジイミドと、エポキシ架橋剤と、水と、及びpH調整剤とを少なくとも含むディップ成形用組成物であって、
     前記エラストマーにおいて、(メタ)アクリロニトリル由来の構造単位が12~36重量%、不飽和カルボン酸由来の構造単位が2~10重量%、及びブタジエン由来の構造単位が50~75重量%であり、
     前記エポキシ架橋剤は、1分子中に3個以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤を含み、
     前記ポリカルボジイミドは、分子構造内に親水性セグメントを含むポリカルボジイミドを少なくとも1種含むものである、ディップ成形用組成物。
    Elastomers containing structural units derived from (meth) acrylonitrile, structural units derived from unsaturated carboxylic acids, and structural units derived from butadiene in the polymer main chain, polycarbodiimides, epoxy crosslinkers, water, and pH adjusters. A composition for dip molding containing at least
    In the elastomer, the structural unit derived from (meth) acrylonitrile is 12 to 36% by weight, the structural unit derived from unsaturated carboxylic acid is 2 to 10% by weight, and the structural unit derived from butadiene is 50 to 75% by weight.
    The epoxy cross-linking agent contains an epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule.
    The polycarbodiimide is a composition for dip molding, which comprises at least one polycarbodiimide containing a hydrophilic segment in the molecular structure.
  2.  前記エポキシ架橋剤の下記測定方法によるMIBK/水分配率が27%以上である、請求項1に記載のディップ成形用組成物。
     MIBK/水分配率測定方法:試験管に水5.0g、メチルイソブチルケトン(MIBK)5.0gおよびエポキシ架橋剤0.5gを精秤し、23℃±2℃で3分間攪拌、混合した後、1.0×103Gで10分間遠心分離し、水層とMIBK層に分離させる。次いで、MIBK層を分取、計量し、次式によりMIBK/水分配率を算出する。
    MIBK/水分配率(%)=(分配後MIBK層重量(g)-分配前MIBK重量(g))/架橋剤添加重量(g)×100
    上記測定を3回行い、平均値をMIBK/水分配率とする。
    The composition for dip molding according to claim 1, wherein the MIBK / water distribution ratio according to the following measuring method of the epoxy cross-linking agent is 27% or more.
    MIBK / water distribution rate measurement method: 5.0 g of water, 5.0 g of methyl isobutyl ketone (MIBK) and 0.5 g of epoxy cross-linking agent are precisely weighed in a test tube, stirred at 23 ° C ± 2 ° C for 3 minutes, and mixed. Centrifuge at 1.0 × 10 3 G for 10 minutes to separate into an aqueous layer and a MIBK layer. Next, the MIBK layer is separated and weighed, and the MIBK / water distribution ratio is calculated by the following formula.
    MIBK / water distribution rate (%) = (MIBK layer weight after distribution (g) -MIBK weight before distribution (g)) / crosslinker addition weight (g) x 100
    The above measurement is performed three times, and the average value is taken as MIBK / water distribution ratio.
  3.  前記pH調整剤がアルカリ金属の水酸化物である、請求項1または2に記載のディップ成形用組成物。 The dip molding composition according to claim 1 or 2, wherein the pH adjuster is an alkali metal hydroxide.
  4.  さらにエポキシ架橋剤の分散剤を含む、請求項1~3のいずれか一項に記載のディップ成形用組成物。 The composition for dip molding according to any one of claims 1 to 3, further comprising a dispersant for an epoxy cross-linking agent.
  5.  前記エポキシ架橋剤の分散剤が、一価の低級アルコール、以下の式(1)で表されるグリコール、以下の式(2)で表されるエーテル、以下の式(3)で表されるエステルからなる群から選択される1種以上である、請求項4に記載のディップ成形用組成物。
     HO-(CH2CHR1-O)n1-H  (1)
    [式(1)中、R1は、水素またはメチル基を表し、n1は1~3の整数を表す。]
     R2O-(CH2CHR1-O)n2-R3  (2)
    [式(2)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、R3は、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
     R2O-(CH2CHR1-O)n3-(C=O)-CH3 (3)
    [式(3)中、R1は、水素またはメチル基を表し、R2は、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。]
    The dispersant of the epoxy cross-linking agent is a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and an ester represented by the following formula (3). The composition for dip molding according to claim 4, which is one or more selected from the group consisting of.
    HO- (CH 2 CHR 1- O) n1- H (1)
    [In formula (1), R 1 represents a hydrogen or methyl group, and n1 represents an integer of 1 to 3. ]
    R 2 O- (CH 2 CHR 1- O) n2- R 3 (2)
    [In formula (2), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It represents a hydrocarbon group, and n2 represents an integer of 0 to 3. ]
    R 2 O- (CH 2 CHR 1- O) n3- (C = O) -CH 3 (3)
    [In formula (3), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n 3 represents an integer of 0 to 3. ]
  6.  ディップ成形用組成物に対するエポキシ架橋剤の添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上、5.0重量部以下であり、ディップ成形用組成物に対するポリカルボジイミドの添加量が、ディップ成形用組成物に含まれるエラストマーの100重量部に対して、0.2重量部以上、5.0重量部以下である、請求項1~5のいずれか一項に記載のディップ成形用組成物。 The amount of the epoxy cross-linking agent added to the dip molding composition is 0.2 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer contained in the dip molding composition, and is used for dip molding. Any of claims 1 to 5, wherein the amount of polycarbodiimide added to the composition is 0.2 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer contained in the composition for dip molding. The composition for dip molding according to item 1.
  7.  前記ディップ成形用組成物における、酸化亜鉛の含有量が、前記エラストマー100重量部に対して0.5重量部以下である、請求項1~6のいずれか一項に記載のディップ成形用組成物。 The dip molding composition according to any one of claims 1 to 6, wherein the zinc oxide content in the dip molding composition is 0.5 parts by weight or less with respect to 100 parts by weight of the elastomer. ..
  8.  (1)手袋成形型を、カルシウムイオンを含む凝固剤液中に浸して、該凝固剤を手袋成形型に付着させる工程、
    (2)pH調整剤によりpHを9.5~12.0に調整した請求項1~7のいずれか一項に記載のディップ成形用組成物を撹拌する工程、
    (3)前記(1)の凝固剤が付着した手袋成形型を、前記(2)の工程を経たディップ成形用組成物に浸漬し、手袋成形型にディップ成形用組成物を凝固させ、膜を形成させるディッピング工程、
    (4)手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作製するゲリング工程、
    (5)手袋成形型上に形成された硬化フィルム前駆体から不純物を除去するリーチング工程、
    (6)前記リーチング工程の後に、手袋の袖口部分に巻きを作るビーディング工程、
    (7)硬化フィルム前駆体を加熱及び乾燥し、硬化フィルムを得る、キュアリング工程、
    を含み、上記(3)~(7)の工程を上記の順序で行う、手袋の製造方法。
    (1) A step of immersing a glove mold in a coagulant solution containing calcium ions to attach the coagulant to the glove mold.
    (2) The step of stirring the dip molding composition according to any one of claims 1 to 7, wherein the pH is adjusted to 9.5 to 12.0 with a pH adjuster.
    (3) The glove molding mold to which the coagulant of (1) is attached is immersed in the dip molding composition that has undergone the step (2), and the dip molding composition is coagulated in the glove molding mold to form a film. Dipping process to form,
    (4) A gelling step of gelling a film formed on a glove molding mold to prepare a cured film precursor.
    (5) A leaching step of removing impurities from the cured film precursor formed on the glove molding mold,
    (6) A beading step of making a roll around the cuffs of a glove after the leaching step.
    (7) A curing step of heating and drying the cured film precursor to obtain a cured film.
    A method for manufacturing gloves, which comprises the above steps (3) to (7) in the above order.
  9.  上記(3)及び(4)の工程をその順序で2回繰り返す、請求項8に記載の手袋の製造方法。 The glove manufacturing method according to claim 8, wherein the steps (3) and (4) above are repeated twice in that order.
  10.  上記(6)と(7)の工程の間に、前記硬化フィルム前駆体を(7)の工程の温度よりも低温で加熱及び乾燥するプリキュアリング工程をさらに含む、請求項8または9に記載の手袋の製造方法。 8. The method according to claim 8 or 9, further comprising a precuring step of heating and drying the cured film precursor at a temperature lower than the temperature of the step (7) between the steps (6) and (7). How to make gloves.
  11.  請求項8~10のいずれか一項に記載された製造方法により作製された、手袋。 Gloves manufactured by the manufacturing method according to any one of claims 8 to 10.
PCT/JP2020/027068 2019-07-12 2020-07-10 Composition for dip molding, method for producing glove, and glove WO2021010334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533045A JP7270738B2 (en) 2019-07-12 2020-07-10 DIP-MOLDING COMPOSITION, GLOVE MANUFACTURING METHOD, AND GLOVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130409 2019-07-12
JP2019130409 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010334A1 true WO2021010334A1 (en) 2021-01-21

Family

ID=74210942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027068 WO2021010334A1 (en) 2019-07-12 2020-07-10 Composition for dip molding, method for producing glove, and glove

Country Status (2)

Country Link
JP (1) JP7270738B2 (en)
WO (1) WO2021010334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116061362A (en) * 2022-12-27 2023-05-05 安徽和佳医疗用品科技有限公司 Gum dipping device for PVC medical glove production
WO2023219063A1 (en) * 2022-05-09 2023-11-16 ミドリ安全株式会社 Composition and glove for dip molding, and methods for producing composition and glove for dip molding

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144163A (en) * 2008-12-16 2010-07-01 Lg Chem Ltd Carboxylic acid-modified nitrile copolymer latex and latex composition for dip forming comprising the same
WO2017126660A1 (en) * 2016-01-21 2017-07-27 ミドリ安全株式会社 Glove
JP2017213914A (en) * 2017-09-01 2017-12-07 ノーベル サイエンティフィック エスディーエヌ.ビーエイチディー. Method of making polymer article and resulting article
WO2017217542A1 (en) * 2016-06-16 2017-12-21 ミドリ安全株式会社 Method of manufacturing gloves, glove, and emulsion composition for gloves
WO2018188966A1 (en) * 2017-04-10 2018-10-18 Arlanxeo Deutschland Gmbh Vulcanizable composition containing hxnbr latex and polyfunctional epoxide
WO2019102985A1 (en) * 2017-11-24 2019-05-31 ミドリ安全株式会社 Glove, dip forming composition and glove manufacturing method
WO2019194056A1 (en) * 2018-04-06 2019-10-10 ミドリ安全株式会社 Composition for dip molding, method for producing gloves, and gloves
JP2020037635A (en) * 2018-09-03 2020-03-12 ミドリ安全株式会社 Glove dip composition, method for manufacturing glove, and glove

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144163A (en) * 2008-12-16 2010-07-01 Lg Chem Ltd Carboxylic acid-modified nitrile copolymer latex and latex composition for dip forming comprising the same
WO2017126660A1 (en) * 2016-01-21 2017-07-27 ミドリ安全株式会社 Glove
WO2017217542A1 (en) * 2016-06-16 2017-12-21 ミドリ安全株式会社 Method of manufacturing gloves, glove, and emulsion composition for gloves
WO2018188966A1 (en) * 2017-04-10 2018-10-18 Arlanxeo Deutschland Gmbh Vulcanizable composition containing hxnbr latex and polyfunctional epoxide
JP2017213914A (en) * 2017-09-01 2017-12-07 ノーベル サイエンティフィック エスディーエヌ.ビーエイチディー. Method of making polymer article and resulting article
WO2019102985A1 (en) * 2017-11-24 2019-05-31 ミドリ安全株式会社 Glove, dip forming composition and glove manufacturing method
WO2019194056A1 (en) * 2018-04-06 2019-10-10 ミドリ安全株式会社 Composition for dip molding, method for producing gloves, and gloves
JP2020037635A (en) * 2018-09-03 2020-03-12 ミドリ安全株式会社 Glove dip composition, method for manufacturing glove, and glove

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219063A1 (en) * 2022-05-09 2023-11-16 ミドリ安全株式会社 Composition and glove for dip molding, and methods for producing composition and glove for dip molding
CN116061362A (en) * 2022-12-27 2023-05-05 安徽和佳医疗用品科技有限公司 Gum dipping device for PVC medical glove production

Also Published As

Publication number Publication date
JP7270738B2 (en) 2023-05-10
JPWO2021010334A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP7225162B2 (en) Glove, dip molding composition, and method for producing glove
JP6778331B2 (en) Dip molding composition, glove manufacturing method and gloves
JP6860698B2 (en) Dip molding composition, glove manufacturing method and gloves
WO2021010334A1 (en) Composition for dip molding, method for producing glove, and glove
WO2021010343A1 (en) Crosslinking agent for dip molding, composition for dip molding and glove
WO2020195712A1 (en) Composition for dip molding, method for producing glove using same, and glove
WO2021200984A1 (en) Composition for dip molding and molded body thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839759

Country of ref document: EP

Kind code of ref document: A1