WO2021010343A1 - Crosslinking agent for dip molding, composition for dip molding and glove - Google Patents

Crosslinking agent for dip molding, composition for dip molding and glove Download PDF

Info

Publication number
WO2021010343A1
WO2021010343A1 PCT/JP2020/027114 JP2020027114W WO2021010343A1 WO 2021010343 A1 WO2021010343 A1 WO 2021010343A1 JP 2020027114 W JP2020027114 W JP 2020027114W WO 2021010343 A1 WO2021010343 A1 WO 2021010343A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
linking agent
halohydrin
dip molding
weight
Prior art date
Application number
PCT/JP2020/027114
Other languages
French (fr)
Japanese (ja)
Inventor
憲秀 榎本
充志 森永
Original Assignee
ミドリ安全株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミドリ安全株式会社 filed Critical ミドリ安全株式会社
Priority to JP2021533051A priority Critical patent/JPWO2021010343A1/ja
Publication of WO2021010343A1 publication Critical patent/WO2021010343A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/04Appliances for making gloves; Measuring devices for glove-making
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention is a dip molding cross-linking agent (hereinafter, also referred to as "halohydrin cross-linking agent”) which is a compound having two or more halohydrin groups for a carboxylic acid-modified NBR latex, and a dip containing at least the dip molding cross-linking agent.
  • halohydrin cross-linking agent a dip molding cross-linking agent which is a compound having two or more halohydrin groups for a carboxylic acid-modified NBR latex, and a dip containing at least the dip molding cross-linking agent.
  • the present invention relates to a molding composition, a method for producing a glove using the dip molding composition, and a glove.
  • a water-based emulsion containing a carboxylic acid-modified acrylonitrile butadiene rubber (XNBR) as an elastomer is produced in large quantities as a material for dip molding, and synthetic rubber gloves are particularly used.
  • XNBR carboxylic acid-modified acrylonitrile butadiene rubber
  • these elastomers are further copolymerized with an unsaturated carboxylic acid monomer and used as XNBR.
  • the X indicates that an unsaturated carboxylic acid is added as a component of the copolymerization.
  • a dip molded product produced from an aqueous emulsion containing XNBR as an elastomer is formed from a crosslinked structure of covalent bonds of butadiene, sulfur and a vulcanization accelerator, and a crosslinked structure of ionic bonds of a carboxyl group and zinc. Consists of film.
  • This glove has excellent heat resistance and chemical resistance, but has a shorter molecular chain than natural rubber and isoprene / chloroprene synthetic rubber gloves, has fewer double bonds that represent the original properties of rubber, and has weak bonding strength.
  • the vulcanization accelerator used in the production of the above dip molded products is included in the "Japanese standard allergen" defined by the Japan Society for Skin Allergy and Contact Dermatitis, and allergies develop in applications such as gloves. Multiple cases have been reported. From these case reports, it is considered that the vulcanization accelerator is an allergen for delayed-type allergy (Type IV) in XNBR gloves.
  • a vulcanization accelerator is indispensable for the cross-linking reaction (vulcanization) with sulfur from the viewpoint of economy and performance, but since it is considered to be the main cause of delayed allergy, sulfur and sulfurization are widely used.
  • Cross-linking technology that does not use a sulfur accelerator is being studied and put into practical use.
  • Sulfur and vulcanization accelerator-free gloves include, for example, self-crosslinking gloves in which an organic crosslinkable compound is contained during latex polymerization, or an external crosslinking agent type that crosslinks with polycarbodiimide or an epoxy crosslinking agent having an epoxy group. Gloves etc. have been developed.
  • Patent Document 1 contains a polymer having a specific structural unit and a specific reactive group as a latex, so that it can be covalently bonded to a carboxyl group without adding a cross-linking agent. Gloves made with an elastomeric composition are disclosed.
  • Patent Document 2 discloses a glove manufactured by using an elastomer having a specific structural unit as a latex and an emulsion composition for a glove containing polycarbodiimide as a cross-linking agent.
  • Patent Document 3 discloses a glove manufactured by using an elastomer having a specific structural unit as a latex and a dip molding composition containing a trivalent or higher valent epoxy compound as a cross-linking agent.
  • a halohydrin cross-linking agent which has not been used in the field of conventional gloves of the external cross-linking agent type, is used and is excellent in tensile strength, elongation, and fatigue durability without using a vulcanization accelerator.
  • the first task was to make gloves, and the second task was to improve the weaknesses of conventional sulfur-vulcanized XNBR gloves and to make gloves with excellent stress retention and at the same time good elongation.
  • the first problem is set as a problem to be solved at least, and the second problem is set as a problem that is desired to be further solved. It is an issue.
  • the present inventors react the halohydrin with the carboxyl group present in the elastomer. It was thought that crosslinks could be formed within and / or between the elastomeric particles. Furthermore, by using halohydrin, which has a higher affinity for water than the elastomer, the halohydrin can be reacted with the carboxyl group existing on the surface of the elastomer particles to form a crosslink between the elastomer particles.
  • halohydrin which has a higher oiliness than the elastomer
  • the halohydrin can be reacted with the carboxyl group existing in the elastomer particles to form a crosslink in the elastomer particles.
  • halohydrin as a cross-linking agent for dip molding
  • the gist of the present invention is as follows.
  • a cross-linking agent for dip molding which contains a halohydrin compound having at least two halohydrin groups D represented by the following formula (I) in one molecule.
  • R 1 is a hydrogen or alkyl group
  • X is a halogen group.
  • R 1 is a hydrogen or alkyl group
  • X is a halogen group.
  • R 2 is a (k + m) -valent aliphatic hydrocarbon group having 2 to 10 carbon atoms
  • X is a halogen group
  • k and m are 2 ⁇ k ⁇ 6,0. It is an integer that satisfies ⁇ m ⁇ 4 and 2 ⁇ k + m ⁇ 6.
  • a composition for dip molding which comprises a cross-linking agent for molding.
  • [6] The composition for dip molding according to the above [4] or [5], which further contains an epoxy cross-linking agent containing an epoxy compound having at least three epoxy groups in one molecule.
  • a glove which is a cured product of the dip molding composition according to any one of the above [4] to [6].
  • a method for manufacturing a glove which comprises a curing step and performs the above steps (3) to (7) in the above order.
  • a halohydrin cross-linking agent for a carboxylic acid-modified NBR latex which is not used in the field of conventional gloves, a dip molding composition containing at least the cross-linking agent, and a glove using the dip molding composition.
  • the theme is to improve the "stress retention rate” and maintain the "elongation rate” in the XNBR gloves.
  • the compatibility of these two physical properties is an improvement of the conventional sulfur vulcanized XNBR gloves, and aims to bring the NBR synthetic rubber gloves closer to the physical properties of natural rubber and isoprene / chloroprene synthetic rubber.
  • the "stress retention rate” in this case indicates how much the stress when the glove is stretched at a predetermined elongation rate is retained after a lapse of a predetermined time, and a high stress retention rate means that the stress retention rate is high.
  • the first embodiment of the present invention is a glove having a crosslinked structure in which XNBR is crosslinked with a halohydrin crosslinking agent.
  • a second embodiment of the present invention is a glove having a structure in which XNBR is crosslinked with a halohydrin cross-linking agent and an epoxy cross-linking agent.
  • a metal cross-linking agent such as zinc is not an essential element, but it may be used in combination as a cross-linking agent.
  • a common feature of the above two embodiments is the use of a halohydrin crosslinker for dip molding of XNBR.
  • Halohydrin cross-linking agents with high hydrophilicity are relatively less inactivated than epoxy cross-linking agents and have a pot life of about 6 days in the dip solution, so they are mainly oriented to the outside of the XNBR particles. It is characterized by being able to crosslink between particles with a salt of a carboxyl group or carboxylate.
  • Such a highly hydrophilic halohydrin cross-linking agent like the polycarbodiimide cross-linking agent (hereinafter referred to as “CDI cross-linking agent”), cross-links between particles by a covalent bond with a carboxyl group, but unlike the CDI cross-linking agent, Ca and K Since it is easy to crosslink by replacing metal elements such as, it is possible to reduce the portion of ion crosslinks in gloves. In addition, since it can provide tensile strength, it may be used as a substitute for a metal cross-linking agent such as zinc.
  • a metal cross-linking agent such as zinc.
  • the present inventors believe that in XNBR gloves, performing interparticle cross-linking by covalent bonds and reducing ionic bonds leads to an increase in the stress retention rate of XNBR gloves.
  • reducing the amount of metal cross-linking agents such as zinc is considered to be suitable for clean room gloves that dislike metal elution.
  • the second embodiment is characterized in that an epoxy cross-linking agent is used in combination with the halohydrin cross-linking agent, which is intended to increase the cross-linking density by cross-linking in the elastomer particles, but has particularly high hydrophilicity.
  • the highly hydrophilic halohydrin cross-linking agent is mainly a covalent bond between the elastomer particles
  • the epoxy cross-linking agent is mainly a covalent bond within the elastomer particles, so that the XNBR is shared both within the particles and between the particles. It is characterized by binding by binding.
  • gloves that are harder to break than ionic bonds can be made, and if the crosslink density is increased, gloves with a good stress retention rate can be made.
  • a metal cross-linking agent such as zinc is not essential, and ionic bonds due to Ca derived from the coagulant, K derived from the pH adjuster, etc.
  • the halohydrin cross-linking agent can also be reduced by the halohydrin cross-linking agent.
  • the halohydrin cross-linking agent when a highly oil-rich halohydrin is used, the halohydrin cross-linking agent also easily enters the inside of the particles. Therefore, the intra-particle cross-linking by the epoxy cross-linking agent alone is not sufficient to further strengthen the intra-particle cross-linking. Can be done.
  • FIG. 1 The conceptual diagram of the cross-linked structure of the glove cross-linked with the halohydrin cross-linking agent, which is a common feature of the first embodiment and the second embodiment, is shown in FIG. 1, and the cross-linking and the prior art in the embodiment are shown below.
  • a comparison table of the characteristics of cross-linking is shown in Table 1 below.
  • Zn 2+ , Ca 2+ , and K + in Table 1 are described assuming that a metal cross-linking agent, a coagulant, and a pH adjuster containing them are added, respectively, and are essential requirements. is not. Further, in the second embodiment of the present invention, Zn 2+ is shown in parentheses because in this embodiment, gloves having desired characteristics can be easily obtained without using Zn 2+. It shows that no particular addition is required in comparison with.
  • the dip molding composition of the first embodiment of the present invention is a dip molding composition containing at least an elastomer of XNBR and a halohydrin cross-linking agent.
  • the dip molding composition of the second embodiment of the present invention is a dip molding composition containing an epoxy cross-linking agent in combination with the above materials.
  • the dip molding composition according to the first and second embodiments may contain a metal cross-linking agent such as zinc as an optional component. Further, the dip molding composition according to the first and second embodiments may contain a pH adjuster, an antioxidant, a pigment, a chelating agent and the like as other components.
  • XNBR is a polymer of structural units derived from (meth) acrylonitrile ((meth) acrylonitrile residues), structural units derived from unsaturated carboxylic acids (unsaturated carboxylic acid residues), and structural units derived from butadiene (butadiene residues). It is an elastomer contained in the main chain.
  • the XNBR elastomer usually forms particles having a particle size of about 50 to 250 nm as an aqueous emulsion in the composition. The environment inside and outside the particle is significantly different, and the inside of the particle is lipophilic because the main component is a hydrocarbon composed of butadiene residue, (meth) acrylonitrile residue, and (meth) acrylic acid.
  • the outside of the particles is composed of water and a water-soluble component (for example, a pH adjuster, etc.), the outside of the particles has hydrophilicity.
  • the pH of the composition for dip molding is usually adjusted to 9.5 to 12.0 by a pH adjuster, and the carboxyl groups around the surface of the XNBR particles (elastomer particles) are oriented outward of the particles and carboxy. It is a rat.
  • a buried carboxyl group is present in the particles. Halohydrin cross-linking agents with high lipophilicity easily enter the elastomer particles, and most of them are present in the particles.
  • the highly hydrophilic halohydrin cross-linking agent is difficult to enter into the highly lipophilic elastomer particles, and most of them are present between the elastomer particles.
  • the epoxy cross-linking agent of the second embodiment is selected so as to easily enter the lipophilic region in the particles, most of them are present in the elastomer particles.
  • Metal cross-linking agents such as zinc exist between particles in the form of complex ions. The state inside the particles and between the particles is the state when the composition for dip molding is formed, but when the XNBR particles (XNBR elastomer particles) are finally laminated to form a film, the inside of the particles is formed. And the situation between the particles is almost maintained. In-particle cross-linking and inter-particle cross-linking are used in this sense in this sense.
  • each component of the dip molding composition will be described in detail.
  • the elastomer contains at least a structural unit derived from (meth) acrylonitrile, a structural unit derived from an unsaturated carboxylic acid, and a structural unit derived from butadiene in the polymer backbone.
  • This elastomer is also referred to as "carboxylated (meth) acrylonitrile butadiene elastomer” or "XNBR”.
  • gloves obtained by using XNBR as an elastomer are also referred to as "XNBR gloves”.
  • the structural unit derived from (meth) acrylonitrile that is, 25 to 30% by weight of the (meth) acrylonitrile residue
  • the structural unit derived from unsaturated carboxylic acid that is, unsaturated carboxylic acid
  • the structural unit derived from (meth) acrylonitrile is an element that mainly gives strength to gloves. If it is too small, the strength becomes insufficient, and if it is too large, the chemical resistance increases but it becomes too hard.
  • the ratio of structural units derived from (meth) acrylonitrile in the elastomer is usually 25 to 30% by weight.
  • the ratio of the structural units derived from (meth) acrylonitrile is reduced, and the ratio of the structural units derived from butadiene is increased to increase the rubber elasticity. It is preferable to increase the number of butadiene-derived double bonds produced.
  • the ratio of the structural unit derived from (meth) acrylonitrile in the elastomer is preferably 12 to 35% by weight, more preferably 17 to 30% by weight.
  • the amount of the structural unit derived from (meth) acrylonitrile can be obtained by converting the amount of nitrile groups from the amount of nitrogen atoms obtained by elemental analysis.
  • the amount of the unsaturated carboxylic acid-derived structural unit in the elastomer is preferably 2 to 10% by weight, preferably 2 to 9% by weight, in order to maintain the physical properties of the final product, the glove, which has an appropriate crosslinked structure. It is more preferably%, and further preferably 2 to 6% by weight.
  • the amount of the structural unit derived from the unsaturated carboxylic acid can be determined by the back titration method of the carboxyl group and the quantification of the carbonyl group derived from the carboxyl group by infrared spectroscopy (IR) or the like.
  • the type of unsaturated carboxylic acid that forms a structural unit derived from unsaturated carboxylic acid is not particularly limited, and may be monocarboxylic acid or polycarboxylic acid. More specifically, acrylic acid, methacrylic acid, crotonic acid and the like can be mentioned. Among them, acrylic acid and / or methacrylic acid (hereinafter, also referred to as "(meth) acrylic acid”) is preferably used, and methacrylic acid is more preferably used.
  • Butadiene-derived structural units are elements that impart flexibility to gloves, and the amount of butadiene-derived structural units in an elastomer usually loses flexibility below 50% by weight.
  • the ratio of butadiene-derived structural units in the elastomer is typically 50-75% by weight.
  • the amount of structural units derived from butadiene can be determined by a known method. Considering only the problem of increasing the stress retention rate of the XNBR gloves of the present invention, it is preferable to increase the ratio of the structural units derived from butadiene to increase the double bond of butadiene that gives rubber elasticity. However, it is important not to impair other physical properties such as tensile strength.
  • the polymer backbone is preferably composed of structural units derived from (meth) acrylonitrile, unsaturated carboxylic acids, and butadiene, but other structural units derived from polymerizable monomers. It may be included.
  • the structural unit derived from other polymerizable monomers is preferably 30% by weight or less, more preferably 20% by weight or less, particularly preferably 15% by weight or less, and particularly sets a lower limit in the elastomer. It is not necessary to do so, and it may be 0.1% by weight or more or 1% by weight or more.
  • Preferred polymerizable monomers include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene and dimethylstyrene; ethylenically unsaturated carboxylic acid amides such as (meth) acrylamide and N, N-dimethylacrylamide; (meth). ) Ethylene unsaturated carboxylic acid alkyl ester monomers such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; and vinyl acetate. These can be arbitrarily used by any one type or a combination of a plurality of types.
  • Elastomer preparation As the elastomer, unsaturated carboxylic acids such as (meth) acrylonitrile and (meth) acrylic acid, butadiene such as 1,3-butadiene, and other polymerizable monomers as necessary are used, and are usually used according to a general method. It can be prepared by emulsion polymerization using the above-mentioned elastomer, polymerization initiator, molecular weight modifier and the like. The water at the time of emulsion polymerization is preferably contained in an amount having a solid content of 30 to 60% by weight, and more preferably contained in an amount having a solid content of 35 to 55% by weight. The emulsion polymerization solution after the elastomer synthesis can be used as it is as an elastomer component of the composition for dip molding.
  • unsaturated carboxylic acids such as (meth) acrylonitrile and (meth) acrylic acid, butadiene such as 1,3-butadiene, and other
  • the emulsifier examples include anionic surfactants such as dodecylbenzene sulfonate and aliphatic sulfonate; and nonionic surfactants such as polyethylene glycol alkyl ether and polyethylene glycol alkyl ester, preferably anionic surfactants. Surfactants are used.
  • the type of the polymerization initiator is not particularly limited as long as it is a radical initiator, but it is an inorganic peroxide such as ammonium persulfate and potassium perphosphate; t-butyl peroxide, cumene hydroperoxide, p-menthan hydroperoxide, etc.
  • Organic peroxides such as t-butylcumyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4 -Azo compounds such as dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl azobisisobutyrate can be mentioned.
  • the molecular weight modifier examples include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan, and halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, and t-dodecyl mercaptan; n-dodecyl mercaptan.
  • mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan
  • halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, and t-dodecyl mercaptan
  • n-dodecyl mercaptan n-dodecyl mercaptan.
  • Elastomer particle size The particle size of the elastomer in the composition for dip molding is not particularly limited, but it is preferable that particles having a particle size of 50 nm or more and 250 nm or less are formed as an aqueous emulsion.
  • the elastomer chain In order for a halohydrin cross-linking agent containing a halohydrin compound having a larger molecular weight than zinc or sulfur or an epoxy cross-linking agent containing an epoxy compound to easily penetrate into the elastomer chain, the elastomer chain has few branches and is linear. Elastomers are preferred. Elastomers with few branches have been devised at the time of manufacture by each latex manufacturer, but generally speaking, cold rubber (polymerization temperature 5 to 25 ° C) with a lower polymerization temperature is hot rubber (polymerization temperature 25 to 25 to 25 ° C.). 50 ° C.) is considered to be more preferable.
  • the gel fraction (MEK insoluble matter) of the elastomer is an index of branching of the elastomer chain, and the gel fraction is high in the elastomer having many branches.
  • the gel fraction of XNBR used for manufacturing gloves is in the range of 0% by weight or more and 70% by weight or less in the measurement of the insoluble content of methyl ethyl ketone (MEK). From the viewpoint of increasing the number of buried carboxyl groups in the XNBR particles, enhancing the cross-linking in the particles, increasing the cross-linking density, and increasing the stress retention rate, it is conceivable to increase the gel fraction.
  • the content of the sulfur element detected by the neutralization titration method of the combustion gas is preferably 0% by weight, but a trace amount of sulfur is contained in the raw material manufacturing process even without any addition of sulfur. There is a risk of From this viewpoint, the sulfur content is preferably 1% by weight or less based on the weight of the elastomer.
  • 0.01 g of an elastomer sample is burned in air at 1350 ° C. for 10 to 12 minutes, and the combustion gas generated is absorbed by a hydrogen peroxide solution containing a mixing indicator, and a 0.01 N NaOH aqueous solution is used. It can be carried out by the method of neutralization titration with.
  • the composition for dip molding may contain a combination of a plurality of types of elastomers.
  • the content of the elastomer in the dip molding composition is not particularly limited, but is preferably 15% by weight or more and 35% by weight or less, preferably 18% by weight or more and 30% by weight or less, based on the total amount of the dip molding composition. More preferably, it is by weight% or less.
  • Halohydrin crosslinker The characteristics when the halohydrin cross-linking agent is used in the dip molding composition for producing XNBR gloves are as described in the description of the dip molding composition.
  • Halohydrin cross-linking agents are precursors in the production of epoxy cross-linking agents, but epoxy cross-linking agents with particularly high hydrophilicity have a short pot life (pot life), whereas they have high hydrophilicity.
  • the present inventors have focused on the fact that the pot life is long, interparticle cross-linking is possible, and a covalent bond is used.
  • the halohydrin cross-linking agent is attractive in that it can crosslink instead of metal cross-linking by Ca or K and reduce ionic bonds in terms of increasing the stress retention rate.
  • the halohydrin compound is considered to react with the carboxyl group or carboxylate based on the following formula (W1) or (W2).
  • the reactivity of carboxylate is higher than that of carboxyl group.
  • the content of the halohydrin compound in the composition for dip molding is not particularly limited, but from the viewpoint of introducing a sufficient crosslinked structure between the elastomers to ensure tensile strength and fatigue durability, the epoxy in one molecule of the epoxy compound Although it depends on the number and purity of the groups, it is usually 0.1 parts by weight or more and 10 parts by weight or less, 0.3 parts by weight or more, and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer. It is preferably 0.5 parts by weight or more and more preferably 3.0 parts by weight or less.
  • the content of the halohydrin compound in the halohydrin cross-linking agent is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more. It is preferably 80% by weight or more, particularly preferably 90% by weight or more, and may be 100% by weight or less.
  • the content of the halohydrin compound may be evaluated from the amount of the raw material charged, but can be measured by a known method such as GPC.
  • the dip molding cross-linking agent (hereinafter, also referred to as “dip molding cross-linking agent” or “halohydrin cross-linking agent”), which is an embodiment of the present invention, has one molecule of halohydrin group D represented by the following formula (I).
  • a cross-linking agent for dip molding containing at least two halohydrin compounds therein.
  • R 1 and X in the following formula (I) the later.
  • the wavy line in the structure of the following formula (I) represents the coupling to another structure.
  • the elastomer particles and the like are elastomer particles having a carboxyl group and / or carboxylate. If the above is true, the elastomer is not limited to the above-mentioned elastomer, and any conventionally known elastomer can be used.
  • the halohydrin cross-linking agent is a halohydrin cross-linking agent containing a compound having at least two halohydrin groups D represented by the following formula (I) in one molecule (hereinafter, also referred to as “halohydrin compound (I))).
  • R 1 is a hydrogen or alkyl group
  • X is a halogen group.
  • R 1 is not particularly limited, but from the viewpoint of steric hindrance, it is preferably hydrogen or an alkyl group having 1 to 2 carbon atoms, more preferably hydrogen or an alkyl group having 1 carbon atom, and it is hydrogen. Is preferable.
  • X is not particularly limited, it is preferably Cl or Br, and particularly preferably Cl, from the viewpoint of reactivity. The above conditions of R 1 and X are the same in the following aspects.
  • the halohydrin compound may be a halohydrin compound having at least one halohydrin group Da represented by the following formula (Ia) in one molecule as the halohydrin group D (hereinafter, also referred to as “halohydrin compound (Ia)”). preferable.
  • the wavy line in the structure of the following formula (Ia) represents the coupling to another structure.
  • R 1 is a hydrogen or alkyl group
  • X is a halogen group
  • halohydrin compound (I) is a halohydrin compound represented by the following formula (II) (hereinafter, also referred to as "halohydrin compound (II)").
  • R 2 is a (k + m) -valent aliphatic hydrocarbon group having 2 to 10 carbon atoms
  • X is a halogen group
  • k and m are 2 ⁇ k ⁇ 6,0. It is an integer that satisfies ⁇ m ⁇ 4 and 2 ⁇ k + m ⁇ 6.
  • halohydrin compound (I) is a halohydrin compound represented by the following formula (III) (hereinafter, also referred to as "halohydrin compound (III)").
  • R 3 represents a hydrogen atom or an alkyl group
  • X is a halogen group
  • n is an integer satisfying 1 ⁇ n ⁇ 50.
  • halohydrin compound (I) is a halohydrin compound represented by the following formula (IV) (hereinafter, also referred to as "halohydrin compound (IV)").
  • R 4 is an independent hydrogen atom or a halohydrin group Da, and at least two of R 4 are halohydrin groups Da, and p is an integer satisfying 1 ⁇ p ⁇ 10. is there.
  • the halohydrin compound (I) is a compound having at least two halohydrin groups Da in one molecule, which is obtained by reacting a sugar alcohol from a oligosaccharide with epihalohydrin (hereinafter, also referred to as “halohydrin compound (V)”). Can be.
  • the halohydrin compound (I) is generally a compound having at least two hydroxyl groups in the molecule (hereinafter, also referred to as “polyhydrin alcohol”) corresponding to the halohydrin compounds (II) to (V). It can be obtained by reacting epihalohydrin.
  • the above-mentioned halohydrin compound (II) can be obtained by using the above-mentioned polyhydrin alcohol represented by the following formula (II-2) and reacting it with epihalohydrin.
  • R 2 , k and m are the same as the conditions described above.
  • the above-mentioned halohydrin compound (III) can be obtained by using the above-mentioned polyhydrin alcohol represented by the following formula (III-2) and reacting it with epihalohydrin.
  • R 3 and n are the same as the conditions described above.
  • R 3 is not particularly limited, but is preferably a hydrogen atom or a methyl group, and n is preferably 1 or 2, and more preferably 2.
  • the above-mentioned halohydrin compound (IV) can be obtained by using the above-mentioned polyhydrin alcohol represented by the following formula (IV-2) and reacting it with epihalohydrin.
  • p is the same as the above-mentioned conditions. p is not particularly limited, but is preferably 1.
  • the above-mentioned halohydrin compound (V) can be obtained by reacting epihalohydrin with a sugar alcohol obtained from a oligosaccharide.
  • the polyhydric alcohol represented by the above general formula (II-2) shall contain a sugar alcohol obtained by reducing monosaccharides, and specific examples of such polyhydric alcohols are not particularly limited. However, for example, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, ethylene glycol, glycerin, trimethylol ethane, trimethylol. Examples thereof include propane, erythritol, pentaerythritol, sorbitol, mannitol, xylitol and the like.
  • ethylene glycol, glycerin, trimethylolethane, trimethylolpropane, sorbitol, mannitol and the like are preferable, and ethylene glycol, glycerin and trimethylolpropane are preferable.
  • the polyhydric alcohol represented by the general formula (III-2) is not particularly limited, but for example, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol and the like can be used. Can be mentioned. Of these, diethylene glycol or dipropylene glycol is particularly preferable.
  • polyhydric alcohol represented by the above general formula (IV-2) is not particularly limited, and examples thereof include diglycerin and polyglycerin. Of these, diglycerin is particularly preferred.
  • the sugar alcohol from the oligosaccharide used for producing the halohydrin compound (V-2) described above is not particularly limited, but is, for example, maltose, cellobiose, sucrose (sucrose), and lactose. ) And the like, sugar alcohols obtained by reducing trisaccharides such as raffinose and meletitose, and reduced maltose obtained by reducing maltose. Sugar alcohols from such oligosaccharides can be used alone or as a mixture of two or more (with, if desired, sugar alcohols from monosaccharides).
  • maltitol sucrose alcohol from maltose
  • sugar alcohol from maltose which is easily available as a commercial product, is preferably used.
  • epichlorohydrin that reacts with such a polyhydric alcohol epichlorohydrin or epibromhydrin is particularly preferably used.
  • the reaction of various polyhydric alcohols with epihalohydrin as described above is, if necessary, in a reaction solvent in the presence of a Lewis acid catalyst, preferably under heating (eg, a temperature in the range of 30-95 ° C.). ), Epihalohydrin can be added dropwise to a polyhydric alcohol and mixed.
  • a Lewis acid catalyst include, but are limited to, boron trifluoride ether complex, tin tetrafluoride, zinc borofluoride, titanium tetrachloride, zinc chloride, silica alumina, antimony trichloride, and the like. It's not a thing.
  • the reaction solvent is used as necessary for controlling the reaction, adjusting the viscosity, etc., and can be any as long as it is inactive in the reaction between the polyhydric alcohol and epihalohydrin. Good. Therefore, examples of such a reaction solvent include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and dioxane. Examples include ethers.
  • epihalohydrin is usually used in the range of 30 to 200 mol%, preferably 50 to 150 mol%, based on the amount of hydroxyl groups of the polyhydric alcohol.
  • the amount of epihalohydrin used is less than 30 mol% with respect to the amount of hydroxyl groups of the polyhydrin alcohol, the amount of halohydrin groups in the obtained polyhalohydrin compound is too low, and it is sufficient to use this as a cross-linking agent. I can't get the physical characteristics.
  • epichlorohydrin epichlorohydrin or epichlorohydrin is preferably used.
  • 1,3-dihalo-2-propanol examples include 1,3-dichloro-2-propanol, 1,3-dibromo-2-propanol and the like.
  • halohydrin cross-linking agent An example of production of the halohydrin compound contained in the halohydrin cross-linking agent is shown below.
  • a commercially available product may be used as the halohydrin cross-linking agent. Sorbitol, toluene, and a boron trifluoride ether complex as a catalyst are charged in a separable flask, heated and stirred, and epichlorohydrin is added dropwise thereto. After completion of the dropping, the mixture is further stirred for a certain period of time at the same temperature as in the case of heating and stirring, and then the disappearance of epichlorohydrin is confirmed based on the quantification of epoxy groups by titration, and the reaction is terminated.
  • the MIBK / water distribution ratio of the halohydrin cross-linking agent is not particularly limited, and the effect of the present invention can be obtained regardless of whether it is hydrophilic or lipophilic, but it is usually 100% or less. Specifically, in the case of hydrophilicity, cross-linking between elastomer particles is promoted, in the case of lipophilicity, cross-linking within elastomer particles is promoted, and in the case between these, cross-linking between elastomer particles and within elastomer particles Although the ratio changes, in any case, the formation of crosslinks by halohydrin occurs, so that desired mechanical properties can be obtained.
  • the hydrophilic halohydrin has a MIBK / water partition ratio of usually -30 to 50%, preferably -30 to 30%, and more preferably -30 to 0%.
  • the lipophilic halohydrin has a MIBK / water distribution ratio of usually 50 to 100%, preferably 60 to 90%, and more preferably 70 to 90%.
  • the MIBK / water distribution ratio can be measured by the following method. First, about 5.0 g of water, about 5.0 g of MIBK, and about 0.5 g of a halogen cross-linking agent are precisely weighed and added to a test tube. Let the weight of MIBK be M (g) and the weight of the halogen cross-linking agent be E (g). The mixture is sufficiently stirred and mixed at a temperature of 23 ° C. ⁇ 2 ° C. for 3 minutes, and then centrifuged under the condition of 1.0 ⁇ 10 3 G for 10 minutes to separate an aqueous layer and a MIBK layer. Next, the weight of the MIBK layer is measured, and this is designated as ML (g).
  • MIBK / water distribution rate (%) (ML (g) -M (g)) / E (g) x 100
  • the MIBK / water measurement method in this specification was measured based on the weight of water and MIBK, but since MIBK dissolves water slightly, minus% is obtained as an experimental value, but the measurement is performed using the same standard. Therefore, the present inventors considered that it can be adopted as a standard.
  • Epoxy crosslinker> In the second embodiment of the present invention, an epoxy cross-linking agent is used in addition to the halohydrin cross-linking agent. Since the epoxy cross-linking agent used in the present embodiment has a relatively high lipophilicity, it easily penetrates into the elastomer particles and easily reacts with the carboxyl group in the particles. Further, in the case of a halohydrin cross-linking agent having a high lipophilicity, since the halohydrin cross-linking agent also easily enters the inside of the particles, it is possible to further strengthen the intra-particle cross-linking, which was not sufficient only by the intra-particle cross-linking with the epoxy cross-linking agent.
  • cross-linking by the reaction between the epoxy cross-linking agent and the carboxyl group of XNBR tends to be an intra-particle cross-linking. Therefore, cross-linking is possible with halohydrin alone, but by using it in combination with an epoxy cross-linking agent that enables intra-particle cross-linking, in combination with highly hydrophilic halohydrin, it should be combined with the halohydrin cross-linking agent for interparticle cross-linking.
  • the epoxy cross-linking agent contains an epoxy compound having at least three epoxy groups in one molecule.
  • Epoxide compounds having three or more epoxy groups in one molecule usually have a matrix having a plurality of glycidyl ether groups and alicyclic, aliphatic or aromatic hydrocarbons (hereinafter, "trivalent or higher”). It is also called an “epoxide compound”).
  • an epoxy compound having three or more glycidyl ether groups can be preferably mentioned.
  • An epoxy compound having three or more glycidyl ether groups can usually be produced by reacting epihalohydrin with an alcohol having three or more hydroxyl groups in one molecule.
  • Examples of the epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule include polyglycidylamine, polyglycidyl ester, epoxidized polybutadiene, and epoxidized soybean oil.
  • Alcohols having three or more hydroxyl groups that form the matrix of a trivalent or higher epoxy compound include aliphatic glycerol, diglycerol, triglycerol, polyglycerol, sorbitol, sorbitan, xylitol, erythritol, trimethylolpropane, and tri. Examples include methylolethane, pentaerythritol, aromatic cresol novolac, and trishydroxyphenylmethane.
  • the epoxy compounds having a valence of 3 or more it is preferable to use polyglycidyl ether.
  • an epoxy cross-linking agent containing trimethylolpropane among which at least one selected from trimethylolpropane triglycidyl ether, pentaerythritol triglycidyl ether, glycerol triglycidyl ether, diglycerol triglycidyl ether and pentaerythritol tetraglycidyl ether. It is more preferred to use an containing epoxy cross-linking agent. Further, it is preferable to use an epoxy cross-linking agent containing an epoxy compound having no sorbitol skeleton.
  • crosslinking reaction between epoxy compound and carboxyl group of XNBR> As shown by the following formula (Y), epoxy cross-linking occurs by the following reaction.
  • the epoxy compound represented by the following formula (Y) is monovalent from the viewpoint of simplifying the explanation. It is the carboxyl group in XNBR that the epoxy compound forms a crosslink, and in order to form a crosslink with the epoxy compound, it is necessary to heat at 90 ° C. or higher in the curing step to cause a ring-opening reaction of the epoxy group. Can be mentioned.
  • the epoxy compound contained in the dip molding composition which has escaped deactivation in the lipophilic environment in the XNBR particles, becomes a cured film precursor and is heated as a whole in the curing process as a lipophilic environment. At that time, it reacts with the carboxyl group of XNBR protruding outside the particles. At this time, by selecting XNBR having excellent water separation, the crosslinking efficiency can be increased and the crosslinking temperature can be lowered.
  • the content of the epoxy cross-linking agent in the composition for dip molding is not particularly limited, but from the viewpoint of introducing a sufficient cross-linking structure between the elastomers to ensure stress retention and fatigue durability, it is contained in one molecule of the epoxy compound. Although it depends on the number and purity of the epoxy groups, it is usually 0.2 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the elastomer. Practically, even if it is extremely thin (2.7 g glove, film thickness is about 50 ⁇ m), it is possible to manufacture a glove having sufficient performance with 0.4 parts by weight or more with respect to 100 parts by weight of the elastomer.
  • the content of the epoxy compound in the dip molding composition is 5 parts by weight or less with respect to 100 parts by weight of the elastomer. It is preferably 3 parts by weight or less, more preferably 2 parts by weight or less, more preferably 0.3 parts by weight or more, and 0.5 parts by weight or more. Is more preferable, and it is considered that 0.7 parts by weight or more is further preferable.
  • the content of the epoxy compound in the epoxy cross-linking agent is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more. It is preferably 80% by weight or more, particularly preferably 90% by weight or more, and may be 100% by weight or less.
  • the content of the epoxy compound may be evaluated from the amount of the raw material charged, but can be measured by a known method such as GPC.
  • the average number of epoxy groups of the epoxy cross-linking agent is not particularly limited, but is preferably more than 2.0, more preferably 2.3 or more, from the viewpoint of obtaining a good stress retention rate and fatigue durability of the glove. 2.5 or more is more preferable.
  • the upper limit of the average number of epoxy groups is not particularly limited, and for example, 10.0 or less can be mentioned.
  • the epoxy equivalent of the epoxy cross-linking agent is 100 g / eq. 230 g / eq. The following is preferable. Even if the epoxy equivalents are similar, the trivalent epoxy cross-linking agent tends to have a better stress retention rate than the divalent epoxy cross-linking agent.
  • the epoxy equivalent of the epoxy cross-linking agent is a value obtained by dividing the average molecular weight of the epoxy cross-linking agent by the average number of epoxy groups, and indicates the average weight per epoxy group. This value can be measured by the perchloric acid method.
  • the molecular weight of the epoxy compound contained in the epoxy cross-linking agent is preferably 150 to 1500, more preferably 175 to 1400, and even more preferably 200 to 1300.
  • ⁇ MIBK / water distribution rate> By using an epoxy cross-linking agent having a MIBK / water distribution ratio of 27% or more according to the following measuring method, it becomes easy to obtain a dip molding composition having a pot life of 3 days or more.
  • the pot life is a period from the preparation of the dip molding composition to the preparation of the cured film, and if the dip molding composition is used within that period, the obtained cured film meets a specific standard. Indicates the period during which it can be done. If the MIBK / water distribution ratio is less than 27%, the pot life tends to be less than 3 days.
  • the MIBK / water partition ratio of the epoxy cross-linking agent is preferably 30% or more in order to obtain the desired pot life of the dip molding composition.
  • An epoxy cross-linking agent having a MIBK / water distribution ratio of 50% or more tends to have a pot life of 5 days or more. Further, an epoxy cross-linking agent having a MIBK / water distribution ratio of 70% or more is preferable because a pot life of 7 days or more can be easily obtained.
  • the upper limit of the MIBK / water distribution ratio of the epoxy cross-linking agent does not need to be set in particular, but is usually 95% or less, for example.
  • MIBK / water distribution rate (%) (ML (g) -M (g)) / E (g) x 100
  • MIBK / water measurement method in this specification was measured based on the weight of water and MIBK, but since MIBK dissolves water slightly, minus% is obtained as an experimental value, but the measurement is performed using the same standard. Therefore, I thought that it could be adopted as a standard.
  • Dispersant for epoxy cross-linking agent The epoxy cross-linking agent described above needs to be kept in a uniformly dispersed state in the composition for dip molding. On the other hand, in the epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more, there is a problem that the higher the MIBK / water partition ratio is, the more difficult it is to add the cross-linking agent to the latex solution and the more difficult it is to disperse.
  • the dispersant of the epoxy cross-linking agent comprises a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and an ester represented by the following formula (3). It is preferably one or more selected from the group.
  • HO- (CH 2 CHR 1- O) n1- H (1) [In the above formula (1), R 1 represents a hydrogen or a methyl group, and n1 represents an integer of 1 to 3. ]
  • R 1 represents a hydrogen or methyl group
  • R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • R 1 represents a hydrogen or methyl group
  • R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • n 3 represents an integer of 0 to 3.
  • Examples of the monohydric lower alcohol include methanol and ethanol.
  • Examples of the glycol represented by the formula (1) include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and tripropylene glycol.
  • the glycol ethers include diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, and tripropylene glycol. Examples thereof include monomethyl ether and triethylene glycol dimethyl ether.
  • the ester represented by the formula (3) include diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate.
  • diethylene glycol is particularly preferable from the viewpoint of volatility and flammability. It is presumed that diethylene glycol is suitable because it has a highly hydrophilic glycol group and an ether structure, and at the same time contains a lipophilic hydrocarbon structure, and is easily dissolved in water and an elastomer.
  • the weight ratio of the epoxy cross-linking agent to the dispersant in the dip molding composition is preferably 1: 4 to 1: 1.
  • an epoxy cross-linking agent having a low water content is used when preparing the composition for dip molding, the epoxy cross-linking agent is dissolved in the dispersant of the epoxy cross-linking agent in advance, and then the composition for dip molding is added. It is preferable to mix with the constituents of.
  • the dip molding composition of the first and second embodiments may contain a metal cross-linking agent such as zinc as an optional component.
  • a metal cross-linking agent such as zinc
  • a metal cross-linking agent such as zinc
  • the XNBR gloves contain a considerable amount of ionic bonds due to Ca derived from the coagulant and K derived from the pH adjuster, and a halohydrin cross-linking agent capable of reducing these ionic cross-links is also effective in that respect. it is conceivable that.
  • the polyvalent metal compound used as a metal cross-linking agent is one that ion-crosslinks between functional groups such as unreacted carboxyl groups in an elastomer.
  • zinc oxide which is a divalent metal oxide
  • aluminum which is a trivalent metal
  • Aluminum has the smallest ionic radius among the above and is optimal for obtaining chemical resistance and tensile strength, but if too much is added, the glove becomes too hard.
  • the amount of the divalent metal oxide, for example zinc oxide, and / or the aluminum complex added can be 0.0 to 2.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition.
  • aqueous solutions of citric acid, malic acid, tartaric acid, lactic acid and the like can be used as the polybasic hydroxycarboxylic acid.
  • malic acid is preferably used as a ligand from the viewpoint of tensile strength and fatigue durability of gloves
  • citric acid is preferably used as a ligand from the viewpoint of stability of an aqueous aluminum solution.
  • composition for dip molding usually contains the following components as components other than the above-mentioned elastomer, cross-linking agent and the like (hereinafter, also referred to as "other components"). Examples of other components are shown below.
  • the dip molding composition needs to be adjusted to be alkaline at the stage of the stirring step (maturation step) described later.
  • One of the reasons for making it alkaline is that -COOH is oriented outward as -COO- from the elastomer particles, and interparticle cross-linking with a halohydrin cross-linking agent is sufficiently performed. Since the metal cross-linking that can occur when a metal cross-linking agent such as zinc oxide or a coagulant containing calcium ions or the like is used is also inter-particle cross-linking, it is necessary to make it alkaline for the same reason as described above.
  • the preferable pH value is 9.5 to 12.0.
  • the pH adjuster one or more obtained from ammonia, ammonium compounds, amine compounds and alkali metal hydroxides can be used.
  • alkali metal hydroxides are preferably used because the production conditions such as pH adjustment and gelling conditions are easy, and among them, potassium hydroxide (hereinafter, also referred to as KOH) is the easiest to use.
  • the amount of the pH adjuster added can be 1.5 to 10.0 parts by weight with respect to 100 parts by weight of the elastomer in the composition for dip molding, but it is usually industrially 1.8 to 2. Use 0 parts by weight.
  • the composition for dip molding contains water, and the content of water in the composition for dip molding is set to a predetermined concentration because the latex concentration, which is a factor for adjusting the thickness of gloves, is set to this concentration. It can be changed as appropriate, but it is usually 78 to 92 parts by weight.
  • water pure water or industrial water can be used, but it is preferable to use pure water.
  • the composition for dip molding also usually contains a dispersant for dispersing each component.
  • a dispersant for dispersing each component.
  • an anionic surfactant is preferable, and for example, a carboxylate, a sulfonate, a phosphate, a polyphosphoric acid ester, a polymerized alkylarylsulfonate, a polymerized sulfonated naphthalene, and a polymerized naphthalene / formaldehyde Condensation polymers and the like are mentioned, and sulfonates are preferably used.
  • Commercially available products can be used as the dispersant.
  • "Tamol NN9104" manufactured by BASF may be used.
  • the amount used is preferably about 0.5 to 2.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition.
  • the composition for dip molding usually further contains various other additives.
  • the additive include antioxidants, pigments, chelating agents and the like.
  • the antioxidant a hindered phenol type antioxidant, for example, WingstayL can be used.
  • the pigment for example, titanium dioxide is used.
  • the chelating agent sodium ethylenediaminetetraacetate or the like can be used.
  • each additive such as an elastomer, a halohydrin cross-linking agent, and if necessary, an epoxy cross-linking agent, a pH adjuster, and water is mixed by a conventional mixing means, for example, a mixer or the like. Can be made.
  • a glove manufacturing method (hereinafter, also simply referred to as “glove manufacturing method”), which is another embodiment of the present invention, is the following manufacturing method. That is, (1) Coagulant adhesion step (step of adhering coagulant to glove molding mold), (2) Stirring step (step of preparing a composition for dip molding and stirring), (3) Dip molding step (step of immersing the glove molding die in the dip molding composition), (4) Gelling step (step of gelling the film formed on the glove molding to make a cured film precursor), (5) Reaching step (step of removing impurities from the cured film precursor formed on the glove molding die), (6) Beading process (process of making a roll around the cuffs of gloves), (7) Curing step (step of heating and drying at the temperature required for the cross-linking reaction)
  • This is a method for manufacturing gloves which comprises the above steps (3) to (7) in the above order.
  • step (6') may be optionally provided between the steps (6) and (7) above.
  • step (6') Precure ring step, (step of heating and drying the cured film precursor at a lower temperature than the curing step)
  • the above-mentioned manufacturing method also includes a method of manufacturing gloves by so-called double dipping, in which the steps (3) and (4) are repeated twice.
  • the cured film precursor is a film composed of an elastomer aggregated on a glove molding by a coagulant in a dipping step, and calcium is dispersed in the film in a subsequent gelling step to gel to some extent. It is a modified film that has not been finally cured.
  • Coagulant Adhesion Step (a) Mold or former (glove molding type) is placed in a coagulant solution containing 5 to 40% by weight, preferably 8 to 35% by weight of Ca 2+ ions as a coagulant and a gelling agent. Soak.
  • the time for adhering the coagulant or the like to the surface of the mold or former is appropriately determined, and is usually about 10 to 20 seconds.
  • the coagulant calcium nitrate or chloride is used. Other inorganic salts having the effect of precipitating the elastomer may be used. Above all, it is preferable to use calcium nitrate.
  • This coagulant is usually used as an aqueous solution containing 5 to 40% by weight.
  • the solution containing the coagulant preferably contains potassium stearate, calcium stearate, mineral oil, ester-based oil, or the like as a release agent in an amount of about 0.5 to 2% by weight, for example, about 1% by weight.
  • halohydrin cross-linking agent When using a hydrophilic halohydrin cross-linking agent or an epoxy cross-linking agent with a trivalent MIBK / water distribution ratio of 27% or more, it is necessary to secure a minimum of 3 days as a mass production condition (leave it uninactivated). it can. It has been confirmed that the halohydrin cross-linking agent has a pot life of about 6 days.
  • the dip molding composition (dip liquid) according to the embodiment of the present invention that has been stirred is poured into a dip tank, and the coagulant adhering step is carried out in the dip tank.
  • This is a step of immersing the mold or former after the coagulant is attached and dried, usually for 1 to 60 seconds under a temperature condition of 25 to 35 ° C.
  • the calcium ions contained in the coagulant agglomerate the elastomer contained in the dip molding composition on the surface of the mold or former to form a film.
  • the leaching step is a step of washing and removing excess chemicals and impurities that interfere with subsequent curing such as calcium precipitated on the surface of the cured film precursor. Normally, the former is dipped in warm water at 40 to 60 ° C. for about 1.5 to 4 minutes.
  • leaching, removing the emulsifier is a film of XNBR particles in order to proceed smoothly crosslinked by curing process, -COO oriented outwardly - to return to -COOH, complex ion of metal cross-linking agent This is an important step in that it is retained in the film instead of the hydroxide that is insoluble in water, and Ca derived from the excess coagulant and K derived from the pH adjuster are removed.
  • Beading step This is a step of winding up the cuff end of the glove of the cured film precursor for which the leaching step has been completed to make a ring having an appropriate thickness and reinforcing it.
  • the adhesiveness of the roll portion is excellent.
  • Precure ring step (a) After the beading step, the cured film precursor is heated and dried at a lower temperature than the subsequent curing step. Usually, in this step, heating and drying are performed at 60 to 90 ° C. for about 30 seconds to 5 minutes. If the high-temperature curing process is performed without going through the pre-curing process, the water will evaporate rapidly and convex parts like swelling may be formed on the gloves, which may impair the quality, but without going through this process. You may move to the curing process. (B) The temperature may be raised to the final temperature of the curing step without going through this step, but if curing is performed in multiple drying furnaces and the temperature of the first-stage drying furnace is slightly lowered, this first step Dry eyes correspond to the precuring process.
  • the curing step is a step of heating and drying at a high temperature to finally complete the cross-linking and to make a cured film as a glove. It is usually heated and dried at 90 to 140 ° C. for 10 to 30 minutes, preferably about 15 to 30 minutes.
  • Double dipping As for the method of manufacturing gloves, so-called single dipping has been described above.
  • the dipping step and the gelling step may be performed twice or more, and this is usually called double dipping. Double dipping is performed for the purpose of preventing the formation of pinholes when manufacturing thick gloves (thickness of more than 200 to 300 ⁇ m) and also in the manufacturing method of thin gloves.
  • double dipping In order to aggregate XNBR in the second dipping step, it is necessary to have a sufficient time in the gelling step for sufficiently precipitating calcium to the film surface in the first gelling step. Is mentioned.
  • the glove according to the above-described embodiment of the present invention is a glove manufactured by using the above-mentioned dip molding composition, and in the first embodiment, it has a cross-linked structure of a carboxyl group of XNBR and a halohydrin cross-linking agent. It is a glove, and in the second embodiment, it is a glove having a cross-linked structure of a carboxyl group and an epoxy cross-linking agent.
  • the XNBR glove having the necessary physical characteristics of the glove can be produced by using the halohydrin cross-linking agent.
  • the tensile strength was as strong as 7N or more.
  • the intra-particle cross-linking is cross-linked with an epoxy cross-linking agent and the inter-particle cross-linking is cross-linked with a halohydrin cross-linking agent to eliminate zinc, which is an ionic cross-link, and halohydrin with high oiliness
  • the cross-linking agent it is considered that this was achieved by further strengthening the inter-particle cross-linking by covalent bond.
  • the glove can be a glove which is a cured product of the above-mentioned dip molding composition.
  • the elastomer forming the glove has a (meth) acrylonitrile-derived structural unit of 12 to 35% by weight, an unsaturated carboxylic acid-derived structural unit of 2 to 10% by weight, and the rest of which is a butadiene-derived structural unit. And other components are preferred. Further, the structural unit derived from butadiene is preferably 50 to 75% by weight.
  • the above gloves do not substantially contain sulfur and vulcanization accelerators unlike conventional XNBR gloves, and therefore, the greatest feature is that they do not cause type IV allergies. ..
  • sulfur is contained in the surfactant and the like during the production of the elastomer, a very small amount of sulfur may be detected.
  • the stress retention rate of the gloves according to the present embodiment is increased in that the cross-linking is not a sulfur cross-linking that causes a cross-linking reaction near the double bond of butadiene but a covalent bond with a carboxyl group.
  • tensile strength and elongation For the tensile strength and elongation, a JIS K6251 No. 5 dumbbell test piece was cut out from the cured film, and a TENSILON universal tensile tester RTC-1310A manufactured by A & D was used to test the test speed at 500 mm / min, the distance between chucks at 75 mm, and between the marked lines. Measured at a distance of 25 mm. As for the physical characteristics of gloves, the tensile strength is considered to be 20 MPa or more, and the elongation rate is considered to be 500% or more.
  • the stress retention rate was measured as follows. A test piece is prepared from the cured film using a punching cutter (Super Straight Cutter SK-1000-D manufactured by Dumbbell) according to the strip No. 2 specified in JIS K 6263, and the speed is 100 mm at both ends of the test piece. Tensile stress is applied in minutes, and when the test piece is stretched twice (100%), the stretching is stopped and the tensile stress M100 (0) is measured, and the tensile stress M100 (6 minutes) after elapsed as it is. 6) was measured. Then, the percentage of M100 (6) with respect to M100 (0) was defined as the stress retention rate. Since the stress retention rate of the conventional sulfur-crosslinked XNBR gloves is in the 40% range, it is considered that 50% or more is good for XNBR gloves.
  • a 120 mm long JIS K6251 No. 1 dumbbell test piece is made from a cured film, the lower part is fixed and the upper part of the test piece is pulled to a length of 60 mm while being immersed in an artificial sweat solution. It is indicated by the time required for the test piece to break by repeating stretching and relaxation between a maximum of 195 mm and a minimum of 147 mm in the direction. Elongation (195 mm) and relaxation (147 mm) are performed by repeating a cycle (1 cycle 12.8 seconds) of holding in a relaxed state for 11 seconds, then extending to 195 mm in 1.8 seconds and returning to 147 mm. Can be done.
  • a fatigue durability test can be performed using a device as shown in FIG. 2 using a dumbbell-shaped test piece as in the case of performing a tensile test of a rubber product.
  • the lower end of the test piece is fixed with a clamp, and up to 60 mm is immersed in artificial sweat liquid.
  • the upper end of the test piece is sandwiched and expanded and contracted up and down using a pneumatic piston so as to be in the relaxed state of FIG. 2 (b) ⁇ the extended state of FIG. 2 (c) ⁇ the relaxed state of FIG. 2 (b). Evaluation is made by measuring the number of cycles and the time until the bicycle breaks, with the expansion and contraction of 2 (b) ⁇ FIG. 2 (c) ⁇ FIG. 2 (b) as one cycle.
  • the photoelectric sensor reacts and the device stops.
  • part by weight indicates, in principle, the number of parts by weight with respect to 100 parts by weight of the elastomer.
  • the number of parts by weight of each additive is based on the solid content, and the number of parts by weight of the halohydrin cross-linking agent and the epoxy cross-linking agent is based on the total weight of each cross-linking agent.
  • the calibration curve was prepared from a sample in which polyacrylic acid was added as an internal standard substance to each elastomer and the amount of acrylonitrile groups was known.
  • the amount of unsaturated carboxylic acid residue was calculated from the following formula.
  • Unsaturated carboxylic acid residue amount (% by weight) [Abs (1699 cm -1 ) / Abs (2237 cm -1 )] /0.2661
  • the coefficient 0.2661 is a converted value obtained by preparing a calibration curve from a plurality of samples in which the ratio of the unsaturated carboxylic acid group amount and the acrylonitrile group amount is known.
  • MEK insoluble amount The MEK (methyl ethyl ketone) insoluble (gel) component was measured as follows. A 0.2 g XNBR latex dried product sample was placed in a weighed mesh basket (80 mesh), immersed in 80 mL of MEK solvent in a 100 mL beaker together with the basket, and the beaker was covered with Parafilm. Allowed for hours in the draft. Then, the mesh basket was taken out from the beaker, suspended in the air in the draft, and dried for 1 hour. This was dried under reduced pressure at 105 ° C. for 1 hour, then weighed, and the weight of the basket was subtracted to obtain the weight after immersion of the XNBR latex dried product.
  • the content (insoluble amount) of the MEK insoluble component was calculated from the following formula.
  • Insoluble component content (% by weight) (weight g after immersion / weight g before immersion) ⁇ 100
  • the XNBR latex dried product sample was prepared as follows. That is, after stirring the XNBR latex at a rotation speed of 500 rpm for 30 minutes in a 500 mL bottle, 14 g of the latex was weighed in a 180 ⁇ 115 mm stainless steel vat, and the latex was 23 ° C. ⁇ 2 ° C. and humidity 50 ⁇ 10 RH% for 5 days. It was dried to obtain a cast film, and the film was cut into 5 mm squares to prepare an XNBR latex dried product sample.
  • Halohydrin cross-linking agent Table 3 shows the characteristics of the halohydrin cross-linking agent used in this experimental example, such as the mother skeleton.
  • the solid content in Table 3 indicates the content of the halohydrin compound in the halogen cross-linking agent in this example.
  • a chlorohydrin cross-linking agent was used as the halohydrin cross-linking agent.
  • the chlorohydrin cross-linking agent was produced as follows.
  • Chlorohydrin cross-linking agent A (sorbitol skeleton) 182 g (1.0 mol) of sorbitol, 500 g of toluene, and 1.8 g of boron trifluoride ether complex as a catalyst are charged in a 1 L volume separable flask, and the mixture is heated and stirred to maintain the internal temperature at 70 to 90 ° C., and epichlorohydrin. 277.5 g (3.0 mol) was added dropwise. At the end of the dropping, the reaction system was a uniform solution.
  • Chlorohydrin cross-linking agent B ethylene glycol skeleton
  • 166 g (2.7 mol) of ethylene glycol, 70 g of toluene, and 0.6 g of boron trifluoride ether complex as a catalyst were charged in a 2 L volume separable flask, and the mixture was heated and stirred to keep the internal temperature at 50 ° C. 557 g (6.0 mol) of epichlorohydrin was added dropwise. At the end of the dropping, the reaction system was a uniform solution. After completion of the dropping, the mixture was further stirred at the same temperature for 2 hours, and then the disappearance of epichlorohydrin was confirmed based on the determination of epoxy groups by titration, and the reaction was terminated.
  • Chlorohydrin cross-linking agent C (glycerin skeleton) 300 g (3.3 mol) of glycerin, 150 g of toluene, and 0.6 g of boron trifluoride ether complex as a catalyst were charged in a 2 L volume separable flask, and the mixture was heated and stirred to maintain the internal temperature at 50 ° C., and 999 g of epichlorohydrin (999 g). 10.8 mol) was added dropwise. At the end of the dropping, the reaction system was a uniform solution.
  • Chlorohydrin cross-linking agent D (trimethylolpropane skeleton) 425 g (3.2 mol) of trimethylolpropane, 300 g of toluene, and 2.4 g of boron trifluoride ether complex as a catalyst are charged in a 2 L volume separable flask, and the mixture is heated and stirred to maintain the internal temperature at 50 ° C., and epichlorohydrin. 894 g (9.7 mol) was added dropwise. At the end of the dropping, the reaction system was a uniform solution.
  • Epoxy cross-linking agent The epoxy cross-linking agent used in the examples is "Denacol Ex-321" manufactured by Nagase ChemteX Corporation, and its physical characteristics are as follows. Epoxy equivalent: 140 g / eq. Average number of epoxy groups: 2.7 MIBK / water distribution rate: 87% The content of the epoxy compound in the epoxy cross-linking agent in this example is approximately 100% by weight, although impurities such as reaction by-products are contained.
  • the epoxy equivalent is a catalog value, and the average epoxy group number is an analytical value.
  • the method for measuring the MIBK / water distribution ratio is the method described in the embodiment for carrying out the invention. In the example using the epoxy cross-linking agent, when adding, it is added after mixing with the same amount of diethylene glycol.
  • the solid content concentration of 22% is the film thickness of the coagulation liquid of 20%. It can be adjusted to 80 ⁇ m.
  • the film in this example is a film that has been dipped 24 hours after the addition of the halohydrin cross-linking agent.
  • the condition is described for each Example.
  • the cured film precursor that aggregated and formed a film on a ceramic plate was dried at 80 ° C. for 2 minutes (gelling step) and leached with warm water at 50 ° C. for 2 minutes. Then, it was dried at 70 ° C. for 5 minutes and thermoset at 130 ° C. for 30 minutes.
  • the obtained cured film was peeled off cleanly from the ceramic plate and stored in an environment of 23 ° C. ⁇ 2 ° C. and a humidity of 50% ⁇ 10% until it was subjected to a physical characteristic test.
  • the condition is described for each Example.
  • a JIS K6251 No. 1 dumbbell test piece was cut out from the cured film, and this was mixed with an artificial sweat solution (20 g of sodium chloride, 17.5 g of ammonium chloride, 17.05 g of lactic acid, 5.01 g of acetic acid in 1 liter, and an aqueous sodium hydroxide solution. The pH was adjusted to 4.7), and the fatigue durability was evaluated using the above-mentioned durability test apparatus. That is, 15 mm from each of the two ends of the 120 mm long dumbbell test piece was sandwiched between the fixed chuck and the movable chuck, and 60 mm from the bottom of the test piece on the fixed chuck side was immersed in the artificial sweat solution.
  • the test piece After moving the movable chuck to the minimum position (relaxed state) of 147 mm (123%) and holding it for 11 seconds, the test piece reaches the maximum position (extended state) of 195 mm (163%) and the minimum again. It was moved to the position (relaxed state) over 1.8 seconds, and a cycle test was conducted with this as one cycle. The time of one cycle was 12.8 seconds, and the time (minutes) of fatigue durability was obtained by multiplying by the number of cycles until the test piece broke. ⁇ Stress retention rate> The stress retention rate was determined according to the above method.
  • Experimental Example 1 is a physical property of a film crosslinked only with zinc oxide as a reference example.
  • Experimental Examples 2 to 5 show the physical characteristics of the film when zinc oxide is fixed at 1.0 part by weight and chlorohydrin is changed to 0.25 to 3.0 parts by weight (chlorohydrin compound amount).
  • Experimental Examples 6 and 7 are films prepared using 1.0 part by weight of chlorohydrin and 0.5 part by weight of zinc oxide. As the pH adjuster, 6 is ammonia and 7 is the physical characteristics of the film when KOH is used. is there. The results of the experiments conducted using each film are shown in Table 4 below.
  • Experimental Examples 2 to 7 correspond to the first embodiment of the present invention, but if the amount of chlorohydrin added is 1.0 part by weight or more, the film prepared by using chlorohydrin as a cross-linking agent has the normal physical characteristics of gloves. You can see that you are satisfied. Looking at Experimental Examples 1 to 5, when zinc oxide is fixed at 1.0 part by weight and the amount of chlorohydrin is increased, the fatigue durability increases accordingly, so that chlorohydrin is surely crosslinked. It can be seen that it is contributing. Further, looking at Experimental Examples 2 to 5, it can be seen that the cross-linking reaction is proceeding even if the tensile elongation decreases as the amount of chlorohydrin increases. From these results, it was found that the film using chlorohydrin can make gloves having excellent fatigue durability, tensile strength, and tensile elongation.
  • Experimental Examples 8 to 11 are films prepared by using the chlorohydrin cross-linking agent and the epoxy cross-linking agent of the second embodiment in combination without using zinc oxide
  • Experimental Examples 12 to 15 are reference examples. This is a conventional film to which an epoxy cross-linking agent and zinc oxide are added, and the physical characteristics of each film are measured. The results of experiments conducted using each film are shown in Table 5 below. The amount of chlorohydrin in Table 5 below is the amount of the chlorohydrin compound, and the amount of epoxy is the amount of the epoxy compound.
  • Experimental Examples 8 and 12, 9 and 13, 10 and 14, 11 and 15 use the same latex, one is cross-linking with chlorohydrin and epoxy, and the other is cross-linking with epoxy and zinc oxide. .. It can be seen that the stress retention rate is higher when chlorohydrin is used instead of zinc oxide. Further, it can be seen that the stress retention rate of the epoxy cross-linking agent itself is further increased by adding chlorohydrin based on the fact that the stress retention rate is originally superior to that of the sulfur-crosslinked XNBR gloves. In Experimental Example 11, the stress retention rate is 67.8%, which is incredibly high as the stress retention rate of the XNBR gloves.
  • the value is 500% or more, and when the sulfur vulcanized XNBR gloves increase the amount of sulfur added to increase the crosslink density and increase the stress retention, the elongation increases. It's amazing considering that it's going down to the extreme. Further, in the first embodiment, fatigue durability was not obtained unless chlorohydrin was 1.0 part by weight, but when chlorohydrin and epoxy, which are the second embodiment, were used in combination, chlorohydrin was 0. It was also found that even 5 parts by weight can satisfy all the physical characteristics of gloves.
  • the fatigue durability is at a very high level of 279 minutes even when the stirring time is 6 days, and the pot life of the chlorohydrin cross-linking agent is 6 days or more even if it is water-soluble. This is a sufficient number of days even when considering actual production.
  • cross-linking agents B, C, and D have a high MIBK / water distribution ratio and are poorly soluble in water, and have strong lipophilicity, and enter the XNBR particles to form an intra-particle cross-link. Conceivable.
  • a halohydrin cross-linking agent for a carboxylic acid-modified NBR latex which is not used in the field of conventional gloves, a dip molding composition containing at least the cross-linking agent, and a glove using the dip molding composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The first problem addressed by the present invention is to produce a glove having excellent tensile strength, elongation and fatigue endurance with use of a halohydrin crosslinking agent, which has not been used in the field of conventional external crosslinking agent-type gloves, while using no vulcanization accelerator. The second problem addressed by the present invention is to produce a glove having excellent stress retention ratio and good elongation at the same time, while ameliorating weaknesses of conventional sulfur-vulcanized XNBR gloves. A crosslinking agent for dip molding, which contains a halohydrin compound having at least two halohydrin groups D represented by formula (I) in each molecule. In formula (I), R1 represents a hydrogen atom or an alkyl group; and X represents a halogen group.

Description

ディップ成形用架橋剤、ディップ成形用組成物、及び手袋Dip molding cross-linking agent, dip molding composition, and gloves
 本発明は、カルボン酸変性NBRラテックスのためのハロヒドリン基を2個以上もつ化合物であるディップ成形用架橋剤(以下、「ハロヒドリン架橋剤」ともいう)、該ディップ成形用架橋剤を少なくとも含有するディップ成形用組成物、該ディップ成形用組成物を用いた手袋の製造方法、及び手袋に関する。 The present invention is a dip molding cross-linking agent (hereinafter, also referred to as "halohydrin cross-linking agent") which is a compound having two or more halohydrin groups for a carboxylic acid-modified NBR latex, and a dip containing at least the dip molding cross-linking agent. The present invention relates to a molding composition, a method for producing a glove using the dip molding composition, and a glove.
 カルボン酸変性アクリロニトリルブタジエンラバー(XNBR)をエラストマーとして含む水系エマルジョンは、ディップ成形用の材料として大量に製造されており、特に合成ゴム手袋が主な用途となっている。
 アクリロニトリルブタジエンラバーを用いる場合には実用的な強度や特性が不足するため、これらのエラストマーに不飽和カルボン酸モノマーを更に共重合させ、XNBRとして使用されている。当該Xは、不飽和カルボン酸が共重合の構成成分として加えられていることを示している。
A water-based emulsion containing a carboxylic acid-modified acrylonitrile butadiene rubber (XNBR) as an elastomer is produced in large quantities as a material for dip molding, and synthetic rubber gloves are particularly used.
When acrylonitrile butadiene rubber is used, it lacks practical strength and properties. Therefore, these elastomers are further copolymerized with an unsaturated carboxylic acid monomer and used as XNBR. The X indicates that an unsaturated carboxylic acid is added as a component of the copolymerization.
 一般的に、XNBRをエラストマーとして含む水系エマルジョンから製造されるディップ成形品は、ブタジエンと硫黄と加硫促進剤による共有結合の架橋構造と、カルボキシル基と亜鉛によるイオン結合による架橋構造から形成されたフィルムからなる。
 この手袋は、耐熱性、耐薬品性に優れているが、天然ゴム、イソプレン・クロロプレン合成ゴム手袋に比べて分子鎖が短く、ゴム本来の性質を表す二重結合も少なく、結合力の弱いイオン結合も含んでおり、強度を出すためのアクリロニトリルも含んでいるため、応力保持率が40%程度と低く、これを上げようと架橋密度を上げると、逆に伸び率の低下をもたらすものであった。
 また、上記のディップ成形品の製造に使用される加硫促進剤は、日本皮膚アレルギー・接触皮膚炎学会が定めた「ジャパニーズスタンダードアレルゲン」に含まれており、手袋等の用途では、アレルギーの発症に関する症例が複数報告されている。そして、これらの症例報告から、XNBRの手袋では、加硫促進剤が遅延型アレルギー(Type IV)のアレルゲンとなっていると考えられている。
Generally, a dip molded product produced from an aqueous emulsion containing XNBR as an elastomer is formed from a crosslinked structure of covalent bonds of butadiene, sulfur and a vulcanization accelerator, and a crosslinked structure of ionic bonds of a carboxyl group and zinc. Consists of film.
This glove has excellent heat resistance and chemical resistance, but has a shorter molecular chain than natural rubber and isoprene / chloroprene synthetic rubber gloves, has fewer double bonds that represent the original properties of rubber, and has weak bonding strength. Since it also contains bonds and acrylonitrile to increase strength, the stress retention rate is as low as about 40%, and if the crosslink density is increased to increase this, the elongation rate will decrease. It was.
In addition, the vulcanization accelerator used in the production of the above dip molded products is included in the "Japanese standard allergen" defined by the Japan Society for Skin Allergy and Contact Dermatitis, and allergies develop in applications such as gloves. Multiple cases have been reported. From these case reports, it is considered that the vulcanization accelerator is an allergen for delayed-type allergy (Type IV) in XNBR gloves.
 硫黄による架橋反応(加硫)には、加硫促進剤が経済的、性能的な観点から不可欠であるが、遅延型アレルギーの主因であると考えられているため、多方面で、硫黄及び加硫促進剤を使用しない架橋技術が検討され、実用化されつつある。
 硫黄及び加硫促進剤フリーの手袋としては、例えば、ラテックス重合中に有機架橋性化合物を含ませる自己架橋型の手袋や、ポリカルボジイミドや、エポキシ基を有するエポキシ架橋剤で架橋する外部架橋剤型の手袋等が開発されている。これらは、いずれも不飽和カルボン酸と上記有機架橋剤や、有機架橋性化合物とで共有結合させるとともに、金属架橋剤でイオン結合させるものであった。
 自己架橋型の手袋として、特許文献1には、ラテックスとして特定の構造単位と特定の反応基とを有する重合体を含むことで、架橋剤を添加することなくカルボキシル基と共有結合させることのできるエラストマー組成物を用いて製造された手袋が開示されている。
 外部架橋剤型の手袋として、特許文献2には、ラテックスとして特定の構造単位を有するエラストマー、及び架橋剤としてポリカルボジイミドを含む手袋用エマルション組成物を用いて製造された手袋が開示され、また、特許文献3には、ラテックスとしてとして特定の構造単位を有するエラストマー、及び架橋剤として3価以上のエポキシ化合物を含むディップ成形用組成物を用いて製造された手袋が開示されている。
A vulcanization accelerator is indispensable for the cross-linking reaction (vulcanization) with sulfur from the viewpoint of economy and performance, but since it is considered to be the main cause of delayed allergy, sulfur and sulfurization are widely used. Cross-linking technology that does not use a sulfur accelerator is being studied and put into practical use.
Sulfur and vulcanization accelerator-free gloves include, for example, self-crosslinking gloves in which an organic crosslinkable compound is contained during latex polymerization, or an external crosslinking agent type that crosslinks with polycarbodiimide or an epoxy crosslinking agent having an epoxy group. Gloves etc. have been developed. In each of these, the unsaturated carboxylic acid was covalently bonded with the above-mentioned organic cross-linking agent or the organic cross-linking compound, and the metal cross-linking agent was used for ionic bonding.
As a self-crosslinking type glove, Patent Document 1 contains a polymer having a specific structural unit and a specific reactive group as a latex, so that it can be covalently bonded to a carboxyl group without adding a cross-linking agent. Gloves made with an elastomeric composition are disclosed.
As an external cross-linking agent type glove, Patent Document 2 discloses a glove manufactured by using an elastomer having a specific structural unit as a latex and an emulsion composition for a glove containing polycarbodiimide as a cross-linking agent. Patent Document 3 discloses a glove manufactured by using an elastomer having a specific structural unit as a latex and a dip molding composition containing a trivalent or higher valent epoxy compound as a cross-linking agent.
国際公開第2012/043894号International Publication No. 2012/043894 国際公開第2018/117109号International Publication No. 2018/117109 国際公開第2019/102985号International Publication No. 2019/102985
 本発明においては、外部架橋剤型の従来の手袋の分野では用いられていなかったハロヒドリン架橋剤を用いて、加硫促進剤を使用せずに、引張強度、伸び率、疲労耐久性に優れた手袋を作ることを第一の課題とし、さらに、従来の硫黄加硫XNBR手袋の弱点を改善し、応力保持率に優れ、同時に伸び率もよい手袋を作ることを第二の課題とした。該第一の課題及び第二の課題について、第一の課題は、少なくとも解決すべき課題として設定された課題であり、第二の課題は、さらに解決されることが望まれる課題として設定された課題である。 In the present invention, a halohydrin cross-linking agent, which has not been used in the field of conventional gloves of the external cross-linking agent type, is used and is excellent in tensile strength, elongation, and fatigue durability without using a vulcanization accelerator. The first task was to make gloves, and the second task was to improve the weaknesses of conventional sulfur-vulcanized XNBR gloves and to make gloves with excellent stress retention and at the same time good elongation. Regarding the first problem and the second problem, the first problem is set as a problem to be solved at least, and the second problem is set as a problem that is desired to be further solved. It is an issue.
 本発明者らは、エラストマーとして、不飽和カルボン酸を構成単位に有する共重合体を用い、かつ、架橋剤としてハロヒドリンを用いることにより、該ハロヒドリンと、エラストマーに存在するカルボキシル基とを反応させ、エラストマー粒子内及び/又はエラストマー粒子間に架橋を形成させることができると考えた。さらに、エラストマーよりも水との親和性が高いハロヒドリンを用いることにより、該ハロヒドリンと、エラストマー粒子の表面に存在するカルボキシル基とを反応させ、エラストマー粒子間に架橋を形成させることができ、また、エラストマーよりも親油性が高いハロヒドリンを用いることにより、該ハロヒドリンとエラストマー粒子内に存在するカルボキシル基とを反応させ、エラストマー粒子内に架橋を形成させることができると考えた。この考えに基づき鋭意検討した結果、ディップ成形用架橋剤としてハロヒドリンを用いることにより、上記課題が解決されることを見出し、本発明を完成させるに至った。
 また、他の有機架橋剤や金属架橋剤と併用することによって、上記課題を解決しようとした。
By using a copolymer having an unsaturated carboxylic acid as a constituent unit as the elastomer and halohydrin as a cross-linking agent, the present inventors react the halohydrin with the carboxyl group present in the elastomer. It was thought that crosslinks could be formed within and / or between the elastomeric particles. Furthermore, by using halohydrin, which has a higher affinity for water than the elastomer, the halohydrin can be reacted with the carboxyl group existing on the surface of the elastomer particles to form a crosslink between the elastomer particles. It was considered that by using halohydrin, which has a higher oiliness than the elastomer, the halohydrin can be reacted with the carboxyl group existing in the elastomer particles to form a crosslink in the elastomer particles. As a result of diligent studies based on this idea, it was found that the above-mentioned problems can be solved by using halohydrin as a cross-linking agent for dip molding, and the present invention has been completed.
In addition, we tried to solve the above problems by using it in combination with other organic cross-linking agents and metal cross-linking agents.
 即ち、本発明の要旨は以下の通りである。
[1] 下記式(I)で表されるハロヒドリン基Dを1分子中に少なくとも2つ有するハロヒドリン化合物を含有する、ディップ成形用架橋剤。
Figure JPOXMLDOC01-appb-C000004
 上記式(I)中、Rは、水素又はアルキル基であり、Xは、ハロゲン基である。
[2] 前記ハロヒドリン化合物が、ハロヒドリン基Dとして、下記式(Ia)で表されるハロヒドリン基Daを分子中に少なくとも1つ有するハロヒドリン化合物である、上記[1]に記載のディップ成形用架橋剤。
Figure JPOXMLDOC01-appb-C000005
 上記式(Ia)中、Rは、水素又はアルキル基であり、Xは、ハロゲン基である。
[3] 前記ハロヒドリン化合物が、下記式(II)で表されるハロヒドリン化合物である、上記[2]に記載のディップ成形用架橋剤。
Figure JPOXMLDOC01-appb-C000006
 上記式(II)中、Rは、炭素数2~10の(k+m)価の脂肪族炭化水素基であり、Xは、ハロゲン基であり、k及びmは、2≦k≦6、0≦m≦4、2≦k+m≦6を満たす整数である。
[4] (メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーと、上記[1]~[3]のいずれに記載のディップ成形用架橋剤とを含む、ディップ成形用組成物。
[5] 前記エラストマーにおいて、(メタ)アクリロニトリル由来の構造単位が12~35重量%、不飽和カルボン酸由来の構造単位が2~10重量%である、上記[4]に記載のディップ成形用組成物。
[6] エポキシ基を1分子中に少なくとも3つ有するエポキシ化合物を含むエポキシ架橋剤をさらに含有する、上記[4]又は[5]に記載のディップ成形用組成物。
[7] 上記[4]~[6]のいずれかに記載のディップ成形用組成物の硬化物である、手袋。
[8] (1)手袋成形型に凝固剤を付着させる凝固付着工程、
 (2)上記[1]~[6]のいずれかに記載のディップ成形用組成物を調整し、攪拌する撹拌工程、
 (3)手袋成形型をディップ成形用組成物に浸漬するディッピング工程、
 (4)手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作るゲリング工程、
 (5)手袋成形型上に形成された硬化フィルム前駆体から不純物を除去するリーチング工程、
 (6)手袋の袖口部分に巻きを作るビーディング工程、
 (7)架橋反応に必要な温度で加熱及び乾燥する工程キュアリング工程
 を含み、上記(3)~(7)の工程を上記の順序で行う手袋の製造方法。
That is, the gist of the present invention is as follows.
[1] A cross-linking agent for dip molding, which contains a halohydrin compound having at least two halohydrin groups D represented by the following formula (I) in one molecule.
Figure JPOXMLDOC01-appb-C000004
In the above formula (I), R 1 is a hydrogen or alkyl group, and X is a halogen group.
[2] The cross-linking agent for dip molding according to the above [1], wherein the halohydrin compound is a halohydrin compound having at least one halohydrin group Da represented by the following formula (Ia) in the molecule as the halohydrin group D. ..
Figure JPOXMLDOC01-appb-C000005
In the above formula (Ia), R 1 is a hydrogen or alkyl group, and X is a halogen group.
[3] The cross-linking agent for dip molding according to the above [2], wherein the halohydrin compound is a halohydrin compound represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000006
In the above formula (II), R 2 is a (k + m) -valent aliphatic hydrocarbon group having 2 to 10 carbon atoms, X is a halogen group, and k and m are 2 ≦ k ≦ 6,0. It is an integer that satisfies ≦ m ≦ 4 and 2 ≦ k + m ≦ 6.
[4] An elastomer containing a (meth) acrylonitrile-derived structural unit, an unsaturated carboxylic acid-derived structural unit, and a butadiene-derived structural unit in the polymer main chain, and the dip according to any one of the above [1] to [3]. A composition for dip molding, which comprises a cross-linking agent for molding.
[5] The composition for dip molding according to the above [4], wherein the structural unit derived from (meth) acrylonitrile is 12 to 35% by weight and the structural unit derived from unsaturated carboxylic acid is 2 to 10% by weight in the elastomer. Stuff.
[6] The composition for dip molding according to the above [4] or [5], which further contains an epoxy cross-linking agent containing an epoxy compound having at least three epoxy groups in one molecule.
[7] A glove which is a cured product of the dip molding composition according to any one of the above [4] to [6].
[8] (1) Coagulation and adhesion step of adhering a coagulant to a glove molding mold,
(2) A stirring step of adjusting and stirring the dip molding composition according to any one of the above [1] to [6].
(3) A dipping step of immersing the glove molding mold in the dip molding composition,
(4) Gelling step of gelling the film formed on the glove molding to make a cured film precursor.
(5) A leaching step of removing impurities from the cured film precursor formed on the glove molding mold,
(6) Beading process to make a roll around the cuffs of gloves,
(7) Step of heating and drying at a temperature required for a cross-linking reaction A method for manufacturing a glove, which comprises a curing step and performs the above steps (3) to (7) in the above order.
 本発明により、従来の手袋の分野では用いられていないカルボン酸変性NBRラテックスのためのハロヒドリン架橋剤、該架橋剤を少なくとも含有するディップ成形用組成物、該ディップ成形用組成物を用いた手袋の製造方法、及び手袋を提供し、加硫促進剤を使用せずに引張強度、伸び率、疲労耐久性に優れた手袋を作ることができる。さらに、特定の態様によっては、従来の硫黄加硫XNBR手袋と比較し、応力保持率に優れ、同時に伸び率のよいことを特徴とするXNBR手袋を作ることができる。 According to the present invention, a halohydrin cross-linking agent for a carboxylic acid-modified NBR latex, which is not used in the field of conventional gloves, a dip molding composition containing at least the cross-linking agent, and a glove using the dip molding composition. By providing a manufacturing method and gloves, gloves having excellent tensile strength, elongation, and fatigue durability can be produced without using a vulcanization accelerator. Further, depending on the specific embodiment, it is possible to produce XNBR gloves characterized by having an excellent stress retention rate and at the same time a good elongation rate as compared with the conventional sulfur vulcanized XNBR gloves.
本発明の実施形態に係る手袋の架橋構造の概念図である。It is a conceptual diagram of the bridge structure of the glove which concerns on embodiment of this invention. 疲労耐久性試験装置の一例を模式的に示した断面図である。It is sectional drawing which shows typically an example of the fatigue durability test apparatus.
 以下に本発明の実施の形態を詳細に説明するが、これらの説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限りこれらの内容に限定されない。
 なお、本明細書において、「重量」と「質量」は同じ意味で用いられるので、以下、「重量」に統一して記載する。
 また、特に断らない限り、「%」は「重量%」であり、「部」は「重量部」である。
 また、特に断らない限り、「重量部」は、原則としてエラストマー100重量部に対しての重量部数を示す。
 また、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
 また、本発明の第二の課題においては、XNBR手袋において「応力保持率」の向上と「伸び率」の維持をテーマとしている。この2つの物性の両立は、従来の硫黄加硫XNBR手袋の改善となり、NBR合成ゴム手袋を天然ゴムやイソプレン・クロロプレン合成ゴムの物性に近づけることを狙ったものである。
 この場合の「応力保持率」とは、手袋を所定の伸長率で伸ばしたときの応力が、所定の時間経過後にどの程度保持されているかを示すものであり、応力保持率が高いことは、使用者(作業者)が手袋を装着して作業を行った際に、時間経過にともなう緩みやたるみの発生が抑えられ、良好な使用感を得られることを意味する。その具体的な評価方法については後述する。
 また、本明細書において、「疲労耐久性」とは、手袋が、使用者(作業者)の汗により性能が劣化して破断することに対する耐性を意味する。その具体的な評価方法については後述する。
The embodiments of the present invention will be described in detail below, but these descriptions are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these contents as long as the gist thereof is not exceeded.
In addition, since "weight" and "mass" are used interchangeably in the present specification, they are collectively referred to as "weight" below.
Unless otherwise specified, "%" is "% by weight" and "part" is "part by weight".
Unless otherwise specified, "parts by weight" indicates, in principle, the number of parts by weight with respect to 100 parts by weight of the elastomer.
Further, in the present specification, when a numerical value or a physical property value is sandwiched before and after using "-", it is used as including the values before and after that.
Further, in the second object of the present invention, the theme is to improve the "stress retention rate" and maintain the "elongation rate" in the XNBR gloves. The compatibility of these two physical properties is an improvement of the conventional sulfur vulcanized XNBR gloves, and aims to bring the NBR synthetic rubber gloves closer to the physical properties of natural rubber and isoprene / chloroprene synthetic rubber.
The "stress retention rate" in this case indicates how much the stress when the glove is stretched at a predetermined elongation rate is retained after a lapse of a predetermined time, and a high stress retention rate means that the stress retention rate is high. This means that when the user (worker) wears gloves and performs work, the occurrence of loosening and slack with the passage of time is suppressed, and a good usability can be obtained. The specific evaluation method will be described later.
Further, in the present specification, "fatigue durability" means resistance to a glove being broken due to deterioration in performance due to sweat of a user (worker). The specific evaluation method will be described later.
 本発明の第1の実施形態は、XNBRをハロヒドリン架橋剤で架橋した架橋構造を有する手袋である。
 本発明の第2の実施形態は、XNBRをハロヒドリン架橋剤とエポキシ架橋剤とで架橋した構造を有する手袋である。第1、及び第2の実施形態において、亜鉛等の金属架橋剤は必須の要素ではないが、これを架橋剤として併用してもよい。
 上記の2つの実施形態の共通の特徴は、XNBRのディップ成形にハロヒドリン架橋剤を使用したことである。
 ハロヒドリン架橋剤で親水性の高いものは、エポキシ架橋剤と比較しても、比較的失活しにくくディップ液中での可使時間も6日程度もつことから主にXNBR粒子の外側に配向したカルボキシル基やカルボキシラートの塩と粒子間架橋することができることが特徴である。
 このような親水性の高いハロヒドリン架橋剤は、ポリカルボジイミド架橋剤(以下、「CDI架橋剤」という)と同様にカルボキシル基と共有結合で粒子間架橋するが、CDI架橋剤と異なり、CaやK等の金属元素と置き換わって架橋しやすいので、手袋中のイオン架橋の部分を減らすことができる。また、引張強度を出すことができるので、亜鉛等の金属架橋剤の代替として使用される可能性がある。
The first embodiment of the present invention is a glove having a crosslinked structure in which XNBR is crosslinked with a halohydrin crosslinking agent.
A second embodiment of the present invention is a glove having a structure in which XNBR is crosslinked with a halohydrin cross-linking agent and an epoxy cross-linking agent. In the first and second embodiments, a metal cross-linking agent such as zinc is not an essential element, but it may be used in combination as a cross-linking agent.
A common feature of the above two embodiments is the use of a halohydrin crosslinker for dip molding of XNBR.
Halohydrin cross-linking agents with high hydrophilicity are relatively less inactivated than epoxy cross-linking agents and have a pot life of about 6 days in the dip solution, so they are mainly oriented to the outside of the XNBR particles. It is characterized by being able to crosslink between particles with a salt of a carboxyl group or carboxylate.
Such a highly hydrophilic halohydrin cross-linking agent, like the polycarbodiimide cross-linking agent (hereinafter referred to as “CDI cross-linking agent”), cross-links between particles by a covalent bond with a carboxyl group, but unlike the CDI cross-linking agent, Ca and K Since it is easy to crosslink by replacing metal elements such as, it is possible to reduce the portion of ion crosslinks in gloves. In addition, since it can provide tensile strength, it may be used as a substitute for a metal cross-linking agent such as zinc.
 XNBR手袋において、粒子間架橋を共有結合で行い、イオン結合を減らすことはXNBR手袋の応力保持率を高めることにつながると本発明者らは考えている。また、亜鉛等の金属架橋剤を減らすことは、金属溶出を嫌うクリーンルーム用手袋に適していると考えられる。
 第2の実施形態においては、ハロヒドリン架橋剤にエポキシ架橋剤を併用することを特徴としているが、これはエラストマー粒子内架橋による架橋密度の増加を図ったものであるが、特に親水性の高いハロヒドリン架橋剤を用いた場合、親水性の高いハロヒドリン架橋剤が主としてエラストマー粒子間共有結合であるのに対し、エポキシ架橋剤が主としてエラストマー粒子内共有結合であるので、XNBRの粒子内、粒子間共に共有結合によって結合することが特徴である。これによって、イオン結合よりも切れにくい手袋ができ、架橋密度を上げれば、応力保持率のよい手袋ができると考えられる。この場合も、亜鉛等の金属架橋剤は必須ではなく、凝固剤由来のCa、pH調整剤由来のK等によるイオン結合もハロヒドリン架橋剤によって減らすことができる。また、ハロヒドリンとして親油性の高いものを用いた場合には、ハロヒドリン架橋剤も粒子内部に入り込みやすいため、エポキシ架橋剤による粒子内架橋のみでは不十分であった粒子内架橋のさらなる強化を図ることができる。
 以下に、第1の実施形態及び第2の実施形態の共通の特徴であるハロヒドリン架橋剤で架橋を行った手袋の架橋構造の概念図を図1に示し、該実施形態における架橋と先行技術における架橋の特徴の比較表を下記表1で示す。なお、表1中のZn2+、Ca2+、及びKは、それぞれ、これらを含有する金属架橋剤、凝固剤、及びpH調整剤を加えた場合を想定しての記載であり、必須の要件ではない。また、本発明の第2の実施形態においてZn2+に括弧が付されているのは、この実施形態では、Zn2+を使用しなくとも所望の特性を有する手袋が得られやすいため、他の態様と比較して特に添加を要しないことを示している。
The present inventors believe that in XNBR gloves, performing interparticle cross-linking by covalent bonds and reducing ionic bonds leads to an increase in the stress retention rate of XNBR gloves. In addition, reducing the amount of metal cross-linking agents such as zinc is considered to be suitable for clean room gloves that dislike metal elution.
The second embodiment is characterized in that an epoxy cross-linking agent is used in combination with the halohydrin cross-linking agent, which is intended to increase the cross-linking density by cross-linking in the elastomer particles, but has particularly high hydrophilicity. When a cross-linking agent is used, the highly hydrophilic halohydrin cross-linking agent is mainly a covalent bond between the elastomer particles, whereas the epoxy cross-linking agent is mainly a covalent bond within the elastomer particles, so that the XNBR is shared both within the particles and between the particles. It is characterized by binding by binding. As a result, gloves that are harder to break than ionic bonds can be made, and if the crosslink density is increased, gloves with a good stress retention rate can be made. In this case as well, a metal cross-linking agent such as zinc is not essential, and ionic bonds due to Ca derived from the coagulant, K derived from the pH adjuster, etc. can also be reduced by the halohydrin cross-linking agent. In addition, when a highly oil-rich halohydrin is used, the halohydrin cross-linking agent also easily enters the inside of the particles. Therefore, the intra-particle cross-linking by the epoxy cross-linking agent alone is not sufficient to further strengthen the intra-particle cross-linking. Can be done.
The conceptual diagram of the cross-linked structure of the glove cross-linked with the halohydrin cross-linking agent, which is a common feature of the first embodiment and the second embodiment, is shown in FIG. 1, and the cross-linking and the prior art in the embodiment are shown below. A comparison table of the characteristics of cross-linking is shown in Table 1 below. Note that Zn 2+ , Ca 2+ , and K + in Table 1 are described assuming that a metal cross-linking agent, a coagulant, and a pH adjuster containing them are added, respectively, and are essential requirements. is not. Further, in the second embodiment of the present invention, Zn 2+ is shown in parentheses because in this embodiment, gloves having desired characteristics can be easily obtained without using Zn 2+. It shows that no particular addition is required in comparison with.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以下に、上記実施形態におけるディップ成形用組成物の各構成成分、及び手袋の製造方法及び手袋について説明する。 Hereinafter, each component of the dip molding composition in the above embodiment, a glove manufacturing method, and a glove will be described.
<1.ディップ成形用組成物>
 本発明の第1の実施形態のディップ成形用組成物は、XNBRのエラストマーとハロヒドリン架橋剤とを少なくとも含むディップ成形用組成物である。本発明の第2の実施形態のディップ成形用組成物は、上記の材料に加え、さらにエポキシ架橋剤を併用して含有させたディップ成形用組成物である。上記第1、及び第2の実施形態に係るディップ成形用組成物には、亜鉛等の金属架橋剤を任意成分として含有させてもよい。さらに、上記第1、及び第2の実施形態に係るディップ成形用組成物には、その他成分としてpH調整剤、酸化防止剤、顔料、キレート剤等が配合されていてもよい。
<1. Dip molding composition>
The dip molding composition of the first embodiment of the present invention is a dip molding composition containing at least an elastomer of XNBR and a halohydrin cross-linking agent. The dip molding composition of the second embodiment of the present invention is a dip molding composition containing an epoxy cross-linking agent in combination with the above materials. The dip molding composition according to the first and second embodiments may contain a metal cross-linking agent such as zinc as an optional component. Further, the dip molding composition according to the first and second embodiments may contain a pH adjuster, an antioxidant, a pigment, a chelating agent and the like as other components.
 XNBRは、(メタ)アクリロニトリル由来の構造単位((メタ)アクリロニトリル残基)、不飽和カルボン酸由来の構造単位(不飽和カルボン酸残基)、及びブタジエン由来の構造単位(ブタジエン残基)をポリマー主鎖に含むエラストマーである。
 XNBRエラストマーは、組成物中では通常水系エマルションとして粒径50~250nm程度の粒子を形成している。粒子内と粒子外とでは環境が大きく異なり、粒子内はブタジエン残基、(メタ)アクリロニトリル残基、(メタ)アクリル酸から構成される炭化水素を主成分としているため、親油性である。一方、粒子外は、水や水溶性成分(例えばpH調整剤、他)から構成されているため、粒子外は親水性を有している。
 ディップ成形用組成物は、通常、pH調整剤によってpHを9.5~12.0に調整され、XNBR粒子(エラストマー粒子)の表面の周辺のカルボキシル基は、該粒子の外側に配向してカルボキシラートとなっている。一方、該粒子内には埋没カルボキシル基が存在している。
 親油性が高いハロヒドリン架橋剤は、エラストマー粒子内に入り込みやすく、その多くが粒子内に存在する。
 一方、親水性が高いハロヒドリン架橋剤は、親油性の高いエラストマー粒子内に入り込み難く、その多くがエラストマーの粒子間に存在する。
 第2の実施形態のエポキシ架橋剤は、粒子内の親油性領域に入り込みやすいものを選択しているので、エラストマー粒子内にその多くが存在している。
 亜鉛等の金属架橋剤は、粒子間に錯イオンの形で存在する。
 この粒子内及び粒子間の状態は、ディップ成形用組成物としたときの状態であるが、最終的にXNBRの粒子(XNBRエラストマーの粒子)が積層されてフィルムが形成された時に、この粒子内及び粒子間の状況はそれぞれほぼ維持される。本明細書において、粒子内架橋、及び粒子間架橋は、この意味で用いている。以下、ディップ成形用組成物の各成分について詳細に説明する。
XNBR is a polymer of structural units derived from (meth) acrylonitrile ((meth) acrylonitrile residues), structural units derived from unsaturated carboxylic acids (unsaturated carboxylic acid residues), and structural units derived from butadiene (butadiene residues). It is an elastomer contained in the main chain.
The XNBR elastomer usually forms particles having a particle size of about 50 to 250 nm as an aqueous emulsion in the composition. The environment inside and outside the particle is significantly different, and the inside of the particle is lipophilic because the main component is a hydrocarbon composed of butadiene residue, (meth) acrylonitrile residue, and (meth) acrylic acid. On the other hand, since the outside of the particles is composed of water and a water-soluble component (for example, a pH adjuster, etc.), the outside of the particles has hydrophilicity.
The pH of the composition for dip molding is usually adjusted to 9.5 to 12.0 by a pH adjuster, and the carboxyl groups around the surface of the XNBR particles (elastomer particles) are oriented outward of the particles and carboxy. It is a rat. On the other hand, a buried carboxyl group is present in the particles.
Halohydrin cross-linking agents with high lipophilicity easily enter the elastomer particles, and most of them are present in the particles.
On the other hand, the highly hydrophilic halohydrin cross-linking agent is difficult to enter into the highly lipophilic elastomer particles, and most of them are present between the elastomer particles.
Since the epoxy cross-linking agent of the second embodiment is selected so as to easily enter the lipophilic region in the particles, most of them are present in the elastomer particles.
Metal cross-linking agents such as zinc exist between particles in the form of complex ions.
The state inside the particles and between the particles is the state when the composition for dip molding is formed, but when the XNBR particles (XNBR elastomer particles) are finally laminated to form a film, the inside of the particles is formed. And the situation between the particles is almost maintained. In-particle cross-linking and inter-particle cross-linking are used in this sense in this sense. Hereinafter, each component of the dip molding composition will be described in detail.
<1-1.エラストマー>
<1-1-1.エラストマーの構造>
 エラストマーは、(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に少なくとも含む。このエラストマーを、「カルボキシル化(メタ)アクリロニトリルブタジエンエラストマー」又は「XNBR」とも称する。また、エラストマーとしてXNBRを用いて得た手袋を、「XNBR手袋」とも称する。
<1-1. Elastomer>
<1-1-1. Elastomer structure>
The elastomer contains at least a structural unit derived from (meth) acrylonitrile, a structural unit derived from an unsaturated carboxylic acid, and a structural unit derived from butadiene in the polymer backbone. This elastomer is also referred to as "carboxylated (meth) acrylonitrile butadiene elastomer" or "XNBR". Further, gloves obtained by using XNBR as an elastomer are also referred to as "XNBR gloves".
 エラストマー中の各構造単位の比率については、従来、(メタ)アクリロニトリル由来の構造単位、すなわち(メタ)アクリロニトリル残基を25~30重量%、不飽和カルボン酸由来の構造単位、すなわち不飽和カルボン酸残基を4~10重量%とし、かつ、残りをブタジエン由来の構造単位及びその他の構造単位とすることが通常であった。
 一方で、XNBR手袋の応力保持率を上げるためには、他の物性を損なうことなく、(メタ)アクリロニトリル由来の構造単位を25重量%よりもさらに低くし、ブタジエン由来の構造単位を増やすことが必要であると本発明者らは考えている。
 これらの構造単位の比率は、簡便には、エラストマーを製造するための使用原料の重量比率から求めることができる。
Regarding the ratio of each structural unit in the elastomer, conventionally, the structural unit derived from (meth) acrylonitrile, that is, 25 to 30% by weight of the (meth) acrylonitrile residue, and the structural unit derived from unsaturated carboxylic acid, that is, unsaturated carboxylic acid It was common practice for the residues to be 4-10% by weight and the rest to be butadiene-derived structural units and other structural units.
On the other hand, in order to increase the stress retention rate of XNBR gloves, it is necessary to further reduce the structural unit derived from (meth) acrylonitrile to less than 25% by weight and increase the structural unit derived from butadiene without impairing other physical properties. We believe it is necessary.
The ratio of these structural units can be easily obtained from the weight ratio of the raw materials used for producing the elastomer.
 (メタ)アクリロニトリル由来の構造単位は、主に手袋に強度を与える要素であり、少な過ぎると強度が不十分となり、多過ぎると耐薬品性は上がるが硬くなり過ぎる。
 従来のXNBR手袋においては、エラストマー中における(メタ)アクリロニトリル由来の構造単位の比率は25~30重量%が通常であった。一方で、本実施形態に係るXNBR手袋の応力保持率を上げるという課題のみからすると、(メタ)アクリロニトリル由来の構造単位の比率を少なくし、ブタジエン由来の構造単位の比率を多くしてゴム弾性を出すブタジエン由来の二重結合を多くすることが好ましい。
 以上を考慮すると、エラストマー中の(メタ)アクリロニトリル由来の構造単位の比率は、12~35重量%であることが好ましく、17~30重量%であることがより好ましい。
 (メタ)アクリロニトリル由来の構造単位の量は、ニトリル基の量を元素分析により求められる窒素原子の量から換算して求めることができる。
The structural unit derived from (meth) acrylonitrile is an element that mainly gives strength to gloves. If it is too small, the strength becomes insufficient, and if it is too large, the chemical resistance increases but it becomes too hard.
In conventional XNBR gloves, the ratio of structural units derived from (meth) acrylonitrile in the elastomer is usually 25 to 30% by weight. On the other hand, considering only the problem of increasing the stress retention rate of the XNBR gloves according to the present embodiment, the ratio of the structural units derived from (meth) acrylonitrile is reduced, and the ratio of the structural units derived from butadiene is increased to increase the rubber elasticity. It is preferable to increase the number of butadiene-derived double bonds produced.
In consideration of the above, the ratio of the structural unit derived from (meth) acrylonitrile in the elastomer is preferably 12 to 35% by weight, more preferably 17 to 30% by weight.
The amount of the structural unit derived from (meth) acrylonitrile can be obtained by converting the amount of nitrile groups from the amount of nitrogen atoms obtained by elemental analysis.
 エラストマー中における不飽和カルボン酸由来の構造単位の量は、適度な架橋構造を有し最終製品である手袋の物性を維持するために、2~10重量%であることが好ましく、2~9重量%であることがより好ましく、2~6重量%であることがさらに好ましい。不飽和カルボン酸由来の構造単位の量は、カルボキシル基の逆滴定法、及びカルボキシル基由来のカルボニル基を赤外分光(IR)等を用いて定量することによって、求めることができる。 The amount of the unsaturated carboxylic acid-derived structural unit in the elastomer is preferably 2 to 10% by weight, preferably 2 to 9% by weight, in order to maintain the physical properties of the final product, the glove, which has an appropriate crosslinked structure. It is more preferably%, and further preferably 2 to 6% by weight. The amount of the structural unit derived from the unsaturated carboxylic acid can be determined by the back titration method of the carboxyl group and the quantification of the carbonyl group derived from the carboxyl group by infrared spectroscopy (IR) or the like.
 不飽和カルボン酸由来の構造単位を形成する不飽和カルボン酸の種類は、特に限定はされず、モノカルボン酸でもよいし、ポリカルボン酸でもよい。より具体的には、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。なかでも、アクリル酸及び/又はメタクリル酸(以下「(メタ)アクリル酸」とも称する。)が好ましく使用され、メタクリル酸がより好ましく使用される。 The type of unsaturated carboxylic acid that forms a structural unit derived from unsaturated carboxylic acid is not particularly limited, and may be monocarboxylic acid or polycarboxylic acid. More specifically, acrylic acid, methacrylic acid, crotonic acid and the like can be mentioned. Among them, acrylic acid and / or methacrylic acid (hereinafter, also referred to as "(meth) acrylic acid") is preferably used, and methacrylic acid is more preferably used.
 ブタジエン由来の構造単位は、手袋に柔軟性を付与する要素であり、エラストマー中におけるブタジエン由来の構造単位の量は、通常50重量%を下回ると柔軟性を失う。エラストマー中のブタジエン由来の構造単位の比率は、通常は50~75重量%である。
 ブタジエン由来の構造単位の量は、公知の方法により求めることができる。
 本願発明のXNBR手袋の応力保持率を上げるという課題のみからすると、ブタジエン由来の構造単位の比率をさらに多くすることでゴム弾性を出すブタジエンの二重結合を多くすることが好ましい。ただし、引張強度等の他の物性を損なわないことが重要である。
Butadiene-derived structural units are elements that impart flexibility to gloves, and the amount of butadiene-derived structural units in an elastomer usually loses flexibility below 50% by weight. The ratio of butadiene-derived structural units in the elastomer is typically 50-75% by weight.
The amount of structural units derived from butadiene can be determined by a known method.
Considering only the problem of increasing the stress retention rate of the XNBR gloves of the present invention, it is preferable to increase the ratio of the structural units derived from butadiene to increase the double bond of butadiene that gives rubber elasticity. However, it is important not to impair other physical properties such as tensile strength.
 ポリマー主鎖は、実質的に、(メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位からなることが好ましいが、その他の重合性モノマー由来の構造単位を含んでいてもよい。
 その他の重合性モノマー由来の構造単位は、エラストマー中に30重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であることが特に好ましく、特に下限を設定する必要はなく、0.1重量%以上であっても、1重量%以上であってもよい。
The polymer backbone is preferably composed of structural units derived from (meth) acrylonitrile, unsaturated carboxylic acids, and butadiene, but other structural units derived from polymerizable monomers. It may be included.
The structural unit derived from other polymerizable monomers is preferably 30% by weight or less, more preferably 20% by weight or less, particularly preferably 15% by weight or less, and particularly sets a lower limit in the elastomer. It is not necessary to do so, and it may be 0.1% by weight or more or 1% by weight or more.
 好ましく使用できる重合性モノマーとしては、スチレン、α-メチルスチレン、ジメチルスチレンなどの芳香族ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド等のエチレン性不飽和カルボン酸アミド;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのエチレン性不飽和カルボン酸アルキルエステル単量体;及び酢酸ビニル等が挙げられる。これらは、いずれか1種、又は複数種を組み合わせて、任意に用いることができる。 Preferred polymerizable monomers include aromatic vinyl monomers such as styrene, α-methylstyrene and dimethylstyrene; ethylenically unsaturated carboxylic acid amides such as (meth) acrylamide and N, N-dimethylacrylamide; (meth). ) Ethylene unsaturated carboxylic acid alkyl ester monomers such as methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; and vinyl acetate. These can be arbitrarily used by any one type or a combination of a plurality of types.
<1-1-2.エラストマーの調製>
 エラストマーは、(メタ)アクリロニトリル、(メタ)アクリル酸等の不飽和カルボン酸、1,3-ブタジエン等のブタジエン、及び必要に応じてその他の重合性モノマーを用い、一般的な定法に従い、通常用いられる乳化剤、重合開始剤、分子量調整剤等を使用した乳化重合によって、調製することができる。
 乳化重合時の水は、固形分が30~60重量%である量で含まれることが好ましく、固形分が35~55重量%となる量で含まれることがより好ましい。
 エラストマー合成後の乳化重合液を、そのまま、ディップ成形用組成物のエラストマー成分として用いることができる。
<1-1-2. Elastomer preparation>
As the elastomer, unsaturated carboxylic acids such as (meth) acrylonitrile and (meth) acrylic acid, butadiene such as 1,3-butadiene, and other polymerizable monomers as necessary are used, and are usually used according to a general method. It can be prepared by emulsion polymerization using the above-mentioned elastomer, polymerization initiator, molecular weight modifier and the like.
The water at the time of emulsion polymerization is preferably contained in an amount having a solid content of 30 to 60% by weight, and more preferably contained in an amount having a solid content of 35 to 55% by weight.
The emulsion polymerization solution after the elastomer synthesis can be used as it is as an elastomer component of the composition for dip molding.
 乳化剤の種類は、ドデシルベンゼンスルホン酸塩、脂肪族スルホン酸塩等のアニオン性界面活性剤;ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルキルエステル等の非イオン性界面活性剤が挙げられ、好ましくは、アニオン性界面活性剤が使用される。 Examples of the emulsifier include anionic surfactants such as dodecylbenzene sulfonate and aliphatic sulfonate; and nonionic surfactants such as polyethylene glycol alkyl ether and polyethylene glycol alkyl ester, preferably anionic surfactants. Surfactants are used.
 重合開始剤の種類は、ラジカル開始剤であれば特に限定されないが、過硫酸アンモニウム、過リン酸カリウム等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物等を挙げることができる。 The type of the polymerization initiator is not particularly limited as long as it is a radical initiator, but it is an inorganic peroxide such as ammonium persulfate and potassium perphosphate; t-butyl peroxide, cumene hydroperoxide, p-menthan hydroperoxide, etc. Organic peroxides such as t-butylcumyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4 -Azo compounds such as dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl azobisisobutyrate can be mentioned.
 分子量調整剤の種類は、t-ドデシルメルカプタン、n-ドデシルメルカプタン等のメルカプタン類、四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素が挙げられ、t-ドデシルメルカプタン;n-ドデシルメルカプタン等のメルカプタン類が好ましい。 Examples of the molecular weight modifier include mercaptans such as t-dodecyl mercaptan and n-dodecyl mercaptan, and halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide, and t-dodecyl mercaptan; n-dodecyl mercaptan. Such as mercaptans are preferable.
<1-1-3.エラストマーの特徴>
[エラストマーの粒子径]
 ディップ成形用組成物におけるエラストマーの粒子径は特段制限されないが、水系エマルションとして、粒子径50nm以上、250nm以下の粒子を形成していることが好ましい。
<1-1-3. Features of Elastomer>
[Elastomer particle size]
The particle size of the elastomer in the composition for dip molding is not particularly limited, but it is preferable that particles having a particle size of 50 nm or more and 250 nm or less are formed as an aqueous emulsion.
[エラストマー鎖の態様]
 亜鉛や硫黄に比べて分子量の大きいハロヒドリン化合物を含むハロヒドリン架橋剤やエポキシ化合物を含むエポキシ架橋剤が、エラストマー鎖内部に侵入しやすくするためには、エラストマー鎖の分岐が少なく、直鎖状であるエラストマーが好適である。分岐の少ないエラストマーは、各ラテックスメーカーにおいてその製造時に各種の工夫がなされているが、概して言えば、重合温度の低いコールドラバー(重合温度5~25℃)の方がホットラバー(重合温度25~50℃)より好ましいと考えられる。
[Elastomer chain aspect]
In order for a halohydrin cross-linking agent containing a halohydrin compound having a larger molecular weight than zinc or sulfur or an epoxy cross-linking agent containing an epoxy compound to easily penetrate into the elastomer chain, the elastomer chain has few branches and is linear. Elastomers are preferred. Elastomers with few branches have been devised at the time of manufacture by each latex manufacturer, but generally speaking, cold rubber (polymerization temperature 5 to 25 ° C) with a lower polymerization temperature is hot rubber (polymerization temperature 25 to 25 to 25 ° C.). 50 ° C.) is considered to be more preferable.
[エラストマーのゲル分率(MEK不溶解分)]
 エラストマーのゲル分率(MEK不溶解分)は、エラストマー鎖の分岐の指標となり、分岐が多いエラストマーではゲル分率が高くなる。通常、手袋製造に使用するXNBRのゲル分率については、メチルエチルケトン(MEK)不溶解分の測定で、0重量%以上、70重量%以下の範囲のものが使われる。
 XNBR粒子内の埋没カルボキシル基を多くし、粒子内架橋を充実させ、架橋密度を上げ、応力保持率を上げる観点から言えば、ゲル分率を上げていくことも考えられる。
[Elastomer gel fraction (MEK insoluble matter)]
The gel fraction (MEK insoluble matter) of the elastomer is an index of branching of the elastomer chain, and the gel fraction is high in the elastomer having many branches. Usually, the gel fraction of XNBR used for manufacturing gloves is in the range of 0% by weight or more and 70% by weight or less in the measurement of the insoluble content of methyl ethyl ketone (MEK).
From the viewpoint of increasing the number of buried carboxyl groups in the XNBR particles, enhancing the cross-linking in the particles, increasing the cross-linking density, and increasing the stress retention rate, it is conceivable to increase the gel fraction.
[エラストマー中の硫黄元素の含有量]
 エラストマーにおいて、燃焼ガスの中和滴定法により検出される硫黄元素の含有量は、0重量%であることが好ましいが、任意の硫黄添加がなくとも、原料の製造工程において微量の硫黄が含まれてしまうおそれがある。この観点から、硫黄の含有量は、エラストマー重量の1重量%以下であることが好ましい。
 硫黄元素の定量は、エラストマー試料0.01gを空気中、1350℃で10~12分間燃焼させて発生する燃焼ガスを、混合指示薬を加えた過酸化水素水に吸収させ、0.01NのNaOH水溶液で中和滴定する方法により行うことができる。
[Content of sulfur element in elastomer]
In the elastomer, the content of the sulfur element detected by the neutralization titration method of the combustion gas is preferably 0% by weight, but a trace amount of sulfur is contained in the raw material manufacturing process even without any addition of sulfur. There is a risk of From this viewpoint, the sulfur content is preferably 1% by weight or less based on the weight of the elastomer.
To quantify the sulfur element, 0.01 g of an elastomer sample is burned in air at 1350 ° C. for 10 to 12 minutes, and the combustion gas generated is absorbed by a hydrogen peroxide solution containing a mixing indicator, and a 0.01 N NaOH aqueous solution is used. It can be carried out by the method of neutralization titration with.
[ムーニー粘度(ML(1+4)(100℃))によるエラストマーの選択]
 通常の手袋材料としてのXNBRのムーニー粘度(ML(1+4)(100℃))は、80以上、160以下のエラストマーを使用している。
 応力保持率を上げる観点から言えば、XNBRのムーニー粘度は、比較的高い方がよいと考えられる。
[Selection of elastomer by Mooney viscosity (ML (1 + 4) (100 ° C.))]
An elastomer having a Mooney viscosity (ML (1 + 4) (100 ° C.)) of XNBR as a normal glove material of 80 or more and 160 or less is used.
From the viewpoint of increasing the stress retention rate, it is considered that the Mooney viscosity of XNBR should be relatively high.
[ディップ成形用組成物の全量に対するエラストマーの含有量]
 ディップ成形用組成物は、複数種のエラストマーを組み合わせて含んでいてもよい。ディップ成形用組成物中のエラストマーの含有量は、特に限定されないが、ディップ成形用組成物の全量に対して、15重量%以上、35重量%以下であることが好ましく、18重量%以上、30重量%以下であることがより好ましい。
[Elastomer content relative to the total amount of the dip molding composition]
The composition for dip molding may contain a combination of a plurality of types of elastomers. The content of the elastomer in the dip molding composition is not particularly limited, but is preferably 15% by weight or more and 35% by weight or less, preferably 18% by weight or more and 30% by weight or less, based on the total amount of the dip molding composition. More preferably, it is by weight% or less.
<1-2.ハロヒドリン架橋剤>
 ハロヒドリン架橋剤を、XNBR手袋を製造するためのディップ成形用組成物に用いる場合の特徴は、ディップ成形用組成物の説明で述べたとおりである。
 ハロヒドリン架橋剤は、エポキシ架橋剤を製造する際の前駆体であるが、特に親水性が高いエポキシ架橋剤はポットライフ(可使時間)が短いのに対して、親水性が高いにもかかわらずポットライフが長く、かつ粒子間架橋が可能で、共有結合であることに本発明者らは着目した。
 また、ハロヒドリン架橋剤は、CaやKによる金属架橋に代わって架橋し、イオン結合を少なくすることができる点も応力保持率を高める点で魅力的である。また、ハロヒドリン架橋剤が亜鉛等の金属架橋剤の代替となれば亜鉛不含のクリーンルーム用手袋を作る可能性にも着目した。
 以下、ハロヒドリン架橋剤の詳細を説明する。
<1-2. Halohydrin crosslinker>
The characteristics when the halohydrin cross-linking agent is used in the dip molding composition for producing XNBR gloves are as described in the description of the dip molding composition.
Halohydrin cross-linking agents are precursors in the production of epoxy cross-linking agents, but epoxy cross-linking agents with particularly high hydrophilicity have a short pot life (pot life), whereas they have high hydrophilicity. The present inventors have focused on the fact that the pot life is long, interparticle cross-linking is possible, and a covalent bond is used.
Further, the halohydrin cross-linking agent is attractive in that it can crosslink instead of metal cross-linking by Ca or K and reduce ionic bonds in terms of increasing the stress retention rate. We also focused on the possibility of making zinc-free clean room gloves if the halohydrin cross-linking agent replaces metal cross-linking agents such as zinc.
The details of the halohydrin cross-linking agent will be described below.
 ハロヒドリン化合物は、カルボキシル基又はカルボキシラートと下記式(W1)又は(W2)に基づき、カルボキシル基又はカルボキシラートと反応すると考えられる。なお、カルボキシル基よりもカルボキシラートの方が反応性は高い。 The halohydrin compound is considered to react with the carboxyl group or carboxylate based on the following formula (W1) or (W2). The reactivity of carboxylate is higher than that of carboxyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ディップ成形用組成物中のハロヒドリン化合物の含有量は、特段制限されないが、エラストマー間に充分な架橋構造を導入して引張強度や疲労耐久性を確保する観点から、エポキシ化合物の1分子中のエポキシ基の数や純度にも依るが、エラストマー100重量部に対して、通常0.1重量部以上、10重量部以下であり、0.3重量部以上、5.0重量部以下であることが好ましく、0.5重量部以上、3.0重量部以下であることがより好ましい。
 ハロヒドリン架橋剤中のハロヒドリン化合物の含有量は、通常20重量%以上であり、30重量%以上であることが好ましく、40重量%以上であることがより好ましく、50重量%以上であることがさらに好ましく、80重量%以上であることが特に好ましく、90重量%以上であることがことさら特に好ましく、また、100重量%以下であってよい。
 ハロヒドリン化合物の含有量は、原料の仕込み量から評価してもよいが、GPC等の公知の方法により測定することができる。
The content of the halohydrin compound in the composition for dip molding is not particularly limited, but from the viewpoint of introducing a sufficient crosslinked structure between the elastomers to ensure tensile strength and fatigue durability, the epoxy in one molecule of the epoxy compound Although it depends on the number and purity of the groups, it is usually 0.1 parts by weight or more and 10 parts by weight or less, 0.3 parts by weight or more, and 5.0 parts by weight or less with respect to 100 parts by weight of the elastomer. It is preferably 0.5 parts by weight or more and more preferably 3.0 parts by weight or less.
The content of the halohydrin compound in the halohydrin cross-linking agent is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more. It is preferably 80% by weight or more, particularly preferably 90% by weight or more, and may be 100% by weight or less.
The content of the halohydrin compound may be evaluated from the amount of the raw material charged, but can be measured by a known method such as GPC.
 本発明の一実施形態であるディップ成形用架橋剤(以下、「ディップ成形用架橋剤」又は「ハロヒドリン架橋剤」とも称する。)は、下記式(I)で表されるハロヒドリン基Dを1分子中に少なくとも2つ有するハロヒドリン化合物を含有する、ディップ成形用架橋剤である。下記式(I)中のR及びXについては、後述する。なお、下記式(I)の構造における波線が他の構造への結合を表す。 The dip molding cross-linking agent (hereinafter, also referred to as “dip molding cross-linking agent” or “halohydrin cross-linking agent”), which is an embodiment of the present invention, has one molecule of halohydrin group D represented by the following formula (I). A cross-linking agent for dip molding containing at least two halohydrin compounds therein. For R 1 and X in the following formula (I), the later. The wavy line in the structure of the following formula (I) represents the coupling to another structure.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本実施形態によれば、ディップ成形用エラストマー粒子を上記ディップ成形用架橋剤にて架橋してディップ成形品を得る場合には、上記エラストマー粒子等は、カルボキシル基及び/又はカルボキシラートを有するエラストマー粒子等であれば、上述したエラストマーに限定されず、従来から知られているいずれのエラストマーでも用いることができる。 According to the present embodiment, when the elastomer particles for dip molding are crosslinked with the cross-linking agent for dip molding to obtain a dip molded product, the elastomer particles and the like are elastomer particles having a carboxyl group and / or carboxylate. If the above is true, the elastomer is not limited to the above-mentioned elastomer, and any conventionally known elastomer can be used.
<1-2-1.ハロヒドリン化合物の構造>
 ハロヒドリン架橋剤は、下記式(I)で表されるハロヒドリン基Dを1分子中に少なくとも2つ有する化合物(以下、「ハロヒドリン化合物(I)とも称する)を含有するハロヒドリン架橋剤である。
<1-2-1. Structure of halohydrin compound>
The halohydrin cross-linking agent is a halohydrin cross-linking agent containing a compound having at least two halohydrin groups D represented by the following formula (I) in one molecule (hereinafter, also referred to as “halohydrin compound (I))).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式(I)中、Rは、水素又はアルキル基であり、Xは、ハロゲン基である。
 Rは、特段制限されないが、立体障害の観点から、水素又は炭素数1~2のアルキル基であることが好ましく、水素又は炭素数1のアルキル基であることがより好ましく、水素であることが好ましい。
 Xは、特段制限されないが、反応性の観点から、Cl、Brであることが好ましく、Clであることが特に好ましい。
 上記のR及びXの条件は、以下の態様においても同様である。
In the above formula (I), R 1 is a hydrogen or alkyl group, and X is a halogen group.
R 1 is not particularly limited, but from the viewpoint of steric hindrance, it is preferably hydrogen or an alkyl group having 1 to 2 carbon atoms, more preferably hydrogen or an alkyl group having 1 carbon atom, and it is hydrogen. Is preferable.
Although X is not particularly limited, it is preferably Cl or Br, and particularly preferably Cl, from the viewpoint of reactivity.
The above conditions of R 1 and X are the same in the following aspects.
 上記ハロヒドリン化合物が、ハロヒドリン基Dとして、下記式(Ia)で表されるハロヒドリン基Daを1分子中に少なくとも1つ有するハロヒドリン化合物(以下、「ハロヒドリン化合物(Ia)」とも称する)であることが好ましい。なお、下記式(Ia)の構造における波線が他の構造への結合を表す。 The halohydrin compound may be a halohydrin compound having at least one halohydrin group Da represented by the following formula (Ia) in one molecule as the halohydrin group D (hereinafter, also referred to as “halohydrin compound (Ia)”). preferable. The wavy line in the structure of the following formula (Ia) represents the coupling to another structure.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(Ia)中、Rは、水素又はアルキル基であり、Xは、ハロゲン基である。 In the above formula (Ia), R 1 is a hydrogen or alkyl group, and X is a halogen group.
 さらに、上記ハロヒドリン化合物(I)が、下記式(II)で表されるハロヒドリン化合物(以下、「ハロヒドリン化合物(II)」とも称する)であることが好ましい。 Further, it is preferable that the halohydrin compound (I) is a halohydrin compound represented by the following formula (II) (hereinafter, also referred to as "halohydrin compound (II)").
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(II)中、Rは、炭素数2~10の(k+m)価の脂肪族炭化水素基であり、Xは、ハロゲン基であり、k及びmは、2≦k≦6、0≦m≦4、2≦k+m≦6を満たす整数である。 In the above formula (II), R 2 is a (k + m) -valent aliphatic hydrocarbon group having 2 to 10 carbon atoms, X is a halogen group, and k and m are 2 ≦ k ≦ 6,0. It is an integer that satisfies ≦ m ≦ 4 and 2 ≦ k + m ≦ 6.
 また、上記ハロヒドリン化合物(I)が、下記式(III)で表されるハロヒドリン化合物(以下、「ハロヒドリン化合物(III)」とも称する)であることが好ましい。 Further, it is preferable that the halohydrin compound (I) is a halohydrin compound represented by the following formula (III) (hereinafter, also referred to as "halohydrin compound (III)").
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(III)中、Rは、水素原子又はアルキル基を示し、Xはハロゲン基であり、nは、1≦n≦50を満たす整数である。 In the above formula (III), R 3 represents a hydrogen atom or an alkyl group, X is a halogen group, and n is an integer satisfying 1 ≦ n ≦ 50.
 また、上記ハロヒドリン化合物(I)が、下記式(IV)で表されるハロヒドリン化合物(以下、「ハロヒドリン化合物(IV)」とも称する)であることが好ましい。 Further, it is preferable that the halohydrin compound (I) is a halohydrin compound represented by the following formula (IV) (hereinafter, also referred to as "halohydrin compound (IV)").
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(IV)中、Rは、それぞれ独立に水素原子又はハロヒドリン基Daであり、Rのうち、少なくとも2つはハロヒドリン基Daであり、pは、1≦p≦10を満たす整数である。 In the above formula (IV), R 4 is an independent hydrogen atom or a halohydrin group Da, and at least two of R 4 are halohydrin groups Da, and p is an integer satisfying 1 ≦ p ≦ 10. is there.
 上記ハロヒドリン化合物(I)は、少糖類からの糖アルコールにエピハロヒドリンを反応させることによって得られる、ハロヒドリン基Daを1分子中に少なくとも2つ有する化合物(以下、「ハロヒドリン化合物(V)」とも称する)とすることができる。 The halohydrin compound (I) is a compound having at least two halohydrin groups Da in one molecule, which is obtained by reacting a sugar alcohol from a oligosaccharide with epihalohydrin (hereinafter, also referred to as “halohydrin compound (V)”). Can be.
<1-2-2.ハロヒドリン架橋剤の製造方法>
 上記ハロヒドリン化合物(I)は、一般に、上記ハロヒドリン化合物(II)~(V)に対応して、それぞれ分子内に少なくとも2つのヒドロキシル基を有する化合物(以下、「多価アルコール」とも称する。)にエピハロヒドリンを反応させることによって得ることができる。
<1-2-2. Method for manufacturing halohydrin cross-linking agent>
The halohydrin compound (I) is generally a compound having at least two hydroxyl groups in the molecule (hereinafter, also referred to as “polyhydrin alcohol”) corresponding to the halohydrin compounds (II) to (V). It can be obtained by reacting epihalohydrin.
 即ち、上述したハロヒドリン化合物(II)は、上記多価アルコールとして、下記式(II-2)で表されるものを用い、これをエピハロヒドリンと反応させることによって得ることができる。 That is, the above-mentioned halohydrin compound (II) can be obtained by using the above-mentioned polyhydrin alcohol represented by the following formula (II-2) and reacting it with epihalohydrin.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(II-2)中、R、k及びmは、前述した条件と同様である。
 上記脂肪族炭化水素Rは、後述する上記多価アルコールの具体例から明らかなように、脂肪族多価アルコール残基である。
In the formula (II-2), R 2 , k and m are the same as the conditions described above.
The aliphatic hydrocarbon R 2, as is clear from the specific examples of the polyhydric alcohol to be described later, an aliphatic polyvalent alcohol residue.
 上述したハロヒドリン化合物(III)は、上記多価アルコールとして、下記式(III-2)で表されるものを用い、これをエピハロヒドリンと反応させることによって得ることができる。 The above-mentioned halohydrin compound (III) can be obtained by using the above-mentioned polyhydrin alcohol represented by the following formula (III-2) and reacting it with epihalohydrin.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(III-2)中、R及びnは、前述した条件と同様である。
 Rは、特に制限されないが、水素原子又はメチル基であることが好ましく、また、nは、1又は2であることが好ましく、2であることがより好ましい。
In the formula (III-2), R 3 and n are the same as the conditions described above.
R 3 is not particularly limited, but is preferably a hydrogen atom or a methyl group, and n is preferably 1 or 2, and more preferably 2.
 上述したハロヒドリン化合物(IV)は、上記多価アルコールとして、下記式(IV-2)で表されるものを用い、これをエピハロヒドリンと反応させることによって得ることができる。 The above-mentioned halohydrin compound (IV) can be obtained by using the above-mentioned polyhydrin alcohol represented by the following formula (IV-2) and reacting it with epihalohydrin.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(IV-2)中、pは、前述した条件と同様である。
 pは、特に制限されないが、1であることが好ましい。
In the above formula (IV-2), p is the same as the above-mentioned conditions.
p is not particularly limited, but is preferably 1.
 上述したハロヒドリン化合物(V)は、少糖類から得られる糖アルコールにエピハロヒドリンを反応させることによって得ることができる。 The above-mentioned halohydrin compound (V) can be obtained by reacting epihalohydrin with a sugar alcohol obtained from a oligosaccharide.
 上記一般式(II-2)で表される多価アルコールは、単糖類の還元によって得られる糖アルコールを含むものとし、そのような多価アルコールの具体例としては、特に、限定されるものではないが、例えば、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、エリスリトール、ペンタエリスリトール、ソルビトール、マンニトール、キシリトール等を挙げることができる。これらのなかでは、エチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパンや、ソルビトール、マンニトール等が好ましく、エチレングリコール、グリセリン、トリメチロールプロパンが好ましい。 The polyhydric alcohol represented by the above general formula (II-2) shall contain a sugar alcohol obtained by reducing monosaccharides, and specific examples of such polyhydric alcohols are not particularly limited. However, for example, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,6-hexanediol, ethylene glycol, glycerin, trimethylol ethane, trimethylol. Examples thereof include propane, erythritol, pentaerythritol, sorbitol, mannitol, xylitol and the like. Among these, ethylene glycol, glycerin, trimethylolethane, trimethylolpropane, sorbitol, mannitol and the like are preferable, and ethylene glycol, glycerin and trimethylolpropane are preferable.
 上記一般式(III-2)で表される多価アルコールとしては、特に、限定されるものではないが、例えば、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール等を挙げることができる。これらのなかでは、特に、ジエチレングリコール又はジプロピレングリコールが好ましい。 The polyhydric alcohol represented by the general formula (III-2) is not particularly limited, but for example, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol and the like can be used. Can be mentioned. Of these, diethylene glycol or dipropylene glycol is particularly preferable.
 また、上記一般式(IV-2)で表される多価アルコールとしては、特に、限定されるものではないが、例えば、ジグリセリンやポリグリセリン等を挙げることができる。これらのなかでは、特に、ジグリセリンが好ましい。 Further, the polyhydric alcohol represented by the above general formula (IV-2) is not particularly limited, and examples thereof include diglycerin and polyglycerin. Of these, diglycerin is particularly preferred.
 上述したハロヒドリン化合物(V-2)の製造に用いる少糖類からの糖アルコールは、特に、限定されるものではないが、例えば、麦芽糖(マルトース)、セロビオース、ショ糖(シュクロース)、乳糖(ラクトース)等の二糖類やラフィノース、メレチトース等の三糖類等を還元して得られる糖アルコールや、澱粉糖を還元して得られる還元澱粉糖等を挙げることができる。このような少糖類からの糖アルコールは、単独で、又は(必要に応じて、単糖類からの糖アルコールと共に、)2種以上の混合物として用いられる。 The sugar alcohol from the oligosaccharide used for producing the halohydrin compound (V-2) described above is not particularly limited, but is, for example, maltose, cellobiose, sucrose (sucrose), and lactose. ) And the like, sugar alcohols obtained by reducing trisaccharides such as raffinose and meletitose, and reduced maltose obtained by reducing maltose. Sugar alcohols from such oligosaccharides can be used alone or as a mixture of two or more (with, if desired, sugar alcohols from monosaccharides).
 これらの少糖類からの糖アルコールのなかでは、例えば、市販品として容易に入手することができるマルチトール(麦芽糖からの糖アルコール)が好ましく用いられる。 Among the sugar alcohols from these oligosaccharides, for example, maltitol (sugar alcohol from maltose), which is easily available as a commercial product, is preferably used.
 他方、このような多価アルコールと反応させるエピハロヒドリンとしては、特に、エピクロルヒドリン又はエピブロムヒドリンが好ましく用いられる。 On the other hand, as the epichlorohydrin that reacts with such a polyhydric alcohol, epichlorohydrin or epibromhydrin is particularly preferably used.
 上述したような種々の多価アルコールとエピハロヒドリンとの反応は、必要に応じて、反応溶剤中において、ルイス酸触媒の存在下、好ましくは、加熱下に(例えば、30~95℃の範囲の温度)、多価アルコールにエピハロヒドリンを滴下し、混合することによって行うことができる。上記ルイス酸触媒としては、例えば、三フッ化ホウ素エーテル錯体、四塩化スズ、ホウフッ化亜鉛、四塩化チタン、塩化亜鉛、シリカアルミナ、五塩化アンチモン等を挙げることができるが、これらに限定されるものではない。 The reaction of various polyhydric alcohols with epihalohydrin as described above is, if necessary, in a reaction solvent in the presence of a Lewis acid catalyst, preferably under heating (eg, a temperature in the range of 30-95 ° C.). ), Epihalohydrin can be added dropwise to a polyhydric alcohol and mixed. Examples of the Lewis acid catalyst include, but are limited to, boron trifluoride ether complex, tin tetrafluoride, zinc borofluoride, titanium tetrachloride, zinc chloride, silica alumina, antimony trichloride, and the like. It's not a thing.
 また、上記反応溶剤は、反応の制御や粘度の調節等のために、必要に応じて用いられるものであり、上記多価アルコールとエピハロヒドリンとの反応において不活性であれば、どのようなものでもよい。従って、そのような反応溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジオキサン等のエーテル類等を挙げることができる。 The reaction solvent is used as necessary for controlling the reaction, adjusting the viscosity, etc., and can be any as long as it is inactive in the reaction between the polyhydric alcohol and epihalohydrin. Good. Therefore, examples of such a reaction solvent include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, diethyl ether, diisopropyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and dioxane. Examples include ethers.
 このような多価アルコールとエピハロヒドリンとの反応において、エピハロヒドリンは、多価アルコールの有するヒドロキシル基量に対して、通常、30~200モル%、好ましくは、50~150モル%の範囲で用いられる。多価アルコールの有するヒドロキシル基量に対して、エピハロヒドリンの使用量が30モル%よりも少ないときは、得られるポリハロヒドリン化合物中のハロヒドリン基量が低すぎて、これを架橋剤として用いても、充分な物性を得ることができない。しかし、エピハロヒドリンの使用量が200モル%を越える場合には、得られるハロヒドリン化合物中に未反応のエピハロヒドリンが残存することとなり、非経済的であるばかりか、架橋剤として用いるに当たって、安全性の観点からも好ましくない。 In such a reaction between a polyhydric alcohol and epihalohydrin, epihalohydrin is usually used in the range of 30 to 200 mol%, preferably 50 to 150 mol%, based on the amount of hydroxyl groups of the polyhydric alcohol. When the amount of epihalohydrin used is less than 30 mol% with respect to the amount of hydroxyl groups of the polyhydrin alcohol, the amount of halohydrin groups in the obtained polyhalohydrin compound is too low, and it is sufficient to use this as a cross-linking agent. I can't get the physical characteristics. However, when the amount of epihalohydrin used exceeds 200 mol%, unreacted epihalohydrin remains in the obtained halohydrin compound, which is not only uneconomical but also from the viewpoint of safety when used as a cross-linking agent. It is also not preferable.
 上記エピハロヒドリンとしては、エピクロルヒドリン又はエピブロムヒドリンが好ましく用いられる。また、1,3-ジハロ-2-プロパノールとしては、例えば、1,3-ジクロロ-2-プロパノール、1,3-ジブロモ-2-プロパノール等を挙げることができる。 As the epichlorohydrin, epichlorohydrin or epichlorohydrin is preferably used. In addition, examples of 1,3-dihalo-2-propanol include 1,3-dichloro-2-propanol, 1,3-dibromo-2-propanol and the like.
 ハロヒドリン架橋剤に含まれるハロヒドリン化合物の製造例を以下に示す。なお、ハロヒドリン架橋剤は市販品を用いてもよい。
 セパラブルフラスコにソルビトール、トルエン、触媒として三フッ化ホウ素エーテル錯体を仕込み、加熱攪拌し、これにエピクロルヒドリンを滴下する。滴下終了後、更に、一定時間、加熱攪拌のときと同じ温度で攪拌した後、滴定によるエポキシ基の定量に基づいてエピクロルヒドリンの消失を確認して、反応を終了させる。反応終了後、減圧下でトルエンを留去して、反応生成物として、上述の式(II)において、Rがソルビトール残基であり、Xが塩素原子であり、k=3、m=3である架橋剤を得ることができる。
An example of production of the halohydrin compound contained in the halohydrin cross-linking agent is shown below. A commercially available product may be used as the halohydrin cross-linking agent.
Sorbitol, toluene, and a boron trifluoride ether complex as a catalyst are charged in a separable flask, heated and stirred, and epichlorohydrin is added dropwise thereto. After completion of the dropping, the mixture is further stirred for a certain period of time at the same temperature as in the case of heating and stirring, and then the disappearance of epichlorohydrin is confirmed based on the quantification of epoxy groups by titration, and the reaction is terminated. After completion of the reaction, toluene was distilled off under reduced pressure, and as a reaction product, in the above formula (II), R 2 was a sorbitol residue, X was a chlorine atom, k = 3, m = 3. A cross-linking agent can be obtained.
 ハロヒドリン架橋剤のMIBK/水分配率は、特段制限されず、親水性であっても、親油性であっても、本発明の効果が得られるが、通常100%以下である。具体的には、親水性の場合、エラストマー粒子間の架橋が促進され、親油性の場合、エラストマー粒子内の架橋が促進され、これらの間の場合では、エラストマー粒子間及びエラストマー粒子内の架橋の比率が変化するものの、いずれの場合においても、ハロヒドリンによる架橋の形成が生じるため、所望の機械的物性を得ることができる。MIBK/水分配率は、その値が高いほど親油性が高く、その値が低いほど親水性が高いことを表す。なお、本願明細書において、親水性のハロヒドリンとは、MIBK/水分配率が、通常-30~50%であり、好ましくは-30~30%であり、より好ましくは-30~0%であり、また、親油性のハロヒドリンとは、MIBK/水分配率が、通常50~100%であり、好ましくは60~90%であり、より好ましくは70~90%である。 The MIBK / water distribution ratio of the halohydrin cross-linking agent is not particularly limited, and the effect of the present invention can be obtained regardless of whether it is hydrophilic or lipophilic, but it is usually 100% or less. Specifically, in the case of hydrophilicity, cross-linking between elastomer particles is promoted, in the case of lipophilicity, cross-linking within elastomer particles is promoted, and in the case between these, cross-linking between elastomer particles and within elastomer particles Although the ratio changes, in any case, the formation of crosslinks by halohydrin occurs, so that desired mechanical properties can be obtained. The higher the value of the MIBK / water distribution ratio, the higher the lipophilicity, and the lower the value, the higher the hydrophilicity. In the specification of the present application, the hydrophilic halohydrin has a MIBK / water partition ratio of usually -30 to 50%, preferably -30 to 30%, and more preferably -30 to 0%. Further, the lipophilic halohydrin has a MIBK / water distribution ratio of usually 50 to 100%, preferably 60 to 90%, and more preferably 70 to 90%.
 MIBK/水分配率は、下記の方法により測定することができる。
 まず、試験管に水約5.0g、MIBK約5.0g、ハロゲン架橋剤約0.5gを精秤して加える。MIBKの重量をM(g)、ハロゲン架橋剤の重量をE(g)とする。
 この混合物を23℃±2℃の温度下で3分間十分に攪拌混合した後、1.0×10Gの条件で10分間遠心分離し、水層とMIBK層に分ける。次いで、MIBK層の重量を測定し、これをML(g)とする。
 MIBK/水分配率(%)=(ML(g)-M(g))/E(g)×100
 なお、本明細書におけるMIBK/水測定法については、水とMIBKの重量を基準に計測したが、MIBKが水を若干溶解するため、実験数値としてマイナス%が出るが、同一基準で計測しているので、基準として採用可能であると本発明者らは考えた。
The MIBK / water distribution ratio can be measured by the following method.
First, about 5.0 g of water, about 5.0 g of MIBK, and about 0.5 g of a halogen cross-linking agent are precisely weighed and added to a test tube. Let the weight of MIBK be M (g) and the weight of the halogen cross-linking agent be E (g).
The mixture is sufficiently stirred and mixed at a temperature of 23 ° C. ± 2 ° C. for 3 minutes, and then centrifuged under the condition of 1.0 × 10 3 G for 10 minutes to separate an aqueous layer and a MIBK layer. Next, the weight of the MIBK layer is measured, and this is designated as ML (g).
MIBK / water distribution rate (%) = (ML (g) -M (g)) / E (g) x 100
The MIBK / water measurement method in this specification was measured based on the weight of water and MIBK, but since MIBK dissolves water slightly, minus% is obtained as an experimental value, but the measurement is performed using the same standard. Therefore, the present inventors considered that it can be adopted as a standard.
<1-3.エポキシ架橋剤>
 本発明の第2の実施形態においては、ハロヒドリン架橋剤に加え、エポキシ架橋剤を使用する。本実施形態で使用するエポキシ架橋剤は、比較的親油性が高いため、エラストマー粒子の内部に入り込みやすく、粒子内のカルボキシル基と反応しやすい。また、親油性の高いハロヒドリン架橋剤の場合、該ハロヒドリン架橋剤も粒子内部に入り込みやすいため、エポキシ架橋剤による粒子内架橋のみでは不十分であった粒子内架橋のさらなる強化を図ることができる。
 エポキシ架橋剤とXNBRのカルボキシル基との反応による架橋は、粒子内架橋となる傾向が強いと考えられる。
 よって、ハロヒドリンのみでも架橋は可能であるが、粒子内架橋を可能とするエポキシ架橋剤と組み合わせて用いることにより、親水性の高いハロヒドリンとの組合せにおいては、粒子間架橋のハロヒドリン架橋剤と合わせることにより、粒子内、粒子間を共有結合で架橋することで、また、親油性の高いハロヒドリンとの組合せにおいては、共有結合による粒子間架橋の更なる強化を図ることで、応力保持率等の物性に優れた手袋の製造が可能となると考えられる。
 エポキシ架橋剤は、エポキシ基を1分子中に少なくとも3つ有するエポキシ化合物を含有する。
<1-3. Epoxy crosslinker>
In the second embodiment of the present invention, an epoxy cross-linking agent is used in addition to the halohydrin cross-linking agent. Since the epoxy cross-linking agent used in the present embodiment has a relatively high lipophilicity, it easily penetrates into the elastomer particles and easily reacts with the carboxyl group in the particles. Further, in the case of a halohydrin cross-linking agent having a high lipophilicity, since the halohydrin cross-linking agent also easily enters the inside of the particles, it is possible to further strengthen the intra-particle cross-linking, which was not sufficient only by the intra-particle cross-linking with the epoxy cross-linking agent.
It is considered that the cross-linking by the reaction between the epoxy cross-linking agent and the carboxyl group of XNBR tends to be an intra-particle cross-linking.
Therefore, cross-linking is possible with halohydrin alone, but by using it in combination with an epoxy cross-linking agent that enables intra-particle cross-linking, in combination with highly hydrophilic halohydrin, it should be combined with the halohydrin cross-linking agent for interparticle cross-linking. By covalently cross-linking the particles within and between the particles, and by further strengthening the inter-particle cross-linking by covalent bond in combination with halohydrin having high lipophilicity, physical properties such as stress retention rate It is thought that it will be possible to manufacture excellent gloves.
The epoxy cross-linking agent contains an epoxy compound having at least three epoxy groups in one molecule.
<1-3-1.エポキシ架橋剤の構造>
 1分子中に3個以上のエポキシ基を有するエポキシ化合物は、通常複数のグリシジルエーテル基と、脂環族、脂肪族又は芳香族の炭化水素を有する母骨格を持つもの(以下「3価以上のエポキシ化合物」ともいう)である。3価以上のエポキシ化合物は、3つ以上のグリシジルエーテル基を有するエポキシ化合物を好ましく挙げることができる。3つ以上のグリシジルエーテル基を有するエポキシ化合物は、通常、エピハロヒドリンと1分子中に3個以上の水酸基を持つアルコールとを反応させて製造することができる。
 1分子中に3つ以上のエポキシ基を有するエポキシ化合物を含有するエポキシ架橋剤としては、その他ポリグリシジルアミン、ポリグリシジルエステル、エポキシ化ポリブタジエン、エポキシ化大豆油等を挙げることができる。
<1-3-1. Epoxy cross-linking agent structure>
Epoxide compounds having three or more epoxy groups in one molecule usually have a matrix having a plurality of glycidyl ether groups and alicyclic, aliphatic or aromatic hydrocarbons (hereinafter, "trivalent or higher"). It is also called an "epoxide compound"). As the epoxy compound having a trivalent or higher valence, an epoxy compound having three or more glycidyl ether groups can be preferably mentioned. An epoxy compound having three or more glycidyl ether groups can usually be produced by reacting epihalohydrin with an alcohol having three or more hydroxyl groups in one molecule.
Examples of the epoxy cross-linking agent containing an epoxy compound having three or more epoxy groups in one molecule include polyglycidylamine, polyglycidyl ester, epoxidized polybutadiene, and epoxidized soybean oil.
 3価以上のエポキシ化合物の母骨格を形成する3つ以上の水酸基を持つアルコールとしては、脂肪族のグリセロール、ジグリセロール、トリグリセロール、ポリグリセロール、ソルビトール、ソルビタン、キシリトール、エリスリトール、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、芳香族のクレゾールノボラック、トリスヒドロキシフェニルメタンが挙げられる。
 3価以上のエポキシ化合物の中でも、ポリグリシジルエーテルを用いることが好ましい。
 具体的には、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールトリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ジグリセロールトリグリシジルエーテルから選択される少なくとも一種を含むエポキシ架橋剤を用いることが好ましく、中でもトリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、グリセロールトリグリシジルエーテル、ジグリセロールトリグリシジルエーテル及びペンタエリスリトールテトラグリシジルエーテルの中から選択される少なくとも一種を含むエポキシ架橋剤を用いることがさらに好ましい。また、ソルビトール骨格を有さないエポキシ化合物を含むエポキシ架橋剤を用いることが好ましい。
Alcohols having three or more hydroxyl groups that form the matrix of a trivalent or higher epoxy compound include aliphatic glycerol, diglycerol, triglycerol, polyglycerol, sorbitol, sorbitan, xylitol, erythritol, trimethylolpropane, and tri. Examples include methylolethane, pentaerythritol, aromatic cresol novolac, and trishydroxyphenylmethane.
Among the epoxy compounds having a valence of 3 or more, it is preferable to use polyglycidyl ether.
Specifically, at least one selected from glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol triglycidyl ether, sorbitol tetraglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetraglycidyl ether, and diglycerol triglycidyl ether. It is preferable to use an epoxy cross-linking agent containing trimethylolpropane, among which at least one selected from trimethylolpropane triglycidyl ether, pentaerythritol triglycidyl ether, glycerol triglycidyl ether, diglycerol triglycidyl ether and pentaerythritol tetraglycidyl ether. It is more preferred to use an containing epoxy cross-linking agent. Further, it is preferable to use an epoxy cross-linking agent containing an epoxy compound having no sorbitol skeleton.
<1-3-2.エポキシ化合物とXNBRのカルボキシル基との架橋反応>
 下記式(Y)で示すように、エポキシ架橋は以下の反応により生じる。なお、下記式(Y)で示すエポキシ化合物は説明を簡略化する観点から1価のものを用いている。
Figure JPOXMLDOC01-appb-C000018
 エポキシ化合物が架橋を形成するのは、XNBR中のカルボキシル基であり、エポキシ化合物で架橋を形成するには、キュアリング工程において90℃以上で加熱し、エポキシ基の開環反応を起こさせることが挙げられる。
 また、ディップ成形用組成物に含まれるXNBRの粒子内の親油性環境下で失活を免れていたエポキシ化合物は、硬化フィルム前駆体となり、キュアリング工程において全体が親油環境となって加熱されたとき、粒子外に突き出たXNBRのカルボキシル基と反応する。このとき、離水性に優れるXNBRを選定することにより架橋効率が上がり、架橋温度を下げることができる。
<1-3-2. Crosslinking reaction between epoxy compound and carboxyl group of XNBR>
As shown by the following formula (Y), epoxy cross-linking occurs by the following reaction. The epoxy compound represented by the following formula (Y) is monovalent from the viewpoint of simplifying the explanation.
Figure JPOXMLDOC01-appb-C000018
It is the carboxyl group in XNBR that the epoxy compound forms a crosslink, and in order to form a crosslink with the epoxy compound, it is necessary to heat at 90 ° C. or higher in the curing step to cause a ring-opening reaction of the epoxy group. Can be mentioned.
In addition, the epoxy compound contained in the dip molding composition, which has escaped deactivation in the lipophilic environment in the XNBR particles, becomes a cured film precursor and is heated as a whole in the curing process as a lipophilic environment. At that time, it reacts with the carboxyl group of XNBR protruding outside the particles. At this time, by selecting XNBR having excellent water separation, the crosslinking efficiency can be increased and the crosslinking temperature can be lowered.
 ディップ成形用組成物中のエポキシ架橋剤の含有量は、特段制限されないが、エラストマー間に充分な架橋構造を導入して応力保持率や疲労耐久性を確保する観点から、エポキシ化合物の1分子中のエポキシ基の数や純度にも依るが、エラストマー100重量部に対して、通常0.2重量部以上5重量部以下である。
 実用的には、極薄(2.7g手袋、膜厚50μm程度)であってもエラストマー100重量部に対して0.4重量部以上で十分な性能の手袋を製造できる。一方、含有量が過剰量となるとかえってエラストマーの特性を低下させる恐れがあることから、エポキシ化合物のディップ成形用組成物への含有量は、エラストマーを100重量部に対して5重量部以下であることが好ましく、3重量部以下であることがより好ましく、2重量部以下であることがさらに好ましく、また、0.3重量部以上であることがより好ましく、0.5重量部以上であることがより好ましく、0.7重量部以上であることがさらに好ましいと考えられる。
 また、ハロヒドリン架橋剤とエポキシ架橋剤との含有量の比率は、重量基準で、ハロヒドリン架橋剤:エポキシ架橋剤=100:1~1:50であることが好ましく、10:1~1:5であることがより好ましい。
 エポキシ架橋剤中のエポキシ化合物の含有量は、通常20重量%以上であり、30重量%以上であることが好ましく、40重量%以上であることがより好ましく、50重量%以上であることがさらに好ましく、80重量%以上であることが特に好ましく、90重量%以上であることがことさら特に好ましく、また、100重量%以下であってよい。
 エポキシ化合物の含有量は、原料の仕込み量から評価してもよいが、GPC等の公知の方法により測定することができる。
The content of the epoxy cross-linking agent in the composition for dip molding is not particularly limited, but from the viewpoint of introducing a sufficient cross-linking structure between the elastomers to ensure stress retention and fatigue durability, it is contained in one molecule of the epoxy compound. Although it depends on the number and purity of the epoxy groups, it is usually 0.2 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the elastomer.
Practically, even if it is extremely thin (2.7 g glove, film thickness is about 50 μm), it is possible to manufacture a glove having sufficient performance with 0.4 parts by weight or more with respect to 100 parts by weight of the elastomer. On the other hand, if the content is excessive, the characteristics of the elastomer may be deteriorated. Therefore, the content of the epoxy compound in the dip molding composition is 5 parts by weight or less with respect to 100 parts by weight of the elastomer. It is preferably 3 parts by weight or less, more preferably 2 parts by weight or less, more preferably 0.3 parts by weight or more, and 0.5 parts by weight or more. Is more preferable, and it is considered that 0.7 parts by weight or more is further preferable.
The ratio of the content of the halohydrin cross-linking agent to the epoxy cross-linking agent is preferably 10: 1 to 1: 5, preferably halohydrin cross-linking agent: epoxy cross-linking agent = 100: 1 to 1:50 on a weight basis. More preferably.
The content of the epoxy compound in the epoxy cross-linking agent is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more, and further preferably 50% by weight or more. It is preferably 80% by weight or more, particularly preferably 90% by weight or more, and may be 100% by weight or less.
The content of the epoxy compound may be evaluated from the amount of the raw material charged, but can be measured by a known method such as GPC.
<1-3-3.エポキシ架橋剤の特性>
<平均エポキシ基数>
 上述のように3価以上のエポキシ架橋剤であっても、2価のエポキシ化合物も副反応として含まれることがあるので、各製品を評価するうえでは、平均エポキシ基数を把握して3価のエポキシ基を有する化合物の割合を把握しておくことが重要である。
 平均エポキシ基数は、エポキシ架橋剤に含まれる各エポキシ化合物をGPCにより特定し、それぞれのエポキシ化合物の1分子中のエポキシ基の数に、該エポキシ化合物のモル数を乗じて得たエポキシ基数を、各エポキシ化合物について求め、それらの合計値をエポキシ架橋剤に含まれる全てのエポキシ化合物に含まれる全てのエポキシ化合物の合計モル数で割って得られる。
 エポキシ架橋剤の平均エポキシ基数は、特段制限されないが、手袋の良好な応力保持率や疲労耐久性を得る観点から、2.0を超えることが好ましく、2.3以上であることがより好ましく、2.5以上が更に好ましい。一方、平均エポキシ基数の上限については特段制限されないが、例えば10.0以下を挙げることができる。
<1-3-3. Characteristics of epoxy cross-linking agent>
<Average number of epoxy groups>
As described above, even if the epoxy cross-linking agent has a trivalent value or higher, a divalent epoxy compound may be contained as a side reaction. Therefore, when evaluating each product, the average number of epoxy groups is grasped and the trivalent epoxy compound is used. It is important to know the proportion of compounds that have epoxy groups.
The average number of epoxy groups is obtained by specifying each epoxy compound contained in the epoxy cross-linking agent by GPC and multiplying the number of epoxy groups in one molecule of each epoxy compound by the number of moles of the epoxy compound. It is obtained for each epoxy compound, and the total value thereof is divided by the total number of moles of all the epoxy compounds contained in all the epoxy compounds contained in the epoxy cross-linking agent.
The average number of epoxy groups of the epoxy cross-linking agent is not particularly limited, but is preferably more than 2.0, more preferably 2.3 or more, from the viewpoint of obtaining a good stress retention rate and fatigue durability of the glove. 2.5 or more is more preferable. On the other hand, the upper limit of the average number of epoxy groups is not particularly limited, and for example, 10.0 or less can be mentioned.
<エポキシ当量>
 手袋の良好な応力保持率や疲労耐久性を得る観点から、エポキシ架橋剤のエポキシ当量は、100g/eq.以上230g/eq.以下であることが好ましい。エポキシ当量が同程度であっても、3価のエポキシ架橋剤の方が、2価のエポキシ架橋剤に比較して応力保持率に優れる傾向がある。
 エポキシ架橋剤のエポキシ当量は、エポキシ架橋剤の平均分子量を平均エポキシ基数で除した値であり、エポキシ基1個当たりの平均重量を示す。この値は過塩素酸法により計測することができる。
<Epoxy equivalent>
From the viewpoint of obtaining good stress retention and fatigue durability of gloves, the epoxy equivalent of the epoxy cross-linking agent is 100 g / eq. 230 g / eq. The following is preferable. Even if the epoxy equivalents are similar, the trivalent epoxy cross-linking agent tends to have a better stress retention rate than the divalent epoxy cross-linking agent.
The epoxy equivalent of the epoxy cross-linking agent is a value obtained by dividing the average molecular weight of the epoxy cross-linking agent by the average number of epoxy groups, and indicates the average weight per epoxy group. This value can be measured by the perchloric acid method.
<分子量>
 また、水中分散性の観点から、エポキシ架橋剤が含有するエポキシ化合物の分子量は150~1500であることが好ましく、175~1400であることがより好ましく、200~1300であることがより好ましい。
<Molecular weight>
From the viewpoint of dispersibility in water, the molecular weight of the epoxy compound contained in the epoxy cross-linking agent is preferably 150 to 1500, more preferably 175 to 1400, and even more preferably 200 to 1300.
<MIBK/水分配率>
 下記測定方法によるMIBK/水分配率が27%以上のエポキシ架橋剤を用いることで、3日以上のポットライフを持つディップ成形用組成物を得やすくなる。
 ポットライフとは、ディップ成形用組成物の調製から硬化フィルムの作製に供するまでの期間であり、かつ、その期間内にディップ成形用組成物を用いれば、得られる硬化フィルムが特定の基準を満たすことができる期間を示す。
 MIBK/水分配率が27%未満であるとポットライフは3日に達しない傾向がある。エポキシ架橋剤のMIBK/水分配率は30%以上であることが、ディップ成形用組成物のポットライフを所望のものにするために好ましい。MIBK/水分配率とポットライフには相関関係があり、MIBK/水分配率が上がるほど例外なくポットライフは延びる。
 MIBK/水分配率が50%以上のエポキシ架橋剤であれば、5日以上のポットライフを得ることができる傾向がある。
 さらに、MIBK/水分配率が70%以上のエポキシ架橋剤であれば、7日以上のポットライフが得られやすいため好ましい。
 エポキシ架橋剤のMIBK/水分配率の上限は特段設定することを要しないが、例えば、通常95%以下である。
<MIBK / water distribution rate>
By using an epoxy cross-linking agent having a MIBK / water distribution ratio of 27% or more according to the following measuring method, it becomes easy to obtain a dip molding composition having a pot life of 3 days or more.
The pot life is a period from the preparation of the dip molding composition to the preparation of the cured film, and if the dip molding composition is used within that period, the obtained cured film meets a specific standard. Indicates the period during which it can be done.
If the MIBK / water distribution ratio is less than 27%, the pot life tends to be less than 3 days. The MIBK / water partition ratio of the epoxy cross-linking agent is preferably 30% or more in order to obtain the desired pot life of the dip molding composition. There is a correlation between the MIBK / water distribution rate and the pot life, and the higher the MIBK / water distribution rate, the longer the pot life without exception.
An epoxy cross-linking agent having a MIBK / water distribution ratio of 50% or more tends to have a pot life of 5 days or more.
Further, an epoxy cross-linking agent having a MIBK / water distribution ratio of 70% or more is preferable because a pot life of 7 days or more can be easily obtained.
The upper limit of the MIBK / water distribution ratio of the epoxy cross-linking agent does not need to be set in particular, but is usually 95% or less, for example.
 まず、試験管に水約5.0g、MIBK約5.0g、エポキシ架橋剤約0.5gを精秤して加える。MIBKの重量をM(g)、エポキシ架橋剤の重量をE(g)とする。
 この混合物を23℃±2℃の温度下で3分間十分に攪拌混合した後、1.0×10Gの条件で10分間遠心分離し、水層とMIBK層に分ける。次いで、MIBK層の重量を測定し、これをML(g)とする。
 MIBK/水分配率(%)=(ML(g)-M(g))/E(g)×100
 なお、本明細書におけるMIBK/水測定法については、水とMIBKの重量を基準に計測したが、MIBKが水を若干溶解するため、実験数値としてマイナス%が出るが、同一基準で計測しているので、基準として採用可能であると考えた。
First, about 5.0 g of water, about 5.0 g of MIBK, and about 0.5 g of an epoxy cross-linking agent are precisely weighed and added to a test tube. Let the weight of MIBK be M (g) and the weight of the epoxy crosslinker be E (g).
The mixture is sufficiently stirred and mixed at a temperature of 23 ° C. ± 2 ° C. for 3 minutes, and then centrifuged under the condition of 1.0 × 10 3 G for 10 minutes to separate an aqueous layer and a MIBK layer. Next, the weight of the MIBK layer is measured, and this is designated as ML (g).
MIBK / water distribution rate (%) = (ML (g) -M (g)) / E (g) x 100
The MIBK / water measurement method in this specification was measured based on the weight of water and MIBK, but since MIBK dissolves water slightly, minus% is obtained as an experimental value, but the measurement is performed using the same standard. Therefore, I thought that it could be adopted as a standard.
<1-3-4.エポキシ架橋剤の分散剤>
 上述したエポキシ架橋剤は、ディップ成形用組成物中において均一な分散状態に保つ必要がある。一方、MIBK/水分配率が27%以上のエポキシ架橋剤においては、MIBK/水分配率が高いものほどラテックス溶液に架橋剤を添加するのが難しく、また分散しにくいという問題がある。
 親水性の高いエポキシ架橋剤であれば、水分散性に問題は生じないが、溶剤系塗料用として使用されていたエポキシ架橋剤については、分散剤を用いてエポキシ架橋剤を溶解した上で、エラストマーへ配合することを考えた。
 特に、MIBK/水分配率が50%以上になると水に溶かしたときに白濁が見られる傾向があるので、分散剤による分散が必要であると考えた。
<1-3-4. Dispersant for epoxy cross-linking agent>
The epoxy cross-linking agent described above needs to be kept in a uniformly dispersed state in the composition for dip molding. On the other hand, in the epoxy cross-linking agent having a MIBK / water partition ratio of 27% or more, there is a problem that the higher the MIBK / water partition ratio is, the more difficult it is to add the cross-linking agent to the latex solution and the more difficult it is to disperse.
If it is a highly hydrophilic epoxy cross-linking agent, there is no problem in water dispersibility, but for the epoxy cross-linking agent used for solvent-based paints, after dissolving the epoxy cross-linking agent with the dispersant, I thought about blending it with an elastomer.
In particular, when the MIBK / water distribution ratio is 50% or more, white turbidity tends to be seen when dissolved in water, so it was considered necessary to disperse with a dispersant.
 前記エポキシ架橋剤の分散剤は、一価の低級アルコール、下記式(1)で表されるグリコール、下記式(2)で表されるエーテル、及び下記式(3)で表されるエステルからなる群から選択される1種以上であることが好ましい。
 HO-(CHCHR-O)n1-H (1)
[上記式(1)中、Rは、水素またはメチル基を表し、n1は1~3の整数を表す。]
 RO-(CHCHR-O)n2-R (2)
[式(2)中、Rは、水素またはメチル基を表し、Rは、炭素数1~5の脂肪族炭化水素基を表し、Rは、水素または炭素数1~3の脂肪族炭化水素基を表し、n2は0~3の整数を表す。]
 RO-(CHCHR-O)n3-(C=O)-CH (3)
[式(3)中、Rは、水素またはメチル基を表し、Rは、炭素数1~5の脂肪族炭化水素基を表し、n3は0~3の整数を表す。]
The dispersant of the epoxy cross-linking agent comprises a monohydric lower alcohol, a glycol represented by the following formula (1), an ether represented by the following formula (2), and an ester represented by the following formula (3). It is preferably one or more selected from the group.
HO- (CH 2 CHR 1- O) n1- H (1)
[In the above formula (1), R 1 represents a hydrogen or a methyl group, and n1 represents an integer of 1 to 3. ]
R 2 O- (CH 2 CHR 1- O) n2- R 3 (2)
[In formula (2), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 3 represents hydrogen or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. It represents a hydrocarbon group, and n2 represents an integer of 0 to 3. ]
R 2 O- (CH 2 CHR 1- O) n3- (C = O) -CH 3 (3)
[In formula (3), R 1 represents a hydrogen or methyl group, R 2 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and n 3 represents an integer of 0 to 3. ]
 一価の低級アルコールとしては、メタノール、エタノールなどを挙げることができる。
 式(1)で表されるグリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどを挙げることができる。
 式(2)で表されるエーテルの内、グリコールエーテルとしては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテルなどが挙げられる。また、式(2)で表されるエーテルとして、n2=0のエーテルも用いることができる。
 式(3)で表されるエステルとしては、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどを挙げることができる。
 上記のエポキシ架橋剤の分散剤を用いる場合は、一種のみを用いてもよく、2種以上を組み合わせて用いてもよい。なお、上記分散剤は、予め水と混合せずに使用することが好ましい。
Examples of the monohydric lower alcohol include methanol and ethanol.
Examples of the glycol represented by the formula (1) include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and tripropylene glycol.
Among the ethers represented by the formula (2), the glycol ethers include diethylene glycol monomethyl ether, diethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoisobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, and tripropylene glycol. Examples thereof include monomethyl ether and triethylene glycol dimethyl ether. Further, as the ether represented by the formula (2), an ether having n2 = 0 can also be used.
Examples of the ester represented by the formula (3) include diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate.
When the above-mentioned dispersant of the epoxy cross-linking agent is used, only one kind may be used, or two or more kinds may be used in combination. The dispersant is preferably used without being mixed with water in advance.
 上記の分散剤の中でも、アルコールが好ましく、特に、メタノール、エタノール、ジエチレングリコールを用いることが好ましく、揮発性、引火性の観点からジエチレングリコールを用いることが特に好ましい。
 ジエチレングリコールは、親水性の高いグリコール基とエーテル構造を有すると同時に親油性のある炭化水素構造が含まれ、水にもエラストマーにも溶けやすいので好適であると推測される。
Among the above dispersants, alcohol is preferable, methanol, ethanol and diethylene glycol are particularly preferable, and diethylene glycol is particularly preferable from the viewpoint of volatility and flammability.
It is presumed that diethylene glycol is suitable because it has a highly hydrophilic glycol group and an ether structure, and at the same time contains a lipophilic hydrocarbon structure, and is easily dissolved in water and an elastomer.
 ディップ成形用組成物における、エポキシ架橋剤と分散剤の重量比は、1:4~1:1であることが好ましい。
 ディップ成形用組成物を調製する際に、水溶率が低いエポキシ架橋剤を用いる場合には、予めそのエポキシ架橋剤をエポキシ架橋剤の分散剤に溶解させた上で、ディップ成形用組成物の他の構成成分と混合することが好ましい。
The weight ratio of the epoxy cross-linking agent to the dispersant in the dip molding composition is preferably 1: 4 to 1: 1.
When an epoxy cross-linking agent having a low water content is used when preparing the composition for dip molding, the epoxy cross-linking agent is dissolved in the dispersant of the epoxy cross-linking agent in advance, and then the composition for dip molding is added. It is preferable to mix with the constituents of.
<1-4.金属架橋剤>
 上記第1、第2の実施形態のディップ成形用組成物は、亜鉛等の金属架橋剤を任意成分として含んでいてもよい。しかし、XNBR手袋の応力保持率を上げるためには、金属架橋剤によるイオン結合はない方が好ましい。
 亜鉛等の金属架橋剤を併用するときは、手袋に必要な引張強度等を確保するために必要最小限に投入する場合がある。
 ただし、XNBR手袋においては、凝固剤由来のCa、pH調整剤由来のKによるイオン結合が相当量含まれており、その点でもこれらのイオン架橋を減少させることができるハロヒドリン架橋剤は有効であると考えられる。
<1-4. Metal cross-linking agent>
The dip molding composition of the first and second embodiments may contain a metal cross-linking agent such as zinc as an optional component. However, in order to increase the stress retention rate of the XNBR gloves, it is preferable that there is no ionic bond due to the metal cross-linking agent.
When a metal cross-linking agent such as zinc is used in combination, it may be added to the minimum necessary to secure the tensile strength required for the glove.
However, the XNBR gloves contain a considerable amount of ionic bonds due to Ca derived from the coagulant and K derived from the pH adjuster, and a halohydrin cross-linking agent capable of reducing these ionic cross-links is also effective in that respect. it is conceivable that.
 金属架橋剤として用いられる多価金属化合物は、エラストマー中の未反応のカルボキシル基等の官能基間をイオン架橋するものである。多価金属化合物としては、二価金属酸化物である酸化亜鉛が通常に用いられる。また、三価金属であるアルミニウムはこれを錯体にすることで架橋剤に用いることができる。アルミニウムは、イオン半径が上記の中で最も小さく、耐薬性、引張強度を出すには最適であるが、あまり多く添加すると手袋が硬くなりすぎる。二価金属酸化物、例えば酸化亜鉛、及び/またはアルミニウム錯体の添加量は、ディップ成形用組成物中のエラストマー100重量部に対して、0.0~2.0重量部とすることができる。 The polyvalent metal compound used as a metal cross-linking agent is one that ion-crosslinks between functional groups such as unreacted carboxyl groups in an elastomer. As the multivalent metal compound, zinc oxide, which is a divalent metal oxide, is usually used. Further, aluminum, which is a trivalent metal, can be used as a cross-linking agent by forming a complex thereof. Aluminum has the smallest ionic radius among the above and is optimal for obtaining chemical resistance and tensile strength, but if too much is added, the glove becomes too hard. The amount of the divalent metal oxide, for example zinc oxide, and / or the aluminum complex added can be 0.0 to 2.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition.
 アルミニウムを架橋剤として使用するためには、コンパウンドするときに、中性~弱塩基性の溶液でXNBRラテックスに加える必要がある。
 しかし、アルミニウム塩の水溶液は中性~弱塩基性の時は水酸化アルミニウムのゲルとなってしまい、架橋剤として用いることができない。それを解決するために、配位子として多塩基性ヒドロキシカルボン酸を用いた手法が考えられる。ここでの多塩基性ヒドロキシカルボン酸としては、クエン酸、リンゴ酸、酒石酸、乳酸などの水溶液が利用できる。
 この中では、手袋の引張強度、疲労耐久性の点からはリンゴ酸が、アルミニウム水溶液の安定性の点からは、クエン酸を配位子として用いることが好ましい。
In order to use aluminum as a cross-linking agent, it is necessary to add it to the XNBR latex in a neutral to weakly basic solution when compounding.
However, when the aqueous solution of the aluminum salt is neutral to weakly basic, it becomes a gel of aluminum hydroxide and cannot be used as a cross-linking agent. In order to solve this problem, a method using a polybasic hydroxycarboxylic acid as a ligand can be considered. As the polybasic hydroxycarboxylic acid here, aqueous solutions of citric acid, malic acid, tartaric acid, lactic acid and the like can be used.
Among these, malic acid is preferably used as a ligand from the viewpoint of tensile strength and fatigue durability of gloves, and citric acid is preferably used as a ligand from the viewpoint of stability of an aqueous aluminum solution.
 以上のように、金属成分をディップ成形用組成物に含有させることにより引張強度等の物性を確保することができるが、共有結合に比べ、イオン結合は結合力が弱いため、手袋を伸ばしたときに、結合がずれてしまい、応力保持率が低下する原因となる。 As described above, physical properties such as tensile strength can be ensured by including a metal component in the dip molding composition, but since the ionic bond has a weaker bonding force than the covalent bond, when the gloves are stretched. In addition, the bond is displaced, which causes a decrease in the stress retention rate.
<1-5.その他の成分>
 ディップ成形用組成物は、上記のエラストマー及び架橋剤等以外の成分(以下、「その他の成分」とも称する。)として通常、以下の成分を含んでいる。
 以下、その他の成分の例を示す。
<1-5. Other ingredients>
The composition for dip molding usually contains the following components as components other than the above-mentioned elastomer, cross-linking agent and the like (hereinafter, also referred to as "other components").
Examples of other components are shown below.
(1)pH調整剤
 ディップ成形用組成物は、後述する撹拌工程(マチュレーション工程)の段階でアルカリ性に調整しておく必要がある。アルカリ性にする理由のひとつは、エラストマーの粒子から-COOHを-COO-として外側に配向させ、ハロヒドリン架橋剤による粒子間架橋を十分に行うためである。なお、酸化亜鉛のような金属架橋剤や、凝固剤としてカルシウムイオン等を含むものを用いる場合に生じ得る金属架橋も粒子間架橋であるため、上記と同様の理由からアルカリ性にする必要がある。
 好ましいpHの値は9.5~12.0であり、pHが低くなると-COOHの粒子外への配向が少なくなり架橋が不十分となり、pHが高くなりすぎるとラテックスの安定性が悪くなる。
 pH調整剤としては、アンモニア、アンモニウム化合物、アミン化合物及びアルカリ金属の水酸化物から得られる一種以上を使用できる。これらの中でも、pH調整やゲリング条件などの製造条件が容易であるため、アルカリ金属の水酸化物を用いることが好ましく、その中でも水酸化カリウム(以下、KOHともいう)が最も使用しやすい。
 pH調整剤の添加量は、ディップ成形用組成物中のエラストマー100重量部に対して1.5~10.0重量部を挙げることができるが、通常、工業的には1.8~2.0重量部を使用する。
(1) pH adjuster The dip molding composition needs to be adjusted to be alkaline at the stage of the stirring step (maturation step) described later. One of the reasons for making it alkaline is that -COOH is oriented outward as -COO- from the elastomer particles, and interparticle cross-linking with a halohydrin cross-linking agent is sufficiently performed. Since the metal cross-linking that can occur when a metal cross-linking agent such as zinc oxide or a coagulant containing calcium ions or the like is used is also inter-particle cross-linking, it is necessary to make it alkaline for the same reason as described above.
The preferable pH value is 9.5 to 12.0. When the pH is low, the orientation of −COOH to the outside of the particles is small and the cross-linking is insufficient, and when the pH is too high, the stability of the latex is deteriorated.
As the pH adjuster, one or more obtained from ammonia, ammonium compounds, amine compounds and alkali metal hydroxides can be used. Among these, alkali metal hydroxides are preferably used because the production conditions such as pH adjustment and gelling conditions are easy, and among them, potassium hydroxide (hereinafter, also referred to as KOH) is the easiest to use.
The amount of the pH adjuster added can be 1.5 to 10.0 parts by weight with respect to 100 parts by weight of the elastomer in the composition for dip molding, but it is usually industrially 1.8 to 2. Use 0 parts by weight.
(2)その他
 その他の成分として、上記の材料以外にも下記の成分を含有させることが通常である。
 ディップ成形用組成物は、水を含有し、ディップ成形用組成物における水の含有量は、手袋の厚みを調整する要因であるラテックス濃度を所定の濃度とするため設定されるため、この濃度に応じて適宜変更可能であるが、通常、78~92重量部である。
 水としては、純水や工業用水を用いることができるが、純水を用いることが好ましい。
(2) Others As other components, the following components are usually contained in addition to the above materials.
The composition for dip molding contains water, and the content of water in the composition for dip molding is set to a predetermined concentration because the latex concentration, which is a factor for adjusting the thickness of gloves, is set to this concentration. It can be changed as appropriate, but it is usually 78 to 92 parts by weight.
As the water, pure water or industrial water can be used, but it is preferable to use pure water.
 ディップ成形用組成物は、さらに、各成分を分散させるための分散剤を通常含んでいる。分散剤としては、アニオン界面活性剤が好ましく、例えば、カルボン酸塩、スルホン酸塩、リン酸塩、ポリリン酸エステル、高分子化アルキルアリールスルホネート、高分子化スルホン化ナフタレン、高分子化ナフタレン/ホルムアルデヒド縮合重合体等が挙げられ、好ましくはスルホン酸塩が使用される。
 当該分散剤には市販品を使用することができる。例えば、BASF社製「Tamol NN9104」などを用いることができる。その使用量は、ディップ成形用組成物中のエラストマー100重量部に対し、0.5~2.0重量部程度であることが好ましい。
The composition for dip molding also usually contains a dispersant for dispersing each component. As the dispersant, an anionic surfactant is preferable, and for example, a carboxylate, a sulfonate, a phosphate, a polyphosphoric acid ester, a polymerized alkylarylsulfonate, a polymerized sulfonated naphthalene, and a polymerized naphthalene / formaldehyde Condensation polymers and the like are mentioned, and sulfonates are preferably used.
Commercially available products can be used as the dispersant. For example, "Tamol NN9104" manufactured by BASF may be used. The amount used is preferably about 0.5 to 2.0 parts by weight with respect to 100 parts by weight of the elastomer in the dip molding composition.
 ディップ成形用組成物は、さらにその他の各種の添加剤を通常含んでいる。該添加剤としては、酸化防止剤、顔料、キレート剤等が挙げられる。酸化防止剤として、ヒンダードフェノールタイプの酸化防止剤、例えば、WingstayLを用いることができる。また、顔料としては、例えば二酸化チタンが使用される。キレート化剤としては、エチレンジアミン四酢酸ナトリウム等を使用することができる。 The composition for dip molding usually further contains various other additives. Examples of the additive include antioxidants, pigments, chelating agents and the like. As the antioxidant, a hindered phenol type antioxidant, for example, WingstayL can be used. Further, as the pigment, for example, titanium dioxide is used. As the chelating agent, sodium ethylenediaminetetraacetate or the like can be used.
 本実施形態のディップ成形用組成物は、エラストマー、及びハロヒドリン架橋剤、必要に応じてエポキシ架橋剤、pH調整剤、水等の各添加剤を、慣用の混合手段、例えば、ミキサー等で混合して作ることができる。 In the dip molding composition of the present embodiment, each additive such as an elastomer, a halohydrin cross-linking agent, and if necessary, an epoxy cross-linking agent, a pH adjuster, and water is mixed by a conventional mixing means, for example, a mixer or the like. Can be made.
<2.手袋の製造方法>
 本発明の別の実施形態である手袋の製造方法(以下、単に「手袋の製造方法」とも称する。)は、以下の製造方法である。
 すなわち、
 (1)凝固剤付着工程(手袋成形型に凝固剤を付着させる工程)、
 (2)撹拌工程(ディップ成形用組成物を調製し、攪拌する工程)、
 (3)ディッピング工程(手袋成形型をディップ成形用組成物に浸漬する工程)、
 (4)ゲリング工程(手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作る工程)、
 (5)リーチング工程(手袋成形型上に形成された硬化フィルム前駆体から不純物を除去する工程)、
 (6)ビーディング工程(手袋の袖口部分に巻きを作る工程)、
 (7)キュアリング工程(架橋反応に必要な温度で加熱及び乾燥する工程)
 を含み、上記(3)~(7)の工程を上記の順序で行う手袋の製造方法である。
<2. How to make gloves>
A glove manufacturing method (hereinafter, also simply referred to as “glove manufacturing method”), which is another embodiment of the present invention, is the following manufacturing method.
That is,
(1) Coagulant adhesion step (step of adhering coagulant to glove molding mold),
(2) Stirring step (step of preparing a composition for dip molding and stirring),
(3) Dip molding step (step of immersing the glove molding die in the dip molding composition),
(4) Gelling step (step of gelling the film formed on the glove molding to make a cured film precursor),
(5) Reaching step (step of removing impurities from the cured film precursor formed on the glove molding die),
(6) Beading process (process of making a roll around the cuffs of gloves),
(7) Curing step (step of heating and drying at the temperature required for the cross-linking reaction)
This is a method for manufacturing gloves, which comprises the above steps (3) to (7) in the above order.
 上記(6)の工程と(7)の工程の間に、以下の(6’)の工程を任意に有していてもよい。
(6’)プリキュアリング工程、(硬化フィルム前駆体をキュアリング工程よりも低温で加熱及び乾燥する工程)
 また、上記の製造方法において、上記(3)及び(4)の工程を2回繰り返す、いわゆるダブルディッピングによる手袋の製造方法も含む。
The following step (6') may be optionally provided between the steps (6) and (7) above.
(6') Precure ring step, (step of heating and drying the cured film precursor at a lower temperature than the curing step)
The above-mentioned manufacturing method also includes a method of manufacturing gloves by so-called double dipping, in which the steps (3) and (4) are repeated twice.
 本明細書において、硬化フィルム前駆体とは、ディッピング工程で凝固剤により手袋成形型上に凝集されたエラストマーから構成される膜であり、続くゲリング工程において該膜中にカルシウムが分散してある程度ゲル化された膜であって、最終的なキュアリングを行う以前のものを指す。 In the present specification, the cured film precursor is a film composed of an elastomer aggregated on a glove molding by a coagulant in a dipping step, and calcium is dispersed in the film in a subsequent gelling step to gel to some extent. It is a modified film that has not been finally cured.
 以下、各工程ごとに詳細を説明する。
(1)凝固剤付着工程
(a)モールド又はフォーマ(手袋成形型)を、凝固剤及びゲル化剤としてCa2+イオンを5~40重量%、好ましくは8~35重量%含む凝固剤溶液中に浸す。ここで、モールド又はフォーマの表面に凝固剤等を付着させる時間は適宜定められ、通常、10~20秒間程度である。凝固剤としては、カルシウムの硝酸塩又は塩化物が用いられる。エラストマーを析出させる効果を有する他の無機塩を用いてもよい。中でも、硝酸カルシウムを用いることが好ましい。この凝固剤は、通常、5~40重量%含む水溶液として使用される。
 また、凝固剤を含む溶液は離型剤としてステアリン酸カリウム、ステアリン酸カルシウム、鉱油、又はエステル系油等を0.5~2重量%程度、例えば1重量%程度含むことが好ましい。
Details will be described below for each step.
(1) Coagulant Adhesion Step (a) Mold or former (glove molding type) is placed in a coagulant solution containing 5 to 40% by weight, preferably 8 to 35% by weight of Ca 2+ ions as a coagulant and a gelling agent. Soak. Here, the time for adhering the coagulant or the like to the surface of the mold or former is appropriately determined, and is usually about 10 to 20 seconds. As the coagulant, calcium nitrate or chloride is used. Other inorganic salts having the effect of precipitating the elastomer may be used. Above all, it is preferable to use calcium nitrate. This coagulant is usually used as an aqueous solution containing 5 to 40% by weight.
The solution containing the coagulant preferably contains potassium stearate, calcium stearate, mineral oil, ester-based oil, or the like as a release agent in an amount of about 0.5 to 2% by weight, for example, about 1% by weight.
(b)凝固剤溶液が付着したモールド又はフォーマを炉内温度110℃~140℃程度のオーブンに1~3分入れ、乾燥させ手袋成形型の表面全体又は一部に凝固剤を付着させる。この時注意すべきは、乾燥後の手型の表面温度は60℃程度になっており、これが以降の反応に影響する。
(c)カルシウムは、手袋成形型の表面に膜を形成するための凝固剤機能としてばかりでなく、最終的に完成した手袋の相当部分の架橋機能に寄与している。後で添加される金属架橋剤は、このカルシウムの架橋機能の弱点を補強するためのものともいえる。
(B) The mold or former to which the coagulant solution is attached is placed in an oven having a furnace temperature of about 110 ° C. to 140 ° C. for 1 to 3 minutes and dried to allow the coagulant to adhere to the entire surface or a part of the glove molding mold. At this time, it should be noted that the surface temperature of the hand mold after drying is about 60 ° C., which affects the subsequent reaction.
(C) Calcium contributes not only to the coagulant function for forming a film on the surface of the glove molding mold, but also to the cross-linking function of a considerable part of the finally completed glove. The metal cross-linking agent added later can be said to reinforce the weakness of the cross-linking function of calcium.
(2)撹拌工程
(a)ディップ成形用組成物のpH調整剤の項目で説明したように、上述した一実施形態であるディップ成形用組成物をpH9.5以上に調整し、攪拌する工程である。この工程により、ディップ成形用組成物中の成分が分散・均一化すると考えられる。
(b)実際の手袋の製造工程においては、通常大規模なタンクで本工程を行うため、分散及び均一化に24時間程度かかることがある。これをディップ槽に流し、ディッピングしていくがディップ槽の水位が下がるのに応じて注ぎ足していく。そのため、使用する架橋剤は、ディップ成形用組成物の調製後好ましくは5日程度、最低でも3日程度は失活しないようにしておく必要がある。
 親水性のハロヒドリン架橋剤または3価のMIBK/水分配率が27%以上のエポキシ架橋剤を使う場合は、量産条件としての最低限の3日を確保(失活させずにおく)することができる。なお、ハロヒドリン架橋剤については6日程度の可使時間があることを確認している。
(2) Stirring step (a) As described in the section of pH adjuster of the dip molding composition, in the step of adjusting the pH of the dip molding composition according to the above-described embodiment to 9.5 or higher and stirring. is there. It is considered that the components in the dip molding composition are dispersed and homogenized by this step.
(B) In the actual manufacturing process of gloves, since this process is usually performed in a large-scale tank, it may take about 24 hours for dispersion and homogenization. Pour this into a dip tank and dip it, but add more as the water level in the dip tank drops. Therefore, it is necessary that the cross-linking agent used is not inactivated for preferably about 5 days, at least about 3 days after the preparation of the dip molding composition.
When using a hydrophilic halohydrin cross-linking agent or an epoxy cross-linking agent with a trivalent MIBK / water distribution ratio of 27% or more, it is necessary to secure a minimum of 3 days as a mass production condition (leave it uninactivated). it can. It has been confirmed that the halohydrin cross-linking agent has a pot life of about 6 days.
(3)ディッピング工程
 前記撹拌工程(マチュレーション工程)で、攪拌した本発明の実施形態にかかるディップ成形用組成物(ディップ液)をディップ槽に流し入れ、このディップ槽中に上記凝固剤付着工程で凝固剤を付着、乾燥した後のモールド又はフォーマを通常、1~60秒間、25~35℃の温度条件下で浸漬する工程である。
 この工程で凝固剤に含まれるカルシウムイオンにより、ディップ成形用組成物に含まれるエラストマーをモールド又はフォーマの表面に凝集させて膜を形成させる。
(3) Diping Step In the stirring step (maturation step), the dip molding composition (dip liquid) according to the embodiment of the present invention that has been stirred is poured into a dip tank, and the coagulant adhering step is carried out in the dip tank. This is a step of immersing the mold or former after the coagulant is attached and dried, usually for 1 to 60 seconds under a temperature condition of 25 to 35 ° C.
In this step, the calcium ions contained in the coagulant agglomerate the elastomer contained in the dip molding composition on the surface of the mold or former to form a film.
(4)ゲリング工程
(a)ゲリング工程は、ラテックスの架橋を若干進ませて、後のリーチングの時に膜が変形しないように一定程度ゲル化し、同時に膜中にカルシウムを分散させ、後にカルシウム架橋を十分にさせる目的である。ゲリング条件としては通常30~140℃の温度範囲内で、1分~4分程度行うのが一般的である。
(4) Gelling step (a) In the gelling step, the cross-linking of the latex is slightly advanced to gel to a certain extent so that the film is not deformed during the subsequent leaching, and at the same time, calcium is dispersed in the film, and then calcium cross-linking is performed. The purpose is to make it sufficient. As a gelling condition, it is generally performed for about 1 to 4 minutes within a temperature range of 30 to 140 ° C.
(5)リーチング工程
(a)リーチング工程は、硬化フィルム前駆体の表面に析出したカルシウム等の後のキュアリングに支障となる余剰な薬剤や不純物を水洗除去する工程である。通常は、フォーマを40~60℃の温水に1.5~4分程度くぐらせている。(b)リーチングは、キュアリング工程で架橋を円滑に進ませるためにXNBR粒子の膜である乳化剤を除去すること、外側に配向した-COOを-COOHに戻すこと、金属架橋剤を錯イオンから水に不溶な水酸化物に替えてフィルム中に保持すること、余剰の凝固剤由来のCaやpH調整剤由来のKを除去する工程であり、重要な工程である。
(5) Reaching Step (a) The leaching step is a step of washing and removing excess chemicals and impurities that interfere with subsequent curing such as calcium precipitated on the surface of the cured film precursor. Normally, the former is dipped in warm water at 40 to 60 ° C. for about 1.5 to 4 minutes. (B) leaching, removing the emulsifier is a film of XNBR particles in order to proceed smoothly crosslinked by curing process, -COO oriented outwardly - to return to -COOH, complex ion of metal cross-linking agent This is an important step in that it is retained in the film instead of the hydroxide that is insoluble in water, and Ca derived from the excess coagulant and K derived from the pH adjuster are removed.
(6)ビーディング工程
 リーチング工程が終了した硬化フィルム前駆体の手袋の袖口端部を巻き上げて適当な太さのリングを作り、補強する工程である。リーチング工程後の湿潤状態で行うと、ロール部分の接着性に優れる。
(6) Beading step This is a step of winding up the cuff end of the glove of the cured film precursor for which the leaching step has been completed to make a ring having an appropriate thickness and reinforcing it. When performed in a wet state after the leaching step, the adhesiveness of the roll portion is excellent.
(6’)プリキュアリング工程
(a)前記ビーディング工程の後、硬化フィルム前駆体を後のキュアリング工程よりも低温で加熱及び乾燥する工程である。通常、この工程では60~90℃で30秒間~5分間程度、加熱及び乾燥を行う。プリキュアリング工程を経ずに高温のキュアリング工程を行うと、水分が急激に蒸発し、手袋に水膨れのような凸部ができて、品質を損なうことがあるが、本工程を経ずにキュアリング工程に移行してもよい。
(b)本工程を経ずに、キュアリング工程の最終温度まで温度を上げることもあるが、キュアリングを複数の乾燥炉で行いその一段目の乾燥炉の温度を若干低くした場合、この一段目の乾燥はプリキュアリング工程に該当する。
(6') Precure ring step (a) After the beading step, the cured film precursor is heated and dried at a lower temperature than the subsequent curing step. Usually, in this step, heating and drying are performed at 60 to 90 ° C. for about 30 seconds to 5 minutes. If the high-temperature curing process is performed without going through the pre-curing process, the water will evaporate rapidly and convex parts like swelling may be formed on the gloves, which may impair the quality, but without going through this process. You may move to the curing process.
(B) The temperature may be raised to the final temperature of the curing step without going through this step, but if curing is performed in multiple drying furnaces and the temperature of the first-stage drying furnace is slightly lowered, this first step Dry eyes correspond to the precuring process.
(7)キュアリング工程
 キュアリング工程は、高温で加熱及び乾燥し、最終的に架橋を完成させ、手袋としての硬化フィルムにする工程である。通常90~140℃で10~30分、好ましくは15~30分程度、加熱及び乾燥させる。
(7) Curing Step The curing step is a step of heating and drying at a high temperature to finally complete the cross-linking and to make a cured film as a glove. It is usually heated and dried at 90 to 140 ° C. for 10 to 30 minutes, preferably about 15 to 30 minutes.
(8)ダブルディッピング
 手袋の製造方法について、上記ではいわゆるシングルディッピングの説明を行った。これに対し、ディッピング工程とゲリング工程を2回以上行うことがあり、これを通常ダブルディッピングという。
 ダブルディッピングは、厚手手袋(膜厚200超~300μm程度)を製造するときや、薄手手袋の製造方法においても、ピンホールの生成防止等の目的で行われる。
 ダブルディッピングの注意点としては、2回目のディッピング工程において、XNBRを凝集させるために、1回目のゲリング工程において、カルシウムを十分膜表面にまで析出させておくためのゲリング工程の十分な時間を必要とすることが挙げられる。
(8) Double dipping As for the method of manufacturing gloves, so-called single dipping has been described above. On the other hand, the dipping step and the gelling step may be performed twice or more, and this is usually called double dipping.
Double dipping is performed for the purpose of preventing the formation of pinholes when manufacturing thick gloves (thickness of more than 200 to 300 μm) and also in the manufacturing method of thin gloves.
As a precaution for double dipping, in order to aggregate XNBR in the second dipping step, it is necessary to have a sufficient time in the gelling step for sufficiently precipitating calcium to the film surface in the first gelling step. Is mentioned.
<3.手袋>
 上述した本発明の実施形態に係る手袋は、上述したディップ成形用組成物を用いて製造された手袋であり、第1の実施形態においてはXNBRのカルボキシル基とハロヒドリン架橋剤との架橋構造を有する手袋であり、第2の実施形態においては、さらにカルボキシル基とエポキシ架橋剤との架橋構造を有する手袋である。
 第1の実施形態において、ハロヒドリン架橋剤を用いて手袋に必要な物性を持つXNBR手袋ができることを確認した。
 特に、少量の亜鉛とともに架橋した場合は、引張強度が7N以上と強い引張強度をもつことがわかった。
 亜鉛がないときは、疲労耐久性が低くなる傾向があったが、ハロヒドリン架橋剤の添加量を増やせば十分疲労耐久性も出せることがわかった。
 第2の実施形態において、ハロヒドリン架橋剤とエポキシ架橋剤とを併用し、亜鉛を入れないケースにおいて、高い応力保持率66%を持ち、かつ伸び率が500%以上の従来のXNBR手袋にない特性の手袋ができることがわかった。
 これは、親水性の高いハロヒドリン架橋剤の場合、粒子内架橋をエポキシ架橋剤、粒子間架橋をハロヒドリン架橋剤で架橋し、イオン架橋である亜鉛をなくしたことで、また、親油性の高いハロヒドリン架橋剤の場合、共有結合による粒子間架橋の更なる強化を図ることで、達成したものと考えられる。
 また、上記手袋は、上述したディップ成形用組成物の硬化物である手袋とすることができる。
<3. Gloves >
The glove according to the above-described embodiment of the present invention is a glove manufactured by using the above-mentioned dip molding composition, and in the first embodiment, it has a cross-linked structure of a carboxyl group of XNBR and a halohydrin cross-linking agent. It is a glove, and in the second embodiment, it is a glove having a cross-linked structure of a carboxyl group and an epoxy cross-linking agent.
In the first embodiment, it was confirmed that the XNBR glove having the necessary physical characteristics of the glove can be produced by using the halohydrin cross-linking agent.
In particular, it was found that when crosslinked with a small amount of zinc, the tensile strength was as strong as 7N or more.
In the absence of zinc, fatigue durability tended to be low, but it was found that increasing the amount of halohydrin cross-linking agent added can provide sufficient fatigue durability.
In the second embodiment, in the case where the halohydrin cross-linking agent and the epoxy cross-linking agent are used in combination and zinc is not added, the characteristics of the conventional XNBR gloves having a high stress retention rate of 66% and an elongation rate of 500% or more are not found. I found that I could make gloves.
This is because, in the case of a highly hydrophilic halohydrin crosslinker, the intra-particle cross-linking is cross-linked with an epoxy cross-linking agent and the inter-particle cross-linking is cross-linked with a halohydrin cross-linking agent to eliminate zinc, which is an ionic cross-link, and halohydrin with high oiliness In the case of the cross-linking agent, it is considered that this was achieved by further strengthening the inter-particle cross-linking by covalent bond.
Further, the glove can be a glove which is a cured product of the above-mentioned dip molding composition.
 手袋を形成するエラストマーは、(メタ)アクリロニトリル由来の構造単位が12~35重量%であり、不飽和カルボン酸由来の構造単位が2~10重量%であり、かつ、残りはブタジエン由来の構造単位及びその他の成分であることが好ましい。さらに、ブタジエン由来の構造単位は、50~75重量%であることが好ましい。 The elastomer forming the glove has a (meth) acrylonitrile-derived structural unit of 12 to 35% by weight, an unsaturated carboxylic acid-derived structural unit of 2 to 10% by weight, and the rest of which is a butadiene-derived structural unit. And other components are preferred. Further, the structural unit derived from butadiene is preferably 50 to 75% by weight.
 上記手袋は、他の加硫促進剤フリーの手袋と同じく、従来のXNBR手袋のように硫黄及び加硫促進剤を実質的に含まないので、IV型アレルギーを生じさせないことが最大の特徴である。ただし、エラストマー製造時の界面活性剤等に硫黄が含まれているため、ごく微量の硫黄は検出されることがある。
 また、ブタジエンの二重結合の近傍で架橋反応を起こす硫黄架橋でなく、カルボキシル基との共有結合で架橋している点で、本実施形態に係る手袋は、応力保持率が上がると考えられる。
Like other vulcanization accelerator-free gloves, the above gloves do not substantially contain sulfur and vulcanization accelerators unlike conventional XNBR gloves, and therefore, the greatest feature is that they do not cause type IV allergies. .. However, since sulfur is contained in the surfactant and the like during the production of the elastomer, a very small amount of sulfur may be detected.
Further, it is considered that the stress retention rate of the gloves according to the present embodiment is increased in that the cross-linking is not a sulfur cross-linking that causes a cross-linking reaction near the double bond of butadiene but a covalent bond with a carboxyl group.
 第1の実施形態及び第2の実施形態に係る手袋の物性を、引張強度、引張伸び率、疲労耐久性および応力保持率で見た結果、いずれの手袋においても、手袋として必要とする物性を有することを本発明者らは確認した。
 また、第2の実施形態に係る手袋においては、XNBR手袋として従来にない高い応力保持率を有することを確認した。
 これらの物性は後述する試験方法により測定した。
As a result of looking at the physical properties of the gloves according to the first embodiment and the second embodiment in terms of tensile strength, tensile elongation, fatigue durability and stress retention, all the gloves have the physical characteristics required as gloves. The present inventors have confirmed that they have.
Further, it was confirmed that the glove according to the second embodiment has a high stress retention rate which has never been seen in the XNBR glove.
These physical properties were measured by the test method described later.
 引張強度及び伸び率は、硬化フィルムからJIS K6251の5号ダンベル試験片を切り出し、A&D社製のTENSILON万能引張試験機RTC-1310Aを用い、試験速度500mm/分、チャック間距離75mm、標線間距離25mmで測定される。
 手袋物性としては、引張強度は20MPa以上、伸び率としては500%以上を基準として考えている。
For the tensile strength and elongation, a JIS K6251 No. 5 dumbbell test piece was cut out from the cured film, and a TENSILON universal tensile tester RTC-1310A manufactured by A & D was used to test the test speed at 500 mm / min, the distance between chucks at 75 mm, and between the marked lines. Measured at a distance of 25 mm.
As for the physical characteristics of gloves, the tensile strength is considered to be 20 MPa or more, and the elongation rate is considered to be 500% or more.
 応力保持率は、以下のようにして測定した。
 硬化フィルムから、JIS K 6263に規定の短冊2号に準じて打ち抜きカッター(ダンベル社製 スーパーストレートカッター SK-1000-D)を用いて、試験片を作製し、該試験片の両端に速度100mm/分にて引張応力をかけ、該試験片が2倍(100%)に伸張した時点で伸張を止めると共に引張応力M100(0)を測定し、また、そのまま6分間経過した後の引張応力M100(6)を測定 した。そして、M100(0)に対するM100(6)の百分率を応力保持率とした。
 従来の硫黄架橋XNBR手袋の応力保持率が40%台であるので、50%以上あればXNBR手袋としては良好であると考える。
The stress retention rate was measured as follows.
A test piece is prepared from the cured film using a punching cutter (Super Straight Cutter SK-1000-D manufactured by Dumbbell) according to the strip No. 2 specified in JIS K 6263, and the speed is 100 mm at both ends of the test piece. Tensile stress is applied in minutes, and when the test piece is stretched twice (100%), the stretching is stopped and the tensile stress M100 (0) is measured, and the tensile stress M100 (6 minutes) after elapsed as it is. 6) was measured. Then, the percentage of M100 (6) with respect to M100 (0) was defined as the stress retention rate.
Since the stress retention rate of the conventional sulfur-crosslinked XNBR gloves is in the 40% range, it is considered that 50% or more is good for XNBR gloves.
 疲労耐久性は、長さ120mmのJIS K6251の1号ダンベル試験片を硬化フィルムから作製し、その下部を固定して長さ60mmまで人工汗液に浸漬した状態で試験片の上部を引張り、長さ方向に最大195mm、最小147mmの間で、伸長と緩和を繰り返して、試験片が破れるまでの時間で示されるものである。伸長(195mm)と緩和(147mm)は、緩和状態で11秒間保持したのち、1.8秒間で195mmに伸長させて147mmに戻す、というサイクル(1サイクル12.8秒)を繰り返すことにより行うことができる。 For fatigue durability, a 120 mm long JIS K6251 No. 1 dumbbell test piece is made from a cured film, the lower part is fixed and the upper part of the test piece is pulled to a length of 60 mm while being immersed in an artificial sweat solution. It is indicated by the time required for the test piece to break by repeating stretching and relaxation between a maximum of 195 mm and a minimum of 147 mm in the direction. Elongation (195 mm) and relaxation (147 mm) are performed by repeating a cycle (1 cycle 12.8 seconds) of holding in a relaxed state for 11 seconds, then extending to 195 mm in 1.8 seconds and returning to 147 mm. Can be done.
 より詳細には、ゴム製品の引張試験等を実施する場合と同様にダンベル形状の試験片を用いて、図2に示すような装置を用いて疲労耐久性試験を行うことができる。図2(a)に示すとおり、試験片の下端部をクランプで固定して、60mmまでを人工汗液に浸漬する。試験片の上端部を挟み、空気圧ピストンを用いて図2(b)の緩和状態→図2(c)の伸長状態→図2(b)の緩和状態となるように上下に伸縮させ、この図2(b)→図2(c)→図2(b)の伸び縮みを1サイクルとして、破れるまでのサイクル数と時間を測定することにより評価する。試験片が破れると、光電センサーが反応して装置が止まる仕組みになっている。 More specifically, a fatigue durability test can be performed using a device as shown in FIG. 2 using a dumbbell-shaped test piece as in the case of performing a tensile test of a rubber product. As shown in FIG. 2A, the lower end of the test piece is fixed with a clamp, and up to 60 mm is immersed in artificial sweat liquid. The upper end of the test piece is sandwiched and expanded and contracted up and down using a pneumatic piston so as to be in the relaxed state of FIG. 2 (b) → the extended state of FIG. 2 (c) → the relaxed state of FIG. 2 (b). Evaluation is made by measuring the number of cycles and the time until the bicycle breaks, with the expansion and contraction of 2 (b) → FIG. 2 (c) → FIG. 2 (b) as one cycle. When the test piece is torn, the photoelectric sensor reacts and the device stops.
1.実施方法
 以下、本発明を実施例に基づきより詳細に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。
 なお、以下の説明において「重量部」は、原則としてエラストマー100重量部に対しての重量部数を示す。
 各添加剤の重量部数は固形分量によるものであり、ハロヒドリン架橋剤及びエポキシ架橋剤の重量部数についてはそれぞれの架橋剤の総重量によるものである。
1. 1. Implementation Method Hereinafter, the present invention will be described in more detail based on Examples. However, the present invention is not construed as being limited to the following examples.
In the following description, "parts by weight" indicates, in principle, the number of parts by weight with respect to 100 parts by weight of the elastomer.
The number of parts by weight of each additive is based on the solid content, and the number of parts by weight of the halohydrin cross-linking agent and the epoxy cross-linking agent is based on the total weight of each cross-linking agent.
1-1.XNBR
 本実験例で用いたXNBRは、下表2に示す。
Figure JPOXMLDOC01-appb-T000019
1-1. XNBR
The XNBR used in this experimental example is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000019
 本実験例で用いたXNBRの特性は、次のようにして測定した。
<アクリロニトリル(AN)残基量及び不飽和カルボン酸(MMA)残基量>
 上記各エラストマーを乾燥して、フィルムを作製した。該フィルムをFT-IRで測定し、アクリロニトリル基に由来する吸収波数2237cm-1とカルボン酸基に由来する吸収波数1699cm-1における吸光度(Abs)を求め、アクリロニトリル(AN)残基量及び不飽和カルボン酸(MMA)残基量を求めた。
 アクリロニトリル残基量(%)は、予め作成した検量線から求めた。検量線は、各エラストマーに内部標準物質としてポリアクリル酸を加えた、アクリロニトリル基量が既知の試料から作成したものである。不飽和カルボン酸残基量は、下記式から求めた。
 不飽和カルボン酸残基量(重量%)=[Abs(1699cm-1)/Abs(2237cm-1)]/0.2661
 上式において、係数0.2661は、不飽和カルボン酸基量とアクリロニトリル基量の割合が既知の、複数の試料から検量線を作成して求めた換算値である。
The characteristics of XNBR used in this experimental example were measured as follows.
<Acrylonitrile (AN) residue amount and unsaturated carboxylic acid (MMA) residue amount>
Each of the above elastomers was dried to prepare a film. The film was measured by FT-IR, absorbance at absorption wave 1699Cm -1 derived from absorption wave numbers 2237 cm -1 and a carboxylic acid group derived from acrylonitrile based seeking (Abs), acrylonitrile (AN) residues weight and unsaturated The amount of carboxylic acid (MMA) residue was determined.
The amount of acrylonitrile residue (%) was determined from a calibration curve prepared in advance. The calibration curve was prepared from a sample in which polyacrylic acid was added as an internal standard substance to each elastomer and the amount of acrylonitrile groups was known. The amount of unsaturated carboxylic acid residue was calculated from the following formula.
Unsaturated carboxylic acid residue amount (% by weight) = [Abs (1699 cm -1 ) / Abs (2237 cm -1 )] /0.2661
In the above formula, the coefficient 0.2661 is a converted value obtained by preparing a calibration curve from a plurality of samples in which the ratio of the unsaturated carboxylic acid group amount and the acrylonitrile group amount is known.
<ムーニー粘度(ML(1+4)100℃)>
 硝酸カルシウムと炭酸カルシウムとの4:1混合物の飽和水溶液200mlを室温にて攪拌した状態で、各エラストマーラテックスをピペットにより滴下し、固形ゴムを析出させた。得られた固形ゴムを取り出し、イオン交換水約1Lでの攪拌洗浄を10回繰り返した後、固形ゴムを搾って脱水し、真空乾燥(60℃、72時間)して、測定用ゴム試料を調製した。得られた測定用ゴムを、ロール温度50℃、ロール間隙約0.5mmの6インチロールに、ゴムがまとまるまで数回通したものを用い、JIS K6300-1:2001「未加硫ゴム-物理特性、第1部ムーニー粘度計による粘度およびスコ-チタイムの求め方」に準拠して、100℃にて大径回転体を用いて測定した。
<Moony viscosity (ML (1 + 4) 100 ° C)>
With 200 ml of a saturated aqueous solution of a 4: 1 mixture of calcium nitrate and calcium carbonate stirred at room temperature, each elastomer latex was added dropwise with a pipette to precipitate solid rubber. The obtained solid rubber is taken out, and after repeating stirring and washing with about 1 L of ion-exchanged water 10 times, the solid rubber is squeezed and dehydrated, and vacuum dried (60 ° C., 72 hours) to prepare a rubber sample for measurement. did. The obtained rubber for measurement was passed through a 6-inch roll having a roll temperature of 50 ° C. and a roll gap of about 0.5 mm several times until the rubber was collected, and JIS K6300-1: 2001 "Unvulcanized rubber-physical". Measurement was performed using a large-diameter rotating body at 100 ° C. in accordance with "Characteristics, Part 1 How to determine viscosity and vulcanization time by Mooney viscometer".
<MEK不溶解分量>
 MEK(メチルエチルケトン)不溶解(ゲル)成分は、次のように測定した。0.2gのXNBRラテックス乾燥物試料を、重量を測定したメッシュ籠(80メッシュ)に入れて、籠ごと100mLビーカー内のMEK溶媒80mL中に浸漬し、パラフィルムでビーカーに蓋をして、24時間、ドラフト内で静置した。その後、メッシュ籠をビーカーから取り出し、ドラフト内にて宙吊りにして1時間乾燥させた。これを、105℃で1時間減圧乾燥したのち、重量を測定し、籠の重量を差し引いて、XNBRラテックス乾燥物の浸漬後重量とした。
 MEK不溶解成分の含有率(不溶解分量)は、次の式から算出した。
 不溶解成分含有率(重量%)=(浸漬後重量g/浸漬前重量g)×100
 なお、XNBRラテックス乾燥物試料は、次のようにして作製した。すなわち、500mLのボトル中で、回転速度500rpmでXNBRラテックスを30分間攪拌したのち、180×115mmのステンレスバットに14gの該ラテックスを量り取り、23℃±2℃、湿度50±10RH%で5日間乾燥させてキャストフィルムとし、該フィルムを5mm四方にカットして、XNBRラテックス乾燥物試料とした。
<MEK insoluble amount>
The MEK (methyl ethyl ketone) insoluble (gel) component was measured as follows. A 0.2 g XNBR latex dried product sample was placed in a weighed mesh basket (80 mesh), immersed in 80 mL of MEK solvent in a 100 mL beaker together with the basket, and the beaker was covered with Parafilm. Allowed for hours in the draft. Then, the mesh basket was taken out from the beaker, suspended in the air in the draft, and dried for 1 hour. This was dried under reduced pressure at 105 ° C. for 1 hour, then weighed, and the weight of the basket was subtracted to obtain the weight after immersion of the XNBR latex dried product.
The content (insoluble amount) of the MEK insoluble component was calculated from the following formula.
Insoluble component content (% by weight) = (weight g after immersion / weight g before immersion) × 100
The XNBR latex dried product sample was prepared as follows. That is, after stirring the XNBR latex at a rotation speed of 500 rpm for 30 minutes in a 500 mL bottle, 14 g of the latex was weighed in a 180 × 115 mm stainless steel vat, and the latex was 23 ° C. ± 2 ° C. and humidity 50 ± 10 RH% for 5 days. It was dried to obtain a cast film, and the film was cut into 5 mm squares to prepare an XNBR latex dried product sample.
1-2.ハロヒドリン架橋剤
 本実験例で使用したハロヒドリン架橋剤の母骨格等の特徴を下記表3に示す。なお、表3の固形分は、本実施例におけるハロゲン架橋剤中のハロヒドリン化合物の含有量を示す。
1-2. Halohydrin cross-linking agent Table 3 below shows the characteristics of the halohydrin cross-linking agent used in this experimental example, such as the mother skeleton. The solid content in Table 3 indicates the content of the halohydrin compound in the halogen cross-linking agent in this example.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実験例においてハロヒドリン架橋剤としては、クロロヒドリン架橋剤を使用した。クロロヒドリン架橋剤は、以下のようにして製造した。 In the experimental example, a chlorohydrin cross-linking agent was used as the halohydrin cross-linking agent. The chlorohydrin cross-linking agent was produced as follows.
ア.クロロヒドリン架橋剤A(ソルビトール骨格)
 1L容量セパラブルフラスコにソルビトール182g(1.0モル)、トルエン500g、触媒として三フッ化ホウ素エーテル錯体1.8gを仕込み、加熱攪拌し、内温を70~90℃に保ちながら、これにエピクロルヒドリン277.5g(3.0モル)を滴下した。
 滴下終了時、反応系は均一な溶液であった。滴下終了後、更に、2時間、上記と同じ温度で攪拌した後、滴定によるエポキシ基の定量に基づいてエピクロルヒドリンの消失を確認して、反応を終了させた。反応終了後、減圧下でトルエンを留去して、反応生成物として、前記一般式(II)において、R-(OH)がソルビトール残基であり、Xが塩素原子であり、k=3、m=3である架橋剤を得た。
A. Chlorohydrin cross-linking agent A (sorbitol skeleton)
182 g (1.0 mol) of sorbitol, 500 g of toluene, and 1.8 g of boron trifluoride ether complex as a catalyst are charged in a 1 L volume separable flask, and the mixture is heated and stirred to maintain the internal temperature at 70 to 90 ° C., and epichlorohydrin. 277.5 g (3.0 mol) was added dropwise.
At the end of the dropping, the reaction system was a uniform solution. After completion of the dropping, the mixture was further stirred at the same temperature for 2 hours, and then the disappearance of epichlorohydrin was confirmed based on the determination of epoxy groups by titration, and the reaction was terminated. After completion of the reaction, toluene was evaporated under reduced pressure, as a reaction product, in the general formula (II), R 2 - ( OH) m is a sorbitol residue, X is a chlorine atom, k = 3. A cross-linking agent having m = 3 was obtained.
 上記反応生成物中の塩素量(クロロヒドリン基の塩素量)を定量分析した結果、21.9%(理論量23.0%)であって、収率は95%であった。 As a result of quantitative analysis of the amount of chlorine (the amount of chlorine in the chlorohydrin group) in the above reaction product, it was 21.9% (theoretical amount 23.0%), and the yield was 95%.
イ.クロロヒドリン架橋剤B(エチレングリコール骨格)
 2L容量セパラブルフラスコにエチレングリコ―ル166g(2.7モル)、トルエン70g、触媒として三フッ化ホウ素エーテル錯体0.6gを仕込み、加熱攪拌し、内温を50℃に保ちながら、これにエピクロルヒドリン557g(6.0モル)を滴下した。滴下終了時、反応系は均一な溶液であった。滴下終了後、更に、2時間、上記と同じ温度で攪拌した後、滴定によるエポキシ基の定量に基づいてエピクロルヒドリンの消失を確認して、反応を終了させた。反応終了後、減圧下でトルエンを留去して架橋剤を得た。この架橋剤は、前記一般式(II)において、R-(OH)がエチレングリコール残基であり、Xが塩素原子であり、k=2、m=0である。
I. Chlorohydrin cross-linking agent B (ethylene glycol skeleton)
166 g (2.7 mol) of ethylene glycol, 70 g of toluene, and 0.6 g of boron trifluoride ether complex as a catalyst were charged in a 2 L volume separable flask, and the mixture was heated and stirred to keep the internal temperature at 50 ° C. 557 g (6.0 mol) of epichlorohydrin was added dropwise. At the end of the dropping, the reaction system was a uniform solution. After completion of the dropping, the mixture was further stirred at the same temperature for 2 hours, and then the disappearance of epichlorohydrin was confirmed based on the determination of epoxy groups by titration, and the reaction was terminated. After completion of the reaction, toluene was distilled off under reduced pressure to obtain a cross-linking agent. In the cross-linking agent, in the general formula (II), R 2- (OH) m is an ethylene glycol residue, X is a chlorine atom, and k = 2 and m = 0.
ウ.クロロヒドリン架橋剤C(グリセリン骨格)
 2L容量セパラブルフラスコにグリセリン300g(3.3モル)、トルエン150g、触媒として三フッ化ホウ素エーテル錯体0.6gを仕込み、加熱攪拌し、内温を50℃に保ちながら、これにエピクロルヒドリン999g(10.8モル)を滴下した。滴下終了時、反応系は均一な溶液であった。滴下終了後、更に、2時間、上記と同じ温度で攪拌した後、滴定によるエポキシ基の定量に基づいてエピクロルヒドリンの消失を確認して、反応を終了させた。反応終了後、減圧下でトルエンを留去して架橋剤を得た。この架橋剤は、前記一般式(II)において、R-(OH)がグリセリン残基であり、Xが塩素原子であり、k=2、m=1である。
C. Chlorohydrin cross-linking agent C (glycerin skeleton)
300 g (3.3 mol) of glycerin, 150 g of toluene, and 0.6 g of boron trifluoride ether complex as a catalyst were charged in a 2 L volume separable flask, and the mixture was heated and stirred to maintain the internal temperature at 50 ° C., and 999 g of epichlorohydrin (999 g). 10.8 mol) was added dropwise. At the end of the dropping, the reaction system was a uniform solution. After completion of the dropping, the mixture was further stirred at the same temperature for 2 hours, and then the disappearance of epichlorohydrin was confirmed based on the determination of epoxy groups by titration, and the reaction was terminated. After completion of the reaction, toluene was distilled off under reduced pressure to obtain a cross-linking agent. In the above general formula (II), in this cross-linking agent, R 2- (OH) m is a glycerin residue, X is a chlorine atom, and k = 2 and m = 1.
エ.クロロヒドリン架橋剤D(トリメチロールプロパン骨格)
 2L容量セパラブルフラスコにトリメチロールプロパン425g(3.2モル)、トルエン300g、触媒として三フッ化ホウ素エーテル錯体2.4gを仕込み、加熱攪拌し、内温を50℃に保ちながら、これにエピクロルヒドリン894g(9.7モル)を滴下した。滴下終了時、反応系は均一な溶液であった。滴下終了後、更に、2時間、上記と同じ温度で攪拌した後、滴定によるエポキシ基の定量に基づいてエピクロルヒドリンの消失を確認して、反応を終了させた。反応終了後、減圧下でトルエンを留去して架橋剤を得た。この架橋剤は、前記一般式(II)において、R-(OH)がトリメチロールプロパン残基であり、Xが塩素原子であり、k=2、m=1である。
D. Chlorohydrin cross-linking agent D (trimethylolpropane skeleton)
425 g (3.2 mol) of trimethylolpropane, 300 g of toluene, and 2.4 g of boron trifluoride ether complex as a catalyst are charged in a 2 L volume separable flask, and the mixture is heated and stirred to maintain the internal temperature at 50 ° C., and epichlorohydrin. 894 g (9.7 mol) was added dropwise. At the end of the dropping, the reaction system was a uniform solution. After completion of the dropping, the mixture was further stirred at the same temperature for 2 hours, and then the disappearance of epichlorohydrin was confirmed based on the determination of epoxy groups by titration, and the reaction was terminated. After completion of the reaction, toluene was distilled off under reduced pressure to obtain a cross-linking agent. In the cross-linking agent, in the general formula (II), R 2- (OH) m is a trimethylolpropane residue, X is a chlorine atom, and k = 2 and m = 1.
1-3.エポキシ架橋剤
 実施例において使用したエポキシ架橋剤は、ナガセケムテックス社製「デナコールEx-321」であり、その物性は以下の通りである。
  エポキシ当量:140g/eq.
  平均エポキシ基数:2.7
  MIBK/水分配率:87%
 なお、本実施例におけるエポキシ架橋剤中のエポキシ化合物の含有量は、反応副生成物等の不純物が含まれているもののほぼ100重量%である。
1-3. Epoxy cross-linking agent The epoxy cross-linking agent used in the examples is "Denacol Ex-321" manufactured by Nagase ChemteX Corporation, and its physical characteristics are as follows.
Epoxy equivalent: 140 g / eq.
Average number of epoxy groups: 2.7
MIBK / water distribution rate: 87%
The content of the epoxy compound in the epoxy cross-linking agent in this example is approximately 100% by weight, although impurities such as reaction by-products are contained.
 上記エポキシ当量はカタログ値、平均エポキシ基数は分析値である。
 MIBK/水分配率の測定方法は、発明を実施するための形態に記載した方法である。
 エポキシ架橋剤を使用した実施例では、添加する際に、同量のジエチレングリコールと混合してから添加している。
The epoxy equivalent is a catalog value, and the average epoxy group number is an analytical value.
The method for measuring the MIBK / water distribution ratio is the method described in the embodiment for carrying out the invention.
In the example using the epoxy cross-linking agent, when adding, it is added after mixing with the same amount of diethylene glycol.
2.硬化フィルムの製造、評価
[硬化フィルムの製造]
(a)ディップ成形用組成物の調製
 XNBRの溶液250gに、水100gを加えて希釈し攪拌を開始した。
 その後、5重量%水酸化カリウム水溶液を使用して予備的にpH9.2~9.3に調整した後、ハロヒドリン架橋剤(ハロヒドリン化合物の含有量が1.0重量部となるように)を加えた。さらに、酸化防止剤0.2重量部(Farben Technique(M)社製「CVOX-50」(固形分53%))、酸化亜鉛1.0重量部(Farben Technique(M)社製、商品名「CZnO-50」)及び酸化チタン1.5重量部(Farben Technique(M)社製、「PW-601」(固形分71%))を添加し、終夜(16時間)撹拌混合した。その後、5重量%濃度の水酸化カリウム水溶液を使用してpHを10~10.5に調整した後、ディップ成形用組成物の固形分濃度を、水を加えて22%に調整し、使用するまでビーカー内で撹拌を続けた。
 なお、固形分濃度は凝固液のカルシウム濃度と組み合わせ、フィルムの膜厚を調整するためのもので、この場合の固形分濃度22%は、凝固液のカルシウム濃度20%とによってフィルムの膜厚を80μmに調整できる。
 本実施例におけるフィルムは、ハロヒドリン架橋剤を加えてから24時間後にディッピングしたフィルムである。
 なお、実施例によって上記条件の一部を変更するときは、その実施例ごとにその条件を記載する。
2. 2. Manufacture and evaluation of cured film [Manufacturing of cured film]
(A) Preparation of Dip Molding Composition To 250 g of a solution of XNBR, 100 g of water was added to dilute and stirring was started.
Then, after preliminarily adjusting the pH to 9.2 to 9.3 using a 5 wt% potassium hydroxide aqueous solution, a halohydrin cross-linking agent (so that the content of the halohydrin compound is 1.0 part by weight) is added. It was. Further, 0.2 parts by weight of the antioxidant (“CVOX-50” (solid content 53%) manufactured by Farben Technique (M)), 1.0 part by weight of zinc oxide (manufactured by Farben Technique (M)), trade name “ CZnO-50 ”) and 1.5 parts by weight of titanium oxide (“PW-601” (solid content 71%) manufactured by Farben Technique (M)) were added, and the mixture was stirred and mixed overnight (16 hours). Then, after adjusting the pH to 10 to 10.5 using a 5 wt% potassium hydroxide aqueous solution, the solid content concentration of the dip molding composition is adjusted to 22% by adding water, and then used. Continued stirring in the beaker until.
The solid content concentration is for adjusting the film thickness by combining with the calcium concentration of the coagulation liquid. In this case, the solid content concentration of 22% is the film thickness of the coagulation liquid of 20%. It can be adjusted to 80 μm.
The film in this example is a film that has been dipped 24 hours after the addition of the halohydrin cross-linking agent.
In addition, when a part of the above conditions is changed by an Example, the condition is described for each Example.
(b)凝固液の調製
 ハンツマン社(Huntsman Corporation)製の界面活性剤「Teric 320」0.56gを水42.0gに溶解した液に、離型剤としてCRESTAGE INDUSTRY社製「S-9」(固形分濃度25.46%)19.6gを、あらかじめ計量しておいた水30gの一部を用いて約2倍に希釈した後にゆっくり加えた。容器に残ったS-9を残った水で洗い流しながら全量を加え、3~4時間撹拌し、S-9分散液を作成する。
 別のビーカーに硝酸カルシウム四水和物143.9gを水153.0gに溶解させたものを用意し、撹拌しながら、先に調製したS-9分散液を硝酸カルシウム水溶液に加えた。
 5%アンモニア水でpHを8.5~9.5に調整し、最終的に硝酸カルシウムが無水物として20%、S-9が1.2%の固形分濃度となるように水を加え、約500gの凝固液を得た。得られた凝固液は、使用するまで1Lビーカーで撹拌を継続した。
(B) Preparation of coagulating solution 0.56 g of surfactant "Teric 320" manufactured by Huntsman Corporation was dissolved in 42.0 g of water, and "S-9" manufactured by CRESTAGE INDUSTRY as a release agent ( 19.6 g (solid content concentration 25.46%) was diluted about 2-fold with a portion of 30 g of pre-weighed water and then slowly added. Rinse the S-9 remaining in the container with the remaining water, add the whole amount, and stir for 3 to 4 hours to prepare an S-9 dispersion.
143.9 g of calcium nitrate tetrahydrate dissolved in 153.0 g of water was prepared in another beaker, and the S-9 dispersion prepared above was added to the aqueous calcium nitrate solution with stirring.
Adjust the pH to 8.5 to 9.5 with 5% aqueous ammonia, and finally add water so that calcium nitrate has a solid content concentration of 20% as an anhydride and S-9 has a solid content concentration of 1.2%. About 500 g of coagulant was obtained. The obtained coagulant was continuously stirred in a 1 L beaker until it was used.
(c)陶板への凝固剤付着
 上記凝固液を撹拌しながら50℃程度に加温し、200メッシュのナイロンフィルターでろ過した後、浸漬用容器に入れ、洗浄後70℃に温めた陶製の板(200×80×3mm、以下「陶板」と記す。)を浸漬した。具体的には、陶板の先端が凝固液の液面に接触してから、陶板の先端から18cmの位置までを4秒間かけて浸漬させ、浸漬したまま4秒間保持し、3秒間かけて抜き取った。速やかに陶板表面に付着した凝固液を振り落し、陶板表面を乾燥させた。乾燥後の陶板は、ディップ成形用組成物(ラテックス)浸漬に備えて、再び70℃まで温めた。
(C) Adhesion of coagulant to porcelain plate The coagulant is heated to about 50 ° C. with stirring, filtered through a 200 mesh nylon filter, placed in a dipping container, washed, and then warmed to 70 ° C. (200 x 80 x 3 mm, hereinafter referred to as "porcelain plate") was immersed. Specifically, after the tip of the porcelain plate came into contact with the liquid surface of the coagulating liquid, the porcelain plate was immersed at a position 18 cm from the tip of the porcelain plate for 4 seconds, held for 4 seconds while being immersed, and withdrawn over 3 seconds. .. The coagulant adhering to the surface of the ceramic plate was quickly shaken off to dry the surface of the ceramic plate. The dried porcelain plate was warmed again to 70 ° C. in preparation for dipping in the dip molding composition (latex).
(d)硬化フィルムの製造
 上記のXNBRと上記のハロヒドリン架橋剤を用いて、ディップ成形用組成物(ラテックス)へのエポキシ架橋剤の投入から24時間(1日)経過時間ごとに硬化フィルムを作成した。
 具体的には、ディップ成形用組成物を室温のまま200メッシュナイロンフィルターでろ過した後、浸漬用容器に入れ、上記の凝固液を付着させた70℃の陶板を浸漬した。
 具体的には陶板を6秒間かけて浸漬し、4秒間保持し、3秒間かけて抜き取った。ラテックスが垂れなくなるまで空中で保持し、先端に付着したラテックス滴を軽く振り落した。
 陶板上に凝集し膜を形成した、硬化フィルム前駆体を80℃2分で乾燥させ(ゲリング工程)、50℃の温水で2分間リーチングした。
 その後70℃で5分間乾燥させ、130℃で30分間熱硬化させた。
 得られた硬化フィルムを陶板からきれいに剥がし、物性試験に供するまで、23℃±2℃、湿度50%±10%の環境で保管した。
 なお、実施例によって上記条件の一部を変更するときは、その実施例ごとにその条件を記載する。
(D) Production of Cured Film Using the above XNBR and the above halohydrin cross-linking agent, a cured film is prepared every 24 hours (1 day) elapsed time from the addition of the epoxy cross-linking agent to the dip molding composition (latex). did.
Specifically, the dip molding composition was filtered through a 200-mesh nylon filter at room temperature, then placed in a dipping container, and a porcelain plate at 70 ° C. to which the above coagulating liquid was attached was immersed.
Specifically, the porcelain plate was immersed for 6 seconds, held for 4 seconds, and withdrawn over 3 seconds. The latex was held in the air until it did not drip, and the latex droplets adhering to the tip were gently shaken off.
The cured film precursor that aggregated and formed a film on a ceramic plate was dried at 80 ° C. for 2 minutes (gelling step) and leached with warm water at 50 ° C. for 2 minutes.
Then, it was dried at 70 ° C. for 5 minutes and thermoset at 130 ° C. for 30 minutes.
The obtained cured film was peeled off cleanly from the ceramic plate and stored in an environment of 23 ° C. ± 2 ° C. and a humidity of 50% ± 10% until it was subjected to a physical characteristic test.
In addition, when a part of the above conditions is changed by an Example, the condition is described for each Example.
[硬化フィルムの評価]
<引張強度、引張伸び率>
 硬化フィルムからJIS K6251の5号ダンベル試験片を切り出し、A&D社製のTENSILON万能引張試験機RTC-1310Aを用い、試験速度500mm/分、チャック間距離75mm、標線間距離25mmで、引張強度(MPa)を測定した。
 引張伸び率は、以下の式に基づき求めた。
 引張伸び率(%)=100×(引張試験での破断時の標線間距離-標線間距離)/標線間距離
[Evaluation of cured film]
<Tensile strength, tensile elongation>
A JIS K6251 No. 5 dumbbell test piece was cut out from the cured film, and using A &D's TENSILON universal tensile tester RTC-1310A, the test speed was 500 mm / min, the distance between chucks was 75 mm, and the distance between marked lines was 25 mm. MPa) was measured.
The tensile elongation was calculated based on the following formula.
Tensile elongation rate (%) = 100 × (distance between marked lines at break in tensile test-distance between marked lines) / distance between marked lines
<疲労耐久性>
 硬化フィルムからJIS K6251の1号ダンベル試験片を切り出し、これを、人工汗液(1リットル中に塩化ナトリウム20g、塩化アンモニウム17.5g、乳酸17.05g、酢酸5.01gを含み、水酸化ナトリウム水溶液によりpH4.7に調整)中に浸漬して、上述の耐久性試験装置を用いて疲労耐久性を評価した。
 すなわち、長さ120mmのダンベル試験片の2端部からそれぞれ15mmの箇所を固定チャック及び可動チャックで挟み、固定チャック側の試験片の下から60mmまでを人工汗液中に浸漬した。可動チャックを、147mm(123%)となるミニマムポジション(緩和状態)に移動させて11秒間保持したのち、試験片の長さが195mm(163%)となるマックスポジション(伸長状態)と、再びミニマムポジション(緩和状態)に1.8秒かけて移動させ、これを1サイクルとしてサイクル試験を行った。1サイクルの時間は12.8秒であり、試験片が破れるまでのサイクル数を乗じて、疲労耐久性の時間(分)を得た。
<応力保持率>
 応力保持率については、上述の方法に従って行った。
<Fatigue durability>
A JIS K6251 No. 1 dumbbell test piece was cut out from the cured film, and this was mixed with an artificial sweat solution (20 g of sodium chloride, 17.5 g of ammonium chloride, 17.05 g of lactic acid, 5.01 g of acetic acid in 1 liter, and an aqueous sodium hydroxide solution. The pH was adjusted to 4.7), and the fatigue durability was evaluated using the above-mentioned durability test apparatus.
That is, 15 mm from each of the two ends of the 120 mm long dumbbell test piece was sandwiched between the fixed chuck and the movable chuck, and 60 mm from the bottom of the test piece on the fixed chuck side was immersed in the artificial sweat solution. After moving the movable chuck to the minimum position (relaxed state) of 147 mm (123%) and holding it for 11 seconds, the test piece reaches the maximum position (extended state) of 195 mm (163%) and the minimum again. It was moved to the position (relaxed state) over 1.8 seconds, and a cycle test was conducted with this as one cycle. The time of one cycle was 12.8 seconds, and the time (minutes) of fatigue durability was obtained by multiplying by the number of cycles until the test piece broke.
<Stress retention rate>
The stress retention rate was determined according to the above method.
2.実験例
(1)実験1
 本実験中、実験例1は、参考例として酸化亜鉛のみで架橋したフィルムの物性である。
 実験例2~5は、酸化亜鉛を1.0重量部に固定し、クロロヒドリンを0.25~3.0重量部(クロロヒドリン化合物量)まで変化させたときのフィルムの物性である。
 実験例6、7はクロロヒドリンを1.0重量部と、酸化亜鉛0.5重量部を用いて作製したフィルムで、pH調整剤として6はアンモニア、7はKOHを使用したときのフィルムの物性である。
 各フィルムを用いて行った実験結果を下記表4に示す。
2. 2. Experimental example (1) Experiment 1
During this experiment, Experimental Example 1 is a physical property of a film crosslinked only with zinc oxide as a reference example.
Experimental Examples 2 to 5 show the physical characteristics of the film when zinc oxide is fixed at 1.0 part by weight and chlorohydrin is changed to 0.25 to 3.0 parts by weight (chlorohydrin compound amount).
Experimental Examples 6 and 7 are films prepared using 1.0 part by weight of chlorohydrin and 0.5 part by weight of zinc oxide. As the pH adjuster, 6 is ammonia and 7 is the physical characteristics of the film when KOH is used. is there.
The results of the experiments conducted using each film are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実験例2~7が本発明の第1の実施形態にあたるものであるが、クロロヒドリンの添加量を1.0重量部以上にすれば、クロロヒドリンを架橋剤として作製したフィルムが手袋の通常の物性を満足していることがわかる。
 実験例1~5を見ると、酸化亜鉛を1.0重量部で固定して、クロロヒドリンの量を増加していくと、これに従って疲労耐久性が上がっていくことから、クロロヒドリンは確実に架橋に寄与していることがわかる。また、実験例2~5を見ると、引張伸び率がクロロヒドリンの量の増加に伴い落ちていくことを見ても、架橋反応が進行していることがわかる。
 これらを見ると、クロロヒドリンを使用したフィルムは疲労耐久性、引張強度に優れ、かつ引張伸び率もよい手袋を作れることがわかった。
Experimental Examples 2 to 7 correspond to the first embodiment of the present invention, but if the amount of chlorohydrin added is 1.0 part by weight or more, the film prepared by using chlorohydrin as a cross-linking agent has the normal physical characteristics of gloves. You can see that you are satisfied.
Looking at Experimental Examples 1 to 5, when zinc oxide is fixed at 1.0 part by weight and the amount of chlorohydrin is increased, the fatigue durability increases accordingly, so that chlorohydrin is surely crosslinked. It can be seen that it is contributing. Further, looking at Experimental Examples 2 to 5, it can be seen that the cross-linking reaction is proceeding even if the tensile elongation decreases as the amount of chlorohydrin increases.
From these results, it was found that the film using chlorohydrin can make gloves having excellent fatigue durability, tensile strength, and tensile elongation.
3.実験2
 本実験中、実験例8~11は、第2の実施形態であるクロロヒドリン架橋剤とエポキシ架橋剤とを併用し、酸化亜鉛を使わずに作製したフィルムであり、実験例12~15は参考例として、エポキシ架橋剤と酸化亜鉛を添加した従来技術のフィルムであり、各々のフィルムの物性を計測したものである。
 各フィルムを用いて行った実験結果を下記表5に示す。なお、下記表5中のクロロヒドリンの量は、クロロヒドリン化合物の量であり、エポキシの量は、エポキシ化合物の量である。
3. 3. Experiment 2
During this experiment, Experimental Examples 8 to 11 are films prepared by using the chlorohydrin cross-linking agent and the epoxy cross-linking agent of the second embodiment in combination without using zinc oxide, and Experimental Examples 12 to 15 are reference examples. This is a conventional film to which an epoxy cross-linking agent and zinc oxide are added, and the physical characteristics of each film are measured.
The results of experiments conducted using each film are shown in Table 5 below. The amount of chlorohydrin in Table 5 below is the amount of the chlorohydrin compound, and the amount of epoxy is the amount of the epoxy compound.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 実験例8と12、9と13、10と14、11と15は同じラテックスを使用した上で、一方はクロロヒドリンとエポキシを用いた架橋であり、一方はエポキシと酸化亜鉛を用いた架橋である。これらは、各々酸化亜鉛に替えてクロロヒドリンを使用した方が、応力保持率が高くなることがわかる。
 また、エポキシ架橋剤自体は、もともと応力保持率が硫黄架橋XNBR手袋と比較し、優れていることをベースに、クロロヒドリンを添加することで、更に応力保持率が高くなっていることがわかる。
 実験例11は応力保持率が67.8%であり、XNBR手袋の応力保持率としては信じられないくらい高くなっている。
 また、引張伸び率を見ても、500%以上の数値を出しており、硫黄加硫XNBR手袋が、硫黄の添加量を増やして架橋密度を上げ、応力保持率を上げると逆に伸び率が極端に下がっていくことを考えると、驚くべきことである。
 また、第1の実施形態では、クロロヒドリンが1.0重量部ないと疲労耐久性が出なかったが、第2の実施形態であるクロロヒドリンとエポキシとを併用した場合には、、クロロヒドリンは0.5重量部でも、手袋物性を全て満たすことができることも分かった。
Experimental Examples 8 and 12, 9 and 13, 10 and 14, 11 and 15 use the same latex, one is cross-linking with chlorohydrin and epoxy, and the other is cross-linking with epoxy and zinc oxide. .. It can be seen that the stress retention rate is higher when chlorohydrin is used instead of zinc oxide.
Further, it can be seen that the stress retention rate of the epoxy cross-linking agent itself is further increased by adding chlorohydrin based on the fact that the stress retention rate is originally superior to that of the sulfur-crosslinked XNBR gloves.
In Experimental Example 11, the stress retention rate is 67.8%, which is incredibly high as the stress retention rate of the XNBR gloves.
Also, looking at the tensile elongation, the value is 500% or more, and when the sulfur vulcanized XNBR gloves increase the amount of sulfur added to increase the crosslink density and increase the stress retention, the elongation increases. It's amazing considering that it's going down to the extreme.
Further, in the first embodiment, fatigue durability was not obtained unless chlorohydrin was 1.0 part by weight, but when chlorohydrin and epoxy, which are the second embodiment, were used in combination, chlorohydrin was 0. It was also found that even 5 parts by weight can satisfy all the physical characteristics of gloves.
4.実験3
 本実験における実験例16~20は、クロロヒドリンを1.0重量部(クロロヒドリン化合物量)、酸化亜鉛1.0重量部を添加したフィルムを作る際に、ディップ成形用組成物の可使時間(ポットライフ)を見たものである。各フィルムを用いて行った実験結果を下記表6に示す。なお、下記表6の疲労耐久性は、調製後ポットライフとして示した日数のあいだ撹拌を続けたディップ成形用組成物から得たフィルムの疲労耐久性を示したものである。
Figure JPOXMLDOC01-appb-T000023
4. Experiment 3
In Experimental Examples 16 to 20 in this experiment, when 1.0 part by weight of chlorohydrin (amount of chlorohydrin compound) and 1.0 part by weight of zinc oxide were added to prepare a film, the pot of the dip molding composition was used. Life) is seen. The results of experiments conducted using each film are shown in Table 6 below. The fatigue durability in Table 6 below indicates the fatigue durability of the film obtained from the dip molding composition in which stirring was continued for the number of days shown as the pot life after preparation.
Figure JPOXMLDOC01-appb-T000023
 上記実験結果を見ると、撹拌時間6日においても疲労耐久性は279分で非常に高い水準にあり、クロロヒドリン架橋剤のポットライフは、水溶性のものであっても6日以上である。これは実生産を考慮しても充分な日数である。 Looking at the above experimental results, the fatigue durability is at a very high level of 279 minutes even when the stirring time is 6 days, and the pot life of the chlorohydrin cross-linking agent is 6 days or more even if it is water-soluble. This is a sufficient number of days even when considering actual production.
 5.実験4
 本実験における実験例21~24は、第1の実施形態である、クロロヒドリンを1.0重量部(クロロヒドリン化合物量)、酸化亜鉛1.0重量部を添加したフィルムを作る際に、実験例4の架橋剤Aに替えて、架橋剤B、C、Dを用いたものである。
 結果を表7に示す。それぞれ疲労耐久性が酸化亜鉛のみを添加した実験例1の72分から大幅に改善されており、引張強度、引張伸び率ともに良好であった。さらに、応力保持率は架橋剤Aと比べて高く、50%を超えていた。これは、架橋剤B、C、DがMIBK/水分配率が高く水に難溶であることからわかるように親油性の強いものであり、XNBR粒子内に入って粒子内架橋を形成したためと考えられる。
5. Experiment 4
In Experimental Examples 21 to 24 in this experiment, when making a film to which 1.0 part by weight of chlorohydrin (amount of chlorohydrin compound) and 1.0 part by weight of zinc oxide was added, which is the first embodiment, Experimental Example 4 The cross-linking agents B, C, and D are used in place of the cross-linking agent A.
The results are shown in Table 7. Fatigue durability was significantly improved from 72 minutes in Experimental Example 1 in which only zinc oxide was added, and both tensile strength and tensile elongation were good. Further, the stress retention rate was higher than that of the cross-linking agent A and exceeded 50%. This is because the cross-linking agents B, C, and D have a high MIBK / water distribution ratio and are poorly soluble in water, and have strong lipophilicity, and enter the XNBR particles to form an intra-particle cross-link. Conceivable.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 本発明により、従来の手袋の分野では用いられていないカルボン酸変性NBRラテックスのためのハロヒドリン架橋剤、該架橋剤を少なくとも含有するディップ成形用組成物、該ディップ成形用組成物を用いた手袋の製造方法、及び手袋を提供し、加硫促進剤を使用せずに引張強度、伸び率、疲労耐久性に優れた手袋を作ることができる。さらに、特定の態様によっては、従来の硫黄加硫XNBR手袋と比較し、応力保持率に優れ、同時に伸び率のよいことを特徴とするXNBR手袋を作ることができる。 According to the present invention, a halohydrin cross-linking agent for a carboxylic acid-modified NBR latex, which is not used in the field of conventional gloves, a dip molding composition containing at least the cross-linking agent, and a glove using the dip molding composition. By providing a manufacturing method and gloves, gloves having excellent tensile strength, elongation, and fatigue durability can be produced without using a vulcanization accelerator. Further, depending on the specific embodiment, it is possible to produce XNBR gloves characterized by having an excellent stress retention rate and at the same time a good elongation rate as compared with the conventional sulfur vulcanized XNBR gloves.

Claims (8)

  1.  下記式(I)で表されるハロヒドリン基Dを1分子中に少なくとも2つ有するハロヒドリン化合物を含有する、ディップ成形用架橋剤。
    Figure JPOXMLDOC01-appb-C000001
     上記式(I)中、Rは、水素又はアルキル基であり、Xは、ハロゲン基である。
    A cross-linking agent for dip molding containing a halohydrin compound having at least two halohydrin groups D represented by the following formula (I) in one molecule.
    Figure JPOXMLDOC01-appb-C000001
    In the above formula (I), R 1 is a hydrogen or alkyl group, and X is a halogen group.
  2.  前記ハロヒドリン化合物が、ハロヒドリン基Dとして、下記式(Ia)で表されるハロヒドリン基Daを分子中に少なくとも1つ有するハロヒドリン化合物である、請求項1に記載のディップ成形用架橋剤。
    Figure JPOXMLDOC01-appb-C000002
     上記式(Ia)中、Rは、水素又はアルキル基であり、Xは、ハロゲン基である。
    The cross-linking agent for dip molding according to claim 1, wherein the halohydrin compound is a halohydrin compound having at least one halohydrin group Da represented by the following formula (Ia) in the molecule as the halohydrin group D.
    Figure JPOXMLDOC01-appb-C000002
    In the above formula (Ia), R 1 is a hydrogen or alkyl group, and X is a halogen group.
  3.  前記ハロヒドリン化合物が、下記式(II)で表されるハロヒドリン化合物である、請求項2に記載のディップ成形用架橋剤。
    Figure JPOXMLDOC01-appb-C000003
     上記式(II)中、Rは、炭素数2~10の(k+m)価の脂肪族炭化水素基であり、Xは、ハロゲン基であり、k及びmは、2≦k≦6、0≦m≦4、2≦k+m≦6を満たす整数である。
    The cross-linking agent for dip molding according to claim 2, wherein the halohydrin compound is a halohydrin compound represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000003
    In the above formula (II), R 2 is a (k + m) -valent aliphatic hydrocarbon group having 2 to 10 carbon atoms, X is a halogen group, and k and m are 2 ≦ k ≦ 6,0. It is an integer that satisfies ≦ m ≦ 4 and 2 ≦ k + m ≦ 6.
  4.  (メタ)アクリロニトリル由来の構造単位、不飽和カルボン酸由来の構造単位、及びブタジエン由来の構造単位をポリマー主鎖に含むエラストマーと、請求項1~3のいずれか1項に記載のディップ成形用架橋剤とを含む、ディップ成形用組成物。 The crosslink for dip molding according to any one of claims 1 to 3 with an elastomer containing a structural unit derived from (meth) acrylonitrile, a structural unit derived from unsaturated carboxylic acid, and a structural unit derived from butadiene in the polymer main chain. A composition for dip molding, which comprises an agent.
  5.  前記エラストマーにおいて、(メタ)アクリロニトリル由来の構造単位が12~35重量%、不飽和カルボン酸由来の構造単位が2~10重量%である、請求項4に記載のディップ成形用組成物。 The dip molding composition according to claim 4, wherein the structural unit derived from (meth) acrylonitrile is 12 to 35% by weight and the structural unit derived from unsaturated carboxylic acid is 2 to 10% by weight in the elastomer.
  6.  エポキシ基を1分子中に少なくとも3つ有するエポキシ化合物を含むエポキシ架橋剤をさらに含有する、請求項4又は5に記載のディップ成形用組成物。 The composition for dip molding according to claim 4 or 5, further containing an epoxy cross-linking agent containing an epoxy compound having at least three epoxy groups in one molecule.
  7.  請求項4~6のいずれか1項に記載のディップ成形用組成物の硬化物である、手袋。 A glove that is a cured product of the dip molding composition according to any one of claims 4 to 6.
  8.  (1)手袋成形型に凝固剤を付着させる凝固付着工程、
     (2)請求項1~6のいずれか1項に記載のディップ成形用組成物を調整し、攪拌する撹拌工程、
     (3)手袋成形型をディップ成形用組成物に浸漬するディッピング工程、
     (4)手袋成形型上に形成された膜をゲル化し、硬化フィルム前駆体を作るゲリング工程、
     (5)手袋成形型上に形成された硬化フィルム前駆体から不純物を除去するリーチング工程、
     (6)手袋の袖口部分に巻きを作るビーディング工程、
     (7)架橋反応に必要な温度で加熱及び乾燥する工程キュアリング工程
     を含み、上記(3)~(7)の工程を上記の順序で行う手袋の製造方法。
    (1) Coagulation and adhesion step of adhering a coagulant to a glove molding mold,
    (2) A stirring step of adjusting and stirring the dip molding composition according to any one of claims 1 to 6.
    (3) A dipping step of immersing the glove molding mold in the dip molding composition,
    (4) Gelling step of gelling the film formed on the glove molding to make a cured film precursor.
    (5) A leaching step of removing impurities from the cured film precursor formed on the glove molding mold,
    (6) Beading process to make a roll around the cuffs of gloves,
    (7) Step of heating and drying at a temperature required for a cross-linking reaction A method for manufacturing a glove, which comprises a curing step and performs the above steps (3) to (7) in the above order.
PCT/JP2020/027114 2019-07-12 2020-07-10 Crosslinking agent for dip molding, composition for dip molding and glove WO2021010343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533051A JPWO2021010343A1 (en) 2019-07-12 2020-07-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130546 2019-07-12
JP2019130546 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010343A1 true WO2021010343A1 (en) 2021-01-21

Family

ID=74210984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027114 WO2021010343A1 (en) 2019-07-12 2020-07-10 Crosslinking agent for dip molding, composition for dip molding and glove

Country Status (2)

Country Link
JP (1) JPWO2021010343A1 (en)
WO (1) WO2021010343A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073367A1 (en) * 1999-05-28 2000-12-07 Suzuki Latex Industry Co., Ltd. Nontacky latex products
WO2015141780A1 (en) * 2014-03-19 2015-09-24 ナガセケムテックス株式会社 Water-absorbing resin crosslinking agent
WO2015146784A1 (en) * 2014-03-24 2015-10-01 ナガセケムテックス株式会社 Crosslinking agent composition for water-absorbing resin
US20170099889A1 (en) * 2015-10-07 2017-04-13 Derlink Co., Ltd. High stress retention nitrile glove
JP2017082077A (en) * 2015-10-27 2017-05-18 ナガセケムテックス株式会社 Halohydrin compound and resin composition
WO2017126660A1 (en) * 2016-01-21 2017-07-27 ミドリ安全株式会社 Glove
WO2019102985A1 (en) * 2017-11-24 2019-05-31 ミドリ安全株式会社 Glove, dip forming composition and glove manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073367A1 (en) * 1999-05-28 2000-12-07 Suzuki Latex Industry Co., Ltd. Nontacky latex products
WO2015141780A1 (en) * 2014-03-19 2015-09-24 ナガセケムテックス株式会社 Water-absorbing resin crosslinking agent
WO2015146784A1 (en) * 2014-03-24 2015-10-01 ナガセケムテックス株式会社 Crosslinking agent composition for water-absorbing resin
US20170099889A1 (en) * 2015-10-07 2017-04-13 Derlink Co., Ltd. High stress retention nitrile glove
JP2017082077A (en) * 2015-10-27 2017-05-18 ナガセケムテックス株式会社 Halohydrin compound and resin composition
WO2017126660A1 (en) * 2016-01-21 2017-07-27 ミドリ安全株式会社 Glove
WO2019102985A1 (en) * 2017-11-24 2019-05-31 ミドリ安全株式会社 Glove, dip forming composition and glove manufacturing method

Also Published As

Publication number Publication date
JPWO2021010343A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP6778331B2 (en) Dip molding composition, glove manufacturing method and gloves
JP7225162B2 (en) Glove, dip molding composition, and method for producing glove
JP6821703B2 (en) Glove dip composition, glove manufacturing method and gloves
JP6860698B2 (en) Dip molding composition, glove manufacturing method and gloves
JP7270738B2 (en) DIP-MOLDING COMPOSITION, GLOVE MANUFACTURING METHOD, AND GLOVE
WO2021010343A1 (en) Crosslinking agent for dip molding, composition for dip molding and glove
WO2020195712A1 (en) Composition for dip molding, method for producing glove using same, and glove
WO2021200984A1 (en) Composition for dip molding and molded body thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839838

Country of ref document: EP

Kind code of ref document: A1