WO2021010311A1 - Method for producing low carbon ferrochromium - Google Patents

Method for producing low carbon ferrochromium Download PDF

Info

Publication number
WO2021010311A1
WO2021010311A1 PCT/JP2020/026995 JP2020026995W WO2021010311A1 WO 2021010311 A1 WO2021010311 A1 WO 2021010311A1 JP 2020026995 W JP2020026995 W JP 2020026995W WO 2021010311 A1 WO2021010311 A1 WO 2021010311A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
carbon ferrochrome
less
chromium
basicity
Prior art date
Application number
PCT/JP2020/026995
Other languages
French (fr)
Japanese (ja)
Inventor
博一 杉森
正浩 森
Original Assignee
Jfeマテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeマテリアル株式会社 filed Critical Jfeマテリアル株式会社
Priority to JP2021533031A priority Critical patent/JP7035280B2/en
Priority to BR112021024006A priority patent/BR112021024006A2/en
Publication of WO2021010311A1 publication Critical patent/WO2021010311A1/en
Priority to JP2022016154A priority patent/JP2022048383A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel

Definitions

  • the present invention relates to a method for producing low carbon ferrochrome.
  • Low carbon ferrochrome which is an Fe—Cr alloy having a Cr of 60% by mass or more and a C of 0.1% by mass or less, is generally produced by a method of reducing chromium ore with silicon.
  • the so-called Peran method is adopted as a specific manufacturing method.
  • the basic steps of the Peran method are the first step of melting chrome ore and fresh lime in an electric furnace, and the melting raw material (hereinafter referred to as primary slag) melted in the first step in a ladle.
  • primary slag melting raw material
  • It is provided with a second step of producing low-carbon ferrochrome and secondary slag by pouring hot water, charging silicochrome as a reducing agent into the ladle, stirring the mixture, and causing a reduction reaction.
  • the stirring in the second step is usually performed by relaying in which two ladle are prepared and the molten metal of the primary slag containing silicochrome is repeatedly transferred (see Patent Document 1).
  • the basicity (CaO / SiO 2 ) of the secondary slag is increased to about 1.7 to 2.0 in order to increase the chromium yield. This is because the higher the basicity, the more the chromium reduction reaction proceeds, and the lower the chromium content of the secondary slag, that is, the higher the chromium yield.
  • the basicity of the secondary slag (CaO / SiO 2 ) is increased, there is a problem that hexavalent chromium harmful to the rejected secondary slag is generated.
  • the present invention has been made in view of the above problems, and a method for producing low carbon ferrochrome which can improve the chromium yield and prevent the formation of hexavalent chromium which is harmful to the rejected slag.
  • the purpose is to provide.
  • one aspect of the present invention is a first step of dissolving ferrochrome ore and quicklime in an electric furnace, a melting raw material (hereinafter referred to as primary slag) and a reducing agent dissolved in the first step.
  • primary slag a melting raw material
  • reducing agent dissolved in the first step.
  • the secondary slag obtained in the second step is transferred to an electric furnace or a reaction vessel, and then a reducing agent is charged to form a chromium-containing metal and a tertiary slag.
  • the tertiary slag is detoxified by having three steps and having a chromium oxide content (Cr 2 O 3 % by mass) of 1.4% by mass or less and a basicity (CaO / SiO 2 ) of less than 1.3. It is characterized by being a slag.
  • the basicity of the secondary slag (CaO / SiO 2 ) can be set to less than 1.65.
  • the tertiary slag can be detoxified.
  • FIG. 1 is a process diagram of a method for producing low carbon ferrochrome according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing equipment used in the method for producing low carbon ferrochrome of the present embodiment.
  • a mixture of chromium ore and quicklime as a medium solvent is dissolved in an electric furnace to produce a dissolved raw material (hereinafter referred to as primary slag).
  • the first step (S1) is provided.
  • the chromium ore and quicklime are stored in the hopper 4.
  • the electric furnace 1 a fixed electric furnace in which a hot water outlet 1a is provided at a position higher than the bottom of the furnace to form a hot water pool is used.
  • the hot water outlet 1a may be provided on the bottom of the furnace.
  • the reason why the hot water pool is formed is that a stable amount of heat is maintained even when the primary slag is discharged.
  • the primary slag is discharged from the hot water outlet 1a into the reaction vessel 2.
  • the hot water temperature of the primary slag is as high as 1400 ° C. or higher and 2000 ° C. or lower.
  • silicochrome, chasing chromium ore, and recovered silicochrome are charged as reducing agents into the reaction vessel 2 in which the primary slag is discharged. Then, the reaction vessel 2 is stirred by bottom-blowing an inert gas to reduce the oxide of chromium ore to generate low-carbon ferrochrome and secondary slag. This reduction step is the second step (S2).
  • the inert gas is argon or nitrogen.
  • Chasing chrome ore is a cold material (raw material) of chrome ore.
  • Metallic silicon and ferrosilicon can also be used instead of silicochrome.
  • the recovered silicochrome is the silicochrome recovered in the third step described later. As shown in FIG. 2, as the reaction vessel 2, a reaction vessel 2 having a gas bottom blowing device 2a for blowing an inert gas from the furnace bottom is used.
  • the upper limit of the basicity of the secondary slag in the second step (S2) is adjusted to be less than 1.65, preferably less than 1.5, and more preferably less than 1.4.
  • the reason for adjusting the basicity of the secondary slag to a low level is as follows.
  • the reduction reaction of chromium oxide of chromium ore with silicon proceeds as follows. Cr 2 O 3 +3 / 2Si ⁇ 2Cr + 3/2SiO 2 ... (1)
  • the liberated SiO 2 reacts with quicklime as shown in the following equations (2) and (3) to generate secondary slag.
  • the secondary slag is generated as in the formulas (2) and (3), the amount of free SiO 2 in the formula (1) decreases, and the reduction reaction in the formula (1) proceeds from left to right.
  • the amount of lime is increased and the basicity of the secondary slag is raised to about 1.7 to 2.0. This is because the higher the basicity, the more secondary slag is generated as in the formulas (2) and (3), and the reduction reaction in the formula (1) proceeds.
  • the basicity of the secondary slag is adjusted to be low, and the basicity of the tertiary slag is lowered to less than 1.3, preferably less than 1.2, and more preferably less than 1.1. adjust.
  • Table 1 shows the relationship between the basicity of the secondary slag (CaO / SiO 2) and the tertiary slag basicity (CaO / SiO 2).
  • the reaction vessel 2 having a gas bottom blowing device having a high stirring ability is used to improve the thermal efficiency and the reactivity of the reduction reaction. Therefore, even if the basicity is lowered to less than 1.65, it is possible to prevent the chromium yield from being lowered.
  • the activity coefficient of SiO 2 is increased, the reduction reaction of chromium in the formula (1) is less likely to occur, and the (Cr) mass% of the secondary slag is increased.
  • the (Cr) mass% of the secondary slag can be reduced. By reducing the (Cr) mass% of the secondary slag, advantageous operation can be performed.
  • FIG. 4 is a vertical cross-sectional view of the reaction vessel 2 having the gas bottom blowing device 2a. As shown in FIG. 4, refractories 8 and 9 are applied to the bottom 6a of the iron skin 6 of the reaction vessel 2. A plug 19 of the gas bottom blowing device 2a is arranged at the center of the bottom of the reaction vessel 2. When an inert gas is introduced into the pipe portion 17 of the plug 19, the inert gas is blown into the reaction vessel 2 from the plug 19, and the molten metal in the reaction vessel 2 is agitated, that is, gas bubbling.
  • the reaction of the formula (1) proceeds from the primary slag as described above.
  • the reaction vessel 2 is mainly composed of primary slag.
  • a molten ferrochrome (metal 21) is formed, and the secondary slag 22 is present on the molten ferrochrome (metal 21).
  • the volume ratio of the secondary slag 22: metal 21 is approximately 4: 1.
  • the gas bottom blowing device that blows the inert gas into the bottom of the reaction vessel 2. 2a is used.
  • the plug 19 of the gas bottom blowing device 2a is arranged at a position offset from the center of the bottom of the reaction vessel 2 (eccentric position). It is known (see, for example, Japanese Patent Application Laid-Open No. 1-177333). However, when a large amount of highly viscous secondary slag 22 is present as in the present embodiment, when the plug 19 of the gas bottom blowing device 2a is arranged at the eccentric position of the bottom of the reaction vessel 2, the side on which the plug 19 is arranged is arranged. The opposite side becomes a weakly agitated state, and undissolved chamium ore remains on the opposite side.
  • the plug 19 of the gas bottom blowing device 2a by arranging the plug 19 of the gas bottom blowing device 2a in the central portion of the bottom of the reaction vessel 2, the plug 19 rises from the central portion of the bottom in the reaction vessel 2 and then radially. A flow of molten metal is formed toward the surrounding area. Therefore, the inside of the reaction vessel 2 can be uniformly agitated, and the chasing chromium ore can be involved and dissolved. A plurality of plugs may be arranged on a circle centered on the central portion of the bottom of the reaction vessel 2. Even in this way, the inside of the reaction vessel 2 can be uniformly stirred.
  • a top-blown reaction vessel in which an inert gas is blown by a lance may be used, or two pans are used and two pans are used. Relaying may be performed between the pots.
  • siliconochrome is used as the reducing agent, but a silicon-based reducing agent such as metallic silicon may be used in addition to silicochrome.
  • a silicon-based reducing agent such as metallic silicon
  • an aluminum-based reducing agent such as aluminum or an aluminum alloy
  • a magnesium-based reducing agent such as magnesium or a magnesium alloy
  • a calcium-based reducing agent such as calcium or a calcium alloy
  • a mixture of these reducing agents may be used.
  • the molten metal of low carbon ferrochrome produced by the reduction reaction is cast into a mold to become a product.
  • the low carbon ferrochrome of the product contains 60% by mass or more of Cr, 1.0% by mass or less of Si, and 0.1% by mass or less of C.
  • the secondary slag produced by the reduction reaction is separated from the molten metal of low carbon ferrochrome and then charged into the electric furnace 3 (see FIG. 2) or the reaction vessel.
  • ferrosilicon as a reducing agent is charged into the electric furnace 3 or the reaction vessel in which the secondary slag is charged, and is reacted with the chromium oxide remaining in the secondary slag.
  • This reduction step is the third step (S3).
  • a large amount of ferrosilicon as a reducing agent that is, 1 time or more, preferably 2 times or more the reduction equivalent of chromium oxide, is charged to make a strong reduction, and the chromium oxide content of the tertiary slag is increased by 1.4 mass. % Or less, preferably 1.0% by mass or less.
  • the Si content of the recovered silicochrome is 20% by mass or more and 70% by mass or less. When the Si content of the recovered silicochrome is less than 20% by mass, the chromium oxide content of the tertiary slag becomes high. Even if the Si content of the recovered silicochrome exceeds 70% by mass, the effect of reducing the chromium oxide of the tertiary slag is small.
  • FIG. 5 is a graph showing the relationship between the chromium content of the tertiary slag ((Cr) mass%) and the Si content of the recovered silicochrome ([Si] mass%).
  • the chromium content of the tertiary slag is 1.0% by mass or less. Can be done. Even if the silicon content of the recovered silicon chrome exceeds 60% by mass, the effect of reducing the chromium content of the tertiary slag is small.
  • the third step is performed while ensuring the temperature of the molten metal of the recovered silicochrome and the tertiary slag to be 1250 ° C. or higher. If the temperature of the molten metal is below 1250 ° C., the third step is carried out in an electric furnace 3 or a reaction vessel equipped with heating means.
  • the basicity of the tertiary slag is as low as less than 1.3.
  • the reason for lowering the basicity is to prevent the formation of hexavalent chromium, which is harmful to the tertiary slag, as described above.
  • Silica stone (SiO 2 ) as an auxiliary raw material may be added to the electric furnace 3 or the reaction vessel as necessary in order to adjust the basicity to a low level.
  • Tertiary slag is detoxified slag, used for roadbed materials or fertilizers, or landfilled in factories.
  • the amount (concentration) of hexavalent chromium eluted from the tertiary slag is 0.05 mg / l or less.
  • the recovered siliconochrome is charged into the reaction vessel 2 together with the silicochrome. Since part of the silicochrome is replaced by the recovered silicochrome, the silicochrome is reduced.
  • the recovered silicon chrome may be charged into the electric furnace 3 or the reaction vessel of the third step (S3) and used as a partial substitute for ferrosilicon.
  • the electric furnace 3 or the reaction vessel may be used. If the electric furnace 3 is used in the third step (S3), the reactivity of the reduction reaction can be improved, so that even if the basicity of the tertiary slag is lowered to less than 1.3, the chromium yield is lowered. Can be prevented.
  • the electric furnace 3 may be provided with a gas bottom blowing device.
  • the reaction vessel may be a reaction vessel having a gas bottom blowing device, or a top-blowing type reaction vessel in which an inert gas is blown from a lance.
  • the gas bottom blowing device provided in the electric furnace 3 or the reaction vessel is arranged in the central portion of the bottom of the electric furnace 3 or the reaction vessel, similarly to the gas bottom blowing device 2a of the reaction vessel 2 in the second step described above.
  • the volume ratio of slag to metal in the second step is about 4: 1
  • the volume ratio of slag to metal in the third step is about 10: 1.
  • the amount of stirring gas (l / min) per ton of the molten metal in the third step is made larger than the amount of stirring gas (l / min) per ton of the molten metal in the second step. Is desirable.
  • solidified slag that has been landfilled in a factory or temporarily placed in a factory and solidified may be added to the secondary slag.
  • the solidified slag is a secondary slag produced by the operation of the previous method for producing low carbon ferrochrome (secondary slag produced by relaying using two conventional ladle and / or the reaction vessel of the present embodiment).
  • Secondary slag produced by gas bubbling with 2) contains solidified slag and contains chromium oxide.
  • the chromium oxide content of the solidified slag may be 1.4% by mass or more.
  • the third step is performed in an electric furnace 3 or a reaction vessel equipped with a heating means to keep the molten metal of the secondary slag warm and redissolve the solidified slag.
  • the solidified slag may be added to the electric furnace 1 that produces the primary slag.
  • ferrosilicon is used as the reducing agent in the third step, but a silicon-based reducing agent such as metallic silicon may be used in addition to ferrosilicon.
  • a silicon-based reducing agent such as metallic silicon
  • an aluminum-based reducing agent such as aluminum or an aluminum alloy
  • a magnesium-based reducing agent such as magnesium or a magnesium alloy
  • a calcium-based reducing agent such as calcium or a calcium alloy
  • a mixture of these reducing agents may be used.
  • the chromium content of the slag is represented by ((Cr) mass%).
  • the chromium oxide content of slag is represented by (Cr 2 O 3 % by mass).
  • An ICP (Inductively Coupled Plasma) emission spectroscopic analysis method is used as a method for quantifying Cr of slag.
  • JIS G1313-1 2012 decomposition by alkaline melting is used for the decomposition of the sample.
  • the basicity of slag (CaO / SiO 2 ) is expressed by the CaO content of slag / SiO 2 content of slag.
  • An ICP (Inductively Coupled Plasma) emission spectroscopic analysis method is used as a method for quantifying Ca and Si of slag. In this analysis method, "JIS G1313-1 2012 decomposition by alkaline melting" is used for the decomposition of the sample.
  • FIG. 6 shows the relationship between the chromium content of the tertiary slag ((Cr) mass%), the basicity of the tertiary slag (CaO / SiO 2 ), and the concentration of hexavalent chromium of the tertiary slag (mg / l). It is a graph.
  • the chromium content ((Cr) mass%) of the tertiary slag is 1 mass% or less, that is, the chromium oxide content (Cr 2 O 3 mass%) is 1.4 mass% or less, and the base is used.
  • the concentration of hexavalent chromium in the tertiary slag can be reduced to 0.04 (mg / l) or less. This value satisfies the environmental standard of 0.05 (mg / l) or less specified in Notification No. 46 of the Environment Agency.
  • the chromium content of the slag is required to reduce the concentration of hexavalent chromium to 0.04 (mg / l) or less. ((Cr) mass%) must be maintained below 0.3, and stable operation cannot be performed. Further, when the basicity (CaO / SiO 2 ) is 1.7 or more, the tertiary slag collapses after cooling.
  • the dissolution test of hexavalent chromium of Notification No. 46 of the Environment Agency in August 1991 is used.
  • the Environmental Agency Notification No. 46 states that the concentration of hexavalent chromium is 0.05 (mg / mg / mg) as a standard that should be maintained in order to protect human health and protect the living environment (“environmental standard”). l) It is stipulated that the following is true.
  • Table 2 shows the test method of the dissolution test specified in Notification No. 46 of the Environment Agency.
  • the method for producing low-carbon ferrochrome of the present embodiment has been described above. According to the method for producing low-carbon ferrochrome of the present embodiment, the following effects are obtained.
  • the basicity of the secondary slag By setting the basicity of the secondary slag to less than 1.65, the basicity of the tertiary slag can be reduced to less than 1.3, and the tertiary slag can be detoxified.
  • the reaction vessel 2 having the gas bottom blowing device 2a having high thermal efficiency and stirring ability since the reaction vessel 2 having the gas bottom blowing device 2a having high thermal efficiency and stirring ability is used, the reactivity of the reduction reaction can be improved. Therefore, the basicity can be lowered to less than 1.65 without lowering the chromium yield, and the operation with a reduced amount of lime can be performed. Further, since the reaction vessel 2 having the gas bottom blowing device 2a is used, the amount of additional chrome ore can be increased and the electric power intensity can be reduced.
  • the electric power intensity is the amount of electric power used per product t, and specifically (primary slag dissolved electric energy / product production amount).
  • the basicity of the tertiary slag can be easily adjusted to less than 1.3.
  • the solidified slag is added to the secondary slag in the third step (S3), for example, the solidified slag landfilled or temporarily placed in the factory can be detoxified.
  • the solidified slag is dissolved and the dissolved solidified slag is reduced in an electric furnace, so that the reactivity of the reduction reaction can be improved.
  • the chromium-containing metal (recovered silicochrome) is recovered from the secondary slag, so that the chromium yield can be improved.
  • argon it is preferable to use argon as the inert gas.
  • the stirring power can be increased and nitrogen can be prevented from being mixed into the low carbon ferrochrome of the product.
  • the chromium yield can be improved to 95% or more.
  • the electric furnace in the first step (S1) is the fixed electric furnace 1
  • the solubility of the primary slag can be improved.
  • the operating rate can be improved.
  • the hot water temperature of the primary slag in the first step (S1) is as high as 1400 ° C. or higher and 2000 ° C. or lower, the reactivity of the reduction reaction in the second step (S2) can be improved.
  • FIG. 7 is a process chart of the third step of the method for producing low carbon ferrochrome according to the second embodiment of the present invention. Since the first step and the second step are the same as the method for producing low carbon ferrochrome of the first embodiment, the description thereof will be omitted.
  • the electric furnace is charged with solidified slag, reducing agent, and auxiliary raw materials.
  • the solidified slag is as described above.
  • the reducing agent is a silicon-based reducing agent, an aluminum-based reducing agent, a magnesium-based reducing agent, a calcium-based reducing agent, or a mixture of these reducing agents.
  • the reducing agent is added at least once, preferably at least twice the reduction equivalent of the chromium oxide and iron oxide of the solidified slag.
  • Auxiliary raw materials are silica stone, quicklime, etc., and are used to adjust the basicity of tertiary slag.
  • the solidified slag, the reducing agent, and the auxiliary raw material are melted, and the melted solidified slag is reduced by the reducing agent to generate a chromium-containing metal and a tertiary slag (S31).
  • the chromium oxide content of the tertiary slag is adjusted to 1.4% by mass or less, and the basicity is adjusted to less than 1.3.
  • the hexavalent value of the tertiary slag is similar to that of S3 of the first embodiment.
  • the chromium concentration can be reduced to 0.04 (mg / l) or less. Therefore, harmful solidified slag that has been landfilled or temporarily placed in the factory can be converted into harmless tertiary slag.
  • the produced chromium-containing metal can be reused as a reducing agent.
  • the secondary slag produced in the second step may be charged into the electric furnace. Further, the electric furnace may be provided with a gas bottom blowing device.
  • FIG. 8 is a process chart of the third step of the method for producing low carbon ferrochrome according to the third embodiment of the present invention. Since the first step and the second step are the same as the method for producing low carbon ferrochrome of the first embodiment, the description thereof will be omitted.
  • the solidified slag is dissolved and the dissolved slag is reduced in an electric furnace (S31).
  • the solidified slag is melted in an electric furnace (S301), and the melted solidified slag is reduced in a reaction vessel (S302). ).
  • the electric furnace is charged with auxiliary raw materials such as silica stone and quicklime for adjusting the basicity of solidified slag and tertiary slag.
  • the electric furnace melts the solidified slag and the auxiliary raw material (S301).
  • the melted solidified slag and auxiliary raw materials are discharged from the electric furnace to the reaction vessel.
  • the reaction vessel two ladle for relaying may be used, a reaction vessel having a gas bottom blowing device may be used, or a top-blowing type reaction vessel may be used.
  • the dissolved solidified slag is reduced with a reducing agent to produce a chromium-containing metal and a tertiary slag (S302).
  • the chromium oxide content of the tertiary slag is adjusted to 1.4% by mass or less, and the basicity is adjusted to less than 1.3.
  • the secondary slag produced in the second step may be charged into the electric furnace. Further, after melting and reducing the slag containing the solidified slag in an electric furnace, the finishing reduction of the melted slag may be carried out in a ladle as a reaction vessel. Further, the electric furnace may be provided with a gas bottom blowing device.
  • Low carbon ferrochrome was produced according to the production process diagram of FIG. Table 3 shows the composition of the chromium ore as the raw material used in this example.
  • the separated secondary slag was received in a reaction vessel, 230 kg of ferrosilicon was charged, and argon gas was bottom-blown into the reaction vessel to stir. Then, the produced tertiary slag and recovered silicochrome were separated to obtain 1930 kg of tertiary slag and 260 kg of recovered silicochrome. This recovered silicochrome was charged into the primary slag together with the silicochrome. Table 6 shows the composition of the tertiary slag. Table 7 shows the composition of the recovered silicochrome.
  • the basicity of the tertiary slag was 37.0 / 36.5 ⁇ 1.01.
  • the tertiary slag did not spontaneously decay after cooling, and no elution of hexavalent chromium was confirmed.
  • the yield of chromium was as high as 97% or more.
  • Example 10 shows the composition of the tertiary slag of Example 2.
  • the basicity of the tertiary slag was 1.29.
  • the tertiary slag did not spontaneously decay after cooling, and no elution of hexavalent chromium was confirmed.
  • Low carbon ferrochrome was produced according to the production process diagram of FIG. In the manufacturing process of this low-carbon ferrochrome, the reduction operation of the primary slag is performed by relaying, and the recovery silicochrome is recovered from the secondary slag and the operation of adding the recovered silicochrome to the primary slag is not performed. Different from the example. Table 12 shows the composition of the chromium ore which is the raw material used in the conventional example.
  • the chromium oxide content of the secondary slag was as high as 6.4%, and the basicity was also as high as 1.70.
  • the yield of chromium was as low as 85%. Harmful hexavalent chromium was generated during the secondary slag.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention provides a method for producing low carbon ferrochromium, said method being capable of improving the chromium yield, while being capable of preventing the formation of harmful hexavalent chromium in a slag to be discarded. A method for producing low carbon ferrochromium according to the present invention is provided with: a first step (S1) wherein chromium ore and quick lime are melted in an electric furnace; and a second step (S2) wherein a molten staring material (hereinafter referred to as a primary slag) melted in the first step and a reducing agent are charged into a reaction container, so that low carbon ferrochromium and a secondary slag having a degree of basicity (CaO/SiO2) adjusted to less than 1.65 are produced. After transferring the secondary slag obtained in the second step (S2) to the electric furnace or the reaction container, a reducing agent is charged thereinto so as to produce a chromium-containing metal and a tertiary slag (S3). The tertiary slag is a harmless slag wherein the chromium oxide content (Cr2O3 mass%) is adjusted to 1.4 mass% or less and the degree of basicity (CaO/SiO2) is adjusted to less than 1.3.

Description

低炭素フェロクロムの製造方法Method for producing low carbon ferrochrome
 本発明は、低炭素フェロクロムの製造方法に関する。 The present invention relates to a method for producing low carbon ferrochrome.
 Cr60質量%以上、C0.1質量%以下のFe-Cr合金である低炭素フェロクロムは、一般に、クロム鉱石をシリコンで還元する方法によって製造されている。その具体的な製造方法としては、所謂ペラン法が採用されている。図9に示すように、ペラン法の基本的工程は、クロム鉱石と生石灰を電気炉で溶解する第1工程と、第1工程で溶解した溶解原料(以下、1次スラグという)を取鍋に出湯し、この取鍋内に還元剤としてのシリコクロムを装入して攪拌し、還元反応を行わせて、低炭素フェロクロムと2次スラグを生成する第2工程と、を備える。第2工程での攪拌は、通常、2基の取鍋を用意して、シリコクロムを含んだ1次スラグの溶湯の移し替えを繰り返し行うリレードリングによってなされる(特許文献1参照)。 Low carbon ferrochrome, which is an Fe—Cr alloy having a Cr of 60% by mass or more and a C of 0.1% by mass or less, is generally produced by a method of reducing chromium ore with silicon. The so-called Peran method is adopted as a specific manufacturing method. As shown in FIG. 9, the basic steps of the Peran method are the first step of melting chrome ore and fresh lime in an electric furnace, and the melting raw material (hereinafter referred to as primary slag) melted in the first step in a ladle. It is provided with a second step of producing low-carbon ferrochrome and secondary slag by pouring hot water, charging silicochrome as a reducing agent into the ladle, stirring the mixture, and causing a reduction reaction. The stirring in the second step is usually performed by relaying in which two ladle are prepared and the molten metal of the primary slag containing silicochrome is repeatedly transferred (see Patent Document 1).
特開平1-225743号公報Japanese Unexamined Patent Publication No. 1-225743
 しかし、従来の低炭素フェロクロムの製造方法においては、クロム歩留りを上げるために、2次スラグの塩基度(CaO/SiO)を1.7~2.0程度まで上げている。塩基度が高いほどクロムの還元反応が進み、2次スラグのクロム含有率を低くする、すなわちクロム歩留りを上げることができるからである。しかし、2次スラグの塩基度(CaO/SiO)を上げると、棄却される2次スラグに有害な6価クロムが生成するという課題がある。 However, in the conventional method for producing low-carbon ferrochrome, the basicity (CaO / SiO 2 ) of the secondary slag is increased to about 1.7 to 2.0 in order to increase the chromium yield. This is because the higher the basicity, the more the chromium reduction reaction proceeds, and the lower the chromium content of the secondary slag, that is, the higher the chromium yield. However, if the basicity of the secondary slag (CaO / SiO 2 ) is increased, there is a problem that hexavalent chromium harmful to the rejected secondary slag is generated.
 本発明は、上記の課題を鑑みてなされたものであり、クロム歩留りを向上させることができ、また棄却されるスラグに有害な6価クロムが生成するのを防止できる低炭素フェロクロムの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and a method for producing low carbon ferrochrome which can improve the chromium yield and prevent the formation of hexavalent chromium which is harmful to the rejected slag. The purpose is to provide.
 上記課題を解決するために、本発明の一態様は、クロム鉱石と生石灰を電気炉で溶解する第1工程と、前記第1工程で溶解した溶解原料(以下、1次スラグという)と還元剤を反応容器に装入し、低炭素フェロクロムと塩基度(CaO/SiO)が1.65未満に調整された2次スラグを生成させる第2工程と、を備える低炭素フェロクロムの製造方法である。 In order to solve the above problems, one aspect of the present invention is a first step of dissolving ferrochrome ore and quicklime in an electric furnace, a melting raw material (hereinafter referred to as primary slag) and a reducing agent dissolved in the first step. Is charged into a reaction vessel to generate a secondary slag having a low carbon ferrochrome and a basicity (CaO / SiO 2 ) adjusted to less than 1.65, which is a method for producing a low carbon ferrochrome. ..
 本発明の好ましい一態様は、前記第2工程で得られた前記2次スラグを電気炉又は反応容器に移した後、還元剤を装入して、クロム含有金属と3次スラグを生成させる第3工程を備え、前記3次スラグは、酸化クロム含有率(Cr質量%)が1.4質量%以下、塩基度(CaO/SiO)が1.3未満に調整された無害化スラグであることを特徴とする。 In a preferred embodiment of the present invention, the secondary slag obtained in the second step is transferred to an electric furnace or a reaction vessel, and then a reducing agent is charged to form a chromium-containing metal and a tertiary slag. The tertiary slag is detoxified by having three steps and having a chromium oxide content (Cr 2 O 3 % by mass) of 1.4% by mass or less and a basicity (CaO / SiO 2 ) of less than 1.3. It is characterized by being a slag.
 本発明によれば、2次スラグの塩基度(CaO/SiO)を1.65未満とすることで、3次スラグの塩基度(CaO/SiO)を1.3未満にすることができ、3次スラグを無害化することができる。 According to the present invention, by setting the basicity of the secondary slag (CaO / SiO 2 ) to less than 1.65, the basicity of the tertiary slag (CaO / SiO 2 ) can be set to less than 1.3. The tertiary slag can be detoxified.
本発明の一実施形態の低炭素フェロクロムの製造方法の工程図である。It is a process drawing of the manufacturing method of the low carbon ferrochrome of one Embodiment of this invention. 本実施形態の低炭素フェロクロムの製造方法で用いられる設備を示す図である。It is a figure which shows the equipment used in the manufacturing method of the low carbon ferrochrome of this embodiment. 2次スラグの塩基度(CaO/SiO)と2次スラグの(Cr)質量%との関係を示すグラフである。It is a graph which shows the relationship between the basicity (CaO / SiO 2 ) of a secondary slag and (Cr) mass% of a secondary slag. 第2工程で使用される反応容器の縦断面図である。It is a vertical sectional view of the reaction vessel used in the 2nd step. 3次スラグの(Cr)質量%と回収シリコクロムの[Si]質量%との関係を示すグラフである。It is a graph which shows the relationship between the (Cr) mass% of a tertiary slag and the [Si] mass% of a recovered silicochrome. 3次スラグの(Cr)質量%、3次スラグの塩基度(CaO/SiO)、3次スラグのCr6+の濃度(mg/l)の関係を示すグラフである。It is a graph which shows the relationship of the (Cr) mass% of a tertiary slag, the basicity (CaO / SiO 2 ) of a tertiary slag, and the concentration (mg / l) of Cr 6+ of a tertiary slag. 本発明の第2の実施形態の低炭素フェロクロムの製造方法の第3工程の工程図である。It is a process drawing of the 3rd step of the manufacturing method of the low carbon ferrochrome of 2nd Embodiment of this invention. 本発明の第3の実施形態の低炭素フェロクロムの製造方法の第3工程の工程図である。It is a process drawing of the 3rd step of the manufacturing method of the low carbon ferrochrome of 3rd Embodiment of this invention. 従来の低炭素フェロクロムの製造方法の工程図である。It is a process drawing of the conventional method of manufacturing low carbon ferrochrome.
 以下、添付図面に基づいて、本発明の実施形態の低炭素フェロクロムの製造方法を詳細に説明する。ただし、本発明の低炭素フェロクロムの製造方法は種々の形態で具体化することができ、本明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明を十分に理解できるようにする意図をもって提供されるものである。
 (第1の実施形態)
Hereinafter, a method for producing a low-carbon ferrochrome according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, the method for producing a low-carbon ferrochrome of the present invention can be embodied in various forms, and is not limited to the embodiments described in the present specification. The present embodiment is provided with the intention of allowing those skilled in the art to fully understand the invention by adequately disclosing the specification.
(First Embodiment)
 図1は、本発明の第1の実施形態の低炭素フェロクロムの製造方法の工程図である。図2は、本実施形態の低炭素フェロクロムの製造方法で用いられる設備を示す図である。 FIG. 1 is a process diagram of a method for producing low carbon ferrochrome according to the first embodiment of the present invention. FIG. 2 is a diagram showing equipment used in the method for producing low carbon ferrochrome of the present embodiment.
 図1に示すように、本実施形態の低炭素フェロクロムの製造方法は、クロム鉱石と媒溶剤である生石灰の混合物を電気炉内で溶解させて溶解原料(以下、1次スラグという)を生成する第1工程(S1)を備える。図2に示すように、クロム鉱石と生石灰は、ホッパ4に貯蔵される。電気炉1には、炉底より高い位置に出湯口1aを設けて湯溜まりを形成した固定型電気炉を用いる。出湯口1aを炉底に設けてもよい。湯溜まりを形成するのは、1次スラグを出湯しても安定した熱量を保持するためである。1次スラグは、出湯口1aから反応容器2に出湯される。1次スラグの出湯温度は、1400℃以上2000℃以下の高温である。 As shown in FIG. 1, in the method for producing low carbon ferrochrome of the present embodiment, a mixture of chromium ore and quicklime as a medium solvent is dissolved in an electric furnace to produce a dissolved raw material (hereinafter referred to as primary slag). The first step (S1) is provided. As shown in FIG. 2, the chromium ore and quicklime are stored in the hopper 4. As the electric furnace 1, a fixed electric furnace in which a hot water outlet 1a is provided at a position higher than the bottom of the furnace to form a hot water pool is used. The hot water outlet 1a may be provided on the bottom of the furnace. The reason why the hot water pool is formed is that a stable amount of heat is maintained even when the primary slag is discharged. The primary slag is discharged from the hot water outlet 1a into the reaction vessel 2. The hot water temperature of the primary slag is as high as 1400 ° C. or higher and 2000 ° C. or lower.
 次に、図1に示すように、1次スラグが出湯された反応容器2に、還元剤としてシリコクロム、追装クロム鉱石、回収シリコクロムを装入する。そして、反応容器2に不活性ガスを底吹きすることにより攪拌して、クロム鉱石の酸化物を還元して、低炭素フェロクロムと2次スラグを生成させる。この還元工程が第2工程(S2)である。 Next, as shown in FIG. 1, silicochrome, chasing chromium ore, and recovered silicochrome are charged as reducing agents into the reaction vessel 2 in which the primary slag is discharged. Then, the reaction vessel 2 is stirred by bottom-blowing an inert gas to reduce the oxide of chromium ore to generate low-carbon ferrochrome and secondary slag. This reduction step is the second step (S2).
 不活性ガスは、アルゴン又は窒素である。追装クロム鉱石は、クロム鉱石の冷材(生原料)である。シリコクロムの替わりに金属シリコン、フェロシリコンを用いることもできる。回収シリコクロムは、後述する第3工程で回収されたシリコクロムである。図2に示すように、反応容器2には、炉底から不活性ガスを吹き込むガス底吹き装置2aを有する反応容器2を使用する。 The inert gas is argon or nitrogen. Chasing chrome ore is a cold material (raw material) of chrome ore. Metallic silicon and ferrosilicon can also be used instead of silicochrome. The recovered silicochrome is the silicochrome recovered in the third step described later. As shown in FIG. 2, as the reaction vessel 2, a reaction vessel 2 having a gas bottom blowing device 2a for blowing an inert gas from the furnace bottom is used.
 第2工程(S2)での2次スラグの塩基度の上限は、1.65未満、望ましくは1.5未満、さらに望ましくは1.4未満に低く調整される。2次スラグの塩基度の下限は、低ければ低いほど好ましいが、第3工程(S3)での反応性を確保するために、2次スラグの塩基度の下限を1.0以上とする。 The upper limit of the basicity of the secondary slag in the second step (S2) is adjusted to be less than 1.65, preferably less than 1.5, and more preferably less than 1.4. The lower the lower limit of the basicity of the secondary slag, the more preferable, but in order to secure the reactivity in the third step (S3), the lower limit of the basicity of the secondary slag is set to 1.0 or more.
 2次スラグの塩基度を低く調整する理由は以下のとおりである。
 クロム鉱石の酸化クロムとシリコンとの還元反応は以下のように進む。
 Cr+3/2Si→2Cr+3/2SiO…(1)
 ここで、遊離したSiOは、以下の(2)(3)式のように生石灰と反応し、2次スラグが生成される。
 CaO+SiO→CaO・SiO…(2)
 2CaO+SiO→2CaO・SiO…(3)
 (2)(3)式のように2次スラグが生成されると、(1)式の遊離のSiOが少なくなり、(1)式の還元反応は左から右に進む。
The reason for adjusting the basicity of the secondary slag to a low level is as follows.
The reduction reaction of chromium oxide of chromium ore with silicon proceeds as follows.
Cr 2 O 3 +3 / 2Si → 2Cr + 3/2SiO 2 … (1)
Here, the liberated SiO 2 reacts with quicklime as shown in the following equations (2) and (3) to generate secondary slag.
CaO + SiO 2 → CaO ・ SiO 2 … (2)
2CaO + SiO 2 → 2CaO ・ SiO 2 … (3)
When the secondary slag is generated as in the formulas (2) and (3), the amount of free SiO 2 in the formula (1) decreases, and the reduction reaction in the formula (1) proceeds from left to right.
 従来のクロム鉱石の製造方法では、クロム歩留りを向上させるために、石灰量を増やし、2次スラグの塩基度を1.7~2.0程度まで上げている。これは、塩基度が高いほど、(2)(3)式のように2次スラグが生成され、(1)式の還元反応が進むからである。また、製品の低炭素フェロクロムには、シリコン含有量が例えば1質量%未満の規格がある。このため、低炭素フェロクロムにシリコンが移行しないように1次スラグをシリコンで弱還元する必要があるからである。 In the conventional method for producing chromium ore, in order to improve the chromium yield, the amount of lime is increased and the basicity of the secondary slag is raised to about 1.7 to 2.0. This is because the higher the basicity, the more secondary slag is generated as in the formulas (2) and (3), and the reduction reaction in the formula (1) proceeds. In addition, there is a standard for low carbon ferrochrome of products having a silicon content of less than 1% by mass, for example. For this reason, it is necessary to weakly reduce the primary slag with silicon so that silicon does not migrate to low-carbon ferrochrome.
 しかし、スラグを高塩基度にすると、冷却後にスラグが粉化現象を起こすと共に、スラグから有害な6価クロムが溶出するという環境上の問題が発生する。このため、本実施形態では、2次スラグの塩基度を低めに調整しておき、3次スラグの塩基度を1.3未満、望ましくは1.2未満、さらに望ましくは1.1未満に低く調整する。低塩基度にすると、以下の(4)式のようにCaOと結合する6価クロム化合物(CaO・CrO)からCaOを奪い、6価クロム化合物(CaO・CrO)を3価クロム化合物(Cr)に変えると考えられる。
 2(CaO・CrO)+2SiO→2(CaO・SiO)+Cr+3/2O…(4)
However, when the slag has a high basicity, the slag causes a pulverization phenomenon after cooling, and an environmental problem occurs in which harmful hexavalent chromium is eluted from the slag. Therefore, in the present embodiment, the basicity of the secondary slag is adjusted to be low, and the basicity of the tertiary slag is lowered to less than 1.3, preferably less than 1.2, and more preferably less than 1.1. adjust. When the basicity is lowered, CaO is deprived from the hexavalent chromium compound (CaO · CrO 3 ) that binds to CaO as shown in the following formula (4), and the hexavalent chromium compound (CaO · CrO 3 ) is replaced with the trivalent chromium compound (CaO · CrO 3 ). It is considered to be changed to Cr 2 O 3 ).
2 (CaO ・ CrO 3 ) + 2SiO 2 → 2 (CaO ・ SiO 2 ) + Cr 2 O 3 + 3 / 2O 2 … (4)
 3次スラグの塩基度の下限は、低ければ低いほど好ましいが、3次スラグのクロム含有率を低減するために、0.7以上、望ましくは0.8以上、さらに望ましくは0.9以上とする。 The lower the lower limit of the basicity of the tertiary slag, the more preferable, but in order to reduce the chromium content of the tertiary slag, it is 0.7 or more, preferably 0.8 or more, and more preferably 0.9 or more. To do.
 表1は、2次スラグの塩基度(CaO/SiO)と3次スラグの塩基度(CaO/SiO)との関係を示す。第3工程(S3)において塩基度調整用の副原料を添加しない場合、2次スラグの塩基度と3次スラグの塩基度とには正の相関関係がある。表1に示すように、2次スラグの塩基度が1.65未満であれば、3次スラグの塩基度を1.3未満に低減することができる。一方、2次スラグの塩基度が1.65より大きければ、3次スラグの塩基度が1.3を超えてしまう。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the relationship between the basicity of the secondary slag (CaO / SiO 2) and the tertiary slag basicity (CaO / SiO 2). When no auxiliary material for adjusting the basicity is added in the third step (S3), there is a positive correlation between the basicity of the secondary slag and the basicity of the tertiary slag. As shown in Table 1, if the basicity of the secondary slag is less than 1.65, the basicity of the tertiary slag can be reduced to less than 1.3. On the other hand, if the basicity of the secondary slag is larger than 1.65, the basicity of the tertiary slag exceeds 1.3.
Figure JPOXMLDOC01-appb-T000001
 本実施形態では、攪拌能力が高いガス底吹き装置を有する反応容器2を使用し、熱効率、還元反応の反応性を向上させている。このため、塩基度を1.65未満まで下げても、クロム歩留りが低下するのを防止できる。生石灰を減らし、塩基度を低下させると、SiOの活量係数が増加し、(1)式のクロムの還元反応が起こりにくくなり、2次スラグの(Cr)質量%が高くなる。しかし、図3に示すように、ガス底吹き装置のガスバブリングによって還元反応が進行するので、2次スラグの(Cr)質量%を下げられる。2次スラグの(Cr)質量%を下げられることにより、有利な操業を行なえる。 In the present embodiment, the reaction vessel 2 having a gas bottom blowing device having a high stirring ability is used to improve the thermal efficiency and the reactivity of the reduction reaction. Therefore, even if the basicity is lowered to less than 1.65, it is possible to prevent the chromium yield from being lowered. When quicklime is reduced and the basicity is lowered, the activity coefficient of SiO 2 is increased, the reduction reaction of chromium in the formula (1) is less likely to occur, and the (Cr) mass% of the secondary slag is increased. However, as shown in FIG. 3, since the reduction reaction proceeds by the gas bubbling of the gas bottom blowing device, the (Cr) mass% of the secondary slag can be reduced. By reducing the (Cr) mass% of the secondary slag, advantageous operation can be performed.
 図4は、ガス底吹き装置2aを有する反応容器2の縦断面図である。図4に示すように、反応容器2の鉄皮6の底6aには、耐火物8,9が施される。反応容器2の底部の中央部には、ガス底吹き装置2aのプラグ19が配置される。プラグ19のパイプ部17に不活性ガスを導入すると、プラグ19から反応容器2内に不活性ガスが吹き込まれ、反応容器2内の溶湯が攪拌、すなわちガスバブリングされる。 FIG. 4 is a vertical cross-sectional view of the reaction vessel 2 having the gas bottom blowing device 2a. As shown in FIG. 4, refractories 8 and 9 are applied to the bottom 6a of the iron skin 6 of the reaction vessel 2. A plug 19 of the gas bottom blowing device 2a is arranged at the center of the bottom of the reaction vessel 2. When an inert gas is introduced into the pipe portion 17 of the plug 19, the inert gas is blown into the reaction vessel 2 from the plug 19, and the molten metal in the reaction vessel 2 is agitated, that is, gas bubbling.
 第2工程(S2)の操業は、上記のように1次スラグから(1)式の反応を進行させる。操業の初期では、反応容器2内は1次スラグが主体である。反応の進行とともにフェロクロムの溶湯(メタル21)が生成し、フェロクロムの溶湯(メタル21)の上に2次スラグ22が存在する状態となる。最終的には、2次スラグ22:メタル21の体積比は、概ね4:1となる。粘性の高い2次スラグ22が多量に存在する状態で反応性を高めるためには、撹拌能力を高めることが必要であり、そのために、反応容器2の底部に不活性ガスを吹き込むガス底吹き装置2aを用いる。 In the operation of the second step (S2), the reaction of the formula (1) proceeds from the primary slag as described above. At the initial stage of operation, the reaction vessel 2 is mainly composed of primary slag. As the reaction progresses, a molten ferrochrome (metal 21) is formed, and the secondary slag 22 is present on the molten ferrochrome (metal 21). Finally, the volume ratio of the secondary slag 22: metal 21 is approximately 4: 1. In order to increase the reactivity in the presence of a large amount of highly viscous secondary slag 22, it is necessary to increase the stirring capacity, and for this purpose, the gas bottom blowing device that blows the inert gas into the bottom of the reaction vessel 2. 2a is used.
 一般に溶融メタルが主体の場合、撹拌能力を高めるためには、ガス底吹き装置2aのプラグ19を反応容器2の底部の中央部からオフセットさせた位置(偏心位置)に配置するのがよいことが知られている(例えば特開平1-177333号公報参照)。しかし、本実施形態のように、粘性の高い2次スラグ22が多量に存在する場合、ガス底吹き装置2aのプラグ19を反応容器2の底部の偏心位置に配置すると、プラグ19を配置した側とは反対側が弱攪拌状態になり、反対側で未溶解の追装クロム鉱石が残る。これに対し、本実施形態のように、ガス底吹き装置2aのプラグ19を反応容器2の底部の中央部に配置することで、反応容器2内に底部の中央部から上昇した後、放射状に周辺に向かう溶湯の流れが形成される。このため、反応容器2内を均一に攪拌でき、追装クロム鉱石を巻き込んで溶解することが可能になる。反応容器2の底部の中央部を中心にした円上に複数のプラグを配置してもよい。このようにしても、反応容器2内を均一に攪拌できる。 Generally, when molten metal is the main component, in order to increase the stirring capacity, it is preferable to arrange the plug 19 of the gas bottom blowing device 2a at a position offset from the center of the bottom of the reaction vessel 2 (eccentric position). It is known (see, for example, Japanese Patent Application Laid-Open No. 1-177333). However, when a large amount of highly viscous secondary slag 22 is present as in the present embodiment, when the plug 19 of the gas bottom blowing device 2a is arranged at the eccentric position of the bottom of the reaction vessel 2, the side on which the plug 19 is arranged is arranged. The opposite side becomes a weakly agitated state, and undissolved chamium ore remains on the opposite side. On the other hand, as in the present embodiment, by arranging the plug 19 of the gas bottom blowing device 2a in the central portion of the bottom of the reaction vessel 2, the plug 19 rises from the central portion of the bottom in the reaction vessel 2 and then radially. A flow of molten metal is formed toward the surrounding area. Therefore, the inside of the reaction vessel 2 can be uniformly agitated, and the chasing chromium ore can be involved and dissolved. A plurality of plugs may be arranged on a circle centered on the central portion of the bottom of the reaction vessel 2. Even in this way, the inside of the reaction vessel 2 can be uniformly stirred.
 なお、クロム歩留りが低下するものの、第2工程の反応容器2として、ランスにより不活性ガスを吹き込む上吹き式の反応容器を用いてもよいし、2基の取鍋を用い、2基の取鍋の間でリレードリングを行うようにしてもよい。 Although the chromium yield is reduced, as the reaction vessel 2 in the second step, a top-blown reaction vessel in which an inert gas is blown by a lance may be used, or two pans are used and two pans are used. Relaying may be performed between the pots.
 第2工程では、還元剤にシリコクロムを用いているが、シリコクロムの他に金属ケイ素等のシリコン系還元剤を用いてもよい。また、シリコン系還元剤の他にアルミ若しくはアルミ合金等のアルミニウム系還元剤、マグネシウム若しくはマグネシウム合金等のマグネシウム系還元剤、又はカルシウム若しくはカルシウム合金等のカルシウム系還元剤を用いてもよい。さらに、これらの還元剤の混合物を用いてもよい。 In the second step, siliconochrome is used as the reducing agent, but a silicon-based reducing agent such as metallic silicon may be used in addition to silicochrome. Further, in addition to the silicon-based reducing agent, an aluminum-based reducing agent such as aluminum or an aluminum alloy, a magnesium-based reducing agent such as magnesium or a magnesium alloy, or a calcium-based reducing agent such as calcium or a calcium alloy may be used. Further, a mixture of these reducing agents may be used.
 図1に示すように、還元反応によって生成した低炭素フェロクロムの溶湯は、鋳型に鋳込まれて製品となる。製品の低炭素フェロクロムは、Crを60質量%以上、Siを1.0質量%以下、Cを0.1質量%以下含む。一方、還元反応によって生成した2次スラグは、低炭素フェロクロムの溶湯から分離された後、電気炉3(図2参照)又は反応容器に装入される。 As shown in FIG. 1, the molten metal of low carbon ferrochrome produced by the reduction reaction is cast into a mold to become a product. The low carbon ferrochrome of the product contains 60% by mass or more of Cr, 1.0% by mass or less of Si, and 0.1% by mass or less of C. On the other hand, the secondary slag produced by the reduction reaction is separated from the molten metal of low carbon ferrochrome and then charged into the electric furnace 3 (see FIG. 2) or the reaction vessel.
 次に、図1に示すように、2次スラグが装入された電気炉3又は反応容器に還元剤としてのフェロシリコンを装入し、2次スラグ中に残留している酸化クロムと反応させて、回収シリコクロムと3次スラグを生成させる。この還元工程が第3工程(S3)である。 Next, as shown in FIG. 1, ferrosilicon as a reducing agent is charged into the electric furnace 3 or the reaction vessel in which the secondary slag is charged, and is reacted with the chromium oxide remaining in the secondary slag. To generate recovered silicon chrome and tertiary slag. This reduction step is the third step (S3).
 ここでは、還元剤としてのフェロシリコンを多量、すなわち酸化クロムの還元当量の1倍以上、望ましくは2倍以上装入し、強還元にして、3次スラグの酸化クロム含有率を1.4質量%以下、望ましくは1.0質量%以下まで低減させる。3次スラグの6価クロムを低減させるためであり、クロム歩留りを向上させるためである。回収シリコクロムのSi含有率は、20質量%以上70質量%以下である。回収シリコクロムのSi含有率が20質量%未満では、3次スラグの酸化クロム含有率が高くなる。回収シリコクロムのSi含有率が70質量%を超えても、3次スラグの酸化クロムの低減効果は小さい。 Here, a large amount of ferrosilicon as a reducing agent, that is, 1 time or more, preferably 2 times or more the reduction equivalent of chromium oxide, is charged to make a strong reduction, and the chromium oxide content of the tertiary slag is increased by 1.4 mass. % Or less, preferably 1.0% by mass or less. This is to reduce the hexavalent chromium of the tertiary slag and to improve the chromium yield. The Si content of the recovered silicochrome is 20% by mass or more and 70% by mass or less. When the Si content of the recovered silicochrome is less than 20% by mass, the chromium oxide content of the tertiary slag becomes high. Even if the Si content of the recovered silicochrome exceeds 70% by mass, the effect of reducing the chromium oxide of the tertiary slag is small.
 図5は、3次スラグのクロム含有率((Cr)質量%)と回収シリコクロムのSi含有率([Si]質量%)との関係を示すグラフである。図5に示すように、回収シリコクロムのシリコン含有率を30質量%以上にすれば(すなわち2次スラグを強還元すれば)、3次スラグのクロム含有率を1.0質量%以下にすることができる。回収シリコクロムのシリコン含有率が60質量%を超えても、3次スラグのクロム含有率の低減効果は小さい。 FIG. 5 is a graph showing the relationship between the chromium content of the tertiary slag ((Cr) mass%) and the Si content of the recovered silicochrome ([Si] mass%). As shown in FIG. 5, if the silicon content of the recovered silicon chrome is 30% by mass or more (that is, if the secondary slag is strongly reduced), the chromium content of the tertiary slag is 1.0% by mass or less. Can be done. Even if the silicon content of the recovered silicon chrome exceeds 60% by mass, the effect of reducing the chromium content of the tertiary slag is small.
 第3工程は、回収シリコクロムと3次スラグの溶湯の温度を1250℃以上に確保しながら行われる。溶湯の温度が1250℃を下回る場合は、第3工程は電気炉3又は加熱手段を備える反応容器で行われる。 The third step is performed while ensuring the temperature of the molten metal of the recovered silicochrome and the tertiary slag to be 1250 ° C. or higher. If the temperature of the molten metal is below 1250 ° C., the third step is carried out in an electric furnace 3 or a reaction vessel equipped with heating means.
 3次スラグの塩基度は、1.3未満と低い。塩基度を低くするのは、上記のように3次スラグに有害な6価クロムが生成するのを防止するためである。塩基度を低く調整するために、必要に応じて電気炉3又は反応容器には、副原料としての硅石(SiO)が添加される場合もある。3次スラグは、無害化スラグであり、路盤材又は肥料に用いられ、又は工場に埋め立てられる。3次スラグの6価クロム溶出量(濃度)は、0.05mg/l以下である。 The basicity of the tertiary slag is as low as less than 1.3. The reason for lowering the basicity is to prevent the formation of hexavalent chromium, which is harmful to the tertiary slag, as described above. Silica stone (SiO 2 ) as an auxiliary raw material may be added to the electric furnace 3 or the reaction vessel as necessary in order to adjust the basicity to a low level. Tertiary slag is detoxified slag, used for roadbed materials or fertilizers, or landfilled in factories. The amount (concentration) of hexavalent chromium eluted from the tertiary slag is 0.05 mg / l or less.
 回収シリコクロムは、シリコクロムと共に反応容器2に装入される。シリコクロムの一部が回収シリコクロムによって代替されるので、シリコクロムが低減される。回収シリコクロムを第3工程(S3)の電気炉3又は反応容器に装入し、フェロシリコンの一部代替として利用してもよい。 The recovered siliconochrome is charged into the reaction vessel 2 together with the silicochrome. Since part of the silicochrome is replaced by the recovered silicochrome, the silicochrome is reduced. The recovered silicon chrome may be charged into the electric furnace 3 or the reaction vessel of the third step (S3) and used as a partial substitute for ferrosilicon.
 第3工程では、電気炉3を使用しても反応容器を使用してもよい。第3工程(S3)で電気炉3を使用すれば、還元反応の反応性を向上させることができるので、3次スラグの塩基度を1.3未満まで下げても、クロム歩留りが低下するのを防止できる。電気炉3にガス底吹き装置を設けてもよい。反応容器は、ガス底吹き装置を有する反応容器でもよいし、ランスから不活性ガスを吹き込む上吹き式の反応容器でもよい。電気炉3又は反応容器に設けられるガス底吹き装置は、前述した第2工程の反応容器2のガス底吹き装置2aと同様に、電気炉3又は反応容器の底部の中央部に配置されるのが望ましい。第2工程におけるスラグとメタルの体積比は約4:1であるのに対し、第3工程におけるスラグとメタルの体積比は約10:1である。第3工程の溶湯の攪拌力を高めるために、第3工程の溶湯1t当たりの攪拌ガス量(l/min)を第2工程の溶湯1t当たりの攪拌ガス量(l/min)よりも大きくするのが望ましい。 In the third step, the electric furnace 3 or the reaction vessel may be used. If the electric furnace 3 is used in the third step (S3), the reactivity of the reduction reaction can be improved, so that even if the basicity of the tertiary slag is lowered to less than 1.3, the chromium yield is lowered. Can be prevented. The electric furnace 3 may be provided with a gas bottom blowing device. The reaction vessel may be a reaction vessel having a gas bottom blowing device, or a top-blowing type reaction vessel in which an inert gas is blown from a lance. The gas bottom blowing device provided in the electric furnace 3 or the reaction vessel is arranged in the central portion of the bottom of the electric furnace 3 or the reaction vessel, similarly to the gas bottom blowing device 2a of the reaction vessel 2 in the second step described above. Is desirable. The volume ratio of slag to metal in the second step is about 4: 1, while the volume ratio of slag to metal in the third step is about 10: 1. In order to increase the stirring power of the molten metal in the third step, the amount of stirring gas (l / min) per ton of the molten metal in the third step is made larger than the amount of stirring gas (l / min) per ton of the molten metal in the second step. Is desirable.
 2次スラグには、例えば工場に埋め立てられ又は工場に仮置きされて固化した固化スラグを添加してもよい。固化スラグは、以前の低炭素フェロクロムの製造方法の操業で製造された2次スラグ(従来の2基の取鍋を用いたリレードリングによって製造された2次スラグ及び/又は本実施形態の反応容器2を用いたガスバブリングによって製造された2次スラグ)が固化したスラグを含み、酸化クロムを含む。固化スラグの酸化クロム含有率は、1.4質量%以上でもよい。2次スラグに固化スラグを添加する場合、第3工程を電気炉3又は加熱手段を備える反応容器で行い、2次スラグの溶湯を保温すると共に、固化スラグを再溶解させる。固化スラグを1次スラグを生成する電気炉1に添加してもよい。 For example, solidified slag that has been landfilled in a factory or temporarily placed in a factory and solidified may be added to the secondary slag. The solidified slag is a secondary slag produced by the operation of the previous method for producing low carbon ferrochrome (secondary slag produced by relaying using two conventional ladle and / or the reaction vessel of the present embodiment). Secondary slag produced by gas bubbling with 2) contains solidified slag and contains chromium oxide. The chromium oxide content of the solidified slag may be 1.4% by mass or more. When the solidified slag is added to the secondary slag, the third step is performed in an electric furnace 3 or a reaction vessel equipped with a heating means to keep the molten metal of the secondary slag warm and redissolve the solidified slag. The solidified slag may be added to the electric furnace 1 that produces the primary slag.
 なお、上記実施形態では、第3工程の還元剤にフェロシリコンを用いているが、フェロシリコンの他に金属ケイ素等のシリコン系還元剤を用いてもよい。また、シリコン系還元剤の他にアルミ若しくはアルミ合金等のアルミニウム系還元剤、マグネシウム若しくはマグネシウム合金等のマグネシウム系還元剤、又はカルシウム若しくはカルシウム合金等のカルシウム系還元剤を用いてもよい。さらに、これらの還元剤の混合物を用いてもよい。 In the above embodiment, ferrosilicon is used as the reducing agent in the third step, but a silicon-based reducing agent such as metallic silicon may be used in addition to ferrosilicon. Further, in addition to the silicon-based reducing agent, an aluminum-based reducing agent such as aluminum or an aluminum alloy, a magnesium-based reducing agent such as magnesium or a magnesium alloy, or a calcium-based reducing agent such as calcium or a calcium alloy may be used. Further, a mixture of these reducing agents may be used.
 スラグの酸化クロム含有率の定量化方法、スラグの塩基度の定量化方法を説明する。スラグの酸化クロム含有率は、スラグのCr含有率を酸化物換算したものである。具体的には、酸化クロムを全量Crとして、酸化クロム含有率=Cr含有率×152/104とする。本実施形態のように3次スラグの酸化クロム含有率を1.4質量%以下にすることは、3次スラグのクロム含有率を1.4×104/152=0.96≒1質量%以下にすることを意味する。スラグのクロム含有率は((Cr)質量%)で表される。スラグの酸化クロム含有率は(Cr質量%)で表される。スラグのCrの定量化方法には、ICP(Inductively Coupled Plasma)発光分光分析方法を使用する。この分析方法において、試料の分解には「JIS G1313-1 2012 アルカリ融解による分解」を援用する。 A method for quantifying the chromium oxide content of slag and a method for quantifying the basicity of slag will be described. The chromium oxide content of slag is obtained by converting the Cr content of slag into an oxide. Specifically, the total amount of chromium oxide is Cr 2 O 3 , and the chromium oxide content = Cr content × 152/104. To reduce the chromium oxide content of the tertiary slag to 1.4% by mass or less as in the present embodiment, the chromium content of the tertiary slag is 1.4 × 104/152 = 0.96 ≈ 1% by mass or less. Means to. The chromium content of the slag is represented by ((Cr) mass%). The chromium oxide content of slag is represented by (Cr 2 O 3 % by mass). An ICP (Inductively Coupled Plasma) emission spectroscopic analysis method is used as a method for quantifying Cr of slag. In this analysis method, "JIS G1313-1 2012 decomposition by alkaline melting" is used for the decomposition of the sample.
 スラグの塩基度(CaO/SiO)は、スラグのCaO含有率/スラグのSiO含有率で表される。スラグのCaO含有率は、スラグのCa含有率を酸化物換算したものであり、CaO含有率=Ca含有率×56/40である。スラグのSiO含有率は、スラグのSi含有率を酸化物換算したものであり、SiO含有率=Si含有率×60/28である。スラグのCaとSiの定量化方法には、ICP(Inductively Coupled Plasma)発光分光分析方法を使用する。この分析方法において、試料の分解には「JIS G1313-1 2012 アルカリ融解による分解」を援用する。 The basicity of slag (CaO / SiO 2 ) is expressed by the CaO content of slag / SiO 2 content of slag. The CaO content of the slag is obtained by converting the Ca content of the slag into an oxide, and CaO content = Ca content × 56/40. The SiO 2 content of the slag is obtained by converting the Si content of the slag into an oxide, and SiO 2 content = Si content × 60/28. An ICP (Inductively Coupled Plasma) emission spectroscopic analysis method is used as a method for quantifying Ca and Si of slag. In this analysis method, "JIS G1313-1 2012 decomposition by alkaline melting" is used for the decomposition of the sample.
 図6は、3次スラグのクロム含有率((Cr)質量%)、3次スラグの塩基度(CaO/SiO)、3次スラグの6価クロムの濃度(mg/l)の関係を示すグラフである。 FIG. 6 shows the relationship between the chromium content of the tertiary slag ((Cr) mass%), the basicity of the tertiary slag (CaO / SiO 2 ), and the concentration of hexavalent chromium of the tertiary slag (mg / l). It is a graph.
 図6に示すように、3次スラグのクロム含有率((Cr)質量%)を1質量%以下、すなわち酸化クロム含有率(Cr質量%)を1.4質量%以下にし、塩基度(CaO/SiO)を0.9~1.3に調整することで、3次スラグの6価クロムの濃度を0.04(mg/l)以下に低減することができる。この値は、環境庁告示第46号で定める環境基準の0.05(mg/l)以下を満たす。 As shown in FIG. 6, the chromium content ((Cr) mass%) of the tertiary slag is 1 mass% or less, that is, the chromium oxide content (Cr 2 O 3 mass%) is 1.4 mass% or less, and the base is used. By adjusting the degree (CaO / SiO 2 ) to 0.9 to 1.3, the concentration of hexavalent chromium in the tertiary slag can be reduced to 0.04 (mg / l) or less. This value satisfies the environmental standard of 0.05 (mg / l) or less specified in Notification No. 46 of the Environment Agency.
 これに対し、塩基度(CaO/SiO)が1.4~1.6の場合、6価クロムの濃度を0.04(mg/l)以下に低減するためには、スラグのクロム含有率((Cr)質量%)を0.3未満に維持させなければならず、安定的な操業ができない。また、塩基度(CaO/SiO)が1.7以上の場合、3次スラグが冷却後に崩壊する。 On the other hand, when the basicity (CaO / SiO 2 ) is 1.4 to 1.6, the chromium content of the slag is required to reduce the concentration of hexavalent chromium to 0.04 (mg / l) or less. ((Cr) mass%) must be maintained below 0.3, and stable operation cannot be performed. Further, when the basicity (CaO / SiO 2 ) is 1.7 or more, the tertiary slag collapses after cooling.
 6価クロムの濃度(mg/l)の分析、測定には、平成3年8月環境庁告示第46号の6価クロムの溶出試験を用いる。環境庁告示第46号には、人の健康を保護し、及び生活環境を保全するうえで維持することが望ましい基準(「環境基準」)として、6価クロムの濃度が0.05(mg/l)以下であることが定められている。表2には、環境庁告示第46号で定める溶出試験の試験方法を示す。
Figure JPOXMLDOC01-appb-T000002
For the analysis and measurement of the concentration of hexavalent chromium (mg / l), the dissolution test of hexavalent chromium of Notification No. 46 of the Environment Agency in August 1991 is used. The Environmental Agency Notification No. 46 states that the concentration of hexavalent chromium is 0.05 (mg / mg / mg) as a standard that should be maintained in order to protect human health and protect the living environment (“environmental standard”). l) It is stipulated that the following is true. Table 2 shows the test method of the dissolution test specified in Notification No. 46 of the Environment Agency.
Figure JPOXMLDOC01-appb-T000002
 以上に本実施形態の低炭素フェロクロムの製造方法を説明した。本実施形態の低炭素フェロクロムの製造方法によれば、以下の効果を奏する。 The method for producing low-carbon ferrochrome of the present embodiment has been described above. According to the method for producing low-carbon ferrochrome of the present embodiment, the following effects are obtained.
 2次スラグの塩基度を1.65未満とすることで、3次スラグの塩基度を1.3未満にすることができ、3次スラグを無害化することができる。 By setting the basicity of the secondary slag to less than 1.65, the basicity of the tertiary slag can be reduced to less than 1.3, and the tertiary slag can be detoxified.
 第2工程(S2)において、熱効率、攪拌能力が高いガス底吹き装置2aを有する反応容器2を使用するので、還元反応の反応性を向上させることができる。このため、クロム歩留りを低下させることなく、塩基度を1.65未満まで下げることができ、石灰量を減少させた操業を行える。また、ガス底吹き装置2aを有する反応容器2を使用するので、追装クロム鉱石を増やすことができ、電力原単位を低減させることができる。電力原単位は、製品t当たりに使用された電力量であり、具体的には(1次スラグ溶解電力量/製品生産量)である。 In the second step (S2), since the reaction vessel 2 having the gas bottom blowing device 2a having high thermal efficiency and stirring ability is used, the reactivity of the reduction reaction can be improved. Therefore, the basicity can be lowered to less than 1.65 without lowering the chromium yield, and the operation with a reduced amount of lime can be performed. Further, since the reaction vessel 2 having the gas bottom blowing device 2a is used, the amount of additional chrome ore can be increased and the electric power intensity can be reduced. The electric power intensity is the amount of electric power used per product t, and specifically (primary slag dissolved electric energy / product production amount).
 第3工程(S3)において、電気炉3又は反応容器に副原料としての硅石を装入するので、3次スラグの塩基度を1.3未満に容易に調整することができる。 In the third step (S3), since silica stone as an auxiliary raw material is charged into the electric furnace 3 or the reaction vessel, the basicity of the tertiary slag can be easily adjusted to less than 1.3.
 第3工程(S3)において、2次スラグに固化スラグを添加するので、例えば工場に埋め立てられ又は仮置きされた固化スラグを無害化させることができる。 Since the solidified slag is added to the secondary slag in the third step (S3), for example, the solidified slag landfilled or temporarily placed in the factory can be detoxified.
 第3工程(S3)において、固化スラグの溶解及び溶解した固化スラグの還元を電気炉で行うので、還元反応の反応性を向上させることができる。 In the third step (S3), the solidified slag is dissolved and the dissolved solidified slag is reduced in an electric furnace, so that the reactivity of the reduction reaction can be improved.
 第3工程(S3)において、2次スラグからクロム含有金属(回収シリコクロム)を回収するので、クロム歩留りを向上させることができる。 In the third step (S3), the chromium-containing metal (recovered silicochrome) is recovered from the secondary slag, so that the chromium yield can be improved.
 不活性ガスとしてアルゴンを使用することが好ましい。アルゴンを使用することで、攪拌力を大きくすることができ、製品の低炭素フェロクロムに窒素が混入するのを防止できる。 It is preferable to use argon as the inert gas. By using argon, the stirring power can be increased and nitrogen can be prevented from being mixed into the low carbon ferrochrome of the product.
 低炭素フェロクロム(Crを60質量%以上、Siを1.0質量%以下、Cを0.1質量%以下)を製造するに際し、クロム歩留りを95%以上に向上させることができる。 When producing low carbon ferrochrome (Cr is 60% by mass or more, Si is 1.0% by mass or less, C is 0.1% by mass or less), the chromium yield can be improved to 95% or more.
 第1工程(S1)の電気炉が固定型電気炉1であるので、1次スラグの溶解性を向上させることができる。また、出湯時に止電することなく連続通電が可能なので、稼働率を向上させることができる。 Since the electric furnace in the first step (S1) is the fixed electric furnace 1, the solubility of the primary slag can be improved. In addition, since continuous energization is possible without stopping the power when hot water is discharged, the operating rate can be improved.
 第1工程(S1)の1次スラグの出湯温度が1400℃以上2000℃以下の高温であるので、第2工程(S2)の還元反応の反応性を向上させることができる。 Since the hot water temperature of the primary slag in the first step (S1) is as high as 1400 ° C. or higher and 2000 ° C. or lower, the reactivity of the reduction reaction in the second step (S2) can be improved.
 3次スラグの酸化クロム含有率が1.0質量%以下であり、3次スラグの塩基度が0.9以上1.1未満であるので、3次スラグに有害な6価クロムが生成するのをより防止できる。
 (第2の実施形態)
Since the chromium oxide content of the tertiary slag is 1.0% by mass or less and the basicity of the tertiary slag is 0.9 or more and less than 1.1, hexavalent chromium harmful to the tertiary slag is generated. Can be prevented more.
(Second Embodiment)
 図7は、本発明の第2の実施形態の低炭素フェロクロムの製造方法の第3工程の工程図である。第1工程と第2工程は、第1の実施形態の低炭素フェロクロムの製造方法と同一であるので、その説明を省略する。 FIG. 7 is a process chart of the third step of the method for producing low carbon ferrochrome according to the second embodiment of the present invention. Since the first step and the second step are the same as the method for producing low carbon ferrochrome of the first embodiment, the description thereof will be omitted.
 電気炉には、固化スラグ、還元剤、副原料が装入される。固化スラグは、上述のとおりである。還元剤は、シリコン系還元剤、アルミニウム系還元剤、マグネシウム系還元剤、カルシウム系還元剤、又はこれらの還元剤の混合物である。還元剤は、固化スラグのクロム酸化物、鉄酸化物の還元当量の1倍以上、望ましくは2倍以上添加される。副原料は、硅石、生石灰等であり、3次スラグの塩基度を調整するために使用される。 The electric furnace is charged with solidified slag, reducing agent, and auxiliary raw materials. The solidified slag is as described above. The reducing agent is a silicon-based reducing agent, an aluminum-based reducing agent, a magnesium-based reducing agent, a calcium-based reducing agent, or a mixture of these reducing agents. The reducing agent is added at least once, preferably at least twice the reduction equivalent of the chromium oxide and iron oxide of the solidified slag. Auxiliary raw materials are silica stone, quicklime, etc., and are used to adjust the basicity of tertiary slag.
 電気炉では、固化スラグ、還元剤、副原料を溶解させ、溶解した固化スラグを還元剤によって還元し、クロム含有金属と3次スラグを生成させる(S31)。3次スラグの酸化クロム含有率は1.4質量%以下、塩基度は1.3未満に調整される。 In the electric furnace, the solidified slag, the reducing agent, and the auxiliary raw material are melted, and the melted solidified slag is reduced by the reducing agent to generate a chromium-containing metal and a tertiary slag (S31). The chromium oxide content of the tertiary slag is adjusted to 1.4% by mass or less, and the basicity is adjusted to less than 1.3.
 3次スラグの酸化クロム含有率を1.4質量%以下、3次スラグの塩基度を1.3未満に調整することで、第1の実施形態のS3と同様に、3次スラグの6価クロムの濃度を0.04(mg/l)以下に低減することができる。このため、工場内に埋め立てられ又は仮置きされている有害な固化スラグを無害な3次スラグに転換することができる。また、生成したクロム含有金属を還元剤として再利用することができる。 By adjusting the chromium oxide content of the tertiary slag to 1.4% by mass or less and the basicity of the tertiary slag to less than 1.3, the hexavalent value of the tertiary slag is similar to that of S3 of the first embodiment. The chromium concentration can be reduced to 0.04 (mg / l) or less. Therefore, harmful solidified slag that has been landfilled or temporarily placed in the factory can be converted into harmless tertiary slag. In addition, the produced chromium-containing metal can be reused as a reducing agent.
 なお、図7の一点鎖線で示すように、第2工程において生成された2次スラグを電気炉に装入してもよい。また、電気炉にガス底吹き装置を設けてもよい。 As shown by the alternate long and short dash line in FIG. 7, the secondary slag produced in the second step may be charged into the electric furnace. Further, the electric furnace may be provided with a gas bottom blowing device.
 第2の実施形態の低炭素フェロクロムの製造方法によれば、第1の実施形態の低炭素フェロクロムの製造方法と同様な効果を奏する。
 (第3の実施形態)
According to the method for producing low-carbon ferrochrome of the second embodiment, the same effect as that of the method for producing low-carbon ferrochrome of the first embodiment is obtained.
(Third Embodiment)
 図8は、本発明の第3の実施形態の低炭素フェロクロムの製造方法の第3工程の工程図である。第1工程と第2工程は、第1の実施形態の低炭素フェロクロムの製造方法と同一であるので、その説明を省略する。 FIG. 8 is a process chart of the third step of the method for producing low carbon ferrochrome according to the third embodiment of the present invention. Since the first step and the second step are the same as the method for producing low carbon ferrochrome of the first embodiment, the description thereof will be omitted.
 第2の実施形態の低炭素フェロクロムの製造方法の第3工程では、固化スラグの溶解及び溶解したスラグの還元を電気炉で行っている(S31)。これに対し、第3の実施形態の低炭素フェロクロムの製造方法の第3工程では、固化スラグの溶解を電気炉で行い(S301)、溶解した固化スラグの還元を反応容器で行っている(S302)。 In the third step of the method for producing low-carbon ferrochrome of the second embodiment, the solidified slag is dissolved and the dissolved slag is reduced in an electric furnace (S31). On the other hand, in the third step of the method for producing low carbon ferrochrome of the third embodiment, the solidified slag is melted in an electric furnace (S301), and the melted solidified slag is reduced in a reaction vessel (S302). ).
 電気炉には、固化スラグと3次スラグの塩基度を調整するための硅石、生石灰等の副原料が装入される。電気炉は、固化スラグと副原料を溶解させる(S301)。溶解した固化スラグと副原料は、電気炉から反応容器に出湯される。反応容器には、リレードリングを行う2基の取鍋を用いてもよいし、ガス底吹き装置を有する反応容器を用いてもよいし、上吹き式の反応容器を用いてもよい。 The electric furnace is charged with auxiliary raw materials such as silica stone and quicklime for adjusting the basicity of solidified slag and tertiary slag. The electric furnace melts the solidified slag and the auxiliary raw material (S301). The melted solidified slag and auxiliary raw materials are discharged from the electric furnace to the reaction vessel. As the reaction vessel, two ladle for relaying may be used, a reaction vessel having a gas bottom blowing device may be used, or a top-blowing type reaction vessel may be used.
 反応容器では、溶解した固化スラグを還元剤によって還元し、クロム含有金属と3次スラグを生成させる(S302)。3次スラグの酸化クロム含有率は1.4質量%以下、塩基度は1.3未満に調整される。 In the reaction vessel, the dissolved solidified slag is reduced with a reducing agent to produce a chromium-containing metal and a tertiary slag (S302). The chromium oxide content of the tertiary slag is adjusted to 1.4% by mass or less, and the basicity is adjusted to less than 1.3.
 なお、図8の一点鎖線で示すように、第2工程において生成された2次スラグを電気炉に装入してもよい。また、固化スラグを含むスラグの溶解と還元を電気炉で行った後、溶解したスラグの仕上げの還元を反応容器としての取鍋で行ってもよい。さらに、電気炉にガス底吹き装置を設けてもよい。 Note that, as shown by the alternate long and short dash line in FIG. 8, the secondary slag produced in the second step may be charged into the electric furnace. Further, after melting and reducing the slag containing the solidified slag in an electric furnace, the finishing reduction of the melted slag may be carried out in a ladle as a reaction vessel. Further, the electric furnace may be provided with a gas bottom blowing device.
 第3の実施形態の低炭素フェロクロムの製造方法によれば、第1の実施形態の低炭素フェロクロムの製造方法と同様な効果を奏する。
 (実施例1)
According to the method for producing low-carbon ferrochrome of the third embodiment, the same effect as that of the method for producing low-carbon ferrochrome of the first embodiment is obtained.
(Example 1)
 図1の製造工程図に従って低炭素フェロクロムを製造した。表3には、本実施例で使用した原料であるクロム鉱石の組成を示す。 Low carbon ferrochrome was produced according to the production process diagram of FIG. Table 3 shows the composition of the chromium ore as the raw material used in this example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 クロム鉱石1750kg、生石灰830kgを固定型電気炉1に装入し、溶解させて1次スラグを溶製した。1次スラグを反応容器2に出湯し、その中にシリコクロム310kgと、回収シリコクロム260kgを装入した。次いで、反応容器2にアルゴンガスを底吹きして攪拌した。そして、生成した2次スラグを分離し、得られた低炭素フェロクロム1000kgの溶湯を鋳型に鋳込んで製品にした。表4には、製品である低炭素フェロクロムの組成を示す。表5には、2次スラグの組成を示す。2次スラグの塩基度は1.32であった。フェロクロムの各成分の定量化方法は、「JIS G1301-1~5 2012」に規格化されている。 1750 kg of chrome ore and 830 kg of quicklime were charged into the fixed electric furnace 1 and melted to melt the primary slag. The primary slag was discharged into the reaction vessel 2, and 310 kg of silicochrome and 260 kg of recovered silicochrome were charged therein. Next, argon gas was bottom-blown into the reaction vessel 2 and stirred. Then, the produced secondary slag was separated, and the obtained molten metal of 1000 kg of low-carbon ferrochrome was cast into a mold to obtain a product. Table 4 shows the composition of the product low carbon ferrochrome. Table 5 shows the composition of the secondary slag. The basicity of the secondary slag was 1.32. The method for quantifying each component of ferrochrome is standardized in "JIS G1301-1 to 5 2012".
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 一方、分離した2次スラグを反応容器に受け、フェロシリコン230kgを装入し、反応容器にアルゴンガスを底吹きして攪拌した。次いで、生成した3次スラグと回収シリコクロムを分離し、3次スラグ1930kgと回収シリコクロム260kgを得た。この回収シリコクロムはシリコクロムと共に1次スラグに装入した。表6には、3次スラグの組成を示す。表7には、回収シリコクロムの組成を示す。 On the other hand, the separated secondary slag was received in a reaction vessel, 230 kg of ferrosilicon was charged, and argon gas was bottom-blown into the reaction vessel to stir. Then, the produced tertiary slag and recovered silicochrome were separated to obtain 1930 kg of tertiary slag and 260 kg of recovered silicochrome. This recovered silicochrome was charged into the primary slag together with the silicochrome. Table 6 shows the composition of the tertiary slag. Table 7 shows the composition of the recovered silicochrome.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6に示すように、3次スラグの塩基度は37.0/36.5≒1.01であった。3次スラグは、冷却後に自然崩壊を起こさないものであり、6価クロムの溶出も確認されなかった。表8に示すように、クロムの歩留りは、97%以上という高い値が得られた。 As shown in Table 6, the basicity of the tertiary slag was 37.0 / 36.5 ≈ 1.01. The tertiary slag did not spontaneously decay after cooling, and no elution of hexavalent chromium was confirmed. As shown in Table 8, the yield of chromium was as high as 97% or more.
Figure JPOXMLDOC01-appb-T000008
 (実施例2)
Figure JPOXMLDOC01-appb-T000008
(Example 2)
 実施例1と同様に、図1の製造工程図に従って低炭素フェロクロムと2次スラグを生成した。表9には、実施例2の2次スラグの組成を示す。2次スラグの塩基度は1.63であった。 Similar to Example 1, low carbon ferrochrome and secondary slag were produced according to the manufacturing process diagram of FIG. Table 9 shows the composition of the secondary slag of Example 2. The basicity of the secondary slag was 1.63.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1と同様に、図1の製造工程図に従って2次スラグから回収シリコクロムと3次スラグを生成した。表10には、実施例2の3次スラグの組成を示す。3次スラグの塩基度は1.29であった。3次スラグは、冷却後に自然崩壊を起こさないものであり、6価クロムの溶出も確認されなかった。 Similar to Example 1, recovered silicochrome and tertiary slag were produced from the secondary slag according to the manufacturing process diagram of FIG. Table 10 shows the composition of the tertiary slag of Example 2. The basicity of the tertiary slag was 1.29. The tertiary slag did not spontaneously decay after cooling, and no elution of hexavalent chromium was confirmed.
Figure JPOXMLDOC01-appb-T000010
 (実施例3)
Figure JPOXMLDOC01-appb-T000010
(Example 3)
 実施例1と同様に、図1の製造工程図に従って2次スラグと3次スラグを生成した。表11には、本発明の範囲を満たす操業1~4の2次スラグと3次スラグの塩基度(CaO/SiO)、酸化クロム含有率(Cr質量%)、Cr歩留り(%)、6価クロム溶出量(濃度(mg/l))を示す。操業1~3では、6価クロムは検出されず、操業4では、6価クロムの検出限界値であった。操業4において、反応性が低下してクロム歩留りが95%まで低下したが、操業1~4において、クロム歩留りは95.0%以上であった。
Figure JPOXMLDOC01-appb-T000011
 (従来例)
In the same manner as in Example 1, secondary slag and tertiary slag were produced according to the manufacturing process diagram of FIG. Table 11 shows the basicity (CaO / SiO 2 ), chromium oxide content (Cr 2 O 3 % by mass), and Cr yield (%) of the secondary slags and tertiary slags of operations 1 to 4 satisfying the scope of the present invention. ), Hexavalent chromium elution amount (concentration (mg / l)) is shown. Hexavalent chromium was not detected in operations 1 to 3, and it was the detection limit of hexavalent chromium in operations 4. In Operation 4, the reactivity decreased and the chromium yield decreased to 95%, but in Operations 1 to 4, the chromium yield was 95.0% or more.
Figure JPOXMLDOC01-appb-T000011
(Conventional example)
 図9の製造工程図に従って低炭素フェロクロムを製造した。この低炭素フェロクロムの製造工程においては、1次スラグの還元操作をリレードリングによって行う点、2次スラグから回収シリコクロムを回収し、これを1次スラグに添加する操作を行っていない点が本実施例と相違する。表12には、従来例で使用した原料であるクロム鉱石の組成を示す。 Low carbon ferrochrome was produced according to the production process diagram of FIG. In the manufacturing process of this low-carbon ferrochrome, the reduction operation of the primary slag is performed by relaying, and the recovery silicochrome is recovered from the secondary slag and the operation of adding the recovered silicochrome to the primary slag is not performed. Different from the example. Table 12 shows the composition of the chromium ore which is the raw material used in the conventional example.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 クロム鉱石1740kg、生石灰1060kgを電気炉に装入し、溶解させて1次スラグを溶製した。1次スラグを取鍋に出湯し、その中に600kgのシリコクロムを装入した。次いで、リレードリングにより攪拌した。そして、生成した2次スラグ2200kgを分離し、得られた低炭素フェロクロム1000kgの溶湯を鋳型に鋳込んで製品にした。表13には、製品である低炭素フェロクロムの組成を示し、表14には、2次スラグの組成を示す。 1740 kg of chrome ore and 1060 kg of quicklime were charged into an electric furnace and melted to melt the primary slag. The primary slag was taken into a ladle and 600 kg of silicochrome was charged therein. Then, the mixture was stirred by relaying. Then, 2200 kg of the produced secondary slag was separated, and 1000 kg of the obtained molten metal of low carbon ferrochrome was cast into a mold to obtain a product. Table 13 shows the composition of the product low carbon ferrochrome, and Table 14 shows the composition of the secondary slag.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14に示すように、従来例では、2次スラグの酸化クロム含有率が6.4%と高く、塩基度も1.70という高い値であった。表15に示すように、クロムの歩留りは、85%という低い値であった。2次スラグ中に有害な6価クロムが発生した。 As shown in Table 14, in the conventional example, the chromium oxide content of the secondary slag was as high as 6.4%, and the basicity was also as high as 1.70. As shown in Table 15, the yield of chromium was as low as 85%. Harmful hexavalent chromium was generated during the secondary slag.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 本明細書は、2019年7月12日出願の特願2019-130324に基づく。この内容はすべてここに含めておく。 This specification is based on Japanese Patent Application No. 2019-130324 filed on July 12, 2019. All this content is included here.
 S1…第1工程
 S2…第2工程
 S3…第3工程
 1…電気炉(固定型電気炉)
 2…反応容器
 3…電気炉
S1 ... 1st process S2 ... 2nd process S3 ... 3rd process 1 ... Electric furnace (fixed electric furnace)
2 ... Reaction vessel 3 ... Electric furnace

Claims (15)

  1.  クロム鉱石と生石灰を電気炉で溶解する第1工程と、
     前記第1工程で溶解した溶解原料(以下、1次スラグという)と還元剤を反応容器に装入し、低炭素フェロクロムと塩基度(CaO/SiO)が1.65未満に調整された2次スラグを生成させる第2工程と、を備える低炭素フェロクロムの製造方法。
    The first step of melting chrome ore and quicklime in an electric furnace,
    The dissolved raw material (hereinafter referred to as primary slag) dissolved in the first step and the reducing agent were charged into the reaction vessel, and the low carbon ferrochrome and basicity (CaO / SiO 2 ) were adjusted to less than 1.65. A method for producing low carbon ferrochrome, comprising a second step of producing the next slag.
  2.  前記第2工程で得られた前記2次スラグを電気炉又は反応容器に移した後、還元剤を装入して、クロム含有金属と3次スラグを生成させる第3工程を備え、
     前記3次スラグは、酸化クロム含有率(Cr質量%)が1.4質量%以下、塩基度(CaO/SiO)が1.3未満に調整された無害化スラグであることを特徴とする請求項1に記載の低炭素フェロクロムの製造方法。
    After transferring the secondary slag obtained in the second step to an electric furnace or a reaction vessel, a third step of charging a reducing agent to generate a chromium-containing metal and a tertiary slag is provided.
    The tertiary slag is a detoxified slag in which the chromium oxide content (Cr 2 O 3 % by mass) is adjusted to 1.4% by mass or less and the basicity (CaO / SiO 2 ) is adjusted to less than 1.3. The method for producing low carbon ferrochrome according to claim 1.
  3.  前記第2工程において、ガス底吹き装置を有する前記反応容器に前記1次スラグと前記還元剤を装入し、前記反応容器の炉底から不活性ガスを吹き込むことにより攪拌することを特徴とする請求項1又は2に記載の低炭素フェロクロムの製造方法。 The second step is characterized in that the primary slag and the reducing agent are charged into the reaction vessel having a gas bottom blowing device, and an inert gas is blown from the furnace bottom of the reaction vessel to stir. The method for producing a low carbon ferrochrome according to claim 1 or 2.
  4.  前記第2工程で装入する前記還元剤は、シリコン系、アルミニウム系、マグネシウム系、若しくはカルシウム系の還元剤、又はこれらの混合物であり、
     前記第3工程で装入する前記還元剤は、シリコン系、アルミニウム系、マグネシウム系、若しくはカルシウム系の還元剤、又はこれらの混合物であることを特徴とする請求項2に記載の低炭素フェロクロムの製造方法。
    The reducing agent charged in the second step is a silicon-based, aluminum-based, magnesium-based, or calcium-based reducing agent, or a mixture thereof.
    The low-carbon ferrochrome according to claim 2, wherein the reducing agent charged in the third step is a silicon-based, aluminum-based, magnesium-based, or calcium-based reducing agent, or a mixture thereof. Production method.
  5.  前記第3工程において、前記2次スラグに前記3次スラグの塩基度(CaO/SiO)を調整するための副原料を添加することを特徴とする請求項2又は4に記載の低炭素フェロクロムの製造方法。 The low-carbon ferrochrome according to claim 2 or 4, wherein in the third step, an auxiliary material for adjusting the basicity (CaO / SiO 2 ) of the tertiary slag is added to the secondary slag. Manufacturing method.
  6.  前記第3工程において、前記2次スラグに固化スラグを添加することを特徴とする請求項2、4又は5に記載の低炭素フェロクロムの製造方法。 The method for producing a low-carbon ferrochrome according to claim 2, 4 or 5, wherein in the third step, solidified slag is added to the secondary slag.
  7.  前記第3工程において、前記固化スラグを含む前記2次スラグの溶解及び還元を前記電気炉で行うことを特徴とする請求項6に記載の低炭素フェロクロムの製造方法。 The method for producing low-carbon ferrochrome according to claim 6, wherein in the third step, the secondary slag containing the solidified slag is dissolved and reduced in the electric furnace.
  8.  前記第3工程において、前記固化スラグを含む前記2次スラグの溶解を前記電気炉で行い、溶解した前記2次スラグの還元を反応容器で行うことを特徴とする請求項6に記載の低炭素フェロクロムの製造方法。 The low carbon according to claim 6, wherein in the third step, the secondary slag containing the solidified slag is melted in the electric furnace, and the dissolved secondary slag is reduced in the reaction vessel. How to make ferrochrome.
  9.  前記第3工程で得られるクロム含有金属を前記第2工程及び/又は前記第3工程における前記還元剤の少なくとも一部として再利用することを特徴とする請求項2、4、5、6、7、又は8に記載の低炭素フェロクロムの製造方法。 Claims 2, 4, 5, 6, 7 characterized in that the chromium-containing metal obtained in the third step is reused as at least a part of the reducing agent in the second step and / or the third step. , Or the method for producing low carbon ferrochrome according to 8.
  10.  前記不活性ガスは、アルゴン又は窒素であることを特徴とする請求項3に記載の低炭素フェロクロムの製造方法。 The method for producing low-carbon ferrochrome according to claim 3, wherein the inert gas is argon or nitrogen.
  11.  前記第2工程で生成する前記低炭素フェロクロムは、Crを60質量%以上、Siを1.0質量%以下、Cを0.1質量%以下含み、
     Crの歩留まりが95%以上であることを特徴とする請求項2、4、5、6、7、8又は9に記載の低炭素フェロクロムの製造方法。
    The low-carbon ferrochrome produced in the second step contains 60% by mass or more of Cr, 1.0% by mass or less of Si, and 0.1% by mass or less of C.
    The method for producing a low-carbon ferrochrome according to claim 2, 4, 5, 6, 7, 8 or 9, wherein the yield of Cr is 95% or more.
  12.  前記3次スラグは、酸化クロム含有率(Cr質量%)が1.0質量%以下、塩基度(CaO/SiO)が1.2未満に調整された無害化スラグであることを特徴とする請求項2、4、5、6、7、8、9、又は11に記載の低炭素フェロクロムの製造方法。 The tertiary slag is a detoxified slag in which the chromium oxide content (Cr 2 O 3 % by mass) is adjusted to 1.0% by mass or less and the basicity (CaO / SiO 2 ) is adjusted to less than 1.2. The method for producing low carbon ferrochrome according to claim 2, 4, 5, 6, 7, 8, 9, or 11.
  13.  前記第1工程の電気炉は、固定型電気炉であることを特徴とする請求項1ないし12のいずれか一項に記載の低炭素フェロクロムの製造方法。 The method for producing low-carbon ferrochrome according to any one of claims 1 to 12, wherein the electric furnace in the first step is a fixed electric furnace.
  14.  前記第1工程の前記1次スラグの出湯温度が1400℃以上2000℃以下であることを特徴とする請求項1ないし13のいずれか一項に記載の低炭素フェロクロムの製造方法。 The method for producing low-carbon ferrochrome according to any one of claims 1 to 13, wherein the hot water temperature of the primary slag in the first step is 1400 ° C. or higher and 2000 ° C. or lower.
  15.  前記2次スラグの塩基度(CaO/SiO)が1.5未満に調整されることを特徴とする請求項1ないし14のいずれか一項に記載の低炭素フェロクロムの製造方法。 The method for producing a low-carbon ferrochrome according to any one of claims 1 to 14, wherein the basicity (CaO / SiO 2 ) of the secondary slag is adjusted to less than 1.5.
PCT/JP2020/026995 2019-07-12 2020-07-10 Method for producing low carbon ferrochromium WO2021010311A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021533031A JP7035280B2 (en) 2019-07-12 2020-07-10 Method for manufacturing low carbon ferrochrome
BR112021024006A BR112021024006A2 (en) 2019-07-12 2020-07-10 Method for producing low carbon ferrochrome
JP2022016154A JP2022048383A (en) 2019-07-12 2022-02-04 Method for manufacturing low carbon ferro chromium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019130324 2019-07-12
JP2019-130324 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010311A1 true WO2021010311A1 (en) 2021-01-21

Family

ID=74209811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026995 WO2021010311A1 (en) 2019-07-12 2020-07-10 Method for producing low carbon ferrochromium

Country Status (3)

Country Link
JP (2) JP7035280B2 (en)
BR (1) BR112021024006A2 (en)
WO (1) WO2021010311A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444884B (en) * 2021-05-17 2022-11-01 攀钢集团攀枝花钢铁研究院有限公司 Preparation method of micro-carbon ferrochrome

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210816A (en) * 1975-07-16 1977-01-27 Showa Denko Kk Process for recovering low carbon ferro- chromium slag
JPS5989751A (en) * 1982-11-15 1984-05-24 Nippon Kokan Kk <Nkk> Production of ferrochromium
JPS6237340A (en) * 1985-08-12 1987-02-18 Nippon Kokan Kk <Nkk> Manufacture of low-nitrogen and low-carbon ferrochrome
JPH01215950A (en) * 1988-01-05 1989-08-29 Middelburg Steel & Alloys Pty Ltd Desulfurization of ferrochromium
JPH0551690A (en) * 1991-08-26 1993-03-02 Nkk Corp Production of low-carbon ferrochromium
JP2002256323A (en) * 2001-02-27 2002-09-11 Nippon Steel Corp Method for reforming roughly decarburized slag in molten stainless steel
JP2002543276A (en) * 1999-04-22 2002-12-17 ホルシム リミティド How to process steelmaking slag
JP2004520478A (en) * 2000-04-19 2004-07-08 アドウェル ワールドワイド インコーポレイテッド Manufacture of ferroalloys
JP2011094210A (en) * 2009-10-30 2011-05-12 Jfe Material Co Ltd Decarbonizing method for silicochromium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210816A (en) * 1975-07-16 1977-01-27 Showa Denko Kk Process for recovering low carbon ferro- chromium slag
JPS5989751A (en) * 1982-11-15 1984-05-24 Nippon Kokan Kk <Nkk> Production of ferrochromium
JPS6237340A (en) * 1985-08-12 1987-02-18 Nippon Kokan Kk <Nkk> Manufacture of low-nitrogen and low-carbon ferrochrome
JPH01215950A (en) * 1988-01-05 1989-08-29 Middelburg Steel & Alloys Pty Ltd Desulfurization of ferrochromium
JPH0551690A (en) * 1991-08-26 1993-03-02 Nkk Corp Production of low-carbon ferrochromium
JP2002543276A (en) * 1999-04-22 2002-12-17 ホルシム リミティド How to process steelmaking slag
JP2004520478A (en) * 2000-04-19 2004-07-08 アドウェル ワールドワイド インコーポレイテッド Manufacture of ferroalloys
JP2002256323A (en) * 2001-02-27 2002-09-11 Nippon Steel Corp Method for reforming roughly decarburized slag in molten stainless steel
JP2011094210A (en) * 2009-10-30 2011-05-12 Jfe Material Co Ltd Decarbonizing method for silicochromium

Also Published As

Publication number Publication date
JPWO2021010311A1 (en) 2021-11-18
BR112021024006A2 (en) 2022-02-01
JP7035280B2 (en) 2022-03-14
JP2022048383A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
US5882375A (en) Process for the production of hydraulic binders and/or alloys, such as for examples, ferrochromium or ferrovanadium
CN101838718A (en) Medium frequency furnace internal dephosphorization and desulfurization smelting process
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
WO2020113911A1 (en) Slagging method during production of ultralow-phosphorus steel, and method for producing ultralow-phosphorus steel
AU778627B2 (en) Method for treating slags or slag mixtures on an iron bath
WO2021010311A1 (en) Method for producing low carbon ferrochromium
WO2022149577A1 (en) Method for producing low-carbon ferrochrome
WO2021010313A1 (en) Method for producing low carbon ferrochromium
JP2002053351A (en) Pollution-free stainless steel slag and method for manufacturing the same
JPH0480093B2 (en)
WO2021010312A1 (en) Slag detoxification method and low-carbon ferrochrome production method
CN105483327B (en) Chrome ore DIRECT ALLOYING ball and its preparation method and application
JP4189112B2 (en) Processing method for slag refining stainless steel
CA2397539C (en) Method for the treatment of slag from electric steel plants
JP3525766B2 (en) Hot metal dephosphorization method
JP3774674B2 (en) Method for producing low nitrogen-containing chromium molten steel
JP3636693B2 (en) Electric furnace steelmaking
JP2002105526A (en) Method for dephosphorizing molten iron generating little non-slagging lime
JPH10265827A (en) Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag
CN108588340A (en) A kind of method that low-temperature refining prepares low aluminium calcium impurities Antaciron
WO2021157417A1 (en) Method for producing chromium alloy
US6261339B1 (en) Method for desiliconizing pig iron before refining it to steel
JP2757707B2 (en) Hot metal dephosphorization slag treatment method
RU2186856C1 (en) Composite blend for smelting alloyed steels
JP2001181725A (en) Method for modifying slag in refining of molten stainless steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533031

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021024006

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021024006

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211129

122 Ep: pct application non-entry in european phase

Ref document number: 20839756

Country of ref document: EP

Kind code of ref document: A1