WO2021010109A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2021010109A1
WO2021010109A1 PCT/JP2020/024690 JP2020024690W WO2021010109A1 WO 2021010109 A1 WO2021010109 A1 WO 2021010109A1 JP 2020024690 W JP2020024690 W JP 2020024690W WO 2021010109 A1 WO2021010109 A1 WO 2021010109A1
Authority
WO
WIPO (PCT)
Prior art keywords
transported object
unit
attachment
detection unit
posture
Prior art date
Application number
PCT/JP2020/024690
Other languages
French (fr)
Japanese (ja)
Inventor
展弘 福尾
山▲崎▼ 洋一郎
耕治 山下
佑介 上村
徳雄 高木
高幸 飯野
快右 曽我
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Publication of WO2021010109A1 publication Critical patent/WO2021010109A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts

Definitions

  • the present invention relates to a work machine capable of transporting a transported object.
  • Patent Document 1 discloses a technique for transporting a transported object to a target position by a work machine.
  • a detection device (bracket with prism in the document) for detecting the position of the transported object is attached to the transported object. Then, the transported object is transported in a state of being lifted by a work machine.
  • the technology disclosed in the same document requires a lot of work to transport the transported object, which is troublesome. Specifically, it is necessary to attach / detach the detection device to / from the transported object. In addition, it is necessary to adjust the position of the transported object (suspended load) using a kaishakunin rope or the like. Further, in the same technology, the attachment of the work machine may come into contact with the detection device due to an erroneous operation of the work machine, and the detection device may be damaged.
  • An object of the present invention is to provide a work machine capable of reducing the work required for transporting a transported object as compared with the conventional case and suppressing the attachment from coming into contact with the detection unit. is there.
  • the work machine capable of transporting a transported object to a target position.
  • the work machine includes a machine body, an attachment attached to the machine body so as to be movable relative to the machine body, and a controller.
  • the attachment has a base end side attachment attached to the machine body and a tip end attachment attached to the tip end portion of the base end side attachment.
  • the tip attachment is connected to a gripping device capable of gripping the transported object and the tip end portion of the proximal end side attachment, and the gripping device is rotated around at least one rotation center axis with respect to the proximal end side attachment.
  • the controller has a rotating device that can be rotated to the surface, and a detecting unit for detecting the coordinates and posture of the transported object that is gripped by the gripping device.
  • the controller has a storage unit that stores information on a target position of the transported object, and a current position of the transported object based on at least one of the coordinates and the posture detected by the detection unit. It has a position calculation unit that calculates a detection position, and further calculates a position deviation that is a deviation of the detection position with respect to the target position, and an output unit that outputs a signal corresponding to the calculated position deviation.
  • FIG. 6 is a cross-sectional view of the transported object and jig shown in FIG. 6 as viewed along the arrows VII-VII of FIG.
  • FIG. 6 It is a figure which looked at the transported object and jig shown in FIG. 6 from the front-rear direction. It is a figure corresponding to FIG. 6, and is the figure which shows the structural example 2 of the detection part shown in FIG. It is a figure corresponding to FIG. 6, and is the figure which shows the structural example 3 of the detection part shown in FIG. It is a perspective view of the tip display part of the jig shown in FIG. It is a figure which looked at the work machine and the like shown in FIG. 2 from above, and is the figure which shows the control execution area.
  • the transportation system 1 including the work machine 20 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 12.
  • FIG. 1 is a top view of the transportation system 1 according to the present embodiment.
  • FIG. 2 is a side view of the work machine 20 and the like of the transportation system 1 shown in FIG.
  • FIG. 3 is a block diagram of the transportation system 1 shown in FIG.
  • FIG. 4 is a perspective view of the transported object 11 and the tip attachment 30 shown in FIG.
  • FIG. 5 is a perspective view of the jig 40 and the like shown in FIG.
  • FIG. 6 is a view of the transported object 11 and the jig 40 shown in FIG. 2 as viewed from above, and is a diagram showing a configuration example 1 of the detection unit 45.
  • the transportation system 1 is a system for transporting the transported object 11 to the target position P1.
  • the transportation system 1 includes a total station 15, a work machine 20, and a display unit 90.
  • the transported object 11 is an object (transported object, structure) transported by the work machine 20.
  • the transported object 11 is, for example, a structure provided on a road, a parking lot, a house, or the like.
  • the transported object 11 is, for example, made of concrete, for example, a precast material, or the like, for example, a U-shaped groove or the like.
  • the reference line for arranging the transported object 11 is defined as the reference line 11a.
  • the reference line 11a is a line extending in the longitudinal direction of the transported object 11, and is a line passing through the central portion in the width direction (horizontal direction and direction will be described later) of the transported object 11.
  • the reference line 11a may pass, for example, the bottom portion (lower portion) of the transported object 11 or the central portion in the height direction of the transported object 11.
  • the criteria for arranging the transported object 11 may be set in various ways. For example, a line extending in the width direction of the transported object 11 may be set as a reference line for arranging the transported object 11. For example, a specific point of the transported object 11 may be set as a reference point.
  • the direction with respect to the transported object 11 shown in FIG. 5 and the direction with respect to the jig 40 attached to the transported object 11 are defined as follows.
  • the direction in which the reference line 11a extends (for example, the longitudinal direction of the transported object 11) is defined as the front-rear direction X.
  • One direction in the front-back direction X is defined as the front direction X1, and the opposite direction is defined as the back direction X2.
  • the width direction Y is defined as the direction orthogonal to the reference line 11a and the horizontal direction when the transported object 11 is placed on the horizontal plane. As shown in FIG.
  • the direction approaching the center of the width direction of the transported object 11 is defined as the width direction inward Yi
  • the direction away from the width direction center of the transported object 11 is defined as the width direction outward direction Yo.
  • the right direction when facing the front direction X1 is defined as the right direction Yr
  • the left direction when facing the front direction X1 is defined as the left direction Yl.
  • the direction orthogonal to each of the front-rear direction X and the width direction Y is defined as the height direction Z (vertical direction).
  • the upward direction when the transported object 11 is placed on the horizontal plane is defined as the upward direction Z1, and the opposite direction is defined as the downward direction Z2.
  • FIG. 7 is a cross-sectional view of the transported object 11 and the jig 40 shown in FIG. 6 as viewed along the arrows VII-VII of FIG.
  • the electronic tag 13 stores and transmits the information of the transported object 11 shown in FIG. 7.
  • the electronic tag 13 is provided (attached) to the transported object 11.
  • the electronic tag 13 may be embedded in the transported object 11 or may be attached to the transported object 11.
  • the electronic tag 13 is, for example, an RFID (Radio Frequency Identifier) tag or the like.
  • the total station 15 is a device that detects the position of the prism 45a (described later) shown in FIG.
  • the total station 15 detects the distance from the total station 15 to the prism 45a and the direction of the prism 45a with respect to the total station 15.
  • the total station 15 has a function (automatic tracking function) of automatically continuing to track the prism 45a.
  • the coordinates (mechanical points) of the total station 15 are obtained by the backward association method with reference to the two surveying reference points 16 (known coordinates). As a result, the coordinates of the total station 15 are associated with the coordinate system of the work site.
  • the position of the transported object 11 in the coordinate system of the work site (the three-dimensional coordinate system associated with the survey reference point 16) is simply referred to as “the position of the transported object 11” or the like.
  • the "position of the transported object 11” includes information on the coordinates of the transported object 11 and the posture of the transported object 11.
  • the coordinates of the transported object 11 are coordinates (position coordinates) indicating the position of the transported object 11 in the coordinate system of the work site.
  • the posture of the transported object 11 is the rotation angle of the transported object 11 in the coordinate system of the work site.
  • the posture of the transported object 11 includes an inclination of the transported object 11 with respect to a horizontal plane (angle of inclination, direction of inclination) and an orientation of the transported object 11 when viewed from above (for example, the direction of the reference line 11a).
  • the posture of the transported object 11 is indicated by angles (yaw angle, pitch angle, roll angle) in each of the yaw direction, the pitch direction, and the roll direction.
  • the rotation direction of the axially transported object 11 extending in the height direction of the transported object 11 shown in FIG. 4 is the yaw direction
  • the rotational direction of the axially extending transported object 11 extending in the width direction is the pitch direction and the axially extending in the front-rear direction.
  • the rotation direction of the transported object 11 is defined as the roll direction.
  • the work machine 20 is a machine capable of carrying the transported object 11 to the target position P1.
  • the work machine 20 is, for example, a construction machine that performs construction work, such as an excavator.
  • the work machine 20 includes a machine body 21, an attachment 22, sensors 50 shown in FIG. 3, an operation guidance unit 61 (guidance information notification unit), a drive unit 63, and a controller 80.
  • the machine body 21 (airframe) includes a lower traveling body 21a and an upper rotating body 21b.
  • the lower traveling body 21a runs the work machine 20 and can travel on the ground.
  • the upper swivel body 21b is mounted on the lower traveling body 21a so as to be swivelable around a swivel center axis extending in the vertical direction.
  • Attachment 22 is a device that performs work (transportation work) for transporting the transported object 11.
  • the attachment 22 is attached to the machine body 21 so that it can move (undulate) relative to the machine body 21, and more specifically, the attachment 22 is attached to the upper swing body 21b.
  • the attachment 22 includes a base end side attachment 23 and a tip end attachment 30.
  • the base end side attachment 23 is a portion of the attachment 22 that is arranged on the base end side (the side attached to the upper swivel body 21b).
  • the base end side attachment 23 includes a boom 23a and an arm 23b.
  • the boom 23a is undulating (rotatably up and down) attached to the upper swing body 21b.
  • the direction in which the rotation axis of the boom 23a extends with respect to the upper swing body 21b is defined as the "lateral direction”.
  • the arm 23b is rotatably attached to the boom 23a about a rotation axis extending in the lateral direction.
  • the tip attachment 30 is attached to the tip of the base end side attachment 23 (the portion opposite to the "base end side"), and is particularly attached to the tip end of the arm 23b. As a result, the tip attachment 30 is arranged at the tip of the attachment 22.
  • the tip attachment 30 includes a rotating device 31, a gripping device 33, and a jig 40.
  • the rotating device 31 (tilt rotator) is attached (connected) to the tip of the base end side attachment 23, and is particularly attached to the tip of the arm 23b.
  • the rotating device 31 rotates (for example, rotates in an arbitrary direction) the gripping device 33 with respect to the arm 23b.
  • the rotating device 31 rotates the gripping device 33 with respect to the arm 23b around three axes orthogonal to each other.
  • the rotating device 31 includes a mounting portion 31a, a tilt portion 31b, and a rotating portion 31c.
  • the attachment portion 31a is rotatably attached to the arm 23b about a rotation axis extending in the lateral direction.
  • the tilt portion 31b is rotatably attached to the attachment portion 31a.
  • the tilt portion 31b can rotate (tilt) with respect to the arm 23b so as to tilt laterally with respect to the longitudinal direction of the arm 23b (see FIG. 4).
  • the rotating portion 31c is rotatably attached to the tilt portion 31b.
  • the rotating portion 31c can rotate (rotate) with respect to the tilt portion 31b around the central axis of the tilt portion 31b (see FIG. 4).
  • the rotating portion 31c can rotate about three axes orthogonal to each other with respect to the arm 23b. That is, the rotating device 31 is capable of rotating the gripping device 33 around at least one rotation center axis (in the present embodiment, around three rotation center axes) with respect to the base end side attachment 23.
  • the gripping device 33 grips the transported object 11.
  • the gripping device 33 is attached to the rotating device 31.
  • the gripping device 33 is rotatable (for example, rotatable in any direction) with respect to the proximal end side attachment 23 (more specifically, the arm 23b) by the operation of the rotating device 31.
  • the gripping device 33 rotates in conjunction with the rotation of the mounting portion 31a with respect to the arm 23b, the rotation of the tilting portion 31b with respect to the mounting portion 31a (tilt operation), and the rotation of the rotating portion 31c with respect to the tilting portion 31b (rotation operation). ..
  • the gripping device 33 includes a base portion 33a and a gripping portion 33b.
  • the base portion 33a is fixed to the rotating portion 31c.
  • the grip portion 33b is a portion that comes into contact with the transported object 11 and grips the transported object 11.
  • a pair of grips 33b are provided on the base 33a.
  • the pair of gripping portions 33b opens and closes (rotates) with respect to the base portion 33a, and grips (grasps) the transported object 11 so as to sandwich it from the outside in the width direction.
  • the pair of gripping portions 33b may grip the transported object 11 so as to push and expand (extend, stretch) the transported object 11 from the inside of the transported object 11 (not shown).
  • FIG. 2 a state in which the transported object 11 is gripped by the grip portion 33b (see FIG. 2) will be described.
  • the jig 40 is a device attached to the transported object 11.
  • the jig 40 includes a frame unit 41, a positioning unit 43 shown in FIG. 6, a detection unit 45, and a reading device 47.
  • the frame portion 41 can be attached (contacted) to the transported object 11 so as to move to the target position P1 integrally with the transported object 11.
  • the frame portion 41 can be attached to, for example, an upper portion of the transported object 11.
  • the frame unit 41 supports the detection unit 45.
  • the frame portion 41 includes a frame main body portion 41a, a width stopper portion 41b, and front and rear stopper portions 41c.
  • the frame main body 41a is fixed to the base 33a as shown in FIG.
  • the frame body portion 41a may be fixed directly to the base portion 33a, or may be fixed to the base portion 33a as a result of being fixed to the rotating portion 31c.
  • the frame main body 41a has, for example, a plate shape or a rectangular parallelepiped shape.
  • the frame body portion 41a projects (extends) in the front-rear direction with respect to the base portion 33a.
  • the frame body portion 41a may project from the base portion 33a to at least one of the front side and the rear side.
  • the frame main body 41a projects to the front side and the rear side, respectively.
  • the frame body 41a includes a front frame body 41a1 projecting forward from the base 33a and a rear frame body 41a2 projecting rearward from the base 33a.
  • the width stopper portion 41b limits the movement of the jig 40 with respect to the transported object 11 in the width direction.
  • the width stopper portion 41b can contact the outer surface of the transported object 11 in the width direction (for example, surface contact is possible).
  • the width stopper portion 41b comes into contact with one surface (for example, the left surface) of both sides (left side and right side surfaces) on the outer side in the width direction of the transported object 11.
  • the width stopper portion 41b that comes into contact with the other surface (for example, the right surface) on the outer side in the width direction of the transported object 11 may or may not be provided.
  • the width stopper portion 41b projects downward from the outer portion in the width direction of the frame main body portion 41a.
  • the width stopper portion 41b has, for example, a plate shape.
  • the width stopper portion 41b is fixed to the frame main body portion 41a.
  • the width stopper portion 41b may be fixed to the front frame main body portion 41a1 or may be fixed to the rear frame main body portion 41a2 (not shown).
  • the front-rear stopper portion 41c limits the movement of the jig 40 with respect to the transported object 11 in the front-rear direction. As shown in FIG. 6, the front-rear stopper portion 41c can come into contact with the front surface (one surface in the front-rear direction) of the transported object 11.
  • the front / rear stopper portion 41c is provided at the front end portion of the front frame main body portion 41a1.
  • the front-rear stopper portion 41c (not shown) that can come into contact with the rear surface (the other surface in the front-rear direction) of the transported object 11 may or may not be provided. As shown in FIG.
  • the front-rear stopper portion 41c projects downward from the outer portion (specifically, the front side portion) of the frame main body portion 41a in the front-rear direction.
  • the front and rear stopper portions 41c have, for example, a plate shape.
  • the front and rear stopper portions 41c are fixed to the frame main body portion 41a.
  • FIG. 8 is a view of the transported object 11 and the jig 40 shown in FIG. 6 as viewed from the front (front-back direction).
  • the positioning unit 43 positions the relative position of the transported object 11 (more specifically, the transported object 11 gripped by the gripping device 33) with respect to the gripping device 33 shown in FIG.
  • the positioning unit 43 positions the position of the transported object 11 relative to the base unit 33a.
  • the positioning unit 43 positions the position of the transported object 11 relative to the frame unit 41.
  • the positioning unit 43 includes a reference line positioning unit 43b and a longitudinal positioning unit 43c.
  • the reference line positioning unit 43b positions the relative position of the reference line 11a of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33. As shown in FIG. 8, the reference line positioning unit 43b positions the relative position of the reference line 11a of the transported object 11 with respect to the jig 40. The reference line positioning unit 43b positions the jig 40 and the transported object 11 so that the relative positions of the jig 40 and the reference line 11a are within a predetermined allowable range. Specifically, the reference line positioning portion 43b is a width stopper portion 41b that contacts the lower surface of the frame body portion 41a that contacts the upper surface of the transported object 11 and the outer surface of the transported object 11 in the width direction.
  • the lower surface of the frame main body 41a positions the reference line 11a with respect to the jig 40 in the height direction.
  • the inner surface of the width stopper portion 41b in the width direction is positioned on the reference line 11a with respect to the jig 40 in the width direction. That is, the reference line positioning unit 43b abuts on the transported object 11 so as to position the detection unit 45 of the jig 40 relative to the reference line 11a virtually set on the transported object 11.
  • the longitudinal positioning portion 43c (see FIG. 6) is a relative position of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33 shown in FIG. 5, and is relative to the longitudinal direction (front-back direction) of the transported object 11. Position the position. As shown in FIG. 6, the longitudinal positioning portion 43c positions the relative position of the transported object 11 with respect to the jig 40 in the front-rear direction. The longitudinal positioning portion 43c positions the jig 40 and the transported object 11 so that the relative positions of the jig 40 and the transported object 11 in the front-rear direction fall within a predetermined allowable range.
  • the longitudinal positioning portion 43c is composed of a rear surface of the front and rear stopper portions 41c that come into contact with the front surface of the transported object 11. That is, the longitudinal positioning unit 43c abuts on the transported object 11 so as to position the detection unit 45 of the jig 40 relative to the transported object 11.
  • the detection unit 45 is a part for detecting the position (coordinates and posture) of the transported object 11 gripped by the gripping device 33.
  • the detection unit 45 is a part of the tip attachment 30 (mounted on the tip attachment 30).
  • the detection unit 45 is provided integrally with the base portion 33a and moves in conjunction with the movement of the base portion 33a.
  • the detection unit 45 is provided at least in the frame unit 41 and is fixed to the frame unit 41.
  • the detection unit 45 is attached to the upper surface of the frame unit 41.
  • the detection unit 45 includes at least a prism 45a, and may further include an angle sensor 45b. The coordinates of the prism 45a (collimation prism) are detected by the total station 15 (see FIG. 1).
  • the total station 15 may form a part of the detection unit 45. That is, the detection unit 45 is not limited to that provided in the frame unit 41.
  • the angle sensor 45b detects the posture of the transported object 11.
  • the relative positions of the prism 45a and the angle sensor 45b provided on the frame unit 41 and the gripping device 33 are fixed (FIG. 5). Therefore, if the relative positions of the gripping device 33 and the transported object 11 are fixed, the relative positions of the detection unit 45 and the transported object 11 are naturally fixed.
  • the angle sensor 45b is required differs depending on the position of the prism 45a in the frame portion 41 and the number of prisms 45a, and the number of axes that the angle sensor 45b needs to detect the rotation angle differs. ..
  • the detection unit 45 is configured as follows, for example, [Configuration Example 1] to [Configuration Example 3].
  • FIG. 6 in the configuration example 1 (detection unit 45-1), two prisms 45a are provided.
  • the two prisms 45a are arranged at positions separated from each other (shifted positions) in the front-rear direction.
  • the positions of the two prisms 45a in the width direction are the same as each other. That is, when viewed from above, the two prisms 45a pass through a line extending in the front-rear direction (for example, a reference line 11a).
  • the yaw angle and pitch angle of the transported object 11 can be calculated based on the coordinates of the two prisms 45a.
  • the angle sensor 45b detects the rotation angle of one axis (specifically, the roll angle of the transported object 11).
  • the two prisms 45a may be arranged only in one of the front frame main body 41a1 and the rear frame main body 41a2. Further, as shown in FIG. 5, the two prisms 45a may be separately arranged in the front frame main body 41a1 and the rear frame main body 41a2, respectively.
  • FIG. 9 is a diagram corresponding to FIG. 6, and is a diagram showing a configuration example 2 of the detection unit 45 shown in FIG.
  • the two prisms 45a are arranged at positions separated from each other in the front-rear direction, and are arranged at positions separated from each other in the width direction (left-right direction).
  • the yaw angle, pitch angle, and roll angle of the transported object 11 can be calculated based on the coordinates of the two prisms 45a. Therefore, in this configuration example 2, the angle sensor 45b (see FIG. 6) is unnecessary.
  • the width stopper portion 41b and the front-rear stopper portion 41c shown in FIG. 6 are not shown.
  • FIG. 10 is a diagram corresponding to FIG. 6, and is a diagram showing a configuration example 3 of the detection unit 45 shown in FIG.
  • one prism 45a is provided in the configuration example 3 (detection unit 45-3).
  • the prism 45a is arranged at a position where the relative position with respect to the transported object 11 is known (for example, a position at the center of the transported object 11 when viewed from the height direction).
  • the posture of the transported object 11 cannot be calculated from the coordinates of the prism 45a. Therefore, the angle sensor 45b detects the yaw angle, the pitch angle, and the roll angle of the three axes, specifically, the transported object 11, respectively.
  • the detection unit 45 may have a configuration other than the above [configuration example 1] to [configuration example 3] as long as the coordinates and posture of the transported object 11 can be detected. Further, depending on the type and shape of the transported object 11, only a part of the coordinates (x-axis, y-axis, z-axis) and posture (yaw angle, pitch angle, roll angle) is detected by the detection unit 45. May be done. Specifically, when the transported object 11 may be arranged at an arbitrary roll angle, such as when the transported object 11 has a cylindrical shape, the detection unit 45 may not be able to detect the roll angle.
  • the reading device 47 reads the information (described later) of the transported object 11 from the electronic tag 13 and transmits it to the controller 80 (see FIG. 3).
  • the reading device 47 is provided in the frame portion 41.
  • the reading device 47 includes an antenna and the like.
  • the antenna of the reading device 47 is provided, for example, on the surface of the frame portion 41 facing the electronic tag 13 (specifically, the lower surface of the frame portion 41).
  • the sensors 50 detect the state related to the work machine 20 shown in FIG. As shown in FIG. 3, the sensors 50 include a machine position detection unit 51 and an attitude detection unit 53.
  • the machine position detection unit 51 detects the position (coordinates, direction) of the machine body 21 shown in FIG. 2, and more specifically, detects the position of the upper swivel body 21b.
  • the machine position detection unit 51 detects the position of the machine body 21 in the coordinate system of the work site.
  • the machine position detection unit 51 may use a satellite positioning system (for example, GNSS (Global Navigation Satellite System)), or may use a total station provided separately from the total station 15.
  • GNSS Global Navigation Satellite System
  • the posture detection unit 53 detects the posture of the attachment 22 with respect to the machine body 21.
  • the posture of the attachment 22 detected by the posture detection unit 53 is used to calculate the position of the gripping device 33 (the position of the transported object 11) with respect to the machine body 21.
  • the posture detection unit 53 shown in FIG. 3 includes, for example, an angle sensor.
  • the posture detection unit 53 includes a boom angle sensor 53a, an arm angle sensor 53b, and a tip attachment angle sensor 53c.
  • the boom angle sensor 53a detects the rotation angle (undulation angle) of the boom 23a with respect to the upper swivel body 21b shown in FIG.
  • the arm angle sensor 53b (see FIG. 3) detects the rotation angle of the arm 23b with respect to the boom 23a.
  • the tip attachment angle sensor 53c detects the rotation angle (of the mounting portion 31a) of the tip attachment 30 with respect to the arm 23b.
  • the tip attachment angle sensor 53c detects the rotation angle of the tilt portion 31b with respect to the arm 23b and the rotation angle (of the base portion 33a) of the rotation portion 31c with respect to the tilt portion 31b.
  • the operation guidance unit 61 (see FIG. 3) outputs (notifies) guidance information that assists the operator in operating at least one of the machine main body 21 and the attachment 22, so that the operator of the work machine 20 (see FIG. 3) It is possible to indicate (instruct) the operation to be performed by the machine operator).
  • the operation guidance unit 61 provides guidance so that the transported object 11 is transported to the target position P1 (see FIG. 1) (details will be described later).
  • the operation guidance unit 61 may output (notify) the guidance information by light, or may display (notify) the guidance information by voice.
  • the guidance information by light may be a screen display or a light such as an LED (light emission diode) light. Specifically, when the operation guidance unit 61 outputs that the arm 23b should be operated to the pushing side, the operation guidance unit 61 displays "Please push the arm" or outputs a voice.
  • the drive unit 63 (see FIG. 3) is a part that drives the work machine 20.
  • the drive unit 63 may include, for example, a hydraulic circuit or an electric circuit.
  • the drive unit 63 receives a command signal and is capable of driving the lower traveling body 21a, the upper swivel body 21b, and the attachment 22 in response to the command signal. Further, the drive unit 63 can switch between a state in which the gripping device 33 grips the transported object 11 and a state in which the gripping device 33 releases the gripping of the transported object 11 in response to the command signal.
  • a gripping drive unit capable of driving the gripping device 33 is included.
  • the controller 80 (see FIG. 3) performs signal input / output, calculation, storage, and the like.
  • the controller 80 may be provided on the work machine 20 (see FIG. 3), or may be provided outside the work machine 20 as shown in FIG.
  • the controller 80 may be provided integrally with the display unit 90, or may be a separate body from the display unit 90.
  • the controller 80 receives the detected information (direction information) from the angle sensor 45b.
  • the controller 80 receives the detected information (coordinates of the prism 45a) from the total station 15.
  • the controller 80 receives information from the total station 15 via the receiving unit 80r.
  • the controller 80 transmits information regarding the position deviation (described later) to the display unit 90.
  • the controller 80 includes a target position storage unit 81, a detection position calculation unit 82, a position deviation calculation unit 83, a log unit 85, an automatic control unit 86, and a grip release prohibition unit 87 (grip control unit). (Details of each part will be described later).
  • the display unit 90 (deviation display unit, deviation display) displays information on the position deviation (described later).
  • the display unit 90 may also be used as the operation guidance unit 61.
  • the display unit 90 may be arranged outside the work machine 20 shown in FIG. 1, and may be, for example, a portable object (handy type) held by a worker in the vicinity of the transported object 11.
  • the display unit 90 (see FIG. 3) may be included in the work machine 20 shown in FIG. 2, and may be provided, for example, in the cab of the work machine 20.
  • the display unit 90 may be provided on the tip attachment 30, and specifically, the tip display unit 90t shown in FIG. 11 may be provided.
  • the tip display unit 90t is provided on the tip attachment 30.
  • the tip display portion 90t may be provided on the frame portion 41 and may be attached to the frame portion 41 or may be integrated with the frame portion 41.
  • the tip display unit 90t visually notifies the information regarding the position deviation to the periphery of the tip display unit 90t.
  • the tip display unit 90t is arranged at a position easily visible to an operator in the vicinity of the transported object 11 (see FIG. 5).
  • the tip display unit 90t is arranged at a position easily visible to the operator of the work machine 20 (see FIG. 2).
  • the tip display unit 90t is arranged outside the gripping device 33 shown in FIG. 5 (a position that is not hidden by the gripping device 33). As shown in FIG.
  • the tip display portion 90t is arranged, for example, on the upper surface of the frame portion 41 and is arranged parallel to the upper surface of the transported object 11 (see FIG. 5).
  • the tip display portion 90t may be arranged in parallel with a surface (outer surface in at least one of the front-rear direction and the width direction) other than the upper surface of the transported object 11 (not shown).
  • the tip display unit 90t includes a portion capable of emitting light, and includes, for example, an LED (light emission diode) or the like.
  • the transportation system 1 shown in FIG. 1 is configured to operate as follows.
  • the gripping device 33 By operating the work machine 20 shown in FIG. 2, the gripping device 33 is brought closer to the transported object 11. Then, the jig 40 is attached (fitted) to the transported object 11. At this time, the positioning portion 43 shown in FIG. 8 comes into contact with the transported object 11. Specifically, the lower surface of the frame main body 41a comes into contact with the upper surface of the transported object 11. Further, the inner surface of the width stopper portion 41b in the width direction comes into contact with the outer surface of the transported object 11 in the width direction. Further, as shown in FIG. 6, the front-rear stopper portion 41c comes into contact with the front surface of the transported object 11. As a result, the jig 40 is positioned with respect to the transported object 11 (relative position is uniquely determined).
  • the detection unit 45 (prism 45a or the like) is positioned with respect to the transported object 11 shown in FIG. As a result, the position of the transported object 11 can be calculated from the detection result of the detection unit 45. Further, the gripping device 33 grips the transported object 11.
  • the timing at which the positioning unit 43 comes into contact with the transported object 11 and the timing at which the gripping device 33 starts gripping the transported object 11 may be simultaneous with each other, or one of them may be first.
  • the transported object 11 shown in FIG. 1 is transported to the target position P1 and arranged (installed and laid).
  • the transported object 11 may be arranged as follows. First, the "first transported object 11" is arranged at the target position P1. At this time, the coordinates and posture of the first transported object 11 are arranged so as to match the target coordinates and posture. After that, the "second and subsequent transported objects 11" are arranged along the passage line P1a (the position of the target reference line 11a) in series with each other and in contact with each other so as to be continuous with each other. The second and subsequent transported objects 11 are arranged so as to be continuous with the already arranged transported objects 11.
  • the second and subsequent transported objects 11 are arranged so that the direction of the reference line 11a of the transported object 11 and the direction of the passage line P1a coincide with each other (the posture of the transported object 11 is adjusted to the target posture). ). As a result, the coordinates of the second and subsequent objects 11 match the target coordinates. As described above, when arranging the first transported object 11, the information on the coordinates and the posture is required, and when arranging the second and subsequent transported objects 11, the information on the posture is sufficient.
  • the procedure for arranging the transported object 11 is an example, and the transported object 11 can be arranged by various procedures.
  • the outline of the operation of the controller 80 is as follows.
  • Information on the target position P1 of the transported object 11 shown in FIG. 5 is set (stored) in the target position storage unit 81 (see FIG. 3).
  • the detection position calculation unit 82 calculates the detection position P2, which is the current position of the transported object 11, based on the value detected by the detection unit 45.
  • FIG. 5 shows the target position P1 projected in the height direction and the current detection position P2.
  • the position deviation calculation unit 83 calculates a position deviation which is a deviation of the detection position P2 with respect to the target position P1.
  • the controller 80 may display the position deviation information on the display unit 90. Details such as the operation of the controller 80 are as follows.
  • the information of the target position P1 is information on the position of the target transported object 11 (installation position planning information, design information, three-dimensional information).
  • the information of the target position P1 includes information on the coordinates (target coordinates) of the target transported object 11 and information on the posture (target posture) of the target transported object 11, respectively.
  • the information required when arranging the above-mentioned "first material handling object 11" is information on target coordinates and information on target posture.
  • the information required when arranging the above-mentioned "second and subsequent transported objects 11" is information on the target posture.
  • the information on the target coordinates of the second and subsequent objects 11 does not necessarily have to be set in the target position storage unit 81.
  • the detection position calculation unit 82 calculates the detection position P2 based on the value (detection result) detected by the detection unit 45.
  • the detection position P2 is the current (current, actual) position of the carrier 11 calculated based on the values detected by the detection unit 45 and the total station 15 (see FIG. 1).
  • the detection position P2 includes the coordinates of the current carrier 11 (detection coordinates) and the posture of the current carrier 11 (detection posture).
  • the information required when arranging the "first transported object 11" is the information of the detection coordinates and the information of the detection posture.
  • the information required when arranging the above-mentioned "second and subsequent transported objects 11" is the information on the detection posture.
  • the detection position calculation unit 82 does not necessarily have to calculate the detection coordinates when the transported object 11 to be transported is the second or later.
  • the controller 80 acquires information necessary for transporting the transported object 11 (hereinafter, also referred to as “transported object information”).
  • the transported object information may include information on the type of the transported object 11 (for example, whether it is a U-shaped groove or a block).
  • the transported object information may include information on the dimensions of the transported object 11.
  • the dimensional information of the transported object 11 acquired by the controller 80 is, for example, dimensional information from the portion of the transported object 11 positioned with respect to the jig 40 to the portion on the opposite side thereof.
  • the transported object information is dimensional information (that is, the transported object) from the front surface to the rear surface (opposite surface) of the transported object 11 to which the front and rear stopper portions 41c are in contact. Information on the length of 11 in the longitudinal direction) and the like may be included.
  • the transported item information may include information on dimensions in directions other than the front-rear direction.
  • the transported information acquired by the controller 80 can be acquired by various methods.
  • the transported object information may be acquired from the one provided on the transported object 11 (pasted, attached, embedded, etc.), or may be acquired from, for example, the electronic tag 13 (see FIG. 7).
  • the information on the transported object 11 may be acquired from an object other than the transported object 11 (for example, a storage medium).
  • the transported information may be acquired by input by the operator.
  • the transported object information is the information on the dimensions of the transported object 11
  • the transported object information may be acquired by an apparatus for measuring the dimensions of the transported object 11. Specifically, for example, the length of the transported object 11 in the front-rear direction is measured by a device that measures the dimension from the front surface to the rear surface by sandwiching the front surface and the rear surface of the transported object 11. Information may be obtained.
  • the position deviation calculation unit 83 calculates a position deviation which is a deviation of the detection position P2 with respect to the target position P1.
  • the position deviation includes a coordinate deviation and a posture deviation.
  • the coordinate deviation is the deviation of the detected coordinates with respect to the target coordinates.
  • the posture deviation is the deviation of the detected posture with respect to the target posture.
  • the posture deviation is a deviation in the direction in which the reference line 11a extends with respect to the direction in which the passage line P1a extends.
  • the information required when arranging the above-mentioned "first transported object 11" is coordinate deviation information and attitude deviation information.
  • the information required when arranging the above-mentioned "second and subsequent transported objects 11" is the attitude deviation information.
  • the position deviation calculation unit 83 (see FIG. 3) does not necessarily have to calculate the coordinate deviation when the transported objects 11 to be transported are the second and subsequent objects.
  • the detection position calculation unit 82 and the position deviation calculation unit 83 constitute the position calculation unit of the present invention.
  • the position calculation unit calculates the detection position P2, which is the current position of the material handling 11 based on the coordinates detected by the detection unit 45 and the value of at least one of the postures, and detects the target position P1.
  • the position deviation, which is the deviation of the position P2 is further calculated.
  • the position deviation calculated by the position deviation calculation unit 83 shown in FIG. 3 can be used in various ways.
  • the calculated position deviation may be used for guidance by the operation guidance unit 61, or may be used for automatic control by the automatic control unit 86.
  • the position deviation calculation unit 83 functions as an output unit that outputs a signal corresponding to the calculated position deviation.
  • the signal output from the position deviation calculation unit 83 is input to the display unit 90, the operation guidance unit 61, the automatic control unit 86, and the like.
  • the controller 80 causes the operation guidance unit 61 to output operation guidance to the side that reduces the position deviation based on the values detected by the machine position detection unit 51 and the attitude detection unit 53. More specifically, the position deviation calculation unit 83 (guidance information input unit) of the controller 80 determines the guidance information so that the position deviation is reduced based on the detection results of the machine position detection unit 51 and the attitude detection unit 53. Then, the signal corresponding to the determined guidance information is input to the operation guidance unit 61. The operation guidance unit 61 indicates (instructs) the operator the content (“operation guidance information”) of the operation to be performed by the operator in order to reduce the position deviation.
  • the transported object 11 shown in FIG. 2 can be installed at the target position P1 with high accuracy only by the operator operating the work machine 20 according to the operation guidance information.
  • the content of the operation guidance information is appropriately selected so that the position deviation can be reduced.
  • the content of the operation guidance information includes, for example, at least one of the following [Example 1A] to [Example 1F].
  • Example 1C Rotation (raising, lowering) of the boom 23a with respect to the upper swivel body 21b.
  • Example 1D Rotation (push, pull) of the arm 23b with respect to the boom 23a.
  • [Example 1E] includes the following [Example 1Ea] to [Example 1Ec].
  • Example 1Ea Rotation (push, pull) of the mounting portion 31a with respect to the arm 23b.
  • Example 1Eb Rotation of the tilt portion 31b with respect to the mounting portion 31a (tilt to the right, tilt to the left).
  • Example 1Ec Rotation of the rotating portion 31c with respect to the tilting portion 31b (clockwise rotation, counterclockwise rotation). That is, the rotation of the gripping device 33 with respect to the tilt portion 31b.
  • Example 1F Rotation of the grip portion 33b with respect to the base portion 33a (grip, grip release).
  • the guidance by the operation guidance unit 61 shown in FIG. 3 may be always performed during the transportation work of the transported object 11 (see FIG. 2), or may be performed only when a predetermined condition is satisfied. Whether or not the guidance by the operation guidance unit 61 is performed may be switched by an operation of the operator (for example, an operation of pressing a switch). Guidance by the operation guidance unit 61 may be performed only when the detection position P2 of the transported object 11 shown in FIG. 12 is inside the control execution area A1. Specifically, when the gripping portion 33b grips the transported object 11 (conveyed object 11B before work) placed outside the control execution area A1 and starts transporting the transported object 11, the operation guidance unit 61 (see FIG. 3) does not provide guidance.
  • the control execution area A1 is set in the controller 80 (see FIG. 3), and is an area set to include the target position P1 and the periphery of the target position P1.
  • the control execution area A1 is an area set so that the position deviation is equal to or less than a predetermined value.
  • the controller 80 may change the range of the control execution area A1 (manually or automatically) according to some conditions.
  • the controller 80 shown in FIG. 3 changes the content of the operation guidance (work assistance information) output to the operation guidance unit 61 according to the change in the posture of the attachment 22 detected by the posture detection unit 53. More specifically, the controller 80 keeps grasping the posture of the attachment 22 detected by the posture detection unit 53 (see FIG. 3) during the transportation work of the transported object 11 (see FIG. 2).
  • the controller 80 selects the content of the operation guidance information suitable for reducing the position deviation based on the changed posture of the attachment 22. That is, the position deviation calculation unit 83 of the controller 80 determines the guidance information so that the guidance information changes according to the change in the posture of the attachment 22.
  • the controller 80 (position deviation calculation unit 83) inputs a signal corresponding to the content of the selected operation guidance information to the operation guidance unit 61, and outputs (notifies) the operation guidance information to the operation guidance unit 61. This makes it possible to more reliably provide guidance for moving the transported object 11 shown in FIG. 5 to the target position P1.
  • the automatic control unit 86 (see FIG. 3) automatically operates the work machine 20 (see FIG. 1) so as to transport the transported object 11 to the target position P1. More specifically, the automatic control unit 86 (see FIG. 3) automatically attaches the attachment 22 to the side that reduces the position deviation based on the value (detection result) detected by the machine position detection unit 51 and the attitude detection unit 53. To operate. In particular, the automatic control unit 86 determines the command signal so that the position deviation is reduced, and inputs the determined command signal to the drive unit 63 to automatically operate the attachment 22. The content of the automatic control by the automatic control unit 86 is appropriately selected so that the position deviation can be reduced.
  • the content of the automatic control by the automatic control unit 86 includes at least one of the above [Example 1A] to [Example 1F] as well as the content of the operation guidance information described above.
  • the automatic control unit 86 automatically controls the rotation angle of each rotation axis of the attachment 22.
  • the automatic control unit 86 "automatically operates the attachment 22 on the side that reduces the position deviation"
  • the attachment 22 is automatically operated (moved) as a result of automatically traveling the lower traveling body 21a. Includes letting.
  • the automatic control by the automatic control unit 86 includes automatically operating the attachment 22 as a result of automatically turning the upper turning body 21b with respect to the lower traveling body 21a.
  • the automatic control by the automatic control unit 86 shown in FIG. 3 may always be performed during the transportation work of the transported object 11 (see FIG. 2), or may be performed only when a predetermined condition is satisfied.
  • the automatic control by the automatic control unit 86 may be performed only when the detection position P2 of the transported object 11 shown in FIG. 12 is included in the control execution area A1.
  • both the guidance by the operation guidance unit 61 shown in FIG. 3 and the automatic control by the automatic control unit 86 may be performed.
  • the control execution area A1 see FIG. 12
  • the control execution area A1 where automatic control is performed may be the same or different from each other.
  • the gripping release prohibition unit 87 shown in FIG. 3 is the transported object 11 by the gripping device 33 until the detection position P2 of the transported object 11 shown in FIG. 5 substantially coincides with the target position P1 (until the position deviation becomes substantially zero). It is prohibited to release the grip of.
  • a position deviation threshold value which is a threshold value related to the magnitude of the position deviation, is preset (stored) in the grip release prohibition unit 87 (see FIG. 3).
  • the position deviation threshold value may be stored in the target position storage unit 81 (storage unit) instead of the grip release prohibition unit 87.
  • the gripping release prohibiting unit 87 releases the gripping of the transported object 11 by the gripping device 33. Is prohibited. In this case, the grip release prohibition unit 87 (see FIG. 3) invalidates the operation of releasing the grip of the transported object 11 by the grip device 33 even if the operator performs the operation. In this case, for example, the pair of gripping portions 33b does not open regardless of the operation by the operator.
  • the grip release prohibition unit 87 permits the grip device 33 to release the grip of the transported object 11. In this case, when the operator releases the grip of the transported object 11 by the gripping device 33, the gripping device 33 releases the grip of the transported object 11 (for example, the pair of gripping portions 33b opens). ).
  • the grip release prohibition unit 87 continues to grip the transported object 11 with respect to the grip device 33 and releases the grip. Is input to the gripping drive unit of the drive unit 63, while the calculated position deviation is equal to or less than the position deviation threshold value, a signal permitting the gripping device 33 to release the grip of the transported object 11 (released). A signal) is input to the gripping drive unit of the drive unit 63, respectively.
  • the controller 80 further has a determination unit (not shown) for determining the magnitude relationship between the calculated position deviation and the position deviation threshold value.
  • the position deviation includes the coordinate deviation and the attitude deviation.
  • the gripping release prohibition unit 87 may prohibit the gripping device 33 from releasing the grip of the transported object 11 until the coordinate deviation becomes substantially zero (hereinafter [Example 2A]). Further, the grip release prohibiting unit 87 (see FIG. 3) may prohibit the gripping device 33 from releasing the grip of the transported object 11 until the posture deviation becomes substantially zero (hereinafter [Example 2B]).
  • a coordinate deviation threshold value which is a threshold value related to the magnitude of the coordinate deviation, is preset in the grip release prohibition unit 87 shown in FIG.
  • the grip release prohibiting unit 87 prohibits the gripping device 33 shown in FIG. 5 from releasing the grip of the transported object 11.
  • the grip release prohibiting unit 87 permits the grip device 33 to release the grip of the transported object 11.
  • the gripping device 33 is allowed to release the grip of the transported object 11 in a state where the detected coordinates of the “first transported object 11” match or substantially match the target coordinates.
  • the posture deviation threshold value which is a threshold value related to the magnitude of the posture deviation, is preset in the grip release prohibition unit 87 shown in FIG.
  • the grip release prohibiting unit 87 prohibits the gripping device 33 shown in FIG. 5 from releasing the grip of the transported object 11.
  • the grip release prohibition unit 87 permits the grip device 33 to release the grip of the transported object 11.
  • the gripping device 33 is allowed to release the grip of the transported object 11 in a state where the detected posture of the “second and subsequent transported objects 11” matches or substantially matches the target posture.
  • the controller 80 shown in FIG. 3 stores the status (for example, progress status) of the transportation work of the transported object 11 (see FIG. 4) in the log unit 85.
  • the controller 80 may display the information stored in the log unit 85 on the display unit 90.
  • the controller 80 causes the display unit 90 to display information on the position deviation (more specifically, information on the position deviation).
  • the controller 80 causes the tip display unit 90t shown in FIG. 11 to display the position deviation information.
  • the tip display unit 90t displays the position deviation information
  • the operator at least one of the operator in the vicinity of the transported object 11 and the operator of the work machine 20
  • the position deviation information displayed by the display unit 90 may include information on the direction of the position deviation. More specifically, the position deviation information displayed by the display unit 90 includes information on which direction the detection position P2 is deviated from the target position P1 shown in FIG. 5, that is, in which direction the transported object 11 is moved. It may contain information about what should be done.
  • the position deviation information displayed by the display unit 90 shown in FIG. 11 may include information regarding the magnitude of the position deviation.
  • the position deviation information displayed by the display unit 90 may include that the detection position P2 is in a coincident state (matched or substantially matched state) with respect to the target position P1 shown in FIG.
  • the position (detection position P2) of the transported object 11 gripped by the gripping device 33 shown in FIG. 1 is calculated from the values detected by the machine position detecting unit 51 and the posture detecting unit 53 shown in FIG. 3, the movable shaft of the attachment 22 is calculated. Therefore, the error in the position of the transported object 11 may become large.
  • the detection position P2 of the transported object 11 is calculated by using the prism 45a and the total station 15. Therefore, the error of the detection position P2 of the transported object 11 can be reduced.
  • the work machine 20 includes a machine body 21, an attachment 22 attached to the machine body 21, and a controller 80.
  • the attachment 22 includes a base end side attachment 23 attached to the machine body 21 and a tip end attachment 30 attached to the tip end portion of the base end side attachment 23.
  • the tip attachment 30 includes a rotating device 31 and a gripping device 33.
  • the rotating device 31 is attached to the tip end portion of the base end side attachment 23.
  • the gripping device 33 is attached to the rotating device 31 and can rotate with respect to the base end side attachment 23 by the operation of the rotating device 31, and grips the transported object 11.
  • the tip attachment 30 includes a detection unit 45.
  • the detection unit 45 is for detecting the coordinates and the posture of the transported object 11 gripped by the gripping device 33.
  • the controller 80 calculates the detection position P2, which is the current position of the transported object 11, based on the value detected by the detection unit 45.
  • the controller 80 calculates a position deviation, which is a deviation of the detection position P2 with respect to the target position P1.
  • the controller 80 calculates the position deviation of the current detection position P2 of the transported object 11 with respect to the target position P1 of the transported object 11. Therefore, this position deviation can be used for various purposes (for example, guidance and automatic control).
  • the detection unit 45 is provided in the tip attachment 30. Therefore, if the tip attachment 30 grips the transported object 11, the detection unit 45 is attached to the transported object 11. Therefore, it is possible to eliminate the work of attaching and detaching the detection device (which has the same function as the detection unit 45) provided separately from the tip attachment 30 to and from the transported object 11. Therefore, the work required to transport the transported object 11 can be reduced. Since the work of attaching / detaching the detection device provided separately from the tip attachment 30 (attachment / detachment work) to / from the transported object 11 can be eliminated, the operator who performs this attachment / detachment work can be eliminated (labor can be saved).
  • the tip attachment 30 since the detection unit 45 is provided in the tip attachment 30, the tip attachment 30 does not come into contact with the detection unit 45 due to an erroneous operation. Therefore, it is possible to prevent the attachment 22 from coming into contact with the detection unit 45 due to an erroneous operation. As a result, damage to the detection unit 45 (for example, prism 45a) due to contact of the attachment 22 with the detection unit 45 can be suppressed. As a result, it is possible to suppress the problem that the detection unit 45 is damaged and the position of the transported object 11 cannot be accurately detected.
  • the transported object 11 is gripped by the gripping device 33 that is rotatable with respect to the base end side attachment 23.
  • the gripping device 33 that is rotatable with respect to the base end side attachment 23.
  • the transported object 11 is lifted by a crane and transported (in the case of suspension work)
  • the following problems may occur. It is prohibited by law for workers to come into direct contact with the suspended load (here, the transported object 11). For this reason, a plurality of slingers (for example, about two people) may work while balancing the suspended load while pulling the suspended load through a kaishakunin rope or the like.
  • the transported object 11 can be transported in a state of being gripped by the gripping device 33.
  • the work machine 20 includes a reference line positioning unit 43b.
  • the reference line positioning unit 43b positions the relative position of the reference line 11a of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33 shown in FIG.
  • the reference line positioning unit 43b determines the relative position of the reference line 11a of the transported object 11 with respect to the gripping device 33. Therefore, it is not necessary to separately set the relative position of the reference line 11a of the transported object 11 with respect to the gripping device 33 (by an operation or operation different from that of gripping the transported object 11 by the gripping device 33).
  • the work machine 20 includes a positioning unit 43.
  • the positioning unit 43 positions the relative position of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33 shown in FIG.
  • the positioning portion 43 determines the position of the transported object 11 with respect to the gripping device 33. Therefore, it is not necessary to separately set the position of the transported object 11 with respect to the gripping device 33 (by an operation or operation different from that of gripping the transported object 11 by the gripping device 33).
  • the work machine 20 includes a machine position detection unit 51, a posture detection unit 53, and an operation guidance unit 61.
  • the machine position detection unit 51 detects the position of the machine body 21 (see FIG. 2).
  • the posture detection unit 53 detects the posture of the attachment 22 (see FIG. 2).
  • the operation guidance unit 61 shown in FIG. 3 outputs guidance (work assistance information).
  • the controller 80 causes the operation guidance unit 61 to output operation guidance to the side that reduces the position deviation based on the values detected by the machine position detection unit 51 and the attitude detection unit 53.
  • the operator can easily perform the operation to reduce the position deviation by operating according to the output of the operation guidance unit 61. Therefore, even if the operator is not accustomed to the operation of transporting the transported object 11 shown in FIG. 1, the transported object 11 can be accurately transported to the target position P1.
  • controller 80 shown in FIG. 3 changes the content of the operation guidance output to the operation guidance unit 61 according to the change in the posture of the attachment 22 detected by the posture detection unit 53.
  • the operation guidance unit 61 can output appropriate operation guidance according to the change in the posture of the attachment 22.
  • the work machine 20 includes a machine position detection unit 51 and a posture detection unit 53.
  • the machine position detection unit 51 detects the position of the machine body 21 (see FIG. 2).
  • the posture detection unit 53 detects the posture of the attachment 22 (see FIG. 2).
  • the controller 80 automatically operates the attachment 22 on the side that reduces the position deviation based on the values detected by the machine position detection unit 51 and the attitude detection unit 53.
  • the transported object 11 can be transported to the target position P1 without the operator operating the work machine 20 shown in FIG. Therefore, the operator does not need to get used to the operation of accurately transporting the transported object 11 to the target position P1, or the operator can be eliminated (labor can be saved).
  • the controller 80 is set with a position deviation threshold value which is a threshold value related to the magnitude of the position deviation.
  • a position deviation threshold value which is a threshold value related to the magnitude of the position deviation.
  • the controller 80 prohibits the gripping device 33 from releasing the grip of the transported object 11.
  • the controller 80 permits the gripping device 33 to release the grip of the transported object 11.
  • the above embodiment may be variously modified.
  • the arrangement and shape of each component of the above embodiment may be changed.
  • the connection of the block diagram shown in FIG. 3 may be changed.
  • the threshold value and the range (for example, the control execution area A1) may be constant, may be changed by manual operation, or may be automatically changed according to some condition.
  • the number of components may be changed, and some of the components may not be provided.
  • what has been described as a plurality of members or parts that are different from each other may be regarded as one member or part.
  • what has been described as one member or part may be divided into a plurality of different members or parts.
  • the work machine capable of transporting a transported object to a target position.
  • the work machine includes a machine body, an attachment attached to the machine body so as to be movable relative to the machine body, and a controller.
  • the attachment has a base end side attachment attached to the machine body and a tip end attachment attached to the tip end portion of the base end side attachment.
  • the tip attachment is connected to a gripping device capable of gripping the transported object and the tip end portion of the proximal end side attachment, and the gripping device is rotated around at least one rotation center axis with respect to the proximal end side attachment.
  • the controller has a rotating device that can be rotated to the surface, and a detecting unit for detecting the coordinates and posture of the transported object that is gripped by the gripping device.
  • the controller has a storage unit that stores information on a target position of the transported object, and a current position of the transported object based on at least one of the coordinates and the posture detected by the detection unit. It has a position calculation unit that calculates a detection position, and further calculates a position deviation that is a deviation of the detection position with respect to the target position, and an output unit that outputs a signal corresponding to the calculated position deviation.
  • the position calculation unit of the controller calculates the position deviation of the current detection position of the transported object with respect to the target position of the transported object. Then, since the output unit outputs a signal corresponding to the position deviation, this position deviation can be used for various purposes (for example, guidance, automatic control, etc.) by using the signal.
  • the detection unit is provided in the tip attachment, if the gripping device of the tip attachment grips the transported object, the transported object and the detection unit can move integrally. Therefore, it is possible to eliminate the work of attaching and detaching the detection device to and from the transported object as in the case where another detection device having the same function as the detection unit is provided separately from the tip attachment. Therefore, the work required to transport the transported object can be reduced.
  • the tip attachment does not collide with the detection unit due to an erroneous operation, and damage to the detection unit can be suppressed. As a result, it is possible to suppress the problem that the detection unit is damaged and the position of the transported object cannot be accurately detected.
  • the tip attachment further has a reference line positioning portion that abuts on the transported object so as to position the detection unit relative to a reference line virtually set on the transported object. Is desirable.
  • the reference line positioning unit determines the relative position of the detection unit with respect to the reference line of the transported object. Therefore, the position (coordinates and posture) of the transported object can be accurately detected by the detection unit with the reference line as a reference.
  • the tip attachment further has a positioning portion that comes into contact with the transported object so as to position the detection unit relative to the transported object.
  • the positioning unit determines the relative position of the detection unit with respect to the transported object. Therefore, the position (coordinates and posture) of the transported object can be accurately detected by the detection unit.
  • a machine position detection unit that detects the position of the machine body, an attitude detection unit that detects the posture of the attachment with respect to the machine body, and an operator at least one of the machine body and the attachment.
  • the controller further includes a guidance information notification unit capable of transmitting guidance information assisting the operation, and the controller has the position deviation based on the detection results of the machine position detection unit and the posture detection unit. It is desirable to further have a guidance information input unit that determines the guidance information so as to decrease and inputs a signal corresponding to the determined guidance information to the guidance information notification unit.
  • the operator can easily perform an operation such that the position deviation is reduced by operating the work machine according to the guidance information notified from the guidance information notification unit. Therefore, even if the operator is not accustomed to the operation of transporting the transported object, the transported object can be accurately transported to the target position.
  • the guidance information input unit of the controller determines the guidance information so that the guidance information changes according to the change in the posture of the attachment detected by the posture detection unit.
  • the guidance information notification unit can notify the operator of appropriate guidance information according to the change in the posture of the attachment.
  • a machine position detection unit that detects the position of the machine body
  • an attitude detection unit that detects the posture of the attachment with respect to the machine body
  • a command signal are received and the attachment is driven in response to the command signal.
  • the controller determines the command signal so that the position deviation is reduced based on the detection results of the machine position detection unit and the attitude detection unit, and the determination is made. It is desirable to further have an automatic control unit that automatically operates the attachment by inputting the command signal to the drive unit.
  • the transported object can be transported to the target position without the operator operating the work machine. Therefore, it is not necessary for the operator to get used to the operation of accurately transporting the transported object to the target position, or the operator can be eliminated (labor can be saved).
  • the gripping device can be driven so that the gripping device can switch between the state in which the gripping device grips the transported object and the state in which the gripping device releases the gripping of the transported object.
  • the storage unit of the controller further stores a position deviation threshold value which is a threshold value related to the magnitude of the position deviation, and the controller has a position deviation larger than that of the position deviation threshold value. If it is large, a signal for continuing to grip the transported object and prohibiting the release of the grip is input to the grip drive unit, while the position deviation is equal to or less than the position deviation threshold value. It is desirable to further have a grip control unit for inputting a signal for permitting the release of grip of the transported object by the grip device to the grip drive unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)
  • Shovels (AREA)

Abstract

The present invention reduces work required for transporting an article to be transported and prevents an attachment from contacting a detecting unit. A tip attachment (30) comprises a rotating device (31), a grasping device (33), and a detecting unit (45). The grasping device (33) is mounted to the rotating device (31) and can rotate with respect to a basal end attachment (23) by operation of the rotating device (31). The detecting unit (45) is for detecting the coordinates and orientation of an article (11) to be transported held by the grasping device (33). A controller (80) calculates, on the basis of values detected using the detecting unit (45), position deviation that is deviation in a detected position (P2) with respect to a target position (P1).

Description

作業機械Work machine
 本発明は、運搬物を運搬することが可能な作業機械に関する。 The present invention relates to a work machine capable of transporting a transported object.
 例えば特許文献1には、作業機械により運搬物を目標位置まで運搬する技術が開示されている。同文献に開示された技術では、運搬物の位置を検出するための検出装置(同文献におけるプリズム付きブラケット)が、運搬物に取り付けられる。そして、運搬物が、作業機械により吊り上げられた状態で運搬される。 For example, Patent Document 1 discloses a technique for transporting a transported object to a target position by a work machine. In the technique disclosed in the document, a detection device (bracket with prism in the document) for detecting the position of the transported object is attached to the transported object. Then, the transported object is transported in a state of being lifted by a work machine.
特開2017-25633号公報Japanese Unexamined Patent Publication No. 2017-25633
 同文献に開示された技術では、運搬物を運搬するのに必要な作業が多く、手間がかかる。具体的には、運搬物に検出装置を着脱する作業が必要である。また、運搬物(吊り荷)の位置を、介錯ロープなどを用いて調整する作業が必要である。また、同技術では、作業機械の誤操作により、作業機械のアタッチメントが検出装置に接触し、検出装置が破損するおそれがある。 The technology disclosed in the same document requires a lot of work to transport the transported object, which is troublesome. Specifically, it is necessary to attach / detach the detection device to / from the transported object. In addition, it is necessary to adjust the position of the transported object (suspended load) using a kaishakunin rope or the like. Further, in the same technology, the attachment of the work machine may come into contact with the detection device due to an erroneous operation of the work machine, and the detection device may be damaged.
 本発明の目的は、従来よりも運搬物を運搬するために必要な作業を減らすことが可能であるとともに、アタッチメントが検出部に接触することを抑制することが可能な作業機械を提供することにある。 An object of the present invention is to provide a work machine capable of reducing the work required for transporting a transported object as compared with the conventional case and suppressing the attachment from coming into contact with the detection unit. is there.
 本発明によって提供されるのは、運搬物を目標位置まで運搬することが可能な作業機械である。当該作業機械は、機械本体と、前記機械本体に対して相対移動可能なように前記機械本体に取り付けられたアタッチメントと、コントローラと、を備える。前記アタッチメントは、前記機械本体に取り付けられた基端側アタッチメントと、前記基端側アタッチメントの先端部に取り付けられた先端アタッチメントと、を有する。前記先端アタッチメントは、前記運搬物を把持することが可能な把持装置と、前記基端側アタッチメントの先端部に接続され、前記把持装置を前記基端側アタッチメントに対して少なくとも一つの回転中心軸回りに回転させることが可能な回転装置と、前記把持装置に把持された前記運搬物の座標および姿勢を検出するための検出部と、を有する。前記コントローラは、前記運搬物の目標位置の情報を記憶する記憶部と、前記検出部を用いて検出された前記座標および前記姿勢のうちの少なくとも一方の値に基づいて前記運搬物の現在の位置である検出位置を演算し、前記目標位置に対する前記検出位置の偏差である位置偏差を更に演算する位置演算部と、前記演算された位置偏差に対応する信号を出力する出力部と、を有する。 Provided by the present invention is a work machine capable of transporting a transported object to a target position. The work machine includes a machine body, an attachment attached to the machine body so as to be movable relative to the machine body, and a controller. The attachment has a base end side attachment attached to the machine body and a tip end attachment attached to the tip end portion of the base end side attachment. The tip attachment is connected to a gripping device capable of gripping the transported object and the tip end portion of the proximal end side attachment, and the gripping device is rotated around at least one rotation center axis with respect to the proximal end side attachment. It has a rotating device that can be rotated to the surface, and a detecting unit for detecting the coordinates and posture of the transported object that is gripped by the gripping device. The controller has a storage unit that stores information on a target position of the transported object, and a current position of the transported object based on at least one of the coordinates and the posture detected by the detection unit. It has a position calculation unit that calculates a detection position, and further calculates a position deviation that is a deviation of the detection position with respect to the target position, and an output unit that outputs a signal corresponding to the calculated position deviation.
本発明の一実施形態に係る運搬システムを上から見た図である。It is a figure which looked at the transportation system which concerns on one Embodiment of this invention from the top. 図1に示される運搬システムの作業機械などを横から見た図である。It is a figure which looked at the work machine of the transportation system shown in FIG. 1 from the side. 図1に示される運搬システムのブロック図である。It is a block diagram of the transportation system shown in FIG. 図2に示される運搬物および先端アタッチメントの斜視図である。It is a perspective view of the transported object and a tip attachment shown in FIG. 図4に示される治具などの斜視図である。It is a perspective view of the jig shown in FIG. 図2に示される運搬物および治具を上方から見た図であり、検出部の構成例1を示す図である。It is a figure which looked at the transported object and the jig shown in FIG. 2 from above, and is the figure which shows the structural example 1 of the detection part. 図6に示される運搬物および治具を図6の矢印VII-VIIに沿って見た断面図である。6 is a cross-sectional view of the transported object and jig shown in FIG. 6 as viewed along the arrows VII-VII of FIG. 図6に示される運搬物および治具を前後方向から見た図である。It is a figure which looked at the transported object and jig shown in FIG. 6 from the front-rear direction. 図6に対応する図であり、図6に示される検出部の構成例2を示す図である。It is a figure corresponding to FIG. 6, and is the figure which shows the structural example 2 of the detection part shown in FIG. 図6に対応する図であり、図6に示される検出部の構成例3を示す図である。It is a figure corresponding to FIG. 6, and is the figure which shows the structural example 3 of the detection part shown in FIG. 図5に示される治具の先端表示部の斜視図である。It is a perspective view of the tip display part of the jig shown in FIG. 図2に示される作業機械などを上方から見た図であり、制御実行領域を示す図である。It is a figure which looked at the work machine and the like shown in FIG. 2 from above, and is the figure which shows the control execution area.
 図1~図12を参照して、本発明の一実施形態に係る作業機械20を含む運搬システム1について説明する。 The transportation system 1 including the work machine 20 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 12.
 図1は、本実施形態に係る運搬システム1を上から見た図である。図2は、図1に示される運搬システム1の作業機械20などを横から見た図である。図3は、図1に示される運搬システム1のブロック図である。図4は、図2に示される運搬物11および先端アタッチメント30の斜視図である。図5は、図4に示される治具40などの斜視図である。図6は、図2に示される運搬物11および治具40を上方から見た図であり、検出部45の構成例1を示す図である。 FIG. 1 is a top view of the transportation system 1 according to the present embodiment. FIG. 2 is a side view of the work machine 20 and the like of the transportation system 1 shown in FIG. FIG. 3 is a block diagram of the transportation system 1 shown in FIG. FIG. 4 is a perspective view of the transported object 11 and the tip attachment 30 shown in FIG. FIG. 5 is a perspective view of the jig 40 and the like shown in FIG. FIG. 6 is a view of the transported object 11 and the jig 40 shown in FIG. 2 as viewed from above, and is a diagram showing a configuration example 1 of the detection unit 45.
 運搬システム1は、目標位置P1に運搬物11を運搬するためのシステムである。運搬システム1は、トータルステーション15と、作業機械20と、表示部90と、を備える。 The transportation system 1 is a system for transporting the transported object 11 to the target position P1. The transportation system 1 includes a total station 15, a work machine 20, and a display unit 90.
 運搬物11は、図2に示すように、作業機械20によって運搬される物(運搬対象物、構造物)である。運搬物11は、例えば、道路、駐車場、住宅などに設けられる構造物などである。運搬物11は、例えばコンクリート製などであり、例えばプレキャスト材などであり、例えばU字溝などである。図4に示すように、運搬物11の配置の基準となる線を、基準線11aとする。基準線11aは、運搬物11の長手方向に延びる線であり、運搬物11の幅方向(左右方向、方向については後述)における中央部を通る線である。基準線11aは、例えば、運搬物11の底部(下側部分)を通ってもよく、運搬物11の高さ方向における中央部を通ってもよい。なお、運搬物11の配置の基準は、様々に設定されてよい。例えば、運搬物11の幅方向に延びる線が、運搬物11の配置の基準となる線として設定されてもよい。例えば、運搬物11の特定の一点が、基準点として設定されてもよい。 As shown in FIG. 2, the transported object 11 is an object (transported object, structure) transported by the work machine 20. The transported object 11 is, for example, a structure provided on a road, a parking lot, a house, or the like. The transported object 11 is, for example, made of concrete, for example, a precast material, or the like, for example, a U-shaped groove or the like. As shown in FIG. 4, the reference line for arranging the transported object 11 is defined as the reference line 11a. The reference line 11a is a line extending in the longitudinal direction of the transported object 11, and is a line passing through the central portion in the width direction (horizontal direction and direction will be described later) of the transported object 11. The reference line 11a may pass, for example, the bottom portion (lower portion) of the transported object 11 or the central portion in the height direction of the transported object 11. The criteria for arranging the transported object 11 may be set in various ways. For example, a line extending in the width direction of the transported object 11 may be set as a reference line for arranging the transported object 11. For example, a specific point of the transported object 11 may be set as a reference point.
 (方向)
 図5に示す運搬物11に関する方向、および、運搬物11に取り付けられる治具40に関する方向が、次のように定義される。基準線11aが延びる方向(例えば運搬物11の長手方向)が、前後方向Xと定義される。前後方向Xにおける一方の向きが前方向X1と定義され、その逆向きが後方向X2と定義される。基準線11aに直交する方向であって運搬物11が水平面上に置かれた場合に水平方向となる方向が、幅方向Yと定義される。図6に示すように、幅方向Yにおいて、運搬物11の幅方向の中央に近付く向きが幅方向内向きYiと定義され、運搬物11の幅方向中央から遠ざかる向きが幅方向外向きYoと定義される。幅方向Yにおいて、前方向X1を向いたときの右方向が右方向Yrと定義され、前方向X1を向いたときの左方向が左方向Ylと定義される。図5に示すように、前後方向Xおよび幅方向Yのそれぞれに直交する方向が、高さ方向Z(上下方向)と定義される。高さ方向Zにおいて、運搬物11が水平面上に置かれた場合に上向きとなる向きが上方向Z1と定義され、その逆向きが下方向Z2と定義される。なお、上記の各方向は本実施形態に係る運搬システム1を説明するためのものであり、本発明に係る作業機械の構造や使用態様を限定するものではない。
(direction)
The direction with respect to the transported object 11 shown in FIG. 5 and the direction with respect to the jig 40 attached to the transported object 11 are defined as follows. The direction in which the reference line 11a extends (for example, the longitudinal direction of the transported object 11) is defined as the front-rear direction X. One direction in the front-back direction X is defined as the front direction X1, and the opposite direction is defined as the back direction X2. The width direction Y is defined as the direction orthogonal to the reference line 11a and the horizontal direction when the transported object 11 is placed on the horizontal plane. As shown in FIG. 6, in the width direction Y, the direction approaching the center of the width direction of the transported object 11 is defined as the width direction inward Yi, and the direction away from the width direction center of the transported object 11 is defined as the width direction outward direction Yo. Defined. In the width direction Y, the right direction when facing the front direction X1 is defined as the right direction Yr, and the left direction when facing the front direction X1 is defined as the left direction Yl. As shown in FIG. 5, the direction orthogonal to each of the front-rear direction X and the width direction Y is defined as the height direction Z (vertical direction). In the height direction Z, the upward direction when the transported object 11 is placed on the horizontal plane is defined as the upward direction Z1, and the opposite direction is defined as the downward direction Z2. It should be noted that each of the above directions is for explaining the transportation system 1 according to the present embodiment, and does not limit the structure and usage mode of the work machine according to the present invention.
 図7は、図6に示される運搬物11および治具40を図6の矢印VII-VIIに沿って見た断面図である。 FIG. 7 is a cross-sectional view of the transported object 11 and the jig 40 shown in FIG. 6 as viewed along the arrows VII-VII of FIG.
 電子タグ13は、図7に示される運搬物11の情報を記憶および送信する。電子タグ13は、運搬物11に設けられる(装着される)。電子タグ13は、運搬物11に埋め込まれてもよく、運搬物11に貼り付けられてもよい。電子タグ13は、例えばRFID(Radio Frequency Identifier)タグなどである。 The electronic tag 13 stores and transmits the information of the transported object 11 shown in FIG. 7. The electronic tag 13 is provided (attached) to the transported object 11. The electronic tag 13 may be embedded in the transported object 11 or may be attached to the transported object 11. The electronic tag 13 is, for example, an RFID (Radio Frequency Identifier) tag or the like.
 トータルステーション15は、図1に示すプリズム45a(後述)の位置を検出する装置である。トータルステーション15は、トータルステーション15からプリズム45aまでの距離、および、トータルステーション15に対するプリズム45aの方向を検出する。トータルステーション15は、プリズム45aを自動的に追尾し続ける機能(自動追尾機能)を有する。トータルステーション15の座標(機械点)は、2か所の測量基準点16(既知の座標)を基準として、後方交会法により求められる。これにより、トータルステーション15の座標が、作業現場の座標系に関連付けられる。 The total station 15 is a device that detects the position of the prism 45a (described later) shown in FIG. The total station 15 detects the distance from the total station 15 to the prism 45a and the direction of the prism 45a with respect to the total station 15. The total station 15 has a function (automatic tracking function) of automatically continuing to track the prism 45a. The coordinates (mechanical points) of the total station 15 are obtained by the backward association method with reference to the two surveying reference points 16 (known coordinates). As a result, the coordinates of the total station 15 are associated with the coordinate system of the work site.
 (運搬物11の位置)
 以後、作業現場の座標系(測量基準点16に関連付けられた3次元座標系)における運搬物11の位置を、単に「運搬物11の位置」などという。「運搬物11の位置」には、運搬物11の座標と、運搬物11の姿勢と、のそれぞれの情報が含まれる。運搬物11の座標は、作業現場の座標系における、運搬物11の位置を示す座標(位置座標)である。運搬物11の姿勢は、作業現場の座標系における運搬物11の回転角度である。運搬物11の姿勢は、水平面に対する運搬物11の傾斜(傾斜の角度、傾斜の向き)と、上から見たときの運搬物11の向き(例えば基準線11aの向き)と、を含む。例えば、運搬物11の姿勢は、ヨー方向、ピッチ方向およびロール方向のそれぞれの方向における角度(ヨー角、ピッチ角、ロール角)で示される。図4に示す運搬物11の高さ方向に延びる軸回りの運搬物11の回転方向がヨー方向、幅方向に延びる軸回りの運搬物11の回転方向がピッチ方向、前後方向に延びる軸回りの運搬物11の回転方向がロール方向とそれぞれ定義される。
(Position of cargo 11)
Hereinafter, the position of the transported object 11 in the coordinate system of the work site (the three-dimensional coordinate system associated with the survey reference point 16) is simply referred to as “the position of the transported object 11” or the like. The "position of the transported object 11" includes information on the coordinates of the transported object 11 and the posture of the transported object 11. The coordinates of the transported object 11 are coordinates (position coordinates) indicating the position of the transported object 11 in the coordinate system of the work site. The posture of the transported object 11 is the rotation angle of the transported object 11 in the coordinate system of the work site. The posture of the transported object 11 includes an inclination of the transported object 11 with respect to a horizontal plane (angle of inclination, direction of inclination) and an orientation of the transported object 11 when viewed from above (for example, the direction of the reference line 11a). For example, the posture of the transported object 11 is indicated by angles (yaw angle, pitch angle, roll angle) in each of the yaw direction, the pitch direction, and the roll direction. The rotation direction of the axially transported object 11 extending in the height direction of the transported object 11 shown in FIG. 4 is the yaw direction, and the rotational direction of the axially extending transported object 11 extending in the width direction is the pitch direction and the axially extending in the front-rear direction. The rotation direction of the transported object 11 is defined as the roll direction.
 作業機械20は、図2に示すように、運搬物11を目標位置P1まで運搬する作業を行うことが可能な機械である。作業機械20は、例えば建設作業を行う建設機械であり、例えばショベルなどである。作業機械20は、機械本体21と、アタッチメント22と、図3に示すセンサ類50と、操作ガイダンス部61(ガイダンス情報報知部)と、駆動部63と、コントローラ80と、を備える。 As shown in FIG. 2, the work machine 20 is a machine capable of carrying the transported object 11 to the target position P1. The work machine 20 is, for example, a construction machine that performs construction work, such as an excavator. The work machine 20 includes a machine body 21, an attachment 22, sensors 50 shown in FIG. 3, an operation guidance unit 61 (guidance information notification unit), a drive unit 63, and a controller 80.
 機械本体21(機体)は、図2に示すように、下部走行体21aと、上部旋回体21bと、を備える。下部走行体21aは、作業機械20を走行させるものであって、地面を走行可能である。上部旋回体21bは、下部走行体21aに上下方向に延びる旋回中心軸周りに旋回可能に搭載される。 As shown in FIG. 2, the machine body 21 (airframe) includes a lower traveling body 21a and an upper rotating body 21b. The lower traveling body 21a runs the work machine 20 and can travel on the ground. The upper swivel body 21b is mounted on the lower traveling body 21a so as to be swivelable around a swivel center axis extending in the vertical direction.
 アタッチメント22(作業アタッチメント)は、運搬物11を運搬する作業(運搬作業)を行う装置である。アタッチメント22は、機械本体21に対して相対移動(起伏)可能なように、機械本体21に取り付けられ、より詳しくは上部旋回体21bに取り付けられる。アタッチメント22は、基端側アタッチメント23と、先端アタッチメント30と、を備える。 Attachment 22 (work attachment) is a device that performs work (transportation work) for transporting the transported object 11. The attachment 22 is attached to the machine body 21 so that it can move (undulate) relative to the machine body 21, and more specifically, the attachment 22 is attached to the upper swing body 21b. The attachment 22 includes a base end side attachment 23 and a tip end attachment 30.
 基端側アタッチメント23は、アタッチメント22のうち、基端側(上部旋回体21bに取り付けられる側)に配置される部分である。基端側アタッチメント23は、ブーム23aと、アーム23bと、を備える。ブーム23aは、上部旋回体21bに起伏可能(上下に回転可能)に取り付けられる。上部旋回体21bに対するブーム23aの回転軸が延びる方向が「横方向」と定義される。アーム23bは、ブーム23aに横方向に延びる回転軸を中心に回転可能に取り付けられる。 The base end side attachment 23 is a portion of the attachment 22 that is arranged on the base end side (the side attached to the upper swivel body 21b). The base end side attachment 23 includes a boom 23a and an arm 23b. The boom 23a is undulating (rotatably up and down) attached to the upper swing body 21b. The direction in which the rotation axis of the boom 23a extends with respect to the upper swing body 21b is defined as the "lateral direction". The arm 23b is rotatably attached to the boom 23a about a rotation axis extending in the lateral direction.
 先端アタッチメント30は、基端側アタッチメント23の先端部(上記「基端側」とは反対側の部分)に取り付けられ、特にアーム23bの先端部に取り付けられる。この結果、先端アタッチメント30は、アタッチメント22の先端部に配置される。先端アタッチメント30は、回転装置31と、把持装置33と、治具40とを備える。 The tip attachment 30 is attached to the tip of the base end side attachment 23 (the portion opposite to the "base end side"), and is particularly attached to the tip end of the arm 23b. As a result, the tip attachment 30 is arranged at the tip of the attachment 22. The tip attachment 30 includes a rotating device 31, a gripping device 33, and a jig 40.
 回転装置31(チルトローテータ)は、基端側アタッチメント23の先端部に取り付けられ(接続され)、特にアーム23bの先端部に取り付けられる。回転装置31は、アーム23bに対して把持装置33を回転(例えば任意の方向に回転)させる。回転装置31は、アーム23bに対して、互いに直交する3軸を中心に把持装置33を回転させる。回転装置31は、取付部31aと、チルト部31bと、回転部31cと、を備える。取付部31aは、横方向に延びる回転軸を中心に回転可能にアーム23bに取り付けられる。チルト部31bは、取付部31aに回転可能に取り付けられる。チルト部31bは、アーム23bの長手方向に対して横方向に傾くように、アーム23bに対して回転(チルト動作)可能である(図4参照)。回転部31cは、チルト部31bに回転可能に取り付けられる。回転部31cは、チルト部31bの中心軸を中心に、チルト部31bに対して回転(ローテート動作)可能である(図4参照)。この結果、回転部31cは、アーム23bに対して、互いに直交する3軸を中心に回転可能である。すなわち、回転装置31は、把持装置33を基端側アタッチメント23に対して少なくとも一つの回転中心軸回り(本実施形態では3つの回転中心軸回り)に回転させることが可能とされている。 The rotating device 31 (tilt rotator) is attached (connected) to the tip of the base end side attachment 23, and is particularly attached to the tip of the arm 23b. The rotating device 31 rotates (for example, rotates in an arbitrary direction) the gripping device 33 with respect to the arm 23b. The rotating device 31 rotates the gripping device 33 with respect to the arm 23b around three axes orthogonal to each other. The rotating device 31 includes a mounting portion 31a, a tilt portion 31b, and a rotating portion 31c. The attachment portion 31a is rotatably attached to the arm 23b about a rotation axis extending in the lateral direction. The tilt portion 31b is rotatably attached to the attachment portion 31a. The tilt portion 31b can rotate (tilt) with respect to the arm 23b so as to tilt laterally with respect to the longitudinal direction of the arm 23b (see FIG. 4). The rotating portion 31c is rotatably attached to the tilt portion 31b. The rotating portion 31c can rotate (rotate) with respect to the tilt portion 31b around the central axis of the tilt portion 31b (see FIG. 4). As a result, the rotating portion 31c can rotate about three axes orthogonal to each other with respect to the arm 23b. That is, the rotating device 31 is capable of rotating the gripping device 33 around at least one rotation center axis (in the present embodiment, around three rotation center axes) with respect to the base end side attachment 23.
 把持装置33は、運搬物11を把持する。把持装置33は、回転装置31に取り付けられる。把持装置33は、回転装置31の作動により、基端側アタッチメント23(さらに詳しくはアーム23b)に対して回転可能(例えば任意の方向に回転可能)である。把持装置33は、アーム23bに対する取付部31aの回転、取付部31aに対するチルト部31bの回転(チルト動作)、およびチルト部31bに対する回転部31cの回転(ローテート動作)のそれぞれに連動して回転する。図4に示すように、把持装置33は、基部33aと、把持部33bと、を備える。基部33aは、回転部31cに固定される。把持部33bは、運搬物11に接触し、運搬物11を把持する部分である。例えば、一対の把持部33bが基部33aに設けられる。一対の把持部33bは、基部33aに対して開閉(回転)し、幅方向外側から挟むように運搬物11を把持する(掴む)。なお、一対の把持部33bは、運搬物11の内側から運搬物11を押し拡げる(伸張する、突っ張る)ように運搬物11を把持してもよい(図示なし)。以下では、運搬物11が把持部33bに把持された状態(図2参照)について説明する。 The gripping device 33 grips the transported object 11. The gripping device 33 is attached to the rotating device 31. The gripping device 33 is rotatable (for example, rotatable in any direction) with respect to the proximal end side attachment 23 (more specifically, the arm 23b) by the operation of the rotating device 31. The gripping device 33 rotates in conjunction with the rotation of the mounting portion 31a with respect to the arm 23b, the rotation of the tilting portion 31b with respect to the mounting portion 31a (tilt operation), and the rotation of the rotating portion 31c with respect to the tilting portion 31b (rotation operation). .. As shown in FIG. 4, the gripping device 33 includes a base portion 33a and a gripping portion 33b. The base portion 33a is fixed to the rotating portion 31c. The grip portion 33b is a portion that comes into contact with the transported object 11 and grips the transported object 11. For example, a pair of grips 33b are provided on the base 33a. The pair of gripping portions 33b opens and closes (rotates) with respect to the base portion 33a, and grips (grasps) the transported object 11 so as to sandwich it from the outside in the width direction. The pair of gripping portions 33b may grip the transported object 11 so as to push and expand (extend, stretch) the transported object 11 from the inside of the transported object 11 (not shown). Hereinafter, a state in which the transported object 11 is gripped by the grip portion 33b (see FIG. 2) will be described.
 治具40は、運搬物11に取り付けられる装置である。治具40は、フレーム部41と、図6に示す位置決め部43と、検出部45と、読取装置47と、を備える。 The jig 40 is a device attached to the transported object 11. The jig 40 includes a frame unit 41, a positioning unit 43 shown in FIG. 6, a detection unit 45, and a reading device 47.
 フレーム部41は、図5に示すように、運搬物11と一体で目標位置P1まで移動するように運搬物11に取り付け(接触)可能である。フレーム部41は、運搬物11の、例えば上側部分に取り付け可能である。フレーム部41は、検出部45を支持する。フレーム部41は、フレーム本体部41aと、幅ストッパ部41bと、前後ストッパ部41cと、を備える。 As shown in FIG. 5, the frame portion 41 can be attached (contacted) to the transported object 11 so as to move to the target position P1 integrally with the transported object 11. The frame portion 41 can be attached to, for example, an upper portion of the transported object 11. The frame unit 41 supports the detection unit 45. The frame portion 41 includes a frame main body portion 41a, a width stopper portion 41b, and front and rear stopper portions 41c.
 フレーム本体部41aは、図4に示すように、基部33aに固定される。フレーム本体部41aは、基部33aに直接固定されてもよく、回転部31cに固定される結果として基部33aに対して固定されてもよい。フレーム本体部41aは、例えば板状などであり、直方体状などでもよい。フレーム本体部41aは、基部33aに対して前後方向に突出する(延びている)。フレーム本体部41aは、基部33aから、前側および後側のうちの少なくともいずれかに突出してもよい。本実施形態では、フレーム本体部41aは、前側および後側のそれぞれに突出する。この場合、フレーム本体部41aは、基部33aから前側に突出する前側フレーム本体部41a1と、基部33aから後側に突出する後側フレーム本体部41a2と、を備える。 The frame main body 41a is fixed to the base 33a as shown in FIG. The frame body portion 41a may be fixed directly to the base portion 33a, or may be fixed to the base portion 33a as a result of being fixed to the rotating portion 31c. The frame main body 41a has, for example, a plate shape or a rectangular parallelepiped shape. The frame body portion 41a projects (extends) in the front-rear direction with respect to the base portion 33a. The frame body portion 41a may project from the base portion 33a to at least one of the front side and the rear side. In the present embodiment, the frame main body 41a projects to the front side and the rear side, respectively. In this case, the frame body 41a includes a front frame body 41a1 projecting forward from the base 33a and a rear frame body 41a2 projecting rearward from the base 33a.
 幅ストッパ部41bは、図5に示すように、運搬物11に対する治具40の幅方向の移動を制限する。図6に示すように、幅ストッパ部41bは、運搬物11の幅方向外側の面に接触可能(例えば面接触可能)である。幅ストッパ部41bは、運搬物11の幅方向外側の両面(左側および右側の面)のうち一方の面(例えば左側の面)に接触する。運搬物11の幅方向外側の他方の面(例えば右側の面)に接触する幅ストッパ部41bは、設けられてもよく、設けられなくてもよい。図5に示すように、幅ストッパ部41bは、フレーム本体部41aの幅方向外側部分から下方に突出する。幅ストッパ部41bは、例えば板状などである。幅ストッパ部41bは、フレーム本体部41aに対して固定される。幅ストッパ部41bは、前側フレーム本体部41a1に固定されてもよく、後側フレーム本体部41a2に固定されてもよい(図示なし)。 As shown in FIG. 5, the width stopper portion 41b limits the movement of the jig 40 with respect to the transported object 11 in the width direction. As shown in FIG. 6, the width stopper portion 41b can contact the outer surface of the transported object 11 in the width direction (for example, surface contact is possible). The width stopper portion 41b comes into contact with one surface (for example, the left surface) of both sides (left side and right side surfaces) on the outer side in the width direction of the transported object 11. The width stopper portion 41b that comes into contact with the other surface (for example, the right surface) on the outer side in the width direction of the transported object 11 may or may not be provided. As shown in FIG. 5, the width stopper portion 41b projects downward from the outer portion in the width direction of the frame main body portion 41a. The width stopper portion 41b has, for example, a plate shape. The width stopper portion 41b is fixed to the frame main body portion 41a. The width stopper portion 41b may be fixed to the front frame main body portion 41a1 or may be fixed to the rear frame main body portion 41a2 (not shown).
 前後ストッパ部41cは、運搬物11に対する治具40の前後方向の移動を制限する。図6に示すように、前後ストッパ部41cは、運搬物11の前側の面(前後方向の一方側の面)に接触可能である。前後ストッパ部41cは、前側フレーム本体部41a1の前側端部に設けられる。運搬物11の後側の面(前後方向の他方側の面)に接触可能な前後ストッパ部41c(図示なし)は、設けられてもよく、設けられなくてもよい。図7に示すように、前後ストッパ部41cは、フレーム本体部41aの前後方向の外側部分(具体的には前側部分)から下方に突出する。前後ストッパ部41cは、例えば板状などである。前後ストッパ部41cはフレーム本体部41aに対して固定される。 The front-rear stopper portion 41c limits the movement of the jig 40 with respect to the transported object 11 in the front-rear direction. As shown in FIG. 6, the front-rear stopper portion 41c can come into contact with the front surface (one surface in the front-rear direction) of the transported object 11. The front / rear stopper portion 41c is provided at the front end portion of the front frame main body portion 41a1. The front-rear stopper portion 41c (not shown) that can come into contact with the rear surface (the other surface in the front-rear direction) of the transported object 11 may or may not be provided. As shown in FIG. 7, the front-rear stopper portion 41c projects downward from the outer portion (specifically, the front side portion) of the frame main body portion 41a in the front-rear direction. The front and rear stopper portions 41c have, for example, a plate shape. The front and rear stopper portions 41c are fixed to the frame main body portion 41a.
 図8は、図6に示されるす運搬物11および治具40を前方(前後方向)から見た図である。 FIG. 8 is a view of the transported object 11 and the jig 40 shown in FIG. 6 as viewed from the front (front-back direction).
 位置決め部43は、図5に示す把持装置33に対する、運搬物11(さらに詳しくは把持装置33に把持された運搬物11)の相対位置を位置決めする。位置決め部43(図6参照)は、基部33aに対する運搬物11の相対位置を位置決めする。位置決め部43(図6参照)は、フレーム部41に対する運搬物11の相対位置を位置決めする。位置決め部43は、基準線位置決め部43bと、長手方向位置決め部43cと、を備える。 The positioning unit 43 positions the relative position of the transported object 11 (more specifically, the transported object 11 gripped by the gripping device 33) with respect to the gripping device 33 shown in FIG. The positioning unit 43 (see FIG. 6) positions the position of the transported object 11 relative to the base unit 33a. The positioning unit 43 (see FIG. 6) positions the position of the transported object 11 relative to the frame unit 41. The positioning unit 43 includes a reference line positioning unit 43b and a longitudinal positioning unit 43c.
 基準線位置決め部43b(図8参照)は、把持装置33に対する、把持装置33に把持された運搬物11の基準線11aの相対位置を位置決めする。図8に示すように、基準線位置決め部43bは、治具40に対する、運搬物11の基準線11aの相対位置を位置決めする。基準線位置決め部43bは、治具40と基準線11aとの相対位置が所定の許容範囲に収まるように治具40と運搬物11とを位置決めする。基準線位置決め部43bは、具体的には、運搬物11の上側の面に接触するフレーム本体部41aの下側の面と、運搬物11の幅方向外側の面に接触する幅ストッパ部41bの幅方向内側の面と、により構成される。フレーム本体部41aの下側の面は、治具40に対する基準線11aの、高さ方向における位置決めを行う。幅ストッパ部41bの幅方向内側の面は、治具40に対する基準線11aの、幅方向における位置決めを行う。すなわち、基準線位置決め部43bは、運搬物11に仮想的に設定された基準線11aに対して治具40の検出部45を相対的に位置決めするように運搬物11に当接する。 The reference line positioning unit 43b (see FIG. 8) positions the relative position of the reference line 11a of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33. As shown in FIG. 8, the reference line positioning unit 43b positions the relative position of the reference line 11a of the transported object 11 with respect to the jig 40. The reference line positioning unit 43b positions the jig 40 and the transported object 11 so that the relative positions of the jig 40 and the reference line 11a are within a predetermined allowable range. Specifically, the reference line positioning portion 43b is a width stopper portion 41b that contacts the lower surface of the frame body portion 41a that contacts the upper surface of the transported object 11 and the outer surface of the transported object 11 in the width direction. It is composed of an inner surface in the width direction. The lower surface of the frame main body 41a positions the reference line 11a with respect to the jig 40 in the height direction. The inner surface of the width stopper portion 41b in the width direction is positioned on the reference line 11a with respect to the jig 40 in the width direction. That is, the reference line positioning unit 43b abuts on the transported object 11 so as to position the detection unit 45 of the jig 40 relative to the reference line 11a virtually set on the transported object 11.
 長手方向位置決め部43c(図6参照)は、図5に示す把持装置33に対する、把持装置33に把持された運搬物11の相対位置であって、運搬物11の長手方向(前後方向)における相対位置を位置決めする。図6に示すように、長手方向位置決め部43cは、前後方向における、治具40に対する運搬物11の相対位置を位置決めする。長手方向位置決め部43cは、治具40と運搬物11との前後方向における相対位置が所定の許容範囲に収まるように治具40と運搬物11とを位置決めする。長手方向位置決め部43cは、具体的に、運搬物11の前側の面に接触する前後ストッパ部41cの後側の面により構成される。すなわち、長手方向位置決め部43cは、運搬物11に対して治具40の検出部45を相対的に位置決めするように運搬物11に当接する。 The longitudinal positioning portion 43c (see FIG. 6) is a relative position of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33 shown in FIG. 5, and is relative to the longitudinal direction (front-back direction) of the transported object 11. Position the position. As shown in FIG. 6, the longitudinal positioning portion 43c positions the relative position of the transported object 11 with respect to the jig 40 in the front-rear direction. The longitudinal positioning portion 43c positions the jig 40 and the transported object 11 so that the relative positions of the jig 40 and the transported object 11 in the front-rear direction fall within a predetermined allowable range. Specifically, the longitudinal positioning portion 43c is composed of a rear surface of the front and rear stopper portions 41c that come into contact with the front surface of the transported object 11. That is, the longitudinal positioning unit 43c abuts on the transported object 11 so as to position the detection unit 45 of the jig 40 relative to the transported object 11.
 検出部45は、図5に示すように、把持装置33に把持された運搬物11の位置(座標および姿勢)を検出するための部分である。検出部45は、先端アタッチメント30の一部である(先端アタッチメント30に搭載される)。検出部45は、基部33aと一体的に設けられ、基部33aの移動に連動して移動する。検出部45は、少なくともフレーム部41に設けられ、フレーム部41に固定される。検出部45は、フレーム部41の上側の面に取り付けられる。検出部45は、少なくともプリズム45aを備えており、角度センサ45bを更に備える場合がある。プリズム45a(視準プリズム)の座標は、トータルステーション15(図1参照)により検出される。なお、トータルステーション15が、検出部45の一部を構成してもよい。すなわち、検出部45はフレーム部41に設けられるものだけに限定されない。角度センサ45bは、運搬物11の姿勢を検出する。なお、検出部45のうちフレーム部41に設けられるプリズム45aや角度センサ45bと把持装置33との相対位置は固定されている(図5)。このため、把持装置33と運搬物11との相対位置が固定されれば、自ずと検出部45と運搬物11との相対位置も固定される。なお、フレーム部41におけるプリズム45aの位置、およびプリズム45aの個数によって、角度センサ45bが必要であるか否かが相違し、角度センサ45bが回転角度を検出する必要のある軸の数が相違する。検出部45は、具体的には例えば、次の[構成例1]~[構成例3]のように構成される。 As shown in FIG. 5, the detection unit 45 is a part for detecting the position (coordinates and posture) of the transported object 11 gripped by the gripping device 33. The detection unit 45 is a part of the tip attachment 30 (mounted on the tip attachment 30). The detection unit 45 is provided integrally with the base portion 33a and moves in conjunction with the movement of the base portion 33a. The detection unit 45 is provided at least in the frame unit 41 and is fixed to the frame unit 41. The detection unit 45 is attached to the upper surface of the frame unit 41. The detection unit 45 includes at least a prism 45a, and may further include an angle sensor 45b. The coordinates of the prism 45a (collimation prism) are detected by the total station 15 (see FIG. 1). The total station 15 may form a part of the detection unit 45. That is, the detection unit 45 is not limited to that provided in the frame unit 41. The angle sensor 45b detects the posture of the transported object 11. Of the detection unit 45, the relative positions of the prism 45a and the angle sensor 45b provided on the frame unit 41 and the gripping device 33 are fixed (FIG. 5). Therefore, if the relative positions of the gripping device 33 and the transported object 11 are fixed, the relative positions of the detection unit 45 and the transported object 11 are naturally fixed. Whether or not the angle sensor 45b is required differs depending on the position of the prism 45a in the frame portion 41 and the number of prisms 45a, and the number of axes that the angle sensor 45b needs to detect the rotation angle differs. .. Specifically, the detection unit 45 is configured as follows, for example, [Configuration Example 1] to [Configuration Example 3].
 [構成例1]
 図6に示すように、構成例1(検出部45-1)では、2個のプリズム45aが設けられる。2個のプリズム45aは、前後方向に互いに離れた位置(ずれた位置)に配置される。2個のプリズム45aの幅方向における位置は互いに同じである。すなわち、上側から見たとき、2個のプリズム45aは、前後方向に延びる線(例えば基準線11a)を通る。この場合、2個のプリズム45aの座標に基づいて、運搬物11のヨー角およびピッチ角を算出することができる。一方、2個のプリズム45aの座標からは、運搬物11のロール角(前後方向に延びる軸回りの回転角度)を算出することができない。そこで、角度センサ45bは、1軸(具体的には運搬物11のロール角)の回転角度を検出する。
[Configuration Example 1]
As shown in FIG. 6, in the configuration example 1 (detection unit 45-1), two prisms 45a are provided. The two prisms 45a are arranged at positions separated from each other (shifted positions) in the front-rear direction. The positions of the two prisms 45a in the width direction are the same as each other. That is, when viewed from above, the two prisms 45a pass through a line extending in the front-rear direction (for example, a reference line 11a). In this case, the yaw angle and pitch angle of the transported object 11 can be calculated based on the coordinates of the two prisms 45a. On the other hand, the roll angle (rotation angle around the axis extending in the front-rear direction) of the transported object 11 cannot be calculated from the coordinates of the two prisms 45a. Therefore, the angle sensor 45b detects the rotation angle of one axis (specifically, the roll angle of the transported object 11).
 2個のプリズム45aが設けられる場合、2個のプリズム45aが、前側フレーム本体部41a1および後側フレーム本体部41a2のいずれか一方のみに配置されてもよい。また、図5に示すように、2個のプリズム45aが、前側フレーム本体部41a1と後側フレーム本体部41a2とにそれぞれ分かれて配置されてもよい。 When two prisms 45a are provided, the two prisms 45a may be arranged only in one of the front frame main body 41a1 and the rear frame main body 41a2. Further, as shown in FIG. 5, the two prisms 45a may be separately arranged in the front frame main body 41a1 and the rear frame main body 41a2, respectively.
 [構成例2]
 図9は、図6に対応する図であり、図6に示される検出部45の構成例2を示す図である。図9に示すように、構成例2(検出部45-2)では、2個のプリズム45aが設けられる。2個のプリズム45aは、前後方向に互いに離れた位置に配置され、かつ、幅方向(左右方向)において互いに離れた位置に配置される。この場合、2個のプリズム45aの座標に基づいて、運搬物11のヨー角、ピッチ角、およびロール角を算出することができる。このため、この構成例2では、角度センサ45b(図6参照)は不要である。なお、図9および後記の図10では、図6に示す幅ストッパ部41bおよび前後ストッパ部41cの図示を省略している。
[Configuration Example 2]
FIG. 9 is a diagram corresponding to FIG. 6, and is a diagram showing a configuration example 2 of the detection unit 45 shown in FIG. As shown in FIG. 9, in the configuration example 2 (detection unit 45-2), two prisms 45a are provided. The two prisms 45a are arranged at positions separated from each other in the front-rear direction, and are arranged at positions separated from each other in the width direction (left-right direction). In this case, the yaw angle, pitch angle, and roll angle of the transported object 11 can be calculated based on the coordinates of the two prisms 45a. Therefore, in this configuration example 2, the angle sensor 45b (see FIG. 6) is unnecessary. In addition, in FIG. 9 and FIG. 10 described later, the width stopper portion 41b and the front-rear stopper portion 41c shown in FIG. 6 are not shown.
 [構成例3]
 図10は、図6に対応する図であり、図6に示される検出部45の構成例3を示す図である。図10に示すように、構成例3(検出部45-3)では、1個のプリズム45aが設けられる。このプリズム45aは、運搬物11に対する相対位置が既知の位置(例えば、高さ方向から見て運搬物11の中央の位置など)に配置される。この場合、プリズム45aの座標からは、運搬物11の姿勢を算出することはできない。そこで、角度センサ45bは、3軸、具体的には運搬物11のヨー角、ピッチ角、およびロール角をそれぞれ検出する。
[Configuration Example 3]
FIG. 10 is a diagram corresponding to FIG. 6, and is a diagram showing a configuration example 3 of the detection unit 45 shown in FIG. As shown in FIG. 10, in the configuration example 3 (detection unit 45-3), one prism 45a is provided. The prism 45a is arranged at a position where the relative position with respect to the transported object 11 is known (for example, a position at the center of the transported object 11 when viewed from the height direction). In this case, the posture of the transported object 11 cannot be calculated from the coordinates of the prism 45a. Therefore, the angle sensor 45b detects the yaw angle, the pitch angle, and the roll angle of the three axes, specifically, the transported object 11, respectively.
 なお、検出部45は、運搬物11の座標および姿勢を検出できれば、上記の[構成例1]~[構成例3]以外の構成でもよい。また、運搬物11の種類や形状などによっては、座標(x軸、y軸、z軸)および姿勢(ヨー角、ピッチ角、ロール角)のうちの一部の情報のみが検出部45により検出されてもよい。具体的には、運搬物11が円筒状の場合などのように、運搬物11を任意のロール角で配置してよい場合は、検出部45でロール角を検出できなくてもよい。 Note that the detection unit 45 may have a configuration other than the above [configuration example 1] to [configuration example 3] as long as the coordinates and posture of the transported object 11 can be detected. Further, depending on the type and shape of the transported object 11, only a part of the coordinates (x-axis, y-axis, z-axis) and posture (yaw angle, pitch angle, roll angle) is detected by the detection unit 45. May be done. Specifically, when the transported object 11 may be arranged at an arbitrary roll angle, such as when the transported object 11 has a cylindrical shape, the detection unit 45 may not be able to detect the roll angle.
 読取装置47は、図7に示すように、運搬物11の情報(後述)を、電子タグ13から読み取り、コントローラ80(図3参照)に送信する。読取装置47は、フレーム部41に設けられる。読取装置47は、アンテナなどを備える。読取装置47のアンテナは、例えば、フレーム部41の面であって電子タグ13を向いた面(具体的にはフレーム部41の下側の面)に設けられる。 As shown in FIG. 7, the reading device 47 reads the information (described later) of the transported object 11 from the electronic tag 13 and transmits it to the controller 80 (see FIG. 3). The reading device 47 is provided in the frame portion 41. The reading device 47 includes an antenna and the like. The antenna of the reading device 47 is provided, for example, on the surface of the frame portion 41 facing the electronic tag 13 (specifically, the lower surface of the frame portion 41).
 センサ類50(図3参照)は、図2に示す作業機械20に関する状態を検出する。図3に示すように、センサ類50は、機械位置検出部51と、姿勢検出部53と、を備える。 The sensors 50 (see FIG. 3) detect the state related to the work machine 20 shown in FIG. As shown in FIG. 3, the sensors 50 include a machine position detection unit 51 and an attitude detection unit 53.
 機械位置検出部51は、図2に示す機械本体21の位置(座標、方向)を検出し、さらに詳しくは上部旋回体21bの位置を検出する。機械位置検出部51は、作業現場の座標系における機械本体21の位置を検出する。機械位置検出部51は、衛星測位システム(例えばGNSS(Global Navigation Satellite System))を用いたものでもよく、トータルステーション15とは別に設けられるトータルステーションを用いたものでもよい。 The machine position detection unit 51 detects the position (coordinates, direction) of the machine body 21 shown in FIG. 2, and more specifically, detects the position of the upper swivel body 21b. The machine position detection unit 51 detects the position of the machine body 21 in the coordinate system of the work site. The machine position detection unit 51 may use a satellite positioning system (for example, GNSS (Global Navigation Satellite System)), or may use a total station provided separately from the total station 15.
 姿勢検出部53(図3参照)は、機械本体21に対するアタッチメント22の姿勢を検出する。姿勢検出部53に検出されるアタッチメント22の姿勢は、機械本体21に対する、把持装置33の位置(運搬物11の位置)の演算に用いられる。図3に示す姿勢検出部53は、例えば角度センサなどを備える。具体的には、姿勢検出部53は、ブーム角度センサ53aと、アーム角度センサ53bと、先端アタッチメント角度センサ53cと、を備える。ブーム角度センサ53aは、図2に示す上部旋回体21bに対するブーム23aの回転角度(起伏角度)を検出する。アーム角度センサ53b(図3参照)は、ブーム23aに対するアーム23bの回転角度を検出する。先端アタッチメント角度センサ53c(図3参照)は、アーム23bに対する先端アタッチメント30の(取付部31aの)回転角度を検出する。先端アタッチメント角度センサ53c(図3参照)は、アーム23bに対するチルト部31bの回転角度、および、チルト部31bに対する回転部31cの(基部33aの)回転角度を検出する。 The posture detection unit 53 (see FIG. 3) detects the posture of the attachment 22 with respect to the machine body 21. The posture of the attachment 22 detected by the posture detection unit 53 is used to calculate the position of the gripping device 33 (the position of the transported object 11) with respect to the machine body 21. The posture detection unit 53 shown in FIG. 3 includes, for example, an angle sensor. Specifically, the posture detection unit 53 includes a boom angle sensor 53a, an arm angle sensor 53b, and a tip attachment angle sensor 53c. The boom angle sensor 53a detects the rotation angle (undulation angle) of the boom 23a with respect to the upper swivel body 21b shown in FIG. The arm angle sensor 53b (see FIG. 3) detects the rotation angle of the arm 23b with respect to the boom 23a. The tip attachment angle sensor 53c (see FIG. 3) detects the rotation angle (of the mounting portion 31a) of the tip attachment 30 with respect to the arm 23b. The tip attachment angle sensor 53c (see FIG. 3) detects the rotation angle of the tilt portion 31b with respect to the arm 23b and the rotation angle (of the base portion 33a) of the rotation portion 31c with respect to the tilt portion 31b.
 操作ガイダンス部61(図3参照)は、操作者が機械本体21およびアタッチメント22のうちの少なくとも一方を操作することを補助するガイダンス情報を出力(報知)することで、作業機械20の操作者(機械オペレータ)が行うべき操作を示す(指示する)ことが可能である。操作ガイダンス部61は、運搬物11を目標位置P1(図1参照)に運搬させるように、ガイダンスを行う(詳細は後述)。操作ガイダンス部61は、光によるガイダンス情報を出力(報知)してもよく、音声によるガイダンス情報を表示(報知)してもよい。光によるガイダンス情報は、画面表示によるものでもよく、LED(light emitting diode)ライトなどのライトによるものでもよい。具体的には、操作ガイダンス部61は、アーム23bを押し側に操作すべき旨を出力する場合、「アームを押してください」という表示や音声出力を行う。 The operation guidance unit 61 (see FIG. 3) outputs (notifies) guidance information that assists the operator in operating at least one of the machine main body 21 and the attachment 22, so that the operator of the work machine 20 (see FIG. 3) It is possible to indicate (instruct) the operation to be performed by the machine operator). The operation guidance unit 61 provides guidance so that the transported object 11 is transported to the target position P1 (see FIG. 1) (details will be described later). The operation guidance unit 61 may output (notify) the guidance information by light, or may display (notify) the guidance information by voice. The guidance information by light may be a screen display or a light such as an LED (light emission diode) light. Specifically, when the operation guidance unit 61 outputs that the arm 23b should be operated to the pushing side, the operation guidance unit 61 displays "Please push the arm" or outputs a voice.
 駆動部63(図3参照)は、作業機械20を駆動させる部分である。駆動部63は、例えば油圧回路を備えてもよく、電気回路を備えてもよい。駆動部63は、指令信号を受け付け当該指令信号に応じて下部走行体21a、上部旋回体21bおよびアタッチメント22をそれぞれ駆動することが可能とされている。また、駆動部63は、前記指令信号に応じて、把持装置33が運搬物11を把持した状態と、把持装置33が運搬物11の把持を解除した状態との間で切換可能なように、把持装置33を駆動することが可能な把持駆動部を含む。 The drive unit 63 (see FIG. 3) is a part that drives the work machine 20. The drive unit 63 may include, for example, a hydraulic circuit or an electric circuit. The drive unit 63 receives a command signal and is capable of driving the lower traveling body 21a, the upper swivel body 21b, and the attachment 22 in response to the command signal. Further, the drive unit 63 can switch between a state in which the gripping device 33 grips the transported object 11 and a state in which the gripping device 33 releases the gripping of the transported object 11 in response to the command signal. A gripping drive unit capable of driving the gripping device 33 is included.
 コントローラ80(図3参照)は、信号の入出力、演算、および記憶などを行う。コントローラ80は、作業機械20に設けられてもよく(図3参照)、図1に示すように、作業機械20の外部に設けられてもよい。コントローラ80は、表示部90と一体的に設けられてもよく、表示部90と別体でもよい。図3に示すように、コントローラ80は、角度センサ45bから、検出された情報(方向の情報)を受信する。コントローラ80は、トータルステーション15から、検出された情報(プリズム45aの座標)を受信する。例えば、コントローラ80は、受信部80rを介して、トータルステーション15から情報を受信する。コントローラ80は、位置偏差(後述)に関する情報を表示部90に送信する。コントローラ80は、目標位置記憶部81と、検出位置演算部82と、位置偏差演算部83と、ログ部85と、自動制御部86と、把持解除禁止部87(把持制御部)と、を備える(各部の詳細は後述)。 The controller 80 (see FIG. 3) performs signal input / output, calculation, storage, and the like. The controller 80 may be provided on the work machine 20 (see FIG. 3), or may be provided outside the work machine 20 as shown in FIG. The controller 80 may be provided integrally with the display unit 90, or may be a separate body from the display unit 90. As shown in FIG. 3, the controller 80 receives the detected information (direction information) from the angle sensor 45b. The controller 80 receives the detected information (coordinates of the prism 45a) from the total station 15. For example, the controller 80 receives information from the total station 15 via the receiving unit 80r. The controller 80 transmits information regarding the position deviation (described later) to the display unit 90. The controller 80 includes a target position storage unit 81, a detection position calculation unit 82, a position deviation calculation unit 83, a log unit 85, an automatic control unit 86, and a grip release prohibition unit 87 (grip control unit). (Details of each part will be described later).
 表示部90(偏差表示部、偏差表示器)は、位置偏差(後述)に関する情報を表示する。表示部90は、操作ガイダンス部61と兼用されてもよい。表示部90は、図1に示す作業機械20の外部に配置されてもよく、例えば運搬物11の近傍の作業員に持たれる携帯可能な物(ハンディタイプのもの)などでもよい。表示部90(図3参照)は、図2に示す作業機械20に含まれてもよく、例えば作業機械20の運転室内などに設けられてもよい。表示部90は、先端アタッチメント30に設けられてもよく、具体的には、図11に示す先端表示部90tを備えてもよい。 The display unit 90 (deviation display unit, deviation display) displays information on the position deviation (described later). The display unit 90 may also be used as the operation guidance unit 61. The display unit 90 may be arranged outside the work machine 20 shown in FIG. 1, and may be, for example, a portable object (handy type) held by a worker in the vicinity of the transported object 11. The display unit 90 (see FIG. 3) may be included in the work machine 20 shown in FIG. 2, and may be provided, for example, in the cab of the work machine 20. The display unit 90 may be provided on the tip attachment 30, and specifically, the tip display unit 90t shown in FIG. 11 may be provided.
 先端表示部90tは、先端アタッチメント30に設けられる。先端表示部90tは、フレーム部41に設けられ、フレーム部41に取り付けられてもよく、フレーム部41と一体化されてもよい。先端表示部90tは、位置偏差に関する情報を、先端表示部90tの周囲に視覚的に通知する。先端表示部90tは、運搬物11(図5参照)の近傍の作業者から容易に視認可能な位置に配置される。先端表示部90tは、作業機械20(図2参照)の操作者から容易に視認可能な位置に配置される。例えば、先端表示部90tは、図5に示す把持装置33の外部(把持装置33によって隠されることがないような位置)に配置される。図11に示すように、先端表示部90tは、例えば、フレーム部41の上側の面に配置され、運搬物11(図5参照)の上側の面と平行に配置される。先端表示部90tは、運搬物11の上側の面以外の面(前後方向および幅方向の少なくともいずれかの方向における外側の面)と平行に配置されてもよい(図示なし)。先端表示部90tは、発光可能な部分を備え、例えばLED(light emitting diode)などを備える。 The tip display unit 90t is provided on the tip attachment 30. The tip display portion 90t may be provided on the frame portion 41 and may be attached to the frame portion 41 or may be integrated with the frame portion 41. The tip display unit 90t visually notifies the information regarding the position deviation to the periphery of the tip display unit 90t. The tip display unit 90t is arranged at a position easily visible to an operator in the vicinity of the transported object 11 (see FIG. 5). The tip display unit 90t is arranged at a position easily visible to the operator of the work machine 20 (see FIG. 2). For example, the tip display unit 90t is arranged outside the gripping device 33 shown in FIG. 5 (a position that is not hidden by the gripping device 33). As shown in FIG. 11, the tip display portion 90t is arranged, for example, on the upper surface of the frame portion 41 and is arranged parallel to the upper surface of the transported object 11 (see FIG. 5). The tip display portion 90t may be arranged in parallel with a surface (outer surface in at least one of the front-rear direction and the width direction) other than the upper surface of the transported object 11 (not shown). The tip display unit 90t includes a portion capable of emitting light, and includes, for example, an LED (light emission diode) or the like.
 (作動)
 図1に示す運搬システム1は、次のように作動するように構成される。
(Operation)
The transportation system 1 shown in FIG. 1 is configured to operate as follows.
 (運搬物11の把持)
 図2に示す作業機械20が作動することで、把持装置33が、運搬物11に近づけられる。そして、治具40が、運搬物11に取り付けられる(嵌め込まれる)。このとき、図8に示す位置決め部43が、運搬物11に接触する。具体的には、フレーム本体部41aの下側の面が、運搬物11の上側の面に接触する。また、幅ストッパ部41bの幅方向内側の面が、運搬物11の幅方向外側の面に接触する。また、図6に示すように、前後ストッパ部41cが、運搬物11の前側の面に接触する。この結果、運搬物11に対して治具40が位置決めされる(相対位置が一意に決まる)。この結果、図5に示す運搬物11に対して検出部45(プリズム45aなど)が位置決めされる。これにより、検出部45の検出結果から、運搬物11の位置を演算可能な状態になる。また、把持装置33が、運搬物11を把持する。位置決め部43が運搬物11に接触するタイミングと、把持装置33が運搬物11の把持を開始するタイミングとは、互いに同時でもよく、一方が先でもよい。
(Gripping the transported object 11)
By operating the work machine 20 shown in FIG. 2, the gripping device 33 is brought closer to the transported object 11. Then, the jig 40 is attached (fitted) to the transported object 11. At this time, the positioning portion 43 shown in FIG. 8 comes into contact with the transported object 11. Specifically, the lower surface of the frame main body 41a comes into contact with the upper surface of the transported object 11. Further, the inner surface of the width stopper portion 41b in the width direction comes into contact with the outer surface of the transported object 11 in the width direction. Further, as shown in FIG. 6, the front-rear stopper portion 41c comes into contact with the front surface of the transported object 11. As a result, the jig 40 is positioned with respect to the transported object 11 (relative position is uniquely determined). As a result, the detection unit 45 (prism 45a or the like) is positioned with respect to the transported object 11 shown in FIG. As a result, the position of the transported object 11 can be calculated from the detection result of the detection unit 45. Further, the gripping device 33 grips the transported object 11. The timing at which the positioning unit 43 comes into contact with the transported object 11 and the timing at which the gripping device 33 starts gripping the transported object 11 may be simultaneous with each other, or one of them may be first.
 (運搬物11の配置の例)
 図1に示す運搬物11は、目標位置P1に運搬され、配置(設置、敷設)される。例えば、運搬物11がU字溝の場合、運搬物11は、次のように配置される場合がある。まず、「1個目の運搬物11」が、目標位置P1に配置される。このとき、1個目の運搬物11の座標および姿勢が、目標とする座標および姿勢と一致するように配置される。その後、「2個目以降の運搬物11」が、通り線P1a(目標とする基準線11aの位置)に沿って、互いに直列的に、互いに接するように、互いに連続するように配置される。2個目以降の運搬物11は、既に配置された運搬物11に連続するように配置される。また、2個目以降の運搬物11は、運搬物11の基準線11aの方向と通り線P1aの方向とが一致するように配置される(運搬物11の姿勢が目標とする姿勢に合わせられる)。この結果、2個目以降の運搬物11の座標は、目標とする座標と一致する。このように、1個目の運搬物11を配置する際には座標および姿勢の情報が必要であり、2個目以降の運搬物11を配置する際には姿勢の情報があれば足りる。なお、上記の運搬物11の配置の手順は一例であり、運搬物11は様々な手順で配置可能である。
(Example of arrangement of the transported object 11)
The transported object 11 shown in FIG. 1 is transported to the target position P1 and arranged (installed and laid). For example, when the transported object 11 has a U-shaped groove, the transported object 11 may be arranged as follows. First, the "first transported object 11" is arranged at the target position P1. At this time, the coordinates and posture of the first transported object 11 are arranged so as to match the target coordinates and posture. After that, the "second and subsequent transported objects 11" are arranged along the passage line P1a (the position of the target reference line 11a) in series with each other and in contact with each other so as to be continuous with each other. The second and subsequent transported objects 11 are arranged so as to be continuous with the already arranged transported objects 11. Further, the second and subsequent transported objects 11 are arranged so that the direction of the reference line 11a of the transported object 11 and the direction of the passage line P1a coincide with each other (the posture of the transported object 11 is adjusted to the target posture). ). As a result, the coordinates of the second and subsequent objects 11 match the target coordinates. As described above, when arranging the first transported object 11, the information on the coordinates and the posture is required, and when arranging the second and subsequent transported objects 11, the information on the posture is sufficient. The procedure for arranging the transported object 11 is an example, and the transported object 11 can be arranged by various procedures.
 (コントローラ80などの作動)
 コントローラ80(図3参照)の作動などの概要は、次の通りである。目標位置記憶部81(図3参照)には、図5に示される運搬物11の目標位置P1の情報が設定(記憶)されている。検出位置演算部82(図3参照)は、検出部45を用いて検出された値に基づいて、運搬物11の現在の位置である検出位置P2を演算する。なお、図5には、高さ方向に投影した目標位置P1および現在の検出位置P2が示されている。位置偏差演算部83(図3参照)は、目標位置P1に対する検出位置P2の偏差である位置偏差を演算する。図3に示すコントローラ80は、位置偏差を減らす側への操作のガイダンスを、操作ガイダンス部61に出力させてもよい。また、自動制御部86は、位置偏差を減らす側に自動的にアタッチメント22(図2参照)を作動させてもよい。コントローラ80は、位置偏差の情報を表示部90に表示させてもよい。コントローラ80の作動などの詳細は、次の通りである。
(Operation of controller 80, etc.)
The outline of the operation of the controller 80 (see FIG. 3) is as follows. Information on the target position P1 of the transported object 11 shown in FIG. 5 is set (stored) in the target position storage unit 81 (see FIG. 3). The detection position calculation unit 82 (see FIG. 3) calculates the detection position P2, which is the current position of the transported object 11, based on the value detected by the detection unit 45. Note that FIG. 5 shows the target position P1 projected in the height direction and the current detection position P2. The position deviation calculation unit 83 (see FIG. 3) calculates a position deviation which is a deviation of the detection position P2 with respect to the target position P1. The controller 80 shown in FIG. 3 may output the operation guidance to the side that reduces the position deviation to the operation guidance unit 61. Further, the automatic control unit 86 may automatically operate the attachment 22 (see FIG. 2) on the side that reduces the position deviation. The controller 80 may display the position deviation information on the display unit 90. Details such as the operation of the controller 80 are as follows.
 (目標位置P1の設定)
 目標位置記憶部81(図3参照)(記憶部)には、図5に示す運搬物11の目標位置P1の情報が、予め(下記の各演算が行われる前に)設定(記憶)されている。目標位置P1の情報は、目標とする運搬物11の位置の情報(設置位置計画情報、設計情報、3次元情報)である。目標位置P1の情報には、目標とする運搬物11の座標(目標座標)の情報と、目標とする運搬物11の姿勢(目標姿勢)の情報と、がそれぞれ含まれる。例えば、上記「1個目の運搬物11」を配置する際に必要な情報は、目標座標の情報および目標姿勢の情報である。上記「2個目以降の運搬物11」を配置する際に必要な情報は、目標姿勢の情報である。2個目以降の運搬物11の目標座標の情報は、目標位置記憶部81に必ずしも設定されていなくてもよい。
(Setting of target position P1)
Information on the target position P1 of the transported object 11 shown in FIG. 5 is set (stored) in advance (before each of the following calculations is performed) in the target position storage unit 81 (see FIG. 3) (storage unit). There is. The information of the target position P1 is information on the position of the target transported object 11 (installation position planning information, design information, three-dimensional information). The information of the target position P1 includes information on the coordinates (target coordinates) of the target transported object 11 and information on the posture (target posture) of the target transported object 11, respectively. For example, the information required when arranging the above-mentioned "first material handling object 11" is information on target coordinates and information on target posture. The information required when arranging the above-mentioned "second and subsequent transported objects 11" is information on the target posture. The information on the target coordinates of the second and subsequent objects 11 does not necessarily have to be set in the target position storage unit 81.
 (検出位置P2の演算)
 検出位置演算部82(図3参照)は、検出部45によって検出された値(検出結果)に基づいて、検出位置P2を演算する。詳しくは、検出位置P2は、検出部45およびトータルステーション15(図1参照)により検出された値に基づいて演算される、現在の(現時点での、実際の)運搬物11の位置である。検出位置P2には、現在の運搬物11の座標(検出座標)と、現在の運搬物11の姿勢(検出姿勢)と、が含まれる。例えば、上記「1個目の運搬物11」を配置する際に必要な情報は、検出座標の情報および検出姿勢の情報である。上記「2個目以降の運搬物11」を配置する際に必要な情報は、検出姿勢の情報である。検出位置演算部82は、運搬しようとしている運搬物11が2個目以降である場合は、必ずしも検出座標を演算しなくてもよい。
(Calculation of detection position P2)
The detection position calculation unit 82 (see FIG. 3) calculates the detection position P2 based on the value (detection result) detected by the detection unit 45. Specifically, the detection position P2 is the current (current, actual) position of the carrier 11 calculated based on the values detected by the detection unit 45 and the total station 15 (see FIG. 1). The detection position P2 includes the coordinates of the current carrier 11 (detection coordinates) and the posture of the current carrier 11 (detection posture). For example, the information required when arranging the "first transported object 11" is the information of the detection coordinates and the information of the detection posture. The information required when arranging the above-mentioned "second and subsequent transported objects 11" is the information on the detection posture. The detection position calculation unit 82 does not necessarily have to calculate the detection coordinates when the transported object 11 to be transported is the second or later.
 (運搬物11の情報の取得)
 コントローラ80(図3参照)は、運搬物11の運搬に必要な情報(以下「運搬物情報」ともいう)を取得する。運搬物情報は、運搬物11の種類(例えばU字溝であるか、ブロックであるかなど)の情報を含んでもよい。運搬物情報は、運搬物11の寸法の情報を含んでもよい。コントローラ80が取得する運搬物11の寸法の情報は、例えば、運搬物11のうち、治具40に対して位置決めされる部分から、その反対側の部分までの、寸法の情報などである。具体的には、運搬物情報は、運搬物11のうち、前後ストッパ部41cが接触している前側の面から後側の面(反対側の面)までの、寸法の情報(すなわち、運搬物11の長手方向の長さの情報)などを含んでもよい。運搬物情報は、前後方向以外の方向の寸法の情報を含んでもよい。
(Acquisition of information on the transported object 11)
The controller 80 (see FIG. 3) acquires information necessary for transporting the transported object 11 (hereinafter, also referred to as “transported object information”). The transported object information may include information on the type of the transported object 11 (for example, whether it is a U-shaped groove or a block). The transported object information may include information on the dimensions of the transported object 11. The dimensional information of the transported object 11 acquired by the controller 80 is, for example, dimensional information from the portion of the transported object 11 positioned with respect to the jig 40 to the portion on the opposite side thereof. Specifically, the transported object information is dimensional information (that is, the transported object) from the front surface to the rear surface (opposite surface) of the transported object 11 to which the front and rear stopper portions 41c are in contact. Information on the length of 11 in the longitudinal direction) and the like may be included. The transported item information may include information on dimensions in directions other than the front-rear direction.
 コントローラ80(図3参照)に取得される運搬物情報は、様々な方法により取得され得る。例えば、運搬物情報は、運搬物11に設けられたもの(貼り付け、取り付け、埋め込みなどされたもの)から取得されてもよく、例えば電子タグ13(図7参照)から取得されてもよい。運搬物11情報は、運搬物11とは別の物(例えば記憶媒体など)から取得されてもよい。運搬物情報は、作業者による入力により取得されてもよい。運搬物情報が、運搬物11の寸法の情報である場合、運搬物11の寸法を測定する装置により運搬物情報が取得されてもよい。具体的には例えば、運搬物11の前側の面と後側の面とを挟むことで、前側の面から後側の面までの寸法を測定する装置により、運搬物11の前後方向の長さの情報が取得されてもよい。 The transported information acquired by the controller 80 (see FIG. 3) can be acquired by various methods. For example, the transported object information may be acquired from the one provided on the transported object 11 (pasted, attached, embedded, etc.), or may be acquired from, for example, the electronic tag 13 (see FIG. 7). The information on the transported object 11 may be acquired from an object other than the transported object 11 (for example, a storage medium). The transported information may be acquired by input by the operator. When the transported object information is the information on the dimensions of the transported object 11, the transported object information may be acquired by an apparatus for measuring the dimensions of the transported object 11. Specifically, for example, the length of the transported object 11 in the front-rear direction is measured by a device that measures the dimension from the front surface to the rear surface by sandwiching the front surface and the rear surface of the transported object 11. Information may be obtained.
 (目標位置P1に対する検出位置P2の位置偏差の演算)
 位置偏差演算部83(図3参照)は、目標位置P1に対する検出位置P2の偏差である位置偏差を演算する。位置偏差には、座標偏差と、姿勢偏差と、が含まれる。座標偏差は、目標座標に対する検出座標の偏差である。姿勢偏差は、目標姿勢に対する検出姿勢の偏差である。姿勢偏差は、通り線P1aが延びる方向に対する、基準線11aが延びる方向の偏差である。例えば、上記「1個目の運搬物11」を配置する際に必要な情報は、座標偏差の情報および姿勢偏差の情報である。上記「2個目以降の運搬物11」を配置する際に必要な情報は、姿勢偏差の情報である。位置偏差演算部83(図3参照)は、運搬しようとしている運搬物11が2個目以降である場合は、必ずしも座標偏差を演算しなくてもよい。なお、検出位置演算部82および位置偏差演算部83は、本発明の位置演算部を構成する。位置演算部は、検出部45を用いて検出された前記座標および前記姿勢のうちの少なくとも一方の値に基づいて運搬物11の現在の位置である検出位置P2を演算し、目標位置P1に対する検出位置P2の偏差である位置偏差を更に演算する。
(Calculation of the position deviation of the detection position P2 with respect to the target position P1)
The position deviation calculation unit 83 (see FIG. 3) calculates a position deviation which is a deviation of the detection position P2 with respect to the target position P1. The position deviation includes a coordinate deviation and a posture deviation. The coordinate deviation is the deviation of the detected coordinates with respect to the target coordinates. The posture deviation is the deviation of the detected posture with respect to the target posture. The posture deviation is a deviation in the direction in which the reference line 11a extends with respect to the direction in which the passage line P1a extends. For example, the information required when arranging the above-mentioned "first transported object 11" is coordinate deviation information and attitude deviation information. The information required when arranging the above-mentioned "second and subsequent transported objects 11" is the attitude deviation information. The position deviation calculation unit 83 (see FIG. 3) does not necessarily have to calculate the coordinate deviation when the transported objects 11 to be transported are the second and subsequent objects. The detection position calculation unit 82 and the position deviation calculation unit 83 constitute the position calculation unit of the present invention. The position calculation unit calculates the detection position P2, which is the current position of the material handling 11 based on the coordinates detected by the detection unit 45 and the value of at least one of the postures, and detects the target position P1. The position deviation, which is the deviation of the position P2, is further calculated.
 図3に示す位置偏差演算部83によって演算された位置偏差は、様々に利用可能である。例えば、演算された位置偏差は、操作ガイダンス部61によるガイダンスに用いられてもよく、自動制御部86による自動制御に用いられてもよい。なお、位置偏差演算部83は、前記演算された位置偏差に対応する信号を出力する出力部として機能する。位置偏差演算部83から出力された前記信号は、表示部90、操作ガイダンス部61、自動制御部86などに入力される。 The position deviation calculated by the position deviation calculation unit 83 shown in FIG. 3 can be used in various ways. For example, the calculated position deviation may be used for guidance by the operation guidance unit 61, or may be used for automatic control by the automatic control unit 86. The position deviation calculation unit 83 functions as an output unit that outputs a signal corresponding to the calculated position deviation. The signal output from the position deviation calculation unit 83 is input to the display unit 90, the operation guidance unit 61, the automatic control unit 86, and the like.
 (操作ガイダンス部61によるガイダンス)
 コントローラ80は、機械位置検出部51と姿勢検出部53とによって検出された値に基づいて、位置偏差を減らす側への操作のガイダンスを、操作ガイダンス部61に出力させる。より詳しくは、コントローラ80の位置偏差演算部83(ガイダンス情報入力部)が、機械位置検出部51および姿勢検出部53の検出結果に基づいて、前記位置偏差が減少するように前記ガイダンス情報を決定し、当該決定されたガイダンス情報に対応した信号を操作ガイダンス部61に入力する。操作ガイダンス部61は、位置偏差を減らすために操作者が行うべき操作の内容(「操作ガイダンス情報」)を、操作者に示す(指示する)。操作者が操作ガイダンス情報に従って作業機械20を操作するだけで、図2に示す運搬物11を目標位置P1に高精度に設置することが可能となる。
(Guidance by operation guidance unit 61)
The controller 80 causes the operation guidance unit 61 to output operation guidance to the side that reduces the position deviation based on the values detected by the machine position detection unit 51 and the attitude detection unit 53. More specifically, the position deviation calculation unit 83 (guidance information input unit) of the controller 80 determines the guidance information so that the position deviation is reduced based on the detection results of the machine position detection unit 51 and the attitude detection unit 53. Then, the signal corresponding to the determined guidance information is input to the operation guidance unit 61. The operation guidance unit 61 indicates (instructs) the operator the content (“operation guidance information”) of the operation to be performed by the operator in order to reduce the position deviation. The transported object 11 shown in FIG. 2 can be installed at the target position P1 with high accuracy only by the operator operating the work machine 20 according to the operation guidance information.
 操作ガイダンス情報の内容は、位置偏差を減らすことができるように、適切に選択される。操作ガイダンス情報の内容は、例えば下記の[例1A]~[例1F]の少なくともいずれかを含む。[例1A]下部走行体21aの走行(前進、後進)。[例1B]下部走行体21aに対する上部旋回体21bの旋回(右旋回、左旋回)。[例1C]上部旋回体21bに対するブーム23aの回転(上げ、下げ)。[例1D]ブーム23aに対するアーム23bの回転(押し、引き)。[例1E]アーム23bに対する先端アタッチメント30の回転。さらに詳しくは、[例1E]は、下記の[例1Ea]~[例1Ec]を含む。[例1Ea]アーム23bに対する取付部31aの回転(押し、引き)。[例1Eb]取付部31aに対するチルト部31bの回転(右傾、左傾)。[例1Ec]チルト部31bに対する回転部31cの回転(右回転、左回転)。すなわち、チルト部31bに対する把持装置33の回転。[例1F]基部33aに対する把持部33bの回転(把持、把持解除)。 The content of the operation guidance information is appropriately selected so that the position deviation can be reduced. The content of the operation guidance information includes, for example, at least one of the following [Example 1A] to [Example 1F]. [Example 1A] Traveling (forward, reverse) of the lower traveling body 21a. [Example 1B] A turn (right turn, left turn) of the upper turning body 21b with respect to the lower traveling body 21a. [Example 1C] Rotation (raising, lowering) of the boom 23a with respect to the upper swivel body 21b. [Example 1D] Rotation (push, pull) of the arm 23b with respect to the boom 23a. [Example 1E] Rotation of the tip attachment 30 with respect to the arm 23b. More specifically, [Example 1E] includes the following [Example 1Ea] to [Example 1Ec]. [Example 1Ea] Rotation (push, pull) of the mounting portion 31a with respect to the arm 23b. [Example 1Eb] Rotation of the tilt portion 31b with respect to the mounting portion 31a (tilt to the right, tilt to the left). [Example 1Ec] Rotation of the rotating portion 31c with respect to the tilting portion 31b (clockwise rotation, counterclockwise rotation). That is, the rotation of the gripping device 33 with respect to the tilt portion 31b. [Example 1F] Rotation of the grip portion 33b with respect to the base portion 33a (grip, grip release).
 (ガイダンスが行われる条件)
 図3に示す操作ガイダンス部61によるガイダンスは、運搬物11(図2参照)の運搬作業中に常に行われてもよく、所定条件が満たされた場合にのみ行われてもよい。操作ガイダンス部61によるガイダンスが行われるか否かは、操作者の操作(例えばスイッチを押す操作など)により切り換えられてもよい。操作ガイダンス部61によるガイダンスは、図12に示す運搬物11の検出位置P2が、制御実行領域A1の内部にある場合にのみ行われてもよい。具体的には、制御実行領域A1の外部に置かれている運搬物11(作業前の運搬物11B)を把持部33bが把持し、運搬物11の運搬を開始する際には、操作ガイダンス部61(図3参照)は、ガイダンスを行わない。制御実行領域A1は、コントローラ80(図3参照)に設定されており、目標位置P1および目標位置P1の周囲を含むように設定された領域である。例えば、制御実行領域A1は、位置偏差が所定値以下となるように設定された領域である。コントローラ80(図3参照)は、制御実行領域A1の範囲を、何らかの条件に応じて(手動または自動で)変化させてもよい。
(Conditions for guidance)
The guidance by the operation guidance unit 61 shown in FIG. 3 may be always performed during the transportation work of the transported object 11 (see FIG. 2), or may be performed only when a predetermined condition is satisfied. Whether or not the guidance by the operation guidance unit 61 is performed may be switched by an operation of the operator (for example, an operation of pressing a switch). Guidance by the operation guidance unit 61 may be performed only when the detection position P2 of the transported object 11 shown in FIG. 12 is inside the control execution area A1. Specifically, when the gripping portion 33b grips the transported object 11 (conveyed object 11B before work) placed outside the control execution area A1 and starts transporting the transported object 11, the operation guidance unit 61 (see FIG. 3) does not provide guidance. The control execution area A1 is set in the controller 80 (see FIG. 3), and is an area set to include the target position P1 and the periphery of the target position P1. For example, the control execution area A1 is an area set so that the position deviation is equal to or less than a predetermined value. The controller 80 (see FIG. 3) may change the range of the control execution area A1 (manually or automatically) according to some conditions.
 (ガイダンスの内容の変化)
 図3に示すコントローラ80は、姿勢検出部53に検出されたアタッチメント22の姿勢の変化に応じて、操作ガイダンス部61に出力させる操作のガイダンス(作業補助情報)の内容を変化させる。さらに詳しくは、コントローラ80は、運搬物11(図2参照)の運搬作業中、姿勢検出部53(図3参照)に検出されたアタッチメント22の姿勢を把握し続ける。コントローラ80は、アタッチメント22の姿勢が変化したとき、変化後のアタッチメント22の姿勢に基づいて、位置偏差を減らすのに適した操作ガイダンス情報の内容を選択する。すなわち、コントローラ80の位置偏差演算部83は、アタッチメント22の姿勢の変化に応じて前記ガイダンス情報が変化するように前記ガイダンス情報を決定する。そして、コントローラ80(位置偏差演算部83)は、選択した操作ガイダンス情報の内容に対応した信号を操作ガイダンス部61に入力し、前記操作ガイダンス情報を操作ガイダンス部61に出力(報知)させる。これにより、より確実に、図5に示す運搬物11を目標位置P1に移動させるようなガイダンスが可能となる。
(Changes in guidance content)
The controller 80 shown in FIG. 3 changes the content of the operation guidance (work assistance information) output to the operation guidance unit 61 according to the change in the posture of the attachment 22 detected by the posture detection unit 53. More specifically, the controller 80 keeps grasping the posture of the attachment 22 detected by the posture detection unit 53 (see FIG. 3) during the transportation work of the transported object 11 (see FIG. 2). When the posture of the attachment 22 changes, the controller 80 selects the content of the operation guidance information suitable for reducing the position deviation based on the changed posture of the attachment 22. That is, the position deviation calculation unit 83 of the controller 80 determines the guidance information so that the guidance information changes according to the change in the posture of the attachment 22. Then, the controller 80 (position deviation calculation unit 83) inputs a signal corresponding to the content of the selected operation guidance information to the operation guidance unit 61, and outputs (notifies) the operation guidance information to the operation guidance unit 61. This makes it possible to more reliably provide guidance for moving the transported object 11 shown in FIG. 5 to the target position P1.
 (自動制御部86による制御)
 自動制御部86(図3参照)は、運搬物11を目標位置P1に運搬させるように、作業機械20(図1参照)を自動的に作動させる。さらに詳しくは、自動制御部86(図3参照)は、機械位置検出部51と姿勢検出部53とによって検出された値(検出結果)に基づいて、位置偏差を減らす側にアタッチメント22を自動的に作動させる。特に、自動制御部86は、前記位置偏差が減少するように前記指令信号を決定し、駆動部63に前記決定された指令信号を入力することで、アタッチメント22を自動的に作動させる。自動制御部86による自動制御の内容は、位置偏差を減らすことができるように、適切に選択される。自動制御部86による自動制御の内容は、上記の操作ガイダンス情報の内容と同様、上記の[例1A]~[例1F]の少なくともいずれかを含む。例えば、自動制御部86は、アタッチメント22の各回転軸の回転角度を、自動的に制御する。なお、自動制御部86が「位置偏差を減らす側にアタッチメント22を自動的に作動させる」ことには、下部走行体21aを自動的に走行させる結果として、アタッチメント22を自動的に作動(移動)させることが含まれる。自動制御部86による自動制御には、下部走行体21aに対して上部旋回体21bを自動的に旋回させる結果として、アタッチメント22を自動的に作動させることが含まれる。
(Control by automatic control unit 86)
The automatic control unit 86 (see FIG. 3) automatically operates the work machine 20 (see FIG. 1) so as to transport the transported object 11 to the target position P1. More specifically, the automatic control unit 86 (see FIG. 3) automatically attaches the attachment 22 to the side that reduces the position deviation based on the value (detection result) detected by the machine position detection unit 51 and the attitude detection unit 53. To operate. In particular, the automatic control unit 86 determines the command signal so that the position deviation is reduced, and inputs the determined command signal to the drive unit 63 to automatically operate the attachment 22. The content of the automatic control by the automatic control unit 86 is appropriately selected so that the position deviation can be reduced. The content of the automatic control by the automatic control unit 86 includes at least one of the above [Example 1A] to [Example 1F] as well as the content of the operation guidance information described above. For example, the automatic control unit 86 automatically controls the rotation angle of each rotation axis of the attachment 22. In addition, when the automatic control unit 86 "automatically operates the attachment 22 on the side that reduces the position deviation", the attachment 22 is automatically operated (moved) as a result of automatically traveling the lower traveling body 21a. Includes letting. The automatic control by the automatic control unit 86 includes automatically operating the attachment 22 as a result of automatically turning the upper turning body 21b with respect to the lower traveling body 21a.
 (自動制御が行われる条件)
 図3に示す自動制御部86による自動制御は、運搬物11(図2参照)の運搬作業中に常に行われてもよく、所定条件が満たされた場合にのみ行われてもよい。自動制御部86による自動制御は、図12に示す運搬物11の検出位置P2が制御実行領域A1に含まれた場合にのみ行われてもよい。なお、図3に示す操作ガイダンス部61によるガイダンスと、自動制御部86による自動制御と、が両方行われてもよい。この場合、ガイダンスが行われる制御実行領域A1(図12参照)と、自動制御が行われる制御実行領域A1とは、互いに同じでもよく、相違してもよい。
(Conditions for automatic control)
The automatic control by the automatic control unit 86 shown in FIG. 3 may always be performed during the transportation work of the transported object 11 (see FIG. 2), or may be performed only when a predetermined condition is satisfied. The automatic control by the automatic control unit 86 may be performed only when the detection position P2 of the transported object 11 shown in FIG. 12 is included in the control execution area A1. In addition, both the guidance by the operation guidance unit 61 shown in FIG. 3 and the automatic control by the automatic control unit 86 may be performed. In this case, the control execution area A1 (see FIG. 12) where guidance is performed and the control execution area A1 where automatic control is performed may be the same or different from each other.
 (把持装置33の把持解除の禁止)
 図3に示す把持解除禁止部87は、図5に示す運搬物11の検出位置P2が、目標位置P1と略一致するまで(位置偏差が略ゼロになるまで)、把持装置33による運搬物11の把持の解除を禁止する。具体的には、把持解除禁止部87(図3参照)には、位置偏差の大きさに関する閾値である位置偏差閾値が予め設定(記憶)されている。なお、把持解除禁止部87に代えて、目標位置記憶部81(記憶部)に位置偏差閾値が記憶されていてもよい。把持解除禁止部87は、演算された位置偏差(把持装置33に把持されている運搬物11の位置偏差)が、位置偏差閾値よりも大きい場合は、把持装置33による運搬物11の把持の解除を禁止する。この場合、把持解除禁止部87(図3参照)は、把持装置33による運搬物11の把持を解除する操作が操作者により行われても、この操作を無効にする。この場合、例えば、操作者による操作に関わらず、一対の把持部33bが開かない。把持解除禁止部87(図3参照)は、演算された位置偏差が位置偏差閾値以下の場合は、把持装置33による運搬物11の把持の解除を許可する。この場合、把持装置33による運搬物11の把持を解除する操作が操作者により行われると、この操作に従って、把持装置33による運搬物11の把持が解除される(例えば一対の把持部33bが開く)。
(Prohibition of releasing the grip of the grip device 33)
The gripping release prohibition unit 87 shown in FIG. 3 is the transported object 11 by the gripping device 33 until the detection position P2 of the transported object 11 shown in FIG. 5 substantially coincides with the target position P1 (until the position deviation becomes substantially zero). It is prohibited to release the grip of. Specifically, a position deviation threshold value, which is a threshold value related to the magnitude of the position deviation, is preset (stored) in the grip release prohibition unit 87 (see FIG. 3). The position deviation threshold value may be stored in the target position storage unit 81 (storage unit) instead of the grip release prohibition unit 87. When the calculated position deviation (positional deviation of the transported object 11 gripped by the gripping device 33) is larger than the position deviation threshold value, the gripping release prohibiting unit 87 releases the gripping of the transported object 11 by the gripping device 33. Is prohibited. In this case, the grip release prohibition unit 87 (see FIG. 3) invalidates the operation of releasing the grip of the transported object 11 by the grip device 33 even if the operator performs the operation. In this case, for example, the pair of gripping portions 33b does not open regardless of the operation by the operator. When the calculated position deviation is equal to or less than the position deviation threshold value, the grip release prohibition unit 87 (see FIG. 3) permits the grip device 33 to release the grip of the transported object 11. In this case, when the operator releases the grip of the transported object 11 by the gripping device 33, the gripping device 33 releases the grip of the transported object 11 (for example, the pair of gripping portions 33b opens). ).
 このように、本実施形態では、把持解除禁止部87は、演算された位置偏差が位置偏差閾値よりも大きい場合は、把持装置33に対して運搬物11の把持を継続しかつ前記把持の解除を禁止する信号を駆動部63の前記把持駆動部に入力する一方、演算された位置偏差が位置偏差閾値以下の場合は、把持装置33による運搬物11の把持の解除を許可する信号(解除する信号)を駆動部63の前記把持駆動部にそれぞれ入力する。なお、コントローラ80は、演算された位置偏差と位置偏差閾値との大小関係を判定する判定部(不図示)を更に有する。 As described above, in the present embodiment, when the calculated position deviation is larger than the position deviation threshold value, the grip release prohibition unit 87 continues to grip the transported object 11 with respect to the grip device 33 and releases the grip. Is input to the gripping drive unit of the drive unit 63, while the calculated position deviation is equal to or less than the position deviation threshold value, a signal permitting the gripping device 33 to release the grip of the transported object 11 (released). A signal) is input to the gripping drive unit of the drive unit 63, respectively. The controller 80 further has a determination unit (not shown) for determining the magnitude relationship between the calculated position deviation and the position deviation threshold value.
 上記のように、位置偏差は、座標偏差と、姿勢偏差と、を含む。ここで、把持解除禁止部87(図3参照)は、座標偏差が略ゼロになるまで把持装置33による運搬物11の把持の解除を禁止してもよい(下記[例2A])。また、把持解除禁止部87(図3参照)は、姿勢偏差が略ゼロになるまで把持装置33による運搬物11の把持の解除を禁止してもよい(下記[例2B])。 As described above, the position deviation includes the coordinate deviation and the attitude deviation. Here, the gripping release prohibition unit 87 (see FIG. 3) may prohibit the gripping device 33 from releasing the grip of the transported object 11 until the coordinate deviation becomes substantially zero (hereinafter [Example 2A]). Further, the grip release prohibiting unit 87 (see FIG. 3) may prohibit the gripping device 33 from releasing the grip of the transported object 11 until the posture deviation becomes substantially zero (hereinafter [Example 2B]).
 [例2A]図3に示す把持解除禁止部87には、座標偏差の大きさに関する閾値である座標偏差閾値が予め設定されている。把持解除禁止部87は、演算された座標偏差が座標偏差閾値よりも大きい場合は、図5に示す把持装置33による運搬物11の把持の解除を禁止する。把持解除禁止部87(図3参照)は、演算された座標偏差が座標偏差閾値以下の場合は、把持装置33による運搬物11の把持の解除を許可する。この例では、例えば上記「1個目の運搬物11」の検出座標が、目標座標と一致または略一致した状態で、把持装置33による運搬物11の把持の解除が許可される。 [Example 2A] A coordinate deviation threshold value, which is a threshold value related to the magnitude of the coordinate deviation, is preset in the grip release prohibition unit 87 shown in FIG. When the calculated coordinate deviation is larger than the coordinate deviation threshold value, the grip release prohibiting unit 87 prohibits the gripping device 33 shown in FIG. 5 from releasing the grip of the transported object 11. When the calculated coordinate deviation is equal to or less than the coordinate deviation threshold value, the grip release prohibiting unit 87 (see FIG. 3) permits the grip device 33 to release the grip of the transported object 11. In this example, for example, the gripping device 33 is allowed to release the grip of the transported object 11 in a state where the detected coordinates of the “first transported object 11” match or substantially match the target coordinates.
 [例2B]図3に示す把持解除禁止部87には、姿勢偏差の大きさに関する閾値である姿勢偏差閾値が予め設定されている。把持解除禁止部87は、演算された姿勢偏差が姿勢偏差閾値よりも大きい場合は、図5に示す把持装置33による運搬物11の把持の解除を禁止する。把持解除禁止部87(図3参照)は、演算された姿勢偏差が姿勢偏差閾値以下の場合は、把持装置33による運搬物11の把持の解除を許可する。この例では、例えば上記「2個目以降の運搬物11」の検出姿勢が、目標姿勢と一致または略一致した状態で、把持装置33による運搬物11の把持の解除が許可される。 [Example 2B] The posture deviation threshold value, which is a threshold value related to the magnitude of the posture deviation, is preset in the grip release prohibition unit 87 shown in FIG. When the calculated posture deviation is larger than the posture deviation threshold value, the grip release prohibiting unit 87 prohibits the gripping device 33 shown in FIG. 5 from releasing the grip of the transported object 11. When the calculated posture deviation is equal to or less than the posture deviation threshold value, the grip release prohibition unit 87 (see FIG. 3) permits the grip device 33 to release the grip of the transported object 11. In this example, for example, the gripping device 33 is allowed to release the grip of the transported object 11 in a state where the detected posture of the “second and subsequent transported objects 11” matches or substantially matches the target posture.
 (ログ部85)
 図3に示すコントローラ80は、運搬物11(図4参照)の運搬作業の状況(例えば進捗状況など)をログ部85に記憶する。コントローラ80は、ログ部85に記憶された情報を、表示部90に表示させてもよい。
(Log part 85)
The controller 80 shown in FIG. 3 stores the status (for example, progress status) of the transportation work of the transported object 11 (see FIG. 4) in the log unit 85. The controller 80 may display the information stored in the log unit 85 on the display unit 90.
 (位置偏差に関する情報の表示)
 コントローラ80は、位置偏差の情報(さらに詳しくは、位置偏差に関する情報)を表示部90に表示させる。例えば、コントローラ80は、図11に示す先端表示部90tに位置偏差の情報を表示させる。先端表示部90tが位置偏差の情報を表示する場合、作業者(運搬物11の近傍の作業者、および作業機械20の操作者の少なくともいずれか)は、先端表示部90tに表示された位置偏差の情報と、運搬物11と、を同時に目視しながら作業することができる。
(Display of information on position deviation)
The controller 80 causes the display unit 90 to display information on the position deviation (more specifically, information on the position deviation). For example, the controller 80 causes the tip display unit 90t shown in FIG. 11 to display the position deviation information. When the tip display unit 90t displays the position deviation information, the operator (at least one of the operator in the vicinity of the transported object 11 and the operator of the work machine 20) has the position deviation displayed on the tip display unit 90t. It is possible to work while visually observing the information of the above and the transported object 11 at the same time.
 表示部90(例えば先端表示部90t)が表示する位置偏差の情報の例は、次の通りである。表示部90が表示する位置偏差の情報には、位置偏差の向きの情報が含まれてもよい。さらに詳しくは、表示部90が表示する位置偏差の情報には、図5に示す目標位置P1に対して検出位置P2がどの向きにずれているかに関する情報、すなわち、運搬物11をどの向きに移動させるべきかに関する情報が含まれてもよい。図11に示す表示部90が表示する位置偏差の情報には、位置偏差の大きさに関する情報が含まれてもよい。表示部90が表示する位置偏差の情報には、図5に示す目標位置P1に対して検出位置P2が一致状態(一致または略一致している状態)であることが含まれてもよい。 An example of the position deviation information displayed by the display unit 90 (for example, the tip display unit 90t) is as follows. The position deviation information displayed by the display unit 90 may include information on the direction of the position deviation. More specifically, the position deviation information displayed by the display unit 90 includes information on which direction the detection position P2 is deviated from the target position P1 shown in FIG. 5, that is, in which direction the transported object 11 is moved. It may contain information about what should be done. The position deviation information displayed by the display unit 90 shown in FIG. 11 may include information regarding the magnitude of the position deviation. The position deviation information displayed by the display unit 90 may include that the detection position P2 is in a coincident state (matched or substantially matched state) with respect to the target position P1 shown in FIG.
 (トータルステーション15を使用する利点)
 図3に示す機械位置検出部51および姿勢検出部53が検出した値から、図1に示す把持装置33に把持された運搬物11の位置(検出位置P2)を演算すると、アタッチメント22の可動軸が多いため、運搬物11の位置の誤差が大きくなることがある。一方、本実施形態では、運搬物11の検出位置P2は、プリズム45aおよびトータルステーション15を用いて演算される。よって、運搬物11の検出位置P2の誤差を小さくすることができる。
(Advantages of using total station 15)
When the position (detection position P2) of the transported object 11 gripped by the gripping device 33 shown in FIG. 1 is calculated from the values detected by the machine position detecting unit 51 and the posture detecting unit 53 shown in FIG. 3, the movable shaft of the attachment 22 is calculated. Therefore, the error in the position of the transported object 11 may become large. On the other hand, in the present embodiment, the detection position P2 of the transported object 11 is calculated by using the prism 45a and the total station 15. Therefore, the error of the detection position P2 of the transported object 11 can be reduced.
 図1に示す作業機械20による効果は次の通りである。 The effects of the work machine 20 shown in FIG. 1 are as follows.
 作業機械20は、機械本体21と、機械本体21に取り付けられたアタッチメント22と、コントローラ80と、を備える。アタッチメント22は、機械本体21に取り付けられた基端側アタッチメント23と、基端側アタッチメント23の先端部に取り付けられた先端アタッチメント30と、を備える。図2に示すように、先端アタッチメント30は、回転装置31と、把持装置33と、を備える。回転装置31は、基端側アタッチメント23の先端部に取り付けられる。把持装置33は、回転装置31に取り付けられ、回転装置31の作動により基端側アタッチメント23に対して回転可能であり、運搬物11を把持する。 The work machine 20 includes a machine body 21, an attachment 22 attached to the machine body 21, and a controller 80. The attachment 22 includes a base end side attachment 23 attached to the machine body 21 and a tip end attachment 30 attached to the tip end portion of the base end side attachment 23. As shown in FIG. 2, the tip attachment 30 includes a rotating device 31 and a gripping device 33. The rotating device 31 is attached to the tip end portion of the base end side attachment 23. The gripping device 33 is attached to the rotating device 31 and can rotate with respect to the base end side attachment 23 by the operation of the rotating device 31, and grips the transported object 11.
 図1に示すように、先端アタッチメント30は、検出部45を備える。検出部45は、把持装置33に把持された運搬物11の座標および姿勢を検出するためのものである。 As shown in FIG. 1, the tip attachment 30 includes a detection unit 45. The detection unit 45 is for detecting the coordinates and the posture of the transported object 11 gripped by the gripping device 33.
 コントローラ80(図3参照)には、運搬物11の目標位置P1の情報が設定される。コントローラ80は、検出部45を用いて検出された値に基づいて運搬物11の現在の位置である検出位置P2を演算する。コントローラ80は、目標位置P1に対する検出位置P2の偏差である位置偏差を演算する。 Information on the target position P1 of the transported object 11 is set in the controller 80 (see FIG. 3). The controller 80 calculates the detection position P2, which is the current position of the transported object 11, based on the value detected by the detection unit 45. The controller 80 calculates a position deviation, which is a deviation of the detection position P2 with respect to the target position P1.
 上記の構成によれば、コントローラ80は、運搬物11の目標位置P1に対する、運搬物11の現在の検出位置P2の、位置偏差を演算する。よって、この位置偏差を様々な用途(例えばガイダンスや自動制御など)に用いることができる。 According to the above configuration, the controller 80 calculates the position deviation of the current detection position P2 of the transported object 11 with respect to the target position P1 of the transported object 11. Therefore, this position deviation can be used for various purposes (for example, guidance and automatic control).
 上記の構成によれば、検出部45は、先端アタッチメント30に備えられている。よって、先端アタッチメント30が運搬物11を把持すれば、運搬物11に検出部45が取り付けられる。よって、先端アタッチメント30とは別に設けられる検出装置(検出部45と同様の機能を有するもの)を、運搬物11に対して着脱する作業を不要にできる。よって、運搬物11を運搬するために必要な作業を減らすことができる。先端アタッチメント30とは別に設けられる検出装置を運搬物11に着脱する作業(着脱作業)を不要にできるので、この着脱作業を行う作業者を不要にできる(省人化できる)。 According to the above configuration, the detection unit 45 is provided in the tip attachment 30. Therefore, if the tip attachment 30 grips the transported object 11, the detection unit 45 is attached to the transported object 11. Therefore, it is possible to eliminate the work of attaching and detaching the detection device (which has the same function as the detection unit 45) provided separately from the tip attachment 30 to and from the transported object 11. Therefore, the work required to transport the transported object 11 can be reduced. Since the work of attaching / detaching the detection device provided separately from the tip attachment 30 (attachment / detachment work) to / from the transported object 11 can be eliminated, the operator who performs this attachment / detachment work can be eliminated (labor can be saved).
 また、上記の構成によれば、検出部45は、先端アタッチメント30に備えられているため、誤操作により先端アタッチメント30が検出部45に接触することがない。よって、誤操作によりアタッチメント22が検出部45に接触することを抑制することができる。この結果、アタッチメント22が検出部45に接触することによる検出部45(例えばプリズム45a)の破損を抑制することができる。この結果、検出部45が破損し、運搬物11の位置を正確に検出できなくなる問題を抑制することができる。 Further, according to the above configuration, since the detection unit 45 is provided in the tip attachment 30, the tip attachment 30 does not come into contact with the detection unit 45 due to an erroneous operation. Therefore, it is possible to prevent the attachment 22 from coming into contact with the detection unit 45 due to an erroneous operation. As a result, damage to the detection unit 45 (for example, prism 45a) due to contact of the attachment 22 with the detection unit 45 can be suppressed. As a result, it is possible to suppress the problem that the detection unit 45 is damaged and the position of the transported object 11 cannot be accurately detected.
 上記の構成によれば、運搬物11は、基端側アタッチメント23に対して回転可能な把持装置33によって把持される。ここで、運搬物11がクレーンで吊り上げられて運搬される場合(吊り作業の場合)は、次の問題が生じる場合がある。作業者が吊り荷(ここでは運搬物11)に直接触れる事は、法令により禁止されている。このため、複数(例えば2人程度)の玉掛作業者が、介錯ロープなどを介して吊り荷を引っ張りながら、吊り荷のバランスを取りながら作業する場合がある。一方、上記の構成では、運搬物11を、把持装置33により把持された状態で運搬することができる。よって、吊り作業において玉掛作業者が行う必要のあった作業を不要にできる。よって、運搬物11を運搬するために必要な作業を減らすことができる。この結果、運搬物11の運搬作業に必要な作業者の数を削減することができる(省人化できる)。 According to the above configuration, the transported object 11 is gripped by the gripping device 33 that is rotatable with respect to the base end side attachment 23. Here, when the transported object 11 is lifted by a crane and transported (in the case of suspension work), the following problems may occur. It is prohibited by law for workers to come into direct contact with the suspended load (here, the transported object 11). For this reason, a plurality of slingers (for example, about two people) may work while balancing the suspended load while pulling the suspended load through a kaishakunin rope or the like. On the other hand, in the above configuration, the transported object 11 can be transported in a state of being gripped by the gripping device 33. Therefore, it is possible to eliminate the work that the slinging worker had to perform in the hanging work. Therefore, the work required to transport the transported object 11 can be reduced. As a result, the number of workers required for the transportation work of the transported object 11 can be reduced (labor can be saved).
 また、作業機械20は、図8に示すように、基準線位置決め部43bを備える。基準線位置決め部43bは、図1に示す把持装置33に対する、把持装置33に把持された運搬物11の基準線11aの相対位置を位置決めする。 Further, as shown in FIG. 8, the work machine 20 includes a reference line positioning unit 43b. The reference line positioning unit 43b positions the relative position of the reference line 11a of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33 shown in FIG.
 上記の構成によれば、把持装置33が運搬物11を把持すれば、基準線位置決め部43b(図8参照)により、把持装置33に対する運搬物11の基準線11aの相対位置が決まる。よって、把持装置33に対する運搬物11の基準線11aの相対位置を、別途(把持装置33による運搬物11の把持とは異なる作動や作業により)設定する必要がない。 According to the above configuration, when the gripping device 33 grips the transported object 11, the reference line positioning unit 43b (see FIG. 8) determines the relative position of the reference line 11a of the transported object 11 with respect to the gripping device 33. Therefore, it is not necessary to separately set the relative position of the reference line 11a of the transported object 11 with respect to the gripping device 33 (by an operation or operation different from that of gripping the transported object 11 by the gripping device 33).
 また、作業機械20は、図8に示すように、位置決め部43を備える。位置決め部43は、図1に示す把持装置33に対する、把持装置33に把持された運搬物11の相対位置を位置決めする。 Further, as shown in FIG. 8, the work machine 20 includes a positioning unit 43. The positioning unit 43 positions the relative position of the transported object 11 gripped by the gripping device 33 with respect to the gripping device 33 shown in FIG.
 上記の構成によれば、把持装置33が運搬物11を把持すれば、位置決め部43(図8参照)により、把持装置33に対する運搬物11の位置が決まる。よって、把持装置33に対する運搬物11の位置を、別途(把持装置33による運搬物11の把持とは異なる作動や作業により)設定する必要がない。 According to the above configuration, when the gripping device 33 grips the transported object 11, the positioning portion 43 (see FIG. 8) determines the position of the transported object 11 with respect to the gripping device 33. Therefore, it is not necessary to separately set the position of the transported object 11 with respect to the gripping device 33 (by an operation or operation different from that of gripping the transported object 11 by the gripping device 33).
 また、図3に示すように、作業機械20は、機械位置検出部51と、姿勢検出部53と、操作ガイダンス部61と、を備える。機械位置検出部51は、機械本体21(図2参照)の位置を検出する。姿勢検出部53は、アタッチメント22(図2参照)の姿勢を検出する。 Further, as shown in FIG. 3, the work machine 20 includes a machine position detection unit 51, a posture detection unit 53, and an operation guidance unit 61. The machine position detection unit 51 detects the position of the machine body 21 (see FIG. 2). The posture detection unit 53 detects the posture of the attachment 22 (see FIG. 2).
 また、図3に示す操作ガイダンス部61は、ガイダンス(作業補助情報)を出力する。コントローラ80は、機械位置検出部51と姿勢検出部53とに検出された値に基づいて、位置偏差を減らす側への操作のガイダンスを操作ガイダンス部61に出力させる。 Further, the operation guidance unit 61 shown in FIG. 3 outputs guidance (work assistance information). The controller 80 causes the operation guidance unit 61 to output operation guidance to the side that reduces the position deviation based on the values detected by the machine position detection unit 51 and the attitude detection unit 53.
 上記の構成によれば、操作者は、操作ガイダンス部61の出力に従って操作することで、位置偏差を減らす側への操作を容易に行うことができる。よって、図1に示す運搬物11を運搬する操作に操作者が慣れていない場合でも、運搬物11を目標位置P1に精度よく運搬することができる。 According to the above configuration, the operator can easily perform the operation to reduce the position deviation by operating according to the output of the operation guidance unit 61. Therefore, even if the operator is not accustomed to the operation of transporting the transported object 11 shown in FIG. 1, the transported object 11 can be accurately transported to the target position P1.
 また、図3に示すコントローラ80は、姿勢検出部53に検出されたアタッチメント22の姿勢の変化に応じて、操作ガイダンス部61に出力させる操作のガイダンスの内容を変化させる。 Further, the controller 80 shown in FIG. 3 changes the content of the operation guidance output to the operation guidance unit 61 according to the change in the posture of the attachment 22 detected by the posture detection unit 53.
 上記の構成によれば、アタッチメント22の姿勢の変化に応じて、適切な操作のガイダンスを、操作ガイダンス部61が出力できる。 According to the above configuration, the operation guidance unit 61 can output appropriate operation guidance according to the change in the posture of the attachment 22.
 また、作業機械20は、機械位置検出部51と、姿勢検出部53と、を備える。機械位置検出部51は、機械本体21(図2参照)の位置を検出する。姿勢検出部53は、アタッチメント22(図2参照)の姿勢を検出する。 Further, the work machine 20 includes a machine position detection unit 51 and a posture detection unit 53. The machine position detection unit 51 detects the position of the machine body 21 (see FIG. 2). The posture detection unit 53 detects the posture of the attachment 22 (see FIG. 2).
 コントローラ80は、機械位置検出部51と姿勢検出部53とに検出された値に基づいて、位置偏差を減らす側にアタッチメント22を自動的に作動させる。 The controller 80 automatically operates the attachment 22 on the side that reduces the position deviation based on the values detected by the machine position detection unit 51 and the attitude detection unit 53.
 上記の構成によれば、図1に示す作業機械20を操作者が操作しなくても、運搬物11を目標位置P1に運搬することができる。このため、運搬物11を精度よく目標位置P1に運搬する操作に操作者が慣れる必要がない、または、操作者を不要にすることができる(省人化できる)。 According to the above configuration, the transported object 11 can be transported to the target position P1 without the operator operating the work machine 20 shown in FIG. Therefore, the operator does not need to get used to the operation of accurately transporting the transported object 11 to the target position P1, or the operator can be eliminated (labor can be saved).
 また、コントローラ80には、位置偏差の大きさに関する閾値である位置偏差閾値が設定される。コントローラ80は、位置偏差が位置偏差閾値よりも大きい場合は、把持装置33による運搬物11の把持の解除を禁止する。コントローラ80は、位置偏差が位置偏差閾値以下の場合は、把持装置33による運搬物11の把持の解除を許可する。 Further, the controller 80 is set with a position deviation threshold value which is a threshold value related to the magnitude of the position deviation. When the position deviation is larger than the position deviation threshold value, the controller 80 prohibits the gripping device 33 from releasing the grip of the transported object 11. When the position deviation is equal to or less than the position deviation threshold value, the controller 80 permits the gripping device 33 to release the grip of the transported object 11.
 上記の構成により、位置偏差が位置偏差閾値よりも大きい場合に、誤操作によって把持装置33から運搬物11が落下することを抑制することができる。 With the above configuration, when the position deviation is larger than the position deviation threshold value, it is possible to prevent the transported object 11 from falling from the gripping device 33 due to an erroneous operation.
 (変形例)
 上記実施形態は様々に変形されてもよい。例えば、上記実施形態の各構成要素の配置や形状が変更されてもよい。例えば、図3に示すブロック図の接続は変更されてもよい。例えば、閾値や範囲(例えば制御実行領域A1)などは、一定でもよく、手動操作により変えられてもよく、何らかの条件に応じて自動的に変えられてもよい。例えば、構成要素の数が変更されてもよく、構成要素の一部が設けられなくてもよい。例えば、互いに異なる複数の部材や部分として説明したものが、一つの部材や部分とされてもよい。例えば、一つの部材や部分として説明したものが、互いに異なる複数の部材や部分に分けて設けられてもよい。
(Modification example)
The above embodiment may be variously modified. For example, the arrangement and shape of each component of the above embodiment may be changed. For example, the connection of the block diagram shown in FIG. 3 may be changed. For example, the threshold value and the range (for example, the control execution area A1) may be constant, may be changed by manual operation, or may be automatically changed according to some condition. For example, the number of components may be changed, and some of the components may not be provided. For example, what has been described as a plurality of members or parts that are different from each other may be regarded as one member or part. For example, what has been described as one member or part may be divided into a plurality of different members or parts.
 本発明によって提供されるのは、運搬物を目標位置まで運搬することが可能な作業機械である。当該作業機械は、機械本体と、前記機械本体に対して相対移動可能なように前記機械本体に取り付けられたアタッチメントと、コントローラと、を備える。前記アタッチメントは、前記機械本体に取り付けられた基端側アタッチメントと、前記基端側アタッチメントの先端部に取り付けられた先端アタッチメントと、を有する。前記先端アタッチメントは、前記運搬物を把持することが可能な把持装置と、前記基端側アタッチメントの先端部に接続され、前記把持装置を前記基端側アタッチメントに対して少なくとも一つの回転中心軸回りに回転させることが可能な回転装置と、前記把持装置に把持された前記運搬物の座標および姿勢を検出するための検出部と、を有する。前記コントローラは、前記運搬物の目標位置の情報を記憶する記憶部と、前記検出部を用いて検出された前記座標および前記姿勢のうちの少なくとも一方の値に基づいて前記運搬物の現在の位置である検出位置を演算し、前記目標位置に対する前記検出位置の偏差である位置偏差を更に演算する位置演算部と、前記演算された位置偏差に対応する信号を出力する出力部と、を有する。 Provided by the present invention is a work machine capable of transporting a transported object to a target position. The work machine includes a machine body, an attachment attached to the machine body so as to be movable relative to the machine body, and a controller. The attachment has a base end side attachment attached to the machine body and a tip end attachment attached to the tip end portion of the base end side attachment. The tip attachment is connected to a gripping device capable of gripping the transported object and the tip end portion of the proximal end side attachment, and the gripping device is rotated around at least one rotation center axis with respect to the proximal end side attachment. It has a rotating device that can be rotated to the surface, and a detecting unit for detecting the coordinates and posture of the transported object that is gripped by the gripping device. The controller has a storage unit that stores information on a target position of the transported object, and a current position of the transported object based on at least one of the coordinates and the posture detected by the detection unit. It has a position calculation unit that calculates a detection position, and further calculates a position deviation that is a deviation of the detection position with respect to the target position, and an output unit that outputs a signal corresponding to the calculated position deviation.
 本構成によれば、コントローラの位置演算部が、運搬物の目標位置に対する、運搬物の現在の検出位置の、位置偏差を演算する。そして、出力部が位置偏差に対応する信号を出力するため、当該信号を利用して、この位置偏差を様々な用途(例えばガイダンスや自動制御など)に用いることができる。 According to this configuration, the position calculation unit of the controller calculates the position deviation of the current detection position of the transported object with respect to the target position of the transported object. Then, since the output unit outputs a signal corresponding to the position deviation, this position deviation can be used for various purposes (for example, guidance, automatic control, etc.) by using the signal.
 また、検出部が先端アタッチメントに備えられているため、先端アタッチメントの把持装置が運搬物を把持すれば、運搬物と検出部とが一体で移動可能となる。このため、検出部と同様の機能を有する他の検出装置が先端アタッチメントとは別に設けられる場合のように運搬物に対して検出装置を着脱する作業を不要にすることができる。よって、運搬物を運搬するために必要な作業を減らすことができる。 Further, since the detection unit is provided in the tip attachment, if the gripping device of the tip attachment grips the transported object, the transported object and the detection unit can move integrally. Therefore, it is possible to eliminate the work of attaching and detaching the detection device to and from the transported object as in the case where another detection device having the same function as the detection unit is provided separately from the tip attachment. Therefore, the work required to transport the transported object can be reduced.
 また、運搬物と検出部とが一体で移動可能となるため、誤操作により先端アタッチメントが検出部に衝突することがなく、検出部の破損を抑止することができる。この結果、検出部が破損し、運搬物の位置を正確に検出できなくなる問題を抑制することができる。 In addition, since the transported object and the detection unit can be moved together, the tip attachment does not collide with the detection unit due to an erroneous operation, and damage to the detection unit can be suppressed. As a result, it is possible to suppress the problem that the detection unit is damaged and the position of the transported object cannot be accurately detected.
 上記の構成において、前記先端アタッチメントは、前記運搬物に仮想的に設定された基準線に対して前記検出部を相対的に位置決めするように前記運搬物に当接する基準線位置決め部を更に有することが望ましい。 In the above configuration, the tip attachment further has a reference line positioning portion that abuts on the transported object so as to position the detection unit relative to a reference line virtually set on the transported object. Is desirable.
 本構成によれば、把持装置が運搬物を把持すれば、基準線位置決め部により、運搬物の基準線に対する検出部の相対位置が決まる。よって、基準線を基準として運搬物の位置(座標および姿勢)を検出部によって正確に検出することができる。 According to this configuration, when the gripping device grips the transported object, the reference line positioning unit determines the relative position of the detection unit with respect to the reference line of the transported object. Therefore, the position (coordinates and posture) of the transported object can be accurately detected by the detection unit with the reference line as a reference.
 上記の構成において、前記先端アタッチメントは、前記運搬物に対して前記検出部を相対的に位置決めするように前記運搬物に当接する位置決め部を更に有することが望ましい。 In the above configuration, it is desirable that the tip attachment further has a positioning portion that comes into contact with the transported object so as to position the detection unit relative to the transported object.
 本構成によれば、把持装置が運搬物を把持すれば、位置決め部により、運搬物に対する検出部の相対位置が決まる。よって、運搬物の位置(座標および姿勢)を検出部によって正確に検出することができる。 According to this configuration, when the gripping device grips the transported object, the positioning unit determines the relative position of the detection unit with respect to the transported object. Therefore, the position (coordinates and posture) of the transported object can be accurately detected by the detection unit.
 上記の構成において、前記機械本体の位置を検出する機械位置検出部と、前記機械本体に対する前記アタッチメントの姿勢を検出する姿勢検出部と、操作者が前記機械本体および前記アタッチメントのうちの少なくとも一方を操作することを補助するガイダンス情報を報知することが可能なガイダンス情報報知部と、を更に備え、前記コントローラは、前記機械位置検出部および前記姿勢検出部の検出結果に基づいて、前記位置偏差が減少するように前記ガイダンス情報を決定し、当該決定されたガイダンス情報に対応した信号を前記ガイダンス情報報知部に入力するガイダンス情報入力部を更に有することが望ましい。 In the above configuration, a machine position detection unit that detects the position of the machine body, an attitude detection unit that detects the posture of the attachment with respect to the machine body, and an operator at least one of the machine body and the attachment. The controller further includes a guidance information notification unit capable of transmitting guidance information assisting the operation, and the controller has the position deviation based on the detection results of the machine position detection unit and the posture detection unit. It is desirable to further have a guidance information input unit that determines the guidance information so as to decrease and inputs a signal corresponding to the determined guidance information to the guidance information notification unit.
 本構成によれば、操作者は、ガイダンス情報報知部から報知されるガイダンス情報に従って作業機械を操作することで、位置偏差が減少するような操作を容易に行うことができる。よって、運搬物を運搬する操作に操作者が慣れていない場合でも、運搬物を目標位置まで精度よく運搬することができる。 According to this configuration, the operator can easily perform an operation such that the position deviation is reduced by operating the work machine according to the guidance information notified from the guidance information notification unit. Therefore, even if the operator is not accustomed to the operation of transporting the transported object, the transported object can be accurately transported to the target position.
 上記の構成において、前記コントローラの前記ガイダンス情報入力部は、前記姿勢検出部によって検出された前記アタッチメントの姿勢の変化に応じて前記ガイダンス情報が変化するように前記ガイダンス情報を決定することが望ましい。 In the above configuration, it is desirable that the guidance information input unit of the controller determines the guidance information so that the guidance information changes according to the change in the posture of the attachment detected by the posture detection unit.
 本構成によれば、アタッチメントの姿勢の変化に応じた適切なガイダンス情報をガイダンス情報報知部から操作者に報知することができる。 According to this configuration, the guidance information notification unit can notify the operator of appropriate guidance information according to the change in the posture of the attachment.
 上記の構成において、前記機械本体の位置を検出する機械位置検出部と、前記機械本体に対する前記アタッチメントの姿勢を検出する姿勢検出部と、指令信号を受け付け当該指令信号に応じて前記アタッチメントを駆動することが可能な駆動部と、を更に備え、前記コントローラは、前記機械位置検出部および前記姿勢検出部の検出結果に基づいて、前記位置偏差が減少するように前記指令信号を決定し、当該決定された指令信号を前記駆動部に入力することで前記アタッチメントを自動的に作動させる自動制御部を更に有することが望ましい。 In the above configuration, a machine position detection unit that detects the position of the machine body, an attitude detection unit that detects the posture of the attachment with respect to the machine body, and a command signal are received and the attachment is driven in response to the command signal. Further provided with a capable drive unit, the controller determines the command signal so that the position deviation is reduced based on the detection results of the machine position detection unit and the attitude detection unit, and the determination is made. It is desirable to further have an automatic control unit that automatically operates the attachment by inputting the command signal to the drive unit.
 本構成によれば、作業機械を操作者が操作しなくても、運搬物を目標位置に運搬することができる。このため、運搬物を精度よく目標位置に運搬する操作に操作者が慣れる必要がない、または、操作者を不要にすることができる(省人化できる)。 According to this configuration, the transported object can be transported to the target position without the operator operating the work machine. Therefore, it is not necessary for the operator to get used to the operation of accurately transporting the transported object to the target position, or the operator can be eliminated (labor can be saved).
 上記の構成において、前記把持装置が前記運搬物を把持した状態と、前記把持装置が前記運搬物の把持を解除した状態との間で切換可能なように、前記把持装置を駆動することが可能な把持駆動部を更に備え、前記コントローラの前記記憶部は、前記位置偏差の大きさに関する閾値である位置偏差閾値を更に記憶しており、前記コントローラは、前記位置偏差が前記位置偏差閾値よりも大きい場合は、前記把持装置に対して前記運搬物の把持を継続しかつ前記把持の解除を禁止する信号を前記把持駆動部に入力する一方、前記位置偏差が前記位置偏差閾値以下の場合は、前記把持装置による前記運搬物の把持の解除を許可する信号を前記把持駆動部にそれぞれ入力する把持制御部を更に有することが望ましい。 In the above configuration, the gripping device can be driven so that the gripping device can switch between the state in which the gripping device grips the transported object and the state in which the gripping device releases the gripping of the transported object. The storage unit of the controller further stores a position deviation threshold value which is a threshold value related to the magnitude of the position deviation, and the controller has a position deviation larger than that of the position deviation threshold value. If it is large, a signal for continuing to grip the transported object and prohibiting the release of the grip is input to the grip drive unit, while the position deviation is equal to or less than the position deviation threshold value. It is desirable to further have a grip control unit for inputting a signal for permitting the release of grip of the transported object by the grip device to the grip drive unit.
 本構成によれば、位置偏差が位置偏差閾値よりも大きい場合に、誤操作によって、運搬物が把持装置から落下することを抑制することができる。
 

 
According to this configuration, when the position deviation is larger than the position deviation threshold value, it is possible to prevent the transported object from falling from the gripping device due to an erroneous operation.


Claims (7)

  1.  運搬物を目標位置まで運搬することが可能な作業機械であって、
     機械本体と、
     前記機械本体に対して相対移動可能なように前記機械本体に取り付けられたアタッチメントと、
     コントローラと、
     を備え、
     前記アタッチメントは、
     前記機械本体に取り付けられた基端側アタッチメントと、
     前記基端側アタッチメントの先端部に取り付けられた先端アタッチメントと、
     を有し、
     前記先端アタッチメントは、
     前記運搬物を把持することが可能な把持装置と、
     前記基端側アタッチメントの先端部に接続され、前記把持装置を前記基端側アタッチメントに対して少なくとも一つの回転中心軸回りに回転させることが可能な回転装置と、
     前記把持装置に把持された前記運搬物の座標および姿勢を検出するための検出部と、
     を有し、
     前記コントローラは、
     前記運搬物の目標位置の情報を記憶する記憶部と、
     前記検出部を用いて検出された前記座標および前記姿勢のうちの少なくとも一方の値に基づいて前記運搬物の現在の位置である検出位置を演算し、前記目標位置に対する前記検出位置の偏差である位置偏差を更に演算する位置演算部と、
     前記演算された位置偏差に対応する信号を出力する出力部と、
     を有する、作業機械。
    It is a work machine that can transport the transported object to the target position.
    With the machine body
    An attachment attached to the machine body so that it can move relative to the machine body,
    With the controller
    With
    The attachment is
    The base end side attachment attached to the machine body and
    The tip attachment attached to the tip of the base end side attachment and
    Have,
    The tip attachment is
    A gripping device capable of gripping the transported object and
    A rotating device connected to the tip of the proximal attachment and capable of rotating the gripping device around at least one central axis of rotation with respect to the proximal attachment.
    A detection unit for detecting the coordinates and posture of the transported object gripped by the gripping device,
    Have,
    The controller
    A storage unit that stores information on the target position of the transported object,
    The detection position, which is the current position of the transported object, is calculated based on the values of at least one of the coordinates and the posture detected by the detection unit, and is the deviation of the detection position with respect to the target position. A position calculation unit that further calculates the position deviation,
    An output unit that outputs a signal corresponding to the calculated position deviation,
    Has a working machine.
  2.  請求項1に記載の作業機械であって、
     前記先端アタッチメントは、前記運搬物に仮想的に設定された基準線に対して前記検出部を相対的に位置決めするように前記運搬物に当接する基準線位置決め部を更に有する、作業機械。
    The work machine according to claim 1.
    The tip attachment is a work machine further comprising a reference line positioning portion that abuts on the transported object so as to position the detection unit relative to a reference line virtually set on the transported object.
  3.  請求項1に記載の作業機械であって、
     前記先端アタッチメントは、前記運搬物に対して前記検出部を相対的に位置決めするように前記運搬物に当接する位置決め部を更に有する、作業機械。
    The work machine according to claim 1.
    The tip attachment is a work machine further having a positioning portion that comes into contact with the transported object so as to position the detection unit relative to the transported object.
  4.  請求項1~3のいずれか1項に記載の作業機械であって、
     前記機械本体の位置を検出する機械位置検出部と、
     前記機械本体に対する前記アタッチメントの姿勢を検出する姿勢検出部と、
     操作者が前記機械本体および前記アタッチメントのうちの少なくとも一方を操作することを補助するガイダンス情報を報知することが可能なガイダンス情報報知部と、
     を更に備え、
     前記コントローラは、前記機械位置検出部および前記姿勢検出部の検出結果に基づいて、前記位置偏差が減少するように前記ガイダンス情報を決定し、当該決定されたガイダンス情報に対応した信号を前記ガイダンス情報報知部に入力するガイダンス情報入力部を更に有する、作業機械。
    The work machine according to any one of claims 1 to 3.
    A machine position detection unit that detects the position of the machine body,
    A posture detection unit that detects the posture of the attachment with respect to the machine body, and
    A guidance information notification unit capable of transmitting guidance information that assists the operator in operating at least one of the machine body and the attachment.
    With more
    The controller determines the guidance information so that the position deviation is reduced based on the detection results of the machine position detection unit and the posture detection unit, and the guidance information is a signal corresponding to the determined guidance information. A work machine further having a guidance information input unit to be input to the notification unit.
  5.  請求項4に記載の作業機械であって、
     前記コントローラの前記ガイダンス情報入力部は、前記姿勢検出部によって検出された前記アタッチメントの姿勢の変化に応じて前記ガイダンス情報が変化するように前記ガイダンス情報を決定する、作業機械。
    The work machine according to claim 4.
    The guidance information input unit of the controller determines the guidance information so that the guidance information changes according to a change in the posture of the attachment detected by the posture detection unit.
  6.  請求項1~3のいずれか1項に記載の作業機械であって、
     前記機械本体の位置を検出する機械位置検出部と、
     前記機械本体に対する前記アタッチメントの姿勢を検出する姿勢検出部と、
     指令信号を受け付け当該指令信号に応じて前記アタッチメントを駆動することが可能な駆動部と、
     を更に備え、
     前記コントローラは、前記機械位置検出部および前記姿勢検出部の検出結果に基づいて、前記位置偏差が減少するように前記指令信号を決定し、当該決定された指令信号を前記駆動部に入力することで前記アタッチメントを自動的に作動させる自動制御部を更に有する、作業機械。
    The work machine according to any one of claims 1 to 3.
    A machine position detection unit that detects the position of the machine body,
    A posture detection unit that detects the posture of the attachment with respect to the machine body, and
    A drive unit capable of receiving a command signal and driving the attachment in response to the command signal,
    With more
    The controller determines the command signal so as to reduce the position deviation based on the detection results of the machine position detection unit and the posture detection unit, and inputs the determined command signal to the drive unit. A work machine further comprising an automatic control unit that automatically activates the attachment.
  7.  請求項1~6のいずれか1項に記載の作業機械であって、
     前記把持装置が前記運搬物を把持した状態と、前記把持装置が前記運搬物の把持を解除した状態との間で切換可能なように、前記把持装置を駆動することが可能な把持駆動部を更に備え、
     前記コントローラの前記記憶部は、前記位置偏差の大きさに関する閾値である位置偏差閾値を更に記憶しており、
     前記コントローラは、前記位置偏差が前記位置偏差閾値よりも大きい場合は、前記把持装置に対して前記運搬物の把持を継続しかつ前記把持の解除を禁止する信号を前記把持駆動部に入力する一方、前記位置偏差が前記位置偏差閾値以下の場合は、前記把持装置による前記運搬物の把持の解除を許可する信号を前記把持駆動部にそれぞれ入力する把持制御部を更に有する、作業機械。

     
    The work machine according to any one of claims 1 to 6.
    A gripping drive unit capable of driving the gripping device so that the gripping device can switch between a state in which the gripping device grips the transported object and a state in which the gripping device releases the gripping of the transported object. Further prepare
    The storage unit of the controller further stores a position deviation threshold value which is a threshold value related to the magnitude of the position deviation.
    When the position deviation is larger than the position deviation threshold value, the controller inputs a signal to the gripping drive unit to continue gripping the transported object and prohibit the release of the gripping device. A work machine further comprising a grip control unit for inputting a signal permitting the gripping device to release the grip of the transported object to the grip drive unit when the position deviation is equal to or less than the position deviation threshold value.

PCT/JP2020/024690 2019-07-18 2020-06-24 Work machine WO2021010109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019132920A JP2021017711A (en) 2019-07-18 2019-07-18 Work machine
JP2019-132920 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021010109A1 true WO2021010109A1 (en) 2021-01-21

Family

ID=74209860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024690 WO2021010109A1 (en) 2019-07-18 2020-06-24 Work machine

Country Status (2)

Country Link
JP (1) JP2021017711A (en)
WO (1) WO2021010109A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624679A (en) * 1991-10-21 1994-02-01 S K:Kk Clamping device for transferring structural building material
JPH06271275A (en) * 1993-03-23 1994-09-27 Nkk Corp Lifting jig
JPH07196286A (en) * 1994-01-10 1995-08-01 Mitsubishi Heavy Ind Ltd Heavy weight installation work machine
JPH08127490A (en) * 1994-10-28 1996-05-21 Komatsu Ltd Radio data transmission type load measuring device
JPH0971387A (en) * 1995-09-05 1997-03-18 Tadano Ltd Hoisted cargo position display device on crane truck
JP2005145599A (en) * 2003-11-13 2005-06-09 Sanyo Special Steel Co Ltd Safety means by crane slinging work balance indication
JP2013113705A (en) * 2011-11-29 2013-06-10 Takara Keiki Seisakusho:Kk Weight ranking device for crane
US20170008739A1 (en) * 2015-07-08 2017-01-12 General Electric Company System and method for lifting with spreader bar

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624679A (en) * 1991-10-21 1994-02-01 S K:Kk Clamping device for transferring structural building material
JPH06271275A (en) * 1993-03-23 1994-09-27 Nkk Corp Lifting jig
JPH07196286A (en) * 1994-01-10 1995-08-01 Mitsubishi Heavy Ind Ltd Heavy weight installation work machine
JPH08127490A (en) * 1994-10-28 1996-05-21 Komatsu Ltd Radio data transmission type load measuring device
JPH0971387A (en) * 1995-09-05 1997-03-18 Tadano Ltd Hoisted cargo position display device on crane truck
JP2005145599A (en) * 2003-11-13 2005-06-09 Sanyo Special Steel Co Ltd Safety means by crane slinging work balance indication
JP2013113705A (en) * 2011-11-29 2013-06-10 Takara Keiki Seisakusho:Kk Weight ranking device for crane
US20170008739A1 (en) * 2015-07-08 2017-01-12 General Electric Company System and method for lifting with spreader bar

Also Published As

Publication number Publication date
JP2021017711A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US9567726B2 (en) Machine control system for a wheel loader comprising a grading blade
US8515671B2 (en) Boom-mounted machine locating system
JP4856394B2 (en) Object position measuring apparatus for container crane and automatic cargo handling apparatus using the object position measuring apparatus
JP2866289B2 (en) Display method of position and attitude of construction machinery
JP2002211747A (en) Conveyor device
JP6849959B2 (en) Container terminal system and its control method
US20220041411A1 (en) Crane inspection system and crane
EP3763658A1 (en) Remote control terminal, and working vehicle provided with remote control terminal
WO2021010109A1 (en) Work machine
WO2021010108A1 (en) Guidance system
JP7016297B2 (en) Work machine
CA2780077A1 (en) Levelling and grading device and system
JP2011236589A (en) Excavator
JP2019048681A (en) Cargo conveying system, cargo conveying device and cargo conveying method
US20230019162A1 (en) Crane, crane body, and non-transitory computer readable medium storing program
JP4175727B2 (en) Method for detecting elevation angle and turning angle of excavation boom in free section excavator
EP3763660B1 (en) Remote operation terminal and work vehicle comprising remote operation terminal
JP7167469B2 (en) Remote control terminal and work vehicle equipped with remote control terminal
CN109555543A (en) A kind of section of jurisdiction conveys automatically and identifying system
JP7243615B2 (en) guidance system
KR102362476B1 (en) 3d rotary gantry precision positioning system and method therefor
JP7320565B2 (en) Building material transport robot and building material transport system
CN116359964A (en) Method for positioning loading position of unmanned mining truck
JP2020200121A (en) Cargo direction control system
JP2022139234A (en) Material conveying and mounting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839566

Country of ref document: EP

Kind code of ref document: A1