WO2021010009A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2021010009A1
WO2021010009A1 PCT/JP2020/019445 JP2020019445W WO2021010009A1 WO 2021010009 A1 WO2021010009 A1 WO 2021010009A1 JP 2020019445 W JP2020019445 W JP 2020019445W WO 2021010009 A1 WO2021010009 A1 WO 2021010009A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
circumferential direction
magnetic
coil body
magnetic pole
Prior art date
Application number
PCT/JP2020/019445
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 深澤
光 大塚
新 鍬田
鉄平 森川
祐史 林
真治 河田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021010009A1 publication Critical patent/WO2021010009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • This disclosure relates to motors.
  • Patent Document 1 discloses a fan motor that constitutes a part of an air conditioner for a vehicle.
  • the fan motors described in this document include a stator having a plurality of coils formed by winding a conductive winding.
  • the space inside the coil is an air-core coil filled with air, synthetic resin, or the like. As a result, the weight of the fan motor is reduced while maintaining the drive output.
  • the purpose of this disclosure is to obtain a motor that can reduce the noise by reducing vibration and suppress the increase in physique.
  • the resistance value between the rotor provided with magnets having a plurality of magnetic poles and the bundled strands formed by bundling the conductive strands is the wire.
  • a coil body composed of a wire that is an aggregate of strands that is larger than the resistance value of itself, and is a plurality of wire portions in which a part of the wire is arranged in the circumferential direction and is arranged so as to face the magnet.
  • a member between the conductors is provided between the respective conductors in the circumferential direction, and as the member between the conductors, the width dimension of the member between the conductors in the circumferential direction at one magnetic pole is Wt, and the saturation magnetic flux of the member between the conductors.
  • a stator having a structure of using a magnetic material having a relationship of Wt ⁇ Bs ⁇ Wm ⁇ Br is provided.
  • the magnet has a holding force Hc of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more so as to cause magnetic saturation when a member between the wires is present between the wires.
  • the lead wire portion is formed by using the magnetic material of the above, and the thickness dimension in the radial direction thereof is smaller than the width dimension in the circumferential direction for one phase in one magnetic pole, and the induced voltage generated in the coil body.
  • FIG. 1 is a perspective view showing a fan motor.
  • FIG. 2 is a cross-sectional view showing a fan motor cut along line 2-2 shown in FIG.
  • FIG. 3 is an exploded perspective view showing the fan motor in an exploded manner.
  • FIG. 4 is a perspective view showing the stator.
  • FIG. 5 is a perspective view showing the stator core.
  • FIG. 6 is a perspective view showing the lead wire after the first step.
  • FIG. 7 is a perspective view showing the lead wire after the second step.
  • FIG. 8 is a perspective view showing a U-phase lead wire after the third step.
  • FIG. 1 is a perspective view showing a fan motor.
  • FIG. 2 is a cross-sectional view showing a fan motor cut along line 2-2 shown in FIG.
  • FIG. 3 is an exploded perspective view showing the fan motor in an exploded manner.
  • FIG. 4 is a perspective view showing the stator.
  • FIG. 5 is a perspective view showing the stator core.
  • FIG. 6
  • FIG. 9 is a perspective view showing a V-phase lead wire after the third step.
  • FIG. 10 is a perspective view showing a W phase lead wire after the third step.
  • FIG. 11 is a perspective view showing another form of the stator.
  • FIG. 12A is a bottom view showing a rotor with magnets arranged in a very anisotropic arrangement.
  • FIG. 12B is a bottom view showing a rotor with a plurality of magnets arranged in a very anisotropic arrangement.
  • FIG. 13 is a schematic diagram for explaining the orientation of the magnetic flux lines in the magnet.
  • FIG. 14 is a schematic diagram for explaining the orientation of the magnetic flux lines in the magnet, and shows an example in which the orientation angle is set to 90 ° or less.
  • FIG. 12A is a bottom view showing a rotor with magnets arranged in a very anisotropic arrangement.
  • FIG. 12B is a bottom view showing a rotor with a plurality of magnets arranged in
  • FIG. 15 is a schematic view showing an example in which a gap is formed between the magnets and the gap is adjusted.
  • FIG. 16 is a schematic view showing an example in which a recess is provided between the magnets.
  • FIG. 17 is a schematic view showing an example in which the thickness of the magnet is adjusted.
  • FIG. 18 is a schematic view showing an example in which the distance between the magnet and the coil body is adjusted.
  • FIG. 19 is a schematic view showing an example in which the width of the lead wire portion is adjusted.
  • FIG. 20 is a bottom view showing a rotor equipped with magnets arranged in a Halbach array.
  • FIG. 21 is a schematic diagram for explaining the orientation of the magnetic flux lines in the magnet of the rotor shown in FIG. 20.
  • the fan motor 10 as the motor of the present embodiment is used to rotate a fan that constitutes a part of a vehicle air conditioner.
  • the fan motor 10 supports a motor body 13 that rotates the rotating shaft 12, a control circuit (not shown) that controls the rotation of the rotating shaft 12 by controlling energization of the motor body 13, and the motor body 13 and the control circuit.
  • the center piece 16 is provided.
  • the arrow Z direction, the arrow R direction, and the arrow C direction which are appropriately shown in the drawing, indicate the rotation axis direction, the rotation radial direction, and the rotation circumference direction of the rotation shaft 12, respectively.
  • the rotational axis direction, the rotational radial direction, and the rotational circumferential direction of the rotating shaft 12 are indicated unless otherwise specified.
  • the motor body 13 is composed of a rotating shaft 12, a rotor 22, and a stator 20 as main elements.
  • the rotating shaft 12 is formed of a columnar steel material. As shown in FIG. 2, the rotating shaft 12 is rotatably supported by a pair of bearings 23 fixed to the center piece 16.
  • the rotor 22 is configured by fixing a magnet 32 to a rotor housing 34 formed in a bottomed cylindrical shape with the other side open in the axial direction.
  • the rotor housing 34 includes a disc-shaped bottom wall 34A and a peripheral wall 34B that bends and extends from the radially outer end of the bottom wall 34A to the other side in the axial direction.
  • an insertion portion 34C into which the rotation shaft 12 is inserted is provided at the center of the bottom wall 34A.
  • the rotor housing 34 and the rotary shaft 12 are integrally rotatably coupled to each other.
  • the stator 20 includes a stator core 24 formed in an annular shape and an annular coil body 26 fixed to a radially outer portion 24A of the stator core 24.
  • the stator core 24 is formed by laminating steel plates formed in a predetermined shape or the like.
  • An engaging groove 24B that engages with the engaging convex portion 16A (see FIG. 3) formed in the center piece 16 is formed along the axial direction on the inner peripheral portion of the stator core 24 on the inner side in the radial direction.
  • the stator core 24 (stator 20) is positioned in the circumferential direction with respect to the center piece 16.
  • the radial outer surface 24C in the radial outer portion 24A of the stator core 24 is formed as an example on a curved surface having no unevenness.
  • the surface 24D on one side in the axial direction and the surface 24E on the other side in the axial direction in the radial outer portion 24A of the stator core 24 are formed in a planar shape extending in the radial direction and the circumferential direction.
  • the coil body 26 is formed by bending and bending a plurality of lead wires 27 into a shape that covers the radially outer portion 24A of the stator core 24.
  • the conducting wire 27 constituting the coil body 26 is an aggregate of strands formed by bundling conductive strands. Further, the resistance value between the bundled strands is larger than the resistance value of the strands themselves. As a result, the vortex current loss is reduced.
  • annular laminated portion 27A The portion of the lead wire 27 that is formed in an annular shape and is laminated in the axial direction.
  • the annular laminated portion 27A is alternately bent along the circumferential direction to one side in the axial direction (arrow Z1 direction) and the other side in the axial direction (arrow Z2 direction).
  • the alternately bent annular laminated portions 27A are arranged on the outer peripheral side of the stator core 24, and as shown in FIG. 8, the shafts of the alternately bent annular laminated portions 27A are arranged.
  • the coil portion 28U of the U phase is formed, and the coil portion 28U of the U phase is the portion outside the radial direction of the stator core 24. It is arranged along 24A (see FIG. 4).
  • the portion of the annular laminated portion 27A bent alternately on one side in the axial direction and the portion on the other side in the axial direction are radially inward.
  • the V-phase coil portion 28V is formed, and the V-phase coil portion 28V is arranged together with the U-phase coil portion 28U along the radial outer portion 24A (see FIG. 4) of the stator core 24. Will be done.
  • the alternately bent annular laminated portion 27A has one axial portion and the other axial portion.
  • the W-phase coil portion 28W is formed by bending this portion inward in the radial direction, and the W-phase coil portion 28W together with the U-phase coil portion 28U and the V-phase coil portion 28V has the diameter of the stator core 24. It is arranged along the directional outer portion 24A.
  • the coil body 26 is formed by the U-phase coil portion 28U, the V-phase coil portion 28V, and the W-phase coil portion 28W.
  • An insulator or the like is interposed between the coil body 26 and the stator core 24 to ensure the insulating property between the two and to improve the heat transfer between the two.
  • the U-phase coil portion 28U, the V-phase coil portion 28V, and the W-phase coil portion 28W are arranged along the radial outer surface 24C (see FIG. 5) in the radial outer portion 24A of the stator core 24.
  • the portion is called the lead wire portion 29A.
  • the lead wire portion 29A is configured by arranging a part of the lead wire 27 extending in the axial direction in the circumferential direction. Further, the thickness dimension of the lead wire portion 29A in the radial direction is smaller than the width dimension in the circumferential direction of one phase in one magnetic pole.
  • the U-phase lead wire portion 29A, the V-phase lead wire portion 29A, and the W-phase lead wire portion 29A are arranged in this order along the circumferential direction.
  • one side surface 24D in the axial direction and the other axial direction in the radially outer portion 24A of the stator core 24
  • the portion arranged along the side surface 24E is referred to as a coil end portion 28B.
  • the radial outer surface 24C of the radial outer portion 24A of the stator core 24 is formed on a curved surface having no unevenness, so that each of the lead wire portions 29A
  • the structure is such that a member between the conductors such as a part of the stator core 24 is not provided between the two.
  • Such a structure is called a "teethless structure".
  • a wire-to-wire member such as a part of the stator core 24 may be provided between the wire-leading portions 29A.
  • the width dimension of the member between wires in one magnetic pole in the circumferential direction is Wt
  • the saturation magnetic flux density of the member between wires is Bs
  • Wm it suffices that the inter-lead wire member is formed by using a magnetic material or a non-magnetic material having a relationship of Wt ⁇ Bs ⁇ Wm ⁇ Br.
  • such a structure is also called a "teethless structure”.
  • each of the annular laminated portion 27A is bent inward in the radial direction by bending one portion in the axial direction and the other portion in the axial direction.
  • An example in which the coil portions 28U, 28V, 28W are fixed to the radially outer portion 24A of the stator core 24 has been described, but the respective coil portions 28U, 28V, 28W are fixed to the radially outer portion 24A of the stator core 24 by another method. It may be fixed to.
  • the respective coil portions 28U, 28V, and 28W are embedded in a coil support 30 formed of an insulating material (resin material or the like) to form a shape thereof. It is held, and by fixing the coil support 30 to the radially outer portion 24A of the stator core 24, the respective coil portions 28U, 28V, 28W can be fixed to the radially outer portion 24A of the stator core 24. Good.
  • a single magnet 32 (ring) having a polar anisotropic arrangement (polar anisotropy) in which N poles and S poles are alternately arranged in the circumferential direction.
  • a magnet can be used, or as shown in FIG. 12B, a plurality of magnets 32 (segment magnets) having a polar anisotropic arrangement (polar anisotropy) can be used.
  • the single magnet 32 or the plurality of magnets 32 are fixed to the radial inner surface of the peripheral wall 34B of the rotor housing 34 via an adhesive or the like.
  • the single magnet 32 or the plurality of magnets 32 has a holding force Hc of 400 [kA / m] or more so as to cause magnetic saturation when a member between the conducting wires is present between the respective conducting wire portions 29A. It is formed by using a magnetic material having a residual magnetic flux density Br of 1.0 [T] or more. As an example, the magnet 32 of the present embodiment is formed by using a magnetic material such as NdFe 11 TiN, Nd 2 Fe 14 B, Sm 2 Fe 17 N 3 , FeNi or the like.
  • the magnet is provided so that the induced voltage waveform generated in the coil body 26 (see FIG. 2) when the motor body 13 is operating (when the rotor 22 is rotating) becomes a waveform along a sine wave. 32 orientation angles and the like are set.
  • a specific configuration for forming the induced voltage waveform generated in the coil body 26 into a waveform along a sine wave will be described.
  • FIG. 13 shows a schematic view in which a part of the single magnet 32 shown in FIG. 12A is linearly represented along the circumferential direction. Further, in FIG. 13, the magnetic flux lines and the directions of the magnetic fluxes in the magnet 32 are schematically shown by arrows W. As shown in this figure, in a single magnet 32, the circumference of the magnetic flux line at the radial inner end of the magnetic pole center L (the magnetic pole center of the N pole in FIG. 13) when the magnet 32 is viewed from the axial direction. The orientation angle with respect to the direction is ⁇ °.
  • the magnetic flux center is as shown by the broken magnetic flux line (arrow W) shown in FIG. It has been found by analysis and experiments that the orientation angle of the magnetic flux line in L with respect to the circumferential direction should be set to less than 90 °.
  • the magnetic flux line (arrow W) having an orientation angle of 90 ° is indicated by a solid arrow.
  • FIG. 15 shows a schematic diagram showing a part of the plurality of magnets 32 shown in FIG. 12B.
  • the magnets 32 adjacent to each other in the circumferential direction are separated from each other at the magnetic pole center L (a gap is formed between the magnets 32 adjacent to each other in the circumferential direction).
  • FIG. 16 shows a schematic diagram showing a part of the single magnet 32 shown in FIG. 12A.
  • a recess 54 is formed inside the portion of the magnet 32 including the magnetic pole center L in the radial direction.
  • the recess 54 is formed in a U shape whose edge portion is open in the radial direction when viewed from the axial direction. Further, the recess 54 is formed without interruption from one end of the magnet 32 in the axial direction to the other end. Since the recess 54 is formed in the magnet 32, the thickness dimension T1 in the radial direction of the portion where the recess 54 is formed is compared with the thickness dimension T2 of the portion where the recess 54 is not formed. It has a small size.
  • the thickness dimension T1 in the radial direction of the magnet 32 is the smallest at the magnetic pole center L. Then, it is analyzed that in order for the induced voltage waveform generated in the coil body 26 when the motor body 13 is operated to be a waveform along the sine wave, the shape and size of the recess 54 and the thickness of the magnet 32 should be adjusted. And experiments have shown. As shown in FIG. 17, the recesses 54 may be formed on both sides of the magnet 32 on one side and the other side in the axial direction.
  • the induced voltage waveform generated in the coil body 26 when the motor body 13 is operated becomes a sinusoidal wave. It is known from analysis and experiment that the waveform can be made to follow.
  • the induced voltage waveform generated in the coil body 26 when the motor body 13 is operated becomes a sine wave. It is known from analysis and experiment that the waveform can be made to follow.
  • the orientation angle of the magnet 32, the spacing between the plurality of magnets 32 adjacent to each other in the circumferential direction, and the magnet 32 If at least one of the thickness dimension T1 of the magnet 32, the distance R1 between the magnet 32 and the coil body 26, and the width dimension C4 of each lead wire portion 29A in the circumferential direction is adjusted, such as the shape of the formed recess 54. Good. As a result, it is possible to effectively suppress the generation of noise due to the generation of vibration when the motor body 13 is operated. That is, it is possible to reduce the noise by reducing the vibration.
  • the magnet 32 is formed by using a magnetic material having a holding force Hc of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more, and the magnet 32 is extremely different. It is an array. As a result, a desired output can be obtained while suppressing an increase in the size of the motor body 13.
  • a rotor may be configured using magnets 58 in a Halbach array.
  • the magnet 58 is formed by joining three types of magnet portions 60A, 60B, and 60C having different directions of magnetic flux in an annular shape. More specifically, the magnet 58 includes a magnet portion 60A magnetized so that the magnetic flux is directed outward in the radial direction, a magnet portion 60B magnetized so that the magnetic flux is directed inward in the radial direction, and a magnet portion 60A and a magnet.
  • the magnet portion 60C which is arranged between the portion 60B and magnetized so that the magnetic flux goes to one side in the circumferential direction, is configured by being coupled to each other in the circumferential direction.

Abstract

A fan motor (10), provided with a rotor (22) having a magnet (32) that has a plurality of magnetic poles, the magnet (32) being formed using a magnetic material in which the holding force Hc is 400 [kA/m] or above and the residual magnetic flux density Br is 1.0 [T] or above. The fan motor (10) is provided with a stator (20) configured so as to include a conductor (27), the stator (20) having a coil body (26) in which a part of the conductor (27) is configured as a plurality of conductor sections (29A) arranged in the circumferential direction and disposed so as to face the magnet (32). A conductor-to-conductor member is not provided between the conductor sections (29A) with respect to the circumferential direction. In the conductor sections, the radial thickness dimension thereof is smaller than the circumferential width dimension corresponding to one phase in one magnetic pole. The alignment angle, etc., of the magnet (32) is set so that the induced voltage waveform produced in the coil body (26) follows a sine wave.

Description

モータmotor 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年7月17日に出願された日本出願番号2019-131856号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-131856 filed on July 17, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、モータに関する。 This disclosure relates to motors.
 下記特許文献1には、車両の空調装置の一部を構成するファンモータが開示されている。この文献に記載されたファンモータは、導電性の巻線が巻回されることで形成された複数のコイルを有するステータを備えている。そして、この文献に記載されたステータでは、コイルの内側の空間が空気や合成樹脂等で満たされた空芯コイルとなっている。これにより駆動出力を維持しつつ、ファンモータの軽量化が図られている。 Patent Document 1 below discloses a fan motor that constitutes a part of an air conditioner for a vehicle. The fan motors described in this document include a stator having a plurality of coils formed by winding a conductive winding. In the stator described in this document, the space inside the coil is an air-core coil filled with air, synthetic resin, or the like. As a result, the weight of the fan motor is reduced while maintaining the drive output.
特許第5611348号公報Japanese Patent No. 5611348
 ファンモータ等の車両内に搭載されるモータには、振動の低減による静音化を図ることと体格の大型化を抑制することが望まれるが、上記特許文献1に記載された構成には、この点で改善の余地がある。 It is desirable for a motor mounted in a vehicle such as a fan motor to be quiet by reducing vibration and to suppress an increase in physique. However, the configuration described in Patent Document 1 described above is this. There is room for improvement in terms of points.
 本開示は上記事実を考慮し、振動の低減による静音化を図ることと体格の大型化を抑制することができるモータを得ることが目的である。 In consideration of the above facts, the purpose of this disclosure is to obtain a motor that can reduce the noise by reducing vibration and suppress the increase in physique.
 本開示の第一の態様のモータは、複数の磁極を有するマグネットを備えたロータと、導電性の素線が束ねられることで形成されかつ束ねられた前記素線間の抵抗値が前記素線そのものの抵抗値よりも大きい素線集合体である導線を含んで構成され、前記導線の一部が周方向に並んでかつ前記マグネットと対向して配置された複数の導線部とされたコイル体を備え、周方向における前記各導線部の間に導線間部材が設けられ、かつその導線間部材として、1磁極における前記導線間部材の周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、前記マグネットの1磁極分の周方向の幅寸法をWmとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いる構成となっているステータと、を備え、前記マグネットは、前記各導線部の間に導線間部材が存在する場合には磁気飽和を生じさせるよう、保持力Hcが400[kA/m]以上かつ残留磁束密度Brが1.0[T]以上の磁性材料を用いて形成され、前記導線部は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さくなっており、前記コイル体に生じる誘起電圧波形が正弦波に沿う波形となるように、前記マグネットの配向角度、周方向に隣合う複数の前記マグネット間の間隔、前記マグネットに形成された窪みの形状、前記マグネットの前記コイル体と対向する方向への厚み寸法、前記マグネットと前記コイル体との間の間隔、前記各導線部の周方向への幅寸法、の少なくともいずれかが設定されている。 In the motor of the first aspect of the present disclosure, the resistance value between the rotor provided with magnets having a plurality of magnetic poles and the bundled strands formed by bundling the conductive strands is the wire. A coil body composed of a wire that is an aggregate of strands that is larger than the resistance value of itself, and is a plurality of wire portions in which a part of the wire is arranged in the circumferential direction and is arranged so as to face the magnet. A member between the conductors is provided between the respective conductors in the circumferential direction, and as the member between the conductors, the width dimension of the member between the conductors in the circumferential direction at one magnetic pole is Wt, and the saturation magnetic flux of the member between the conductors. When the density is Bs and the width dimension of one magnetic pole of the magnet in the circumferential direction is Wm, a stator having a structure of using a magnetic material having a relationship of Wt × Bs ≦ Wm × Br is provided. The magnet has a holding force Hc of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more so as to cause magnetic saturation when a member between the wires is present between the wires. The lead wire portion is formed by using the magnetic material of the above, and the thickness dimension in the radial direction thereof is smaller than the width dimension in the circumferential direction for one phase in one magnetic pole, and the induced voltage generated in the coil body. The orientation angle of the magnet, the distance between the plurality of magnets adjacent to each other in the circumferential direction, the shape of the recess formed in the magnet, and the coil body of the magnet so that the waveform becomes a waveform along the sinusoidal wave. At least one of the thickness dimension in the direction, the distance between the magnet and the coil body, and the width dimension in the circumferential direction of each of the conducting wire portions is set.
 この様に構成することで、振動の低減による静音化を図ることと体格の大型化を抑制することができる。 By configuring in this way, it is possible to reduce vibration and reduce the size of the physique.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、ファンモータを示す斜視図であり、 図2は、図1に示された2-2線に沿って切断したファンモータを示す断面図であり、 図3は、ファンモータを分解して示す分解斜視図であり、 図4は、ステータを示す斜視図であり、 図5は、ステータコアを示す斜視図であり、 図6は、第1工程を経た後の導線を示す斜視図であり、 図7は、第2工程を経た後の導線を示す斜視図であり、 図8は、第3工程を経た後のU相の導線を示す斜視図であり、 図9は、第3工程を経た後のV相の導線を示す斜視図であり、 図10は、第3工程を経た後のW相の導線を示す斜視図であり、 図11は、他の形態のステータを示す斜視図であり、 図12Aは、極異方配列とされたマグネットを備えたロータを示す底面図であり、 図12Bは、極異方配列とされた複数のマグネットを備えたロータを示す底面図であり、 図13は、マグネット内の磁束線の配向を説明するための模式図であり、 図14は、マグネット内の磁束線の配向を説明するための模式図であり、配向角度を90°以下に設定した例を示している。 図15は、マグネット間に隙間を形成し、この隙間を調節した例を示す模式図であり、 図16は、マグネット間に窪みを設けた例を示す模式図であり、 図17は、マグネットの厚みを調節した例を示す模式図であり、 図18は、マグネットとコイル体との間の間隔を調節した例を示す模式図であり、 図19は、導線部の幅を調節した例を示す模式図であり、 図20は、ハルバッハ配列とされたマグネットを備えたロータを示す底面図であり、 図21は、図20に示されたロータのマグネット内の磁束線の配向を説明するための模式図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a perspective view showing a fan motor. FIG. 2 is a cross-sectional view showing a fan motor cut along line 2-2 shown in FIG. FIG. 3 is an exploded perspective view showing the fan motor in an exploded manner. FIG. 4 is a perspective view showing the stator. FIG. 5 is a perspective view showing the stator core. FIG. 6 is a perspective view showing the lead wire after the first step. FIG. 7 is a perspective view showing the lead wire after the second step. FIG. 8 is a perspective view showing a U-phase lead wire after the third step. FIG. 9 is a perspective view showing a V-phase lead wire after the third step. FIG. 10 is a perspective view showing a W phase lead wire after the third step. FIG. 11 is a perspective view showing another form of the stator. FIG. 12A is a bottom view showing a rotor with magnets arranged in a very anisotropic arrangement. FIG. 12B is a bottom view showing a rotor with a plurality of magnets arranged in a very anisotropic arrangement. FIG. 13 is a schematic diagram for explaining the orientation of the magnetic flux lines in the magnet. FIG. 14 is a schematic diagram for explaining the orientation of the magnetic flux lines in the magnet, and shows an example in which the orientation angle is set to 90 ° or less. FIG. 15 is a schematic view showing an example in which a gap is formed between the magnets and the gap is adjusted. FIG. 16 is a schematic view showing an example in which a recess is provided between the magnets. FIG. 17 is a schematic view showing an example in which the thickness of the magnet is adjusted. FIG. 18 is a schematic view showing an example in which the distance between the magnet and the coil body is adjusted. FIG. 19 is a schematic view showing an example in which the width of the lead wire portion is adjusted. FIG. 20 is a bottom view showing a rotor equipped with magnets arranged in a Halbach array. FIG. 21 is a schematic diagram for explaining the orientation of the magnetic flux lines in the magnet of the rotor shown in FIG. 20.
 図1~図19を用いて実施形態に係るモータについて説明する。 The motor according to the embodiment will be described with reference to FIGS. 1 to 19.
 図1~図3に示されるように、本実施形態のモータとしてのファンモータ10は、車両用空調装置の一部を構成するファンを回転させるために用いられる。このファンモータ10は、回転軸12を回転させるモータ本体13と、モータ本体13への通電を制御することにより回転軸12の回転を制御する図示しない制御回路と、モータ本体13及び制御回路を支持するセンタピース16と、を備えている。なお、図中に適宜示す矢印Z方向、矢印R方向及び矢印C方向は、回転軸12の回転軸方向、回転径方向及び回転周方向をそれぞれ示すものとする。また以下、単に軸方向、径方向、周方向を示す場合は、特に断りのない限り、回転軸12の回転軸方向、回転径方向、回転周方向を示すものとする。 As shown in FIGS. 1 to 3, the fan motor 10 as the motor of the present embodiment is used to rotate a fan that constitutes a part of a vehicle air conditioner. The fan motor 10 supports a motor body 13 that rotates the rotating shaft 12, a control circuit (not shown) that controls the rotation of the rotating shaft 12 by controlling energization of the motor body 13, and the motor body 13 and the control circuit. The center piece 16 is provided. The arrow Z direction, the arrow R direction, and the arrow C direction, which are appropriately shown in the drawing, indicate the rotation axis direction, the rotation radial direction, and the rotation circumference direction of the rotation shaft 12, respectively. Hereinafter, when the axial direction, the radial direction, and the circumferential direction are simply indicated, the rotational axis direction, the rotational radial direction, and the rotational circumferential direction of the rotating shaft 12 are indicated unless otherwise specified.
 モータ本体13は、回転軸12、ロータ22及びステータ20を主要な要素として構成されている。 The motor body 13 is composed of a rotating shaft 12, a rotor 22, and a stator 20 as main elements.
 回転軸12は、円柱状の鋼材を用いて形成されている。図2に示されるように、この回転軸12は、センタピース16に固定された一対のベアリング23によって回転自在に支持されている。 The rotating shaft 12 is formed of a columnar steel material. As shown in FIG. 2, the rotating shaft 12 is rotatably supported by a pair of bearings 23 fixed to the center piece 16.
 ロータ22は、軸方向他方側が開放された有底円筒状に形成されたロータハウジング34にマグネット32が固定されることによって構成されている。ロータハウジング34は、円板状に形成された底壁34Aと、底壁34Aの径方向外側の端から軸方向他方側へ屈曲して延びる周壁34Bと、を備えている。底壁34Aの中心部には、回転軸12が挿入される挿入部34Cが設けられている。この挿入部34Cに回転軸12が圧入されることでロータハウジング34と回転軸12とが一体回転可能に結合されている。 The rotor 22 is configured by fixing a magnet 32 to a rotor housing 34 formed in a bottomed cylindrical shape with the other side open in the axial direction. The rotor housing 34 includes a disc-shaped bottom wall 34A and a peripheral wall 34B that bends and extends from the radially outer end of the bottom wall 34A to the other side in the axial direction. At the center of the bottom wall 34A, an insertion portion 34C into which the rotation shaft 12 is inserted is provided. By press-fitting the rotary shaft 12 into the insertion portion 34C, the rotor housing 34 and the rotary shaft 12 are integrally rotatably coupled to each other.
 図4に示されるように、ステータ20は、環状に形成されたステータコア24と、ステータコア24の径方向外側の部分24Aに固定された環状のコイル体26と、を含んで構成されている。 As shown in FIG. 4, the stator 20 includes a stator core 24 formed in an annular shape and an annular coil body 26 fixed to a radially outer portion 24A of the stator core 24.
 図5に示されるように、ステータコア24は、所定の形状に形成された鋼板材が積層されること等によって形成されている。このステータコア24の径方向内側の内周部には、センタピース16に形成された係合凸部16A(図3参照)へ係合する係合溝24Bが軸方向に沿って形成されている。センタピース16に形成された係合凸部16Aと係合溝24Bとが係合することで、ステータコア24(ステータ20)のセンタピース16に対する周方向への位置決めがなされるようになっている。また、ステータコア24の径方向外側の部分24Aにおける径方向外側の面24Cは、一例として凹凸のない曲面に形成されている。また、ステータコア24の径方向外側の部分24Aにおける軸方向一方側の面24D及び軸方向他方側の面24Eは、径方向及び周方向に広がる平面状に形成されている。 As shown in FIG. 5, the stator core 24 is formed by laminating steel plates formed in a predetermined shape or the like. An engaging groove 24B that engages with the engaging convex portion 16A (see FIG. 3) formed in the center piece 16 is formed along the axial direction on the inner peripheral portion of the stator core 24 on the inner side in the radial direction. By engaging the engaging convex portion 16A formed on the center piece 16 with the engaging groove 24B, the stator core 24 (stator 20) is positioned in the circumferential direction with respect to the center piece 16. Further, the radial outer surface 24C in the radial outer portion 24A of the stator core 24 is formed as an example on a curved surface having no unevenness. Further, the surface 24D on one side in the axial direction and the surface 24E on the other side in the axial direction in the radial outer portion 24A of the stator core 24 are formed in a planar shape extending in the radial direction and the circumferential direction.
 図4に示されるように、コイル体26は、複数の導線27がステータコア24の径方向外側の部分24Aを覆う形状に湾曲及び屈曲されること等により形成されている。コイル体26を構成する導線27は、導電性の素線が束ねられることで形成された素線集合体である。また、束ねられた素線間の抵抗値は、素線そのものの抵抗値よりも大きくなっている。これにより、うず電流損が低減されるようになっている。 As shown in FIG. 4, the coil body 26 is formed by bending and bending a plurality of lead wires 27 into a shape that covers the radially outer portion 24A of the stator core 24. The conducting wire 27 constituting the coil body 26 is an aggregate of strands formed by bundling conductive strands. Further, the resistance value between the bundled strands is larger than the resistance value of the strands themselves. As a result, the vortex current loss is reduced.
 ここで、コイル体26の製造方法の説明を交えて、コイル体26の細部の構成について説明する。 Here, the detailed configuration of the coil body 26 will be described together with the explanation of the manufacturing method of the coil body 26.
 先ず、図6に示されるように、導線27を周方向に巻回することにより、当該導線27の大部分を環状に形成すると共に軸方向に積層させる。なお、導線27において環状に形成されていると共に軸方向に積層された部分を環状積層部27Aと呼ぶ。 First, as shown in FIG. 6, by winding the lead wire 27 in the circumferential direction, most of the lead wire 27 is formed in an annular shape and laminated in the axial direction. The portion of the lead wire 27 that is formed in an annular shape and is laminated in the axial direction is referred to as an annular laminated portion 27A.
 次に、図7に示されるように、環状積層部27Aを周方向に沿って軸方向一方側(矢印Z1方向)及び軸方向他方側(矢印Z2方向)へ交互に屈曲させる。 Next, as shown in FIG. 7, the annular laminated portion 27A is alternately bent along the circumferential direction to one side in the axial direction (arrow Z1 direction) and the other side in the axial direction (arrow Z2 direction).
 次に、図7に示されたように交互に屈曲された環状積層部27Aをステータコア24の外周側に配置させて、図8に示されるように、交互に屈曲された環状積層部27Aの軸方向一方側の部分及び軸方向他方側の部分を径方向内側へ屈曲させることにより、U相のコイル部28Uが形成されると共に、当該U相のコイル部28Uがステータコア24の径方向外側の部分24A(図4参照)に沿って配置される。 Next, as shown in FIG. 7, the alternately bent annular laminated portions 27A are arranged on the outer peripheral side of the stator core 24, and as shown in FIG. 8, the shafts of the alternately bent annular laminated portions 27A are arranged. By bending the portion on one side in the direction and the portion on the other side in the axial direction inward in the radial direction, the coil portion 28U of the U phase is formed, and the coil portion 28U of the U phase is the portion outside the radial direction of the stator core 24. It is arranged along 24A (see FIG. 4).
 U相のコイル部28Uを形成する工程と同様に、図9に示されるように、交互に屈曲された環状積層部27Aの軸方向一方側の部分及び軸方向他方側の部分を径方向内側へ屈曲させることにより、V相のコイル部28Vが形成されると共に、当該V相のコイル部28VがU相のコイル部28Uと共にステータコア24の径方向外側の部分24A(図4参照)に沿って配置される。 Similar to the step of forming the U-phase coil portion 28U, as shown in FIG. 9, the portion of the annular laminated portion 27A bent alternately on one side in the axial direction and the portion on the other side in the axial direction are radially inward. By bending, the V-phase coil portion 28V is formed, and the V-phase coil portion 28V is arranged together with the U-phase coil portion 28U along the radial outer portion 24A (see FIG. 4) of the stator core 24. Will be done.
 U相のコイル部28U及びV相のコイル部28Vを形成する工程と同様に、図10に示されるように、交互に屈曲された環状積層部27Aの軸方向一方側の部分及び軸方向他方側の部分を径方向内側へ屈曲させることにより、W相のコイル部28Wが形成されると共に、当該W相のコイル部28WがU相のコイル部28U及びV相のコイル部28Vと共にステータコア24の径方向外側の部分24Aに沿って配置される。これにより、図4に示されるように、U相のコイル部28U、V相のコイル部28V及びW相のコイル部28Wによってコイル体26が形成される。なお、コイル体26とステータコア24との間には、両者の絶縁性を確保するためや両者間の伝熱を良好にするためのインシュレータ等が介在している。 Similar to the step of forming the U-phase coil portion 28U and the V-phase coil portion 28V, as shown in FIG. 10, the alternately bent annular laminated portion 27A has one axial portion and the other axial portion. The W-phase coil portion 28W is formed by bending this portion inward in the radial direction, and the W-phase coil portion 28W together with the U-phase coil portion 28U and the V-phase coil portion 28V has the diameter of the stator core 24. It is arranged along the directional outer portion 24A. As a result, as shown in FIG. 4, the coil body 26 is formed by the U-phase coil portion 28U, the V-phase coil portion 28V, and the W-phase coil portion 28W. An insulator or the like is interposed between the coil body 26 and the stator core 24 to ensure the insulating property between the two and to improve the heat transfer between the two.
 また、U相のコイル部28U、V相のコイル部28V及びW相のコイル部28Wにおいて、ステータコア24の径方向外側の部分24Aにおける径方向外側の面24C(図5参照)に沿って配置される部分を導線部29Aと呼ぶ。導線部29Aは、軸方向にのびる導線27の一部が周方向に配列されることにより構成されている。また、導線部29Aは、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さくなっている。U相の導線部29A、V相の導線部29A及びW相の導線部29Aは、周方向に沿ってこの順で配列されている。 Further, in the U-phase coil portion 28U, the V-phase coil portion 28V, and the W-phase coil portion 28W, they are arranged along the radial outer surface 24C (see FIG. 5) in the radial outer portion 24A of the stator core 24. The portion is called the lead wire portion 29A. The lead wire portion 29A is configured by arranging a part of the lead wire 27 extending in the axial direction in the circumferential direction. Further, the thickness dimension of the lead wire portion 29A in the radial direction is smaller than the width dimension in the circumferential direction of one phase in one magnetic pole. The U-phase lead wire portion 29A, the V-phase lead wire portion 29A, and the W-phase lead wire portion 29A are arranged in this order along the circumferential direction.
 さらに、U相のコイル部28U、V相のコイル部28V及びW相のコイル部28Wにおいて、ステータコア24の径方向外側の部分24Aにおける軸方向一方側の面24D(図5参照)及び軸方向他方側の面24E(図5参照)に沿って配置される部分をコイルエンド部28Bと呼ぶ。 Further, in the U-phase coil portion 28U, the V-phase coil portion 28V, and the W-phase coil portion 28W, one side surface 24D (see FIG. 5) in the axial direction and the other axial direction in the radially outer portion 24A of the stator core 24 The portion arranged along the side surface 24E (see FIG. 5) is referred to as a coil end portion 28B.
 また、本実施形態では、図5に示されるように、ステータコア24の径方向外側の部分24Aにおける径方向外側の面24Cが凹凸のない曲面に形成されていること等により、各々の導線部29Aの間にステータコア24の一部等の導線間部材が設けられていない構成となっている。このような構造を「ティースレス構造」と呼ぶ。 Further, in the present embodiment, as shown in FIG. 5, the radial outer surface 24C of the radial outer portion 24A of the stator core 24 is formed on a curved surface having no unevenness, so that each of the lead wire portions 29A The structure is such that a member between the conductors such as a part of the stator core 24 is not provided between the two. Such a structure is called a "teethless structure".
 なお、各々の導線部29Aの間にステータコア24の一部等の導線間部材が設けられている構成としてもよい。導線間部材が設けられている構成では、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、後述するマグネット32の1磁極分の周方向の幅寸法をWmとした場合に、Wt×Bs≦Wm×Brの関係となるような磁性材料、若しくは非磁性材料を用いて導線間部材が形成されていればよい。なお、このような構造も「ティースレス構造」と呼ぶ。 It should be noted that a wire-to-wire member such as a part of the stator core 24 may be provided between the wire-leading portions 29A. In a configuration in which a member between wires is provided, the width dimension of the member between wires in one magnetic pole in the circumferential direction is Wt, the saturation magnetic flux density of the member between wires is Bs, and the width dimension in the circumferential direction of one magnetic pole of the magnet 32 described later. When is Wm, it suffices that the inter-lead wire member is formed by using a magnetic material or a non-magnetic material having a relationship of Wt × Bs ≦ Wm × Br. In addition, such a structure is also called a "teethless structure".
 図4、図6~図10に示されるように、以上説明した構成では、環状積層部27Aの軸方向一方側の部分及び軸方向他方側の部分を径方向内側へ屈曲させることにより、各々のコイル部28U、28V、28Wをステータコア24の径方向外側の部分24Aに固定した例について説明したが、他の方法によって、各々のコイル部28U、28V、28Wをステータコア24の径方向外側の部分24Aに固定してもよい。例えば、図11に示されるように、各々のコイル部28U、28V、28Wが、絶縁性の材料(樹脂材料等)を用いて形成されたコイル支持体30内に埋設されることによりその形状が保持されており、このコイル支持体30をステータコア24の径方向外側の部分24Aに固定することにより、各々のコイル部28U、28V、28Wをステータコア24の径方向外側の部分24Aに固定してもよい。 As shown in FIGS. 4 and 6 to 10, in the configuration described above, each of the annular laminated portion 27A is bent inward in the radial direction by bending one portion in the axial direction and the other portion in the axial direction. An example in which the coil portions 28U, 28V, 28W are fixed to the radially outer portion 24A of the stator core 24 has been described, but the respective coil portions 28U, 28V, 28W are fixed to the radially outer portion 24A of the stator core 24 by another method. It may be fixed to. For example, as shown in FIG. 11, the respective coil portions 28U, 28V, and 28W are embedded in a coil support 30 formed of an insulating material (resin material or the like) to form a shape thereof. It is held, and by fixing the coil support 30 to the radially outer portion 24A of the stator core 24, the respective coil portions 28U, 28V, 28W can be fixed to the radially outer portion 24A of the stator core 24. Good.
 次に、マグネット32について説明する。 Next, the magnet 32 will be described.
 本実施形態のマグネット32としては、図12Aに示されるように、N極とS極とが周方向に交互に配列された極異方配列(極異方性)の単一のマグネット32(リングマグネット)を用いることもできるし、図12Bに示されるように、極異方配列(極異方性)の複数のマグネット32(セグメントマグネット)を用いることもできる。図12A及び図12Bに示されるように、単一のマグネット32又は複数のマグネット32は、ロータハウジング34の周壁34Bの径方向内側の面に接着剤等を介して固定されている。また、単一のマグネット32又は複数のマグネット32は、前記各導線部29Aの間に導線間部材が存在する場合には磁気飽和を生じさせるよう、保持力Hcが400[kA/m]以上かつ残留磁束密度Brが1.0[T]以上の磁性材料を用いて形成されている。一例として、本実施形態のマグネット32は、NdFe11TiN、NdFe14B、SmFe17、FeNi等の磁性材料を用いて形成されている。 As the magnet 32 of the present embodiment, as shown in FIG. 12A, a single magnet 32 (ring) having a polar anisotropic arrangement (polar anisotropy) in which N poles and S poles are alternately arranged in the circumferential direction. A magnet) can be used, or as shown in FIG. 12B, a plurality of magnets 32 (segment magnets) having a polar anisotropic arrangement (polar anisotropy) can be used. As shown in FIGS. 12A and 12B, the single magnet 32 or the plurality of magnets 32 are fixed to the radial inner surface of the peripheral wall 34B of the rotor housing 34 via an adhesive or the like. Further, the single magnet 32 or the plurality of magnets 32 has a holding force Hc of 400 [kA / m] or more so as to cause magnetic saturation when a member between the conducting wires is present between the respective conducting wire portions 29A. It is formed by using a magnetic material having a residual magnetic flux density Br of 1.0 [T] or more. As an example, the magnet 32 of the present embodiment is formed by using a magnetic material such as NdFe 11 TiN, Nd 2 Fe 14 B, Sm 2 Fe 17 N 3 , FeNi or the like.
 ここで、本実施形態では、モータ本体13の作動時(ロータ22が回転している際)にコイル体26(図2参照)に生じる誘起電圧波形が正弦波に沿う波形となるように、マグネット32の配向角度等が設定されている。以下、コイル体26に生じる誘起電圧波形が正弦波に沿う波形とするための具体的な構成について説明する。 Here, in the present embodiment, the magnet is provided so that the induced voltage waveform generated in the coil body 26 (see FIG. 2) when the motor body 13 is operating (when the rotor 22 is rotating) becomes a waveform along a sine wave. 32 orientation angles and the like are set. Hereinafter, a specific configuration for forming the induced voltage waveform generated in the coil body 26 into a waveform along a sine wave will be described.
 図13には、図12Aに示された単一のマグネット32の一部を周方向に沿って直線状に表した模式図が示されている。また、図13においては、マグネット32内の磁束線及び磁束の向きを矢印Wで模式的に示している。この図に示されるように、単一のマグネット32では、当該マグネット32を軸方向から見て、磁極中心L(図13においてはN極の磁極中心)の径方向内側の端における磁束線の周方向に対する配向角度がθ°とされている。そして、モータ本体13の作動時にコイル体26に生じる誘起電圧波形が正弦波に沿う波形となるようにするには、図14に示された破線の磁束線(矢印W)のように、磁極中心Lにおける磁束線の周方向に対する配向角度を90°未満に設定すると良いことが、解析や実験によってわかっている。なお、配向角度が90°とされた磁束線(矢印W)を実線の矢印で示している。 FIG. 13 shows a schematic view in which a part of the single magnet 32 shown in FIG. 12A is linearly represented along the circumferential direction. Further, in FIG. 13, the magnetic flux lines and the directions of the magnetic fluxes in the magnet 32 are schematically shown by arrows W. As shown in this figure, in a single magnet 32, the circumference of the magnetic flux line at the radial inner end of the magnetic pole center L (the magnetic pole center of the N pole in FIG. 13) when the magnet 32 is viewed from the axial direction. The orientation angle with respect to the direction is θ °. Then, in order to make the induced voltage waveform generated in the coil body 26 become a waveform along the sine wave when the motor body 13 is operated, the magnetic flux center is as shown by the broken magnetic flux line (arrow W) shown in FIG. It has been found by analysis and experiments that the orientation angle of the magnetic flux line in L with respect to the circumferential direction should be set to less than 90 °. The magnetic flux line (arrow W) having an orientation angle of 90 ° is indicated by a solid arrow.
 図15には、図12Bに示された複数のマグネット32の一部を示した模式図が示されている。この図に示されるように、複数のマグネット32では、周方向に隣合うマグネット32が磁極中心Lにおいて離間している(周方向に隣合うマグネット32の間に隙間が形成されている)。そして、モータ本体13の作動時にコイル体26に生じる誘起電圧波形が正弦波に沿う波形となるようにするには、周方向に隣合うマグネット32の間隔C3を調節すればよいことが解析や実験によってわかっている。 FIG. 15 shows a schematic diagram showing a part of the plurality of magnets 32 shown in FIG. 12B. As shown in this figure, in the plurality of magnets 32, the magnets 32 adjacent to each other in the circumferential direction are separated from each other at the magnetic pole center L (a gap is formed between the magnets 32 adjacent to each other in the circumferential direction). Then, in order to make the induced voltage waveform generated in the coil body 26 along the sine wave when the motor body 13 operates, it is sufficient to adjust the interval C3 of the magnets 32 adjacent to each other in the circumferential direction. I know by
 図16には、図12Aに示された単一のマグネット32の一部を示した模式図が示されている。このマグネット32では、当該マグネット32の磁極中心Lを含む部分の径方向内側に窪み54が形成されている。この窪み54は、軸方向から見てその縁部が径方向内側が開放されたU字状に形成されている。また、この窪み54は、マグネット32の軸方向一方側の端から他方側の端にかけて途切れなく形成されている。この窪み54がマグネット32に形成されていることにより、窪み54が形成された部分のマグネット32の径方向への厚み寸法T1が、当該窪み54が形成されていない部分の厚み寸法T2と比べて小さな寸法となっている。また、この例では、マグネット32の径方向への厚み寸法T1が、磁極中心Lにおいて最も小さくなっている。そして、モータ本体13の作動時にコイル体26に生じる誘起電圧波形が正弦波に沿う波形となるようにするには、窪み54の形状や大きさ並びにマグネット32の厚みを調節すればよいことが解析や実験によってわかっている。なお、窪み54は、図17に示されるように、マグネット32の軸方向一方側及び他方側の両側に形成してもよい。 FIG. 16 shows a schematic diagram showing a part of the single magnet 32 shown in FIG. 12A. In this magnet 32, a recess 54 is formed inside the portion of the magnet 32 including the magnetic pole center L in the radial direction. The recess 54 is formed in a U shape whose edge portion is open in the radial direction when viewed from the axial direction. Further, the recess 54 is formed without interruption from one end of the magnet 32 in the axial direction to the other end. Since the recess 54 is formed in the magnet 32, the thickness dimension T1 in the radial direction of the portion where the recess 54 is formed is compared with the thickness dimension T2 of the portion where the recess 54 is not formed. It has a small size. Further, in this example, the thickness dimension T1 in the radial direction of the magnet 32 is the smallest at the magnetic pole center L. Then, it is analyzed that in order for the induced voltage waveform generated in the coil body 26 when the motor body 13 is operated to be a waveform along the sine wave, the shape and size of the recess 54 and the thickness of the magnet 32 should be adjusted. And experiments have shown. As shown in FIG. 17, the recesses 54 may be formed on both sides of the magnet 32 on one side and the other side in the axial direction.
 また、図18に示されるように、マグネット32とコイル体26との間の径方向への間隔R1を調節することによっても、モータ本体13の作動時にコイル体26に生じる誘起電圧波形が正弦波に沿う波形となるようにできることが解析や実験によってわかっている。 Further, as shown in FIG. 18, by adjusting the radial distance R1 between the magnet 32 and the coil body 26, the induced voltage waveform generated in the coil body 26 when the motor body 13 is operated becomes a sinusoidal wave. It is known from analysis and experiment that the waveform can be made to follow.
 さらに、図19に示されるように、コイル体26の導線部29Aの周方向への幅寸法C4を調節することによっても、モータ本体13の作動時にコイル体26に生じる誘起電圧波形が正弦波に沿う波形となるようにできることが解析や実験によってわかっている。 Further, as shown in FIG. 19, by adjusting the width dimension C4 of the lead wire portion 29A of the coil body 26 in the circumferential direction, the induced voltage waveform generated in the coil body 26 when the motor body 13 is operated becomes a sine wave. It is known from analysis and experiment that the waveform can be made to follow.
 以上説明したように、コイル体26に生じる誘起電圧波形が正弦波に沿う波形となるようにするには、マグネット32の配向角度、周方向に隣合う複数のマグネット32間の間隔、マグネット32に形成された窪み54の形状等、マグネット32の厚み寸法T1、マグネット32とコイル体26との間の間隔R1、各導線部29Aの周方向への幅寸法C4、の少なくともいずれかを調節すればよい。これにより、モータ本体13の作動時に、振動の発生に伴う騒音の発生を効果的に抑制することができる。すなわち、振動の低減による静音化を図ることができる。 As described above, in order for the induced voltage waveform generated in the coil body 26 to be a waveform along the sinusoidal wave, the orientation angle of the magnet 32, the spacing between the plurality of magnets 32 adjacent to each other in the circumferential direction, and the magnet 32 If at least one of the thickness dimension T1 of the magnet 32, the distance R1 between the magnet 32 and the coil body 26, and the width dimension C4 of each lead wire portion 29A in the circumferential direction is adjusted, such as the shape of the formed recess 54. Good. As a result, it is possible to effectively suppress the generation of noise due to the generation of vibration when the motor body 13 is operated. That is, it is possible to reduce the noise by reducing the vibration.
 また、前述のように、本実施形態のファンモータ10のモータ本体13では、各導線部29Aを流れる電流の電流値を高めていったとしても磁気飽和が生じないようになっている。これに加えて、保持力Hcが400[kA/m]以上かつ残留磁束密度Brが1.0[T]以上の磁性材料を用いてマグネット32が形成されており、このマグネット32が極異方配列となっている。これにより、モータ本体13の体格の大型化を抑制しつつ、所望の出力を得ることができる。 Further, as described above, in the motor body 13 of the fan motor 10 of the present embodiment, magnetic saturation does not occur even if the current value of the current flowing through each lead wire portion 29A is increased. In addition to this, the magnet 32 is formed by using a magnetic material having a holding force Hc of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] or more, and the magnet 32 is extremely different. It is an array. As a result, a desired output can be obtained while suppressing an increase in the size of the motor body 13.
 なお、本実施形態では、極異方配列のマグネット32を用いた例について説明したが、本開示はこれに限定されない。例えば、図20及び図21に示されるように、ハルバッハ配列のマグネット58を用いてロータを構成してもよい。このマグネット58は、磁束の向きが異なる3種類のマグネット部60A、60B、60Cを環状に接合することによって構成されている。詳述すると、このマグネット58は、径方向外側へ磁束が向かうように着磁されたマグネット部60Aと、径方向内側へ磁束が向かうように着磁されたマグネット部60Bと、マグネット部60Aとマグネット部60Bとの間に配置され周方向一方側へ磁束が向かうように着磁されたマグネット部60Cと、が互いに周方向に結合されることによって構成されている。 In the present embodiment, an example using the magnets 32 having a very anisotropic arrangement has been described, but the present disclosure is not limited to this. For example, as shown in FIGS. 20 and 21, a rotor may be configured using magnets 58 in a Halbach array. The magnet 58 is formed by joining three types of magnet portions 60A, 60B, and 60C having different directions of magnetic flux in an annular shape. More specifically, the magnet 58 includes a magnet portion 60A magnetized so that the magnetic flux is directed outward in the radial direction, a magnet portion 60B magnetized so that the magnetic flux is directed inward in the radial direction, and a magnet portion 60A and a magnet. The magnet portion 60C, which is arranged between the portion 60B and magnetized so that the magnetic flux goes to one side in the circumferential direction, is configured by being coupled to each other in the circumferential direction.
 以上、本開示の一実施形態について説明したが、本開示は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。 Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above, and various modifications other than the above can be carried out within a range not deviating from the gist thereof. Of course.
 また、本開示は、実施形態に準拠して記述されたが、本開示は当該実施携帯や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Further, although the present disclosure has been described in accordance with the embodiment, it is understood that the present disclosure is not limited to the embodiment mobile phone or structure. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (6)

  1.  複数の磁極を有するマグネット(32)を備えたロータ(22)と、
     導電性の素線が束ねられることで形成されかつ束ねられた前記素線間の抵抗値が前記素線そのものの抵抗値よりも大きい素線集合体である導線(27)を含んで構成され、前記導線の一部が周方向に並んでかつ前記マグネットと対向して配置された複数の導線部(29A)とされたコイル体(26)を備え、周方向における前記各導線部の間に導線間部材が設けられ、かつその導線間部材として、1磁極における前記導線間部材の周方向の幅寸法をWt、前記導線間部材の飽和磁束密度をBs、前記マグネットの1磁極分の周方向の幅寸法をWmとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いる構成となっているステータ(20)と、
     を備え、
     前記マグネットは、前記各導線部の間に導線間部材が存在する場合には磁気飽和を生じさせるよう、保持力Hcが400[kA/m]以上かつ残留磁束密度Brが1.0[T]以上の磁性材料を用いて形成され、
     前記導線部は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さくなっており、
     前記コイル体に生じる誘起電圧波形が正弦波に沿う波形となるように、前記マグネットの配向角度、周方向に隣合う複数の前記マグネット間の間隔、前記マグネットに形成された窪みの形状、前記マグネットの前記コイル体と対向する方向への厚み寸法、前記マグネットと前記コイル体との間の間隔、前記各導線部の周方向への幅寸法、の少なくともいずれかが設定されているモータ(10)。
    A rotor (22) with a magnet (32) having a plurality of magnetic poles, and
    It is formed by bundling conductive strands, and is configured to include a conductor (27), which is an aggregate of strands in which the resistance value between the bundled strands is larger than the resistance value of the strands themselves. A coil body (26) having a plurality of conducting wire portions (29A) arranged in a circumferential direction and facing the magnet is provided, and the conducting wires are provided between the respective conducting wire portions in the circumferential direction. An inter-conductor member is provided, and as the inter-conductor inter-conductor member, the width dimension of the inter-conductor member in one magnetic pole in the circumferential direction is Wt, the saturation magnetic flux density of the inter-conductor member is Bs, and the circumferential direction of one magnetic pole of the magnet. When the width dimension is Wm, the stator (20) is configured to use a magnetic material having a relationship of Wt × Bs ≦ Wm × Br.
    With
    The magnet has a holding force Hc of 400 [kA / m] or more and a residual magnetic flux density Br of 1.0 [T] so as to cause magnetic saturation when a member between the wires is present between the wires. Formed using the above magnetic materials,
    The thickness dimension of the lead wire portion in the radial direction is smaller than the width dimension in the circumferential direction of one phase in one magnetic pole.
    The orientation angle of the magnet, the distance between the plurality of magnets adjacent to each other in the circumferential direction, the shape of the recess formed in the magnet, and the magnet so that the induced voltage waveform generated in the coil body becomes a waveform along the sinusoidal wave. A motor (10) in which at least one of the thickness dimension in the direction facing the coil body, the distance between the magnet and the coil body, and the width dimension in the circumferential direction of each of the lead wire portions is set. ..
  2.  前記マグネットを軸方向から見て、磁極中心(L)における磁束線(W)の周方向に対する配向角度が90°未満に設定された請求項1記載のモータ。 The motor according to claim 1, wherein the orientation angle of the magnetic flux line (W) at the center of the magnetic pole (L) with respect to the circumferential direction is set to less than 90 ° when the magnet is viewed from the axial direction.
  3.  周方向に隣合うマグネットが磁極中心において離間している請求項1又は請求項2記載のモータ。 The motor according to claim 1 or 2, wherein magnets adjacent to each other in the circumferential direction are separated at the center of the magnetic pole.
  4.  前記窪み(54)が、前記マグネットの磁極中心を含む部分に形成されている請求項1又は請求項2記載のモータ。 The motor according to claim 1 or 2, wherein the recess (54) is formed in a portion including the magnetic pole center of the magnet.
  5.  前記マグネットにおいて磁極中心を含む部分の前記コイル体と対向する方向への厚み寸法(T1)が、他の部分の厚み寸法(T2)と比べて小さな寸法となっている請求項1~請求項4のいずれか1項に記載のモータ。 Claims 1 to 4 in which the thickness dimension (T1) of the portion of the magnet including the magnetic pole center in the direction facing the coil body is smaller than the thickness dimension (T2) of the other portion. The motor according to any one of the above.
  6.  前記ステータは、ステータコア(24)を含んで構成され、
     前記導線部の形状が保持された前記コイル体が、前記ステータコアに取付けられている請求項1~請求項5のいずれか1項に記載のモータ。
    The stator is configured to include a stator core (24).
    The motor according to any one of claims 1 to 5, wherein the coil body in which the shape of the conducting wire portion is maintained is attached to the stator core.
PCT/JP2020/019445 2019-07-17 2020-05-15 Motor WO2021010009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019131856A JP2021019370A (en) 2019-07-17 2019-07-17 motor
JP2019-131856 2019-07-17

Publications (1)

Publication Number Publication Date
WO2021010009A1 true WO2021010009A1 (en) 2021-01-21

Family

ID=74210427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019445 WO2021010009A1 (en) 2019-07-17 2020-05-15 Motor

Country Status (2)

Country Link
JP (1) JP2021019370A (en)
WO (1) WO2021010009A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029540A (en) * 2010-07-28 2012-02-09 Minebea Co Ltd Single-phase brushless motor
JP2017169316A (en) * 2016-03-15 2017-09-21 アスモ株式会社 motor
WO2019131914A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotating electrical machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029540A (en) * 2010-07-28 2012-02-09 Minebea Co Ltd Single-phase brushless motor
JP2017169316A (en) * 2016-03-15 2017-09-21 アスモ株式会社 motor
WO2019131914A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotating electrical machine

Also Published As

Publication number Publication date
JP2021019370A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US9083225B2 (en) Rotary electric machine
EP1414132B1 (en) Electric motor, method of fabricating the same, and hermetic compressor comprising the same
JP5491484B2 (en) Switched reluctance motor
US9041269B2 (en) Motor
JP4586717B2 (en) motor
WO2018180721A1 (en) Electric motor
WO2017183162A1 (en) Electric motor and air conditioner
JP6787257B2 (en) Rotating machine
JP4728765B2 (en) Rotating machine
WO2018037449A1 (en) Consequent-pole-type rotor, electric motor, and air conditioner
JP7055220B2 (en) Rotating electric machine
JP2013102597A (en) Rotor for electric motor and brushless motor
JP6591084B2 (en) Rotor and rotating electric machine
WO2020194390A1 (en) Rotating electric machine
WO2016175181A1 (en) Electric motor
JP2014207785A (en) Motor
US10644547B2 (en) Armature
WO2021010009A1 (en) Motor
JP7001483B2 (en) Axial gap type transverse flux type rotary electric machine
WO2018147392A1 (en) Rotating electrical machine
JP2006025486A (en) Electric electric machine
JP2022076731A (en) Rotary electric machine
WO2017150312A1 (en) Stator of brushless motor, brushless motor, and method of manufacturing stator of brushless motor
JP7104340B2 (en) Rotating electric machine
WO2021235376A1 (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840374

Country of ref document: EP

Kind code of ref document: A1